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Este texto naci6 hace varios afios como unos apuntes de clase para la materia de matematicas discretas,
constituido al principio solo por algunas decenas de paginas. Con el paso del tiempo los mismos fueron
creciendo y tomando forma hasta ser lo que son hoy en dia: un libro de texto en toda la extensiéon de la pa-
labra. En el mismo se plasma nuestro interés y experiencia docente a lo largo de muchos afios de impartir
la materia.

Est4 disefiado para brindar a los estudiantes que cursan la materia de matematicas discretas una herra-
mienta adecuada, que cubra los conceptos fundamentales de sus principales areas, pero abordados de una
manera sencilla, clara y precisa, ademas de que sea facil de leer y comprender, ya que no se pretende que
sea un tratado demasiado riguroso sobre alguna parte concreta de las matematicas discretas.

Cabe hacer mencién que algunos de los capitulos requieren para su mayor entendimiento que el lector
tenga conocimientos bésicos de algebra a nivel bachillerato; nos referimos en particular al capitulo 2 Légica
y calculo proposicional, en el tema de induccién matematica; el capitulo 4 Relaciones de recurrencia; el
capitulo 5 Combinatoria; el capitulo 8 Sistemas algebraicos y el capitulo 9 Algebra de Boole, debido a que en
los mismos se efectian diversos procedimientos algebraicos que requieren conocimientos elementales de
algebra.

Muchos de nuestros alumnos que han tomado este curso expresaron que eran necesarios mas proble-
mas o ejercicios. Por ese motivo al final de cada capitulo se incluye una serie de problemas para resolver,
ademas de los resueltos en los ejemplos de cada capitulo. Estos problemas también tienen la finalidad de
reafirmar los conceptos aprendidos.

Hemos decidido no incluir programas de cémputo de manera explicita, esto debido al tiempo que se
requiere para realizarlos; pero si se presentan en algunos de los temas abordados diversos tratamientos
algoritmicos que bien pueden resolverse con un programa.

Hasta estos momentos se ha hablado de la finalidad del libro, pero el lector se ha de estar haciendo las
mismas preguntas que nos hacemos todos al iniciar un curso de esta naturaleza: ;qué son las matemati-
cas discretas? y ;por qué estudiar esta materia? En el CD anexo al libro se encuentra una animacién con la
respuesta a estas interrogantes. Por eso recomendamos ver dicha animacién antes de dar inicio a la lectura
del libro.

Por ultimo, esperamos que esta obra cumpla con los requerimientos y esté a la altura de las expectativas
del lector.

“En matemadticas uno no entiende las cosas, se acostumbra a ellas.”
John von Neumann
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Conceptos
fundamentales

Objetivos:

m Conocer las nociones basicas de la teoria de conjuntos.

m Comprender y aplicar las operaciones basicas de conjuntos en ejemplos cotidianos.

m |dentificar las caracteristicas que distinguen a los conjuntos finitos e infinitos numerables.

m Comprender las propiedades basicas presentes en el conjunto de los nimeros enteros.

= Conocer el concepto de funcion.

m Comprender la dependencia de variables.

m Analizar el concepto de matriz como una herramienta basica para el uso ordenado y eficiente de datos.

m Comprender y aplicar las operaciones basicas de matrices.
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Capitulo 1 Conceptos fundamentales .

1.1 Conjuntos

Este capitulo tiene como finalidad presentar y analizar los fundamentos basicos para el desarrollo y la
aplicacion de las matematicas discretas. En esta secciéon abordamos las nociones bésicas de la teoria de
conjuntos, la cual ha permitido, en gran medida, la formalizacién y el desarrollo de las matematicas. En un
principio, Georg Cantor, matematico aleman (1845-1918), comenzé esta tarea mediante el anélisis de las ba-
ses de las matematicas, explicando todo con base en los conjuntos (por ejemplo, la definicién de funcién se
hizo estrictamente a través de conjuntos). El alcance del colosal trabajo realizado por Cantor, logrd unificar
las matematicas y permitié la comprensién de nuevos conceptos.

P R R R R R R R R R R R A R T R R )

George Cantor (San Petersburgo, 1845-Halle, Alemania, 1918), matematico aleman de origen ruso. En
1874, publicé su primer trabajo sobre teoria de conjuntos. Entre 1874 y 1897 demostré que el conjunto de
los niimeros enteros tenia el mismo nimero de elementos que el conjunto de los nimeros pares, y que
el ndmero de puntos en un segmento es igual al nimero de puntos de una linea infinita, de un plano y
de cualquier espacio. Es decir, que todos los conjuntos infinitos tienen “el mismo tamano”. Sin embargo,
hasta entonces, el concepto de infinito en matematicas habia sido un tabd, por lo que se gano algunos
enemigos, en especial Leopold Kronecker, quien hizo todo lo imposible por arruinar la carrera de Cantor.
Estancado en una institucion docente de tercera clase, privado del reconocimiento por su trabajo y con
frecuencia atacado por Kronecker, Cantor comenzo a tener problema de salud mental, lo que provocé
que en 1884 sufriera su primera crisis nerviosa.

tEsEsEeEOEEEEEBEOEOEEEEEREEOST
tesescs e csssssEPEOEEEEIERIEOTT

Figura 1.1 Georg Cantor . ) ’ ) ;
(1845-1918). En la actualidad, se le considera como el padre de la teoria de conjuntos, punto de partida de excep-

cional importancia en el desarrollo de la matematica moderna.
Cantor muri6 en 1918 recluido en una institucion para enfermos mentales.

Definiciones basicas de conjuntos

Para las matematicas en general, la funcién que desempenan las definiciones es béasica, debido a que con
ello se pretende establecer, sin ambigiiedad, los conceptos utilizados. Aunque parezca poco increible, la de-
finicién formal de un conjunto es una de las més dificiles de establecer en matematicas. Pues, si por ejemplo
usamos la definicién: “Un conjunto es una coleccién bien definida de objetos”; entonces, surge la siguiente
pregunta: ;qué es una coleccién? Luego, entonces, es posible definir, por ejemplo, una coleccién como “un
agregado de cosas”; pero, ;qué es un agregado?, y asi sucesivamente hasta desarrollar mas definiciones.
Como se puede observar, es facil deducir que esto se vuelve ciclico; por tanto, los matematicos consideran
que debe haber conceptos primitivos o sin una definicién formal.

No obstante, para efectos practicos, en este libro un conjunto se considera una coleccién bien definida
de objetos, con la esperanza de que, aunque dicha definicién no es formal, la cotidianidad de la palabra
“coleccién” nos permita avanzar sin mayores dificultades hacia el logro de los objetivos planteados. En otras
palabras, esto significa que un conjunto no es solo cualquier coleccién de objetos, sino que ademas este
debe estar bien definido en el sentido de que, si se considera cualquier objeto, se puede saber con certeza si
es parte o no de la coleccion.

Es importante establecer que a los objetos de un conjunto se les llama elementos o miembros del con-
junto, y es comun representarlos con letras minusculas, a, b, c..., mientras que la notacién usual para los
propios conjuntos es con letras mayusculas, A, B, C....

Por otra parte, hay dos maneras comunes de especificar un conjunto dado. La primera es mediante la
presentacién de un listado de sus elementos entre llaves; por ejemplo, si aw consiste de todas las letras del
alfabeto espafiol, entonces a puede presentarse en la forma:

a={anb,c, ...z}

La segunda forma de presentar un conjunto es especificando una regla que establece la propiedad o
propiedades que un objeto debe satifacer para ser considerado como un miembro del conjunto. Si se utiliza

esta notacién, el con® -
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. Conjuntos

A ={a,t-q-aesunaletra del alfabeto espaiol}

Y se lee: “A es el conjunto de todos los elementos a, tales que a es una letra del alfabeto espafol”.
La notacién que se usa para especificar que un objeto a es un elemento de un conjunto A es:

a€EA

Y se lee: “a es un elemento de A” o, en forma alternativa, “a pertenece a A”.
Por otro lado, si el objeto a no es un elemento del conjunto A, entonces se escribe:

aeg A

Y selee: “anoes un elemento de A” o, en forma alternativa, “a no pertenece a A”. Por ejemplo, si A = {«, 3,
v, 6}, se tiene que ye A, pero 6 & A.

De acuerdo con el concepto de conjunto definido antes, resulta claro que para que un conjunto A sea
igual a un conjunto B, lo cual se denota por A=B, ambos deben tener exactamente los mismo elementos.

Sean A, B, C los siguientes conjuntos:

A=(1,234)
B={1,234,5)
C={1,3524)

Entonces, como B y C tienen exactamente los mismos elementos (aunque, en este caso, en orden distinto) B = C,
peroA #ByA # C yaque5& Ay5 € C, pero5 & A.

Como se puede notar en el ejemplo anterior, todos los elementos de A pertenecen al conjunto B; es decir,
todo el conjunto A esta contenido en B. Esto es, formalmente se dice que A es un subconjunto de B y se de-
nota por A C Bsicada elemento de un conjunto A es también un elemento del conjunto B. En caso de que A
no sea subconjunto de B, se escribe A ¢ B.

A partir de esta definiciéon, se puede ver que A = BsiysolosiA CBy B C A.

De acuerdo con los conjuntos A, By C del ejemplo anterior, es facil ver que A C C. Ademas, B C Cy C C B; por tanto,
B=C.SiD={1,3,57)} entoncesD LAy A Z D.

Es comun utilizar la notacién A C B para el caso en que A C B, pero A # B; entonces, se dice que A es
subconjunto propio de B.

E JEMPLO

Si A={a,B,v,6,eyB={8 ¢ 0,p}setienequeB C A.

El conjunto que no contiene elementos se conoce como conjunto vacio y se denota por & o {}. El conjun-
to vaclo, &, a su vez, es subconjunto de cada conjunto A. Para ver esto, solo basta observar que & no tiene
elementos y, por tanto, no contiene elementos que no estén en A, es decir 3 C A.

Como contraparte del conjunto vacio, se tiene otro extremo, “el més grande”, que se denomina conjunto
universo. Un conjunto universo (o conjunto universal) es el conjunto de todos los elementos de interés en
una discusién particular.
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4 Capitulo 1 Conceptos fundamentales .

Operaciones con conjuntos

Asi como los nimeros se pueden sumar, restar, multiplicar o dividir, entre otras operaciones, para obtener
nuevos numeros también se tienen diversas operaciones que se pueden realizar con conjuntos dados para
obtener nuevos conjuntos. En esta seccién se ilustran algunas de estas.

Union
La unién de dos conjuntos A y B es el conjunto formado con todos los elementos que estan en A y/oen B,y
se denota por A U B.

Esto se simboliza de la siguiente forma:

AUB={xt-q-x€ Aox€EBoxestdenambos}

E JEMPLO_

Sean:
A= {(X,B, 7,8,8)yB = {8’8;0’[)}
entonces:
AUB={a,B,v,9,¢,0,p}
Interseccion

La interseccién de dos conjuntos A y B es el conjunto formado con todos los elementos que estan tanto en
A como en B, y se denota por A N B. Esto se simboliza de la siguiente forma:

ANB={xt-q-xEAyx€EB]

E JemPLO_

Sean:
A={1,2,345,B={,357)yC={2456,8)
entonces:
ANB={135)}
ANC={24}
BNC=Y

Sea U el conjunto universo y A es un subconjunto de U entonces el conjunto de todos los elementos en U
que no estan en A se conoce como el complemento de A y se denota por A°o A’. En simbolos se tiene:

A'={xt-q-xEUx&A]}

Sean:
U={1,2,3,4,5678yA=(1357)
entonces:
A°={2,4,6,8}
Diferencia

La diferencia de conjuntos A—B es el conjunto de todos los elementos de A que no estan en B, en simbolos:
A-B={xt-q-x€EAyxE&B}.

La diferencia simétrica de A y B, que se denota por:

This document is available free of charge on StUDOCU-com

Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)


https://www.studocu.com/co?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=matematicas-discretas

o Conjuntos finitos e infinitos contables

Sean:
A={a,b,c dyyB={a b, d, e}
entonces: A—B ={c}

ADB={c e}

Las siguientes propiedades rigen las operaciones en conjuntos.
Sea U un conjunto universo. Si A, By C son subconjuntos arbitrarios de U, entonces:

Tabla 1.1 Propiedades de las operaciones en conjuntos

AUB=BUA Ley conmutativa para la unién
ANB=BNA Ley conmutativa para la intersecciéon
AUBUC) =(AUB)UC Ley asociativa para la unién
ANBNC)=(ANBNC Ley asociativa para la interseccién
AUBNC) =AUBNAUCQC) Ley distributiva para la unién
ANBUC=(ANB)UANC) Ley distributiva para la interseccién
(AUB)S=A"NB" Ley de Morgan 1

(AN B)F=A"UB" Ley de Morgan 2

Los diagramas de Venn son de gran
utilidad para entender los conjuntos
resultantes de cada operacién defini-
da en conjuntos, pero sobre todo para
resolver problemas de aplicaciéon que Conjunto A Conjunto B
incluyen conjuntos. En dichos diagra-

mas, el conjunto universo U se repre-
senta por un rectangulo, mientras que
los subconjuntos de U se representan

por regiones dentro del rectangulo. En AUB AAB A-B B+A

la figura 1.2 se muestran los diagramas
de Venn de las principales operaciones  Figura1.2 Diagramas de Venn de algunas operaciones sobre conjuntos.
sobre conjuntos.

1.2 Conjuntos finitos e infinitos contables

Cuando se habla de conjuntos infinitos, mucho del sentido comun y de la intuicién carecen precisamente
de sentido, pues resulta imposible considerar que dos conjuntos, en apariencia uno con muchos mas ele-
mentos que el otro, tengan en realidad la misma cantidad de elementos. No obstante, esto se aclara en la
presente seccién.

Recuérdese que la cardinalidad de un conjunto A es la cantidad de elementos distintos que posee el
conjunto y se denota como: |A].
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6 Capitulo 1 Conceptos fundamentales .

a) SiA={a b c},A={a b cloA={a O d}, entonces |A|=3.
b) SiA = {{a b),{c{d e f, g}}}, entonces |A | = 2.

c) SiA =, entonces |A | = 0.

d) SiA={1,2,3,.,n} entonces |A| =n.

Para encontrar el tamano de dos conjuntos A y B, de manera comparativa, se utiliza el concepto de
correspondencia biunivoca, que se define como: dados dos conjuntos A y B, se dice que existe una corres-
pondencia uno a uno (biunivoca) entre los elementos de A y los de B, si es posible “hacer corresponder” los
elementos de A y los de B, de tal manera que para cada par de elementos distintos de A les “correspondan”
dos elementos distintos de B.

E JemPLO_

Existe una correspondencia
biunivoca entre los elementos

de {a, b} y los de {y, z} (véase

figura 1.3a), también entre los de <] ’ }1

{(a,b,c} ylosde{d,y, z} (véase
figura 1.3b). Pero, no existe una
correspondencia biunivoca en-
tre los elementos de {g, b, ¢} y
los de {y, z} (véase figura 1.3c). N\

a) b) q //

Figura 1.3 a) y b) son correspondencias biunivocas; c) no es correspondencia biunivoca.

E JEMPLO_

Existe una correspondencia biunivoca entre los elementos de {g, b} y los de {c, d} y entre los de {a, b, ¢} y los de
(&, g, b). Pero no existe una correspondencia biunivoca entre los elementos de {g, b, ¢} y los de {q, d).

Ahora, es posible establecer de manera concisa el concepto de conjunto finito: se dice que un conjunto
A es finito si existe una correspondencia biunivoca entre los elementos de A y los elementos de un con-
junto de la forma {1, 2,..., n}, donde n es algtin entero positivo fijo. Es facil ver que si existe tal corresponden-
cia biunivoca se tiene que: |A|= n.

Tanto el conjunto A = {g, &, d} como el conjunto B = {a, b, d} son 4 )
finitos y de cardinalidad 3, ya que existe una correspondencia bi- o &
univoca entre los elementos de ambos conjuntos y los elementos
del conjunto {7, 2, 3}, como se muestra en la figura 1.4.

0 2 3 {1, 2 3

\ J

Figura 1.4 La cardinalidad de ambos
conjuntos es 3.
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o Conjuntos finitos e infinitos contables

El concepto de conjunto infinito contable se establece de una extension “natural” del caso de conjuntos
finitos; se dice que un conjunto es infinito contable (o infinito numerable) si existe una correspondencia

biunivoca entre los elementos del conjunto y los elementos de N = {1, 2, 3,...}.

El conjunto de los ndmeros naturales N es por si mismo un conjunto infinito con-
table, dado que se puede establecer la correspondencia biunivoca de N a N (véase
figura 1.5).

Figura 1.5 N es un conjunto infinito contable.

E JEMPLO

El conjunto de todos los enteros pares no negativos P = {2, 4, 6,..} es un conjunto
infinito contable, pues existe una correspondencia biunivoca entre dicho conjun-
to y los ndmeros naturales (véase figura 1.6); a saber, al entero 2k se le puede hacer
corresponder el nimero natural k, para k = 1, 2, ...; es decir:

Figura 1.6 E| conjunto de los pares es infinito contable.

E JEMPLO

De manera similar, el conjunto de todos los multiplos de 7 no negativos {7, 14, 21, ...}
es infinito contable (véase figura 1.7).

Figura 1.7 Los mdltiplos de 7 son un conjunto infinito contable.

N
{1, 2, 3, 4.}
1, 2, 3, 4 ...
{ )
s N
{2, 4, 6, 8 ...}
1, 2, 3, 4.
Lt )
{7, 14, 21, 28 ..}
1, 2, 3, 4 ..
{ )

Una manera intuitiva de concebir lo que es un conjunto infinito contable es: un conjunto A es infinito
contable si, comenzando con algin elemento fijo de A, es posible listar de manera sucesiva, uno detras de
otro, todos los elementos de A. Es facil ver que de existir dicha lista, la correspondencia biunivoca del con-

junto A con los numeros naturales estaria garantizada.

E JEMPLO_

El conjunto Z ={..., =3, =2, —1,0,1, 2, 3, ...} es un conjunto infinito con- 0 1 1 2 2.1
table porque sus elementos pueden ser listados como Z = {0,1, —1,2, —2,
3, =3 ..}, y, por tanto, se tiene una correspondencia biunivoca entre los
elementos de Z y los de N (véase figura 1.8); es decir:
{1, 2, 3, 4 5.1
Figura 1.8 Z es un conjunto infinito contable. \ v
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8| Capitulo 1 Conceptos fundamentales .

El conjunto de los nimeros racionales @ es un conjunto infinito contable, debido a que este puede ser listado
como se muestra en la figura 1.9. Ademas, como se observa, es posible obtener una cantidad infinita contable de
sublistas, en donde cada una es, al mismo tiempo, un conjunto infinito contable; la union de todas estas es el con-

junto Q.
4 N
e 4 «— 3 -2 «— -1 0—>1 2 —> 3 4 —> 5
—4/2 =312 =22 12 «<—12 2/2 32 472 512
—4/3 =33 -23—>-13 ————> 13 —> 213 33 4/3 53
—4/4 —3/4 «— /A «— 1[4 «— 1/4 «<— /4 «— 3/4 4/4 5/4
=45 —>-3/5 —> 25— -1/5 ——— > 1/5—> 25 —> 3/5—> 4/5 5/5

Figura 1.9 Lista de nimeros racionales que demuestra que QQ es un conjunto infinito contable.

Se dice que la cardinalidad de un conjunto infinito contable es X,. (X Aleph es la primera letra del alfabeto
hebreo.)

Pero, también es posible encontrar conjuntos infinitos no contables, como el caso de los numeros reales
entre Oy 1. La manera de demostrarlo es a través de la reduccién al absurdo; esto es, suponer que R es un
conjunto infinito contable y llegar a una contradiccion.

Esto es, suponiendo que el conjunto (0, 1) C R es infinito contable, necesariamente debe existir una co-
rrespondencia biunivoca entre (0, 1) y el conjunto N. En consecuencia, es posible listarlos de manera sucesi-
va, uno detrés de otro, de forma decimal, como se aprecia a continuaciéon:

0. 011015013044
0. 051099 093 oy
0. 03103, A33 Ay

0. a4 A3 Qi3 Q...

donde a; denota el j-ésimo digito decimal del i-ésimo numero de la lista.
Ahora, considérese el nimero donde:

9_aﬁ Sl aﬁ:O, 1,2,...,8

Para todo 1.

El namero 0. b, b, b3 b,... es un numero real entre 0 y 1 que es distinto de cada uno de los nimeros de la
lista anterior, porque difiere del primer nimero listado en el primer digito, del segundo en el segundo digi-
to,... del i-ésimo numero en el i-ésimo digito y asi sucesivamente. En consecuencia, se puede concluir que la
lista anterior no incluye a todos los elementos del conjunto (0, 1), lo cual contradice el supuesto de que
(0, 1) es infinito contable.
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El conjunto de los nimeros enteros

1.3 El conjunto de los nimeros enteros

El sistema de los nimeros naturales N tiene un defecto manifiesto; a saber, dados m,n € N, la ecuaciéon m +
X = n puede o no tener solucién; por ejemplo, la ecuacionesm + x =mym + x = n (m < m) carecen de solu-
cién. Es sabido que esto se soluciona introduciendo a los nimeros naturales el cero y los numeros enteros
negativos, a fin de formar el conjunto de los nimeros enteros Z.
Recuérdese que:
N={1,23)yZ=10, +1,+2 +3,.}

A continuacién, se describen las propiedades algebraicas que satisfa- m

cen el conjunto de los numeros enteros con las operaciones de adicién y
multiplicacién Z. El simbolo Z proviene del aleman

zahl, que significa nimero.

Adicion
Sik, m,n € Z son tres numeros enteros cualesquiera, entonces:

1. Propiedad decerradura (kR +m)€EZ

2. Propiedad conmutativa k+m=m+k

3. Propiedad asociativa k+m)+n=k+ n+m)

4.  Neutro aditivo 3 un Gnico elemento 0 € Z,talquek +0=0+k =k, VkEZ

5. Inverso aditivo Para cada k € Z 3 un Ginico elemento —k, tal que k + (=k) = (k) + k=0
Multiplicacion

1. Propiedad decerradura (k-m)€E€Z
2. Propiedad conmutativa k-m=m-k
3.  Propiedad asociativa (k-m)-n=k-(n-m

4. Inverso aditivo Jun Unicoelemento1 € Z,talquek-1=1-k=k

Leyes distributivas

1. k-m+n=k-m+k-n

2. (k+n-n=k-n+m-n

Los nuimeros enteros poseen un conjunto de gran importancia por sus diversas aplicaciones: los nume-
ros primos. Para definir con precisién qué es un nimero primo, primero introducimos el concepto de divisor:
un entero a # 0 se llama divisor (o factor) de un b € Z, lo cual denota comoa | b,sic€ Ztalqueb =a - c.
Cuando a | b, se dice que b es un multiplo de a.

E JEMPLO Nota |

a) 2|6,yaque6 =2-3,con3 € Z. En este punto, es importante tener clara la diferen-
b) —3|15, yaque15 = (=3) - (=5),con =5 € Z. cia que existe entre a| 0y 0| a; de hecho, este tl-
timo caso no es posible, pues implica una division

c) al0,yaqueVa € Zsecumple0=a-0,con0 € Z. ) ,
por cero, la cual no esta definida.
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10 Capitulo 1 Conceptos fundamentales o

Entonces, se puede decir que ya se esta en condiciones de aclarar, sin ambigliiedad alguna, qué es un
numero primo: “se dice que un entero p es un nimero primo, si y solo si tiene exactamente cuatro divisores
diferentes; a saber: =1y *p.

E JemPLO_

a) 2 es primo, ya que sus Unicos divisores son =2, *1.

b) —5 es primo, ya que sus nicos divisores son =5, =1.

c) 6 no es primo, ya que sus divisores son =6, *£3, =2, *1.
d) 39 no es primo, ya que sus divisores son £39, =13, +3, £1.

e) 1no es primo, ya que solo tiene dos divisores *1.

Es claro que —p es primo si y solo si p lo es, por lo que solamente sera necesario referirse a los primos
positivos.

Por ultimo, otro concepto importante acerca de los numeros enteros es el de Mdximo Comun Divisor
(MCD), el cual, para dos enteros positivos, a y b se define como el mayor entero positivo que es divisor tanto
de a como de b. Matematicamente se expresa de la siguiente manera: sia|bya|cse dice que a es un divisor
comun de by c; pero, si ademas todo divisor comun de b y c también es de a, se dice que a es el maximo co-
mun divisor de by c.

E JEMPLO_

El conjunto de divisores comunes (positivos) de 24 y 60 es {1, 2, 3, 4, 6,12}. Entonces, en este caso, el MCD de 24 y
60 es12.

1.4 Funciones

En matematicas, el concepto de funcién es fundamental, incluyendo todas sus areas de aplicacién. Por
ejemplo, en su desempeno profesional un bidélogo puede necesitar conocer como depende el crecimiento de
un cultivo de bacterias en funcién del tiempo y un quimico puede requerir saber cudl es la rapidez de reac-
cién inicial de una sustancia en funcién de la cantidad utilizada, entre otras cosas. Pues, la relacién entre
cantidades es descrita de manera conveniente usando el concepto de funcién.

De manera intuitiva, se puede comparar a una funcién con una maquina, de tal suerte que si se introdu-
ceun numero a dicha maquina, esta lo transforma en otro nimero. Por supuesto, las funciones no se limitan
a numeros y, en general, se puede considerar una funcién f de un conjunto X a un conjunto Y, que se denota
por f: X —Y como una regla que asigna a cada elemento x de X uno y solo un elemento y de Y.

Por tanto, es util representar al nimero en la forma f(x), lo cual se lee f de x, pues dicha notacién enfatiza
el hecho de que el numero y depende del nimero x.

Sea f la funcion que transforma cada entero en su cubo, es decir f: Z — Z, donde f se define por f (x) = x*. Entonces,
por ejemplo, el nimero entero 2 es transformado por la regla f al numero entero 8, ya que: f(2) = 2° = 8.

Dada una funcién f: X —Y al conjunto de todos los elementos x € X que f puede transformar sin ambi-
giedad a un elemento y € Y, se le denomina dominio de f y se denota por dom{f}. Por su parte, al conjunto
de todos los elementos y = f (x) que se obtienen al recorrer todo dom{f}, se le denomina rango o imagen de f
y se denota por im{f}.
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.
- Funciones

[E JEMPLO |
1+ x

Para la funcion f definida en R por: f(x)=—

El dominio de la funcién son todos los nimeros reales excepto x = 0, ya que dicho valor es el Gnico que no tiene
correspondencia con un valor real, pues la division por cero no esta definida. Por tanto, podemos escribir:

dom{f} ={x ERt-q-x # 0}

Si para una funcién en particular conocemos su regla de transformacion f(x), es Gtil, en diversas aplica-
ciones, averiguar cudl es el elemento x que fue transformado al f (x) dado.

Por desgracia, no siempre es posible saber esto con certeza; por ejemplo, si consideramos al nimero 4
como un elemento convertido por la regla f (x) = x?, es claro que existe ambigliedad para determinar el valor
de x, ya que hay dos opciones posibles: x = 2 y x = —2.No obstante, dicha ambigtiedad no existe para funcio-
nes f que tienen la caracteristica de que para cada par de elementos x4, x, € dom{f} con x, # x, las imagenes
correspondientes también son distintas: f (x,) # f (x,).

Una funcién de este tipo se denomina biunivoca, la cual, como se dijo antes, por supuesto es equivalente
al concepto de correspondencia biunivoca descrito y utilizado en la seccién anterior.

E jemplo

Determinar si las funciones siguientes son o no biunivocas en todo su dominio.

a) flx)=1-—3x

1
D))= oy
Q) flx)=x*

Para verificar si una funcién es biunivoca o no, primero se puede asumir que dos valores transformados son

iguales, f(x;) = f{x,), y si dicha aseveracion implica que los argumentos son iguales, x; = x,, entonces es posible
concluir que la funcién es biunivoca (¢por qué?).

Entonces:

a) Sea f{x;) = f{x,), es decir, 1 — 3x; = 1 — 3x,. Si en la ecuacion anterior restamos 1 en ambos lados se obtiene
—3x; = —3x,. Por ultimo, si dividimos ambos lados de la ecuacion por —3 se tiene que x; = x,. Por tanto,
es posible concluir que la funcion f es biunivoca.
1T

142x,  1+2x,

lados de la ecuacion por los factores (1 + 2x;) (1 + 2x,), lo que da como resultado 1+ 2x, = 1 + 2x;. Ahora
bien, restamos 1en ambos lados, con lo que se obtiene 2x, = 2x;. Por ultimo, dividimos ambos lados de la
ecuacion por 2 y se obtiene 2x, = 2x, . Por tanto, concluimos que la funcion f es biunivoca.

b) Del mismo modo, sea f{x;) = f{x), es decir, . En este caso, primero multiplicamos ambos

c) Ahora, aseguramos que la funcion dada no es biunivoca. Para ver esto, sea f (x;) = f (x,), es decir, (x,)* =
(x,)%. Es importante destacar que es facil cometer el error de concluir que la Gltima ecuacién implica que
X, = X, cuando en realidad se tiene que x; = *x,. Entonces, como no existe una unico valor para el cual
f(x;) = f(x,), se concluye que la funcién dada no es biunivoca.
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[ ]
1.5 Sucesiones

Es importante hacer notar que el término sucesién se usa con mucha frecuencia en el &mbito coloquial, ya
que se emplea por lo comun para indicar una serie de eventos, donde uno sigue a otro en un orden definido.
Algo analogo ocurre con las sucesiones numeéricas, solo que en lugar de tratarse de eventos se trata de tér-
minos numeéricos.

De manera intuitiva, una sucesién S es una simple lista de objetos llamados elementos, los cuales for-
man un conjunto, donde ademas los elementos estan uno detras de otro en el orden natural creciente de los
numeros naturales N.

Sila sucesidn es finita, esta puede terminar después de un cierto numero de términos o puede (en princi-
pio, al menos) seguir en forma indefinida; en este caso, se dice que es infinita. En este sentido, se puede decir
que son conjuntos infinitos contables.

Una sucesiéon general, es decir una sucesioén en la que no se especifican los términos, puede escribirse
como:

Xy, Xy, X3, ...
o algunas veces como:
X, l=n<oo

Si x es una sucesion, entonces se escribe como:

X = (x,

En un sentido formal, se dice que una sucesién (x,) es una funcién S:N—R de una variable n donde
dom({S} = N; es decir, a cada n € N le corresponde un nimero real x,, el término n-ésimo de la sucesién.

Una diferencia sustancial entre un conjunto cualquiera y una sucesién es que en una sucesién se pueden
tener términos repetidos.

a) (x,)=1{1,0,0,110,0,..}
b) (x,) ={2.4,6,8,...2n,...)

c) x, =n*1=n <, esdecir (x,) = {1,4,976,...)

d) x, = (=1)",1=n <o, esdecir (x,) ={=11-11,..}

1
e) x,= —,1=n <, esdecir (x,,)Z{l, l, l, i,}
2 2 4 8 16

1.6 Matrices

Hoy dia, en el dmbito cotidiano existen muchos problemas practicos que pueden ser resueltos mediante
operaciones aritméticas aplicadas a los datos asociados al problema dado. Organizando los datos en arre-
glos numéricos de filas y columnas, es factible llevar a cabo de manera eficiente los calculos aritméticos
necesarios para resolver un problema de este tipo. Ademas, una gran ventaja de utilizar un ordenamiento
de filas y columnas para los datos, es que el manejo en una computadora es muy sencillo y, por tanto, todos
los calculos pueden realizarse con precision y eficiencia.

Desde el punto de vista formal, un arreglo rectangular de datos se denomina matriz. De este modo, se
dice que una matriz que consta de m filas y n columnas tiene tamano m X n; en tanto, cuando m = n se dice
que la matriz es cuadrada. La entrada en el i-ésimo renglén y j-ésima columna en una matriz A se denota
por ay; es decir:
a1y a1y A1n
A s Aon
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Matrices

Una forma practica de denotar la matriz A es A = (q;

E jemplo

Considerar la matriz:

319 281 455 285
A=| 475 365 580 0
545 425 180 880
a) Determinar cual es el tamano de la matriz.
b) Encontrar ags,.
c) Determinar la suma de las entradas de la primera fila.
d) Establecer la suma de entradas de la cuarta columna.

)
| Solucién

a) Eltamano de la matriz es 3 X 4, ya que la matriz
consta de 3 renglones y 4 columnas.

b) La entrada g, corresponde al elemento de la
matriz ubicado en el renglon 3y columna 2, es
decir a,, = 425

c) La suma del primer renglén es
319 + 281 + 455 + 285 = 1340

d) La suma de la primera columna es
285+ 0 + 880 = 1165

Dos matrices A = (a;) y B = (b) son iguales siy solo si
dientes son iguales, es decir:
aij = bU A

E jemplo

Determinar w, x, y, de manera que:

2w

tienen el mismo tamano y sus entradas correspon-
LjEN

Considerando que las entradas correspondientes
de las dos matrices deben ser iguales, entonces:
x=—32-w=—4yy—1=0;portanto, x =—3,
w=—-2yy=1

Dado que una matriz es un arreglo de datos, es posible definir operaciones sobre esta. En primer lugar, si

Ay Bson dos matrices del mismo tamario, el resultado de la adicién de A y B es la matriz suma A+B, que se
obtiene de la adicién de todas y cada una las entradas correspondientes de A y B; es decir:

De forma equivalente, la diferencia A—B es la matriz obtenida por restar las correspondientes entradas

en Bde A; es decir:

A-B=
Considerar las siguientes matrices A y B:
—2
A= | 3
1
entonces, se tiene que: B
—2+1
A+B= 3+10
1+ ()
Y la diferencia de A—B es: -
—2—1
A—B= | 3-10
[1-(-1)

(au - bij)

7 1 14
-5 y B= 10 -5
0 -1 -3
7+14 [ —1 21 |
—5+ (—5) = 13 -10
0+(-3) e -3 |
7-14 | 3 -7
—5—(—5) = -7 0
0—(—3) 2 3]
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14 cCapitulo 1 Conceptos fundamentales .

Otra operacién importante en aplicaciones de matrices es la multiplicacién por un escalar (en este con-
texto, un escalar representa cualquier numero real). De este modo, el producto de una matriz A por un esca-
lar c es la matriz que se obtiene de la multiplicacién de cada entrada de la matriz A por el escalar ¢, es decir:

cA = (ca;)
E jEmPLO
Sean: Entonces, cA es la matriz:
A 3 2 1 y c=—4 A (—4)(3) (=4)2) (=40 _ -2 -8 —4
=1 0 4 (=4) (=1 (—=4)0) (—4)4) 4 0 =16

Ademas de las anteriores, hay otra operaciéon importante en aplicacién matricial: la multiplicacién de
matrices. A diferencia de las operaciones consideradas hasta ahora, la multiplicacién de matrices no tiene
una definicién “natural”. De este modo, si A es una matriz de tamafio m X ny B es una matriz de tamano
n X k; entonces, el producto de A con B, que se denota por AB = (¢;), es la matriz de tamano m X k, cuya en-
tradaenelrengléniycolumnaj,l=i=m,1=<j=<k,es:

n
¢; = ;aikbh =ab, +ayb, + - +a,b

in~nj
Los puntos més importantes para recordar de esta definicién son:

1. Para que exista el producto AB es necesario que el numero de columnas de la primera matriz, de
izquierda a derecha, A, sea igual al numero de renglones de la segunda matriz, de izquierda a de-
recha, B.

2. Sisecumple el requisito del inciso a), con A de tamafiom X ny Bes de tamafion X k, entonces la ma-
triz producto tendra el mismo nuiimero de renglones que A y el mismo numero de columnas que B.

3. Para obtener el elemento de la matriz producto AB ubicado en el i-ésimo renglén y j-ésima columna,
se deben sumar los productos que resultan de multiplicar la primera entrada del renglén i de A con
la primera entrada de la columna j de B, la segunda entrada del renglén i de A con la segunda entrada
de la columna j de B, y asi sucesivamente.

[ 2 6 _ |
A|:o3_2:|yB116

Determinar AB, siempre que el producto matricial esté definido.
En este caso, primero debemos verificar si el producto matricial AB esta bien definido; es decir, es indispensable
comprobar que el nimero de columnas de la matriz A sea igual al nimero de renglones de la matriz B lo cual aqui
se cumple. En segundo lugar, debemos establecer el tamano de la matriz producto. La matriz producto debe tener

el mismo numero de renglones que A y el mismo nimero de columnas que B; por tanto, el tamano de AB es 2 X 3.
Entonces, el resultado esperado es una matriz de la forma
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Matrices ' 18

Continua

en la que para obtener el elemento ubicado en el primer renglon y en la primera columna,¢;, se suman los productos
obtenidos de la multiplicacion del primer rengldn de A con la primera columna de B, término a término, es decir:

Cn = apby + apby + aiby,
a = (=1)0) + (2)(=1) + (6)(5) = 27
Del mismo modo, para calcular se suman los productos obtenidos de la multiplicacion del primer renglon de A con
la segunda columna de B, término a término, es decir:
G = @By A @ty A @l
ap = (=1)(0) + (2)(1) + (6)(—1) = —4
Si seguimos con este procedimiento, al cabo del mismo se obtiene:

1)63) + (2)(6
0)1) + (3)(—1
0)(0) + (3)(1) + (—2)
0)3) + (3)(6) + (=2)

=(=
=
=
=
lo que completa la matriz producto:
27 —4 1
AB = >
=B 5 16
A continuacién se describen las propiedades algebraicas que satisfacen las matrices con las operaciones de
adiciéon, multiplicacién por un escalar y multiplicacién matricial (la diferencia de matrices A—B se puede
ver como la suma A+(—B)).

Si A, B, Cson matrices del mismo tamano, y ¢ y d son dos nimeros reales cualesquiera, entonces se cum-
plen las siguientes propiedades:

1. Propiedad conmutativa A+B=B+A

2. Propiedad asociativa (A+B)+C=A+ (B+CQ)

3. Leyes distributivas c(A+B)=cA+cBy (A +B)c=Ac+ Bc
4. Ley asociativa escalar c(dA) = (cd)A

Ademas, si los productos y las sumas estan definidos para A, B, C, entonces:

5.  Propiedad asociativa (AB) C = A (BC)
6. Ley distributiva AB+ C)=AB + AC
Para
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16 Capitulo 1 Conceptos fundamentales .

Continua

Realizar la operacion indicada siempre que esté definida:
a) AB b) BA ) BA—2C

a) El producto AB no esta definido, ya que el nimero de columnas de la primera matriz (de izquierda a
derecha), es 3 y este nimero es diferente al nimero de columnas de la segunda matriz, que es 2.

b) El producto BA si esta definido, pues B es de tamano 2 X 3 (tres renglones) y la matriz A de tamano 3 X 3
(tres columnas). Por tanto, la matriz producto sera de tamano 2 X 3 (ndmero de filas de B X ndmero de
columnas de A). De este modo, la matriz BA es:

2(0) + 4(—1) + 10(7) 2(2) + 4(3) + 10(4) 2(—1) + 4(2) +10(—6)
AT | =8(0) +(-1) (=) + 207 —8(2) + (=1)3) + 2(4) —8(=1) + (=12 +2(~6)

Es decir:
pA— |66 56 —54
15 -1 =6
c) Considerando que la matriz —2C es del mismo tamano que la matriz BA, la operacion BA—2C si esta definida:

BA—2C— |66 56 —54 1 2 1] _[66 56 —54]_[2 4 —2
301 1 5 -1 —6 6 2 2

15 -1 —6
Es decir:
BA—oC— | 64 52 —%2
9 13 —8

En este capitulo se presentaron y analizaron los principales conceptos fundamentales relacionados con el
desarrollo y la aplicacién de las matematicas discretas y de diversos objetos discretos, con la finalidad de
adoptar una terminologia comun a lo largo del libro para poder trabajar con ellos de una manera adecuada.

En primer lugar se abordaron las nociones basicas de la teorfa de conjuntos, la cual ha permitido la for-
malizacién y desarrollo de las matemaéticas, y por ende de las matematicas discretas. Entre ellas pueden
resaltar la de conjunto que, como se indicé, es una de las mas dificiles de formalizar, ademads de analizar las
principales operaciones que pueden efectuarse sobre los conjuntos.

Luego se hablé de los conjuntos cuya cardinalidad es finita, y de aquellos cuya cardinalidad es infinita
contable; esto es, en los que es posible establecer una correspondencia biunivoca entre los elementos del
conjunto y los elementos de los numeros naturales.

Enseguida se presentaron las propiedades algebraicas del conjunto de los nliimeros enteros, para pro-
seguir con la definicién y analisis del concepto de funcién, que a final de cuentas es una regla que asigna a
cada elemento de un conjunto un y solo un elemento de otro conjunto.
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En los ejercicios 11 a 1.8 determinar si la proposicion es
falsa o verdadera.

11 {1,2,3,4}={4,1,2,3}

12 gEX

13 XeX

14 XCX

15 0=

16 0EY

17 (1,2) ={1,2,3,4)

1.8 {Sentra® Tsuru® Xtrail®} C {Nissan®}

En los ejercicios 19 al 116 en un diagrama de Venn
sombrear la region adecuada que represente la ope-
racion indicada.

19 A°NB
110 A°N B
1M (A€ N BY)
112 (A U B)
113 A-8
114 A°—B
115 A — B
116 A®B

En los ejercicios 117 a 1.25 determinar el conjunto re-
sultante de la operacion indicada, considerando el
conjunto universocomo U ={x:x EZ y1=x=09}y
los subconjuntos A = {xt-q-x € Z y1=x =4,
B={2x+1t-qxEZyl=x=4)yC={xt-q-xEZ
yl=x=4)}.

117 B¢
118 AU B°

Problemas propuestos

119 AN A
120 (ANB)UC
121 (AUB)UC

122 (AUB)NC

123 (AUB)U A
124 (AUBFUC
125 (AUBS N C

U
U
N

En los ejercicios 1.26 a 1.29 determinar si el conjunto
dado es finito, infinito numerable o infinito no nume-
rable.

126 A={xt-q-xERy2=x=3)

127 A={xt-qxEZy2=x=x)

128 A={xt-q-xEQy0=x=x)

129 A={xt-g-x€Zy —100000=x =15}

En los ejercicios 130 a 1.34 analizar si la corresponden-
cia dada define una funcién para todos los valores de
su dominio.

130 f(x) = 10"

131 f(x)=x>+x

132 f(x)=-3t/x-2, x>2
133 f(x)=-3-x—2

134 f(x)=LS, X #5
X_

En los ejercicios 135 a 140 determinar si la funcion
dada es biunivoca para todos los valores de su domi-
nio.

135 f(x)=x*+x
136 f(x) = x>+ x*
137 f(x)=+/x=1, x 21
138 f(x) =] x|

X
x=5

140 f(x) = In (x*

-1 2 -1 2
141 Sea: A= y B=
3 1 2 1

139 f(x)= x#!
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18 cCapitulo 1 Conceptos fundamentales

Determinar AB y BA. Con base en este ejemplo,
definir si la mulwtiplicacion matricial es conmu-
tativa.

142 Considerar las matrices:
A=[1 -1 7, B=| 3

{Es posible realizar la operacion AB — 67 En caso
afirmativo, realizar el calculo.

En los ejercicios 1.43 a 1.50 considerar las matrices:

4 2 4 =3 2 10 0
A= . B= yC=|1 -4 0
17 31 5 S

Determinar si la operacion indicada esta definida. En
caso afirmativo, indicar el tamano de la matriz resul-
tante y realizar el célculo explicito.

143 AB

1.44 BA

145 (AB)C

146 2AB — BC

147 B + 10BC

148 C*

149 (2AB — BC)’, donde A” = AA

1 0
1.50 IAy Al,donde l:|:0 ]:|

{Qué efecto produce / en la multiplicacion por A?

[\ Problemas reto

Se dice que una matriz cuadrada A es invertible si exis-
te una matriz B que satisface las siguientes relaciones:

AB =BA =

donde [ es la matriz cuadrada con unos en la diago-
nal principal y ceros en el resto de las posiciones. A la
matriz B, que por lo general se denota por A~ se le
denomina matriz inversa de A.

a) Determinar las condiciones que debe cumplir la
matriz siguiente para ser invertible.

b) Obtener la forma explicitade A~ si A es invertible.

c) Demostrar que un sistema de m ecuaciones li-
neales con n incégnitas x;, X5, ..., X,

apX, +apx; +t+ ayx, = by
ay X + dypX; +t ayx, = by
A X1 T DXy T+ Ao X, = by
se puede escribir matricialmente como:
AX =B
d) Para el sistema cuadrado:
2x, — 4x, = 2
X+ 3%, = —2

Encontrar la matriz A~y demostrar que la solu-
cion del sistema es:

X=A"B
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Logicay
calculo
proposicional

Objetivos

m |dentificar las clases de proposiciones que se pueden encontrar en un enunciado.
m Analizar los enunciados para la elaboracion de las tablas de verdad.

m Traducir proposiciones del lenguaje verbal a variables l6gicas y viceversa.

m |dentificar si un argumento es valido o invalido, asi como demostrar su validez.

m Comprender los principios de las operaciones del calculo proposicional y sus aplicaciones.
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Capitulo 2 L ogica y calculo proposicional .

2.1 Introduccion

Légica es un término que deriva del griego dogren 0 Aogikos (logiké o logikds), que a su vez proviene de Aoyos
(logos), que significa razén. La légica se considera una ciencia formal cuyo objeto de estudio son los distintos
principios de demostracién que permitan comprobar que una afirmacién pueda ser considerada como valida.

La metodologia de trabajo de la l6gica consiste en examinar la validez o la invalidez de una afirmacién
mediante la aplicacién de una sistematizacién en los argumentos y, por ende, de un anadlisis de su estruc-
tura logica, sin tener en cuenta el contenido de lo que se ha argumentado ni considerar siquiera el lenguaje
utilizado, y sin contemplar el estado de realidad del contenido.

La légica se aplica en muy diversas areas. En ingenieria es de gran utilidad en la electrénica, para el dise-
no de circuitos mediante compuertas logicas, y en programacién, para el disefio de programas que requieren
la unién de operadores légicos. En administracién, porque esta hace uso de los conocimientos organizados
para dar solucién a problemas reales. En derecho, su aplicacién se conoce como “légica juridica”, conside-
rada un método de investigacién para entender a la ciencia del derecho, que obtiene su principal fuente del
conocimiento en la razén y no de la experiencia.

Bertrand Arthur William Russell, fildsofo, |6gico, matematico y escritor britanico, realizé aportaciones inno-

vadoras a los fundamentos de las matematicas y al desarrollo de la |6gica formal contemporanea, asi como
a la filosofia analitica. Sus aportaciones a las matematicas incluyen el descubrimiento de la paradoja Russell,
la defensa del logicismo (la vision acerca de que las matematicas son, en algtin sentido significativo, reduci-
bles a la logica formal), la introduccion a la teoria de los tipos y el perfeccionamiento y la divulgacion de la
l6gica de primer orden o calculo de predicados de primer orden. Se le considera, junto con Kurt Godel, como
uno de los dos logicistas mas destacados del siglo xx.

sesscocsssssssostee
tesscocssssssconnee

Figura 2.1 Bertrand Arthur
William Russell (1872-1970).

2.2 Proposiciones y operadores logicos
La proposicion: caracteristicas y estructura

Una proposicién o enunciado constituye una oracién que tiene un valor de verdad, es decir, puede ser verda-
dera o falsa, pero no ambas. La proposicién es uno de los elementos fundamentales en légica.

Sila oracién es una pregunta, una orden, carece de sentido o es muy imprecisa, entonces no puede ser
clasificada como verdadera o falsa, y por tanto no puede ser una proposicion.

E JEmPLO_ |_Solucién

{Cudles de las siguientes oraciones son pro- | e Las oraciones 1y 2 son proposiciones, ya que pueden tomar un

posiciones?
1. La Tierra es plana.
2.3+6=28.

3. La temperatura del nucleo del Sol es de
6000 °C.

4.x +y =24
5. ¢Vas a la tienda?
6. Toma tu medicina.

7. La seleccién mexicana ganara manana
la copa mundial.

This document is available free of charge on StUDOCU-com

valor verdadero o falso.

En estos momentos no es posible determinar la certeza o false-
dad de la oracion 3; sin embargo, en principio, si puede deter-
minarse si es verdadera o falsa, por tanto también se considera
una proposicion.

La 4 es una oracion, pero no una proposicion, ya que es verda-
dera o falsa dependiendo de los valores de x y y en determina-
do momento.

La oracion 5 es una pregunta, no una proposicion.
La oracion 6 es una orden, pero no una proposicion.

La oracion 7 es una proposicion que puede ser verdadera o falsa,
pero debemos esperar hasta manana para saber su valor de verdad.
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. Proposiciones y operadores légicos

Clasificacion de las proposiciones

Antes de clasificar las proposiciones, es preciso considerar como representarlas para luego hacer referencia
a estas en diversas expresiones légicas.

En matematicas, las letras x, y, z, ... se utilizan para representar variables que pueden ser reemplazadas
con numeros, las cuales pueden ser combinadas con diversos operadores, como: +, —, X, +.

Por su parte, en logica las letras p, g, 1, ... se usan para re- m
presentar variables proposicionales, esto es, variables que

pueden ser reemplazadas por proposiciones simples. Si se tiene la siguiente proposicion: “La Tie-
Asi, es posible utilizar una proposicién haciendo referen- rra es plana’; esta se puede representar eli-
cia solo a la variable proposicional utilizada. giendo una variable proposicional, digamos
Enlégica se pueden encontrar dos clases de proposiciones: ‘p" De este modo, la proposicion simple
simples o atémicas y compuestas o moleculares. quedaria representada de la siguiente for-

ma: “p: La Tierra es plana’”

Proposiciones simples o atomicas

Las proposiciones simples o atémicas son aquellas que estan estructuradas por una Unica oracién. Para su
representacién, a la proposicién se le asigna una variable proposicional.

: El oro es un metal precioso.

S

: Hoy es martes.

Q

Benito Juarez nacio en Oaxaca.

3

2

Rodolfo Neri Vela fue el primer astronauta mexicano.

Supéngase que se quiere negar alguna proposicién simple, denotada como “~”; entonces, si se quiere
decir que “Hoy no es martes”, se puede escribir “~q”, haciendo referencia a la variable proposicional elegida.

Proposiciones compuestas o moleculares

Las proposiciones compuestas o moleculares son aquellas que estén estructuradas por dos o méas proposicio-
nes simples unidas por operadores logicos, tales como A, V, =, <, entre otros. En el caso de las proposiciones
compuestas, a cada proposicién simple que la forma se le puede asignar una variable proposicional.

a) Pitagoras era griego y geometra.

b) El sentido de la calle es hacia el norte o hacia el sur.
c) Sisalgo tarde, entonces no visitaré a la abuela.

d) Iréal cine siy solo si tu pagas las palomitas.

Al leer cualquiera de las proposiciones compuestas anteriores, es posible observar a simple vista que
todas ellas estan formadas por dos proposiciones simples.
Al analizar el inciso a), se comprueba que esta proposicién compuesta esta estructurada por las propo-
siciones simples:
p: Pitdgoras era griego.
q: Pitagoras era gedmetra.

Al combinar ambas proposiciones se utiliza el operador légico “A”, que se estudiara mas adelante. Dicha
proposicién compuesta se puede representar como: “p y q”, haciendo referencia a las variables proposicio-

nales utilizadas.

Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)
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22 Capitulo 2 L ogica y calculo proposicional .

Esimportante destacar que, en ocasiones, los operadores estan presentes de manera implicita dentro de
la oracién.

Sea la siguiente oracion
Si estudio, triunfaré en la vida.

En primera instancia, esta parece una proposicion simple, pero si se observa con mayor detalle, se nota que tiene
dos verbos: estudiar y triunfar, lo que indica que tiene mas de una proposicion simple; por tanto, se trata de una
proposicion compuesta. En este caso el operador implicito es entonces, y se puede expresar de la siguiente manera:

Si estudio, entonces triunfaré en la vida.

Esto permite destacar que no siempre se “descubren” a primera vista los operadores en una proposicién compuesta.

Traduccion del lenguaje natural al simbélico
y del lenguaje simbélico al natural

Antes de estudiar como traducir del lenguaje natural al simbdlico y viceversa, primero se define cada uno
de estos lenguajes.

Lenguaje natural

Por lengua natural se entiende a la lengua utilizada normalmente (lengua materna) en una comunidad de
individuos para la comunicacién entre ellos. Es decir, el lenguaje que hablamos en nuestra vida cotidiana,
que en nuestro caso es el espanol.

Lenguaje simbélico
La légica cuenta con un sistema de simbolos construido en especial para lograr precisién y operativi-
dad. La logica se expresa, pues, en un lenguaje artificial. El lenguaje de la légica es, ademas, un lenguaje
formal constituido por simbolos.

Al simbolizar un lenguaje lo que se persigue es, basicamente, sencillez, claridad y exactitud. Pues, en este
caso, es mas sencillo y resulta mas claro y exacto representar las cosas mediante simbolos.

Por este motivo, la simbolizacién del lenguaje légico permite examinar con mayor facilidad las formas
del pensamiento y sus leyes.

Traducir

Trabajar con proposiciones requiere la aptitud de poder traducirlas del m
lenguaje natural al simbdlico (también denominada traduccién simbo-

lica) y viceversa. Aunque en la proxima seccion se es-

En el apartado anterior vimos cémo representar proposiciones me- tudiaran los operadores l6gicos con
diante variables proposicionales, las cuales pueden ser reemplazadas por mas detalle, aqui se pueden utilizar
proposiciones simples, lo cual constituye una traduccién simbdélica de di- algunos de los ya vistos de una ma-
chas proposiciones. nera informal.

Para traducir proposiciones compuestas, primero se eligen las varia-
bles proposicionales necesarias con base en las proposiciones simples involucradas, ademas de los respec-
tivos operadores légicos que las relacionan.

En muchas ocasiones, elegimos las variables proposicionales de tal manera que hagan alusién al conte-
nido mismo de la proposicién.
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. Proposiciones y operadores légicos

Si se tiene la proposicion simple: “Miguel Hidalgo es el padre de la Patria’, es posible escoger las variables proposi-
cionales m para hacer alusion a “Miguel Hidalgo” y p para “padre de la Patria”

También es posible hacer lo mismo para las proposiciones compuestas.

Hacer la traduccion légica de la proposicion compuesta:
Miss Universo es atractiva e inteligente.

En primera instancia, se puede observar que la proposicion en cuestion esta constituida por las proposiciones
simples:

a: Miss Universo es atractiva.
iz Miss Universo es inteligente.
por lo que a A i es su traduccion logica.

Pero, no solo se requiere traducir del lenguaje natural al simbdlico; en muchas ocasiones también se
requiere hacer una traduccién del lenguaje simbélico al natural.

E JEMPLO |_Solucién |

Sean las proposiciones simples: 1. Guadalajara gana el campeonato y
g: Guadalajara gana el campeonato. America no gana el campeonato.
a: América gana el campeonato. 2. Guadalajara no gana el campeonato y

: - L ) América gana el campeonato.
Y se desea traducir las siguientes proposiciones al lenguaje natural:

), 3. Guadalajara no gana el campeonato.
' 4. América no gana el campeonato.
2.~gNa

3.~g

4, ~q

Cuando se vean mas a fondo los operadores l6gicos, entonces se podran traducir proposiciones com-
puestas constituidas por mas de dos proposiciones simples.

Operadores légicos

Los operadores logicos son aquellos simbolos que permiten decidir qué valor de verdad tiene una proposi-
cioén.

Elvalor de verdad de una proposicién simple puede ser verdadero o falso, y los Unicos operadores loégicos
que se pueden utilizar en estas proposiciones son la negacién y la doble negacién.

Elvalor de verdad de una proposicién compuesta es verdadero o falso y depende de los valores de verdad
de las proposiciones simples que la estructuran, las cuales estan combinadas por operadores légicos.

Ahora, se definen y analizan los operadores légicos, incluyendo su tabla de verdad; aunque algunos de
estos ya se mencionaron en el apartado anterior.

Negacion (~)

Lanegacién de cualquier proposicién p sera falsa cuando se niegue una proposiciéon verdadera y serd verda-
dera cuando se niegue una proposiciéon falsa.
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Algunas formas de la negacién son: no, nunca, ni, ja- Tabla 2.1 Tabla d dad del v
mas, es falso, no es cierto, no ocurre, de ninguna forma, Geleiencbic e Gt St S e bl
por nada de, en lo absoluto, entre otras. La tabla de ver- _—

dad de la negacién se muestra en la tabla 2.1.
\Y F

F v

p: Elacusado dice la verdad.
~p: Elacusado no dice la verdad.

En este caso, ~p también se puede traducir como: “no es cierto que el acusado dice la verdad” o “es falso que el
acusado dice la verdad”

Doble negacion

Si la negacién de cualquier proposicién p verdadera es

falsa, entonces cuando se vuelve a negar serd nuevamen- Tabla 2.2 Tabla de verdad
de la doble negacién

te verdadera; en caso contrario, silanegacién de una pro-
posicion falsa es verdadera, al volverse a negar esta sera
falsa de nuevo.

La tabla de verdad de la doble negacién se representa
en la tabla 2.2, donde se observa que ~(~p) y p tienen los F v
mismos valores de verdad. Entonces, la doble negacién
de una proposicién es igual a la proposicién original.

Algunas formas de la doble negacién son: no es cierto que no, no ocurre que no, no es falso que, no es
clerto que no ocurre que, No es cierto que jamas, etcétera.

p: Elacusado dice la verdad.

~p: Elacusado no dice la verdad.
~(~p): No es cierto que el acusado no dice la verdad.
Por tanto: el acusado dice la verdad.

Conjuncion (/\)
Sipy q representan dos proposiciones simples, entonces la proposi-

cién compuesta p A g, solo serd verdadera cuando las dos proposicio- Tabla 2.3 Tabla de verdad
de la conjuncién

nes lo sean.

Algunas formas de la conjuncién son: y, ademas de, también, asi
como, pero, e, entre muchas otras.

Ademas, la conjuncién es conmutativa, es decir:

F F
pPAGQ=qAp
F \Y% F
La tabla de verdad de la conjuncién se muestra en la tabla 2.3. r r P

This document is available free of charge on StUDOCU-com

Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)


https://www.studocu.com/co?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=matematicas-discretas

o Proposiciones y operadores légicos

p: Elacusado es pobre.

g: Elacusado es honesto.
p A q: Elacusado es pobre, pero honesto.
r: El helio es mas liviano que el aire.
s: Elhelio es explosivo.
rA's: Elhelio es mas liviano que el aire y es explosivo.

Disyuncién inclusiva (V)

Sipy qrepresentan dos proposiciones simples, entonces la proposicién

compuesta p V q solo sera falsa cuando las dos proposiciones lo sean. Tabla 2.4 Tab.lg de verdad de
Algunas formas de la disyuncién inclusiva son: o, o bien, u, entre la disyuncién inclusiva

La disyuncién también es conmutativa, es decir:

\ \ Y4
pvq=qVvp A% F Y
F v Y4

La tabla de verdad de la disyuncién inclusiva se muestra en la
tabla 2.4. E E E

Este operador se denomina inclusivo, precisamente porque es ver-
dadero, aun cuando se cumplen las dos disyuntivas.

r: Llovera en la tarde.
s: Saldra el Sol.
rV s: Llovera en la tarde o saldra el Sol.

Disyuncién exclusiva (D)
Si p y q representan dos proposiciones simples, entonces la proposicién compuesta p ¢ q solo sera falsa
cuando las dos proposiciones tuvieren el mismo valor de verdad.

Se denomina disyuncién exclusiva porque se tiene que elegir una de cualquiera de las dos disyuntivas,
pero no ambas.

Algunas formas de la disyuncién exclusiva son: o, o bien, u, o... 0,
g y Tabla 2.5 Tabla de verdad de
entre otras. ‘ ' . la disyuncién inclusiva
La disyuncidn exclusiva es conmutativa, es decir:

peq=qop \ v =

La tabla de verdad de la disyuncién exclusiva se muestra en la \ F \
tabla 2.5. r v v
F F F
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t: Apruebas el ciclo escolar.
u: Repruebas el ciclo escolar.
t & u: Apruebas o repruebas el ciclo escolar.
r: Estoy en Guadalajara.
s: Estoy en Monterrey.
r @ s: Estoy o en Guadalajara o en Monterrey.

Ya que, como es evidente, no es posible que una persona se encuentre en ambos lugares al mismo tiempo, por eso

solo debe estar en un solo lugar.

2.3 Proposiciones condicionales
Condicional o implicacién (=)

Sipy qrepresentan dos proposiciones simples, entonces la proposicién

compuesta p = q solo sera falsa cuando p, llamado antecedente o hip6-
tesis, sea verdadero y ¢, llamado consecuente o conclusién, sea falso.

se sigue, por tanto, se infiere, de ahi que, se deduce, implica, entre otras.
La condicional no es conmutativa, es decir:

p=q=q=7p

La tabla de verdad de la condicional se muestra en la tabla 2.6.

Este operador tiene diversos sentidos, pero uno de los mas utilizados
es cuando no es posible que p sea verdadera y que, al mismo tiempo, q
sea falsa. En este caso, la inica posibilidad es que la condicional sea falsa.

t: Llueve.
u: Me mojaré.
t = u: Si llueve, entonces me mojareé.
p: Estudio.
g: Aprobaré el ciclo escolar.
p = g: Si estudio, entonces aprobaré el ciclo escolar.

Tabla 2.6 Tabla de verdad de

la condicional

Algunas formas de la condicional o implicacién son: si ... entonces, _—
\Y

\Y%
F
F Y%
F F

\Y

F

La condicional también se puede encontrar en alguna de las formas siguientes:

e Sipentoncesq.

e Sip,q.
* pentoncesq.
e gsip.

e pescondicién suficiente para q.
e gescondicién necesaria parap.

e pimplicaaq.
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En todos los casos anteriores, p es el antecedente y g el consecuente; en otras palabras, todos se repre-
sentanp = q.

Bicondicional o equivalencia (<)

Sipy qrepresentan dos proposiciones simples, entonces la proposi-
cién compuesta p < q, solo sera verdadera cuando ambas proposicio- la bicondicional
nes tengan el mismo valor de verdad.

Algunas formas de la bicondicional son: si y solo si, entonces y

solo entonces, es idéntico, equivale a, es equivalente a, entre otras
mas.

. .. . . F F
La bicondicional es conmutativa, es decir:
F \ F
sSq=q9&
p=q=q<p F F v

La tabla de verdad de la bicondicional se muestra en la tabla 2.7.
Ademas, sip = qyq= pentoncesp < q.

p: Si un poligono tiene cuatro lados, entonces es un cuadrilatero.
g: Siun poligono es un cuadrilatero, entonces tiene cuatro lados.
p < q: Un poligono es cuadrilatero si y solo si tiene cuatro lados.

2.4 Tablas de verdad

Aunque ya se han utilizado las tablas de verdad para obtener los valores de verdad de proposiciones simples
y compuestas, aun no las hemos definido formalmente.

Una tabla de verdad, o tabla de valores de verdad, es una tabla que muestra el valor de verdad de una
proposicién compuesta, asi como de algunos casos de proposiciones simples, cuando estas utilizan los ope-
radores logicos de negacion y doble negacién, dependiendo de los operadores 16gicos usados y de los valores
de verdad de las proposiciones simples involucradas.

La tabla de verdad de todos los operadores légicos vistos antes se muestra en la tabla 2.8.

P R R R R R R R R R R R A R T R R )

Las tablas de verdad fueron desarrolladas por el filosofo y matematico estadounidense Charles Sanders
Peirce el ano 1880, pero el formato mas popular es el que introdujo el matematico y filésofo britanico Ludwig
Wittgenstein (1889-1951) en su obra Tractatus logico-philosophicus, publicado en 1921. Segun Wittgenstein, el
método de tablas de verdad sirve para determinar las condiciones de verdad de un enunciado; es decir su
significado, en funcion de las condiciones de verdad de sus elementos atomicos. En otras palabras, la tabla de
verdad nos dice en qué situaciones el enunciado es verdadero y en cuales es falso.

e yees
Fececesecesesssseerssssee e

Figura 2.2 Ludwig Josef Johann
Wittgenstein (1889-1951).
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Tabla 2.8 Tabla de verdad de los operadores l6gicos

\Y \Y F F \Y Y \Y

v F

F F v v F F v v

F % v F F Y% F \% %
F F v Y F F F F F

\Y \Y

F F

Construccion de una tabla de verdad

La importancia de las tablas de verdad radica en que gran parte del razonamiento logico y de las relaciones

entre proposiciones se pueden ilustrar a través de estas.
Para construir una tabla de verdad se efectiian los siguientes pasos:

1. Asignar variables proposicionales a cada proposicién simple.
Obtener la traduccién logica de la proposicién compuesta.

N

3. Obtener la cantidad de todas las combinaciones de valores de verdad de las premisas. La cantidad
de valores de verdad estd dado por la férmula 2", donde n es la cantidad de variables proposiciona-

les de las premisas.
Asi:

Tabla 2.9
Num. de variables proposicionales
1

2
4
8
16
32
64

o U1 B WN

n 2"

4. Asignar a cada variable proposicional los valores de verdad correspondientes.
5. Resolver las operaciones légicas.

E jemplo

Construir la tabla de verdad de la proposicion compuesta:
Mi tio no vino a dormir y no fue a trabajar.

1. Asignar variables proposicionales.
Dicha proposicion esta compuesta por las proposiciones simples:
p: Mi tio no vino a dormir.
g: Mi tio no fue a trabajar.
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. Los argumentos: premisas y conclusiones

Continta

2. Realizar traduccion logica.

Como se observa, las proposiciones p y g estan negadas, por lo que su traduccion logica es:

~pA~q

3. Obtener la cantidad de combinaciones de valores de verdad.

Como se tienen dos variables proposicionales, la cantidad de combinaciones de valores de verdad sera:

22=4

4. Asignar valores de verdad a variables proposicionales.

En este caso, también se incluyen los valores de verdad de las proposiciones negadas.

Tabla 2.10

\Y% \Y% F F
Y F F %
F \Y% \% F
F F Y W%

5. Resolver las operaciones logicas.

Tabla 2.11

\Y Y F F F

Y F F W% F
F % % F F
F F % % v

2.5 Los argumentos: premisas y conclusiones

Los razonamientos que estudia la légica se llaman argumentos y su tarea consiste en descubrir qué es lo que
hace que un argumento sea valido y constituya una inferencia correcta.

Por su parte, la inferencia es una actividad con la cual se afirma una proposicién sobre otra y otras pro-
posiciones se aceptan como punto de partida del proceso.

Un argumento es un conjunto de una o méas proposiciones, la tltima de las cuales se denomina conclu-
sién, mientras que las anteriores se llaman premisas.

De manera intuitiva, las premisas son la evidencia o las razones que deben convencernos de la veracidad
de la conclusioén, y el argumento es la concatenacién de las primeras con la tltima.

Es habitual representar los argumentos haciendo un listado de las premisas y la conclusion, separando
la Ultima mediante una linea, como se observa a continuacion:

Proposicién 1

Proposicién 2 .
. Premisas

Conclusion
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30 Capitulo 2 L 6gica y calculo proposicional

Otra manera de representar los argumentos es haciendo un listado de las premisas y la conclusioén, se-
parandolos con el simbolo .., que significa: por tanto.

Conviene hacer notar que cada argumento tiene solo una conclusién. El siguiente es un ejemplo que
contiene tres proposiciones simples (en dos premisas).

Si Alfredo es elegido presidente de la asociacion de colonos, entonces Bernardo es elegido vicepresidente y Car-
los es elegido tesorero. Bernardo no es elegido vicepresidente, por tanto Alfredo no es elegido presidente de la
asociacion de colonos.

En este caso, la proposicion: “Si Alfredo es elegido presidente de la asociacion de colonos, entonces Bernardo es
elegido vicepresidente y Carlos es elegido tesorero’, representa la primera premisa; mientras que la proposicion
“Bernardo no es elegido vicepresidente” es la segunda premisa. De estas dos premisas se obtiene una tercera pro-
posicion: “Alfredo no es elegido presidente de la asociacion de colonos’, que es la conclusion.

Ahora, hay que asignar variables proposicionales a cada proposicion simple que aparece en el argumento; esto es:
a: Alfredo es elegido presidente de la asociacion de colonos.
b: Bernardo es elegido vicepresidente.
¢: Carlos es elegido tesorero.
Enseguida, se hace la traduccion ogica de dicho argumento y se escribe en alguna de las dos formas descritas, para
representar los argumentos:
La=b)Ac o lLa=Db)Ac
2.~b 2.~b
Lva ~a

Por dltimo, solo falta verificar si el argumento es valido; no obstante, esa cuestion se analizara en las siguientes
secciones.

Como se puede observar, en el ejemplo anterior fue facil identificar las premisas y la conclusién; sin em-
bargo, no siempre resulta sencillo poder identificar las premisas y la conclusién de un argumento, para esto
pueden ser Utiles los adverbios que se listan en la tabla 2.12:

Tabla 2.12 Adverbios que indican premisas o conclusiones

Adverbios que indican premisa Adverbios que indican conclusién

Puesto que Por tanto
Dado que Se sigue que
Si Resulta que
Considerando Se infiere que
Puesto Luego
Como Tomando en cuenta
Ya que Por consiguiente
Por que En consecuencia
Aunque Se deduce que
Toda vez que Porlo que
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Clasificacion de argumentos: tautologia, contradiccion y contingencia
A partir del resultado de las tablas de verdad, es posible clasificar los argumentos en tres tipos: tautologia,

contradicciones y contingencias.

Una tautologia es una propo-
sicién que es verdadera para to-
dos los posibles valores de verdad
de sus componentes simples.

Una proposicién es llamada
contradiccién o absurdo si ofrece
un resultado falso para todos los
posibles valores de verdad de sus
componentes simples.

Una proposicién es una con-
tingencia cuando puede ser ver-
dadera o falsa, dependiendo de
los valores de verdad de sus com-
ponentes simples.

Tabla 2.13

Tabla 2.14

Cr o per REE IS e pva
v v v F F \% \% F \%
F F v F v F
F % % %
F F W% \%

2.6 Métodos de demostracion

La demostracién es un razonamiento o serie de razonamientos que prueba la validez de un nuevo conoci-
miento mediante el establecimiento de sus conexiones necesarias con otros conocimientos.

Cuando un conocimiento queda demostrado, entonces se le reconoce como valido y es admitido dentro
de la disciplina correspondiente. La demostracién es, por tanto, el enlace entre los conocimientos recién ad-
quiridos y el conjunto de los conocimientos adquiridos con anterioridad. El enlace entre los conocimientos
recién adquiridos y los adquiridos con anterioridad esta constituido por una sucesién finita de proposicio-
nes que bien son postulados o bien son conocimientos cuya validez se ha inferido de otras proposiciones
mediante operaciones légicas perfectamente coordinadas. La demostracién permite explicar unos conoci-
mientos por otros; por tanto, constituye una prueba rigurosamente racional.

Hoy dia, hay diversos métodos para demostrar la validez de un argumento, entre los principales desta-
can: el de las tablas de verdad, la prueba formal de validez, la prueba de invalidez, la prueba condicional y
la prueba indirecta.

Método de tablas de verdad

Cuando un argumento es una tautologia se considera que este es valido, pero si es una contradiccién es
invalido; lo mismo ocurre con una contingencia.
Para obtener la validez de un argumento por tabla de verdad se efecttian los siguientes pasos:

1. Asignar variables proposicionales a cada proposicién simple.

Obtener la traduccién logica de las premisas.

3. Organizar el argumento en forma horizontal, uniendo las premi-
sas con el operador logico /\.

4. Obtener la cantidad de todas las combinaciones de valores de
verdad de las premisas. La cantidad de valores de verdad esta
dado por la férmula 2", donde n es la cantidad de variables propo-
sicionales de las premisas.

N

Por lo general, se utilizan lineas en la
parte inferior de la tabla de verdad para
ayudar a identificar las variables ogicas
involucradas en una operacion logica.
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32 cCapitulo 2 L 6gica y calculo proposicional o

5. Asignar a cada variable proposicional los valores de verdad correspondientes.
6. Resolver las operaciones légicas, iniciando por las premisas y finalizando con la conclusién. El sim-
bolo de por tanto (... ) equivale a la condicional =-.

E jemplo/

De acuerdo con el argumento de un ejemplo anterior: “Si Alfredo es elegido presidente de la asociacion de
colonos, entonces Bernardo es elegido vicepresidente y Carlos es elegido tesorero”. “Bernardo no es elegido
vicepresidente, por tanto Alfredo no es elegido presidente de la asociacion de colonos’, verificar su validez por
tablas de verdad.

>
Solucién

1. Asignar variables proposicionales.

a: Alfredo es elegido presidente de la asociacion de colonos.
b: Bernardo es elegido vicepresidente.
¢: Carlos es elegido tesorero.
2. Realizar traduccion logica.
a. (a=b)Ac
b. ~b
o
3. Organizar argumento.
(lla=b)Ac]A~b}.:.~a
4. Obtener la cantidad de combinaciones de valores de verdad.

Como en este caso se tienen tres variables proposicionales, la cantidad de combinaciones de valores de
verdad sera: 2° = 8.

5. Asignar valores de verdad a variables proposicionales.

Tabla 2.16

T < Bl <
S < T <
mH < m< < m<
<< <<
il S < Bl S <
mH o< < m < m<
S < Bl T e < Bl
S < B < Bl

6. Resolver las operaciones logicas.

Tabla 2.17

<
-
-
-

Y% \Y Y \Y \Y% Y \Y
v \Y F \Y \Y% \Y F F F F
Y F Y \Y F F F Y F \Y
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oo <
o< <
< < B
Al el T el <
< < < < ™
< e < P
< < B
< |
< < m7H TS
< < < < ™

S— T |

Como el argumento es una tautologia, entonces se considera que es valido.

E jemplo/

Considerar el siguiente argumento:

“Si Enrique estudia, entonces aprobara logica y geometria. Enrique no aprobé logica, en consecuencia, Enrique no
estudio y no aprobé geometria’”

Verificar su validez por tablas de verdad.

1. Asignar variables proposicionales.

e: Ernesto estudia.
[: Aprobara légica.
g: Aprobara geometria.
2. Realizar traduccion logica.
ae=(lNg)
b. ~l
c(~e A ~g)
3. Organizar argumento.
{le=(UNGIN~L. . (~A~g)
4. Obtener la cantidad de combinaciones de valores de verdad.

Como se tienen tres variables proposicionales, la cantidad de combinaciones de valores de verdad sera:
2’=38.

5. Asignar valores de verdad a variables proposicionales.

Tabla 2.18

B < <
S < Bl S <
<< <
e A< S <
i~ B < B~ <
mH<m<m<gm<
S < Wl B <
< m< <M mmom
= lasll < Kasll < ol < lap]
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Continta

6. Resolver las operaciones logicas.

Tabla 2.19

ol Tl S < <
ol O < T <
mHmA<m<m<g
il < <
Sl < Bl < i <
- A< R <
oo < <
bl < Bl < Bl < Bl <
< < |t e e
= < |5l ™ = < el
< mi< </ omomom
<= Mgl < Pl vl el o
= el = el = el = P

:
i

1

Como el argumento es una contingencia, entonces se considera como invalido.

Prueba formal de validez

Cuando el argumento tiene mas de tres proposiciones simples diferentes no es facil determinar la validez o
invalidez de un argumento mediante tablas de verdad, pues resultaria bastante tedioso hacer dicha tabla de
verdad, ademaés de que se puede incurrir en errores involuntarios.

Por ese motivo, el método méas conveniente para obtener la validez de los argumentos es la prueba
formal de validez, la cual utiliza reglas validas, como las reglas de inferencia y las reglas de reemplazo o
equivalencia.

Pero, antes de utilizar las reglas de inferencia y las reglas de reemplazo o equivalencia, primero es nece-
sario conocer su definicién y sus aspectos fundamentales.

Reglas de inferencia

Lasreglas de inferencia son formas de argumentos cuya validez puede ser demostrada por tablas de verdad,
ademas, estas reglas permiten establecer conclusiones muy bien formadas y validas a partir de otras premi-
sas. En general son usadas para analizar los argumentos con muchas premisas o cuando se tienen cuatro o
mas proposiciones simples.

1. Modus ponens (MP)
Permite eliminar el antecedente siempre que la segunda premisa sea dicho antecedente.
p=4
p
. .q

2. Modus tollens (MT)
Permite eliminar el consecuente siempre y cuando esté negado en la segunda premisa, dando como
consecuencia el antecedente negado.
p=4
~q
o~D
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10.

. Silogismo disyuntivo (SD)

Permite eliminar una de las dos disyunciones siempre que una de las dos esté negada en la segunda premisa.

pvq pvq
~p ~q
-.q -p

. Silogismo hipotético (SH)

Permite eliminar el consecuente de la primera premisa y el antecedente de la segunda premisa, siempre
y cuando sean iguales.

p=q

qa=r

Sp=T

. Adicién (AD)

Permite agregar las variables proposicionales que se necesiten.

p
PV

. Simplificacién (SIM)

Permite eliminar las variables proposicionales que no se necesiten.
pAq pAq
P o.q

. Conjuncién (CON})

Permite unir dos premisas diferentes.

p

q
SDAT

. Dilema constructivo (DC)

Permite eliminar los antecedentes de las dos condicionales, dando como resultado la disyuncién de los
consecuentes.

(b= Al=5)

pvr

.qVs

. Dilema destructivo (DD)

Permite eliminar los antecedentes de las dos condicionales, dando como resultado la disyuncién de la
negacién de los consecuentes.

p=a) A(r=s)

~qV ~S

RN VRN

Absorcién (ABS)

Permite reescribir el consecuente, dando como resultado la conjuncién del antecedente y consecuente.
p=1q

~p=0pA

Reglas de reemplazo o equivalencia

No siempre un argumento valido o invalido se puede comprobar por medio de las reglas de inferencia; por
eso, se utilizan otras reglas conocidas como reglas de reemplazo o reglas de equivalencia, que sustituyen o
reemplazan (segun sea necesario) para lograr la demostracion o prueba de validez del argumento.
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10.

. Leyes de De Morgan (DM)

Permite cambiar de disyuncién a conjuncién y viceversa, negando

ambas variables logicas. Se utiliza el simbolo = para indicar

~pVa =~pA~q la equivalencia de las proposiciones
~pAg=~pVv~q y no confundirlo con el simbolo <,

. Conmutacién (CONM) aunque logicamente sean equiva-

Permite cambiar el orden de las variables légicas sin cambiar el ope- lentes.

rador logico.
va)=@Vvp)
Ag)=@Ap)
beqg=@aep)

. Doble negacién (DN)

Silanegacién de cualquier proposicién p verdadera es falsa, entonces cuando se vuelve a negar esta sera
nuevamente verdadera y viceversa.

~(~p)=p

. Distribucién (DIS)

Permite distribuir la variable légica de afuera y su operador logico con las variables légicas de dentro y
su operador logico.

pA@@VN=pAgVpAg)

pviarn=pevarlpva

. Tautologia (TAU)

Permite unir dos variables 16gicas en una sola.
PAD) =P
Pvp) =P

. Asociacién (ASO)

Permite agrupar diferentes formas de las variables logicas, siempre y cuando sea el mismo operador
logico.

pAQ@AT=(PAQ) AT

pvigvn=@pvq Vvr

. Implicacién material (IMP)

Permite cambiar de disyuncién a condicional y viceversa.
P=a=(prva

. Transposicién (TRAN)

Permite conmutar las variables légicas de la condicional negando cada una de estas.
p=q =(~q=~P)

. Exportacién (EXP)

Permite cambiar de conjuncién a condicional y viceversa, modificando su agrupacion.
[brg)=11=p=(@q=7)

Equivalencia material (EM)

Permite reescribir la bicondicional.

Peag=lbp=ar@q=D)

Peag=[PrgVi~pa~ag)
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Pasos para demostrar la validez de un argumento
La prueba formal de validez consiste en deducir la conclusién del argumento en funcién de sus premisas,

esto es, que las premisas infieran la conclusién.

A fin de que una demostracién, por la prueba formal de validez, resulte perfectamente clara, se deben

seguir los siguientes pasos:

1. Asignar variables proposicionales a cada proposicién simple.

2. Realizar la traduccién légica de las premisas.

3. Organizar el argumento con sus premisas en forma vertical, escribiendo antes de cada premisa un

numero de premisa consecutivo.

4. Utilizar las reglas de inferencia y/o de reemplazo que conduzcan a nuevas premisas (inferencias).
Estas siempre deben ser antecedidas por un nuevo numero de premisa. Al utilizar las reglas se debe
escribir su abreviatura y el nimero o nimeros de las premisas de las que se ha deducido.

5. Elproceso de inferencia termina cuando se llega a la conclusién del argumento.

Ademés del proceso anterior, también es necesario considerar algunas condiciones para la demostracion:

1. Utilizar todas las premisas.
2. Utilizar todas las nuevas premisas obtenidas.

3. Esposible utilizar las premisas las veces que sean necesarias.

Para entender el proceso descrito antes, se vera un par de ejemplos mas detallados.

E jemplo

Considerar el siguiente argumento: “Si la ley no fue aprobada, entonces la constitucion del pais queda sin modi-
ficaciones. Si la constitucion del pais queda sin modificaciones no se puede elegir nuevos diputados. O se eligen
nuevos diputados o el informe del presidente del pais se retrasara. El informe no se retrasé un mes. Por lo que la

ley fue aprobada’
Verificar su validez por la prueba formal de validez.

»
Solucion

1. Asignar variables proposicionales.
[: Laley fue aprobada.

¢: La constitucion del pais quedara sin modifica-
ciones.

d: Se pueden elegir nuevos diputados.

i: Elinforme del presidente se retrasara un mes.
2. Realizar traduccion légica.

~l=c

c=~d

dvi

~j

N
3. Organizar argumento.

1. ~l=c

2.c=>n~d

3.dVi
4. ~ij
L

. Utilizar las reglas de inferencia y/o equivalencia.

1. ~l=c

2. c= ~d

3.dVi

4, ~ij

oo

5. d SD 34
6. ~cC MT 25
7.0 MT 1,6

. Como se llega a la conclusién, el proceso de infe-

rencia termina.
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Este proceso intenta obtener la conclusién mediante el uso de las reglas citadas antes. La premisa 5 se
obtiene de las premisas 3 y 4, por un silogismo disyuntivo. En tanto, la premisa 6 se deduce de las premisas
2y 5 por un modus tollens. Por Gltimo, la premisa 7 se obtiene de las premisas 1y 6, también por un modus
tollens.

Ya que en este punto se obtiene la conclusién, aqui termina el proceso de inferencia, lo que indica que el
argumento es valido.

E jemplo

Considerar el siguiente argumento: “Si el tiempo es agradable, entonces el cielo esta despejado. Si el cielo esta
despejado, entonces iré de dia de campo. Si el tiempo es agradable, entonces iré de dia de campo implica que si
el cielo esta despejado entonces nadaré en el rio. Si el tiempo es agradable, entonces nadaré en el rio implica que
me broncearé todo el cuerpo. Por tanto, me broncearé el cuerpo”.

Verificar su validez por la prueba formal de validez.

1. Asignar variables proposicionales. 3. ([a=c)=(d=n)
a: El tiempo es agradable. 4. (a=n)=b
d: El cielo esta despejado. b
c: Iré de dia de campo. 4. Utilizar las reglas de inferencia y/o equivalencia.
n: Nadaré en el rio. 1. a=d
b: Me broncearé el cuerpo. 2. d=c¢
2. Realizar traduccion légica. 3. (a=q=(d=n)
a=d 4. (a=n)=b
d=c b
(@=c=(d=n) 5.a=c¢ SH 12
(a=n)=b 6. (d=n) MP 35
b 7. (a=n) SH 16
3. Organizar argumento. 8. b MP 47
1. a=d 5. Como se llega a la conclusion, el proceso de infe-
2.d=c¢ rencia termina.

La premisa 5 se obtiene de las premisas 1y 2 por un silogismo hipotético. La premisa 6 se deduce de las
premisas 3 y 5 por un modus ponens, mientras que la premisa 7 se deduce de las premisas 1y 6, también
por un silogismo hipotético. Por Gltimo, la premisa 8 se obtiene de las premisas 4 y 7 por un modus ponens.

Ya que en este punto se obtiene la conclusién, aqui termina el proceso de inferencia, lo que indica que el
argumento es valido.

En ocasiones se requiere verificar la validez de un argumento, del cual ya se da su traduccién légica. En
este caso se ahorran los dos primeros pasos del proceso de verificacién de la validez de dicho argumento.

Verificar la validez del siguiente argumento por la prueba formal de validez, dada su traduccion logica:
2. Traduccion légica.
(~h Vi)=(j=k)
(~UA ~m) = (k= n)
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Continua
(h=10)A(l=h) 4. (~IN~m) A ~c
(~l A ~m) A\ ~c Sj=n
Sj=n 5. ~lA~m SIM 4
3. Organizar argumento. 6. ~I SIM 5
1. (~hVi)=(j=Kk) 7 h=1 SIM 3
2. (~l A ~m)= (k= n) 8. k=n MP 2,5
3.(h=0)A(=h) 9. ~h MT 6,7
4. (~[ A ~m) A ~c 10. ~h Vi AD 9
L j=n N j=k MP 1]0
4. Utilizar las reglas de inferencia y/o equivalencia. 12. j=n SH 11,8
1. (~hVi)=(j=Kk) 5. Como se llega a la conclusion, el proceso de infe-
2. (~IA~m)=(k=>n) rencia termina aqui.

3. (h= ) A(l=h)

En este caso, la premisa 5 se obtiene de la simplificacién de la premisa 4; la premisa 6 de la simplificacién
de la premisa 5; la premisa 7 de la simplificacién de la 3. Mientras que la premisa 8 de las premisas 2 y 5, por
un modus ponens. La premisa 9 de un modus tollens de las premisas 6 y 7. La premisa 10 se obtiene al hacer
una adicién a la premisa 9. La premisa 11 se obtiene de las premisas 1y 10 por un modus ponensy la premisa
12 de las premisas 11y 8, por un silogismo hipotético.

Ya que en este punto se obtiene la conclusién, aqui termina el proceso de inferencia, lo que indica que el
argumento es valido.

Prueba de invalidez

Este método también se conoce como prueba por asignacién de valores. Esta muy relacionado con el método
de tablas de verdad, la diferencia consiste en que en lugar de construir la tabla de verdad para el argumento,
la demostracién de la invalidez se hace de tal modo que se asignan valores de verdad a las proposiciones
simples, de modo que las premisas sean verdaderas y la conclusién falsa; es decir, se dan valores a la con-
clusién tal que su resultado sea falso y luego se trata de utilizar esos valores de verdad en los antecedentes,
junto con la combinacién de estos, segln sea la conveniencia.

Para obtener la invalidez de un argumento por el método de la prueba de invalidez se efectiian los si-
guientes pasos:

Asignar variables proposicionales a cada proposicién simple.

Obtener la traduccién logica de las premisas.

Organizar el argumento de forma horizontal, uniendo las premisas con el operador légico A.

Asignar valores de verdad a la conclusién, de tal manera que esta resulte falsa.

Tomando en cuenta los valores de verdad asignados a la conclusién, hacer que las premisas del
argumento sean verdaderas, resolviendo las operaciones légicas indicadas. El simbolo de por tanto
(..)equivale a la condicional =-.

NS
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E jemplo/

Se pretende demostrar la invalidez del siguiente argumento por la prueba de invalidez: “Si llueve entonces me
mojo. Si sale el Sol entonces me pondré ropa ligera. Me mojo o sale el Sol. Por tanto, llueve o0 me pongo ropa

ligera”

1. Asignar variables proposicionales. 5. Hacer que las premisas sean verdaderas, tomando
ol e en cuenta los valores asignados a la conclusion.
m: Me mojo.

s: Sale el Sol. (T=m)A(s=nN]AMmVs)] ... (V)

r: Me pondré ropa ligera. F V F F V F F F
2. Realizar traduccion légica.

\% \% V F

1. [=m _—

2. s=r v

3. (mVys) v

so(bvr) F

3. Organizar argumento.

[ :> ) 4 (6 ==l e 5?]‘ (v Como se puede observar, las premisas son verdaderas
4. Asignar valores a la conclusion para que seafalsa.  y |a conclusion es falsa, por lo que el argumento es
[(T=n)A(s=]A(nVs)]..(Vr) invalido.
FOF
F

La prueba de invalidez también se puede utilizar directamente para la traduccién légica del argumento.

E jemplo_

Demostrar la invalidez del siguiente argumento por el método de la prueba de invalidez, dada su traduccién
l6gica.

2. Traduccion logica.
1. a=({b=c¢
2. b= (~c=d)
3. (cvd)=e
La=e
3. Organizar argumento.
{la=b=IA[b=(~c=d}A(cVd)=e] .. a=e
4. Asignar valores a la conclusion para que sea falsa.
(la=b=JAb=(~c=d]}=c¢e] .. a=e

This document is available free of charge on StUDOCU-com

Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)


https://www.studocu.com/co?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=matematicas-discretas

- Métodos de demostracion

Continua
5. Hacer que las premisas sean verdaderas, tomando en cuenta los valores asignados a la conclusion.
{(la= b= b= (~c=d]}A(cVd)=e]. .a=e

V. F F F V. " F F F V F
Y F F F

V

F
Como se puede observar, las premisas son verdaderas y la conclusion es falsa, por lo que el argumento es invalido.

Prueba condicional

Este método se aplica solo a argumentos que tengan como conclusién una condicional; en otros casos no
seria posible utilizarlo, ya que el antecedente de la condicional resulta ser una premisa més, mientras que
la conclusién se determina como una nueva conclusion a la cual se debe llegar con una prueba formal de
validez.

Para demostrar la validez de un argumento por el método de la prueba condicional se deben seguir los
siguientes pasos:

1. Asignar variables proposicionales a cada proposicién simple.

Obtener la traduccién logica de las premisas.

3. Organizar el argumento con sus premisas en forma vertical, escribiendo antes de cada premisa un
numero de premisa consecutivo.

4. Elantecedente de la conclusién se convierte en una premisa mas, escribiendo a su derecha PC, para
indicar que la premisa obtenida es por prueba condicional, y se deja el consecuente como la conclu-
sién.

5. Utilizar el procedimiento de la prueba formal de validez tomando en cuenta la nueva conclusién.

El proceso de inferencia concluye cuando se llega a la nueva conclusion del argumento.

N

Para entender este proceso, se analiza un ejemplo con mayor detalle.

E jemplo

Demostrar la validez del siguiente argumento por el método de la prueba condicional: “Si salgo temprano de
trabajar, entonces iré a la fiesta. Si voy a la fiesta, entonces veré a la chica que me gusta. Si veo a la chica que me
gusta, entonces bailaré toda la noche. Por lo que si salgo temprano de trabajar, entonces bailaré toda la noche”

1. Asignar variables proposicionales. c=b
t: Salgo temprano de trabajar. S t=b
f. Iré alafiesta. 3. Organizar el argumento.
¢: Veré a la chica que me gusta. 1. t=f
b: Bailaré toda la noche. 2. f=c
2. Realizar traduccion légica. 3. c=b
t=f o t=b
f=c
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Continua

4. El antecedente de la conclusion se convierte en una
premisa mas y se deja el consecuente como la con-
clusion.

1 t=f
2. f=c¢
3. ¢c=b
4. t PC
5. Utilizar la prueba formal de validez.
1. t=f
2. f=c¢

3. c=b

4. t PC

o b

5 f MP 1,4
6. ¢ MP 2,5
7. b MP36

6. Como se llega a la nueva conclusion, el proceso de
inferencia termina.

De esta manera, se ha verificado la validez del argumento.

Sila conclusién esté formada por varias condicionales, resulta necesario aplicar varias veces el paso 4,

hasta que no quede ninguna condicional.

E jemplo/

Demostrar la validez del siguiente argumento por el método de la prueba condicional: “Si estudio implica que
si apruebo logica, entonces pasaré el semestre. Por tanto, si estudio, entonces aprobaré légica implica que si

estudio, entonces pasaré el semestre”.

1. Asignar variables proposicionales.
e: Estudio.
[:  Aprobaré logica.
s: Pasaré el semestre.
2. Realizar traduccion légica.
e=([=5)
Sle=)=(e=5s)
3. Organizar el argumento.
1. e=(l=5)
Sle=l)=>(e=ys)
4. El antecedente de la conclusion se convierte en

una premisa mas y se deja el consecuente como
la conclusion; las veces que sea necesario.

1. e=(l=5)

2. e=| PC

Prueba indirecta

PC
-
5. Utilizar la prueba formal de validez.

1. e=(l=5)

2. e=| PC

3. e PC
oo S

4, |=s MP 1,3
5. | MP 2,3
6. s MP 4,5

6. Como se llega a la nueva conclusion, el proceso
de inferencia termina.

De esta manera se ha verificado la validez del argu-
mento.

Este método también se conoce como prueba de reduccién al absurdo. Mediante este, una demostracion
indirecta de validez para un argumento dado se construye como premisa adicional a la negacién o la con-
tradiccion de su conclusién, con lo que se deduce una contradiccién explicita del conjunto aumentado de
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Por lo general, este método de demostracién se utiliza cuando resulta complicado demostrar la validez
de un argumento utilizando la prueba formal de validez.

Para demostrar la validez de un argumento por el método de prueba indirecta, se deben seguir los si-
guientes pasos:

1. Asignar variables proposicionales a cada proposicién simple.

2. Obtener la traduccién légica de las premisas.

3. Organizar el argumento con sus premisas en forma vertical, escribiendo antes de cada premisa un
numero de premisa consecutivo.

4. Negarla conclusién escribiendo a su derecha PI, para indicar que la premisa es obtenida por prueba
indirecta, e incluirla como una premisa mas.

5. Del conjunto total de premisas, empleando las leyes légicas, deducir una contradiccion.
El proceso de inferencia concluye cuando se llega a dicha contradiccién.

Para entender este proceso, a continuacién se presenta un ejemplo més detallado.

E jemplo

Demostrar la validez del siguiente argumento por el método de la prueba indirecta: “Si el mar esta tranquilo, en-
tonces el cielo esta despejado y hace calor. Si el cielo esta despejado o viajaré en lancha, entonces se veran las
estrellas en la noche. Viajaré en lancha o el mar esta tranquilo. Por tanto, se veran estrellas en la noche”

»
Solucion

1. Asignar variables proposicionales. e
t: Elmar esta tranquilo. 4. ~oe P
d: Elcielo esta despejado. 5. Deducir una contradiccion.
¢ Hace calor. 1. t=(dAc)
e: Severan estrellas en la noche. 2. dVi)=e
[: Viajaré en lancha. 3. (IVi)
2. Realizar traduccion légica. e
t=(dAc) 4. ~e PI
(dVec)=e 5. ~(d V) MT 2,4
(Vi) 6. ~d A~ DM 5
e 7. ~l SIM 6
3. Organizar el argumento. 8 t SD 3,7
1L t=(dAc¢) 9. dAc MP1,38
2. (dVi)=e 10. d SIM9
3. (v n. ~d SIM 6
e 12. dA~d CONJ
4. Negar la conclusion. 6. Como la premisa 12 representa una contradiccion,
1. t=(dAc) entonces termina el proceso de inferencia.
2. (dVi)=e
3. (IV) El proceso anterior indica que el supuesto ~e no es

cierto y por consiguiente la conclusion e es valida.

Cabe senalar que el hecho de haber inferido en el ejemplo que d A ~d representa solo una alternativa
para la demostraciéon de la validez del argumento. Pues, 1a validez también se puede demostrar si se puede
inferir la contradiccién de cualquier otra variable légica que esté contenida en el argumento.
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2.7 Induccion matematica

La induccién matematica es un método de demostracién que se aplica sobre los conjuntos de los nameros
enteros positivos Z* o el de los nimeros naturales N.

En el lenguaje coloquial o cotidiano, el término induccién hace referencia al hecho de que se deben ob-
tener conclusiones o resultados mediante un examen que va de lo general a lo particular. En este tema se
mostrard como dicha palabra tiene un significado distinto, pues aqui generalizamos una propiedad, regla o
condicién utilizando férmulas, que llamaremos férmulas inductivas.

Se dara inicio con un ejemplo intuitivo, el cual daré idea general acerca de qué es la induccién matema-
tica y como aplicarla.

Intuitivo

A este ejemplo lo llamaremos: “efecto domind” La figu-
ra 2.3 muestra, en la secuencia inicial, las primeras cinco
fichas de un dominé compuesto por n fichas; como se
puede ver, las fichas estan dispuestas en forma vertical.
En la segunda secuencia se empuja la primera ficha ha- TN

cia la derecha, la cual origina un “efecto domind”; esto i) AL

se puede considerar la base de la induccién, ya que se

da un empujén inicial que pone en movimiento todo el
proceso.

-/ -
o8 LOF O
o8 o8 MO8
o8 LOF O

Al caer la primera ficha golpea a la segunda, la cual tam-
bién cae, como se observa en la tercera secuencia de
la figura. Entonces, la intuicion nos hace pensar que el
proceso debe continuar; esto es, que al caer la segunda
ficha golpea a |a tercera, la cual cae y asi sucesivamente
hasta llegar a la n-ésima ficha y no quede ninguna ficha i)
en forma vertical, como se ve en la cuarta secuencia de
la figura.

Entonces, sabemos que las n fichas deben caer. Ahora
bien, icomo sabremos si la ficha n-ésima + 1caera como v)
en la dltima secuencia de la figura 2.3? Como todas las
fichas anteriores a la ficha n-ésima caen, entonces sabe- /
mos que la ficha n-ésima + 1también caera. Figura2.3 Efecto domino.

Primer principio de induccion matematica

Consideremos una lista de proposiciones: p(1), p(2), p(3),..., con indices en los enteros positivos Z*. Todas las
proposiciones p(n) son verdaderas a condicién que:

(B) p(1) sea verdadera.
(I) p(n + 1) es verdadera siempre que p(n) lo sea.

Nos referimos a (B), es decir al hecho de que p(1) es verdadera, como la base de la induccién, y nos referi-
mos a (I) como el paso inductivo. En la notacién del célculo proposicional, (I) equivale decir que:

La implicacién p(n) = p(n + 1) es verdadera Vn € Z*
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o Induccion matematica

Antes de analizar algunos ejemplos de como aplicar el primer principio de induccién matematica, es
conveniente dar a conocer el siguiente concepto.

Notacién sigma
Hay una abreviatura conveniente que se utiliza con frecuencia en conexién con las sumas. Esta es la letra

griega ¥ (sigma), debido a que la primera letra de la palabra suma es la letra s, y en griego esta equivale pre-
cisamente a ¥ (sigma).

En matematicas se utiliza la ¥ para indicar la operacién conocida como sumatoria. En general:
n
D0 =0, +0,+0; +--+a,
k=1
El simbolo k debajo de la sigma indica dénde empezar la suma de los términos a; (en este caso 1), pero
ademas se conoce como limite inferior. La n de la parte superior indica dénde detenerse o terminar, y se

conoce como limite superior. La variable k recorre los valores enteros desde el limite inferior hasta el limite
superior.

Siempre debe cumplirse que:

limite inferior < limite superior

A continuacion se presentan algunos ejemplos de la notacion sigma:

4
7
;ak =a,+a,+a,+-+a, Zbk =b+b,+b,+b,+b+b,+b,
- k=1

8

DK =T+ +3+4 +5 -+’ 3k=3+6+9+12+15+18+21424

k=1

~

2“T=1424+4+8+16

-

> 5k =5+10+15+...150

k=1

~
[}

5

(3k—2)=144+7+10+13

o T

1

4 k
271 S B e N
= n3

k(k+7) 276 12720 1

S
2 ok—T)(2k+7) 37357

1 1
35 757 179 om "

Ahora se veran con detalle algunos ejemplos de la aplicacién del primer principio de induccién mate-
matica.

E jemplo_

Demostrar por induccion que:

3k —2) =

k=1

(3n2 — n)Vn ezt

N —

Se supone que p(n) es verdadera, es decir que el resultado es verdadero paran = k, para algin k € Z*. Esto
se conoce como hipotesis de la induccion. La parte derecha de la igualdad se conoce como férmula in-
ductiva.
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46 Capitulo 2 L gica y calculo proposicional .

1
Notese que p()=1= 5[3(1)z —11, de aqui que 1 = 1es verdadera por inspeccién y esto establece la base de la
induccion.

Ahora, supongase que p(n) es verdadera para alguna n, esto es:

p(n)= zn;(3k -2)= %(3n2 —n)

es verdadera.
Ahora se quiere probar que para p(n + 1) se tiene que:
< 1
pn+1)=> (3 —2)+5[3(/<+1)2 —(k+1)]
k=1
es verdadera, tal como lo establece el paso inductivo. Ademas en este paso n toma el valor de k + 1.
Utilizando p(n) tenemos que:

nf:(?)k — = zn:(?,k —2)+[3(k+1)—-2]= %(3/<2 —k)+(3k+1)

Para verificar p(n + 1) necesitamos comprobar que:

%(3/8 —k)+(3/<+1)=% 30k 41 —(k+1)
Esto ya es un problema puramente algebraico, para lo cual se trabajara con el lado izquierdo de la igualdad;
esto es:
(3K —K)+ (k)= (38 —k+6k+2)
= %(3/<2 +5k+2)
_ %(3k+2)(k+1)

:

= 5[3(k+])_1](k+])

-

2

Entonces, p(n + 1) es verdadera siempre que p(n) lo sea. Por el primer principio de induccion matematica, se
concluye que es verdaderaVn € Z™.

Bk+17 —(k+)]

No siempre es necesario el uso del simbolo de sumatoria para aplicar la induccién matematica, también
puede utilizarse parte del desarrollo de la misma, como se muestra en los siguientes ejemplos.

E jemplo_

Demostrar por induccion que:
n(n+1)

p(n)=14+2+43++n= 5
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- Induccion matematica | 47

La n-ésima proposicion p (n) es:

=T e = O

Notese que p(1)=1= @ donde 1= 1. Asi p(1) asegura que 1 = 1; es verdadera por inspeccion, tal como lo

establece la base de la induccion matematica.
Para el paso inductivo, supongamos que p(n) es verdadera para algun n, esto es:

p(n):1+2+3+~--+n:@

es verdadera.
Ahora, queremos probar que es verdadera para p(n + 1), y como en este pason = k + 1:

k+1)[(n+1)+1
P(n+1)—1+2+3+---+k+(k+1)—_( )[(Z )+
es decir:
k+1)(k+2
P(”‘H)—1+2+3+---+k+(k+1)—_—( )2( )

es verdadera, tal como lo establece el paso inductivo.
Como p(n) es verdadera por hipotesis, trabajando con el lado izquierdo de la igualdad tenemos que:
k(k+1
1+2+3+----|—/<+(k+1):(TJF)+(/<+1)
k(k+1)+2(k+1)
2

(k+1)(k+2)

2

Entonces, p(n + 1) es verdadera siempre que p(n) lo sea. Por el primer principio de induccion matematica, se
concluye que p(n) es verdaderaVn € Z*.

.........................................................................................................................

Johann Carl Friedrich Gauss, matematico y fisico aleman, es considerado uno de los mejores
matematicos de todos los tiempos, al grado que en algunos ambitos se le denomina el “Principe
de las Matematicas”.

Cuando tenia 8 anos y cursaba el equivalente a la educacion primaria, su maestro le enco-

mendo el “ejercicio” de determinar el resultado de sumar los nimeros del 1 al 100; Gauss en
¢ menos de un minuto escribi6 en su pequefia pizarra la respuesta correcta: 5050.
{Como obtuvo el resultado? Muy facil, 1 + 100 es igual que 2 + 99, que 3 + 98, y asi sucesi-
¢ vamente; como hay 50 de estas sumas y cada una de estas operaciones suma 101, en total se tiene
101 por 50, cuyo resultado es 5050.

Entonces, la demostracion anterior constituye una generalizacion de dicho “ejercicio”

L

Figura 2.4 Johann Carl
Friedrich Gauss (1772-1855).
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48 Capitulo 2 Logica y calculo proposicional .

E jemplo/

Demostrar por induccion que:
24+4+6+4+--+2(n)=n(n+1)

La n-ésima proposicion es:

p(n)=2+4+6+--+2(n)=n(n+7)
Notese que p(1) = 2 = (1)(2), donde 2 = 2. Asi p(1) asegura que 2 = 1(1 + 1) y como es verdadera por inspeccion,
tal como lo establece la base de la induccion matematica.
Para el paso inductivo, supongamos que p(n) es verdadera para algin n, esto es:

p(n)=2+4+6+---+2(n)=n(n+1)
es verdadera.
Ahora, queremos probar que para p(n + 1),y como en este pason = k + 1:

p(n+1)=2+4+6+-+ 2(k)+2(k + )=(k + [(k + 1)+1]
es decir:
p(n+1)=2+4+6+-+2(k)+2(k+1)=(k+1)(k+2)

es verdadera, tal como lo establece el paso inductivo.
Como p(n) es verdadera por hipotesis, y trabajando con el lado izquierdo de la igualdad, tenemos que:

244+6+-42(k)+2(k+1)=[2+4+6+---+2k]+2(2k +2)
=k(k+1)+(2k+2)
=k(k+1)+2(k+1)
=(k+1)(k+2)

Entonces, p(n + 1) es verdadera siempre que p(n) lo sea. Por el primer principio de induccién matematica, se
concluye que p(n) es verdaderaVn € Z~.

Esimportante hacer notar que no todas las demostraciones tienen que ver con sumas, también se puede
aplicar la induccién para demostrar desigualdades, como se muestra en el siguiente ejemplo.

E jemplo_

Demostrar por induccion que:
245(n=1)<5nVneZ"

La n-ésima proposicion p(n) es: 2+ 5(n —1) <5n y nétese que:
p()=2<5
Entonces, como p(1) es verdadera por inspeccion, esto es o que establece la base de la induccion.
Ahora, supongase que p(n) es verdadera para algun n; esto es:
2+5n—1<5n

es verdadera.
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" Resumen 49

Ahora, queremos probar que para p (n + 1):
245((k+1)—1)<5(k+1)
Esta debe ser verdadera como lo establece el paso inductivo.
Simplificando:
245k <5k +5
Como p (n) es verdadera por hipotesis, y trabajando con la desigualdad, tenemos que:
245k —5k <5k —5k +5
2<5

Entonces, p(n + 1) es verdadera siempre que p(n) lo sea. Por el primer principio de induccién matematica se
concluye que p(n) es verdaderaVn € Z™.

En ocasiones, la base de la induccién cambia un poco en el sentido en que no necesariamente se debe
cumplir p(1), pero puede ser cierto para algunos valores de p mayores que cierto valor de n.

E jemplo

Demostrar por induccion que:
2" <nlVn>4

Demostracion

La n-ésima proposicion p(n) es 2" < nl y notese que p(1), p(2) y p(3) no son verdaderas, y no necesitamos que
sean verdaderas.

Ahora bien:
p(4)=2"=16<41=24
Asi que p(4) es valida, como lo establece nuestra base inductiva.
Ahora, supongase que p(n) es verdadera para algin n, esto es:
2"<nl

es verdadera.
Ahora, queremos probar que para p(n + 1) se tiene que:

p(n+1)=2"<(k + 1)!

tal como lo establece el paso inductivo. Utilizando p(n), se multiplican ambos lados de la desigualdad por 2,
para obtenern > 4:
(2)(24)=2" <2(k!) < (k+1) (k1) = (k+1)!

Entonces, p(n + 1) es verdadera siempre que p(n) lo sea. Por el primer principio de induccién matematica se
concluye que p(n) es verdadera Vn > 4.

Cuando se desea establecer una verdad, o se quiere convencer a alguien de que una posiciéon o idea son co-
rrectas, por lo general se recurre a un razonamiento o se presentan evidencias que lo respaldan.

Este razonamiento o evidencia presentada con el propésito de demostrar algo constituye un argumento.
Entonces, un argumento es un conjunto de dos o méas proposiciones simples, la Gltima de las cuales se de-
nomina conclusién, mientras que las anteriores se llaman premisas.
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B0 Capitulo 2 Logica y calculo proposicional

Las premisas son la evidencia o razones que deben convencer acerca de la veracidad de la conclusién.
Asi, el argumento es la concatenacién de las primeras con la tltima.

Lalogica estudia las formas del pensamiento desde el punto de vista de la estructura de los argumentos;
esto es, analiza las relaciones entre las proposiciones y no el contenido de estas; en particular, se analiza la
veracidad o falsedad de un razonamiento.

Existen diversos métodos para demostrar la validez de un argumento, si se tienen pocas proposiciones
(dos o maximo tres), se utiliza el método por tablas de verdad. Pero, si se tienen mas de tres proposicio-
nes simples se debe hacer uso de otros métodos, como la prueba formal de validez, la prueba de invalidez,

la prueba condicional o la prueba indirecta.

2.1 (Cuales de las siguientes oraciones son proposi-

2.2

ciones? Justificar la respuesta.

a) Eluranio es un elemento radiactivo.

b) iCamina rapido!

c)4+y=2u

d) ¢A qué hora llegaste?

e) Es tarde.

f) La casa de la esquina es azul.

g) México limita al norte con Canada.

h) Haré lo que pueda.

i) Elagua es un liquido incoloro.

j) La Luna gira alrededor de la Tierra.

k) El Sol es el centro del Universo.

l) El oro es muy lujoso y costoso.
m) El Everest no es la montana mas alta de la Tierra.
Traducir del lenguaje natural al simbdlico las si-
guientes proposiciones:

a) Si llueve, entonces me mojo.

b) Los meteorélogos no se equivocan.

c) Si llueve o hace frio, entonces no es cierto

que los meteorologos no se equivocan.
d) No es cierto que llueva y me mojo.

e) Si llueve, entonces habra buenas cosechas y
abundantes frutas.

f) Llueve, nieva y graniza.
g) Sillueve y hace frio, entonces granizara.
h) Iré al cine si y solo si no llueve y no hace frio.

i) Iremos de vacaciones o a la playa o a la mon-
tana.

j) No llueve o no me mojo.

k) Si Pedro va al cine y Luis al circo, entonces to-
maran un taxi o el autobus.

23

24

l) Si la Luna gira alrededor de la Tierra hay ma-
reas.

m) Si hay estrellas o el cielo esta sereno, enton-
ces no |lovera.

Si las proposiciones simplesp y g son falsasyrys
son verdaderas, icual es el valor de verdad de las
siguientes proposiciones compuestas?

a) ~pVr)

b) ~p V ~r

c) ~gAs

)pVaq

) ~(~p A ~q)

f) ~pAg)Vr]

g) ~M~pV~q)=s

h)p=~pV~r

i) ~llpAg) e (~rVs)]

j) ~[~(~p) A ~(~q)]

Sean las proposiciones simples:

o O

f. Como frutas y verduras
s: Estoy sano

Traducir del lenguaje simbélico al natural las si-
guientes proposiciones:
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2.5 Obtener la tabla de verdad de las siguientes pro- e) lLa= (b ¢
posiciones compuestas: 2= ~a
a) ~r A ~s 3.a=b
b) ~(r As) S.c=n~b
C) ~rV s f) 1.(a=b)A (b= d)
d) rA(rVs) 2.a=~b
e) (rV ~r) Ar~s So~d
f) (rAs)A ~s g) l.a=(a=b)

g) ~(rVs) 2.a=~a

h) ~(~r) V(s A1) o g
i) (rA~s)=(rVt) h) .a=(bAc)
j) rA(s = ~1) 2.aV(bAc)

2.6 Traducir y verificar la validez de los siguientes ar- SbAc
gumentos por tablas de verdad. 2.8 Verificar la validez de los siguientes argumentos
a) Si el proveedor surte las semillas, entonces si por la prueba formal de validez.

las semillas se siembran a tiempo, entonces las a)la=b

plantas nacen en agosto. Las plantas nacen 2b=d

en agosto. Por tanto, si el proveedor surte las 3. ~b \ ~d

semillas, entonces las semillas se siembran a 4. ~orod

tiempo. 5.(enf)=c¢
b) Si el proveedor surte las semillas, entonces si so~(eAf)

las semillas se siembran a tiempo, entonces las b) l.evm

plantas nacen en agosto. Las semillas se siem- Im=s

bran a tiempo. Por tanto, si el proveedor surte 3s=t

las semillas, entonces las semillas se siembran 4. ~oe

a tiempo. Luego, si las plantas no nacen en ot

agosto, entonces el proveedor no surtio las A L(mVn)=(eAf

semillas. 2. ~e

2.7 Verificar la validez de los siguientes argumentos . ~n
por tablas de verdad. &) L=
a) l.a=b)A(b=¢) 2.y V(wV ~v)

2.bVc 3. ~W
cSo~a L~V A ~wW
b)la=(bV) e) 1(t=b)
2.aVc 2.(b=p)
c.o~b 3.(t=p)=(b=))
c)la= (b=« 4.(t=j)=k
2.~b Sk
Lave f)lavb
d) la=(~bAd) 2~ e
2.~cVa b
S bAa g) L(WAV)A(cVt)
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2. (w=5)
A
h) Lc=t)A(d=V)
2.(t=p)A(s V)
4. (p=k Nt
S.c=k
i) Lanb
2.a=c
3.c=d
j) lLa= ~b
2.a
. ~bVc
2.9 Verificar la invalidez de los siguientes argumen-
tos por la prueba formal de invalidez.
a) Lasb
2.c=d
3b&c
S.oand
b) lLa= (b= ¢
2.b=(~c=d)
3.(cVd)=e)
La=e
c)lLasb
2.b<(cNd)
3.c&(aVe)
4.aVe
LalNe
d)lLas (b= ()
2.b< (~a A ~c)
3.c&(aV ~b)
4.b
c.ave
e)l.a=b
2.c=d
3.bVc
s.avd
f) Lh=(iV))
2.j=(sAX)
3.~5s
S.oh=x
81 Vj)=k

2.k=(jVd)
3.p = (~c=))
4. (c=p)= ~d
ek
2.10 Demostrar la validez de los siguientes argumen-
tos por la prueba condicional.
a) lL.a= (b= ¢
S.b=(a=)
b) 1.(a=b)A(a=¢)
s.a=(bV)
c)l.a=b
2.b=c
3.c=d
S.oa=d
d) 1.(a=b)A(a=c)
S.a=(bAc
e) 1.(a=b)
.a=-(aAb)
f) 1. (m=n)A(n=e)
2.(f=m)A(e=f)
. (~mV ~e) = (~m A ~e)
g) 1.(mAn)= (e Af)
2.(h=m)A(i=a)
3.(i=n)A(f=aq)
4. ~e
Soh=~i
h)1.b=p
2.j=k
3. ~b=(~j=d)
4. ~d
L~p =k
i) 1.(j= k)= (~d= ¢
2.~k=c
3.j= ~cC
L~d=c
j)Ly=w
2.(wAvV)=>t
Lv=(y=t)
211 Demostrar la validez de los siguientes argumen-

tos por la prueba indirecta.

a) 1.(a=b)A(c=d)

This document is available free of charge on StUDOCU-com

Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)


https://www.studocu.com/co?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=matematicas-discretas

2.(bvd)=e
3. ~e
~(aVc)

b) 1.(aV b)=(cAd)
2.(cVe)=(~f Ng)
3.(fVh)=(aAb)

oo PAZ

c) l.(a= ~b) A (c=d)
2.(~b=e)A(d= ~f)
3.(e= ~g) A\ (~f=h)
4aAlNc
. ~gAh

d) Lav(bAc)
2.a=c
5o (©

e) 1.(aVb)=(c=d)
2.(~dVe)=(aNc)
ood

f) 1.(a=b) A (c=d)

" (aVe)=(bVd)

g) l.(a=b)A(c=d)
c(~b Vo ~d) = (~a Vo~c)

h) 1.(a = b)
(la=b)=(a=¢

212 Demostrar por induccién que:

Zk( ) ) 2n+1
b)§:ﬁ4zzﬂq
9 Zk3 (n4—|—1)

z 1 n
d)Z;k@+4f:FI7
e)ﬁézb“j:3”—1
f)§:kkl(n+0

g) P24 4gn?=

(n+1)(2n+1)

Problemas propuestos

1 1 1 1
L S
1-4 4.7 7-10 (3n=2)(3n+1) 3n+1

1 1 1 1 n
13 3.5 5.7 Qn N(2n+1) 2n+1
2 2 2 2
1
1 n 2 n 3 e n _ n(n+1)
1-3 3.5 5.7 (2n=1)(2n+1)  2(2n+1)

L Problemas reto_

I. Verificar la validez del siguiente argumento por
tablas de verdad.

i)

j)

1 [(aAb)=c]Ad
2. ~(b=c¢)
© g

Il. Verificar la invalidez del siguiente argumento por

la prueba de invalidez.
p<(ge ~r)
g = (~rV ~s)
[r=(qV~t)]Alp=aq)
U= (EA)At=w)
[lgAr)=~ulAflu=(qVr)]
(gVVv)=~v

o Uk w N

o~UuV o~y

6

h) -|2_|_32_|_52++(2n_])2:n(2n—]>(2n+])
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Relaciones

Objetivos

m Aplicar los conceptos de relaciones binarias desde un punto de vista discreto.

m Determinar diversas relaciones binarias sobre los elementos de uno o dos conjuntos.
m Efectuar diversas operaciones entre relaciones binarias.

m Definir las propiedades que satisface determinada relacién binaria.

m |dentificar tipos especiales de relaciones binarias (relaciones de equivalencia y érdenes parciales).
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. Definicién y representacién

3.1 Introduccion

Las relaciones entre los elementos de dos 0 més conjuntos son frecuentes tanto en matematicas como en
sus aplicaciones, en especial en informatica.

Algunos ejemplos practicos de relaciones son las de orden y divisibilidad entre niimeros, las relaciones
de equivalencia entre los datos de entrada de un programa respecto a la deteccién de posibles errores de
programacién (validacién de programas), la relacién de dependencia entre las distintas fases de produccién
en una industria o la agrupacién de datos aislados en complejas bases de datos con relaciones de depen-
dencia entre sus campos.

Desde el punto de vista matematico, estas relaciones se pueden describir simplemente como subconjun-
tos de un cierto producto cartesiano.

De entre los diversos tipos de relaciones, las funciones pueden considerarse un caso especial en donde
se interpreta que uno de los campos es el resultado de realizar determinada operacién con el resto de estos.

Por su parte, las relaciones de equivalencia describen similitudes entre elementos con respecto a una
propiedad particular. En tanto, las relaciones de orden establecen una jerarquia con respecto a un criterio
fijado. Por ultimo, las relaciones entre multiples conjuntos son el fundamento matemaético del modelo rela-
cional de bases de datos, que es el mas extendido hoy dia por su simplicidad, potencia y coherencia teérica
y practica.

3.2 Definicion y representacion

En la forma intuitiva, una relacién es una comparacién entre dos elementos de un conjunto; esta se expresa
usando pares ordenados. Por tanto, en la forma abstracta, una relacién, R, se define como un conjunto de
pares ordenados. En este contexto, se considera que el primer elemento del par ordenado esta relacionado
con el segundo elemento del par ordenado.

L N Y TRy

/™

'y

Existen varias definiciones de par ordenado, aunque la que se considera mas comdn es la formulada en
1921 por Kazimierz Kuratowski, matematico y l6gico polaco, la cual en la actualidad también es la mas
aceptada. La idea basica es muy sencilla: un par ordenado se distingue de una mera coleccion de dos ele-
mentos en que el primero esta ordenado y el segundo no. Esto significa que para que un par sea ordenado
basta que podamos distinguir su primer elemento del segundo. En otras palabras, basta poder reconocer
que el par ordenado esta relacionado de manera diferente con cada miembro.

rescsssessosssoss st
srescescossrsssessr e

Figura 3.1 Kazimierz
Kuratowski (1896-1980).

Por lo general, la forma de relacionar ambos elementos es mediante una regla o caracteristica que per-
mita establecer una relacién entre dichos elementos; por ejemplo, decir que el segundo elemento es el doble
que el primer elemento, como el par ordenado (2, 4), o que el primer elemento es igual al triple del segundo
elemento, como el par ordenado (6, 2).

Para iniciar, es necesario primero recordar el concepto de producto cartesiano, que se enuncia a conti-
nuacion.

Producto cartesiano
Si Ay B son dos conjuntos no vacios, entonces el producto cartesiano A x B sera el conjunto de todos los
pares ordenados (a, b), donde a € Ay b € B. Es decir:

AxB={@ab)t-q-aeAAbeB}
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Sean los conjuntos A ={1,2,3}y B ={r, s}

Entonces:
AXB={(r),(1,5).(2.1).(25).3,r), (3 s}y
B x A={(r1),(r,2)(r,3),(s7),(s2),(s,3)}

Como se puede observar en el ejemplo anterior, A x B= B x A; es decir, en este caso el producto cartesiano
no es conmutativo.

En el contexto de las relaciones binarias, el producto cartesiano juega el papel de conjunto universal o
de universo de discusién.

Relacién binaria
Una relacién binaria R de un conjunto A en un conjunto B es un subconjunto del producto cartesiano A x B,
es decir:

RC (A x B)

En este caso, A = B; por tanto, se dice que R es una relacién del conjunto A en el conjunto B, o simple-
mente que R es una relacion de A en B. Si el par ordenado (a, b)e R se escribe a R b y significa que a esta en
relacién con b.

Ademés, si el par ordenado (a, b) € R se escribe a R b, para indicar que a no esté relacionado con b.

Si A =B, es decir los dos conjuntos son iguales, o si simplemente se utiliza un Gnico conjunto, se dice que
R es una relacién sobre el conjunto A, o simplemente que R es una relacién sobre A. En este caso, se tiene
que la relacion R es un subconjunto de A x A. Es decir:

RC (A x A)

m Como se menciond antes, los elementos de los conjuntos se relacio-
nan por una regla o caracteristica. Hay tres formas diferentes para repre-
sentar la regla que permita relacionar a dichos elementos.

Véase un ejemplo en el cual se trata de expresar las condiciones que
forman la relacién, primero de una forma verbal y luego de una ma-
nera formal.

Como siempre se trabajara con re-
laciones entre los elementos de dos
conjuntos, se omitira la palabra bina-
ria en el resto del capitulo.

Si A es un conjunto cualquiera de ndmeros naturales y se quiere establecer una relacién, R, sobre el conjunto A,
en la cual se tenga que el primer elemento es menor o igual al segundo elemento del par ordenado; entonces, las
diferentes formas de representar o expresar a R son las siguientes:

a) R={(a,b)t-q-a<b,a,beA}
b) (a,b) eRsia<b,a,becA
c) aRbsia<b,a,beA

En el ejemplo, la primera es la forma mas comun para representar a las relaciones. Sino existe confusién
con respecto a los elementos del conjunto, entonces se puede omitir que a, b € A.
Cuando A = B también se pueden utilizar las tres formas mencionadas, veamos a continuacién coémo.
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. Definicién y representacién

Supodngase que A y B son dos conjuntos cualesquiera y que se quiere establecer una relacion, R, del conjunto A en
el conjunto B, en la cual el primer elemento es diferente al segundo elemento; entonces, dicha relacion se puede
expresar de las siguientes maneras:

a) R={(a,b)t-q-a=b,ac ANb e B)
b) (a,b)eRsia=b,ac ANbeEB
c) aRbsia=b,ac AANbEB

De nueva cuenta, si no existe confusiéon con respecto a los elementos de los respectivos conjuntos se
puede omitirquea e A Ab €B.

Ahora, se vera un ejemplo de como obtener los pares ordenados de una relaciéon a partir de la regla que
permite relacionar los elementos de los conjuntos.

E jemplo_

Sean el conjunto A = {1, 2,3, 4} y R una relacion sobre Entonces, se tiene que el primer elemento debe dividir
el conjunto A definida como sigue: en forma entera al segundo elemento; es decir, con
residuo igual a cero. Entonces:

R={(11).(12),(,3).(1.4),(2,2) (2,4), (33), (4 4)}

En este caso, R es una relacion sobre el conjunto A.

R={(a, b)t-q-a|b (division entera)}

{Cuales pares ordenados forman dicha relacion?

Como se observa en los ejemplos anteriores, existe una analogia entre la regla para formar una relacién
y la forma de definir un conjunto por comprension; asi, en la relaciéon que se obtuvo hay una analogia con la
forma de definir un conjunto por extension, esto se debe precisamente a que las relaciones son conjuntos.

En una relacién R de un conjunto A en un conjunto B, se identifican dos conjuntos especiales, denomi-
nados dominio y codominio.

Dominio

SiRC (A x B) esunarelacién de A en B, el dominio de R, que se escribe Dom(R), es el conjunto de los elemen-
tos del conjunto A que estén relacionados con elementos del conjunto B. El dominio se expresa de manera
formal como sigue:

Dom(R)={acAt-q-(a,b)€R, paraalginb € B}

Sean los conjuntos A ={1,2,3,4, 5}y B={r, s, t}. Sea R una relacion del conjunto A en el conjunto B definida como sigue:
R={(1.r),(1,5).(2,5), 3, 5)}
Entonces:
Dom(R) =1, 2, 3}

Una manera intuitiva de determinar el dominio de R es escribir los primeros elementos de los pares or-
denados de R sin repetirlos.

Codominio

SiR C (A x B) esunarelacién de un conjunto A en un conjunto B, el codominio (también conocido como ran-
go, imagen o recorrido) de R, se escribe Cod(R)y es el conjunto de los elementos de B que estan relacionados
con elementos del conjunto A. Es decir:
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Cod(R)={beBt-q-(a,b) € R, paraalgina e A}

Sean los conjuntos A = {x, ¥, z, w}y B={a, b, ¢, d} y R una relacién del conjunto A en el conjunto B definida como

sigue:
R={(x,a).(x,b).(y,b) (z,a)}
Entonces:
Cod(R) = {a, b}
m De nueva cuenta, una manera intuitiva para determinar el codomi-

Conrespecto a la relacion R de los dos
ejemplos anteriores, es importante
hacer notar que no se ha dado la regla
para formarla, aunque si se han dado
los elementos de la misma. En este
caso, se debe trabajar con dicha rela-
cion tal cual y no preocuparse por la
regla que la formo.

nio de R consiste en escribir los segundos elementos de los pares orde-
nados de R sin repetirlos.

Las relaciones, ademas de ser representadas como conjuntos de pa-
res ordenados, también se pueden representar de otras formas.

Una representacién grafica adecuada facilita la comprensién del
producto cartesiano de dos conjuntos por ende, también de las relacio-
nes, debido a eso se utilizan diversas maneras de representar las rela-
ciones.

Entre las formas méas comunes de representar a las relaciones, ade-
mas de los pares ordenados, se pueden mencionar las siguientes:

Tablas Esta representacién se utiliza con mucha frecuencia cuando se requiere expresar la relacién
de forma tabular. Pero, hay dos variantes de esta representacién. En la primera, los elementos del
primer conjunto corresponden a las filas o los renglones de la tabla y las columnas de la tabla a los
elementos del segundo conjunto; en esta, los elementos relacionados se representan con una “palo-
mita” (v)) o un signo de bien u “OK”. En la segunda, las columnas corresponden a los conjuntos, y en
esta se representan Unicamente los elementos que estan relacionados; esta forma es poco utilizada,
ya que si R tiene muchos elementos, la tabla tiende a crecer de modo considerable.

Diagramas Es muy similar a los diagramas de Venn, donde los elementos relacionados se unen con
flechas. En el caso de las relaciones es una representacién muy poco utilizada.

Matriz de relacién Es una representacion matricial de una relacién. En esta, los elementos del primer
conjunto corresponden a las filas o los renglones de la matriz, mientras que las columnas pertenecen
a los elementos del segundo conjunto. Si dos elementos estdn relacionados son representados con un
1 (en la interseccién fila-columna correspondiente) y con un 0 en caso contrario.

Digrafos Aunque mas adelante se estudia con detalle qué es un digrafo (grafo dirigido) y los elemen-
tos que lo constituyen, aqui se puede decir de manera intuitiva que es la representacién grafica de
los elementos de un conjunto y las relaciones que existen entre estos. Por lo general, dicha represen-
tacién se utiliza cuando R es una relacién sobre A.

Cartesiana Es una representacién que hace uso del plano en un sistema de ejes de coordenadas car-
tesianas. Por lo comun, esta se utiliza cuando tanto los elementos del conjunto A como los del con-
junto B pueden ser representados en un plano con un sistema de coordenadas cartesianas, aunque
mas habitualmente se utiliza cuando R es una relacién sobre A.

Sean los conjuntos A = {1, 2,3}y B={r, s} y R una relacion del conjunto A en el conjunto B definida como sigue:

R={(1r).(1,s).(2.1),3,5)}
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. Operaciones con relaciones

Continua

; )
Ademas de la representa- el . g
cién por pares ordenados, '
en la figura 3.2 se observan ! VoA o ‘ T
las representaciones por 2 | N T s . R=f1 0
tablas, diagrama y matriz de 3 N 2y 0 1
relacion para la relacion R 3 y 7
anterior. I R

\ Tablas Diagrama Matrizderelaci()n/

Figura 3.2 Tres representaciones para la relacion R de A en B.

Como se mencioné antes, la representaciéon mediante grafos dirigidos y de forma cartesiana, se utiliza
por lo general cuando R es relacién sobre A.

Sean el conjunto A ={1, 2, 3,4} y R una relacion sobre el conjunto A definida como sigue:
R={(a,b)t-q-a<b)
De este modo:
R={(1,1).(12).0,3).(1,4),(2,2),(2,3).(2,4).(3,3), 3, 4). (4, 4)}

Su representacion como digrafo y car- 4 R
tesiana se observan en la figura 3.3. 1 2 P R S
| | | |
ot =
| | | |
pJ A

Figura 3.3 Representaciones como digrafo 3 @
y cartesiana para la relacion R sobre A.

Digrafo (artesiana

\ J

Enla representacion como digrafo, los puntos reciben el nombre de vértices y representan los elementos
del conjunto A.

Las flechas reciben el nombre de aristas dirigidas (o lados dirigidos) de a hacia b y representan el hecho
de que (a, b) € R; es decir, los elementos que estan relacionados.

Las flechas que representan elementos de la forma (a, a), es decir los elementos que estan relacionados
consigo mismos, se llaman lazos.

3.3 Operaciones con relaciones

Puesto que las relaciones son conjuntos de pares ordenados, las nociones de unién, interseccién, diferencia
y diferencia simétrica de dos relaciones se obtienen de manera similar a las correspondientes para los con-
juntos.
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A continuacion se hace una recapitulacion breve de dichas operaciones sobre conjuntos, extendiendo sus
definiciones a las relaciones, y al final se aborda un ejemplo donde se utilizan operaciones con relaciones.

Antes que nada, no hay que olvidar que el conjunto universal, en las relaciones, es el producto cartesiano
A xBo A x A, dependiendo si es una relacién de A en B o sobre A, respectivamente.

Unién de relaciones

La unién de dos relaciones Ry S, denotada por R U S, es la relacién cuyos
pares ordenados son exactamente los pares ordenados deRo S, 0 en ambas
relaciones. De manera formal se expresa como:

<=

aRUS)b=aRbvaSh

4

Figura 3.4 Union de dos relaciones.

En forma grafica se puede representar como se ve en la figura 3.4.

Interseccién de relaciones
La interseccién de dos relaciones Ry S, denotada por R N S, es la relacion u
cuyos pares ordenados son exactamente los pares ordenados que estan
tanto en R como en S. Desde el punto de vista formal, se expresa como:

aRNS)b=aRbAaSh

p 4
De manera grafica se representa como se ve en la figura 3.5. o
Figura 3.5 Interseccion de dos
. . . relaciones.
Diferencia de relaciones
La diferencia de dos relaciones Ry S, denotada por R — S, es la relacién que
contiene exactamente aquellos pares ordenados de R que no estdn en S. De U
manera formal, se expresa como:
aR=Sb=aRbrag8Db
En forma grafica se representa como se ve en la figura 3.6.
. C e <
La diferencia simétrica , 3.6 DI - ded
. . . L. . gura 3. Irerencia de dos
La diferencia simétrica de dos relaciones Ry S, denotada por R @ S, es la re- relsadones
lacién que contiene todos los pares ordenados que estdn en R o en S, pero '
no en ambas relaciones. La diferencia simétrica equivale a la unién menos
la interseccién de ambas relaciones, es decir: v
R®S=RUS)—- (RNS)
De manera formal, se expresa como:
4

aReS)h=@RbvaSh)—-(@aRbAaSDh)

Figura 3.7 Diferencia simétrica de

3 dos relaciones.
De modo grafico se representa como se ve en la figura 3.7.

Ademas, se tiene que si Ry S son dos relaciones del conjunto A en el conjunto B, entonces: RUS,RN'S,
R ® Sy R ® S son también relaciones del conjunto A en el conjunto B.
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E jemplo

Operaciones con relaciones

Sean los conjuntos A ={a,b,c}yB={1,2,3}y sean Ry S dos relaciones del conjunto | RUS ={(a,1),(a, 2), (b, 3)}

A en el conjunto B definidas como sigue:
R={(a.1).(a,2) (b,3)}y
$={(a2),(b.3))

Determinar RUS,RNS,R —SyR&SS.

RNS={(a,2),(b,3)}
R—S={a1)
R®S={a1)

Otra operacién utilizada con frecuencia con conjuntos es el complemento. La cual, extendida a relacio-

nes, se define como:

Complemento de una relacién

Sean A y B dos conjuntos. El complemento de una relacién R son todos los
pares ordenados del producto cartesiano A x B (el cual juega el papel de
conjunto universal) que no forman parte de la relacién R; se denota como R’

o R®. De manera formal, se expresa como:

aR)b=aRDb

En forma grafica, el complemento de una relacién se puede representar

como en la figura 3.8.

E jemplo

Sean los conjuntos A = {a, b, c} y B = {x, y, z} y sean
Ry S dos relaciones del conjunto A en el conjunto B
definidas como sigue:

R={(a,x).(a y) (b 2)}

S={(ay). (b 2)).
DeterminarRy S’.

4

Figura 3.8 Complemento de una
relacion.

SiAx B={(a,x).(a y) (a 2) (b x) (b y) (b 2)(cx)
(c.y) (¢ 2)}

Entonces:

R'={(a.2) (b.x).(b.y). (c.x).(c.y). (c.2)}y

§'={(a.x).(a.2), (b, x), (b, y). (. ). (c. y). (c. 2)}

Una operacién que se utiliza a menudo es el inverso de una relacién, la cual no se aplica en conjuntos;

en este caso, se define como:

Inverso de una relacién

Sea R una relacién de un conjunto A en un conjunto B, el inverso u opuesto de R, que se denota como R™ o
R eslarelacién del conjunto B en el conjunto A, expresada de manera formal como:

R'={b,a)t-q-(a,b) R}

E jemplo_

Sean los conjuntos A ={2,3,4}y B={3,4,5,6,7}y sea
R una relacion del conjunto A en el conjunto B, defini-
da como sigue:

R={(a.b)t-q-a|b)
DeterminarR™.

o
Solucion

Primero, es necesario determinar los elementos de R.
R={(2,4)(26) (3 3) (3 6), (4 4)

Entonces:

R"={(4,2),(62),(33)(63) (4 4)

De lo anterior se deduce queaRb=bR'a.

En muchos casos, también resulta muy importante determinarla cantidad de elementos de una relacién.
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Cardinalidad de una relacién
La cardinalidad de una relacién R de un conjunto A en un conjunto B se representa como: |R|, y constituye el
numero de pares ordenados distintos que forman la relacién.

E jemplo_

SiR={(2,4),(2,6),(3,3),(3,6), (4,4)}
Entonces:
IR|=5

Una ultima operacién sobre conjuntos, que también se aplica a las relaciones, es el conjunto potencia de
una relacién, la cual se define y explica a continuacién.

Conjunto potencia de una relacién
Sea R una relacién de un conjunto A en conjunto B, el conjunto potencia de R, denotado como P(R), es el
conjunto que contiene a todos los subconjuntos de R; es decir:

P(R)={St-q-SCR]

Ademas si |R| =n, entonces |[P(R)| = 2". Este valor indica la cantidad de elementos de P(R).

E jemplo_ |_Solucién

Sean el conjunto A = {1, 2,3} y R una relacién sobre el | Primero, |R| =3y |PR)| =2’ = 8.
conjunto A definida como: Esto significa que el conjunto potencia de R tiene 8
R={(1,1),(1,2),(1,3)} subconjuntos:
Determinar [P(R). P(R) = {@, {(1 1)} {01, 2}, {0, 3)), {(n. 1), (1, 2)), {(1h.7). (1. 3)},
{(L2), (.3 {(, 1), (1,2), (1,3)})

3.4 Composicion de relaciones

La composicién de relaciones también constituye una operacion frecuente, la iinica diferencia radica en que
en vez de requerir uno o dos conjuntos se requieren tres (que pudiera ser el mismo para los tres conjuntos),
ademas de dos relaciones con las caracteristicas dadas en la siguiente definicion.

Definicion de composicion de relaciones

Sean R una relacién de un conjunto A en un conjunto B y S una relacién de un conjunto B en un conjunto
C. La composicién de Ry S, denotada SeR, es una relacién consistente de los pares ordenados (a, ), donde
aeAyceC, paraloscualesexisteunb € B, tal que (a,b) e Ry (b, c) € S; es decir,a Rby b S c. De manera for-
mal, se expresa como:

S°R={(a,c)t-q-(a,b)eRA(b,c)eS,acAbeB ceC}

E jemplo_ |_Solucién

Sean los conjuntos A = (1, 2,3}, B ={1, 2,3, 4}y | SeR={(1,0),(1,1),(2,1),(2,2),(3,0), (3,1)}
C={0,1,2}y sean las relaciones:

R={(1,1),(1,4),(2,3),(3,1),(3,4)}deAenBy
S={(1,0),(2,0),(3,1),(3,2),(4,1)}deBen C.

Determinar SeR.

Después de ver el ejemplo, nos cabe la pregunta: ;S°R = ReS? Esto es: ;la composiciéon de relaciones es con-

mutativa? Antes de r
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Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)


https://www.studocu.com/co?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=matematicas-discretas

. Composicion de relaciones

E jemplo_

Sean los conjuntos A = (1, 2,3}, B = (2,4, 6,8}y | SeR={(l,u),(1,1),(2,59),(2,1),35) 3 1), (3 u)}
C={s, t,u} y sean las relaciones:

R={(1,2),(1,6),(2,4),(3,4),(3,6),(3,8)}de Aen B
S={(2,u), (4 5s),(41),(61),(8 u)}deBenC.

Determinar SeR.

Con ambos ejemplos se puede afirmar que SeR = ReS; es decir, que la composicién de relaciones no es
conmutativa. Para reafirmar la respuesta, se vera otro ejemplo.

E jemplo_ |_Solucién

Sean los conjuntos A = {a, b, ¢, d}, B={s, t,u, v}y | SeR={(a,1),(a,2),(a 4) (d,3)}
C={1,2,3,4,5}y sean las relaciones:

R={(a,s) (a,t),(c V) (du}deAenBy
S={(s,2),(t,1),(t,4),(u3)}deBenC

Determinar SeR.

La composicién de relaciones también puede representarse en forma grafica. Esta representacién ayuda a
visualizar como se relacionan los pares ordenados de las relaciones.

En dicha representacion grafica, primero se escriben los conjuntos A, B y C, asi como sus elementos de-
bajo de cada uno de los conjuntos. Luego, se unen con flechas aquellos elementos que estan relacionados en
lasrelaciones Ry S, respectivamente. Acto seguido, se escriben los conjuntos Ay C, debajo los elementos de
cada uno y se unen con flechas aquellos elementos que inician en el conjunto A y terminan en el conjunto
C. Por ultimo, dichos elementos se escriben como pares ordenados.

Representar de manera grafica la composicion SeR obtenida en el ejemplo anterior.

Como se recordara, en el ejemplo anterior se tienen los conjuntos:
A={ab,cd},B={stuviyC={(127345).

Y las relaciones:

R={(a,s).(a.t)(c,v) (d u)}deAenBy - ~

R S S°R
S={(s2),(t,1),(t.4),(u,3)ydeBenC A > B > C A—— ¢
Desde el punto de vista grafico, la com- | ] : . .
posicion SeR se representa como se ob- b : . 5 b 5
serva en la figura 3.9. . ; ; . ;
Por tanto: d ><: y 4 d 4
SeR ={(a, 1), (a, 2), (a, 4), (d, 3)} 5 5

Este es el mismo resultado obtenido en

) . Figura 3.9 Representacion grafica de la composicion de relaciones.
el ejemplo anterior.

Pero el concepto de composicién de relaciones también se puede extender a méas de dos relaciones.
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Composicion de tres relaciones

Sean R una relacién de un conjunto A en un conjunto B, S una relacién de un conjunto B en un conjunto
Cy T una relacién de un conjunto C en un conjunto D. La composicién de R, Sy T constituye una relacién
consistente de los pares ordenados (a, d), donde a € Ay d € D, y para los cuales existenunb e ByunceC,
tal que (a,b) €R, (b,c) €Sy (c,d) € T.Esdecir:aRb,bScycTd.La composicién de tres relaciones se denota
como TeSeR, siR, Sy T son relaciones.

Ademas, se tiene que T°(S°R) = (T°S)°R, lo que significa que la composicién de méas de dos relaciones es
asociativa.

E jemplo |_Solucién

Sean los conjuntos: A = {a, b, ¢, d}, B = {s, t, u, v},
C={1,2,3,4,5)yD={*#+).

Sean las relaciones:
R={(a.s).(a,1) (c,v) (d u)}deAenB,
S={(5,2).(t,1).(t.4). (u.3)}deBenC,
T={2%.0.#), (4 +) (5#)}deCenD

El primer paso consiste en obtener To(SeR). Se inicia
determinando:

SeR = {(a,1), (a, 2), (a, 4), (d, 3)}
Después se determina:
To(SeR) = {(a, #), (a,*), (a, +)}

Ahora, se obtiene (ToS)eR. Para esto hay que determi-

nar en primera instancia:
ToS = {(s,). (t. #). (t. +))
y por ultimo:
(TeS)oR = {(a. #). (a, ). (a, +)}

Como se observa, este resultado es igual al resultado
anterior.

Determinar ToeSeR y comprobar que To(SeR) = (ToS)oR.

Por otra parte, las potencias de una relacién R se pueden definir utilizando la composicién de funciones.

Potencias de relaciones

Sean A un conjunto y R una relacién sobre el conjunto A. La composicién de la relacién R consigo misma se
denota como sigue:

R = R

ReR = R?
RoR°R = RoR?=R?
RoR°ReR = ReR3=R*

RoR™ 1 = R™

Y se dice que son las potencias de la relacién dada.

E jemplo

Sean el conjunto A ={a, b, c, d} y la relacién R sobre el conjunto A definida como:

R={(a,a),(b,a),(cb) (d )}
Encontrar las potencias R™.

Como ReR = R? entonces:

R*={(a.a). (b.a). (c.a). (d. b}}
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Propiedades de las relaciones

Continua

Ademés, como ReR? = R?, entonces:
R’={(a, a), (b, a), (c, a), (d, a)}

Siguiendo con el proceso R°R* = R, entonces:
R*={(a, a), (b, a), (¢, a), (d, a)}

Pero, como R* = R? y si se siguiera el proceso siempre se obtendria R?, por lo que se deduce que:

R™ =R’

3.5 Propiedades de las relaciones

A continuacién se definiran y presentaran algunos ejemplos de las principales propiedades de las relacio-
nes. Es importante destacar que dichas propiedades se utilizan, entre otras cosas, para clasificar las relaciones
sobre un conjunto determinado.

Primero, se definen algunas relaciones que seran tutiles a lo largo de esta seccién.

Sean el conjunto A ={1, 2, 3, 4} y las siguientes relaciones sobre A:

(2,2),(3,4), (4,1), (4, 4)}

—~
»~

[EEN
~
—

4,2), (4, 3)}

)

)

), (2,1),(2,2),(3,3), (4, 1), (4, 4)}

)

), (1,4),(2,2),(2,3),(2,4),3,3), 3, 4), (4, 9)

—

L *
Relacion reflexiva
Ala relaciéon R sobre un conjunto A se le conoce con el nombre de reflexiva; esto es, si (a,a) €R,Va € A. Se
expresa de manera formal como sigue:

Resreflexiva =Va (a R a)

Lo anterior significa que para que una relacién R sea reflexiva debe contener todos los elementos del
conjunto A relacionados consigo mismos en R.

E jemplo_

Determinar cuales relaciones son reflexivas. En este caso, T y V son reflexivas, ya que todos los pa-
res ordenados de la forma (g, a) Va € A son elementos
de T o deV, respectivamente; es decir, (1,1,), (2, 2), (3, 3),
(4, 4) son elementos de To de V.

Relacion irreflexiva

Alarelacién R sobre un conjunto A se le conoce como irreflexiva si(a, a) € R, Va € A; este tipo de relacion se
expresa de manera formal como sigue:

Resirreflexiva = Va (a K a)

Entonces, para que una relacién sea irreflexiva no debe contener ninguno de los elementos del conjunto
A relacionados consigo mismos en R.
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E jemplo

Determinar cuales relaciones son irreflexivas. En este caso, U y W son irreflexivas, ya que ninguno
de los pares ordenados de la forma (a, a) Va € A son
elementos de U o de W; estoes:(1,1,),(2,2),(3,3) y (4, 4)
no son elementos de U o de W.

Por medio de tablas es facil reconocer o determinar cudndo una relacién es reflexiva o irreflexiva, basta
con observar la diagonal principal de las mismas.

En el caso de que en la tabla todos los elementos de la diagonal estén marcados, se puede asumir que
la relacién es reflexiva (véase figura 3.10b); por el contrario, si ninguno de los elementos de la diagonal esta
marcado, entonces se asume que la relacién es irreflexiva (véase figura 3.10c). Pero, si en la tabla solo algu-
nos de los elementos de la diagonal estan marcados, entonces se considera que la relacién no es reflexiva
niirreflexiva (véase figura 3.10a).

' ™
R 1T 2 3 4 T 1T 2 3 4 U 1 2 3 4
1 \ 1 \ v 1
2 v 2 N 2 v
3 v 3 3 RN,
41 A 41 A 4 N N A
9 a) b) 9}

Figura 3.10 a)Relacion que no es reflexiva ni irreflexiva. b) Relacion reflexiva. c) Relacion irreflexiva.

En las matrices de relacién, si la diagonal principal tiene exclusivamente unos, representa una relacién
reflexiva; en caso contrario, sila diagonal tiene exclusivamente ceros representa una relacién irreflexiva.

En los digrafos, si todos los vértices tienen lazos, representa una relaciéon reflexiva; por el contrario, si
ningln vértice los tiene, entonces el digrafo representa una relacién irreflexiva.

Relacion simétrica
Una relacién R sobre un conjunto A es simétrica siV(a, b) € R, lo que implica que (b, a) € R. La relacién simé-
trica se expresa de manera formal como:

R es simétrica =Vavb (aRb=DbRa)

Entonces, para que una relacion R sea simétrica, todo par ordenado de R debe tener su inverso.

E jemplo_ |_Solucién

Determinar cuales relaciones son simétricas. En este caso, S y T son simétricas, ya que todo par or-
denado (b, a) es elemento de S o de T siempre que
(a,b) sea elemento de S o de T, es decir, cada par orde-
nado de S o T tiene su inverso.

Relacion antisimétrica

Una relacion R sobre un conjunto A es antisimétrica si (a, b) € Ry (b, a) € R, entonces a = b, Va, ¥b €A. De ma-
nera formal, unarels - 0 i
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Res antisimétrica=Vavb (@aRbAbRa=a=Db)

Una forma equivalente de expresar esta relacién es diciendo: si a = b se tiene quea R bo b R a. Lo que
de manera formal se denota:

R es antisimétrica = Vavb (a K b v b K a)

Pero, si todavia queda duda, para que una relaciéon R sea antisimétrica ningin par ordenado de esta debe
tener su inverso; por tanto, hay que olvidarse de los pares ordenados de la forma (a, a).

E jemplo |_Solucién |

Determinar cuales de las relaciones anteriores son | Las relaciones antisimétricas son U, V' y W, ya que en
antisimétricas. estas no hay pares de elementos (g, b) con a = b, tales
que (a, b) sean elementos de U,V o de W y (b, a) sean
elementos de U, V o de W; es decir, ningun par orde-
nado de U, V o de W tienen su inverso, sin considerar a
los pares ordenados de la forma (g, a).

Gracias a las tablas es posible identificar con rapidez este tipo de relaciones. En este caso, aqui no deben
importar los elementos de la diagonal, pues estos Unicamente sirven como un eje de simetria, para verificar
si cada par ordenado de la relacién tiene su respectivo inverso.

En el caso de que la relacion tenga la propiedad de simetria (véase figura 3.11b), todo par ordenado tiene
suinverso, o siningn par ordenado tiene su inverso, esto en el caso de que la relacién tenga la propiedad de
antisimetria (véase figura 3.11c).

No obstante, también puede darse el caso de que la relacién no sea ni simétrica ni antisimétrica; en este
caso, solo algunos elementos tendran su inverso (véase figura 3.11a).

R 12 3 4 Tl 1 2 3 4 U 12 3 4

1 y 1 1

2 Y 2 2 v

3 v 3 3 NN

4 v 4 4 NNy
a) b) 0

Figura 3.11 a) Relacion ni simétrica ni antisimétrica. b) Relacion simétrica. c) Relacion antisimétrica.

En las matrices de relaciédn, si los unos estan dispuestos en forma simétrica con respecto a la diagonal
principal, esto representa una relacién simétrica. En caso contrario, sininguno de los unos esté dispuesto de
forma simétrica con respecto a la diagonal principal, esto representa una relacién antisimétrica.

En los digrafos, si un vértice tiene una arista que sale a otro vértice, este Ultimo debe tener su corres-
pondiente arista de regreso desde ese vértice; en este caso, esto representa una relacién simétrica. Pero, si
un vértice tiene una arista que sale a otro vértice y este ultimo no tiene una arista de regreso, entonces esto
representa una relacién antisimétrica.

Es importante destacar que estas dos propiedades pueden presentarse en la misma relacién; sin embar-
g0, esto no ocurre con la reflexividad e irreflexividad. Si una relacién R posee elementos exclusivamente en
la diagonal principal, entonces R tiene las propiedades de simetria y antisimetria al mismo tiempo.

Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)



68 cCapitulo 3 Relaciones .

Relacion transitiva
Una relacién R sobre un conjunto A recibe el nombre de transitiva si (Va,vb, Vc) € A, donde (a,b) eR A (b, ¢) €R;
estoes, (a, ¢) € R. De manera formal esta se denota como:

Res transitiva=VvavbVc (@aRbAbRc=aRc)

E jemplo_

Determinar cuales relaciones son transitivas. En este caso, se puede comprobar que U, V y W son
relaciones transitivas, ya que si (a, b) son elementos
deU,VodeWy (b, c)son elementos de U, V o de W;
entonces (g, ¢) U, V o de W, respectivamente.

La relacién transitiva se representa en una tabla como se muestra enla ™

figura 3.12. u T2 3 4

Se sabe que la relacién U es transitiva puesto que: :
(3,2)eUy(2,1)eU=(3,1) €U 20 A

3 Y

4,2)eUy(2,1)eU= (4,1) €U
42 eUy@DeU= 1) N
(4,3)€eUy(3,1)eU=(4,1) €U \_ y
(4,3)eUy(3,2)eU=(4,2) €U Figura 3.12 Tabla que representa

una relacion transitiva.

En una tabla no es facil reconocer a simple vista si la relacién es transitiva,
por lo que es mas conveniente utilizar la representacién mediante un digrafo.

Un digrafo de una relaciéon transitiva tiene la propiedad de que si existen
aristas dirigidas de x a y y de y a z, también existe una arista dirigida de x a z,
tal como se observa en el digrafo de la figura 3.13.

Para comprobar la condicién de transitividad de una relacién como pares
ordenados, hay que tener en cuenta quesia=bysi(a,b) eRA (b,c) €R,enton-
ces (a, c) € R; en este caso, (a,¢) = (b,c). Sib=cy (a,b) e R A (b, ) € R, entonces
(a,c) € R; en este caso, (a, ¢) = (a, b), por lo que no hay que verificar de manera 3 4
explicita toda la condicién en dichos casos. ]

Para comprobar la condicién de transitividad, primero hay que eliminar los \ >
casos a = by b= cyluego solo hay que verificar los pares ordenados restantes. ~ Figura33 Relacion transitiva
Esto ahorrard una gran cantidad de comparaciones. representada por un digrafo.

~
2
®

[ B
A

Extension transitiva

Sea una relacién R sobre un conjunto A, la extension transitiva de R, denotada por R, es la relacién sobre A
tal que R C Ry; es decir, R, contiene a R, y ademaés si (a, b) e R A (b, ¢) € R, entonces (a, ¢) € R;.

E jemplo_

Sean el conjunto A = {g, b, ¢, d} y R una relacion sobre R,={(a, b), (a, ¢), (b, b), (b, ¢), (b, d), (¢, b), (¢, ¢), (c, d)}
el conjunto A definida como:

R={(a,b) (b, c).(c,b) (c.d)}

Determinar la extension transitiva de R.
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Cerradura transitiva

SiR, denota la extensién transitiva de Ry, y en general R;,, denota la extensién transitiva de R;, la cerradura
transitiva de R, denotada por R*, es el conjunto union de R, Ry, R,,..., R;.
De acuerdo con la definicién anterior:

R*={RUR;UR, U...UR_;UR}}
Sin embargo, por definicién de extension transitiva se tiene que:
RCRCR,C...CR,CR

Entonces:
R*=R
Hay que tener en cuenta que si R es una relacién transitiva, entonces R; = R; si R; es una relacién tran-
sitiva entonces R, = Ry; si R, es una relacion transitiva entonces R; =R, y en general si R;_; es una relacion
transitiva, entonces R; =R_;.

Asi, se concluye que la cerradura transitiva R* de una relacién R siempre debera ser una relacién transitiva.

E jemplo_

Sean el conjunto A={a, b, ¢, d} y R una relacién sobre | Ry={(a, b), (g, c), (b, b), (b, c), (b, d), (c, b), (c, c), (c, d)}
el conjunto A definida como sigue: R,={(a,b),(a, <) (a,d), (b, b), (b, ). (b, d), (c, b), (¢, ). (¢, )}
R={(a, b), (b, ). (¢, b). (¢, d)} Y como R, es una relacion transitiva, entonces:
Determinar la cerradura transitiva de R. R* =R,={(a, b), (a, ), (a, d), (b, b), (b, ), (b, ), (c, b),
(¢, c) (c, d)}
e

En la figura 3.14 se repre-
senta el proceso para obtener o N
R* mediante digrafos.

Y
@

Figura 3.14 Proceso para obtener R*. <

3.6 Relaciones de equivalencia

Para definir una relacién de equivalencia, primero se debe establecer el concepto de particién de un conjun-
to, debido a que una particién puede generar dicha relacién.

Particion de un conjunto

Una particién S de un conjunto A es una coleccién de subconjuntos disjuntos no vacios de A que tienen a A
como su unién; en otras palabras, la coleccién de subconjuntos A;, 1 €I (donde I es un conjunto de indices),
forma una particién S del conjunto A siy solo si:

Ai=@1e€l,AjNAj=@ cuandoi=)yademas

Ua,

iel
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Entonces, S ={A,, A,,..., A} es una particién de A; por tanto:
A=A,UA,U...UA,

Los subconjuntos A; reciben el nombre de bloques de la particion.

E jemplo

Sea el conjunto A = {x t - q - x son letras del alfabeto} y sean los siguientes subconjuntos de A:
A=A{a,e i o ul,
A,={w,c},
A;={b,f,g h,j k1),
Ay={m,n,n,p,q),
As={rst v},
As={xy}y
A,={d, z}
Entonces:

S={{a e i o u}{wc}{bfgh,jk },{mnnp,qg}{rs t v} {xy}{d z}}
O también

S={A, Ay Ay AL As A Ar)

Es una particion de A, ya que todos los subconjuntos Aj son no vacios. Ademas, cualesquiera dos subconjuntos
distintos son disjuntos. Por dltimo, la union de todos los subconjuntos da como resultado el conjunto A.

Por tanto:
A=AUAUAUAUAUAUA,

Los elementos del mismo bloque de una particién también se pueden representar con una barra sobre
si mismos, aunque esta representacién es poco utilizada, ya que si el conjunto es numeérico puede existir
confusién con los elementos del bloque.

E jemplo

Sean el conjunto A ={a, b, c,d, e, f,g, h}yS={{a, b}, {c, d, e}, {f}, {g h}} una particion de A.

En este caso, la particion S también se puede representar como:

S — {ab,cde.F. gh)

Ahora, resulta conveniente ejemplificar esta representacién de los bloques de una particién mediante el
uso de valores numeéricos.

E jemplo_

Sean el conjunto A ={2,4,6,8,10,12} y S = {{2, 4}, {6, 8,10}, {12}} una particion de A.

En este caso, si los elementos de los bloques de la particion S se representan con una barra sobre estos, dicha
representacion quedaria:

s — {74,880, )

Como se puede ver, hay una confusion entre los elementos de cada bloque.
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Relaciones de equivalencia

En muchas ocasiones, una particién es util para definir una relacién R. Por tanto, el siguiente teorema es
importante para definir relaciones generadas por una particién.

Teorema 3.1
Sea S una particién sobre un conjunto A. Se dice que a R b si para algin A;en S,a € A; Ab € A;. Entonces, Res
reflexiva, simétrica y transitiva.

Demostracién
Sean A un conjunto y a € A. Ademaés, sea S una particién de A. Por definicién de particién, todo a € A debe
pertenecer a algin bloque A; de S. Entonces, al obtener la relacién R siempre va a ocurrir que (a,a) e RVa € A.
Ahora, supdngase que (a, b) € R, entonces tantoa € A;como b € A;; esto es, pertenecen al mismo bloque A;
de S.Y como pertenecen al mismo bloque, entonces: (a, b) € Ry (b, a) € R, lo que significa que R es simétrica.
Por ultimo, supéngase que (a, b) e Ry (b, ¢) € R, entonces tanto a € A;como b € A;; esto es, pertenecen al
mismo bloque A; de S. Ademas, se tiene b € Aj como ¢ € A;, lo que indica que también pertenecen al mismo
bloque A; de S, pero como b debe pertenecer exactamente al inico bloque de S, entonces se tiene que A; = A;.
Por tanto, a como c deben ser parte de A; y (a, ¢) € R. Con esto se demuestra que R es transitiva.
Para aplicar el teorema 3.1 sobre una particién se efectta el producto cartesiano de cada uno de los blo-
ques de la particiéon.

E jemplo_

SeanA={a,b,c,d e f}yS={{a,c e} {b, f},{d}} una particion de A. La relacion R definida por el teorema 3.1 es:
R={(a,a)(a,c)(a e)(ca)lcc)lce)(ea)lec)lee) b b)b)Ifb)(ff)(dd)

En este caso:
R es reflexiva, puesto que (a, a), (b, b), (c, ¢), (d, d), (e, e) y (f, f) son elementos de R.
R es simétrica, ya que siempre que (a, b) € R también (b, a) € R; es decir, todo par ordenado tiene su inverso.

R es transitiva, puesto que siempre que (a, b) y (b, ¢) € R también (a, ¢) € R.

Al representar la relacién R obtenida por el teorema 3.1 a través de digrafos, como en la figura 3.15, es
posible observar con claridad que los elementos de cada bloque son independientes por completo con res-
pecto a los elementos de otro bloque.

a )

\ )

Figura 3.15 Digrafo de una particion.
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Relacion de equivalencia

Se dice que una relacién R que es reflexiva, simétrica y transitiva, sobre un conjunto A, es una relacién de
equivalencia sobre un conjunto A o simplemente que es una relacién de equivalencia sobre A.

E jemplo

Sea la relacion R obtenida en el ejemplo anterior. Como R es reflexiva, simétrica y transitiva, entonces R
es una relacion de equivalencia sobre A.

E jemplo

Sean A =1, 2, 3,4} y Runa relacion sobre el conjunto A.
R={(11).(1.2). (1.3), (14), (2.2). (2.3). (2.4). (3.3). (3.4), (4, 4)}

Determinar si R es una relacion de equivalencia sobre el conjunto A.

R es reflexiva, ya que (1,1), (2, 2), (3, 3) y (4, 4) son elementos de R.

R es antisimétrica, ya que (2, 1), (3,1), (4,1), (3, 2), (4, 3) y (4, 2) no son elementos de R.
R es transitiva, puesto que siempre que si (g, b) y (b, ¢) € R también (a, ¢) € R.

Dado que R no es simétrica, se tiene que no es una relacion de equivalencia sobre el conjunto A.

Dada una relacién de equivalencia sobre un conjunto A, es posible hacer una particién S de dicho con-
junto, ya que puede suponerse que los elementos relacionados son parte del mismo bloque.
La siguiente definicién muestra como obtener dicha particién.

Clases de equivalencia

Sea R una relacién de equivalencia sobre un conjunto A. El conjunto de todos los x € A que estan relaciona-
dos auna € A se conoce con el nombre de clase de equivalencia de a y se denota por [a]. De manera formal
Se expresa COmo:
[a]={xeAt-q-xRa}
Ademas, se tiene el conjunto:
S={[a]t-q-aecA}

que es una particiéon de A; en otras palabras, el conjunto de todas las clases de equivalencia de A forman
una particién del conjunto A.

E jemplo/

Sean el conjunto A ={a, b, ¢, d, e, f} y R una relacion de equivalencia sobre A definida como:
R={(a,a),(a,¢).(a e) (c a) (c c)(ce)(ea)lec)ee) (b b) (b1 (f b),(f, 1) (d d)}

Obtener las clases de equivalencia de A.

Se tiene que:
[a]={a.c e), [c]={a.ce)} [e]={a.ce}y
[b]={b.1), [d] = {d}, [f]={.f
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Continua

Donde: Esto significa que solo se tienen tres clases de equiva-
[a]=[c]=[e] ={a,c e), lencia de A.

[bl=[l=(b.f y Ademas, se tiene que:

[d] = {d} S={{a.ce) (b {d)

es una particion de A.

Enseguida se ve un ejemplo con un conjunto numeérico.

E jemplo_ |_Solucién

Sean el conjunto A = {1, 2, 3, 4} y R una relacién de | Setieneque:

equivalencia sobre A definida como: =2,

R={(11).(1.2).(2.1).(2,2).(3,3). 3. 4). (4, 3), (4, 4)} [2]1={1,2),
Obtener las clases de equivalencia de A. B1=(34)y

[4]=1{3.4)

por lo cual

(=02]={12y

Bl=[141={4)

Ademas, se tiene que:
S={{(12},{34)

es una particion de A.

De los ejemplos anteriores, es posible distinguir las siguientes propiedades de las clases de equivalencia:

SiaR b, entonces [a] = [b].
Si [a] = [b], entonces [a] N [b] = @.
Sif[a] N [b] = @, entoncesa R b.

En resumen, dos clases de equivalencia de dos elementos de A son idénticas o disjuntas.

3.7 Ordenes parciales

En muchas ocasiones, las relaciones resultan utiles cuando se quieren ordenar los elementos de algun con-
junto bajo cierto criterio. Un orden parcial implica un orden determinado, tal como se ve a continuacién.

Relacion de orden parcial

Se dice que una relacién R sobre un conjunto A es una relacién de orden parcial si es reflexiva, antisimétrica
y transitiva sobre dicho conjunto.

Si R es una relacién de orden parcial (o simplemente orden parcial) sobre un conjunto A, se utiliza la
notacién a = b para indicar que (a, b) € R. Esta notacién sugiere que se estd interpretando la relacién como
orden sobre los elementos.
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E JemPLO_

4 )
Sean el conjunto A ={1, 2, 3, 4, 5} y R una relacion sobre el conjunto A defi- R 1 ) 3 4 5
id g
nida como : v v 4 4 N
R=(01).0,2 0,3 (,4,0,5, 2.2, 23,25, 3.3, 3.5, 44 45655 | N
Representada en una tabla en la figura 3.16. 3 N N
Como R es reflexiva, antisimétrica y transitiva, se trata de una relacion de 4 NI
orden parcial sobre el conjunto A. 5 N
\ J

Conjunto parcialmente ordenado

Figura 3.16 Relacion de orden parcial.

Un conjunto A junto con un orden parcial R sobre A se conoce con el nombre de conjunto parcialmente
ordenado y se denota por (A, R). Un conjunto parcialmente ordenado también se conoce como POSET (del

inglés: Partially Ordered SET).

En realidad, un conjunto parcialmente ordenado se denota como (A, <).

E jemplo

Sean A el conjunto de Z "y R una relacién sobre

A, t-q-(a b) e Rsialb.

Determinar si (A, R) es un conjunto parcialmente or-
denado.

Como cualquier entero se divide a si mismo, es decir,
dla, entonces R es reflexiva.

Si a|b significa que bla, a menos que sea a = b, por lo
que R es antisimétrica.

Por dltimo, ya que si alb y b|c, entonces d|c, por lo que
R es transitiva.

En consecuencia, R es un orden parcial sobre Z* y (A R)

es un conjunto parcialmente ordenado, por lo que se
debe denotar como (A, <).

Comparabilidad e incomparabilidad

Sea Run orden parcial sobre el conjunto A.Siae AybeAysia%bVva<b,sedicequeaybsoncomparables.
YsiacAybeAya%bAabsedice queaybsonincomparables.

Sean el conjunto A ={1,2,3,4,5} y R el orden parcial sobre el conjunto A definida como:
R={(11).(1,2).(1,3). (1. 4). (1, 5), (2, 2), (2,3), (2, 5). (3,3), (3, 5). (4, 4), (4, 5), (5, 5)}

Determinar cuales elementos del conjunto A son comparables o incomparables.

Comolx%1,1%2,1%3,1%4y1<5 entonces1escomparable conl,2,3,4y5.
Como2%2,2%3y2%5, entonces 2 es comparable con 2,3y 5.

Como 3 % 3y 3 % 5, entonces 3 es comparable con3y 5.
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Continda

Como 4 £ 4y4 5, entonces 4 es comparable con 4 y 5.
Como 5 % 5, entonces 5 es comparable con 5.

Como 2 % 4 ni4 % 2, entonces 2 y 4 son incomparables.

Como 3 % 4 ni4 % 3, entonces 3 y 4 son incomparables.

También se puede establecer la relacién de un conjunto A junto con su orden parcial R si todos los ele-
mentos de A son comparables, de acuerdo con la siguiente definicién.

Conjunto totalmente ordenado

Sea R un orden parcial sobre un conjunto A. Si cualquier par de elementos de A son siempre comparables,
se dice que R es un orden total. Es decir, un orden parcial R sobre un conjunto A es un orden total si y solo si
va,vb,a % bV b= aessiempre verdadero. En este caso, se dice que (A, %) es un conjunto totalmente ordenado.

E jemplo

Sean A el conjunto de los ndmeros naturales N y R una relacion sobre A, t - q - (g, b) € Rsia > b.

Determinar si (A, <) es un conjunto totalmente ordenado.

Como cualquier natural o entero es mayor o igual a si mismo, es decir, a < a, entonces R es reflexiva.

Si a < b significa que ba, a menos que sea a = b, por lo que R es antisimétrica.
Por dltimo, ya quesia > by b > ¢, entonces a > ¢, por lo que R es transitiva.
En consecuencia, R es un orden parcial sobre N y (A, R) es un conjunto parcialmente ordenado.

Ahora, si tomamos cualesquiera dos elementos de N, se puede comprobar que a < b V b < g; es decir, son
comparables, ya que por la propiedad de la tricotomia, al comparar dos nimeros se tiene que:

a>ba=boa<b

Por tanto, en este caso R es un orden total y (A, R) es un conjunto totalmente ordenado.

Cadena

Sean A un conjuntoy (A, %) un conjunto parcialmente ordenado, y sea A; un subconjunto de A. Se dice que
A;esuna cadena si cualesquiera dos elementos de A; son comparables; es decir, si estan relacionados.

De acuerdo con la definicién anterior, también se cumple que un conjunto totalmente ordenado
(A,R) sea una cadena, ya que es un orden parcial donde cada par de elementos es comparable. Debido a esto,
también se le suele llamar cadena a un conjunto totalmente ordenado (A, R).

De igual modo, también es posible establecer la relacién de un conjunto A junto con su orden parcial R si
todos los elementos de A son incomparables, de acuerdo con la siguiente definicién.

Anticadena

Sean A un conjuntoy (A, %) un conjunto parcialmente ordenado, y sea A; un subconjunto de A. Se dice que
A;esuna anticadena si cualesquiera dos elementos de A; son incomparables; es decir, no estan relacionados.
En otras palabras, en A; no hay dos elementos distintos que estén relacionados.

Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)



76| Capitulo 3 Relaciones .

Lo mismo ocurre si todos los elementos del conjunto A son incomparables, por lo que también se dice
que (A, %) es una anticadena.
El siguiente ejemplo involucra tanto cadenas como anticadenas.

E jemplo

Sean el conjunto A =1, 2, 3,4, 5} y R un orden parcial sobre el conjunto A definido como:
R={(11).(1.2),(1,3).(1.4).(1.5). (2.2). (2, 3). (2, 5), (3,3). (3, 5). (4. 4), (4, 5), (5, 5)}
En este caso, entonces (A, R) es un conjunto parcialmente ordenado.

Ahora, sean los siguientes subconjuntos de A:

{1,2,3,5} 1
2,4} (3,4}
{1,2,3} (1,2, 4}
{1,4,5)

Determinar cuales subconjuntos son cadenas y cuales anticadenas.

{1,2,3,5} es una cadena. m es una cadena y una anticadena.
(2,4) es una anticadena. (3,4} es una anticadena.

{1,2,3} es una cadena. {1,2,4}  no es ni cadena ni anticadena.
(1,4,5) es una cadena.

3.8 Diagrama de Hasse y lattices

Cuando se tiene un orden parcial (A, <), su representacién mediante un digrafo (grafo dirigido) puede sim-
plificarse.

Como un orden parcial (A, <) es reflexivo, cada vértice esté conectado con si mismo a través de un lazo.
Pero, para simplificar, en el digrafo se borraran todos los lazos.

El digrafo representado en la figura 4 )
3.7 a) puede representarse como en la
figura3.17 b), después de haberse elimi-

nado todos los lazos. \ /

a) b)

Y

o

S

Figura 3.17 Eliminacion de lazos en un digrafo.

En el digrafo también pueden eliminarse todas las aristas que estan implicadas por la propiedad
transitiva. Por tanto, sia £ by b % cimplica que a % c. En este caso, se omite la arista que va desde a hastac;
Sin embargo, S]’_ se deir\'v-\ Tae nvrictnc Amiiastamn Aaaa hsrAahh - A
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. Diagrama de Hasse y lattices

/
Si se eliminan las aristas que estan involucradas por la propiedad transi- @
tiva del digrafo de la figura 317 b), el digrafo resultante se ve como el que
se muestra en la figura 3.18.

Y
(:EE:)

Figura 3.18 Eliminacion de elementos transitivos.  \_ W

Es importante destacar que también conviene dibujar el digrafo de un orden parcial (A, <) con todas las
aristas apuntando hacia arriba, puesto que las flechas pueden omitirse de las aristas.
Por ultimo, los circulos de los vértices se reemplazan por puntos.

Al eliminar las flechas de las aristas y al reemplazar los circulos por puntos en el digrafo, el diagra- ;7 @
ma final de la figura 3.17 b) se observa en la figura 3.19.

Figura 3.19 Eliminacion de las fechas y reemplazo de los circulos. N’

El diagrama resultante de un orden parcial (A, <) es més simple que su digrafo; a este se le denomina
diagrama de Hasse de un orden parcial o de un conjunto parcialmente ordenado.

P R R R R R R R R R R R A R T R R )

Los diagramas de Hasse deben su nombre al matematico aleman Helmut Hasse, quien los introdujo en 1926
en su libro Hohere Algebra (Algebra Superior) como ayuda para el estudio de las soluciones de ecuaciones
polinomiales. El diagrama de Hasse es una representacion grafica de un conjunto parcialmente ordenado
finito. Esto se consigue mediante la eliminacion de informacion redundante. En el diagrama de Hasse, la re-
presentacion se hace mediante un digrafo (grafo dirigido). Este diagrama es dtil cuando se necesita un orden
total que incluya un orden parcial dado.

“eecescssssssssssnesoe
“eecescsssssssssenereoe

Figura3.20 Helmut
Hasse (1898-1979).
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Para comprender mejor este concepto se presenta otro ejemplo.

E JeMPLO_

Sean el conjunto A =1, 2, 3,4,12} y R un orden parcial sobre el conjunto A definido como:
R={(a,b)t-q-alb}

Estoes,siac AAb €A ax<b,siysolosialb.

Obtener el diagrama de Hasse de (A, ).

Primero, se obtienen los elementos de R:

R={(11),(12),0,3)(14),01,12), (2 2), 2 4),(212) (3.3). (3,12), (4, 4), (4,12), (12, 12))
A continuacion, se representa (A, <) como el digrafo de la figura 3.21.
Luego, se eliminan los lazos del digrafo (véase figura 3.22).

A continuacion, se eliminan las aristas de los elementos (g, ¢) que estan involucradas por la propiedad transitiva
del digrafo (véase figura 3.23).

Enseguida, se redibuja el digrafo para que todas las aristas apunten hacia arriba (véase figura 3.24).
Luego, se eliminan las flechas de las aristas (véase figura 3.25).

Por ultimo, se reemplazan los circulos por puntos y el diagrama de Hasse queda listo (véase figura 3.26).

2 ¥ ¥

Figura 3.21 Representacion del orden Figura 3.22 Eliminacion de lazos. Figura 3.23 Eliminacion de los
parcial como digrafo. elementos transitivos (a, ¢).

1

2/
v g Figura 3.26 Mediante el reemplazo
Figura 3.24 Redibujando el grafo para Figura 3.25 Eliminacion de flechas. de circulos por puntos el diagrama
que las aristas apunten hacia arriba de Hasse queda listo.
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Otro ejemplo interesante es el siguiente.

E JEMPLO

Sean larelacion R ={(1,1),(1,2), (1, 3)} y P(R) el conjunto potencia de R.

Obtener el diagrama de Hasse del conjunto parcialmente ordenado P(R) con el orden parcial C; es decir, (P(R), C).

Primero, sea:

P(A) = {2, {(1, 3 {0, 2%, {(0, 3), {0, 1), (1, 2, {(1.7), (0, 3)), {01, 2), (1. 3)} {(1. 7). (1, 2), (1, 3)})

El conjunto potencia de la relacion R.

Por lo que el conjunto parcialmente ordenado (P(R), C) que se obtiene es el siguiente:

{2,

{0 {00,

{0, 2).{0, 23,
{0,300, 3,

{0, 002300, 0,2))),
{0, 00340, (0,3),
{{0,2),(13) (01, 2), (1.3))),
{01, 0.2),0,3) {01, (,2), (,3)))
{a{0.0,

{2{0.2))),

{2{0.3)),

{(2,{01,1), (1, 2)),
(2,(0,1),0,3)),
{2.{0.2).(,3))},
{2,{01,1),(1,2), 0,3,
{00 0.0, 0,2,

{0 0.0, 0,3,

{0, {0, (0,2).(,3)3), Figura 3.27 Representacion del orden parcial como digrafo.
{0.2)}, {0.7). 0,2
12 12) (1.3 Enseguida, se eliminan los lazos (véase figura 3.28).
{0,2)y, €0.2). (.3)}, 8 g
{02 (0, 0).(,2),(1,3)), Acto seguido, se continda con la eliminacion de las
13 €0, (1,3, aristas de los elementos (a, ¢) que estan involucradas
(€. 3. €0.1. 0.3m en la propiedad transitiva del digrafo (véase figura
(€03, (0.2,.0.3)), 329),
{3 {00, (.2), (.3, En este caso, no se redibuja el digrafo para que todas
{0,1,0,2)) €0,1,0,2), (1,3))), las aristas apunten hacia arriba, pues estas ya lo hacen.
{n, (,3)), €0,1), (1, 2), (1, 3)}), Entonces, lo que se hace es eliminar las flechas de las
{0, 2), 0,3 0., (,2), (0,3 aristas (véase figura 3.30).

Por dltimo, se reemplazan los circulos por puntos. El

El cual se representa mediante un digrafo como se ob-  diagrama de Hasse resultante es el que se muestra en
serva en la figura 3.27. la figura 3.31.
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AR PA

Oy S
&) =
ORS

J J

Figura 3.28 Eliminacion de lazos. Figura 3.29 Eliminacion de elementos transitivos (g, c).

{0.0,01,21,00, 30

00,21 {0,21,0,30

o 0,31

%]

2

Figura 3.31 Reemplazando los circulos por puntos
se obtiene el diagrama de Hasse.

Figura 3.30 Eliminacion de flechas.

El diagrama de Hasse de un conjunto ordenado totalmente siempre serd una linea recta, como el que se
observa en la figura 3.19.
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Diagrama de Hasse y lattices

Elementos extremos de un conjunto parcialmente ordenado

En los conjuntos parcialmente ordenados (A, <) (o POSET) se distinguen ciertos elementos que tienen pro-
piedades especiales, que tienen alguna importancia en diversas aplicaciones. A estos se les denomina ele-
mentos extremos o elementos extrémales. A continuacién, se presentan y definen dichos elementos.

Elemento maximal
Sean un conjunto parcialmente ordenado (A, <) y a € A. Se dice que a es un elemento maximal de A sia < x
implica que a = x, para todo x perteneciente a A. Desde el punto de vista formal, este elemento se expresa
como:

VxeAlasx=a=x)

Y significa que a € A es un elemento maximal siy solo si no existe en A un elemento distinto que lo siga.

Elemento minimal
Sean un conjunto parcialmente ordenado (A, <) y a € A. Se dice que a es un elemento minimal de A si x < a im-
plica que x = a, para todo x perteneciente a A. Desde el punto de vista formal, este elemento se denota como:

VxeAlxsa=x=aqa)

Lo que quiere decir que a € A es un elemento minimal si y solo si no existe en A un elemento distinto que
lo preceda.

Sea un conjunto parcialmente ordenado
(A, <), cuyo diagrama de Hasse se muestra en
la figura 3.32.

Los elementos a, b y ¢ son elementos maxi-
males de A, y los elementos d, e y f son los
elementos minimales de A. Se puede obser-
var que como no existe una linea recta entre
ey f,no se puede decir quee < fniquef<e.

Figura 3.32 Diagrama de Hasse de un conjunto parcialmente ordenado.

Sea A el conjunto parcialmente ordenado (A, <) de todos los nimeros reales no negativos R* con el orden usual
<. Entonces, el cero es el elemento minimal de A y no existen elementos maximales.

En tanto, el conjunto parcialmente ordenado con el orden usual < no tiene elementos maximales ni minimales.

M4éximo y minimo
A un elementoa € A se le llama mdximo de A, si x a para todo x € A. En tanto, a un elemento b € A se le llama
minimo de A, sib < x para todo x € A. Lo que formalmente se denota como:

a es elemento maximode Asiysolosivx(x € A=x<a)

y
b es elemento minimo de A siysolosiVx(x € A = b <X).
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Sean larelacion R={(1,1), (1,2), (1, 3)} y P(R) el conjunto potencia de R.
Sea el conjunto parcialmente ordenado P(R) con el orden parcial C; es decir, (P(R), C).

Entonces, el conjunto vacio es el elemento minimo de (P(R), C) y R es el elemento maximo, como se muestra en
la figura 3.31. En tanto que el conjunto parcialmente ordenado < con el orden habitual < no tiene ni maximo ni
minimo.

Teorema 3.2
Un conjunto parcialmente ordenado tiene a lo sumo un elemento maximo y uno minimo.

Demostracién

Supéngase que a y b son los elementos maximos de un conjunto parcialmente ordenado (A, <). Entonces,
a < b, puesto que b es maximo y b < a, porque a también es maximo. Por la propiedad antisimétrica se con-
cluyequea=b.

Cota superior (mayorante) y cota inferior (minorante)

Sea (A, <) un conjunto parcialmente ordenado y B C A. A un elemento a € A se le llama cota superior o ma-
yorante de B si b < a para todo b € B. En tanto, a un elemento c € A se le llama cota inferior o minorante de B si
c < xparatodox € B.

E JEMPLO

Sea el conjunto parcialmente ordenado (A, <) representado por el diagrama de 4 h h
Hasse que se muestra en la figura 3.33.

Determinar las cotas superiores e inferiores de los siguientes subconjuntos de A:

B ={a, b} f g
C={cd e}

| Solucién _ ; :
En este caso, el subconjunto B no tiene cota inferior, mientras que sus cotas supe-
rioressonc, d, e, f,gy h.
El subconjunto C tiene como cotas superiores f, g y h y como cotas inferiores ¢, a y b.

a b
Figura 3.33 Diagrama de Hasse de un conjunto parcialmente ordenado. S <

Minima cota superior (supremo)

Sea (A, <) un conjunto parcialmente ordenado y B C A. A un elemento a€A se le llama minima cota superior o
supremo de B si a es una cota superior de By se cumple que a < a, siempre que a, sea una cota superior de B.
El supremo de B se denota como sup(B).

Maéxima cota inferior (infimo)
Sea (A, <) un conjunto parcialmente ordenado y B C A. A un elemento a € A se le llama mdxima cota inferior
o infimo de B si a es una cota inferior de B y se cumple que a, < a siempre que a, sea una cota inferior de B.
Elinfimo de B se denota como inf(B).

Las cotas inferiores en (A, <) corresponden a las cotas superiores en (A, >) y las cotas superiores en
(A, <) corresponden a las cotas inferiores en (A, >). Lo mismo puede decirse de las maximas cotas inferiores
y las minimas cotas g1mmevinvac
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E jemplo

Sea el conjunto parcialmente ordenado (A, <), repre-
sentado por el diagrama de Hasse de la figura 3.33. Y
sean los subconjuntos de A:

Diagrama de Hasse y lattices

El subconjunto B no tiene cotas inferiores; por tanto,
carece de maxima cota inferior. En este caso, la minima
cota superior de B es c.

B={a b}y Puesto que las cotas inferiores de Cson ¢, ay b, enton-
C={cde ces la maxima cota inferior es c.
Determinar la minima cota superior y la maxima cota | Las cotas superiores de C son f, g y h; pero, fy g no
inferior de By C. son comparables, por tanto C no tiene minima cota
superior.
< *
Lattice

Los lattices son una nueva familia de conjuntos parcialmente ordenados. Estos poseen caracteristicas espe-
ciales que los convierten en herramientas utiles en diversas aplicaciones relacionadas con los modelos de
flujo de datos, ademés de que juegan un papel importante en el dlgebra de Boole.

Definicién de lattice
Sea (A, <) un conjunto parcialmente ordenado. Se dice que (A, <) es un lattice (reticulo o red) si en todos sus
subconjuntos de dos elementos {a, b}, elementos de A, existe un supremo y un infimo de dicho par; entonces,
se dice que (A, <) es un lattice.

Todo conjunto totalmente ordenado es un lattice. En efecto, dados cualesquiera dos elementos de dicho
conjunto, como son comparables, uno sera el supremo y el otro serd el infimo del conjunto que estos cons-
tituyen.

Sea A el conjunto de los nimeros naturales N y sea la relacion R sobre el conjunto A definida como sigue:
R={(a.b)t"q-alb)

Antes quedo demostrado que (A, R) es un orden parcial y que ademas (A, <) es un conjunto parcialmente ordenado

donde todos sus elementos son comparables, por lo que (A, <) es un conjunto totalmente ordenado.

Sea ademas d = mcd(a, b); dado que d divide a a y a b. Por otra parte, d es multiplo de cualquier otro divisor comun
de ay de b. Es decir, d sera el infimo.

De manera similar, haciendo d’ = mcm (g, b), entonces d’ sera un mdltiplo de a y de b. Asimismo, d” es un divisor
de cualquier otro multiplo comun de a y b. En consecuencia, d " sera el supremo.

Por lo general, el supremo y el infimo de un lattice (A, <) se denotan como a V by a A b, respectivamente;
es decir:
aVb=sup{a, b}
a Ab=inf{a, b}

Entonces, en el ejemplo anterior se tiene que:

d’=aVb=supfa, b}
d=aAb=inf{a, b}
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Las relaciones binarias, o simplemente relaciones, son la forma mas basica de relacionar los elementos de
dos conjuntos. Ademas, sobre dichas relaciones se pueden aplicar la mayoria de las operaciones sobre con-
juntos, ya que, a fin de cuentas, las relaciones binarias son conjuntos de pares ordenados.

Para poder clasificar las relaciones, también es muy importante conocer sus propiedades, y asi enfocarse
en los dos tipos mas importantes de relaciones binarias: las relaciones de equivalencia y las de orden parcial.

Las relaciones de equivalencia son las que permiten clasificar los elementos de un conjunto. El objetivo
del estudio de relaciones de equivalencia es reconocer que el resultado de toda equivalencia da lugar a una
particiéon de los elementos del conjunto y viceversa; en otras palabras, toda particién de un conjunto proce-
de de una relacién de equivalencia.

Las relaciones de orden parcial son aquellas que ordenan los elementos de un conjunto. El objetivo del
estudio de un orden parcial es conocer los diferentes tipos de érdenes que existen y, en particular, entender
la estructura de orden de los diferentes conjuntos de nimeros, ya sean naturales, enteros o reales.

Problemas propuestos
3.2 Seanel conjunto A={at-q-a<10,a EN}y

Responder en forma correcta lo que se pide en cada R={(a,b)t-q-5|(a—b), a#b}unarelacion sobre
caso. el conjunto A.

o . : Determinar los elementos de R.
31 Sean las siguientes relaciones en el conjunto de

los numeros enteros: 3.3 Sea R una relacion de equivalencia sobre Z.
R={(a,b)t-q-a<b)
S={(a,b)t-q-a> b}

Determinar el codominio de R.

T={a,b)t-q-a=boa= —b} 3.4 SeanelconjuntoA={1,2,3,4}yR={(x,y)t-q-
U={(a,b)t-q-a=Db) x + y = 3} una relacion sobre el conjunto A.
V={(ab)t-q-a=b+1} Determinar el dominio de R.

W={(ab)t-q-a+b<3)
{Cuales de estas relaciones contienen a los pares
ordenados de la tabla 3.1?

3.5 Sean el conjunto A ={1,2,3} y R={(1,1), (2, 1),
(3,2), (1, 3)} una relacion sobre el conjunto A.

{Cuales declaraciones son verdaderas y cuales

Tabla 3.1 falsas?

a)1R1
1) b)1R 2
%) c)2R3
1
3.6 SeanlosconjuntosA={1,2,...,10}y B={1,2,3,4)}

yseaR={(a, b)t-q-a+ 3b =13} una relacion
deAenB.

Determinar los elementos de R.
—il. —%) 3.7 Seael conjunto A ={1,2,3}yseaR={(1,1), (2, 1),
(3,2), (1, 3)} una relacion sobre el conjunto A.

) {Cuéles declaraciones son verdaderas y cuales
falsas?

2)4) a)2R1
-1,3) b)3R2
c)3R1
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3.8 Sean los conjuntos A =(1,2,3,4}yB={],2,...,10}
yseaR={(a,b)t-q-3a+b=13}unarelacionde
AenB.

Determinar los elementos de R.
3.9 (Cuales de los siguientes conjuntos son rela-

ciones del conjunto A = {a, b, ¢} en el conjunto
B={1,2)

a)R={(a1).(a,2) (c 2))
b)u={(1,a),(2 a) (2 )}
T=9

310 Sean los conjuntos A ={1,2,3,4} yB={5,6,7}
y sean las relaciones R = {(1,1), (2, 2), (3, 3), (4, 4)},
S=1{02,(3. 2}y T={01.7). (2. 6)%

{Cuales declaraciones sobre las relaciones son
verdaderas y cuales son falsas?

a)Rsobre A,Sde AenB, Tde AenB.
b)RdeAenB,SdeAenB, TdeAenB.
c)Rsobre A, Ssobre A, T de A en B.
d)R sobre A, S sobre A, T sobre A.

311 Sean los conjuntos A ={a, b, c}y B={1,2}
{Cuales conjuntos son relaciones de A en B?
a)R={(a,2), (b, 1)}
b)S=A xB
A)T={(2,a).(1, b)}

312 Sean los conjuntos A = {1, 2,3, 4} y B = {5, 6,

7} y sean las relaciones R = {(1, 2), (2, 3), (3, 4)},
S={35 46}y T={17) (4 6))

{Cuales declaraciones sobre las relaciones son
verdaderas y cuales falsas?

a)RdeAenB,SdeAenB, TdeAenB
b)Rsobre A,Sde AenB, TdeAenB
c)Rsobre A, Ssobre B, Tde A enB
d)Rsobre A, S sobre B, T sobre A
313 Sea el conjunto A ={a € N t-q- a0}y sea
R={(a, b)t-q-alb}unarelacion sobre A.

Determinar los elementos de R.

314 SeaR={(a,b)t-q2|b}unarelacion sobre Z*.

Determinar el codominio R.

315 Sea el conjunto A ={a € Nt-q- a8}y sea
R={(x,y)t-q-alb}unarelacion sobre A.

Obtener la matriz de relacion resultante.

316 Sea el conjunto A = (1, 2, 3} y sean R = {(1, 1),
(2,2),(3,3)}yS={(1,1),(1,2),(1,3)} dos relaciones so-

bre A.

Efectuar las siguientes operaciones sobre las re-
laciones.

a)RUS f)R

b)RN'S gs

R—S h)s™

ds—R i) SeR

e)R®S IR

317 Seael conjunto A ={(1,2,3,4,5}yseaR={(a, b)
t-q-a=b—1}unarelacion sobre el conjunto A.

Obtener lo que se pide en cada caso.
a) Los elementos de R.

b) Los elementos de R

c) El dominio de R.

d) El dominio deR™".

318 (Cual de las siguientes operaciones sobre
relaciones siempre es verdadera?

aJRUG =0
b)RER=2
CJR— =0
dRN@ =R

319 Las siguientes operaciones sobre relaciones son
siempre verdaderas, excepto una. Indicar cual.

aJRUZ =R
b)RNZ =0
JR—@=9g
dRER=o

3.20 Sean Ry S dos relaciones reflexivas. {Sera verda-
dero que RU Sy RN S son reflexivas?

3.21 Sean los conjuntos A = {1, 2}, B ={a, b, ¢} y
C={cd}.
Determinar (Ax B) N (A x C).
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3.22 Sean A el conjunto de los nimeros naturales y
R={(a,b)t-q-3a+ 4b=17}unarelacion sobre A.

Determinar R™.

3.23 Sean Ry S dos relaciones simétricas sobre algtin
conjunto A; entonces, ¢sera siempre verdadero
que RU Sy RN S son simétricas?

3.24 Sean los conjuntos A = {a,b},B={1,2}y C={2,3}.
Determinar (A x B) N (A x C).

3.25 Sean A el conjunto de los ndmeros naturales y
R={(a,b)t-q-4a-+3b=17}unarelacion sobre A.
Determinar R™.

3.26 Sea el conjunto A = {1, 2, 3, 4, 5, 6} y sean las
relaciones R = {(2, 4), (2, 6), (3, 3), (3, 6), (4, 4)} y

S={(3,3) (4,2), (4, 4),(6,2), (6,3)} dos relaciones
sobre A.

{De qué operacion es resultado la relacion S con
respecto a la relacion R?

3.27 Sean el conjunto A ={1,2,3,4}y R={(1,7), (2, ),
(3,2), (4, 3)} una relacion sobre A.
Determinar (ReR)™

3.28 Sean el conjunto A ={1,2,3,4}y R={(1,1), (2, 1),
(3,2), (4,3)} una relacion sobre A.
Determinar RoR.

3.29 Las siguientes propiedades de la composicion de
relaciones son verdaderas excepto:
a) SoR = RoS
b) SeR = ReS
¢) To(SeR) = (ToS)eR.
d)(SeR)'=R™eS™

3.30 Sean el conjunto A ={1,2,3,4}yR={(1, 2), (3, 2)}
una relacion sobre A.

Determinar el codominio de RoR™".
3.31 Seanel conjunto A ={(1,2,3,4}yR={(1,2), (3,2)}
una relacion sobre A.
Determinar el dominio de R™'eR.
3.32 (Cual propiedad de la composicion de relaciones
es siempre verdadera?
a) SoR = RoS
b) SeR = RoS
) To(SeR) = (ToS)oR
d) To(SeR) = R(SeT)
333 SeanR={(1,1),(1,2), 2. )} y S = {(1.1), (1, 2), (2, 2)}
dos relaciones.
Determinar la matriz de relacion que representa SeR.

334 SeaR={(1,1),(1,2),(2,1), (2, 2), (3, 3)} una relacion
definida sobre el conjunto A =1, 2, 3}.

Determinar el conjunto resultante de RoR.

3.35 Sean el conjunto A ={a, b, c,d}y R={(a, b), (a, ¢),
(¢, b)} una relacion sobre el conjunto A.
Determinar el codominio de RoR.

3.36 Sean el conjunto A ={a, b, c,d}yR={(a,b), (g, c),
(c, b)} una relacion sobre el conjunto A.
Determinar RoR.

3.37 SeanR={(1,2),(2,2),(3,4)}y S={(1,3), (2,5), (3,1),
(4, 2)} dos relaciones. Encontrar Ro(S o R).

3.38 (Cuales propiedades tiene cada una de las
siguientes relaciones sobre el conjunto A ={a, b,

¢, dy?

Tabla 3.2

R a b c d S a b c d T a
a v a v a v
b v/ b 4 b
C 4 C v C
d v d 4 d

c d Ua b c d Va b ¢ d
 / a 4 v a V v
v b 4 b v v
v C C v
v d d v v
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3.39 (Cuales propiedades tiene cada una de las siguien-
tes relaciones sobre el conjunto A = {1, 2, 3}?

a) {(a, b) tal que a < b}
b) {(a, b) tal que a > b}
c) {(a, b) tal que a = b}
d) {(a,b)tal quea + b <3}

3.40 (Cuales de las siguientes declaraciones sobre las
relaciones son verdaderas y cuales falsas?

a) SiR es simétrica, entonces R~"es simétrica.
b) SiRy S son transitivas, entonces RoS es transitiva.

c) Si Ry S son reflexivas, entonces RN S es re-
flexiva.

3.41 (Cuales declaraciones sobre las relaciones son
verdaderas y cuales falsas?

a) SiRy S son transitivas, entonces RU S es tran-
sitiva.
b) SiR es reflexiva, entonces R™' es reflexiva.

c) Si Ry S son reflexivas, entonces R U S es re-
flexiva.

3.42 (Cuales propiedades tiene cada una de las si-
guientes relaciones sobre el conjunto A =(1,2,3,4}?

a){(1,2),(2,3), (1, 3)}
b){(1.1), (1, 2), (1, 3). (2, 2), (2,3). (3,3). (4, 4)}
A){(.1).(1,2).(21),(2.2), (3,3), (4, 4))

3.43 Sea L el conjunto de las rectas del plano. éQué
relacion sera transitiva sobre L?

U=LRL,siL, esparalelaal,
T =LRL, si L, es perpendicular a L,

3.44 Una relacion R es simétrica sobre un conjunto A si
a)(a,b) R — (b,a) ¢ RVaVb € A
b)(a,b) eRVa e A
c)(a,b) ¢ R— (b,a) € RVaVb € A
d)(a,b) eR—(b,a) e RVaVb € A

Problemas propuestos

3.45 (Cuales propiedades tiene la relacion represen-
tada por el siguiente digrafo?

<

Figura 3.34

3.46 Unarelacion R es irreflexiva sobre un conjunto A si:
a) (a,b) e R—(b,a) Z RVaVb € A
b) (a,a) ¢RVa € A
(a,b) R —(b,a) e RVaVb e A
)

)
<)
d) (a,0) ERVac A

a,
a

3.47 iCuales propiedades tiene la relacion represen-
tada por el siguiente digrafo?

P

Figura 3.35
3.48 Sean el conjunto A ={a, b, c,d}y R={(a, b), (b, ¢),
(¢, b), (c, d)} una relacion sobre A.

Determinar R;.

3.49 Sea el conjunto A =1, 2,3, 4}.

Determinar cual matriz de relacion representa
una relacion irreflexiva.

0111 100 0]
0)1]11 b)OOOO
1111 0000

1110 0001

1110 0111
C)IIOI d)1001
1011 1001

Figura 3.36 _0 11 ]_ _] 1 O_
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3.50 Sea R = {(1,1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4), (4, 5),
(5,4), (5,5)} una relacion de equivalencia sobre el
conjunto A ={1,2,3,4,5}.

Obtener la particion S sobre A originada por R.

3.51 Determinar la relacion de equivalencia cuyas cla-
ses de equivalencia son: [a] = {a)}, [b] = [d] =
{b.d}y[c]={c}

3.52 Determinar la relacion de equivalencia cuyas cla-
ses de equivalencia son: [1] = [2] = {1, 2}, [3] = {3},
[4] = {4).

3.53 Sean el conjunto A ={1,2,3,...,10} y R ={(a, b)
t-q-a— besdivisible por 5} una relacion sobre A.
Determinar [2].

3.54 Sean el conjunto A ={(1,2,3,...,20} y R={(a, b)
t-q-a—besdivisible por 4} una relacion sobre A.
Determinar [1].

3.55 Sean el conjunto A ={1,2,3, ...,20} y R={(a, b)
t-q-a—besdivisible por 5} una relacion sobre A.

Determinar [5].

3.56 Sea el conjunto A =1, 2, 3, ..., 15}. Considerar la
relacion de equivalencia ~ sobre A x A, definida
por (a, b) =~ (c, d), si ad ~ bc.

Determinar la clase de equivalencia de (3, 2).

3.57 SeaA={1,2,3,..,15)}. Considerar la relacion de
equivalencia ~ sobre A x A, definida por (a, b) ~
(c,d),sia+d=b+c.

Determinar la clase de equivalencia de (2, 11).

3.58 Sean el conjunto A ={1,2,3,4,5, 6} yR={(1,1),
(1,2),(2,1),(2,2),(3,3), (3, 4), (4,3), (4,4), (55), (5, 6),
(6, 5), (6, 6)} una relacion sobre el conjunto A.

Determinar cual es la particion S originada por la
relacion anterior sobre A.

3.59 Sea R la relacion “tiene el mismo tamano que’,
definida en todos los subconjuntos finitos de Z;
es decir,aR bsiy solosi |A| = |B|.

Demostrar que R es una relacion de equivalencia
sobre Z.

3.60 En una relacion de equivalencia sobre un conjun-
to A son validas las siguientes afirmaciones ex-

cepto:
a) SiaR b, entonces [a] N [b] = @.
b)S={[a]t-q- a & A}esuna particion de A.
c)SiaR b, entonces [a] = [b].
d) Si [a] = [b], entonces [a] N [b] = @.

3.61 SeaR larelacion “es semejante a”, definida en el

conjunto de todos los triangulos, es decir, T,R T,
siy solo si T, es semejante a T,.

Demostrar que R es una relacion de equivalencia.
3.62 Sea R ={(1,1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)} una
relacion sobre el conjunto A ={1,2,3,4,5, 6}.
Determinar cual es la particion originada por la
relacion anterior sobre el conjunto A.
3.63 En una relacion de equivalencia sobre un conjun-
to A, écual de las siguientes afirmaciones es valida?
a) Sia K b, entonces [a] = [b].
b) SiaR b, entonces [a] N [b] = 2.
c) Si[a] = [b], entonces [a] N [b] = 2.
d) SiaRb, entonces [a] N [b] = 2.
3.64 Seael conjunto A={(1,2,3,4,5} y sean las siguien-
tes relaciones sobre A.

{Cuales relaciones son de equivalencia sobre A?
a) {(11).(1.3),(2.2), (3,1). (3,3). (4,4). (5, 5)}

d) {(.1).(1,2),(1,3).(1,4), (2, 2), (2,3). (2, 4). (3,3). (3,
4),(4,4),(5,5)}

3.65 (Cuales de las siguientes relaciones son ordenes
parciales sobre Z?
R={(a, b) talquea=b+1)}
S={(a, b), tal que a < b}
T={(a, b), tal que a > b}
U ={(a, b), tal que a|b}
V ={(a, b), talque a + b < 3}
W ={(a, b), tal que a = b*2}

3.66 Una relacion R sobre un conjunto A, que es
reflexiva, antisimétrica y transitiva recibe el
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3.67

nombre de

Todas las siguientes relaciones sobre Z son
ordenes parciales excepto:
R={(a,b)t-q-a> b}

S={la,b)t-q-alb)

T={(a,b)t-q-a<b)

U={(a,b)t-q-a<b}

3.68 Seanel conjunto A={(1,2,3,4} y Runarelacién de

3.69

3.70

371

372

orden parcial sobre A definida como:
R={(11).(1.2),(1,3). (2,2), (2,3), (3,3) (4. 4)}

{Cuales de los siguientes subconjuntos de A son
cadenas y cuales son anticadenas?

a) A={2}

b) B={2,4)

c) C={1,23)
d) D={1,2,3,4)

En un orden parcial R sobre un conjunto A, si
acAbeAyceAysiaRbybRec. Lassiguientes
afirmaciones se cumplen excepto:

a) bRb
b) bRa
c) aRa
d) aRc
Sean A un conjunto cualesquiera y P(A) el con-

junto potencia de A y sea R una relacion sobre el
conjunto P(A) definida como:

R={SEP(A)t-q-SCA)

Demostrar que (P(A), R) es un conjunto parcial-
mente ordenado.

Sean A el conjunto N y R una relacion sobre A
definida como:

R={(a,b)t-q-a+ bespar}

{Sera (A, R) un conjunto parcialmente ordenado
(POSET)?

Sean A el conjunto Z" y R una relacion sobre A
definida como:

R={(a,b)t-q-a<b}

373

374

3.75

376

Problemas propuestos

Demostrar que R no es un orden parcial sobre A.

Sean el conjunto A ={1,2,3,4}y (P(A), C) un con-
junto parcialmente ordenado sobre A. Sean, ade-
mas, los siguiente pares de subconjuntos de A:

a) (2,4, 1}y (1,2}
b) {1,2,3}y{(2 3,4}

{Son comparables o incomparables? Justificar la
respuesta.

Sean A el conjunto Ny R una relacion de orden
parcial sobre A definida como:

={(a.b)t-q-alb}

{Cuales de los siguientes subconjuntos de A son
cadenas y cuales son anticadenas?

a) A={5,8,21)
b) B = {6, 30,10}
c) C={4,16, 64,8}
d) D=(7)

e) E={30,10, 60}
)N

AN=(1,23..)

Sea el conjunto A ={a, b, ¢, d, e} con la relacion R
correspondiente al orden lexicografico habitual
de las letras del alfabeto.

Dibujar el diagrama de Hasse correspondiente.

Sea el siguiente digrafo de una relacion de orden

parcial.

Figura 3.37
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Dibujar el diagrama de Hasse correspondiente.

3.77 Sean el conjunto A = {2, 4, 6, 12,18, 36} y R la
relacion de orden parcial sobre el conjunto A de-
finida como:

R={(a.b)t-q-alb)
Dibujar el diagrama de Hasse correspondiente.

3.78 Sea un conjunto parcialmente ordenado (A, <),
cuyo diagrama de Hasse es el siguiente:

d f

4

Figura 3.38
Determinar sus elementos maximales y minimales.

3.79 Sea un conjunto parcialmente ordenado (A, <)
sobre el conjunto A = {8, 12, 16}, cuyo diagrama
de Hasse es el siguiente:

16

\8 12/)

Figura 3.39

Determinar sus elementos maximales y minimales.

3.80 Sean un conjunto parcialmente ordenado (A, <)
sobre el conjunto A ={2,4, 6,12,20} y R una rela-
cion de orden parcial definida como:

R={(a b)t-q-alb}

Determinar sus maximos y minimos.

3.81 Sea un conjunto parcialmente ordenado (A, <),
cuyo diagrama de Hasse es el siguiente:

~

Figura 3.40
Determinar sus maximos y minimos.

3.82 Sea un conjunto parcialmente ordenado (A, <)
sobre el conjunto A ={1,2,3,4,5, 6,7}, cuyo dia-
grama de Hasse es el siguiente:

6 7
5
3 4
1 2
N J
Figura 3.41

Determinar las cotas superiores e inferiores del
subconjunto B = (3, 4, 5}.
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3.83 Sea un conjunto parcialmente ordenado (A, <),
cuyo diagrama de Hasse es el siguiente:

Figura 3.42
Determinar si es un lattice.

3.84 Sea un conjunto parcialmente ordenado (A, <),
cuyo diagrama de Hasse es el siguiente:

Figura 3.43

A Problemas reto_

Problemas reto [ 91

Dar las razones por las cuales no es un lattice.

1. Encontrar alguna relacion que al mismo tiempo
sea una relacion de equivalencia y una relacion

de orden parcial.

2. Sea el siguiente diagrama de Hasse de un conjun-
to parcialmente ordenado:

d

f

@ ¢

Figura 3.44

Obtener el digrafo que dio origen a dicho diagrama.
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Relaciones de
recurrencia

Objetivos

m Aplicar los conceptos de relaciones binarias desde un punto de vista discreto.

m Determinar diversas relaciones binarias sobre los elementos de uno o dos conjuntos.
m Efectuar diversas operaciones entre relaciones binarias.

m Definir las propiedades que satisface determinada relacién binaria.

m |dentificar tipos especiales de relaciones binarias (relaciones de equivalencia y érdenes parciales).
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. Progresiones aritméticas y geométricas

4.1 Introduccion

La solucién de las relaciones de recurrencia es un tema de vital importancia para abordar distintos tipos de
problemas en matematicas y ciencias de la computacion.

De manera tradicional, la bibliografia que propone métodos de resolucién de recursividades lineales se
basa en el planteamiento de ecuaciones polinémicas dificilmente programables, pero solucionables me-
diante relaciones de recurrencia.

Sin embargo, como las relaciones de recurrencia mantienen una relacién muy cercana con los algorit-
mos recursivos, estas surgen de manera natural con el anélisis de este tipo de algoritmos.

Asimismo, las relaciones de recurrencia pueden considerarse técnicas avanzadas de conteo, ya que estas
pueden resolver cierto tipo de problemas que no pueden resolverse con el uso de las técnicas tradicionales
de conteo, como permutaciones, combinaciones o técnicas derivadas del principio de inclusién-exclusién.

4.2 Progresiones aritméticas y geométricas

Las progresiones constituyen casos especiales de sucesiones. Asi, una progresién se define como una su-
cesién numeérica que cumple con ciertas condiciones con respecto al valor entre un término y el siguiente.

Suorigen, aligual que el de tantas otras ramas de las matematicas, es incierto. No obstante, se conservan
algunos documentos que atestiguan la presencia de progresiones desde varios siglos antes de nuestra era,
por lo que no debe atribuirse su paternidad a ningiin matematico en especial.

P R R R R R R R R R T

Bhaskara, matematico hind del siglo xi1, también conocido como Bhaskara Il o Bhaskaracharya, que signi-
fica “Bhaskara el maestro’, es probablemente el matematico hindi mas conocido de la antigiedad. En su
obra mas conocida, el Lilavati, plantea diversos problemas sobre progresiones aritméticas y geométricas,
ademas de estudiar algunas ecuaciones diofanticas y geometria plana. Bhaskara también es reconocido
por la aportacion de dos famosos algoritmos de multiplicacion de ndmeros en base diez.

sessessssssesecovone
sessescssssencovee

Figura 4.1 Bhaskara, matematico hindu del siglo xit. [t

A pesar de que hoy dia el problema de calcular el tiempo en que se duplicaria una cantidad de dinero a
un determinado interés compuesto es muy conocido, se sabe que este fue propuesto por los babilonios (2000
a.C.-600 a.C.), lo que nos permite deducir que esta cultura conocia de alguna manera la férmula del interés
compuesto y, por tanto, las progresiones geométricas.

No obstante, en el libro IX de Los elementos de Euclides, que data aproximadamente del ano 300 a.C., apa-
rece la transcripcién de una férmula de la suma de n términos consecutivos de una progresion geométrica
muy semejante a la actual.

Progresiones aritméticas

Antes de definir qué es una progresién aritmética, a continuacién se trata un ejemplo en el que aparece una
progresiéon de este tipo.

E JEMPLO

Escalera de Jacob

Jacob posee un rascacielos en el que hay una escalera que va desde el ras del suelo hasta la cima de la construccion.
El primer escalon mide 18 centimetros, mientras que los posteriores miden 19 centimetros.
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94 | Capitulo 4 Relaciones de recurrencia .

Continua
; : : 5 ? ' R
¢A qué altura del ras del suelo esta el escalon 8007 19
(véase figura 4.2). !
19 : E
Con base en un analisis de la figura 4.2, se tiene que: . : :
'I am T I I
a,=18 A
a,=18+119) =137 19em[ 7 | | |
a, =18 + 2(19) = 56 : : : :
T L
04:]8-1-3(]9):75 1 | | 1 1
: T L
g0 = 18 -+ 799(19) = 15199 B
Por tanto, como se puede observar, el escalén 800 a a 4 a4 q o y
esta a 15199 centimetros sobre el ras del suelo. =
Asimismo, también se genera la siguiente sucesion: Figura 4.2 Escalera de Jacob hasta el escalon 800.

{a,} = (18,37,56,75, ..., 15199}

la cual, como se ve mas adelante, es en efecto una progresion aritmética.

Ahora, se consideraran las siguientes sucesiones:

{a,} = {10, 14, 18, 22, ) ) veor)
{b}=1{3,35,4,45,__ , veor)
{CH}:{9,6,3,O,_,_, ,}

El objetivo es detectar el patrén que siguen estas y llenar los espacios en blanco en cada una.

Como se puede observar, no es dificil encontrar el valor de dichos términos; pero, ;qué tienen en comun
estas tres sucesiones? Simplemente que, en cada caso, se puede obtener un término sumando un numero
fijo al término anterior.

Estas sucesiones también son casos de progresiones aritméticas, por lo que ahora es tiempo de definirlas.

Progresiones aritméticas

Una progresion aritmética constituye una sucesiéon infinita de nimeros donde cualquier término (distinto
del primero) se obtiene sumando un numero fijo al anterior.
Si se denota a tal sucesién como:

ay, Ay, As,...
entonces, se satisface la férmula recursiva (que més adelante se define de manera formal):
a,=a,,+d
donde d es un numero fijo llamado diferencia comun.

Ademas, el valor de d es muy importante, ya que si es:

e Positivo, entonces la progresién aritmética es creciente; es decir, cada término es mayor que el an-
terior.
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Progresiones aritméticas y geométricas

e Cero, entonces la progresion aritmética es constante; es decir, tiene todos sus términos iguales.

e Negativo, entonces la progresion es decreciente; es decir, cada término es menor que el anterior.

Ahorabien, ;se puede obtener una férmula explicita?; es decir,
una férmula para encontrar de manera directa el valor de
cualquier término sin necesidad de determinar estos de uno
en uno, como se haria con la férmula recursiva. La respuesta
es si. Para ello, primero véase la figura 4.3.

Como se puede ver, los valores de la parte inferior de esta fi- J p J
gura (a,, a,, s, a,) corresponden a los cuatro primeros términos

d,e una progresion ar%tmetlca general; asi que aplicando la q q q q
férmula recursiva se tiene que:
a a a a
1 2 3 4
a1 = 611 /j
a,=a,+d Figura 4.3 Auxiliar para obtener la formula explicita
as=a,+d=(a,+d)+d=a, +2d para una progresion aritmética.

a,=as+d=(@, +d+d) +d=a, +3d

Como se observa, las d deben sumarse con a, una vez menos que el subindice de a. Esto significa que:
a,=a;+(n—1)d

A esta ecuacion se le conoce como férmula explicita para progresiones aritméticas y con esta es posible
calcular cualesquier término a, en funcién del primer término a,, del total de términos n o nimero de térmi-
nos que preceden a n — 1,y de la diferencia comun d.

E jemplo

Retomar las siguientes progresiones aritméticas:
{a,}={10,14,18, 22, ...}

(b, =1{3,35,4,45,..}

{c,}={96,3,0,..}

Determinar el valor del término 100 en cada caso.

Si se utiliza la férmula recursiva, se tendria que determinar los términos de uno en uno, hasta llegar al término 100.

Asi que, en este caso, primero se determinara la formula explicita correspondiente para cada una de las progre-
siones aritméticas. De este modo, se tiene que:

a,=10+(n—1)(4)=6+4n

b,=3+ (n—1)(0.5)= 2.5+ 0.5n

¢, =9+ —-1)(—-3)=12-3n
Una vez que se determinaron las férmulas explicitas correspondientes, es facil encontrar el valor de cualquier
término de forma independiente.
Asi, el valor del término 100 en cada caso es:

G100 = 6 + 4 (100) = 406

b = 2.5 + 0.5 (100) = 52.5

Cioo =12 — 3 (100) = —288
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96 Capitulo 4 Relaciones de recurrencia .

Ademas de la féormula explicita, también es posible deducir otros elementos de la progresién aritmética:

e Elprimer término: a,=a,—(n—1)d
. ) . a,— a,
e Ladiferencia comun: dzﬁ
; A . a, — a4
e Lacantidad de términos: n= T +1

A continuacioén se ve un ejemplo de cada uno de estos elementos que es posible deducir.

E jemplo_ |_Solucién

Determinar el valor del término a, de una progresion | Como a, = a, — (n — 1) d, entonces, al sustituir los va-
aritmética, donde el término g, = 12 y la diferencia | |ores dados, se tiene que:

comind = 2. = o
=12-(8)-2
=12-16
=—4
De este modo, la progresion aritmética resultante es:
{a,}={—4,—2,0,2,4,6,810,12, ...}

E jemplo_ |_Solucién

Determinar el valor de la diferencia comun d en una

_9,—q P
progresion aritmética donde el valor del término Como d = » entonces al sustituir los valores

a = — 2y el del término a; = 16. dados, se tienne qt]Je:
_16-(2)
)
18
6
=3

donde la progresion aritmética resultante es:
{a,)=(—-214,71071316,..)

E jemplo

Determinar la cantidad de términos de una progresion
aritmética donde el valor del término a, = 4 y el del
término a; = 34, ademas de que el valor de la diferen- | os entonces se tiene que:

ciacomun es d = 5.
(34 = 4)
n=|——|+1
5

—6+1

=7
De este modo, la progresion aritmética resultante es:

{a,) ={4,9,14,19,24,29,34, ...)

_a_l

a
Como n= ( o )—|— 1, si se sustituyen los valores da-
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. Progresiones aritméticas y geométricas

Asimismo, también es posible calcular cualquier término a, en funcién de otro término cualesquiera a,
siempre y cuando dicho término sea anterior a a,; es decir, k < n.
Por ejemplo, sea la progresion aritmética:
al: aZ: a3:-'~r anflr an
De acuerdo con la férmula explicita para progresiones aritmeéticas, se tiene que:
a,=a,+n—1)d
a,=a,+ (k—1)d
Y sise hace la sustraccién de a, — a,, entonces se tiene que:
Ay — Qe ="4 — Ry
a,—a,=n-k)d
ay=a,+ n—=k)d

Ahora bien, si ocurriera que k > n, es decir, que se buscara algin término en funcién de otro posterior, se
tendria la sustraccion en forma invertida; esto es, a, — a,, y entonces se tendria que:

a,=a,— (k —n)d

E jemplo |_Solucion

Calcular el valor del término a, de una progresionaarit- | Como a, = a, + (n — k)d, si se sustituyen los valores
mética, sabiendo que el término a; =1y la diferencia | dados, entonces se tiene que:

comind = 2. a =149 —3)2)
=1+12
=13
De este modo, la progresion aritmética resultante es:
(a)={—-3—-1135791,71,.)

P °* * o P o
Suma de términos de progresiones aritmeticas
Supéngase que a,, a,, ds,... €S una progresion aritmética y sea:
Ap=a1+ay+ a3+ + a1+ 0ay

Entonces, debe hacerse esta suma dos veces, una de ida y otra de vuelta, y después hay que sumar término
a término:

A, = a, + a, o+ a, , 4 a,
A, = a, + Ay o+ a, 4 a,
280 = (ata) + @+a) + o+ @ata) + (@ +a)

En este caso, cada par de elementos resultantes tiene la misma suma, es decir:
(a: + ay)
Ademas, también véase que:

(@+aq)=a+d+a,_;—d=a;+a,

Como hay n adiciones, entonces:
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98 Capitulo 4 Relaciones de recurrencia

A esta férmula se le conoce como férmula de suma para una progresién aritmética.

E jemplo |_Solucién

Determinar la suma de los términos de la siguiente Aquin =100, @, = 1y a, = 100. Por tanto:
progresion aritmética:

1424344100 Ag =14+2+3+---+100

:%(H-]OO)

= (50)GD)
= 5050

Otro buen ejemplo seria el siguiente:

Nota/ E jemplo/

) i alcular la suma de los primeros 350 términos de la progresion aritmética:
El resultado anterior también puede SR primer Otermi B Pl !

obtenerse con facilidad en la siguien- T+34+5++(2n—1)

te férmula inductiva: m
n(n+1)
2 Para calcular a,, primero se utiliza la formula explicita:
Antes, por induccién matematica, se g =a+(n—1d

demostro que esta formula era va-
lida para cualquier valor de n. (Para Donden = 350,d =2y a,=1; entonces:

recordar la demostracion, véase el O350 =14 (349)2 = 699
capitulo2) Por dltimo, utilizando la formula de suma con n = 350, se tiene que:
Ao =T1+3+5+ - + 699
=301+ 699)
= (175) (700)
= 122500

Propiedad de los términos equidistantes
de una progresion aritmética

Sea la progresién aritmética:
Ay, A141, A1405-vy Aqiiy-evy Apgyevvy Ap_p, Ap_1, Ay

donde los términos:
al+k Y an+k

son dos términos equidistantes, respectivamente, de:
a,y a,
Por la féormula explicita para progresiones aritméticas, se tiene que:

Ay = 0y + kd
S —na _ bAd

n
This document is available free of charge on StUDOCU-com

Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)


https://www.studocu.com/co?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=matematicas-discretas

. Progresiones aritméticas y geométricas

Ahora bien, si se suman los términos de las ecuaciones anteriores se tiene que:
Ay + Ay = A1+ Ay

lo cual significa que la suma de dos términos equidistantes de los extremos es igual a la suma de los dos
términos extremos.

E jemplo |_Solucion

En una progresion aritmética se sabe que los términos Primero, se tiene que 1+ 32 = 16 + 17 = 33, entonces
ay=—2,0a55 =91y a,=43. se dice que los términos gy y a;; son equidistantes de
Determinar el valor del término ay,. los extremos; por la propiedad de los términos equi-
distantes se tiene que:

Oy + 03 = Gy + ayy
—2+91=43+ay,
a; = 46

Ademas, también es posible encontrar el valor de la
diferencia comun d; esto es:

e an_al
@ =1
_9—-(=2
32-1
_ %
3]
=3

Que se verifica con los términos ay y ;.

Interpolacion de medios aritméticos

En primera instancia, podemos decir que la palabra interpolar equivale a intercalar o insertar; pero, tratan-
dose de términos de una progresion aritmética, significa situar o intercalar dichos términos entre otros dos.

Entonces, interpolar uno o méas términos, llamados medios aritméticos, entre otros dos términos dados,
es determinar los términos que hacen falta en una progresiéon aritmética, de la cual uno de estos debe ser el
primer término a, y el otro debe ser el Ultimo a,, intercalando tantos términos intermedios como nimero de
términos que se quiera interpolar.

Si se quiere interpolar k medios aritméticos entre a, y a,, basta con calcular la diferencia comun de la
progresién aritmética que van a formar esos k términos con los a, y a,, en total n = k + 2 términos; esto es,
los k términos que se desea interpolar mas los términos inicial y final a, y a,.

De este modo, en la féormula:
a,=a,+(n—1)d

se tiene que despejar el valor de la diferencia comun d:
a,—a, =n-1)d

anial
n-—1

La férmula anterior es correcta cuando no se tiene que interpolar ningin término, pero para un caso de
interpolacién no funciona, porque en lugar de n, se tienen k + 2 términos.
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100 Capitulo 4 Relaciones de recurrencia .

Entonces, en la férmula para el célculo del valor de la diferencia comun d, se tiene que sustituir n por
k+ 2, estoes: a

n—
k+2)-1

_a

nial
k+1

E jemplo_

Determinar la diferencia comdn d para interpolar 5 | Para calcular d se tiene que:

medios aritméticos entre 26 y 80.
a, —d,

k+1
~ 80-26
5+1

s
6

=

La progresion aritmética resultante es:
{a,} ={26,35,44,53,62,71,80, )

Progresiones geométricas

Antes de definir qué es una progresién geométrica, también se analiza primero un ejemplo en el cual apa-
rece una progresion de dicho tipo.

E JemPLO_

Escalera de oro de Jacob

En sus suenos, Jacob visualizé una escalera de oro por la que subian y bajaban angeles. En el sueno de Jacob, el
primer escalon de la escalera media 18 centimetros, pero en adelante cada escalon tenia una altura de 5/4 centi-
metros mas que el anterior. Determinar a qué altura estara el escalén 800 (véase figura 4.4).

Con base en un analisis de la figura 4.4, se tiene que:

.
-]
omof]

5 )799

dgoo = (18) (Z
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. Progresiones aritméticas y geométricas

Continua
De este modo, la altura del escalén 800 es de (18) ( % )799 centimetros arriba del ras del suelo.
' )
-
grerr b
Piso ! l l ! ! l l
\ 01 az 03 04 a5 e 0800 /j

Figura 4.4 Escalera de oro de Jacob.

Como se puede deducir del planteamiento anterior, esta escalera de oro de Jacob es para angeles y no para huma-
nos. Por tanto, el escalén 800 tiene 4.86 x 10™ kilémetros de alto.

A modo de comparacion, podemos decir que el Sol esta a14.88 x 107 kilometros de distancia de la Tierra, mientras
que Alpha Centauri, la estrella mas cercana a la Tierra, esta a4 x 10" kilémetros de nuestro planeta.

De acuerdo con las dimensiones que alcanza, podemos decir que esta escalera en verdad alcanza el cielo y los

[imites del universo conocido.
.. . L. 5 . . .
En la sucesion anterior, cada término era 7 centimetros veces mas alto que el anterior.

Ademas, se genero la sucesion siguiente:
2 3
(a)=18,08)3) 08)3 ). 08) 3] -}

la cual, como se ve mas adelante, es una progresion geométrica.

A continuacién, se consideran las siguientes sucesiones. De nueva cuenta, la idea es detectar el patrén
que siguen estas sucesiones y llenar los espacios en blanco de cada una.

fa}={3,612,24, .}
) =1{12,4,4/3,4/9, ..}
fe}=1{0.6,6,60,600, .}

Aqui tampoco resulta dificil encontrar el valor de dichos términos. El rasgo comun de estas tres sucesio-
nes es que en cada caso se puede obtener un término multiplicando el término anterior por un nimero fijo.

Por tanto, se puede decir que estas sucesiones también son casos de progresiones geométricas; asi que
es tiempo de definirlas.

Progresiones geométricas

Una progresién geométrica consiste en una sucesion infinita de numeros, donde cualquier término (distinto
del primero) se obtiene luego de multiplicar un numero fijo al término anterior.
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De este modo, una progresién geomeétrica, a,, d,, ds,..., satisface la férmula recursiva:
Ay =Ty

donde r es un numero fijo llamado razén comun.
En esta férmula, el valor de r también es importante, ya que si:

* esmayor que uno, la progresién es creciente; es decir, cada término es mayor que el anterior.

e estd comprendida entre ceroy uno, la progresion es decreciente; es decir, cada término es menor que
el anterior.

e esigual a uno, la progresién es constante; es decir, tiene todos los términos iguales.

* esmenor que cero, la progresién es alterna; es decir, sus términos son alternativamente positivos y
negativos.

Ademas, al dividir cualquier término con el término antecesor se observa que:

lo que significa que la razén de cualquier término con su antecesor siempre debe ser el mismo valor, en este
casolarazén comunr.
Para obtener la férmula explicita correspondiente se tiene que:

a, =r(a)
as =71(a,) =1(r - ay) =12(ay)
a,=r1(as) =r(2-a;) =71>(ay)

En este caso, el exponente de r es uno menos que el subindice de a.

Esto significa que:

a,=a,-m*

A esta ecuacioén se le conoce como férmula explicita para progresiones geomeétricas y con esta se puede
calcular un término cualquiera a, en funcién del primer término a,, del total de términos n o nimero de
términos que le precede n — 1y de la razén comun .

E jemplo

Si se retoman las siguientes progresiones aritméticas:
(a,})=1{3612,24,.}
_ 44
(b} ={12,4, 3 9,...}
{c,} ={0.6, 6, 60, 600,...}

Determinar el valor del término 20 en cada caso.

Si se utiliza la férmula recursiva, seria necesario determinar los términos de uno en uno, hasta llegar al término 20.

En este caso, primero se determina la formula explicita correspondiente, que para cada una seria:
a,=(3)2)""

b, =(12)(}]™
¢, = (0.6)(10)""
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. Progresiones aritméticas y geométricas

Continua

Ahora bien, una vez que se determinaron dichas férmulas, resulta muy facil encontrar el valor de cualquier término
de forma independiente.

De este modo, el valor del término 20 en cada caso es:
ay = (3)2)°

b= 02/}

2o = (0.6)(10)"

Ademas de la férmula explicita, también es posible deducir otros elementos de la progresién geométrica:

. .. a
El primer término: a, = Tnfl
) . a,
La razdn comun: r =n-a/—
al
a
log —-

. L. a

La cantidad de términos: n= 41
logr

Para una mayor comprension de este tema, a continuacién se analiza un ejemplo de cada elemento que es
posible deducir.

E jemplo_

Determinar g, de una progresion geométrica donde el

. B . Como a, = -2 al sustituir los valores dados se
término a; =4y la razén comin r =~/2. Ty

n-1 ?

tiene que:

=2
Por tanto, la progresion resultante es:

{a,}=1{2.2v2,4,4v2,8,8V2, ..}
E jemplo

a
Determinar el valor de la razon comuin r en una progre- | Como: r= "_11’(1_”
sion geométrica donde los términos a, =2y a, = 64. £

Al sustituir los valores dados, se tiene que:

f64
r= 53—
2
=332
=2

Por tanto, la progresion resultante es:
{a,}=1{2,4,8,16,32,64, ...}
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E jemplo |_Solucién |

Determinar la cantidad de términos de una progresion | Como:

a

log -
geométrica donde los términos g, =1y a; = 81y la P g Q4
razéon comun r = 3. - logr

Al sustituir los valores dados, se tiene que:

81)
log|—
R W

log3

[
_ og8l 1
log3
=441
=5
Por tanto, la progresion resultante es:

{a,})=1{1,3,92728],...}

Asimismo, también se puede calcular cualquier término a, en funcién de otro término cualquiera a, siem-
pre y cuando sea anterior a a,; es decir, k < n.

Sea la progresién geométrica

Ay, Ay, A3z,. .., Qp_1,0y

De acuerdo con la férmula explicita para progresiones geométricas, se tiene que:

a,=a,-1m"*

A =a,- 17
) L a
Si se hace la divisiéon de —*, entonces:
ak a, B rn—l

a, !
a -
_n _ Tk 1
A
a,=a, 1"

Ahora bien, si ocurriera que k > n; es decir, que se buscara algin término en funcién de otro posterior, se
tendria la divisién en forma invertida, esto es:

P n
Entonces, se obtendria que:
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. Progresiones aritméticas y geométricas

E jemplo

Determinar el término a,, de una progresion geométrica donde el término a, = 4 y la razén comin r = /2.

Comoa, = a, - r" ¥, entonces al sustituir los valores dados, se tiene que:

_ 10-3
Gw = G3 off

—4(42)
=322

Por tanto, la progresion geométrica resultante es:

{a,}={2.2v2, 4, 42, 8,8V2, 16,162, 32, 32v2, ..}

Suma de términos de progresiones geométricas
Supbéngase que a,, d,, ds,... €s Una progresién geométrica y sea:

Ap=0;+ 0y +dzs+ - + 0y 1+ 0y
Que puede escribirse como:

A =a,+ar+ar,+ - +ar?+art?

Ahora se multiplica A, por r, se resta el resultado de A,, y haciendo un poco de algebra para obtener A,,
se tiene que:

An = 4 +ooar 4+ w4 4+ !
—TA, - - ar - A - - gt -
A, —TA, = a, + 0 + 0 + o 4+ 0 _art

Donde se obtiene que:
A, —TA, =a, —a1"
Al factorizar se tiene que:
A-I-1=a-(1-7

Por ultimo, despejando A, se obtiene:

A esta formula se le conoce como férmula de suma para una progresién geomeétrica.

E jemplo

Hay una antigua leyenda que dice que cuando el rey de Persia aprendio a jugar ajedrez estaba tan contento que
intentd recompensar al inventor.

Luego de que el hombre estuvo ante la presencia del rey, este prometié cumplirle cualquier peticion que hiciera.
Ante esta oportunidad, el hombre pidio un grano de trigo por el primer cuadro del tablero del ajedrez, dos por
el segundo, cuatro por el tercero y asi sucesivamente. Es decir, el hombre habia pedido 1+ 2 + 22 4 2° + -+ + 2%
granos de trigo.

El rey pronto se dio cuenta que dicha peticion nunca podria ser cumplida. A continuacion, véase por qué.

Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)



106 | Capitulo 4 Relaciones de recurrencia .

Sin=64,a, =1yr=2,setiene que:

1(1—2%)
=T
_ 264 1
~18446744073709600000
~1.845x10"

Algo asi como dieciocho trillones, cuatrocientos cuarenta y seis mil setecientos cuarenta y cuatro billones, se-
tenta y tres mil setecientos nueve millones, seiscientos mil granos de trigo.

Ante tal peticion del hombre, el rey sonrid y solo le dio un saco de trigo.

Comentario

Como se puede observar, el resultado del nimero de granos de trigo esta dado por 20 cifras. Por ende, el peso
aproximado de semejante cantidad de granos seria 10,000'000,000 toneladas.

Toda la produccion mundial de trigo de un siglo no seria suficiente para obtener tal cantidad de granos.

Ademas, si toda la superficie del planeta fuera cultivada con sembradios de trigo, ain no llegaria a dar semejante
cantidad de trigo en varios anos.

* < * * ®
Propiedad de los términos equidistantes
L - *
de una progresion geométrica
Sea la progresién geométrica:
alr a1+1r a1+21' CEN) a1+kr ceey anfky'u ) an72v aYlfly an
donde los términos:
A1k Y An-k
son dos términos equidistantes, respectivamente, de:
a, y an
Por la férmula explicita para progresiones geomeétricas se tiene que:

k
g =107
Ay o =0y TF

Y sise suman término a término las ecuaciones anteriores, se tiene que:
14+ 0y _p =041 - Ay

lo que significa que el producto de dos términos equidistantes de los extremos es igual al producto de los
dos términos extremos.
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E jemplo_

En una progresion geométrica se sabe que los términos
a, = 6, a;, = 0.0029296875 y a, = 0.1875.

Determinar el valor del término a..

Progresiones aritméticas y geométricas

Primero, se tiene que:
6+7=1+12=13

Entonces, los términos a, y a, son equidistantes de

los extremos, y por la propiedad de los términos
equidistantes se tiene que:

dg-d; =a, - dp
(01875) - a, = (6)(0.0029296875)

a, = 0.09375

Asi, la progresion resultante seria:
{a,)={6,3,15,0.75,0.375, 01875, 0.09375,...}

Ademas, también se podria encontrar el valor de la
razon comun r; esto es:

a
r=n-1—>
a]

= 1/(0.0029296875)/6

= {/0.00048828125
=05

que se verifica con los términos a, y as.

P * o P °
Producto P, de términos de progresiones geométricas
Sea la progresién geométrica:
Ay, Ay, Az, =+, Ap_g, Ap_1, An
Entonces, el producto de todos los términos de dicha progresién seria:
“App - Apq - ap (l)

Ademés, como el orden de los factores no altera el producto, también es posible decir que:

Pn:al'QQ'QB'v"'y
Po=ay- 0y 10y o, -, 03-0y- 0y (i)

Ahora bien, teniendo en cuenta la propiedad de los términos equidistantes de una progresién geométrica, si
se multiplican (i) y (ii) y después se multiplican término a término, se tiene que:

P, = a, - a, a, -t
Pn = Ay« Ap_q . . al.r”*1
P2 = (al : an) ' (a2 : an—l) (an—l ' aZ) ' (an : al)

n

Lo cual es lo mismo que:
(al : an) : (al : an) T (6{1 : an)

n factores

P,=

Es decir:

O bien:
Pn = (al 'an)n
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Esta igualdad también puede expresarse como:

= V(al : an)n

=(a,- a7

_ Iain . rn(n—l)
nn-1)

r 2

=aj-

que da el valor de P, en funcién de a,, ry n.

E jemplo

Sea la progresion geométrica: Como en este caso son pocos los términos, se puede
12 4 816 32 hacer la multiplicacion de forma manual y luego com-

, S probarla con la férmula respectiva.
Determinar el producto de sus términos.

El producto de dichos términos es:
1Xx2x4x8x16x32=32768

Al aplicar la formula del producto de términos de una
progresion geométrica, se tiene que:

= (al 'an)ﬂ
P =+(1-64)°
=/(64)°
=64’
=132 768

con lo cual se comprueba que es el mismo resultado.

Otro ejemplo seria:

E jemplo

Sea la progresion geométrica:
1,3,9,...,59049 177147, 531441

Determinar el producto de sus términos.

.
Solucion

Primero, hay que determinar el valor de n para poder utilizar la férmula para el producto de términos de una
progresion geomeétrica.

Luego, para calcular el valor de n, es decir, la cantidad de términos de la sucesion, se tiene la férmula vista
antes:

a
log —

_ 4 +1
logr
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Progresiones aritméticas y geométricas

Continua

Para aplicar esta férmula, primero se requiere el valor de r, el cual puede obtenerse con dos términos consecutivos.

Entonces: 9

r=—
3

=3
Ahora, al sustituir este valor en la expresion (i) se tiene que:
(531 441
log

log3

_ log531 441
~ log3
=12+1

=13

+1

Una vez que ya se obtuvo el valor de n, es posible utilizar la férmula para calcular el producto de términos de una
progresion geométrica. Entonces:

Sustituyendo de a,, g, y n, se tiene que:
= {(1-531 441)"

~164x107

Asimismo, también puede calcularse con la férmula:
n(n—1)

— AN 2
Pr=a-r

donde, al sustituir los valores de a;, r y n, se obtiene:
— 8. 3(302)2

— 378
~ 164 x 107
cuyo resultado, como se puede observar, es el mismo valor obtenido antes.
El valor exacto del producto de los términos de la progresion geométrica es:
16'423,203'268,260'658,146'231,467'800,709'255,289

L e * < *
Interpolacion de medios geométricos
Como en el caso de las progresiones aritméticas, también es posible la interpolacién de uno o mas términos,
denominados medios geométricos, en una progresién geométrica entre dos términos dados: el término inicial

a, y el final a, de una progresion geométrica.

Si se quiere interpolar k medios geométricos entre a, y a,, primero se debe calcular la razén comun r
de la progresiéon geométrica que van a formar esos k términos con los a, y a,, en total n = k + 2 términos;
esto es, los k términos que se desean interpolar mas los términos inicial y final, a, y a, respectivamente.

Antes, ya se obtuvo la férmula siguiente:
r= nflla—n
al
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Esta férmula es correcta cuando no es necesario interpolar ningin término; no obstante, para el caso de
interpolacién no funciona, porque en lugar de n términos, se tienen k + 2.
Por tanto, en la férmula para el calculo del valor de d se debe sustituir n por k + 2; esto es:

r= (k+2)—1’a_n
al
= k+1’a—n
a‘l

E jemplo_ |_Solucién

Determinar la razén comdn r para interpolar 8 medios | Para calcular r se tiene que:

geomeétricos entre 11y 5 632.
r = k+1 i
01
_ 0y 2.632
1

=/512
=2’
Y la progresion geomeétrica resultante es:
{a.) ={1, 22,44, 88,176,352, 704,1048,2816,5632, ... }

Suma de los términos de una progresion geométricacuando
la razén comiin r es menor que 1y el numero de términos es infinito

Siala formula:

A G (1-r")
" 1-r
se le cambia el orden en el que se han colocado los valores del numerador y el denominador, el resultado no
cambia.
Esto significa que:
Al 1-r"
" 1-r
Es lo mismo que:
A (r"-1)
" r—1

Los valores de A, son iguales porque sila razén comun r es mayor que 1, tanto el numerador como el deno-
minador serfan negativos, pero el cociente de dos nimeros negativos sera positivo.

Sila razén comun r es menor que 1, tanto el numerador como el denominador seran positivos, al igual
que el cociente.

Obsérvese que la operacién 34 =21 también puede escribirse como

Nota/ 34 _ '

5 % y el resultado es el mismo.

Lo mismo que para dividir una suma o diferencia indicada por un
numero, se divide cada término por el denominador o divisor.

Esto quiere decir que:

No hay que olvidar que se esta tra-
tando el caso en que el nimero de
términos es oo (infinito) y la razén
comdun r es menor que la unidad. A =
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Progresiones aritméticas y geométricas

puede escribirse como:

4T -4
-1

_a - a,
T -1 r-1

, etcétera.

)

Un numero menor que 1 es una fraccién de la unidad, como: % %

AN
N—

Silarazén comunr = % y este valor se eleva a infinito, se tiene que:

1= 1%
5 5
Como se puede observar, el numerador vale 1 (sin tener en cuenta las indeterminaciones), mientras que el
denominador vale infinito.
Esto es como dividir 1 entre un nimero extremadamente grande, digamos 123'456,789°000,000’000,000’

000,000 y todavia no se llega ni remotamente a co. El cociente seria algo como:
0,000000000000000000000000000000000000089...

Que en realidad seria cero.

Luego de la igualdad:
_ O - 4
" r—1
_a-ra
r-1 r-1
Se observa que:
4T,
r—1

Debido a que r" = 0, el producto de este valor multiplicado por a, también sera cero. Pero, si a 0 lo dividimos
por cualquier valor que no sea cero, es posible afirmar que el cociente también vale cero, con lo cual la for-
mula para el calculo de la suma de infinitos términos quedaria como sigue:

O bien:

E jemplo

Calcular la suma de los 100 mil millones de términos de la progresion:

1T 1 1 1
lod= 3595

En este caso, primero es necesario determinar la razén comunr:

\
I

W= O|w u-|o-
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Continua

Entonces, la suma de los términos infinitos sera:

4.3 Relacion de recurrencia y sucesion de recurrencia

Con frecuencia, es posible desarrollar relaciones entre los elementos de una sucesién, las cuales reciben
el nombre de relaciones de recurrencia. A continuacion, se ilustra el concepto con un ejemplo y luego se
ofrece una definicién mas formal.

E jemplo

Una persona invierte 10000 pesos a una tasa de 15% de interés compuesto anual. Si A, representa el monto de
cada n anos.

Determinar una relacion entre A,y A, _;.

Al cabo de n — 1anos el monto sera A,_;. Esto es, después de un ano mas se tendra la cantidad de A, _, mas el
interés del ano, entonces:

An =A, 4+ (015)A,

=115A
El valor inicial A, =10 000, junto con la ecuacion arnwjflerior, permiten calcular el valor de A, Vn. Por ejemplo:
Ay = 115(A,)
= (115) (115) (A,)
= (115) (115) (115) (A,)
= (115 (10000)
= 15208.75

Por tanto, al final del tercer ano, la cantidad seria de 15208.75 pesos.
En este caso, se puede efectuar el calculo para cualquier valor de n y se obtiene:
A, = 115(A,_)
— (175)(175) (A, ) = (115 (A, )
— (11512(115) (4, ) = (115 (A, )
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Continua

(1157 (4)
= (115)"7'(A)
= (115)" (10000)
Asi que si se quiere saber la cantidad resultante al cabo de 20 anos, entonces:
(115)°(10000) = 163 665.37
Resultado con base en la férmula obtenida antes.

La ecuacion A, = (115)A,_, proporciona un ejemplo de una relacion de recurrencia. Y dicha relacion define una
progresion geométrica dando el n-ésimo valor en términos de uno antecesor.

Hasta aqui hemos trabajado con el concepto de relacién de recurrencia; sin embargo, atin no se ha dado
una definicién formal, asi que es momento de hacerlo.

[ *
Relacion de recurrencia

Una relaciéon de recurrencia para una sucesion day, s, ds, ..., d,, constituye una ecuacién que relaciona a a, con
algunos de sus antecesores:

ao, al, ag,. ey an_l
Ademas, se llaman valores iniciales a los dados en forma explicita:

Ao, Ay, Ay,..., Ap_q

Los cuales son necesarios para empezar a calcular los términos de la sucesién, mediante el uso de la relacién
de recurrencia.

Sucesion de recurrencia

La sucesién originada por la relacién de recurrencia junto con los valores iniciales se conoce como sucesién
de recurrencia o sucesién recurrente.

E jemplo

Una de las mas antiguas relaciones de recurrencia define la

sucesion de recurrencia conocida como sucesion de Fibo-  Cuantas parejas de conejos habra después de un aro,
nacci. si al comienzo solo hay una pareja, y sabemos que cada

pareja produce al mes una nueva pareja, la cual se vuel-
ve productiva al mes? Se da por sentado que no ocu-
rren muertes y que la pareja inicial es recién nacida.

Esta sucesion se encuentra por primera vez en el libro de
este autor, Liber abaci, donde él se preguntd lo siguiente:

Sea fib, el nimero de parejas de conejos al cabo del i-ésimo mes. Como al inicio solo hay una pareja de conejos,
entonces:

fiby =1 (i)
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Y como al final del primer mes sigue habiendo solo una pareja, ya que comienza a ser productiva al cabo de este

tiempo, se tiene que:

fib, =1 (i)

En este caso, las ecuaciones (i) y (ii) constituyen los valores iniciales para la sucesion de Fibonacci. El aumento en
las parejas de conejos fib,_;, fib,, del mes (n—1) al mes (n) se debe a que cada pareja viva del mes (h—2) produce una

pareja adicional.

Esto es:

@)

ﬁbn - ﬁbn—] = ﬁbn—Z’

fib, = fib, _,~+fib, , (i)

La relacion de recurrencia (iii), con los valores iniciales (i) y (i), define la sucesion de Fibonacci.

Véase la figura 4.5, la cual muestra lo que ocurre con los conejos hasta el mes cuatro.

Mes

Inicio

Mes 1 o

Mes 2 "

Mes 3 "'1.:»-"' @" "
|

Mes 4 "".:.‘.-.“ 'ﬂu w L

Nimero
de parejas

'J_. 1

L X |" 2
o e T T .

Figura 4.5 Primeros cuatro meses del crecimiento de conejos.

De acuerdo con lo que se planted, es necesario completar hasta el término fib;,, para conocer la cantidad de co-

nejos que se tendrian al cabo de un ano:

fiby = fib, =1

fib, = fib, + fiby=1-+1=2

fib, = fib, + fib,=2 +1=3

fib, = fibs + fib,=3+2="5

fibs = fib, + fib, =5+ 3 =8

fiby = fibs + fib, = 8 + 5 =13
fib, = fib, + fibs = 13 + 8 = 21
fiby = fib, + fib, = 21 + 13 = 34
fiby = fibg + fib, = 34 + 21 = 55
fiby, = fiby -+ fiby = 55 + 34 = 89
fiby = fiby, + fiby = 89 + 55 = 144
fiby, = fiby, + fib, = 144 + 89 = 233

Esto significa que después de un ano se tienen 233 parejas de coneijos.
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Figura 4.6 Leonardo de Pisa, Leonardo Pisano o Leonardo Bigollo,
también conocido como Fibonacci (1170-1250).

La sucesién de Fibonacci es la base para construir
una sucesién de cuadrados adyacentes, como la
que se muestra en la figura 4.7, cuyos lados miden
los nimeros de Fibonacci y se adhieren unos con
otros en el sentido del giro de las agujas del reloj.

Como se puede observar, dentro de esa suce-
sién de cuadrados se pueden ir trazando de ma-
nera continua cuadrantes de circunferencia que
dan lugar a una bonita espiral llamada espiral de
Fibonacci.

Es sorprendente ver cémo la espiral de Fibo-
nacci aparece de manera recurrente en la natura-
leza; asi, puede observarse:

Relacion de recurrencia y sucesion de recurrencia

P R R R R R R R R R R R A R T R R )

Leonardo de Pisa, Leonardo Pisano o Leonardo Bigollo, también conocido como Fibonacci, matematico
italiano del siglo xiil, fue el primero en describir la sucesion matematica que lleva su nombre. Hacia 1202,
Fibonacci ya hablaba de dicha sucesion cuando publicd su Liber abaci (Libro del abaco o Libro del calculo).

Algunos de sus principales aportes se refieren a la geometria, la aritmética comercial y los nimeros
irracionales, ademas de haber sido vital para el desarrollo del concepto del cero.

\_ 13

vecossecessssessessennee

Figura 4.7 Espiral de Fibonacci.

a) Al contar las escamas de una pina (véase figura 4.8). Tras observar este fruto, es posible distinguir
que aparecen espirales alrededor del vértice, en igual numero a los términos citados en la sucesién

de Fibonacci.

b) En las pifias del girasol (véase figura 4.9). En estas se forma una red de espirales, donde unas van en
el sentido de las agujas del reloj y otras en sentido contrario; aunque, en cualquiera de los casos, las

cantidades de unas y de otras siempre son los términos consecutivos de la sucesion de Fibonacci.

c) Enlasramas delos arboles, en la flor de la alcachofa, en el arreglo de un cono o en la disposicién de
las hojas en el tallo. Solo hay que tener en cuenta que en estos casos se distribuyen buscando la luz

del Sol (véase figura 4.10).

\

Figura 4.8 Escamas de una pina.
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i) ii) iii) iv)

Figura 4.10 Espiral de Fibonacci en la naturaleza. i) Ramas de un arbol; ii) flor de la alcachofa; iii) arreglo de un cono; iv) disposicion de
la hojas de un tallo.

d) El numero de espirales en numerosas flores y frutos también se ajusta a parejas consecutivas de
términos de esta sucesién (véase figura 4.11).

e) También estd presente en los huracanes (véase figura 4.12 1), en algunas galaxias (véase figura 4.12 ii)
y en las conchas tipo caracoles, entre otras (véase figura 4.12 iii).

f) Enalgunas partes del cuerpo de los seres humanos y de los animales, como en el caso de la relacién
entre la altura de un ser humano y la altura de su ombligo, la relacién entre la distancia del hombro
y sus dedos y la distancia del codo a los dedos o la relacién entre las articulaciones de las manos y los
pies (véase figura 4.13).

N ' - — J

e )

i) ii) i)

Figura 4.12 Laespiral de Fik~mnrmi Ao mrimin ce s mndienlnen
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~

Figura 4.13 La espiral de Fibonacci en partes corporales de los seres humanos.

g) La espiral de Fibonacci también esta presente en el arte, como en los violines; en estos, se pueden
ver en la ubicaciéon de las efes (los “oidos” u orificios en la tapa) (véase figura 4.14 i). Ademas, también
aparece en las relaciones entre altura y ancho de los objetos y las personas que aparecen en las obras
de Miguel Angel (véase figura 4.14 ii), Durero (véase figura 4.14 iii) y Da Vinci (véase figura 4.14 iv),
entre otros.

Otro problema interesante donde aparecen las relaciones de recurrencias es el siguiente.

E jemplo_

Problema de las torres de Hanoi

Considérese que se tienen n discos y 3 torres. Los discos estan
apilados en la torre 1, ordenados de mayor a menor (véase figura
415).

El objetivo es pasar los discos uno por uno a la torre 3, colocados
en el orden original. No obstante, en el proceso no se permite que
un disco mayor se coloque sobre otro menor.

Si a, es el nUmero de movimientos que se requieren para pasar los
discode latorre1a latorre 2, determinar la relacion de recurrencia \

para calcular a,. Figura 4.15 Juego de las torres de Hanoi.

Torre 1 Torre 2 Torre 3
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Para mover n discos basta con mover n—1 discos a una torre libre, mover el disco mayor a la otra torre libre y

mover de nuevo los n—1 discos sobre el disco mayor.

Por tanto, a,, cumple la relacion de recurrencia:

que:

a,=2:0,,+1

En este caso, hace falta un valor inicial, por lo que aqui se va a considerar que a, =1, ya que para un tnico disco
se tiene que efectuar solo un movimiento. De acuerdo con la relacion de recurrencia y el valor inicial, se tiene

@ = |

a,=2-a=21)+1=3
a,=2-a,=23)+1=7
a,=2-a;,=2(7)+1=15
as=2-a,=2(15)+1=31

Para comprobar en forma grafica que la relacion anterior es correcta, a continuacion se ve el caso donde
n = 3; es decir, cuando se tienen tres discos, o que implica que deben utilizarse solo 7 movimientos para pasar
los discos de la torre 1a la torre 3, como se observa en la figura 4.16.

2Ll

Torre 1 Torre 2 Torre 3
Estado inicial

lé&&

Torre 1 Torre 2 Torre 3
Segundo movimiento

ALl

Torre 1 Torre 2 Torre 3
Cuarto movimiento

Ll

Torre 1 Torre 2 Torre 3
Sexto movimiento

A

Torre 1 Torre 2 Torre 3
Primer movimiento

|

Torre 1 Torre 2 Torre 3
Tercer movimiento

Torre 1 Torre 2 Torre 3
Quinto movimiento

Torre 1 Torre 2 Torre 3
Séptimo movimiento — Estado final

” 4

Figura 4.16 Movimientos de las torres de Hanoi para 3 discos.
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Relacion de recurrencia y sucesion de recurrencia

P R R R R R R R R R R R A R T R R )

Francois Edouard Anatole Lucas fue un importante matematico francés, reconocido sobre todo por sus
trabajos sobre la serie de Fibonacci y por el test de primalidad que lleva sunombre. Asimismo, también fue
el creador de algunos juegos recreativos matematicos, como el de las torres de Hanoi.

No obstante, es reconocido principalmente por su estudio de las |lamadas sucesiones generaliza-
das de Fibonacci, las cuales comienzan por dos enteros positivos cualesquiera y, a partir de ahi, cada nu-
mero de [a sucesion es la suma de los dos predecesores. La sucesion mas sencilla es la conocida como
sucesién de Fibonacei: 1,1,2,3,5,8,13, 21, ...; y quiza la inmediatamente mas sencilla es: 1, 3, 4,7, 11,
18, ..., la cual es conocida como sucesién de Lucas.

Figura 4.17 Francois Edouard Anatole
Lucas, matematico francés (1842-1891).

Un ejemplo interesante aplicado a la geometria es el que se analiza a continuacién:

E jemplo_

Se quiere determinar el nimero de regiones en las cuales queda dividido un plano al trazar en este n rectas, de
forma que estas se corten de dos en dos, y de tal manera que tres rectas no tengan un punto comun.

Si a, es el nimero total de regiones, encontrar una relacion de recurrencia para calcular g,

Los cuatro primeros casos de division del plano, con las condiciones mencionadas, se observan en la figura 4.18.

4 )
\M
) /1! . F
2 5 2

\ J

Figura 4.18 Division del plano.

Como se puede observar, el caso a, =1 es trivial. Mientras que en los demas casos, es decir, cuando n > 1, se
observa que la n-ésima recta corta a las otras en n—1 puntos distintos; por tanto, la n-ésima recta quedara
dividida en n segmentos distintos, cada uno de los cuales divide, a su vez, a las regiones obtenidas, en el caso
inmediato anterior, en dos partes.

Como consecuencia, |a relacion de recurrencia que se obtiene es:
d,=a, +n
Sin embargo, en esta hace falta un valor inicial, el cual se obtiene del caso trivial antes mencionado.
Asi, de acuerdo con la relacion de recurrencia y el valor inicial, se tiene que:
ag=1
a=0a,+1=141=2
a,=a,+2=2+2=4
ay=a,+3=4+4+3=7
a,=a;+4=7+4=Tl
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Asimismo, se pueden encontrar relaciones de recurrencia en la ciencia de la biologia.

E jemplo |_Soluciéon |

Considérese que el ndmero de bacterias de una co- | Dado que el nimero de bacterias en la horan es el doble
lonia se duplica cada hora. Si a, es el nimero total de | de las que habia en la hora n—1, entonces, como conse-
bacterias en n horas, encontrar una relacion de recu- | cuencia, la relacion de recurrencia que se obtiene es:
rrencia para calcular g, a,=2a,_,

Si suponemos que la colonia comienza solo con un par
de bacterias, es decir, a, = 2; entonces, de acuerdo con
la relacion de recurrencia, se tiene que:

Ay =2
a,=2d,=2(2)=4
a,=2a,=2(4)=8
a,=2a,=2(8)=16
a, = 2a, = 2(16) = 32

De este modo, una relacién de recurrencia define una sucesién de recurrencia Unica, siempre y cuando se
definan los valores iniciales. Pero, si a dicha relacién no se le especifican los valores iniciales, entonces esta
relacién define una infinidad de sucesiones de recurrencia.

E JemPLO_

La relacion de recurrencia a, = 3a,_;, n > 0, puede definir las siguientes sucesiones de recurrencia:
{a,} ={5,15,45,..)
(b,)=1{7,21,63,...)
{c.}=1{(2,6,18,...)
{d,})=32927..}

Es decir, puede definir una infinidad de sucesiones de recurrencia.
Ahora bien, si se especifica que en:

{a,} el término a, =5

(b, el término a,=7

{c,} el término g, = 2

{(d,} el término a, =3
Entonces, en cada caso se define una sucesion de recurrencia unica.
La misma relacion de recurrencia con valor inicial a, =1, define la siguiente sucesion de recurrencia, la cual también
es unica:

(a,)=101,3,927..)

la cual, ademas, también es una progresion geométrica.

Los valores iniciales no necesariamente son los primeros términos de la sucesién de recurrencia, pues di-
chos valores pueden ocupar cualquier posicién en dicha sucesién, con los cuales también es posible calcular
tanto términos anter: C
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o Relacién de recurrencia y sucesién de recurrencia [121

E jemplo

Considérese la relacion de recurrencia siguiente:

3a, — 5a,_,+ 2a, ,=0

cuyos valores iniciales son:a; =1y a, = 4.

Calcular los términos as y a,, ademas de los términos a,, a, y d,.

Primero, se despeja a,,:

a, =[50,y —2a,,] /3
Luego, se calculan los términos as y ag:

ds =[5a, — 2as] /' 3
[5)(4) — (2 ()] / 3
=[20-2]/3=18/3=6

dg = [5as — 2a,] /3
=[6)(6) -] 3
=[30—-8]/3=22/3
y asi sucesivamente, para cualquier término posterior.

De igual modo, es posible calcular a,, g, y a,, aunque dichos términos sean anteriores; en cuyo caso, lo Unico
2» Y do Y

que varia es el despeje de a,, ya que en realidad se tiene que despejar a,_, y el valor de n; en este caso, no va a

ser el valor del subindice, ya que, por ejemplo, para encontrar a,, n debe valer 4, es decir, si:

an = [ _ 3an — 5an—l] /2

entonces:
a,=[—3a,+ 5as] / 2
=[-@B)@4+6Mm 2
=[—12+5]/2=-7/2
a,=[— 3a;+ 5a,] /' 2
=[-0)0+06)(=772]/2
—[-34+(=35/2)]/2=—41/2
y por ultimo:

[—3a,+ 5a1] / 2
=[-0@)(=7/2)+(5)(—-4/2)]/2
=[21/2+(—205/2)]/2=—184/2

De este modo, la sucesion de recurrencia resultante es:

(a,)={—184/2,— 41/2,— 7/2,1,4,6,22/3, ...}

do

Relacion de recurrencia lineal con coeficientes constantes

De los ejemplos vistos hasta aqui, se puede concluir que las relaciones de recurrencia constituyen un
modelo, ya sea para crecimiento de conejos, para obtener la tasa de interés compuesto o para el pago con
granos de trigo; no obstante, estas también pueden aplicarse en otras areas, como crecimiento de colonias
de bacterias, regiones producidas en el plano, etcétera.
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Es importante resaltar que también existe una familia de relaciones de recurrencia, las cuales pueden
resolverse aplicando algunas reglas fijas; esta familia es la que estd integrada por las relaciones de
recurrencia lineales con coeficientes constantes, las cuales se estudian a continuacién.

Relacion de recurrencia lineal con coeficientes constantes
Una relacién de recurrencia que tiene la forma:
@y = C1y_q + Colyp g + -+ + G = f(n)
o bien que en su forma implicita es:
Coly 4 C18p_q + Copp + -+ 4 G = f(1)

donde:

Co, C4,C,,..., C,son constantes; es decir, C; € R.
Dicha relacién de recurrencia se denomina relacién de recurrencia lineal con coeficientes constantes (RRLCC)
de k-ésimo orden, siempre que C, =0y C, = 0.

Cuando f(n) =0, se dice que es una relacién de recurrencia lineal homogénea con coeficientes constantes
(RRLHCC), es decir:

Coln + C10n_1 + Colyy + -+ + Gy, =0

A esta relacién de recurrencia se le llama lineal, porque cada a, se eleva a la potencia 1 y no hay productos
Como d, - a,,. Ademas de que para obtener el orden de la misma, es necesario obtener la diferencia entre los
subindices mayor y menor de los miembros de la secuencia que ocurre en la relacién de recurrencia.

E jemplo |_Solucién |

Determinar cuales de las siguientes relaciones derecu- | a) Esuna RRLCC de primer orden.
rrencia son lineales con coeficientes constantes y de b) No esunaRRLCC, ya que su coeficiente de un tér-
estas determinar su orden. G TG S EErsan e,
a) 2a,+2d,,=2" c) EsunaRRLCC de segundo orden.
b) a,+ 3ra,_, d) Esunarelacion de RRLHCC de segundo orden.
— A2
¢) 3a,=5a,4+2d, ,=n"+5 e) No es una RRLCC, ya que no debe haber produc-
d) a,=7a,_, tos entre los términos.
e) a,=3a,,"d,, f)  Esuna RRLHCC de tercer orden.
f) a,=3a,; g) No es una RRLCC, ya que no debe haber ningtn
g) 2a,+ad,=2" ;cjérmino que esté elevado a una potencia diferente
el

4.4 Soluciones homogéneas

A través del tiempo se han formulado diversos procedimientos sistematicos para resolver las relaciones de
recurrencia lineales con coeficientes constantes. De estos, a continuacién se analizan algunos de los méas
importantes.

Sin embargo, antes de profundizar en dichos métodos, resulta indispensable formular la siguiente
pregunta: ;qué es resolver una relacién de recurrencia? Como se recordara, en el tratamiento de los temas
de las progresiones aritméticasy geometncas se encontr6 una férmula explicita para determinar el valor de
cualquier términode '~~~ oo ot oo As A As o oot s A- - - o oo - - - - Tarfg con las relaciones
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. Soluciones homogéneas

de recurrencia respectivas. Con base en la experiencia de las progresiones aritméticas y geométricas, se
pretende hacer algo similar con las relaciones de recurrencia lineales con coeficientes constantes, es decir,
encontrar una férmula o ecuacién que se utilice para determinar el valor de cualquier término de la relacién
de recurrencia.

A esta formula se le denomina solucién total o solucién explicita de la relacién de recurrencia lineal con
coeficientes constantes, la cual consiste en la suma de dos funciones numeéricas discretas, una denominada
solucién homogénea a@, la cual satisface la relacién de recurrencia cuando f(n) = 0, esto es:

Coy + Ciy g + Coly p+ -+ Ca, =0

Y otra denominada solucién particular, a'? la cual satisface la relacién de recurrencia cuando f(n) = 0; esto
es:
Coly + Ciy 1+ Coy o+ -+ + Gy = f(1)

Por tanto, la funcién numérica discreta (la cual serfa analoga a la férmula explicita de las progresiones
aritméticas y geométricas, por lo que también suele recibir el nombre de solucién explicita), que es solucién
de la relacién de recurrencia lineal con coeficientes constantes, es la suma de la solucién homogénea y la

solucién particular, es decir:
o, =) +af Nota

Una solucién homogénea para la relacién de recurrencia lineal con

. . o . Se llama ecuacion caracteristica aso-
coeficientes constantes tiene la siguiente forma exponencial:

ciada a la relacion de recurrencia, como

A A=0 se ve en siguiente ejemplo, pero por
) ’

simplicidad se conoce simplemente

donde \; se conoce como una raiz caracteristica. b -
Como ecuacion caracteristica.

Ahora bien, si se sustituye \" por a, en la relacién de recurrencia
Coly + Ci0n1 + Gy + - + Gy =0

se obtiene
CN'+C N 4 CN'" 24 . +CN"*=0

que puede simplificarse como:
CONHC N CN 24+ ... +C, =0

Esta ecuacién recibe el nombre de ecuacién caracteristica (o polinomio caracteristico) asociada a la relacién de
recurrencia lineal con coeficientes constantes.

En general, la ecuacion caracteristica de k-ésimo grado tendra k raices caracteristicas \;, i=1,..., k.

En este caso, cada una de las raices caracteristicas respectivas dara lugar a las respectivas soluciones de
la relacién de recurrencia.

Por tanto, si \; es una de las raices de la ecuacién caracteristica (esta es la razén por la cual \, recibe el
nombre de raiz caracteristica), entonces A es una solucién homogénea de la relacién de recurrencia.

Para determinar la solucién homogénea a’”, primero es necesario encontrar la ecuacién caracteristica, la
cual se obtiene a través del siguiente proceso:

1. Sehacef(n)=0.

2. Seobtiene el orden de la relacién de recurrencia lineal homogénea con coeficientes constantes re-
sultante.

3. Se sustituye cada a, por \, conservando los signos y los coeficientes de cada término de la relacién
de recurrencia.

4. Se construye la ecuacién caracteristica de grado igual al orden de la relacién de recurrencia lineal
homogénea con coeficientes constantes.
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E jemplo/

Sea la relacion de recurrencia lineal con coeficientes
constantes:

Para esto se realiza cada uno de los pasos del proceso
para encontrar la ecuacion caracteristica:
3a, — 5a,_,+ 2a,_,=n2+5. 1. Se hace f[n) = 0, esto es:
3a, — 5a, 4+ 2a, ,=0
2. Se obtiene el orden de la RRLHCC resultante, en
este caso: segundo orden.

Determinar su ecuacion caracteristica.

3. Se sustituye cada a, por \, conservando los signos
y coeficientes, esto es:

SN=5X+2Xx=0

4. Se construye el polinomio caracteristico de grado
igual al orden de la RRLHCC:

AN —5A+2=0

El resultado de este proceso constituye la ecuacion
caracteristica asociada a la relacion de recurrencia.

Ahora, si todas las raices caracteristicas de la ecuacién caracteristica son distintas, la forma general de la
solucién homogénea es:

h
a&) =AN T AN T AN
donde X\, \,,..., \, son las distintas raices caracteristicas de la ecuacién caracteristica y A;, A,,..., A, son las
constantes que van a ser determinadas por los valores iniciales en la solucién total.

Pero, si algunas de las raices de la ecuacién caracteristica son raices multiples, entonces si \, es una raiz
de multiplicidad m, la forma general que debera tener la solucién homogénea es:

(A A A A

donde también A, A,,..., A,, son constantes que seran determinadas por los valores iniciales en la solucion
total.

E jemplo_

Determinar la solucion homogénea de la relacion de
recurrencia lineal con coeficientes constantes:

3a, —5a, 4+ 2a, ,=0

Solucion
Ya en el ejemplo anterior se determiné la ecuacion
caracteristica asociada a dicha relacion de recurrencia:
IN—=5N+2=0
Como se puede observar, esta ecuacion caracteristica
tiene dos raices caracteristicas:
N=2/3yN=1
De esta ecuacion se obtiene, por la forma general para

cuando todas las raices caracteristicas son distintas,
que la solucion homogénea correspondiente es:

a,(f) =A (%)” +A,

Donde las dos constantes, A,y A,, son determinadas a
partir de los valores iniciales en la solucion total.
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Otro ejemplo para obtener la solucién homogénea de una relacién de recurrencia lineal con coeficientes

constantes es el siguiente:

E jemplo

Determinar la solucién homogénea para la sucesion de
Fibonacci.

Soluciones homogéneas

La relacion de recurrencia lineal homogénea con
coeficientes constantes de segundo orden para la su-
cesion de Fibonacci es:

4,=0d,1+3a,,00,—d,1—3d,,=0
Entonces, la correspondiente ecuacion caracteristica
es:
N=A=1=0
la cual tiene dos raices caracteristicas distintas:

s 14
A= 5 Y &= TS
de donde se obtiene, por la forma general para cuan-
do todas las raices caracteristicas son distintas, que la

solucion homogénea correspondiente es:

a@:A1H;E +A21"2\/g

donde las dos constantes A, y A, seran determinadas
a partir de los valores iniciales a, =1y a, = 1en la so-
lucion total.

En los ejemplos anteriores todas las raices caracteristicas son diferentes; ahora bien, en el siguiente solo

existe una raiz de multiplicidad.

E jemplo_

Determinar la solucion homogénea de la relacion de
recurrencia lineal con coeficientes constantes:

a,+ 9a, ,+ 27a, ,+ 27a, ;=0

La ecuacion caracteristica asociada a la relacion de
recurrencia es:

N+ N+ 27\ +27=0

la cual tiene una raiz caracteristica triple, ya que al fac-
torizar la ecuacion caracteristica se tiene que:

A+3)AN+3)N+3)=N+3P=0
Esto es:
N=XN=X\=-3
de donde se tiene, por la forma general para cuando

existen raices de multiplicidad, que la solucién homo-
génea correspondiente es:

a = (A]n2 +An+ A3>(—3)n

donde las constantes A;, A, y A; se determinaran a par-
tir de los valores iniciales en la solucion total.
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Pero, también puede darse el caso de que al determinar las raices caracteristicas se obtengan alguna raiz
de multiplicidad y otras diferentes.

E jemplo_

Determinar la solucion homogénea de la siguiente re- | La ecuacion caracteristica asociada es:
lacion de recurrencia lineal con coeficientes constan- NN+ T6N—T12=0
tes:

y las raices caracteristicas son:

>\]:>\2:2,y>\3:3
En consecuencia, combinando las dos formas genera-
les, la solucion homogénea es:

a,—7a,.,+16a,_,—12a, ;=0

all = (An+A)2" + A3

donde las constantes A;, A, y A; se determinaran a par-
tir de los valores iniciales en la solucion total.

4.5 Soluciones particulares

En este punto, es importante hacer notar que no hay un procedimiento general para determinar la solucién
particular de una relacién de recurrencia lineal con coeficientes constantes. Sin embargo, para ciertas fun-
ciones f(n), tales como polinomios de grado t en n y potencias de constantes, se conocen formas generales
de soluciones particulares.

A continuacioén, se analizan algunos de los principales casos en los cuales aparecen con mayor frecuen-
cia,al determinarla solucién particular de las relaciones de recurrencia lineales con coeficientes constantes.

Caso 1
Cuando f(n) es de la forma de un polinomio de grado t en n, es decir:

fm=Cn* +Cn" + - +Cn+Ciyy

donde los C; € R son los coeficientes del polinomio, entonces la solucién particular correspondiente
tiene la forma:

Ant+An" 4+ AN+ AL,

donde las A; son constantes a determinar.

E jemplo

Encontrar la solucion particular para la relacion de recurrencia lineal con coeficientes constantes siguiente:

a,+5a, +6a, ,=3n*—2n+5 (i)

»
Solucion

Como f{n) tiene la forma de un polinomio de grado 2 en n, entonces la solucion particular tiene la forma:
ANt 4+ An+ A, (ii)
donde A, A, y A, son constantes a determinar.
Al sustituir la expresion (ii) en el lado izquierdo de (i) se obtiene que:
AN® + An + A+ 5A (0 — 1) + 5A,(n — 1) + 5A; + 6A(n — 2)° + 6A,(n — 2) + 6A,
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. Soluciones particulares

Continda
lo que puede simplificarse como:
AN + (= 34A; + 12A,)n + (29A, — 17A, + 124,)
Ahora bien, si se compara (iii) en la parte derecha de (i) se obtienen las siguientes ecuaciones:
12A,=3
—34A, +12A, =2
29A, —17A, +12A, =5

(iii)

donde:
1
A=—
4
_B
Y
167
f
288
Por tanto, la solucion particular es:
= Lppy B 167
4 24 288

Caso 2
Cuando f(r) es una constante, la solucién particular es una constante A.

E jemplo |_Solucién

Encontrar la solucion particular para la relacion de re-
currencia lineal con coeficientes constantes siguiente:

a,—5a, ,+6a, ,=8

Puesto que f{r) es una constante, la solucion particular
también lo es, asi que dicha constante es A.

Al sustituir A en la parte izquierda de la relacion de

recurrencia, se tiene que:

A —5A +6A =38
Simplificando se tiene que:
2A=38
o bien:
A=4

Por tanto, la solucion particular es:

a,(f)=4

Caso 3
Cuando f(n) tiene la forma:
Ca

la correspondiente solucién particular tiene la forma:

Aa"
donde C € R, y A es una constante a determinar, siempre y cuando o no sea una raiz caracteristica
de la relacién de recurrencia lineal con coeficientes constantes.
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E jemplo/ |_Solucion

Encontrar la solucién particular para la relacion dere- | La forma general de la solucion particular es:
currencia lineal con coeficientes constantes siguien- A4 (i)
tes:

Sustituyendo (ii) en el lado izquierdo de (i) se tiene
an+50n—1+6an—2:84'4n (I) que:

A4" + 5A4" 4 6A4"?

que se puede simplificar como:
21

Z A4 (iii)
Comparando (iii) con el lado derecho de (i), se tiene
que:
A y—s4
o bien: 8
A=32
Por tanto, la solucion particular es:
a’=32.4"

Caso 4
Cuando f(n) es de tipo:

an

la correspondiente solucién particular tiene la forma:
Anm—lan

siempre que « sea una raiz caracteristica de multiplicidad m — 1 de la relacién de recurrencia lineal
con coeficientes constantes.

E jemplo |_Solucién

Encontrar la solucion particular para la relacion dere- | Como 2 es una raiz caracteristica de multiplicidad 1,
currencia lineal con coeficientes constantes siguiente: | entonces la forma general de la solucion particular es:
a,—2a, ,=6-2" (i) An2" (if)

Si se sustituye (ii) en el lado izquierdo de (i), se obtiene:
An2" — 2A(n — 1)2"

Simplificando:
A" (iii)
y comparando (iii) con el lado derecho de (i), se tiene
que:
A2'=6-2"
o lo que es lo mismo:
A=6

Por tanto, la solucion particular es:

a? =6n2"
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Soluciones particulares

Caso 5
Cuando f(n) es de tipo de un polinomio de grado t en n por ", es decir:

(Cn°+Cnt 4 - + Cin + Cypg)a”

donde los C; € R son los coeficientes del polinomio; entonces, la correspondiente solucién particular
tendra la forma:

(AM + AN + -+ An+ Ay g)d"

donde las A; son las constantes a determinar, siempre y cuando a no sea una raiz caracteristica de la
relaciéon de recurrencia lineal con coeficientes constantes.

E jemplo |_Solucién

Encontrar la solucion particular para la relacion de re- | En este caso, la forma general para la solucion par-
currencia lineal con coeficientes constantes siguiente: | ticular es:

a, +3d, = 9n2" (i) (An +A)2" (if)

Ya que 9n es un polinomio de grado 1y al sustituir (if)
en el lado izquierdo de (i) se tiene que:

(An +Ay)2" + [Affn — 1) + A2

lo que se puede simplificar como:

 adchd e A 10
2 2 3
Comparando (iii) con el lado derecho de (i) se obtie-
nen las siguientes ecuaciones:

(iii)

e

[ElEla=o
de donde se obtiene que:
A=6yA,=2
Por tanto, la correspondiente solucion particular es:

a? = (6n 4 2)2”

n

Caso 6
Cuando f(n) es de tipo de un polinomio de grado t en n por o, es decir:

Cn* +Cn 4 - 4 Cn + Cpg)a”

donde los C; € R son los coeficientes del polinomio, entonces la correspondiente solucién particular
tendra la forma:

AN + AN 4+ AN+ AL )"

donde las A; son las constantes a determinar, siempre y cuando « sea una raiz caracteristica de mul-
tiplicidad m de la relacién de recurrencia lineal con coeficientes constantes.
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130 cCapitulo 4 Relaciones de recurrencia .

E jemplo/ |_Solucion

Encontrar la solucién particular para la relacion dere- | Ya que 2 es una raiz caracteristica de multiplicidad

currencia lineal con coeficientes constantes: m = 2, entonces la forma general que tiene la solucion
a,—4a, ,+4a, ,=(n+12" (i) particular es:

nf(An + A,)2" (i)

Al sustituir (ii) en el lado izquierdo de (i) se obtiene
que:

(AN +A) 2"+ (n—1)2[An — 1)+ A2+
(n—2)2[A(n—2)+A]2"?
Al simplificar queda:
6AN2" + (— 6A, + 24,)2" (iii)

Al comparar (iii) con el lado derecho de (i) se obtienen
las ecuaciones:

6AN2" =n2"
(—6A, +2A,)2"=2"

o lo que es lo mismo:

6A, =1
— 6A +2A, =1
donde se tiene que:
1
A= g yA =1

Por tanto, la correspondiente solucion particular es:

a? :nz(ﬂ—H)Z”
6

4.6 Soluciones totales

s . . .. . h s,
Para obtener la solucién total, es necesario realizar la suma de la solucién homogénea al y la solucién par-
ticular a”; es decir:

a, =a’ +a?

n

Ademas de determinar las constantes A, A,,..., A, de la solucién homogénea.
Para una relacién de recurrencia de k-ésimo orden, las k constantes de la solucién homogénea pueden
determinarse mediante los valores iniciales:

Ag, Aq,- -+, A1

Pero, dichos valores deben ser consecutivos.
Sitodas las raices de la relacién de recurrencia son distintas, entonces la solucién total es de la forma:

a, = AN + AN +-+ARN +p(n)
donde p(n) es la solucién particular.
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R Soluciones totales [ 131

Ademas se tiene el siguiente sistema de ecuaciones lineales:
G, =A, +A,++A +p(0)
=AN+AN++AN+D(1)
A, =AN+AN++AN+p(2)

Gy =AN T+ AN+ AN P(R-1)

de k ecuaciones, que sirven para obtener las constantes:

Ag Ay, Ay
Determinar la solucion total para la relacion de recu- | En paginas anteriores, en este mismo capitulo, se ob-
rrencia asociada a la sucesion de Fibonacci. tuvo la solucion homogénea de la relacion de recu-

rrencia asociada a la sucesion de Fibonacci, la cual es:

_ 15 F—ﬁT
n 1 A2

L 2 2
Con valores inicialesa, =1y a,=1.

La forma general para la solucion total es:

h p
a, = aﬁ) +a,(,)
Pero, como la relacion de recurrencia para la sucesion
de Fibonacci es lineal homogénea con coeficientes
constantes, entonces no tendra solucion particular.
Por tanto, la forma de la solucion total es:

1+J_ h«f
_A“[ A5

Ahora bien, al utilizar los valores iniciales se obtiene el
siguiente sistema de ecuaciones:

:AF*ﬁw 5T
1T 2

.+&F} |

%F;ﬁy

=l
14++/5
a, = A][ \/_ +
2
Sustituyendo los valores iniciales se tiene que:

1=A+A,

]:Ar+ﬁ1
2

Ahora, al despejar A,y A, de las ecuaciones anteriores
se tiene que:
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Continua

Por tanto, la solucion total para la relacion de recu-
rrencia asociada a la sucesion de Fibonnaci es:

111 1 =T

an:_— _—

Bl 2 Bl 2
. :;(Wﬁ]"_[]—ﬁ]")
L2 ] 2 ]

n

o bien:

Otro buen ejemplo es determinar la solucién total del problema de las torres de Hanéi.

E jemplo

Determinar la solucion total para la relacion de recu-
rrencia asociada al problema de las torres de Hanai.

Como se vio antes, la relacion de recurrencia lineal
con coeficientes constantes asociada al problema de
las torres de Hanoi es:

a,=2a,_,+1
o bien:

a,—2a, =1
Con valor inicial a, = 1.
La ecuacion caracteristica asociada a la relacion de
recurrencia es:

A—2=0
la cual tiene una Unica raiz caracteristica:
=2

de donde se tiene, por la forma general para cuando
todas las raices caracteristicas son distintas, que la so-
lucion homogénea correspondiente es:

a(nh) =A-2"

Dado que f{r) es una constante, la solucién particular
también lo serd; dicha constante es A. Ahora bien, al
sustituir A en la parte izquierda de la relacion de recu-
rrencia, se obtiene:

A—2A=1
—A=1
A=—1

por lo que la solucion particular es:
af,p) ==

Como la forma general para la solucion total es:

a =g 4q?

n n n
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. Soluciones totales [ 133

Contintia |_Solucion

Entonces, se tiene que:
a,=A 2" —1
Utilizando el valor inicial, se tiene la ecuacion siguiente:
a=A-2—1
o bien:
1=A-2-1
donde:
2=2A
A=1
Por tanto, la solucion total es:
a,=2"—1
E JEMPLO
Sea la relacion de recurrencia:
a,~+5a, ,+6a, ,=42-4" (i)

Con valores iniciales a, =19 y a, = 56.
Por tanto, la ecuacion caracteristica asociada a la relacion de recurrencia es:
N +5N+6=0
la cual tiene dos raices diferentes:
N=—3yN=-2

de donde se obtiene, por la forma general para cuando todas las raices caracteristicas son distintas, que la solucion
homogénea correspondiente es:

o) = A(=3) + A, (=2
Por tanto, la forma general de la solucién particular es:

A4" (ii)

Al sustituir (ii) en el lado izquierdo de (i) se tiene que:

A4" 4+ 5A4" 4 6A4"
Lo que se puede simplificar como:

‘—%)AM (i)
Comparando (jii) con el lado derecho de (i), se tiene que:
(—ﬂ A =42
S A=
donde:
A=16

Por tanto, se tiene que la solucion particular es:
a” =16 4n

n
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Continua
Por dltimo, la solucién total queda como sigue:

a,=A(=3)"+ A (—2)"+16- 4"
Utilizando los valores iniciales se tiene el siguiente sistema de ecuaciones:

Go = A\(=3 + Ay (2P +16.- 4°

a=A(=3) + A, (=2) +16 - 4

Al sustituirlos se tiene que:

19=A+A,+16

56 = — 3A, — 2A, + 64
donde se tiene que:
A=2yA, =1
Asi, la solucion total queda como sigue:
a,=2- (=3 + (=2 +16- 4"

E JEMPLO

Encontrar la solucion total de la relacion de recurrencia siguiente:
a,—7a, ,+10a,_ ,=73" (i)

con los valores inicialesa, =0y a, = 1.
La ecuacion caracteristica asociada a la relacion de recurrencia es:

N—7Xx+10=0
En esta se tienen dos raices diferentes:

N=2y N\ =5

de donde se obtiene, por la forma general para cuando todas las raices caracteristicas son distintas, que la solucion
homogénea correspondiente es:

a = A () + A5y
La forma general de la solucion particular es Ca/; entonces, la correspondiente solucion particular tiene la forma:
A3 (if)
Al sustituir (ii) en el lado izquierdo de (i) se tiene que:
A3 —7A3 10447
la cual se puede simplificar como: 5
(—;)A?)” (ifi)

Al comparar (iii) con el lado derecho de (i), se tiene que:
e
9

A=—2
2

donde:

Por tanto, la solucion particular es:

o) =[-=) 6y
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o Soluciones totales

Continua
Entonces, la solucion total es:
n n 9 n
a, =A@+ AP — (2|

Ahora, al sustituir los valores iniciales se tiene que:

O=A+A,— 2
2w
1=24,+ 54, — &
donde se obtiene que: 8
A=f3]
1
i

Por tanto, la solucion total es:

=[5l +{gler-zler

Sialgunas de las raices de la ecuacién caracteristica son raices multiples y si \, es una raiz de multipli-
cidad m, donde 2 < m <k, y k es el grado de la relacién de recurrencia lineal con coeficientes constantes,
entonces la parte de la solucién total relacionada con la raiz \; es de la forma:

a, =(An" AN 4t A+ AL )W)+ p(n)

donde A, A,,..., A, son constantes y p(n) es la solucién particular.

E JEMPLO

Encontrar la solucion total de la relacion de recurrencia:
a,—4a, ,+4a, ,=0
con los valores iniciales a, =1y a, = 3.
La ecuacion caracteristica asociada a dicha relacion de recurrencia es:
N—4N+4=0
la cual tiene una raiz caracteristica doble, ya que al factorizar la ecuacion caracteristica se obtiene que:
N=2A—=2)=(N—2\=0
esto es:
N=X\=2
donde se tiene, por la forma general para cuando existen raices de multiplicidad, que la solucién homogénea co-
rrespondiente es:

al) = (An + A)2"

En este caso no existe solucion particular, ya que es una relacion de recurrencia lineal homogénea con coeficientes
constantes; entonces, la solucion total es precisamente:

a,=(An+ A,)2"
donde se tiene que N, = 2 es una raiz de multiplicidad m = 2.
Ahora, al sustituir los valores iniciales se tiene que:
1=A,
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Continua
3=2A,+ 24,
donde: 1
2
A =1
Por tanto, la solucion total queda:
n
a,= (—)—H 2"
2
.l n n
= —)nZ +2
2
= 2—)+2”
2

nR") 27" +2"
n2" ) +2"

Desde los inicios de la historia de las matematicas se han estudiado las propiedades de las progresiones y
de las sucesiones de recurrencia, mismas que han sido aplicadas en diversas areas de las matematicas, las
clencias e incluso en el arte y la musica.

El estudio de las progresiones aritméticas es paralelo al de las progresiones geométricas por cuanto
las propiedades de estas ultimas emanan de las primeras, sin més que convertir las sumas en productos,
diferencias en cocientes y el producto por un numero natural en una potencia de exponente natural.

Toda relacién de recurrencia para una sucesiéon de recurrencia es simplemente una férmula que expresa
cada términoen funcién de unoomésdelos términos que le preceden. Los valores de los términos necesarios
para empezar a calcular la sucesion de recurrencia son los valores iniciales.

Ademads, dada su naturaleza, las relaciones de recurrencia ponen de manifiesto la necesidad de deter-
minar, de manera explicita, mediante algiin método o técnica, el término n-ésimo de la sucesién que repre-
sentan.
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41

4.2.

43

44

4.5

4.6

47

4.8

49

Dada la sucesion {a,} = (1,4, 7,10, ...}, responder
lo siguiente:

a) (Qué tipo de progresion es?

b) {Cual término tiene el valor de 887

Dada la sucesion {a,} = (2, 6,18, 54, ...}, responder
lo siguiente:

a) (Qué tipo de progresion es?

b) {Cual término tiene el valor de 118 0987

Determinar el término a;, de una progresion

geométricasia, =3y a, = 3"

Determinar la razén comun r de la progresion
geometrica:

X X X
L

Una pelota se deja caer desde 2 048 metros de al-

tura. Su elasticidad es tal que rebota hasta llegar
a3 partes de la altura desde la cual cayd. (A qué
altura llega la pelota en el quinto rebote?

Dada la sucesion {a,} = {1, 1,1, 1, ...}, determinar
qué tipo de progresion es.

Dada la sucesion{a,} ={3,5,7,9, ...}, responder lo
siguiente:

a) {Qué tipo de progresion es?
b) ¢Cual término de la sucesion tiene el valor de
163?

Determinar la razén comdn r de la progresion
geomeétrica:

(an} — (2’ 2X+], 22x+1’ 23x+1’ }

Determinar la razén comdn r de la progresion
geomeétrica:

{an} = {]O, 102x71y -|04x73' 106X7 5’ }

4.0 Dadas las siguientes sucesiones, determinar si son

progresiones aritmeéticas o geométricas:

4
ﬁ,. ..
b) {b,} = {100(1.05),100(1.07), 100(1.09), 100(11), ...}
) {¢)=1{1.3,6,10,...}

a) {an}: 2sen<, 2,

41

412

413

414

415

416

4.17

Problemas propuestos

d) {d,} = {log(10000), log(1000), log(100), ...}

T 11
el ie. ;=11 = = —
feb={r 233}
Determinar el término g, de una progresion arit-
mética si:

ag=47y dy, =53

Determinar el término as de una progresion
geometrica si:

a=4ya,=6

Calcular el primer término a, de una sucesion
geometrica cuyos términos son:

ag= '|010X79 y as= '|08X77

Calcular el primer término g, de una sucesion
aritmética cuyos términos son:

Go=X+37yay=x+ 42

Obtener el octavo término ag de la progresion
geomeétrica:

{a,} = (300, — 30,3, ..)

Sabiendo que, de una progresion geométrica,
el término a; = % yr= % Determinar el valor del
término a,.

Dadas las siguientes sucesiones, determinar si
son progresiones aritmeticas o geométricas:

a) {a})={0,—-11,-1,.)
b) (b} = (96, 48,24,12,...}
c) {c,})={2,—4,8,—16,...}
d) {d,} = {2, 2", 22+ 23}
e) {e.}=(1,1,2,35,..}
f) {£,) = {25(1.03), 25(1.07), 25(1.011), 25(115), ...}
g) (g} = (25(1.01), 25(1.04), 25(1.09), 25(116), ...}
h) {h,) = {25(1.05), 25(1.05)%, 25(1.05)?, 25(1.05)%, ...}
i) {i,) = (22, —44, 88, —176, ...}
i) ) = (log,(2), log,(4), log:(8). ...
k) {(k.}={1,(—x/3), (x*/9), (— x*/27),...}
) {(,} ={In(3), In(9), [n(27), In(81), ...}
m) {m,) = {12(2.01), 12(2.04), 12(2.08), 12(2.13), ...}
n) {n,) = {12(2.01), 12(2.01% 12(2.01, 12(2.01)", ...}
o) {0,) = {12(2.01), 12(2.02), 12(2.03), 12(2.04), ...}
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418 Calcular el término g, de una sucesion aritmética
Cuyos términos son:

01:24—\/5)/02:3

419 Determinar la razéon comun r de la sucesion
geométrica 10, 10> 1, 10™ 1 109+,

4.20 Sabiendo que, de una progresion aritmética, los
términos a; = 47 y a, = 53, calcular el valor del
término a;.

4.21 Sealaprogresion geométrica{a,}={3,6,12,24,...}.
Calcular el producto de los primeros 5 términos.

4.22 En la progresion geométrica {a,} = (% 15 1.},
si se supone que la misma consta solo de 10
términos.

Calcular:
a) Elvalor del dltimo término.
b) La suma de los 10 términos.
c) El producto de todos los términos.

4.23 En una progresion aritmética, el primer término
a, vale 4 y el dltimo 16. Si se sabe que la diferen-
cia comun d vale 2. {Cuantos términos tiene la
progresion?

4.24 Calcular el valor del término ay, en forma de
fraccion, de la progresion:
{a.)=(3%3°3%37°.)

4.25 Calcular la suma de los 20 primeros términos de
la progresion aritmética:

(a,}=1{(2.4,6,8,..)

4.26 En la progresion aritmética {a,} = {1, 3, 5, 7, ...},
la suma de todos sus términos es 196. iCuantos
términos tiene la progresion?

4.27 Calcular la suma de los 1000 primeros ndmeros
naturales.

4.28 Calcular la suma de los 1000 primeros ndmeros
impares.

4.29 Calcular la suma de los 1000 primeros ndmeros
pares.

4.30 Entre 65 y 165 queremos interpolar 9 medios arit-
méticos. Calcular:

a) La diferencia comtnd.

b) La suma de todos los términos.

431 Entre —5 y —35 se quieren interpolar 5 medios
aritmeéticos.

a) Determinar la diferencia comun d para inter-
polar dichos términos.
b) Escribir la progresion resultante.

432 Las edades de 11 personas estan en progresion
aritmética y la suma de todas estas es de 561
anos; si la mayor de dichas personas tiene 86
anos, {cuantos anos tiene la mas joven?

4.33 Sea la progresion geométrica:

{an}:{zﬁ,],@,..}

Calcular:

a) La razén comdn .

b) El valor del término a..

c) La suma de los 7 términos.

4.34 | a suma de dos términos consecutivos de la pro-
gresion geométrica {a,} = {6, 18, 54, 162, ...} es
157 464. (Cuales son estos términos?

4.35 En la progresion geométrica {a,} = {%, % 3,6,..},
el producto de dos términos consecutivos es
1152. ¢{Cuales son estos términos?

4.36 Entre 11 y 5632 se quieren interpolar 8 medios
geomeétricos.

a) Determinar la razon comun r para interpolar
dichos términos.
b) Escribir la progresion resultante.

4.37 La suma de los términos infinitos de una pro-

gresion geométrica indefinida de razén comun
1

r=;es igual a1. ¢Cuanto vale el primer término?

4.38 Sean las siguientes relaciones de recurrencia:

)
b) 7= Td, 41— 0,
c) a,=ma,—1—2%_,4+3n
d) a,=2"a

Determinar cual es lineal homogénea con coefi-
cientes constantes.
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4.39 Sean las siguientes relaciones de recurrencia: 4.43 Determinar la formula explicita que representa

cada una de las siguientes progresiones.
a) a,= 30;’771 + d, ) — 80n73 g p g

b) 2a, = 2a, ,+ n2" a) 1,3,5,7,

c) 4a,=3a, ,-3a, , b) 17,14,11,8

d) a,=5na,_,— 2a,_, — 6n> c 1, % ‘1‘ 513

Determinar cual es lineal homogénea con coefi- d) 1,9,25,49, ..

cientes constantes. 4.44 Sean las siguientes sucesiones de recurrencia:
4.40 Todas las siguientes relaciones de recurrencia son a) —9,-3,3,9,..

lineales con coeficientes constantes EXCEPTO: b) —1,3,3,15,.

a) a,—9a, ,+7a, ,—2a, ;=0 c) —9 —3,9 —2457,..

b) a,+3a,1+a,_,=6n"+2n*+n+3 d) —9,3,-1,1/3,.

c) a,+ 2na, ,—5a, ,=6n’+5 e) —9,-3,3,45/8,

d) a,— 2a, ,=n2" Y sean las S|gU|entes relaoones de recurrencia:
4.41 Sean las siguientes relaciones de recurrencia: 1) a,=(—a,.)/3

2) a,= (120n \—12a, ,+a,)/8

a) nz% a,+ sen— 5 a,_,=In(5a,_, 3) a,=2d, ,—a,

b) a, + 5na,_, — 2a,_,=6n2+5 4) a,=—3a, ,+8la, ,— 243, ,

c) 4a,+3d, - 3a, ;=0 5) a,=2a,_,+3a,_,

d) a,s=(a,,+a,+7a,_,)/5
e) 2a,—2a, ,=n2"+3

f) a’+4a, ,+2a, ,=6n2+5
g) a,—3a,,+a,_,—8a,_;=0
h) a,=dn-dny

Hacer corresponder cada sucesion de recurren-
cia con su respectiva relacion de recurrencia.

4.45 Encontrar el valor del término a, en la sucesion
generada por a, = (2n — 1)

i) ay =0, +4d,_, — 70, _; 4.46 Sean las siguientes sucesiones de recurrencia:
j) @y =5n%+2+5nd,, - 2, , a) 2,6,10,14, ..
K) a,=0d,1+3d,,-d, 3+ 0,4 b) 2,6,12,20, ...
) a,=(3"—4a,,)3 ) 2,4,6,10, ...
Determinar cuales de estas son: d) 2,5,10,17,
1) Lineales con coeficientes constantes (RRLCC). €) 2,9,37,148, ...
2) Lineales homogéneas con coeficientes cons- f) 2,6,17,50

tantes (RRLHCC).

3) Ademas, determinar el orden de las que lo Y sean las siguientes relaciones de recurrencia:

sean. )a,=a,,+a,,
442 En cada uno de los siguientes casos se da una 2) 0y =ny+ 20y
formula explicita. Determinar el término indica- 3) a,=d,+2n
do en cada caso. 4) a,=a,,+4
a) a,=2n+3; a,= 5) a,=3a,,—1
b) an:n/(n—l—]); 05: 6) an:4an,]+]
Qa,=@2n-1% a,= Hacer corresponder cada sucesion de recurren-
d) a,=(=3)" a, = cia con su respectiva relacion de recurrencia.
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4.47 Un concurso tiene 5 premios que suman un total
de 5000 pesos. Entre los premios sucesivos habra
una diferencia de 100 pesos. Calcular el valor del
quinto premio.

4.48 Sea la relacion de recurrencia lineal con coefi-
cientes constantes:

2
= @y = M= = @

Determinar su solucion homogénea.

4.49 Sea la relacion de recurrencia lineal con coefi-
cientes constantes:

2a,=7a, ,—3a, ,+ 2"

Determinar la ecuacion caracteristica asociada.

4.50 Sea la relacion de recurrencia lineal con coefi-
cientes constantes:

\/a = \V arﬁ] + an72

Determinar la ecuacion caracteristica asociada.

4.51 Determinar la relacion de recurrencia con lineal
con coeficientes constantes, si\; =3y X\, =2 son
las raices caracteristicas asociadas a la ecuacion
caracteristica.

4.52 Sea la relacion de recurrencia lineal con coefi-
cientes constantes:

a,—6a,_,+5a, ,=0

Determinar su solucion homogénea.

4.53 Sea la relacion de recurrencia lineal con coefi-
cientes constantes:

a,—3a,,— 2a, ,=0
Determinar la ecuacion caracteristica asociada.
4.54 Determinar la relacion de recurrencia lineal
con coeficientes constantes, si \; =5y X\, =1

son las raices caracteristicas asociadas a la ecua-
cion caracteristica.

4.55 Dada la relacion de recurrencia lineal con coefi-
cientes constantes:

a,—5a,_,+6a,_,=0

Determinar su solucion homogénea.

4.56 Dada la ecuacion caracteristica:
N +8\+16=0

Determinar la relacion de recurrencia lineal con
coeficientes constantes correspondiente.

4.57 Dada la relacion de recurrencia lineal con coefi-
cientes constantes:

a,— 34,1 — 2a,_,—3a, ;=0

Determinar la ecuacion caracteristica correspon-
diente.

4.58 Determinar la relacion de recurrencia lineal
con coeficientes constantes, si \; =Ty X\, = 2
son las raices caracteristicas asociadas a la ecua-
cion caracteristica.

4.59 Dada la relacion de recurrencia lineal con coefi-
cientes constantes:

a,—4a,_,+3a,_,=0

Determinar su solucion homogénea.

4.60 Dada la relacion de recurrencia lineal con coefi-
cientes constantes:

2a,=7a,_,—3a, ,—2"
Determinar la ecuacion caracteristica asociada.
4.61 Determinar la relacion de recurrencia lineal con
coeficientes constantes, si \; =3y \, = — 2

son las raices caracteristicas asociadas a la ecua-
cion caracteristica.

4.62 Dada la relacion de recurrencia lineal con coefi-
cientes constantes:

a,~+ 5a,_,+6a, ,=0

Determinar su solucion homogénea.

4.63 Determinar la relacion de recurrencia con coe-
ficientes constantes, si \y =1y X\, = — 2 son las
raices de la ecuacion caracteristica.

4.64 Dada la relacion de recurrencia lineal con coefi-
cientes constantes:

2a,=7a, 1+ 3a, ,— 2

Determinar la ecuacion caracteristica asociada.
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4.65 Dada la relacion de recurrencia lineal con coefi-
cientes constantes:

an + 3(],,,] + 30,,,2 + an73 = O

Determinar su solucion homogénea.

4.66 Determinar la relacion de recurrencia lineal con
coeficientes constantes si \; = X\, = 1son las rai-
ces caracteristicas de la ecuacion caracteristica.

4.67 Dada la relacion de recurrencia lineal con coefi-
cientes constantes:

an == 3al’774

Determinar la ecuacion caracteristica asociada.

4.68 Dada la relacion de recurrencia lineal con coefi-
cientes constantes:

a,—n=3n*+a, ,

Determinar su solucion homogénea.

4.69 Determinar la relacion de recurrencia lineal con
coeficientes constante si \; =Ty X\, = 4 son las
raices caracteristicas de la ecuacion caracteristica.

4.70 Dada la relacion de recurrencia lineal con coefi-
cientes constantes:

2a,=7a, ,—3a, ,+ 2"

Determinar su solucion homogénea.

4.71 Dada la relacion de recurrencia lineal con coefi-
cientes constantes:

3a,=3"—a,_,+7a,_,

Determinar la forma de la solucién particular.

4.72 Dada la relacion de recurrencia lineal con coefi-
cientes constantes:

3a,=3n—a, +7a,_,

Determinar la forma de la solucion particular.

4.73 Dada la relacion de recurrencia lineal con coefi-
cientes constantes:

a,—2a, ,=73"

Con valor inicial a, = 3.

Determinar su solucion total.

4.74 Dada la relacion de recurrencia lineal con coefi-
cientes constantes:

a,—2a, ,=2"

Con valor inicial a, = 2.
Determinar su solucion total.

4.75 Dada la relacion de recurrencia lineal con coefi-
cientes constantes:

a,—a, =3n*—n

Con valor inicial ay = 3.

Determinar su solucion total.

] Problemas reto

1. En una progresion geométrica a, = 4 y la razén
comun r = 3. La suma de dos términos consecu-
tivos es 1296 y el producto de estos mismos tér-
minos es 314 928.

2. Determinar cuales son estos dos términos conse-
cutivos.

3. Dada la relacion de recurrencia lineal con coefi-
cientes constantes:

gan - 60,,,1 + d,_) = 3(20) + 7(3n)
Con valores iniciales a, =1y a, = 4.
Determinar su solucion total.

4. En algunas ocasiones, una relacién de recurren-
cia, que en apariencia no es lineal con coeficien-
tes constantes, puede transformarse en una rela-
cion de este tipo haciendo un cambio de variable
adecuado.

En los siguientes problemas, hacer el cambio de
variable apropiado para después obtener la solu-
cion total a la relacion de recurrencia resultante.

a) Sea la relacion de recurrencia:

\/E = \/ bn+1 + 2 \V bn—Z

cuyos valores iniciales son by = b, =1.

Determinar su solucion total.
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142 Capitulo 4 Relaciones de recurrencia

Sugerencia: hacer el cambio de variable

V2.

cuyos valores iniciales son ¢, =8y ¢, = %

Determinar su solucion total.

Sugerencia: hacer el cambio de variable x, = log,¢,.
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Combinatoria

Objetivos

m Conocer los principios basicos de conteo.
m Entender la diferencia esencial entre permutaciones y combinaciones para resolver problemas de conteo.

m Aplicar los métodos de conteo para resolver problemas de la vida cotidiana.
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Capitulo 5 Combinatoria .

5.1 Introduccion

En este capitulo se estudian las diferentes técnicas o reglas para contar los elementos de un conjunto espe-
cifico, para lo cual estos deben cumplir una condicién o caracteristica especifica. El estudio y la aplicaciéon
de las técnicas o reglas de conteo es lo que en el lenguaje propio de las matematicas se conoce como com-
binatoria.

Los primeros indicios del surgimiento de la combinatoria datan del anno 2200 a.C., con el problema de los
cuadrados magicos (arreglos numéricos que tienen la propiedad de que la suma de todos los elementos de
cualquier columna, renglén o diagonal siempre es el mismo ntmero). El problema de los cuadrados magicos
fue encontrado por primera vez en un libro de origen chino, el cual era de caracter religioso. No obstante, no
fue sino hasta principios del siglo xviir que se fundé una auténtica escuela de matematica combinatoria,
que fue creada y liderada por Leonhard Euler.

En sus publicaciones acerca de la particién y descomposicién de enteros positivos en sumandos, Euler
estableci6 las bases del método de las funciones generadoras. De igual modo, Euler planted y resolvid el
problema de los Puentes de Koénigsberg mediante el uso, por primera vez, de los conceptos y métodos de la
teoria de grafos. El problema de los cuatro colores (planteado a mediados del siglo x1x), que consiste en
demostrar que cuatro colores son suficientes para pintar las regiones de un mapa, de tal manera que to-
das aquellas regiones con frontera tengan asignado un color distinto, pas6 de ser un mero acertijo mate-
matico a una fuente de importantes problemas y resultados en teoria de graficas de interés tanto tedrico
como en aplicaciones.

Hoy dia, dicho acertijo constituye uno de los problemas teéricos mas desafiantes en la historia de la
combinatoria, ademés de que se considera el detonante de que la combinatoria haya alcanzado una gran
importancia tanto en la investigacién tedrica como en diversas aplicaciones de ingenieria.

P R R R R R R R R A R I R A I R T R R R

Leonhard Paul Euler cursé estudios en la universidad de Basilea, Suiza, con el matematico suizo Johann
Bernoulli, donde obtuvo el grado de doctor a la edad de 17 afos. En 1727, invitado por la emperatriz de
Rusia, se integré como miembro del profesorado de la Academia de Ciencias de San Petersburgo, donde
impartio las asignaturas de fisica en 1730 y de matematicas en 1733. En 1741, se convirti6 en profesor de
matematicas en la Academia de Ciencias de Berlin, a peticion del rey de Prusia, Federico el Grande. En
su obra Introduccion al analisis de los infinitos (1748), Euler realiz6 el primer tratamiento analitico com-
pleto de algebra, la teoria de ecuaciones, la trigonometria y la geometria analitica. Asimismo, en otras
de sus obras, también trat6 el desarrollo de series de funciones y formul la regla por la cual solo las
series convergentes infinitas pueden ser evaluadas de manera adecuada. También abordé las superficies
Figura5.1 Leonhard tridimensionales y demostré que las secciones conicas se representan mediante la ecuacion general de
Paul Euler (1707-1783), segundo grado en dos dimensiones.
matematico y fisico suizo. Euler es conocido en el mundo de la ciencia como poseedor de una asombrosa facilidad para los nu-
meros y del raro don de realizar calculos mentales de largo alcance. Como anécdota, se dice que en cierta
ocasion cuando dos de sus discipulos realizaban la suma de unas series de 17 términos y no estaban de acuerdo con los resultados en una
unidad de la quincuagésima cifra significativa, tuvieron que recurrir a Euler, quien repasé el calculo mentalmente y en poco tiempo llegd
al resultado correcto.
Euler también realizo aportaciones a la astronomia, [a mecanica, la dptica y la acustica. Entre sus obras mas destacadas se encuentran:
Instituciones del calculo diferencial (1755), Instituciones del calculo integral (1768-1770) e Introduccion al algebra (1770).
Antes de cumplir los 30 arios de edad perdid parcialmente la vision y se quedo casi ciego al final de su vida. Regresé a San Petersburgo
en 1766, donde murid el 18 de septiembre de 1783.
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5.2 Reglas de la suma y el producto

En combinatoria existen dos principios sencillos basicos que dan lugar a expresiones matematicas sofisti-
cadasparaelconteo' ” ' T T s o T et Aot o
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En esta seccién solo nos enfocamos en el estudio de la primera de estas, para lo cual, de nuevo, debe-
mos considerar que para cualquier conjunto finito S, se escribe |S| para denotar su cardinalidad; de esta
manera,|S| = |T| precisamente cuando Sy T tienen la misma cantidad de elementos. Observemos que |@| =0
vi{1,2,3,..,n}|=nVneN.

Principio o regla de la suma

El principio o regla de la suma puede enunciarse de la siguiente manera:
Si Sy T'son dos sucesos mutuamente excluyentes o disjuntos, es decir, que no se presentan al mismo tiempo,
el suceso S se puede realizar de m maneras y el suceso T de n maneras; ello significa que los sucesos So T
pueden realizarse de m + n maneras distintas. Este principio también puede extenderse a méas de dos sucesos
mutuamente excluyentes. Desde la perspectiva de las matematicas, el principio de la suma se escribe como:
ISUT| =S|+ T

siempre que Sy Tsean finitosy SN T'=@.

En general, si Sy T son dos conjuntos finitos no disjuntos, la cardinalidad de la unién de Sy T se puede
escribir como:

ISUT|=I|S|+|T|—|SNT|
La razén intuitiva por la cual se cumple la ecuacién anterior es que cuando se calcula |S| + |T| se estan
contando dos veces los elementos de SN T (una vez cuando se considera |S| y otra vez cuando se considera
[T]), por lo que debemos restar |[S N T| de la suma de |S| + |T| para obtener el valor exacto de |[SUT].

Cuando se considera el caso de conjuntos no disjuntos, el principio es mejor conocido como principio de
inclusién—exclusién. De manera grafica, la regla de la suma se muestra en la figura 5.2:

E jemplo. r )

Una biblioteca tiene 40 libros de texto de sociologia y 50 de antropolo-
gia. Determinar por el principio o regla de la suma de cuantos libros de
texto se dispone para conocer acerca de estos temas.

Por la regla de la suma, un alumno puede elegir entre 40 + 50 = 90

: N 4

libros de texto para aprender acerca de alguno de estos temas.

Figura 5.2 Representacion grafica de
la regla de la suma.

E jemplo_

En una escuela, 20 alumnos toman clases de computacion, 30 de fisica y 7 de ellos toman ambas asignaturas.
{Cuantos alumnos hay en total?

Sean:

C={xt-q-xesunalumno que toma la clase de computacion}

F={xt-q-xesunalumno que toma la clase de fisica}

Al aplicar la regla de la suma se tiene:
ICUF|=|C]+|F| - |CNT|=20+30—-70=43

De este modo, hay 43 alumnos en total.
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E jemplo

De 200 estudiantes que conforman la matricula de un plantel educativo, 50 toman el curso de matematicas dis-
cretas, 140 el curso de economia y 24 cursan ambas asignaturas. Como los profesores de ambos cursos programa-
ron examenes para el mismo dia, solo los estudiantes que no cursen ninguna de estas asignaturas podran asistir a
la fiesta programada para la noche. Determinar cuantos estudiantes pueden asistir a la fiesta.

|_Solucién |

Sean:

A, ={xt-q-xesalumno de matematicas discretas})

A, ={xt-q-xesalumno de economia}
Por la regla de la suma se tiene que:
|A U A,| = 50 + 140 — 24 = 166
Esto es, el nimero de alumnos que toman uno o ambos cursos.
Por tanto:
200 — 166 = 34

Entonces, 34 estudiantes son quienes pueden asistir a la fiesta en cuestion.

E jemplo

{Cuantos enteros en A ={1, 2, 3, ..., 1000} son divisibles entre 3 y/o entre 57

Sean:

Dy={n€ At q-nesdivisible por 3}
Ds. ={n€At-q-nesdivisible por 5}

En este caso, se busca |D; U Ds|, que no es tan obvio. Como puede verse, |D;| = 333; entonces, basta con dividir
1000 entre 3 y tomar la parte entera. De forma similar, se tiene que:

|Ds| =200
Ademas, se tiene que:
|D; N Dg| = |Dys| = 66
Por tanto:
ID, U Dy| = |Ds| — |Ds| — |Dy N Dy| = 333 + 200 — 66 = 467

Esto es, 467 nimeros de A son divisibles entre 3 y/o entre 5.

En muchas ocasiones, en matematicas es mucho mas facil contar los elementos de un conjunto que no
cumplen con la condicién requerida para restar dicho numero del total. A continuacién, se presenta un
ejemplo representati-=- '~ -
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E jemplo/

{Cuantos nimeros naturales menores a 1000 000 no son capicuas (capicta es un nimero que se lee igual de iz-
quierda a derecha que de derecha a izquierda; por ejemplo, 21312).

Sean:

U={neNt-q-n<1000 000}
A ={nt-q-nno escapicia}

Entonces, se desea calcular |A| pero esto es equivalente a |A| = |U| — |U — A|. Los elementos de U — A tienen
1,2,3,4,5 0 6 cifras.

Calculando por separado, seguin el nimero de cifras, se tiene que:

» Capicuas con una cifra: Hay 9 en total: 1,2, ..., 9.
e Capicuas con dos cifras: La segunda cifra debe ser igual a la primera; por tanto, hay 9 en total.

» Capicuas con tres cifras: La primera y tercer cifras deben ser iguales y distintas de cero. La eleccion de la
segunda cifra es independiente de las otras; entonces, se tiene en total: 9 x 10 = 90.

« Capicuas con cuatro cifras: Las Unicas que pueden elegirse ahora son la primera y la segunda cifras; ya que
la primera debe ser igual a la dltima y la segunda igual a la pendiltima, se tienen 9 elecciones posibles para
la primera cifra y 10 para la segunda. Esto es, en total 9 x 10 = 90.

Razonando de forma analoga se tiene que:

e Hay 9 x 10 x 10 = 900 capicuas de 5 cifras.
e Hay 9 x 10 x 10 =900 capicuas de 6 cifras.

Por tanto, el resultado deseado es:

JA| = |U| — |U — A| = 999999 — (9 + 9 + 90 + 90 + 900 + 900) = 998 001

E jemplo

{Cuantos numeros hay del 50 al 12 000, excluyendo los mdltiplos de 3 y de 57
En este caso, lo primero es analizar el problema: del 50 al 12000 hay 12000 — 50 + 1= 11951 nimeros. Entonces,
de esta cantidad se tiene que restar todos aquellos nimeros que son maltiplos de3y/o 5

Asi, sean:

N;={n€At-q-nesmiltiplode3y50 <n<12000}

Ns={n€At-q-nesmiltiplode5y50 <n <12000}
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entonces, la solucién se puede calcular a partir de:
11951 — [N, U N
Sea ademas:
N3 U Ns| = | N3| 4 | N3| — [N N N
Notese que ser multiplode 3 y de 5 es lo mismo que ser mdltiplo de 15, por lo que:
Nis={n € At-q-nesmidltiplode15y 50 <n <12000}
Ademas, se tiene que: [N, | < (12000/k) — (49/k) la division es entera.

Entonces:
|Ns| = (12 000/3) — (49/3) = 4000 — 16 = 3984
INs| = (12000/5) — (49/5) = 2400 — 9 = 2391
y:
[N;| = (12000/15) — (49/15) = 800 — 3 = 797.
Asi:

IN, U Ne| = 3984 + 2391 — 797 = 5578
Por tanto, la cantidad buscada es:

11951 — 5578 = 6373

E JEMPLO

Un instructor de ciencias de la computacion tiene cinco libros de cada uno de los cuatro siguientes lenguajes de
programacion: Basic, Fortran, Cy Pascal, por lo que puede recomendar cualquiera de estos 20 libros a un estudiante
interesado en aprender un lenguaje de programacion.

El ejemplo anterior muestra que se puede generalizar la regla de la suma.
Formalmente, si A,, ..., A, son n conjuntos finitos con cardinalidad |A4, ..., |A,|, respectivamente, se veri-
ficaquesiA={A, A,..., A} esuna particién del conjunto A entonces:

|Al = |Aq] + [Ag] + -+ + |A,]
O bien
AT UA U UA | =|Ag + [Ag] + - + A

Mas adelante, se retoma el estudio de la generalizacién de la regla de la suma cuando los conjuntos no son
necesariamente disjuntos; es decir, el principio de inclusién-exclusién.

Regla del producto (principio de eleccion)

El segundo principio basico del conteo es el principio de eleccién o regla del producto y se enuncia de la
siguiente manera: si U es un suceso que puede descomponerse en dos etapas sucesivas e independientes
entresi, S yT, la etapa Sce niede realizar de m manerac v 1a etana T de n maneracg 1hd_epend1entemente de
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. Reglas de la suma y el producto

cual haya sido el resultado en la etapa; entonces, U se podra realizar de m - n maneras distintas. Este princi-
pio, aligual que el principio de la suma, también puede generalizarse a méas de dos etapas.
Para conjuntos finitos Sy T se tiene que |S x T| =S| - |T|, ya que:

SxT={st)t-q-aeSyteT}

En tanto, para cada una delas |S| selecciones de s en S hay |T| elecciones paraten T.

E jemplo

SeanS ={1,2}y T={a, b, ¢}, entonces |S| = 2y |T| = 3, por lo que:
Sx T =|5-|T|=2-3=6

Dichos elementos son:

SxT={(a)(1,b)(c) 2 a)2b)(2c)}

La generalizacién del principio del producto es muy simple, para ver esto, sean los conjuntos finitos S;, S,,
..., Sy donde se tiene que:

k
1S, xS, x--xS| =3
Jj=1

De manera mas general, supongamos que un conjunto dado puede verse como n-adas ordenadas
(Si, ..., S,) con la siguiente estructura: hay n, elecciones posibles s;.; dado s; hay n, elecciones posibles s,.
Dados s, y s, hay n; elecciones posibles de s;. En general, dados S, S,, ..., S, hay n, elecciones posibles S,. En-
tonces, el conjunto tienen, - n, - --- - n, elementos.

E jemplo_

Calcular el nimero de maneras distintas de seleccionar 5 cartas con reemplazo de una baraja de 52 cartas.
Aqui, lo primero es contar quintillas ordenadas de cartas de la baraja. El término reemplazo significa que cada
carta se regresa a la baraja antes de sacar la nueva carta. El conjunto de formas de seleccionar 5 cartas con

reemplazo esta en correspondencia uno auno conD - D - D - D - D = D°, donde D es el conjunto de todas las
cartas (|D| = 52).

Por tanto, por la regla del producto, el conjunto tiene 52° elementos diferentes a seleccionar.

Otra forma de ver esto es la que se relata a continuacion. Como se puede observar, hay 52 maneras de seleccio-
nar la primera carta; después, al regresar la carta hay 52 maneras de seleccionar la segunda y asi sucesivamente;
por tanto, hay 52 - 52 - 52 - 52 - 52 = 380204 032 formas de seleccionar cinco cartas con reemplazo.

E jemplo

Calcular la forma de seleccionar 5 cartas distintas sin reemplazo de una baraja de 52 cartas. Sin reemplazo significa
que una vez seleccionada una carta ya no es posible regresarla a la baraja.

En primera instancia, se puede aplicar la regla del producto de la siguiente manera: la primera carta puede
seleccionarse de 52 maneras. Una vez seleccionada, la segunda carta puede elegirse de 51 maneras. La tercera
puede escogerse de 50 formas, la cuarta de 49 y la quinta de 48. De manera que para elegir 5 cartas sin reem-
plazo existen 52 - 51- 50 - 49 - 48 = 311875200 formas diferentes.

Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)

149



150 cCapitulo 5 Combinatoria o

El club de teatro de una universidad realiza ensayos para una obra de teatro que se presentara el préximo ano.

Si seis hombres y ocho mujeres ensayan para los papeles principales (masculino y femenino), por la regla del pro-
ducto, el director puede elegir a la pareja principal de 6 - 8 = 48 formas diferentes.

E JEMPLO_

En una fabrica donde se producen placas de automovil, cada placa consta de dos letras y cuatro digitos, como se
observa en la figura 5.3.

a) Si ninguna letra o digitos se puede repetir habra:
27-26-10-9-8-7=3538080

placas diferentes posibles. O L L9999 ©
b) Si se permite repetir las letras y los digitos sera posible tener:
27-27-10-10-10-10 =7290000 ’ 4
placas diferentes. Figura 5.3 Placasdeun
automovil.

c) Si no se permite que dos digitos juntos se repitan, entonces habra:
27-27-10-9-9-9=5314410

placas diferentes.

5.3 Recursos de conteo: listas y arboles

Tanto las listas como los arboles constituyen importantes recursos de conteo, ademas de que son herra-
mientas indispensables que se utilizan cuando se quieren conocer los posibles resultados de un evento o
de una sucesién de eventos, con el fin de poder visualizarlo mediante una enumeracién detallada de los
elementos resultantes; es decir, mediante una lista o una forma grafica de arbol (en el capitulo 7 se verd con
mas detalle qué son los arboles).

Para comprender mejor estos recursos, a continuacion se observa un ejemplo detallado:

E jemplo

El mend de un restaurante consta de dos entradas, tres platos principales y cuatro bebidas, como se observa a
continuacion:

Entrada Plato principal Bebida
Nachos (N) Hamburguesa (H) Té helado (T)
Ensalada (E) Quesadillas (Q) Limonada (L)

Filete de res (F) Cerveza (C)

Refresco (R)

Determinar cuantas posibles combinaciones de comidas diferentes se pueden realizar que consten de un plato
principal y una bebida.
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Si se listan todas las posibles comidas que constan de un plato principal y una bebida se tiene:

HT, HL, HC, HR,
QT, QL QC, QR,
FT, FL, FC, FR

Esto significa que hay 12 comidas (opciones) diferentes.
Ya que hay 3 platos principales y 4 bebidas, por la regla del producto se tiene que:
3-4=12
comidas diferentes.

Ademas, existen 24 comidas diferentes que constan de una entrada, un plato principal y una bebida, las
cuales son:

NHT, NHL, NHC, NHR, NQT, NQL,
NQC, NQR, NFT, NFL, NFC, NFR,
EHT, EHL, EHC, EHR, EQT, EQL,
EQC, EQR, EFT, EFL, EFC, EFR

Dado que hay dos entradas, tres platos principales y cuatro bebidas, se tiene que (por la regla del producto)
existen:

2:3-4=24

comidas diferentes.

Las posibles opciones de comidas en el menu se pueden representar no solo por listas que sirven para enume-
rar las posibles alternativas, sino que también se pueden representar en forma grafica mediante arboles, como
se muestra en la figura 5.4.

Mediante el arbol que se observa en la fi-
gura 5.4 se representan las 12 posibles op-
ciones para elegir una comida que conste
de un plato principal y una bebida.

En cambio, en la figura 5.5 se muestra el
arbol de las 24 diferentes opciones que
constan de una entrada, un plato principal
y una bebida.

Figura5.4 Arbol que representa las opciones que constan de un plato
principal y una bebida.

Figura 5.5 Arbol que representa las diferentes opciones de una comida compuesta por una entrada, una bebida y un plato
principal.
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Como se observa en el ejemplo anterior, estos recursos de conteo (listas o arboles) son ttiles cuando los
elementos a representar son pocos.

Pero, cuando los elementos que es necesario representar constituyen un niimero considerable, entonces
no es practico utilizarlos, ya que seria bastante complicado tratar de hacerlo con estos recursos.

5.4 Permutaciones y combinaciones

Es comun que cada uno de los pasos en que se divide un proceso de conteo se interprete como un ordena-
miento o seleccién de k objetos diferentes elegidos de un conjunto de n objetos, también diferentes.

Con el objetivo de contabilizar las selecciones posibles en un conjunto, estas pueden dividirse en dos
categorias esencialmente distintas: permutaciones y combinaciones.

La diferencia entre una permutacién y una combinacién radica en que en las permutaciones el orden en
que se realiza la seleccién es importante mientras que en las combinaciones el orden no importa.

De manera formal, dado un conjunto que contiene n elementos distintos X = {X;, X,, ..., X,}, s€ tiene que:

a) Una permutacién de X es una ordenacién de los n elementos x;, x,, ..., X,

b) Una permutacién-k, o k-permutacién, de X, donde k < n es una ordenacién de un subconjunto de k
elementos de X.

c) Elnumero de permutaciones—k de un subconjunto de n elementos distintos se denota como P(n, k) o
nPk

d) Una combinacién-k, o k-combinacién, es una seleccién no ordenada de k elementos de X,; es decir,
un subconjunto de elementos de X.

e) El numero de combinaciones-k de un conjunto de n elementos distintos se denota como
C(n, k), (1) o nCk.

E JEMPLO

Si consideramos el conjunto X = {g, b, ¢} en este caso las posibles permutaciones de X son: abc, bac, bca, y cba.

Esto es, existen seis formas distintas de ordenar los tres elementos de X; desde el punto de vista de una seleccion
de objetos, por ejemplo para cab esto significa que en primer lugar se selecciona ¢, luego a y, por ultimo b.

Ademas
e Las permutaciones-1de X son: a, b, c.

e Las permutaciones-2 de X son: ab, ba, ac, ca, bc, cb.

e Las permutaciones-3 de X son: las permutaciones de X, es decir, abc, acb, bac, bca, cab y cba.

Por otro lado, solo existe una combinacion de X puesto que, al no ser importante el orden de seleccion, se tiene
que abc = acb = bca = cab = cba.

Ademas

e Las combinaciones-1de Xson:a, b, y c.

o Las combinaciones-2 de X son: ab, ac, bc.

La importancia del orden (permutaciones) se debe a que cada seleccién representa algo diferente;
para comprender con mas detalle esto, en el siguiente ejemplo se observa un caso practico que se
presenta por ]~~~ oo T As oo
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E jemplo

Permutaciones y combinaciones

De un grupo de 15 personas se debera elegir un comité formado por un presidente, un secretario y un vocal, (de
cuantas formas se puede formar dicho comité?

Este, con toda claridad, es un problema donde el orden es muy importante; a saber, si consideramos el conjun-
to de todas las personas elegibles P = {P, P,, ..., P;s} y que la primera persona seleccionada sera presidente, la
segunda el secretario y la tercera el vocal, es claro que, por ejemplo, la seleccion P,P,P; es diferente a la selec-
cién P,P;P,, pues mientras en la primera la persona etiquetada como P, tomaria el puesto de secretario y P, de
vocal, en la segunda P; tomaria el puesto de secretario y P, el de vocal.

Por lo anterior, para calcular los distintos comités que es posible formar, primero se deben calcular las permu-
taciones-3 de P. Asi, para elegir al presidente se tienen 15 opciones; una vez elegido el presidente, entonces se
dispone de solo 14 opciones para elegir al secretario; por ultimo, el vocal se puede elegir de 13 opciones. Por
la regla del producto, el total de comités equivale a:

15-14-13 =2730

El método utilizado en este ejemplo se generaliza en el siguiente teorema.

Teorema

El nimero de permutaciones-k de un conjunto de n objetos distintos es P(n, k) = (n)(n — 1)(n — 2)...(n — k + 1).
La demostracion de este teorema es directa aplicando la regla del producto.

De acuerdo con este teorema, el nimero de permutaciones-2 de X ={a, b, ¢, d} es: 4 - 3 =12, las cuales son:

ab, ac, ad, ba, be, bd, ca, ¢b, cd, da, db, dc

Existe una forma alternativa de calcular el nimero de permutaciones en un conjunto de n elementos con-

siderando lo siguiente:

y que

Ademas:

Por tanto:

E jemplo_

Pn,n)=nn-1)n-2)...3)(2)(1) =n!

h—Rk!'=n-k)...0)2(@1)
P(n, k)-(n—k)!=n!
P,k =m(n—-1)(n—2)...n—k+1)

Mn-1)n-2)...m—k+1)(n—"k)---(1)
(n=k)(n—k—1)--(1)

{De cuantas maneras se pueden seleccionar un presidente, un vicepresidente, un secretario y un tesorero entre

un grupo de 10 personas?
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De acuerdo con el teorema sobre permutaciones, la respuesta es:

|
P(10, 4)= 10 - =5040

(10—4)!
Por supuesto, si se aplica la regla del producto se obtiene el mismo resultado:

10-9-8-7=5040

E jemplo

{De cuantas maneras posibles pueden formarse en una fila 7 personas con nacionalidad mexicana y 5 estadouni-
denses si ninguna pareja de estadounidenses puede estar junta?

.
Solucion

Se puede formar a los mexicanos y a los estadounidenses mediante un proceso de dos partes. Los mexicanos
pueden formarse de 7! = 5040 maneras distintas.

Ahora bien, una vez formados los mexicanos, como ninguna pareja de estadounidenses puede estar junta, estos
daltimos tienen 8 posiciones en las cuales pueden acomodarse; esto es:

M M2 M3 M4 M5 M6 M7

Asi, los estadounidenses pueden formarse de:

|
P(8,5)= —> = 6720

_5)
maneras distintas.
Por ultimo, por la regla del producto tenemos que existen:

5040 - 6720 = 33868 800

filas diferentes de mexicanos y estadounidenses con las condiciones mencionadas.

E jemplo

Se requiere colocar 3 pelotas, una de color rojo, una azul y una blanca, en cajas numeradas del 1al 10. Por tanto, se
desea conocer el nimero de maneras distintas en que pueden ser colocadas las pelotas en las cajas, considerando
que cada caja solo puede contener una pelota.

Primero, colocamos las pelotas una a la vez, iniciando con la pelota roja, luego la azul y después la blanca.

Puesto que la pelota roja puede colocarse en cualquiera de las 10 cajas, la azul en cualquiera de las 9 restantes
y la blanca en cualquiera de las 8 restantes, el nimero total de maneras distintas de colocar estas pelotas es:

00
(10=3)l
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E jemplo

Determinar de cuantas maneras posibles pueden ser programados tres examenes dentro de un periodo de 5 dias,
de modo que no sean programados 2 examenes el mismo dia.

En total, hay 60 formas de hacer la programacion de examenes:

5|
BICECTI

P(5,3)

E jemplo_

Determinar cuantas maneras distintas de ordenar las letras ABCDEF contienen las letras DEF juntas, y en ese orden.

.
Solucion

Para garantizar la presencia del patrén DEF, en los ordenamientos, se puede considerar a las letras DEF como un
solo objeto, pues estas tres letras deben estar juntas y en ese orden. Entonces, se desea calcular el nimero de
permutaciones del conjunto X = {DEF, A, B, C}, es decir, el nimero de selecciones de cuatro objetos distintos
de X, considerando que el orden es importante, por lo que la respuesta es:

P(4,4) =4l =24

E jemplo

Determinar cuantas maneras distintas de ordenar las letras ABCDEF contienen las letras DEF juntas, pero en cual-

quier orden.
Este problema se puede resolver en dos pasos. Primero, si se fija un ordenamiento para las letras DEF, el nime-
ro de ordenamientos de acuerdo al ejemplo anterior es 24. En segundo lugar, es necesario considerar que las

letras DEF se pueden ordenar de P(3, 3) = 3! = 6 formas distintas, por lo que el nimero de ordenamientos que
contiene a las letras DEF juntas pero en cualquier orden es:

6-24=144

E jemplo

Se requiere colocar tres pelotas de colores diferentes en 10 cajas con numeracion distinta; para ello, supongase
que una caja puede contener tantas pelotas como se quiera.

En este caso, la primera pelota puede colocarse en cualquiera de las 10 cajas, como puede hacerse con la se-
gunda y la tercera pelotas; de acuerdo con esto, el nimero total de colocaciones diferentes es:

10-10-10 =1000

En general, hay n maneras de colocar k pelotas de colores dentro de n cajas numeradas, si una caja puede
contener tantas pelotas como queramos.

Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)



156 Capitulo5 Combinatoria .

Ahora, regresemos al tema de las combinaciones. Como se discutié antes, en problemas de conteo donde el
orden es importante, es claro que las permutaciones-k son relevantes. No obstante, muchas veces el orden
no es importante, en cuyo caso la habilidad para contar conjuntos también adquiere importancia.

Se sabe que un conjunto S con n elementos tiene 2" subconjuntos en total. Para 0 < r <nsea (Z) el nimero
de subconjuntos de S con k elementos. El nimero (Z) se llama coeficiente binomial y se lee “n en k”; en oca-
siones, también se le llama el nimero de combinaciones de n objetos, tomando k a la vez.

El siguiente teorema formaliza la relacién que existe entre ('k’) (nimero de combinaciones-k) con (nﬁ—k)‘
(nimero de permutaciones—k) de un conjunto con n elementos.

Teorema
Para 0 <k <nse tiene que:

n!
(Ozm_@w

D EMOSTRACION

Sea S un conjunto con n elementos. Para cada subconjunto de T en S elementos hay k! permutaciones de S que
utilizan elementos de T; por tanto, hay (Z)k! permutaciones de S en total, es decir:

_n!
(=)

ZH:Pm@

Entonces:

n n!

k::m—QW!

E jemplo_

{Cuantas manos diferentes de poker hay en una baraja de 52 cartas?

.
Solucion

Es claro que el orden de seleccion de las cinco cartas que conforman una mano de poker no importa; es decir,
al ser las mismas cinco cartas no es relevante el orden en que fueron seleccionadas, pues constituye la misma
mano de poker. Entonces, el nimero total de manos de poker es:

52 52

2 (52—5)l5

= 258960

E jemplo

Se quieren colocar tres pelotas, todas del mismo color, en 10 cajas que estan numeradas del 1al 10. El objetivo es
conocer el nimero de maneras distintas en que las pelotas pueden distribuirse, si cada caja puede contener solo
una pelota.

La respuesta (otra vez) equivale a una combinacion- k; es decir:

10 100
3 (10-3)3!

maneras distintas de colocar las nelatas
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E jemplo/

Una ama de casa desea programar cenas que incluyan espagueti tres veces por semana. Determinar de cuantas
maneras distintas puede el ama de casa hacer dicha programacion de cenas.

.
Solucion

La cantidad de maneras distintas de programar las cenas es:

|
T _3
3 (7-3)13!

En el siguiente ejemplo se plantea el hecho de elegir un comité de tres personas, en el cual ninguna de estas
tendra cargo alguno. Por tanto, en este caso el orden de seleccién no es importante (combinaciones), a dife-
rencia del ejemplo donde se buscaba seleccionar un presidente, un secretario y un vocal (permutaciones)
para un comité.

E jemplo_

Un grupo de cinco estudiantes, Maria, Pedro, Rosa, Andrés y Norma decidio hablar con el jefe del Departamento
de Matematicas para solicitar que esta area ofrezca mas cursos de matematicas discretas.

El jefe de departamento notifico que solo hablara con tres estudiantes en su oficina. Determinar de cuantas ma-
neras se puede elegir los tres estudiantes para hablar con el jefe del departamento.

Como ya se aclaré antes, el orden de seleccion no es importante; por tanto, el resultado es:

|
5__ o 4
3 (5-3)13!

maneras diferentes de elegir a las tres personas del grupo de cinco personas.

E jemplo_

Determinar de cuantas formas puede elegirse un comité de k personas de entre un grupo de n personas (n > k).

Este ejemplo generaliza el resultado anterior. Por tanto, existen:

n n!

Kk (n—k')!k!

maneras distintas de elegir el comité.

E jemplo

Determina de cuantas maneras distintas puede elegirse un comité de dos mujeres y tres hombres de un grupo de
cinco mujeres y seis hombres.

En este caso, las mujeres pueden elegirse de (3)=10 formas y los hombres de ($)=20 formas. Por la regla del
producto, se tiene que el nimero total de maneras que se puede seleccionar el comité es 10 - 20 = 200.
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E jemplo/

Determinar cuantas cadenas de 8 bits contienen exactamente 4 unos.

La respuesta es ({por qué?):

cadenas diferentes.

5.5 Permutaciones y combinaciones generalizadas

Hasta ahora se han visto las combinaciones y permutaciones donde todos los elementos del conjunto son
distintos entre si. Pero en ocasiones se presentan problemas en los cuales existen objetos idénticos dentro
de un conjunto.

En este caso, se dice que son permutaciones generalizadas si el orden de los objetos es importante o com-
binaciones generalizadas si el orden no es relevante.

Permutaciones generalizadas (particiones ordenadas)

Con frecuencia, en el mundo cotidiano, es necesario encontrar el numero de permutaciones de ciertos
elementos, algunos de los cuales estan repetidos. La férmula general para calcular tales ordenamientos se
establece en el siguiente teorema:

Teorema
Supdngase que una sucesién S de n objetos tiene n, objetos idénticos del tipo 1, n, objetos idénticos del tipo
2,...n,, objetos idénticos del tipo t, tal que n, +n, +---+n, =n; es decir, forman una particién del entero n.
Entonces, el nimero de ordenamientos de S es:
n!
n, 'n,!-n,!

D EMOSTRACION

Para crear un orden de S, primero se deben asignar las posiciones de cada uno de los n objetos. Es posible asignar las
posiciones de los n objetos del tipo 1en C(n, n,) formas. Una vez realizada esta asignacion, pueden asignarse las po-
siciones de los n, objetos del tipo 2 en C(n— ny, n,) maneras, etcétera. Entonces, por la regla del producto se tiene:

n n—n n—nm-—n, n-m—m——n_
M i (M (i
n! (n—n)  (h—n-—n,—-—n)!

" (h=n)In! (n—n,—n)n,!  (n—n,—n,—---n_,—n)n,|
Por dltimo, simplificando se tiene:

n!

n!nyl---n.!

This document is available free of charge on StUDOCU-com

Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)


https://www.studocu.com/co?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=matematicas-discretas

- Permutaciones y combinaciones generalizadas 159

E jemplo/

Determinar de cuantas maneras es posible ordenar las letras de la palabra ISSTE.

Debido a la repeticion (dos veces) de la letra S, la respuesta no es 5!, sino un ndmero inferior. Para comprobar
esto, consideremos el problema de llenar 5 espacios en blanco:

con las letras dadas.

Esto significa que hay (;) maneras de escoger posiciones para las dos letras S. Una vez seleccionadas las dos
posiciones para la letra S, existen (;) maneras de elegir la posicion para la letra I. Ahora, una vez seleccionada
la posicion para la letra |, hay (7) maneras de escoger un lugar para la letra T. Por Gltimo, queda un unico lugar

para ser llenado por la letraE, (}).

Combinando este razonamiento con el teorema enunciado antes, se tiene que existen:

5!

_ 53
201010 2 11

1 _¢0
1

maneras distintas de ordenar dichas letras.

E jemplo_

Determinar de cuantas formas se pueden repartir ocho libros distintos entre tres estudiantes, si Guillermo recibe
cuatro libros, en tanto que Maria y Silvia reciben dos libros cada una.

Sirepresentamos a Guillermo con la letra G, a Silvia con la letra S y a Maria con la letra M, es posible representar
cada reparticion posible con un ordenamiento de las letras GGGGMMSS, considerando, por ejemplo, que el
ordenamiento GGGGMMSS significa que a Guillermo se le dan los primeros 4 libros, a Maria los libros 5y 6 y a
Silvia los libros 7 y 8. Por tanto, el total de formas de repartir los libros con las condiciones dadas es:

|
& =420
412121

E jemplo

Determina de cuantas maneras pueden formarse tres comités distintos de un grupo de 20 personas, si los comités
deben tener 3, 5y 7 personas, respectivamente.

La respuesta es:

20!
3151715]
maneras posibles de formar dichos comités.

Recuérdese que las permutaciones generalizadas en realidad son particiones de un entero, por ese motivo
fue necesario completar con 5!, que es el nimero de personas que no son elegidas en este momento para un
comite.
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E jemplo_

Una partida de bridge es una particion ordenada de 52
cartas que comprende 4 conjuntos de 13 cartas cada uno.
{Cuantas partidas distintas de bridge existen?

r
Solucion

En total hay:

52!

——— _ —53645x10%
131131131131

partidas de bridge.

E jemplo_

Determinar de cuantas maneras distintas pueden distri-
buirse 12 estudiantes en 3 grupos, cada uno conformado
con 4 estudiantes, de manera que el primer grupo estudie
un tema, el segundo un tema diferente y el tercero otro
diferente a los dos anteriores.

r
Solucion

El nimero total de formas de distribuir los estu-
diantes en los tres grupos es:
12!
414141

=34650

E jemplo_

Determinar de cuantas maneras pueden distribuirse 19
estudiantes en 5 grupos, de tal manera que 2 grupos que-
den integrados por 5 estudiantes y 3 grupos por 3, con el
fin de que cada grupo estudie un tema distinto entre si.

r
Solucion

Para este caso se tienen en total:

|
L:3.911><1o‘°
5151313131

posibles maneras de distribuir a los estudiantes.

E jemplo_

Determinar de cuantas formas es posible hacer una par-
ticion de un conjunto de 100 elementos en 50 conjuntos
diferentes de 2 elementos cada uno.

r
Solucion

En total, se tiene que hay:

| |
S0 E— O ~ 828903 -10""
20.21.21...21.21 2%
O

50 veces

formas posibles.

E jemplo_

De forma mas general, el mismo problema del ejemplo
anterior puede enunciarse de la siguiente manera: Deter-
minar de cuantas formas es posible hacer una particion de
un conjunto con 2n elementos en n conjuntos de 2 ele-
mentos cada uno.

r
Solucion

Entonces, la respuesta es:

(2n)! _ (2n)!
21.21.21....21.2] 2"
e e &

n veces

formas posibles.
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. Permutaciones y combinaciones generalizadas

Combinaciones generalizadas

No obstante, en diversas ocasiones también sera necesario encontrar el nimero de combinaciones de cier-
tos elementos, algunos de los cuales estan repetidos. La formula general se cita en el siguiente teorema.

Teorema

Si X es un conjunto que contiene elementos, entonces el numero de selecciones de k elementos, no ordena-
das, con repeticiones permitidas y tomando del conjunto X es:

n+k—-1 _ n+k—1
k n—1

Esimportante destacar que puede utilizarse de manera indistinta cualquiera de los dos términos de la igual-
dad. Méas adelante se demostrara la misma.
En el siguiente ejemplo se busca verificar que se cumple la igualdad combinatoria del teorema.

E JEMPLO Nota

Sean =8y k=3, entonces: Es posible que k sea mayor que n cuan-

do se permiten repeticiones.
n+k—1_8+3-1

k 8
)
8
!
- (10—8)!8!
— 45
Por otro lado:
n+k—1 _10
n—-1 2
10!
- (10-2)12!
=45

E jemplo

Supodngase que se tienen tres pilas de pelotas, una de pelotas rojas, una de azules y una de verdes, cada una de las
cuales contiene al menos ocho pelotas.

a) Determinar de cuantas formas se pueden seleccionar 8 pelotas.

b) Determinar de cuantas maneras se pueden seleccionar 8 pelotas si se debe tener al menos una de cada color.

a) Por el teorema inmediato anterior, el nimero de formas para elegir 8 pelotas es:

8+3—1 10
8 8

=45
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b) Sise selecciona exactamente una pelota de cada color (esto asegura que haya al menos una pelota de cada
color), para completar la eleccion, deben escogerse 5 pelotas mas. Esto es:

54+3-1 7
3-1

formas diferentes.

E jemplo

Determinar de cuantas maneras es posible colocar 10 ca-
nicas rojas en 5 bolsas.

=2
2

El resultado se obtiene con facilidad a partir de:

10+5—1 _ 14 —100]
5-1 4

E jemplo_

Determinar de cuantas maneras es posible seleccionar 10
monedas de un abasto ilimitado de monedas de dos, cin-
co, diez y veinte pesos.

r
Solucion

El nimero total de selecciones es:

0+4-1_1 — 286
4—1 3

E jemplo_

Determinar de cuantas formas pueden distribuirse 12 li-
bros idénticos de matematicas discretas entre 4 estudian-
tes.

r
Solucion

En total, se pueden distribuir de:

244-1_ 15

= _ =455
4—1 3

formas diferentes.

E jemplo

Establecer cuantas soluciones enteras no negativas tiene
la ecuacion x, + x, + x; + x, = 29.

Cada solucion es equivalente a elegir 29 elemen-
tos x; del tipo i, i =1, 2, 3, 4. Por tanto, el nimero
de soluciones es:

29+4-1_ 32 — 4960

41 3

Una tienda ofrece 20 tipos diferentes de donas. Si supo-
nemos que al menos hay una docena de cada tipo cuando
entramos a la tienda, determinar de cuantas formas se
puede elegir una docena de donas.

o
Solucion

Se puede elegir una docena de donas de:

124201 _ 31 _ 14120525
20-1 19

formas diferentes.
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. Principio de inclusion-exclusion

® o [ °® [ L e
5.6 Principio de inclusion-exclusion

El principio de inclusién-exclusién hace referencia al tamafio de una unién de conjuntos no disjuntos.
Sean Ay, A,, ..., A, conjuntos finitos.
Recuérdese que si estos conjuntos forman una particién de un conjunto A, entonces:

| A UAU-UA [=A[+]A [++]A,]

Para una mejor comprensién, veamos primero que:
Paran =2laregla de la suma afirma que:

|41 U Agf = |Aq] + [As] = |A1NA, |
Para n = 3 el principio de inclusién-exclusién afirma que:

|A1 UA; UAs| = (AU A U A,
=|A1U A, + |As[=(A1 U Ay N A4
= |Aq| + JAgl—[A1 N Ag] + |As|—|(A1 N Ag) U (A; N A3
= [Aq] 4 |Ag] =AM Ag| + [As|—]AL N A=A, N As| + (A1 N As) N (A, N AS))
= [Aq] + [Ag] + [As[=]A1 N Ag|—|A; N As|—|A; N As| + [A1 N A, N A
Para n = 4 el principio de inclusién-exclusién afirma que:

AT UA,UA; UAY =AY+ Ay + |As] + |Agd =AM Ayl
[As N As|— A1 N A=A, N A=A, N Al
[As N AL+ AN A, DA+ AN A N A+
IA, N AN A+ A, N AN A
IA,NA, NA;NA,|
Generalizando:
[AJUA, U---UA | =

OAi‘ :XH]AJ - zn:’Ai NA|+ E |ANANA|—..+(=1)""A N..NA]
i=1 i=1 L j I, J, k=1

i, j=1

i<j i<j<k
En general, el principio de inclusién-exclusién se puede enunciar de la siguiente forma: para calcular la
cardinalidad de A; U A, U --- U A,, primero debemos calcular el tamafio de todas las posibles intersecciones
de conjuntos {A;, A,, -+, A,}, sumar los resultados obtenidos al intersecar un numero impar de conjuntos y
restar los resultados obtenidos al intersecar un nimero par de conjuntos.

En este caso, los términos “inclusién-exclusién” indican que hay que incluir o sumar los tamanos de los
conjuntos, después excluir o restar los tamarios de las intersecciones de dos conjuntos, luego incluir o su-
mar los tamafios de todas las intersecciones de tres conjuntos, y asi sucesivamente.

Tal como se analiza en la regla de la suma, este principio también puede utilizarse como una alternativa
a dicha regla, sin alterar el resultado.

E jemplo

Contar el nimero de enteros en S =1, 2, 3, .., 2000} que son divisibles por 9, 11,13 o 15.

Primero, para cada k € N hacemos |D,| = {n € S: t- q - n es divisible por k} y buscamos:

IDg U Dy U Dy U Dy

utilizando el principio de inclusion-exclusion.
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Notese que:

2000
D ls =~

con division entera. Por tanto, en primer lugar se calcula la cardinalidad de cada conjunto individual:

2000

|D,| = Parte entera de - 222
|D,| = Parte entera de % =181
|D,;| = Parte entera de % =153
|D,j| = Parte entera de % =133

En segundo lugar, se calcula de la misma manera la cardinalidad de las intersecciones por parejas, es decir:
|D9 N Dﬂ| :|D99| =20
ID, NDy| =|D,,| =17
|D9 N D15| :|D45| =44
ID, ND,| =|D,y| =13
|Dn N D]5| :|D165| =12
|D]3 N D15| = |D195| =10
Aqui, por ejemplo D, ND,| =|Dy, significa que para que un ndmero esté en la interseccion de Dy y Dy, dicho
nuimero debera ser divisible por ambos de manera simultanea, es decir, debe ser divisible por 9 - 11 = 99
Obsérvese, por ejemplo, que Dy N D;; = D5 y N0 Di35, ya que el minimo comun multiplo de 9 y 15 es 45.
En tercer lugar, se considera la cardinalidad de las intersecciones por ternas, es decir:
ID, N\D, NDy| =|Dyyr| =1
ID, "D, NDy| =|D,os| = 4
|D, "D, NDyy| =|Dygs| =3
Por ultimo, se considera la interseccion de los cuatro conjuntos:
|D, "D, ND,; NDy| =|Dyys| =0
Ahora, por el principio de inclusion-exclusion se tiene:
|D, UD, UD,, UD,| =222 +181+ 153 + 133 — (20 + 17 + 44 + 13+ 12+10) + (1+ 4+ 3+ 0) — 0 = 58]

Entonces, hay 581 enteros en S que son divisibles por 9,11,13 o 15.
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- Principio de inclusion-exclusién [ 165

E jemplo/

Supodngase que se tienen seis computadoras con las siguientes especificaciones que se listan en la tabla:

CompEde Quemador Blue Ray Procesador CoreQuad Par;ltﬁa)lla
(a) (a) )
I S sf NO
I st st st
111 NO NO NO
vV NO st st
\Y NO st NO
VI NO st sf

Determinar cuantas computadoras tienen uno o mas de los 3 tipos de hardware.

.
Solucion

Por el principio de inclusién-exclusion, se tiene que:
|A|=2,]A|=5|A|=3
|ANA|=2, |A] ﬂA3| =1,
|[ANANA|=1

ANA|=3

Por tanto:
|[AUA UA|=2+54+3-2-1-3+1=5

Esto es, 5 computadoras tienen uno o mas de los tipos de hardware.

E jemplo

Determinar el nimero de enteros positivos n de A = {1, 2, 3, .., 100} y tal que n no es divisible entre 2,3 o 5.

Sean:
D,={ne€At-q-nesdivisible por 2}
Dy={n €At-q-nesdivisible por 3}
Ds={n€At-q-nesdivisible por 5}
Entonces:

|D,| =50, |D,| =33, |A| =20
|D, "D, =|D,| =16
ID, "D =|D,,| =10
ID, N\D|=|Dy| =6
ID, "D, NDy| =|D,,| =3
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Aplicando el principio de exclusion—inclusion, tenemos que:
|D, UD, UD,| =50+ 33+20—16—10—6+3=74
Por tanto, 100 — 74 = 26, nimeros que no son divisibles entre 2, 3 o 5. Estos nimeros son los siguientes:

1,7,1,13,17,19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71,73, 77,79, 83, 89, 91, 97

E jemplo/

En una fabrica de automoviles se armaron 50 vehiculos. Las opciones existentes son: equipado con reproductor
MP3, con aire acondicionado y con frenos ABS. Se tiene que 15 de los vehiculos tienen reproductor MP3, 17 aire
acondicionado y 20 frenos ABS, ademas 5 tienen reproductor MP3 y aire acondicionado, 8 aire acondicionado y
frenos ABS, 7 reproductor MP3 y frenos ABS y 3 tienen las 3 opciones. Entonces, sean:

A, ={x € At-q-xesun vehiculo que tiene reproductor MP3}
A, ={x € At-qg-xesun vehiculo que tiene aire acondicionado}
A, ={x € At-q-xesun vehiculo que tiene frenos ABS}
De este modo:
|A]| =15,]A,|=17,|A| =20
|ANA|=5]ANA|=7,|ANA|=8
JANANA|=3

El dueno de la fabrica le ha pedido a su supervisor que le entregue un informe donde solicita lo siguiente:

a) ¢Cuantos vehiculos distintos hay que tienen al menos una opcion?

b) {Cuantos vehiculos distintos hay que no tienen ninguna opcion?

c) {Cuantos vehiculos distintos hay que tienen tnicamente una o dos opciones?
d) ¢Cuantos vehiculos distintos hay que tienen exactamente dos opciones?

e) {Cuantos vehiculos distintos hay que tienen exactamente una opcion?

En este ejemplo, solo las dos primeras preguntas pueden ser contestadas en forma directa con el principio de
inclusion-exclusion.

a) Larespuesta a la pregunta del inciso a) es: todos los vehiculos que tienen una, dos o las tres opciones; esto
es:
|AUA, UA|=15+17+20—5-7—8+3=35

b) Larespuesta a la pregunta del inciso b) es: todos los vehiculos, excepto aquellos que tienen al menos una
opcion, es decir: 50 — 35 =15 vehiculos.

Para contestar las restantes preguntas tenemos que auxiliarnos de un diagrama de Venn.
Como se sabe, en este se dibujan tres circulos, uno para cada conjunto, como se observa en la figura 5.6 ).

Luego, se etiqueta cada circulo con la del conjunto, tal como se ve en la figura 5.6 i). Acto seguido, se es-
cribe la cardinalidad de la interseccion de los tres conjuntos, como se muestra en la figura 5.6 ii).

Después, se escriben las cardinalidades de las intersecciones de dos conjuntos; considérese que ya hay
elementos, como se distingue en la figura 5.6iv).
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R Principio de Dirichlet 167

Por dltimo, escribimos los valores restantes para completar las cardinalidades de cada conjunto, como se
ve en lafigura5.6v).

~
A1 AZ AI AZ
AS AS
i) i) i)
A] AZ Al AZ
A A
iv) v)
&

Figura 5.6 Diagrama de Venn del principio de inclusion-exclusion.

Una vez construido el diagrama de Venn, ya estamos listos para contestar las preguntas restantes.

c) Asi pues, la respuesta a la pregunta del inciso c) es sumar todas las cardinalidades de los conjuntos, sin
considerar la cardinalidad de la interseccion de los tres conjuntos, estoes: 6 +8 +7 +2 + 4 +5=32
vehiculos.

d) Para la respuesta a la pregunta del inciso d), hay que sumar unicamente las cardinalidades de las intersec-
ciones de dos conjuntos, esto es: 2 + 4 4+ 5 =11 vehiculos.

e) Por ultimo, para responder la pregunta del inciso e), es necesario sumarlas cardinalidades de los conjuntos
que tienen una Unica opcion, es decir: 6 + 7 + 8 = 21 vehiculos.

5.7 Principio de Dirichlet

Otro principio muy util en combinatoria es el
denominado principio de Dirichlet, también ) )
conocido como el principio del palomar, debi- ' ﬁ
do a que este se concibe a partir del siguiente ' -
problema: “si se introducen n palomas a un pa- * = A (= *
. X o~ e~ o~

lomar con k nidos, k < n, al menos en un nido EQ EQ
habra 2 o mas palomas”. A_', A_',

Para ello, imaginemos 5 palomas introdu- S~ S~
ciéndose en los 3 nidos de un palomar; en este y |

caso, es claro que all meno.s dos de las palomas Figura 5.7 Como hay mas palomas que nidos, algun nido debe tener al
se meteran en el mismo nido (véase figura 5.7).  menos dos palomas.

&
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Este principio no hace referencia al hecho de cémo localizar el nido que contiene 2 o mas palomas, solo
afirma la existencia de un nido con 2 o mas palomas.

Para aplicar ese principio, primero se debe establecer cuéles objetos desempetian el papel de las palomas
y cuales el de los nidos.

E jemplo

En un conjunto de 32 personas, al me- En este caso, si consideramos a las personas como palomas y a los dias
nos 2 celebran su cumpleanos el mis- del mes como los nidos y aplicamos el principio de Dirichlet, al menos
mo dia del mes. dos o mas personas cumpliran anos el mismo dia del mes.

E jemplo |_Solucién |

Los nombres de un conjunto de 10 Hay 9 nombres y apellidos diferentes que seleccionar, pero son diez
personas son: Maria, Bernardo y Car- personas en total.

los, mientras que sus apellidos son
Garcia, Pérez y Lopez. Demostrar que
al menos 2 personas tienen el mismo
nombre y apellido.

Si consideramos a las 10 personas como las palomas y a los nombres y
apellidos como los nidos, por el principio de Dirichlet se puede decir
que al menos dos personas tienen el mismo nombre y apellido.

E JemPLO_

Juan regresa de la lavanderia con 12 pares de calcetines (cada par de distinto color) en una bolsa, al sacar cada
calcetin de la bolsa aleatoriamente tendra que sacar cuando mucho trece calcetines para obtener el primer par.

E jemplo_

Maria opera una computadora que tiene una unidad de disco duro externo para respaldar la informacion de la
oficina donde trabaja. Un dia le dan otro disco duro externo que contiene 600 000 “palabras” de cuatro o menos
letras minusculas. En el disco duro las palabras consecutivas se separan con un caracter en blanco. ¢Puede suceder
que las 600 000 palabras sean distintas entre si?
|_Solucién |
A partir de las reglas del producto y de la suma, el nimero total de palabras distintas posibles de cuatro o
menos letras es:

27 4 27° + 27> + 27 = 551880

Si a estas 551880 palabras las consideramos como los nidos y a las 600 000 palabras del disco duro como a las
palomas, de acuerdo con el principio de Dirichlet, es posible afirmar que al menos una palabra se repite en el
disco duro externo.

E jemplo_ |_Solucién _

Demostrar que cualquier subcon- En este caso, con base en el principio de Dirichlet, los nimeros 1, 2, 3, 4, 5,
junto de tamano seis del conjunto 6,7, 8,9 representan el papel de las palomas, mientras que son los sub-
$={1,2,3,4,5,6,7,8,9} contiene al conjuntos {1, 9}, {2, 8}, {3, 7}, {4, 6}, {5} desempenan el papel de los nidos.
menos dos elementos cuya suma

o Entonces, cuando las palomas van a sus respectivos nidos, deben ocupar
es10.

al menos uno de los subconjuntos cuyos miembros suman 10.
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- Identidades basicas combinatorias

E jemplo/

Demostrar que en cualquier conjunto de 8 nimeros enteros existen al menos dos nimeros a y b, tales que (a — b)
es multiplode 7.

El resto de dividir un nimero por 7 es uno de los siete nimeros enteros entre 0 y 6. En consecuencia, si tenemos
un conjunto de 8 ndmeros, al menos dos de ellos, a y b tienen el mismo resto, r, en la division por 7.

Esto es:
a=7q+ryb=7q"+r
donde:

Por tanto, (a — b) =7(q — g’) es mdltiplo de 7.

5.8 Identidades basicas combinatorias

En la seccién combinaciones generalizadas se hace mencién de que el célculo de combinaciones generali-
zadas puede realizarse ya sea con el numero combinatorio:

n+k—1
k

o con el numero combinatorio:

n+k—-1
n—1

Es decir, se afirma que tales numeros son iguales, lo cual en conteo se denomina “identidad combinatoria”.

Dicha identidad sugiere la posibilidad de que algunos nimeros combinatorios que, en apariencia, son
distintos, en realidad representan el mismo entero.

En esta seccidén demostramos algunas identidades combinatorias que son muy utiles en el desarrollo
matematico de la combinatoria.

En general, cualquier identidad que se obtiene de un proceso de conteo es considerada como una iden-
tidad combinatoria. Los siguientes ejemplos estan destinados a presentar algunas identidades combinato-
rias, asi como a su demostracién matematica

Antes de iniciar los ejemplos, es importante recordar que por definicién:

n n!

k- (n—Rk!

para los enteros positivos ny k que satisfacen la desigualdad k <n.

E jemplo_

Demostrar las siguientes identidades:

n

n
a)
k n—k

&
~ >
|
>
I =
o
+
S
|
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170 Capitulo 5 Combinatoria

a) Para demostrar cualquier identidad, siempre debe tomarse uno de los dos lados de esta y transformarlo al

otro, mediante el uso de algebra y, por supuesto, de la informacion y las identidades disponibles (que ya han
sido verificadas antes).

Entonces, si para el inciso a) se toma el lado derecho y se aplica esta definicion, se obtiene:
n n!
n—k  (n—(n—k)ln—k)!
n!
T —n+Rln—K)!
n!
" Wln—k)!

donde se puede ver, de la dltima expresion, que se obtiene:

n! n

©ln—K! K

Para el caso del inciso b), si tomamos el lado derecho de la identidad y aplicamos la definicion, entonces se
obtiene:
n-1_ n-1_ (=" (n—1)!

kT T e o= k)i —)

Simplificando la Gltima expresion obtenemos:

n—1+n—1: (n—"! o (n—1!

k k=1 (h—=1=k!lk! (n—k)k—D!
Ahora, para sumar estas dos fracciones elegimos como denominador el minimo comdn multiplo de ambos
denominadores, el cual es:

(n—k)!(k)!
pues, por definicion de factorial: (=Kl =(n—K)(n—k—T)!
kl=k(k—1)!
Entonces, la suma de las dos fracciones es:
(n—")! n (n=7' _ (h=kn-D+k{n-D
(n=1=k)k! ~ (n—k)l(k—=)! (n—k)lk!

(recordar que £ + < = 45t)
Ahora, factorizando el término (n —1)!'y simplificando se llega al resultado deseado:

(h=Dln—k+k)  (h—Dln)

(n—kk!  (n—k)k!
_ n!
 (h—k)k!
_n
ok

This document is available free of charge on StUDOCU-com

Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)


https://www.studocu.com/co?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=matematicas-discretas

- Identidades basicas combinatorias

E jemplo/

Comprobar que se cumple la identidad del inciso b) del ejemplo anterior paran =10y k = 4.

En este caso, en primer lugar calculamos el nimero combinatorio:

n 10 10!

— =210
k 4 (10—4)!4!
Por otro lado, también calculamos la suma:

n=1, n-1_9 9

K Tk T4t
9! 9!
~ o4 e—3l
— 126+ 84
=210

donde se verifica la identidad para este caso.

E jemplo/

Demostrar la siguiente identidad de nimeros combinatorios:

n+l _n  n-1 k
/<+1_/<Jr PR

Aqui, primero tomamos el lado izquierdo de la igualdad y la aplicamos a la identidad (ya demostrada):

n n—1 n—+1
= A
k k k+1

Por tanto:
n+1
+1 _n L n
k+1 k k—+1
Enseguida, se vuelve a aplicar la misma identidad al dltimo ndmero combinatorio y se obtiene:

n+1 n n—1 n—1
= -+ +
k+1 k k k+1

Repitiendo este mismo proceso (aplicacion de la identidad al dltimo ndmero combinatorio), entonces se logra
el resultado deseado:

n+l _n_n-1,n=-2 &k
k+1 k  k T Tty
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172 | Capitulo 5 Combinatoria .

E jemplo/

Determinar el valor de lasumal-+2 4+ --- +n.

En primer lugar, hay que notar que:

pues:

1 (=N
_n(n—="7!
(=)
=hn

Entonces, lasumal+ 2+ --- + n se puede escribir como:
142+ +n= 1 + ? ot

Utilizando la identidad del ejemplo anterior (k = 1), entonces se puede reescribir:

1, 2 n
1+ 1 T 1
a laforma:
1,2, on_n+
1 1 1 2
_ (h+D!
(n+1—2)2!
_ (D) —D!
(n—="'2!
nn+7
2
para al final obtener:
1424 4n="01D

La suma del ejemplo anterior fue calculada por Gauss a la edad de 11 afios, cuando su profesor le pidid a él y
a sus companeros de clase calcular la suma de los primeros 100 nimeros naturales (al parecer con el fin de
dormir un rato durante la clase). Al contrario de lo que pensaba el mentor de Gauss, este calculé la respuesta
de forma casiinmediata utilizando esta identidad combinatoria. En el siguiente ejemplo se puede observar
el resultado obtenido por Gauss.
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o Teorema del binomio (binomio de Newton) y triangulo de Pascal 173

E jemplo/

Calcular la suma de los primeros 100 ndmeros naturales.
Ahora que se conoce la identidad del ejemplo anterior, lo que podria representar un trabajo muy tedioso, esta
se transforma a una multiplicacion y una division. Es decir:

T+2+--4100=

100(101)

=50-101
=5050

Un ejemplo de extrema importancia en el uso de las identidades combinatorias es el teorema del binomio,
por tanto decidimos dedicar en este libro toda una seccién a este y a una construccién numeérica intima-
mente relacionada: el tridngulo de Pascal.

5.9 Teorema del binomio (binomio de Newton)
y triangulo de Pascal

Los numeros combinatorios (Z) también reciben el nombre de coeficientes binomiales, pues aparecen en el
desarrollo del binomio (a + b) elevado a alguna potencia n. Entonces, el teorema del binomio proporciona
una expresion explicita para calcular los coeficientes que se obtienen en el desarrollo de (a + b)" donde:

n factores

(a+b)" =(a+b)(a+Db)...(a+Db)

E JeMPLO_

Sin =2, se tiene:
(@a+b)>=(a+b)(a+b)
=gda +ab + ba + bb
=a’ + 2ab + b?

Sin =2, se tiene:

(a+b)’ =(a+b)(a+b)(a+Db)
= gda + aab + aba + abb + baa + bab + bba + bbb

Simplificando la ultima expresion, por dltimo se obtiene:

(a+b) =a’ +3a’b+3ab> + b’

De los dos ejemplos anteriores se puede inferir que un término de la forma a" *b* proviene de tomar el nu-
mero real a de n—k factores y el numero real b de k factores.
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174 cCapitulo 5 Combinatoria .

Sin embargo, esta puede hacerse de (2) formas. Enla seccién 5.4, Permutaciones y combinaciones, se pro-
boé que el término (Z) constituye el nimero de formas de seleccionar k de los n objetos dados. Por tanto, a"*b*
aparece (}) veces. Este analisis sugiere que el desarrollo del binomio debe ser de la forma:

n n . n
a+b)'="_"ab’+ a4+ " a’b"
( ) 0 1 n

Este resultado se conoce como teorema del binomio, que se enuncia y se demuestra de manera formal a
continuacion.

Teorema
Siaybsonnumerosrealesyn € N, entonces

@+b) =3 (1)a "

k=0

D EMOSTRACION

La siguiente demostracion se llevara a cabo por induccion sobre n.

e Paso base. Primero, llevamos a cabo el paso base de la induccion; es decir, verificamos que el resultado sea
verdadero para el primer valor de n. Sin =1, el lado derecho de la igualdad en el teorema es:
(a+b)
El paso base se completa comprobando que se obtiene el mismo resultado del lado derecho:
> ()a b =(y)ab’ +(})a"b' =1-a+1-b=a+b
k=0
e Paso inductivo. En segundo lugar se lleva a cabo el paso inductivo, que consiste en establecer la hipotesis de
induccion (la cual ya esta fundamentada por el paso base) y probar que se cumple la igualdad para el siguiente
entero.

» Hipétesis inductiva. Supongase que el resultado es correcto hasta un enterom,m =1, 2 ...,; es decir, afirmamos
que:

m

(a+b)" = Z(f’)a’”’kbk

k=0

Con base en la hipétesis inductiva, se debe probar que:

m+1

(G + b)m+1 _ Z(m’:ﬂ)amﬂ—kbk

k=0

Tomando el lado izquierdo de la igualdad anterior, se debe llegar al lado derecho solo con el uso de la hipotesis
inductiva y algebra. Entonces, en primer lugar (a + b)" se puede expresar como:

(a+b)"" =(a+b)(a+b)"

Enseguida, el ultimo término se puede reemplazar mediante el uso de la hipétesis inductiva:

m

(a—|—b)(a—|— b)m _ (a_i_b)Z(;(n)am—kbk _ Z(rkn>am7k+1bk +Z(I:n>am—kbk+1
k=0 k=0 k=0
De la primera suma se extrae el primer término y de la segunda el Gltimo para, respectivamente, obtener:

Z(rkn)am—kﬂbk :<(r)n>am+1b0 _i_i(rkn)amfkﬂbk
k=0

m
k=0
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m m—1
Z m g™k Pk — m a°pm™ + Z m g™k pkt!
k=0 k m k=0 k

Considerando que se quiere expresar el resultado en una sola sumatoria, se realiza el cambio de variable (en
la segunda sumatoria) k + 1= j, con el cual se logra que, cuando k=0, j =1y cuandok=j —1,j = m. Para la
primera sumatoria, solo se toma k = j y se obtiene:

Mm+1 0 N M i MET o mp NS M oy
a’"b” + Cam b + ab™ + | b’
0 2 m+1 ; j—1

=1

m-+1 am+1bo+i m + .m "y + m+1 b
0 =1 j—1 m+1

m-+1 am+1bo+i ‘m a4+ m+1 b
0 =l m+1

m+1 m+]
- a
=

m—j+1bj

Donde se hizo uso del hecho de que (7')=(""), (7)=(7*]) y de la identidad (") = (7)+ (", ). Entonces, por dl-
timo se obtiene:

m+-1
m+l
gty

(a+b)m+1:Z

j=0 J

Esto completa la demostracion.

P R R R R R R R R R R R A R T R R )

Isaac Newton (Woolsthorpe, Lincolnshire, 1642-Londres, 1727) cientifico inglés. Durante sus primeros anos
de vida, su madre preparo para él un destino de granjero; sin embargo, luego de un tiempo se convencié
del talento de su hijo y lo envid a la Universidad de Cambridge, en donde tuvo que trabajar para pagarse los
estudios. Alli, Newton no destaco especialmente, pero asimild los conocimientos y principios cientificos
de mediados del siglo xviI, con las innovaciones introducidas por Galileo, Bacon, Descartes, Kepler y otros.

Y fue hasta el ano de 1665 que descubrid y postuld el teorema del binomio, el cual fue notificado por
primera vez en dos cartas que envi6 el funcionario y administrativo de la Royal Society, Henry Oldenburg,
en 1676. La primera de estas cartas fue fechada el 13 de junio de 1676, en respuesta a un pedido del fildso-
fo, jurista y matematico aleman Gottfried Wilhelm von Leibniz, quien queria tener conocimiento de las
labores e investigaciones de matematicos britanicos acerca del tema de series infinitas. A partir de este

“eecsssssostescscosOssEBEBEOOEOE

Figura 5.8 Isaac Newton . ) . o . .
(1642-1727). hallazgo, Newton intuy6 que era posible operar con series infinitas del mismo modo que con expresiones

polindmicas finitas.
Es importante destacar que Newton no se encargé de publicar jamas el teorema del binomio; tarea que realizé el matematico bri-
tanico, John Wallis, en 1685, en su libro Algebra, en el cual atribuyé a Newton el gran hallazgo.

Es importante notar que en el desarrollo de (a + b)" se presentan las siguientes propiedades:

e Segenerann + 1 términos.
e Lasuma de los exponentes de a y b en cada término es siempre n.

e Losexponentes de a decrecen desde n hasta 0 mientras que los de b crecen de O a n.
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176 Capitulo 5 Combinatoria -

e Los coeficientes de los términos equidistantes de los extremos son iguales.

d (2) es el coeficiente de cualquier término, donde k siempre es el exponente del términobyn—keldea.

E jemplo

Tomando n = 3, para el desarrollo del binomio se tiene (a + b)’.

3

3
3

a +
0

2

(@a+b) = a’b+

3
1

3
bZ ( )b3
ap” + 3

Reemplazando los valores de cada nimero combinatorio que aparece en la igualdad anterior, por dltimo se
obtiene:

(a+b)’ =a’ +3a’b+3ab” + b’

E jemplo

Tomando n = 5, para el desarrollo del binomio se tiene (a + b)’.

(@+by = (5)05+ ? a‘b+|>|a’b’ +|7|a’b’ +

5 5 5 ab“+(5)b5
2 3 4 5

Reemplazando los valores de cada nimero combinatorio que aparece en la igualdad anterior, al final se obtie-

ne:

(a+b)’ =a’ +5a*b+10a’b* +10a’b’ +5ab* + b’

Es posible que no se desee encontrar todo el desarrollo del binomio, sino solo algin término de dicho
desarrollo; en estos casos, también es muy util el uso del teorema del binomio.

A continuacioén, se presenta un ejemplo para observar con mayor detalle cémo se utiliza el teorema del
binomio en estos casos.

E jemplo_

Encontrar el quinto término que se obtiene del desarrollo del binomio (a + b)"°.

La expresion:

n
k

representa precisamente como se obtendria un término en particular.

an—kbk

Como n es el valor del exponente y el término solicitado menos uno representa el valor de k (recuérdese
que k corre a partir de 0, donde el quinto término es k = 4); entonces, el término buscado es:

(12 a°*b* = 210a°b*

a. SR

Asimismo, también s~ ~ - ~11s términos.

e e . S Y
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o Teorema del binomio (binomio de Newton) y triangulo de Pascal

E jemplo/

Desarrollar el binomio (2xy’ + 3z2°)’.
Para obtener el desarrollo basta con identificar el monomio 2xy® con a y el monomio 3z* con b, con el fin de
aplicar directamente el teorema del binomio; es decir, como en un ejemplo anterior, se obtuvo:

(a+b)’ =a* +3a’b+3ab’ +b’

Haciendo el cambio de variable a =2xy’ y b = 37’ se obtiene:
(2xy* + 3»22)3 — (2)()/3)3 + 3(2)()/3)2 (32°)+ 3(2xy3)(322)2 + <3»zz)3
Por ultimo, para obtener el resultado final solo es necesario simplificar:

(2xy° + 322)3 =8xy’ +36x>y°z* 4+ 54xy’z* +272°

El teorema del binomio también es util si se quiere encontrar el desarrollo de un trinomio, cuadrinomio,
etcétera.

En estos casos, lo primero que se debe hacer es agrupar los términos y utilizar de manera normal dicho
teorema.

El siguiente ejemplo ilustra con mayor detalle cémo hacerlo.

E jemplo

Desarrollar el trinomio (x + y + z)*.

.
Solucion

Primero, se agrupan dos términos del trinomio para poder identificarlo como un binomio [(x + y) + z]’; es decir,
el cambio de variable:

a=x+yyb=z
transforma el trinomio a la forma:
[(x+y)+z]’=(a+b)
Cuya expansion es:
(@ + b)Y’ =a*+ 3d’b + 3ab> + b’

Por tanto:

[+ y)+2f = (et y) +30c+y) 2430+ y) 2" + 27

=X +3xX°y +3xy’ + y’ +3xX°z+6xyz +3y’z+3x2° +3yz* + 2

Triangulo de Pascal

Los coeficientes binomiales también pueden expresarse mediante un arreglo triangular conocido como
tridngulo de Pascal, donde los dos lados superiores estan formados por numeros 1y cualquier valor interior
constituye la suma de los dos nimeros que estan por encima y a los lados de este (véase figura 5.9).

Estos coeficientes se utilizan de manera directa al escribir el desarrollo de un binomio. A continuacién se
presenta un ejemplo en el que se desarrolla con mayor detalle uno de estos casos.
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178 Capitulo 5 Combinatoria

E jemplo_

Encontrar el desarrollo del binomio (a + b)’.

En este caso, primero 4
utilizamos los valores
de los coeficientes en
el triangulo de Pascal

(véase figura 59), asi 1
obtenemos en forma 1

directa los coeficien- : 1 , 6

tes buscados, es decir: : 8 2
1 9 36

1 10 45 120

10

35

126

20

70

252

10

35

126

Figura 5.9 Triangulo de Pascal.

(a+b)’ =a’ +5a*b+10a’b’ +10a’b* + 5ab* + b’

En apariencia, resulta muy sencillo utilizar este tridngulo; sin embargo, el problema empieza cuando se pre-

tende desarrollar un binomio grande, pues es muy posible cometer errores en los coeficientes.

El triangulo de Pascal también puede expresarse en forma de coeficientes binomiales (véase figura 5.11).

-
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Teorema del binomio (binomio de Newton) y triangulo de Pascal

P R R R R R R R R R R R R I A I R T R R R

Blaise Pascal fil6sofo, fisico y matematico francés, fue un genio precoz a quien su padre inicié muy pron-
to en la geometria e introdujo en el circulo de Mersenne, la Academia, a la que él mismo pertenecia.
Alli, Pascal se familiarizo con las ideas de Girard Desargues, por lo que en 1640 redacté su Ensayo sobre
las conicas (Essai pour les coniques), que contenia lo que hoy se conoce como teorema del hexagono
de Pascal.

En el Traité du triangle arithmétique (Tratado del triangulo aritmético), publicado en 1654, Blaise Pas-
cal retine varios resultados ya conocidos sobre el triangulo y los emplea para resolver problemas ligados a
la teoria de la probabilidad; a través de estos, é| demuestra la relacion entre el triangulo y la formula del
binomio. El triangulo de Pascal fue nombrado asi por Pierre Raymond de Montmort (1708), quien lo llamo
“Tabla del Sr. Pascal para las combinaciones’, y por Abraham de Moivre (1730) quien lo llamé Triangulum
Arithmeticum Pascalianum (del latin: Triangulo aritmético de Pascal), que se convirtié en el nombre occi-
dental moderno.

“eecsssscstEsssssEEBEEEEEBIEEEEES
“ecsssc ettt stssssEsEEEEEITECEERETS

Figura 5.10 Blaise Pascal
(Clermont-Ferrand,
Francia, 1623-Paris,

1662), filosofo, fisico y
matematico francés.

E jemplo

Demostrar que cada elemento en el triangulo de Pascal corresponde a un nimero combinatorio (Z)

En primer lugar, se etiquetan los renglones del triangulo con el entero n (al renglon inicial se le asignan = 0) y
las diagonales con el entero k (a la diagonal inicial, de izquierda a derecha se le asigna k = 0). Entonces, es facil
ver que todos los elementos de la diagonal k = 0 son de la forma (g) ya que:

n _ n! _n_!__l
0 (»n-olo! n!

En segundo lugar, los elementos finales de cada renglon son de la forma (:) ya que:
n n! o n_l o
n (h—n)n! nl

Por dltimo, los elementos restantes del triangulo, ubicados en el rengldn n - ésimo y diagonal k-ésima, se obtie-
nen mediante la suma de los elementos ubicados en el renglon anterior (n — 1), de la misma diagonal (k) y de la
diagonal siguiente (k — 1); es decir, debemos probar que:

n_n—=1, 6 n—1
Kook k-

No obstante, este resultado es la identidad probada en el inciso b) del primer ejemplo de la seccion 5.8, Iden-
tidades basicas combinatorias.

Coeficientes multinomiales

Otra manera de desarrollar el trinomio, o en general un polinomio, es considerandolo como un coeficiente
multinomial. Dados los enteros no negativos ny, n, ..., n,, tales que n; + n, + ... + n, = n, el nimero:

n B n!
ng,N,,..,n,  nin,l-nk!
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es conocido como coeficiente multinomial. Dicho coeficiente se utiliza para generalizar el teorema del bino-
mio, el cual se enuncia a continuacién.

Teorema
Siay, a,, ..., a, son k numeros reales y n un entero positivo, entonces:

n n n. n
@ +a,++a) = Z My, e, = A+ 4t Ay

"Ny, Ny, ., T,
Calcular el coefici [ti ial 8
alcular el coeficiente multinomia 42,2
Por la definicion de coeficiente binomial se tiene:
8 8l
42,2 a1 %

E jemplo_

Utilizar el teorema anterior para desarrollar el siguiente trinomio:

(@+b+c)

|_Solucién ]
En este caso, primero hay que considerar todas las tripletas de enteros no negativos (n;, n,, n;), para los cuales
se cumple la igualdad n, + n, + ny = 3. Es facil ver aqui que tales tripletas son:
(3,0,0),(2,1,1),(2,0,1),(1,1,1),(0,3,0),(0,2,1),(1,2,0),(0,0,3), (1,0, 2),(0,1,2)
Entonces, de acuerdo con el teorema inmediato anterior se obtiene:
(@+b+0) =(53,)ab°C +(530)a’b'c® +(,5,)a’b’c
+(515)ab'c’ +(530)a°b’c® +(,3,)a’b’c
+(120)a’ +(o55)a’6°C +(15,)a'b’c +(,;,)ab'c’
=a’ +3a’b+3a’c+6abc + b’ +3b’c +3ab’ + > +3ac” + 3bc’

Como se observa, este coincide con el desarrollo obtenido antes.

Los principios bésicos de conteo, la regla de la suma y la regla del producto representan la base para el desa-
rrollo de técnicas més sofisticadas de la combinatoria. Por un lado, la regla de la suma es aplicable cuando
se desea conocer el numero de elementos (sin redundancia) que existe en una unién de n conjuntos finitos

disjuntos.
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. Problemas propuestos

Por su parte, en el caso de que tales conjuntos no sean disjuntos, la regla de la suma es mejor conocida
como el principio de inclusién-exclusién. Por otro lado, la regla del producto es aplicable cuando se desea
contabilizar el nimero de elementos que existe en un producto cartesiano de n conjuntos finitos.

A partir de los principios basicos de conteo, es posible obtener técnicas de conteo mas sofisticadas, entre
las que destacan las permutaciones y las combinaciones. Mientras que una permutacién puede identifi-
carse como una seleccién ordenada de objetos (es decir, donde el orden de eleccién es importante), una
combinacién consiste en una seleccién no ordenada de objetos (selecciones donde el orden de eleccién no
importa). Cuando los objetos seleccionados son indistinguibles (iguales) las selecciones ordenadas y no or-
denadas reciben el nombre de permutaciones y combinaciones generalizadas, respectivamente.

En la siguiente tabla se resumen los principales resultados de las técnicas de conteo contempladas en
este capitulo; ademas, en esta también se destaca el tipo de problema con el que se relacionan.

Tabla 5.1

Selecciones de k objetos elegidos
de un conjunto de n objetos

Selecciones ordenadas (no existen

Distribucién de k objetos en n cajas
diferentes

Distribucién de k objetos distintos

n!
elementos idénticos). (n—R)! en una sola caja.
Selecciones no ordenadas (no " nl Distribuciéon de k objetos idénticos,
existen elementos idénticos). P m uno por caja.
Selecciones ordenadas (existen nl Distribuciéon de k objetos distintos,
elementos idénticos, que se nin,l-n, ! sin limite de objetos por cada caja.
repiten n, veces,..., n,veces,
respectivamente).
Selecciones no ordenadas (no ntk—1 nek-1 Distribuciéon de k objetos idénticos,
existen elementos idénticos). P = 1 sin limite de objetos por cada caja.

El teorema del binomio de Newton y su relacidén con el tridngulo de Pascal se establecen como parte de las
aplicaciones de las técnicas de conteo y de las identidades combinatorias.
El teorema del binomio afirma que la expansién del binomio (a + b)" estad dado por:

o Problemas propuestos 5.2 Establecer cuantos alumnos distintos hay que no

. toman ninguno de estos cursos.
@+b =>""a

o K 5.3 Determinar cuantos alumnos distintos hay que
Los problemas 5.1 a 5.5 se refieren a una escuela de toman al menos un curso.
deportes, donde hay 140 alumnos, de los cuales 40 to-
man clases de basquetbol, 50 de natacion, 45 de ciclis- 5.4 Definir cuantos alumnos distintos hay que toman
mo, 7 de natacion y de basquetbol, 6 de natacion y de exactamente dos cursos.
ciclismo, 8 de basquetbol y de ciclismo y 3 que toman

los tres cursos 5.5 Determinar cuantos alumnos distintos hay que

toman exactamente un curso.

51 Determinar cuantos alumnos distintos hay que
solo toman uno o dos cursos.

Los problemas 5.6 a 5.9 hacen referencia a una escuela
donde se ofrecen cinco cursos por la manana y siete
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por la tarde. Determinar cuantas opciones tiene un
alumno si quiere inscribirse en:

5.6 Un curso en la manana y otro en la tarde.
5.7 Un unico curso.
5.8 Dos cursos en la manana y dos en la tarde.

5.9 Todos los cursos posibles.

Los problemas 510 a 5.4 se refieren a una escuela de
artes marciales en la que hay 110 alumnos, de los cua-
les 30 toman la clase de karate, 40 la de tae kwan do,
35 ladejudo, 9 las de karate y tae kwan do, 11 las de tae
kwan do y judo, 8 las de karate y judo y 6 que toman
los 3 cursos.

510 Determinar cuantos alumnos distintos hay que
toman uno o dos cursos Unicamente.

511 Establecer cuantos alumnos distintos hay que no
toman ninguno de estos cursos.

512 Definir cuantos alumnos distintos hay que toman
al menos un curso.

513 Determinar cuantos alumnos distintos hay que
toman exactamente dos cursos.

5.4 Establecer cuantos alumnos distintos hay que to-
man exactamente un curso.

Los problemas 5.15 a 5.18 hacen referencia a una escue-
la donde se ofrecen ocho cursos por la manana y seis
por la tarde. Cuantas opciones tiene un alumno para
tomar cursos en dicha escuela si quiere inscribirse en:

515 Un curso en la manana y otro en la tarde.
516 Un dnico curso.
517 Dos cursos en la manana y dos en la tarde.

518 Todos los cursos posibles.

Los problemas 519 a 5.22 se refieren a una academia
en la cual hay 130 alumnos, de los cuales 43 toman un
curso de ceramica, 57 uno de pintura y 29 uno de es-
cultura; en tanto, en los cursos de ceramica y pintura
hay 10 alumnos, 5 en los de pintura y escultura, 5 en
los de ceramica y escultura y 2 alumnos que toman los
tres cursos.

519 Establecer cuantos alumnos distintos hay que to-
man exactamente un curso.

5.20 Definir cuantos alumnos distintos hay que toman
al menos un curso.

5.21 Determinar cuantos alumnos distintos hay que
toman exactamente dos cursos.

5.22 Establecer cuantos alumnos distintos hay que
toman uno o dos cursos Unicamente y cuantos
alumnos distintos hay que no estan inscritos en
ninguno de estos cursos.

5.23 En un torneo de futbol participan 32 equipos. Los
premios a entregarse son: copa de oro, copa de
plata, copa de cobre y copa de bronce, del prime-
ro al cuarto lugares, respectivamente. Establecer
de cuantas formas pueden repartirse las copas, si
un equipo solo puede ganar una copa.

5.24 Definir cuantas maneras diferentes hay de asignar
la posicion de salida de ocho autos que partici-
pan en una carrera de formula 1.

Los problemas 5.25a 5.28 hacenreferenciaa la asignacion
de los nimeros del seguro social en México, los cuales
constan de nueve digitos. Para su formacion, se permiten
repeticiones. Determinar cuantos nimeros distintos de
seguridad social existen en los siguientes casos.

5.25 Si se toman todos los posibles numeros que se
puedan formar.

5.26 Si el primero y el dltimo digitos no pueden ser
ceros.

5.27 Siningun digito puede ser un 8.
5.28 Si todos los digitos deben ser pares.

5.29 Determinar cuantas cadenas se pueden formar
con las letras BENZENE.

5.30 Definir de cuantas maneras puede un agricultor
sembrar cinco productos diferentes en cinco
campos agricolas si solo cultiva un producto en
cada campo.

531 En el Mundial de Futbol Alemania 2006 participa-
ron 32 equipos. Los premios fueron medallas de
oro, platay bronce, para el primero, el segundo y el
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tercer lugar, respectivamente. Establecer de cuan-
tas formas distintas se pudieron repartir las meda-
[las, si un equipo solo podia ganar una de estas.

5.32 Establecer cuantas cadenas de 8 bits tienen exac-
tamente 3 ceros.

5.33 Sise tiene un conjunto de 6 hombres y 7 mujeres,
establecer de cuantas maneras se puede elegir un
comité de 5 personas.

5.34 Determinar de cuantas maneras es posible repar-
tir 12 libros idénticos de matematicas discretas
entre 4 estudiantes.

5.35 Establecer cuantas cadenas se pueden formar
con las letras de la palabra FANTASMA.

5.36 Determinar cuantas cadenas de 8 bits tienen
exactamente 5 ceros.

5.37 Definir de cuantas maneras puede un agricultor
sembrar 4 productos diferentes en 4 campos agri-
colas, si solo cultiva un producto en cada campo.

5.38 De un conjunto de 8 hombres y 4 mujeres, ide
cuantas maneras se puede elegir un comité de 5
personas?

5.39 Definir cuantas “palabras” pueden formarse reor-
denando las letras de la palabra SALESPERSONS,
si las cuatro S deben ser consecutivas (juntas).

5.40 Establecer cuantos numeros telefénicos de siete
digitos podemos obtener si el primero, el quinto
y el dltimo digitos no pueden ser cero y se permi-
ten repeticiones.

5.41 El gerente general de un centro comercial de-
sea implementar ventas nocturnas tres veces a la
semana. Definir de cuantas maneras distintas se
pueden implementar dichas ventas.

5.42 Un cargamento de 50 microprocesadores con-
tiene 4 piezas defectuosas. Establecer de cuantas
maneras es posible seleccionar 4 microprocesa-
dores no defectuosos.

5.43 En una casa de huéspedes hay 30 habitaciones;
durante una temporada vacacional llega una ex-
cursion con 35 personas que desean alojarse en
el lugar y no quieren estar juntas. De acuerdo con
esto, {qué asegura el principio de Dirichlet?

5.44 Determinar de cuantas formas puede elegirse un

comité de 4 republicanos,3 democratas y 2 inde-
pendientes de un grupo de 10 republicanos, 12
demacratas y 4 independientes.

5.45 Establecer de cuantas maneras se pueden repar-
tir 15 libros de matematicas idénticos entre 6 es-
tudiantes.

5.46 Calcular el coeficiente del término xy’ que resul-
ta del desarrollo del binomio (3x — 2y)*.

5.47 Definir cuantos términos (distintos monomios)
tiene en total el desarrollo del trinomio (2x 4 3y
+2)?.

5.48 Determinar el coeficiente del término x*y’ que se
obtiene al desarrollar el binomio (x + y)".

5.49 Calcular el coeficiente del término x*y” que resul-
ta del desarrollo del binomio (3x — 2y)*.

5.50 Establecer cuantos términos se obtienen en total
del desarrollo del trinomio (x + y + z)*.

5.51 Considerar la expansion del binomio (x* — y)".
Determine y determinar el valor que debe tomar
el entero positivo n para que el cuarto término
de la expansion contenga x"°, asi como también
determinar el monomio completo.

En los problemas 5.52 a 5.53 calcular la suma indicada.

552 1 +27 420"
0 1 n
S5 A SR
0 1 n

En los problemas 5.54 a 5.56 demostrar la identidad de
los nimeros combinatorios que se indica.

554 7 =201
’ k  k k=1
n+1 n  n—1 k
5.55 _ @
k+1 k k ot k
5.56 m-+n _ AL - db oot mn
k 0 k 1 k=1 k O
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) Problemas reto )

En el siguiente problema se pide combinar el conteo
con la probabilidad; por tanto, es necesario que quien
se disponga a resolverlo tenga nociones basicas de
probabilidad junto con cierta destreza en el conteo,
a fin de poder responder el problema de manera sa-
tisfactoria.

En un cierto dia, la combinacion de un sorteo publico
para ganar una bolsa de 60 000 000 resulto ser:

3,7,13,19, 32,37

Como la bolsa no fue repartida, al dia siguiente se
efectud un nuevo sorteo, en el cual se obtuvieron las
siguientes combinaciones de nimeros:

10,16, 19, 37, 47, 49

Como se puede apreciar, en ambos sorteos aparece la
misma pareja de nimeros: 19 y 37.

Entonces, si se considera que en el sorteo se seleccio-
nan 6 nimeros de entre 1y 99, icual es la probabilidad
de que en dos sorteos consecutivos aparezca la pa-
reja de nimeros 19 y 37? O lo que es lo mismo, {cual
es la probabilidad de que en dos sorteos consecutivos
aparezca la misma pareja de ndmeros, fija pero arbi-
traria?
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e Teoria de
grafos

Objetivos

m Conocer la nomenclatura y la simbologia utilizadas en la teoria de grafos.

m Diferenciar los diversos tipos de grafos con base en sus propiedades y caracteristicas.

m Exponer diversos algoritmos para grafos y mostrar su aplicacion en problemas cotidianos.

m Comprender y utilizar algunos de los métodos usados en las demostraciones en la teoria de grafos.

m Relacionar la teoria de grafos con problemas de otras ramas de las matematicas y de otras disciplinas.
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6.1 Introduccion

La teoria de grafos es considerada una de las ramas mas importantes de las matematicas modernas, dada
surelativa novedad, pues su nacimiento tuvo lugar en 1736 y estuvo a cargo del matematico suizo Leonhard
Euler.

Su objeto de estudio son las propiedades y las caracteristicas de los grafos, que constituyen una de las
herramientas basicas para la modelizacién de fenémenos discretos, ademas de que se consideran la piedra
angular para la fundamentacién matematica en varias areas de las ciencias de la computacién, como la
teoria de cambio y logica de diseno, la inteligencia artificial, los lenguajes formales, los graficos por compu-
tadora, los sistemas operativos, los compiladores y la organizacién y recuperacién de informacién; asi como
también para la comprension de las estructuras de datos y el andlisis de algoritmos.

Pero, los grafos no solo son importantes para los matematicos y las ciencias de la computacién, también
son de gran utilidad para la representacién de circuitos eléctricos, ademas de que se pueden emplear para
determinar el trayecto éptimo de una empresa de mensajeria (el menor costo y el més rapido) que debe re-
partir y recoger numerosos paquetes a diversos clientes; asimismo, la red de carreteras puede modelarse por
un grafo, cuyas lineas son las vias carreteras de una ciudad a otra, donde a cada linea del grafo se le pueden
asociar varios valores: longitud del camino correspondiente, tiempo de recorrido, peajes, entre otras. Con un
grafo también se pueden representar las lineas del ferrocarril, entre muchos otros usos.

Por si fuera poco, los grafos también pueden utilizarse en areas como las ciencias sociales, la lingtiistica,
las ciencias fisicas (como la fisica teérica o la fisica nuclear), las ciencias econémicas, la antropologia, la qui-
mica, la biologia, la zoologia, y en diversas ingenierias (como la ingenieria en comunicaciones), entre otras
muchas areas donde es posible aplicar dicha teoria.

Por desgracia, hasta hoy dia no existe una terminologia estandarizada en la teoria de los grafos, por lo
que es importante sefialar que las definiciones y los conceptos de este libro pueden variar con respecto a
otras publicaciones donde se trate este mismo tema.

Este hecho es hasta cierto punto natural, dada la gran diversidad de campos en los que la teoria de grafos
se aplica; sin embargo, en ocasiones, esto suele ser complicado, en especial cuando un mismo término, en
particular, se utiliza en diferentes publicaciones para referirse a conceptos diferentes; ademas, tampoco es
raro encontrar que varios términos diferentes suelen ser usados como sinénimos.

6.2 Definiciones basicas y su representacion

Para empezar a conocer el concepto de grafo, iniciaremos con un ejemplo intuitivo y después definiremos sus
componentes basicos.

E jemplo] . .

Sea el mapa de las carreteras de algin lugar, como el 1
que se muestra en la figura 6.1. -

Determinar si existe una ruta por carretera entre dos
ciudades (puntos especificos) en el mapa.

Figura 6.1 Mapa carretero.
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o Definiciones basicas y su representacion 187

Primero, en el caso de que exista una carretera entre dos ciudades que las una directamente, estas se uniran en
el mapa con una linea recta, como se muestra en la figura 6.2.

4 N
|

=

4

Figura 6.2 Union de dos ciudades con una linea recta si hay una
carretera entre estas.

Después, si se representan las ciudades con puntos y a continuacion se borra todo, excepto los puntos y las
lineas de uniodn, el dibujo resultante (véase figura 6.3) se conoce como grafo.

d )

\ J

Figura 6.3 Grafo de ciudades de algun lugar y las
carreteras que las unen.

Como se ve en el capitulo 3, una relacién binaria puede representarse mediante un grafo, al igual que todo
grafo puede ser representado como una relacién binaria (véase el siguiente ejemplo).

E jemplo/

Sea el conjunto C={a, b, ¢, ... , n} de las ciudades y R una relacién binaria sobre C definida como:

R={(a,b) t- q - existe una carretera de la ciudad g a la ciudad b}

Determinar los elementos de esta relacion binaria.
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188 Capitulo 6 Teoria de grafos .

Para obtener los elementos de dicha relacion binaria, primero se pueden etiquetar los vértices del grafo de la
figura 6.3, como se muestra en la figura 6.4 y luego obtener la relacion binaria correspondiente.

/

Figura 6.4 Grafo con los vértices etiquetados.

Entonces:

R={(a,b) (b,c),(c,d) (c e) (d e) (e ) (fg) (g h (g i (&K (i) (k) k1), (I, m) (m,n)}
es la relacion binaria obtenida para dicho grafo.

El término grafo proviene de la expresion graphic notation (notacion grafica), usada por primera vez por Ed-
ward Frankland y adoptada posteriormente por Alexander Crum Brown, en 1884, la cual hacia referencia a
la representacion grafica de los enlaces entre los atomos de una molécula.

AUn, hoy dia, no existe una definicién precisa acerca de lo que es un grafo, aunque, de manera intuitiva,
siempre se ha trabajado con ellos; por tanto, este es el momento preciso para hacerlo. No obstante, cabe
senalar que hay dos maneras de definirlo:

a) Grafo: definicién geométrica

Desde el punto de vista geométrico, a la representacion grafica de los elementos de un conjunto y las
relaciones binarias sobre estos se les conoce como grafo y consta de puntos en el espacio, algunos de
los cuales estan unidos entre si mediante lineas.

Los puntos del grafo se llaman vértices o nodos y representan los elemen-
tos del conjunto. Por su parte, las lineas se conocen con el nombre de lados o
aristas y representan a aquellos elementos de la forma (i, j) que establecen
relacién entre los vértices; esto es, los vértices iy j estan relacionados.

Asi, de acuerdo con la definicién anterior, el dibujo de la figura 6.5 repre-
senta un grafo.

Esimportante sefialar que un grafo solo contiene informacién topoldgica;
es decir, datos sobre la conectividad o, lo que es lo mismo, acerca de la rela-
cién que existe entre los elementos del conjunto; sin embargo, estos carecen
N /) de toda informacién geométrica en el sentido euclidiano, como distancias,
angulos, etcétera. De este modo, los dos dibujos de la figura 6.6 representan
el mismo grafo.

Figura 6.5 Representacion de un
grafo.
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o Definiciones basicas y su representacion 189

b) Grafo: definicién algebraica

Un grafo G = (V, E, ¢), es una tripleta que
consta de un conjunto Vno vacio de los vér-
tices del grafo, un conjunto E C (V x V) de
los lados del grafo y una funcién o, la cual
es una funciéon de los lados del conjuntoE a
un conjunto de pares ordenados o no orde-
nados de los elementos (repetidos o no) de
V. Donde los conjuntos V y E del grafo son
finitos. Por su parte, la funcién ¢ se conoce
como funcién de incidencia (méas adelante se
define el concepto de incidencia).

En el caso de que algiin lado e € E, se tiene que:

Figura 6.6 Dos dibujos que representan el mismo grafo.

e(e) = (i.))
Donde:
1y j son los vértices extremos de e, también conocidos como los extremos de e.
Para representar algebraicamente un grafo, primero es preciso etiquetar los vértices del grafo por
v; y los lados por e; y enseguida aplicar la funcién de incidencia a los lados de E.

E JEMPLO

Si el primer grafo de la figura 6.6 se etiqueta como se menciond antes, resulta el grafo que se observa en la figura
6.7. Entonces, algebraicamente se puede expresar de la siguiente forma:

G=(V,E ) ™~
Donde:
V={v;, vy, v3, vy}
E={e,eye}y
Y ¢ esta definida por:
¢ () = (v v2)
¢ (ex) = (v vs)
¢ (es) = (v va) e .
O lo que es lo mismo: \ ’ ¢ J

e = ’ . .
ple)=(vav) Figura 6.7 Grafo etiquetado para
¢ (e)) = (v, v9) su representacion algebraica.
¢ (es) = (v v2)

Debido a que, como se dijo antes, no importa el orden en que se tome el par de vértices.

En lugar de escribir ¢(e) = (i, j) es mas comun escribir simplemente e = (i, j) para denotar a cualquier lado
de un grafo.

Como se observa en el ejemplo anterior, al aplicar la funcién de incidencia a cada uno de los lados del
grafoy al hacer la unién de los mismos, en realidad se obtiene la relacién binaria R que origina al grafo.
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En el caso del grafo de la figura 6.7 se tienen tres vértices, por lo que:

U (e)={ v2). (. v5). (v, v}

j:

O también:
L;J1 (e;‘):{(vzv V), (st V2>’(V4’ Vz)}

Como se puede observar, cualquiera de los dos casos equivale a la relacion binaria R que da origen a dicho grafo,
esto es:

R={(v, v2), (v3, v3), (v5, va)}

R ={(v5, v3), (v5, V), (Va, v)}

Ademas, es mas conveniente denotar a un grafo como G = (V, E), pues es la nomenclatura mas utilizada,
aunque también se puede denotar simplemente como G.

Hay que hacer notar que la definicién de grafo implica que para cada lado del grafo se puede asociar un
par ordenado o no ordenado de vértices pertenecientes al grafo.

6.3 Terminologia y caracterizacion de los grafos

Al interior de la terminologia bésica de la teoria de grafos hay inmersos diversos conceptos, entre los que
destacan: grafo dirigido, grafo no dirigido, orden, tamano, grafo finito, grafo nulo, grafo completo, entre otros.
Dichos conceptos y otros mas se analizan con mayor detalle a continuaciéon.

Grafo dirigido

Un grafo dirigido (o digrafo) G = (V, E) consta de un conjunto V de vértices y un conjunto E C (V x V) de lados,
tal que cada e € E esta asociado a un Unico par ordenado de vértices i,j € Vy se escribe e = (i, j).

Ademas, la direccién de un lado en un grafo dirigido se indica o denota mediante una flecha dirigida
sobre este.

E JEMPLO

La figura 6.8 representa un grafo dirigido G = (V, E), donde:

V={w, vy, 3, vy Vs, V¢}
E={ey e, e; e, e ¢4 €}

O también:

E={(vy Vi), (va, Vs), (v3, v3), (v3, va), (v3, V), (Ve V), (Ve Ve)}

Figura 6.8 Grafo dirigido G.
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Grafo no dirigido

Un grafo (o grafo no dirigido) G = (V, E) consta de un conjunto V de vértices y un conjunto E C (VxV)delados
tales que cada lado e € E esta asociado a un par no ordenado de vértices.
Siun lado e esté asociado a un Unico par no ordenado de vértices i,j € V se escribe e = (i,j) o e = (j, i).
También se suele denotar a un par no ordenado de vértices como {i, j}, lo que representa {(i, j), (j, 1)}. Aun-
que (i,j) = (j, 1) solo sii=j, se tiene que {i, j} = {j, i} para cualquier par de vértices i,j € V.

E JEMPLO

La figura 6.9 representa un grafo no dirigido G = (V, E), donde:
V={vy, Vo, V3, Vi, Vs, Ve, V7, Ve}

E={e, e, ey €45 ¢4 €5 €5 €5 €, €y}

o también

E={{vi va}, (v va}, {va, v3}, {v3, va), {v7 va}, (Ve Vo), (Vs V), (Va Vs), (Vi Ve}, (Vo Vo), (v, Ve))

-

Figura 6.9 Grafo no dirigido G.

En el contexto de grafos, el lado (i, j) denota un lado de un grafo dirigido o no dirigido y no a un par ordenado
de numeros.

Ademas, en general, sino se especifica que un grafo G = (V, E) es dirigido o no, se entiende que este es no
dirigido.

Orden y tamaiio

En un grafo (dirigido o no dirigido) G = (V, E), el nimero de vértices de G, denotado como |V|, se denomina
orden del grafo. Por lo general, se utiliza n para denotar el orden del grafo; esto es:

n=|v|

En tanto, el numero de lados de G, denotado como |E|, se conoce como tamaiio del grafo. Por lo comun, se
utiliza m para denotar el tamarno del grafo; esto es:

m = |E|

Sea el grafo de la figura 6.8, su orden |V| = 6, mientras que su tamano |V| = 7.

En tanto, si se considera la figura 6.9, su orden es |V| = 8 y su tamano |E| =T1.

Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)



192 cCapitulo 6 Teoria de grafos o

Grafo finito

Un grafo (dirigido o no dirigido) es finito si [V| y |E| son finitos; esto es, un grafo es finito si su orden y tamano
lo son.

Cabe hacer mencién que en este libro solo se estudian grafos finitos.

Por ejemplo, tanto el grafo de la figura 6.8 como el de la figura 6.9 son finitos, ya que en ambos casos |V|
y |E| son finitos.

Incidencia y adyacencia

En un grafo dirigido G = (V, E), para cualquier lado e = (i, j) se dice que e es incidente en los vértices i y j, los
cuales son sus vértices extremos, i es adyacente hacia j, mientras que j es adyacente desde i. Ademas, el vértice
1 es el origen o fuente del lado (i, j) y el vértice j es el término o vértice terminal de dicho lado.

En un grafo no dirigido G = (V, E), para todo lado e = {i, j} se dice que e es incidente en los vértices iy j, los
cuales son sus vértices extremos. Ademas, se dice que los vértices iy j son vértices adyacentes.

Por tanto, en cualquiera de los dos casos, se puede decir que dos vértices son adyacentes si estdn unidos
por un mismo lado.

E JemPLO_

En el grafo no dirigido G = (V, E) de la figura 610 se tiene que el lado ¢,
esta asociado al par no ordenado de vértices {v,, v,}, por lo que se escri-
be e, = (v;, v,), 0 también e; = (v,, v).

Ademas, se tiene que el lado e, es incidente en los vértices v, y v, ya

1 1 2
que son sus vértices extremos; por tanto v, y v, son vértices adyacentes,
pues estan unidos por el mismo lado.

E JEMPLO

4 )
Si se considera el grafo dirigido G = (V, E) de la figura 6.11, se tiene que los v,
lados dirigidos estan indicados por flechas y que el lado e, esta asociado e, *
al par ordenado de vértices (v,, v;), por lo que se escribe e; = (v5, v;). e,
2 >@ V.

También se tiene que el lado e, es incidente en los vértices v; y v,, ya que
son sus vértices extremos; por tanto, vy v, son vértices adyacentes, pues e e,
estan unidos por el mismo lado.
Ademas, el lado e, esta asociado con el par ordenado de vértices (v, vy), ’
por lo que se escribe e, = (v, v,), donde e, es incidente en v, y dicho vér-
tice es adyacente consigo mismo. 4

Figura 6.11 Grafo dirigido G.

Grafo nulo

Se dice que un grafo (dirigido o no dirigido) G = (V, E) es nulo si tiene todos sus vértices aislados. Por vértice
aislado se entiende aquel que noes extremo de ningin lado 0 que no tiene ninglin lado incidente sobre si.
En este caso, se tie- o
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E jEupio_ . .

En la figura 6.12 se observa un grafo G = (V, E) nulo, ya que ®
todos sus vértices son aislados.

=<
~@

~0®

<><
[ ]

=

Figura 6.12 Grafo nulo G. A\ 4

Lados paralelos y lazos

En un grafo (dirigido o no dirigido) G = (V, E), cuando dos o més lados distintos son incidentes al mismo par
de vértices, estos reciben el nombre de lados paralelos.

Por su parte, un lado de la forma (i, i) que inicia y termina en el mismo vértice se conoce como lazo; es
decir, el vértice es adyacente consigo mismo.

Sea G = (V, E) el grafo no dirigido de la figura 6.13, don-
de:e; = (v;, v,) Yy &, = (3, V), lo que significa que tiene
lados paralelos, pues son incidentes con el mismo par
de vértices.

Ademas, el lado e; = (v,, v,) es un lazo, ya que es inci-
dente consigo mismo.

Figura 6.13 Grafo con lados paralelos y lazo.

Grafo simple

Un grafo (dirigido o no dirigido) G = (V, E) que no tiene lazos ni lados paralelos recibe el nombre de grafo
simple.

Sean los grafos no dirigidos de la figu-
ra 6.14. En este caso, el grafo G, es un

grafo simple y el grafo G, es un grafo
no simple, ya que este dltimo tiene un 0/\<>
lazo.

Figura 6.14 Ejemplo de grafos. G, grafo G,
simpley G, grafo no simple. J
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Valencia de un vértice

En un grafo no dirigido, G = (V, E), se llama valencia (o grado) de un vértice, v, al numero de lados incidentes
en v,y se denota como 6 (v).

En un vértice que sea adyacente consigo mismo, solo se considerarad una vez para el célculo de la valen-
cia; sin embargo, hay ocasiones que se considerard como doble, por ejemplo para determinar la existencia
de un paseo o circuito de Euler en grafos no dirigidos, que se trata mas adelante.

Ademas, se tiene que la suma de las valencias de todos los vértices de un grafo no dirigido, G = (V, E), es
igual al doble del numero de lados; es decir, el tamartio |E| del grafo, siempre y cuando el grafo no contenga
lazos.

De manera formal, se denota como:

n

Z‘S (u) = 2[E|

=1
En un grafo dirigido, G = (V, E), la valencia de entrada de un vértice v es el numero de lados incidentes hacia
este, es decir, la cantidad de flechas que llegan al vértice, y se denota como §, (U); mientras que la valencia
de salida es el numero de lados que son incidentes desde este, es decir, la cantidad de flechas que salen de
dicho vértice, y se denota como §,(v).

Es importante resaltar aqui, que en el caso de que un vértice sea adyacente consigo mismo, solo se con-

siderara una vez, ya sea de entrada o de salida, pero no ambas.

E JEMPLO

Sea G = (V, E) el grafo no dirigido de la figura 6.13. Entonces, la valencia de cada [ v, h
vértice de G es:
O(v;) =4
o(v,) =3
&(vs) = 4 Y Y
o(v,) =4
dvs) =3
En este caso, se tiene que la suma de las valencias de los vértices es: v, v,
4434+4+4+3=18 V
que es el doble del tamario del grafo |E| = 9. Figura 6.15 Grafo no dirigido G.

Grafo completo

Un grafo G = (V, E) recibe el nombre de grafo completo de n vértices, que se denota K,, si es simple con n
vértices y ademas existe un lado entre cada par de vértices distintos.

De la definicién anterior, se puede inferir que para que un grafo sea completo, cada vértice de G debe ser
adyacente con todos los demés vértices del grafo.
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En la figura 6.16 se muestran los primeros cinco grafos completos.
' )

L K, K,

Figura 6.16 Primeros cinco grafos completos.

En el ejemplo anterior también se observa que K, se ha representado de varias formas diferentes, lo mismo
ocurre con la mayoria de los grafos.
Ahora, sea un grafo completo K,, este tiene las siguientes propiedades:

e Elgrafo tiene exactamente n vértices.
e Lacantidad total de lados del grafo es:
nn-1) _n
2 2
e (Cada vértice tiene valencian — 1.

En este caso, se puede comprobar con facilidad que nn-1)_n ,ya que: n _n@-)n-2! nm-1)
2 2 2 (n—2)!2! 2

Para verificar las propiedades de los grafos completos, se ha elaborado la tabla 6.1, en la cual se observa el cumpli-
miento de las mismas, tomando como base los grafos completos que se observan en la figura 6.16.

Tabla 6.1 Grafos completos y sus propiedades

Grafo completo Vértices Lados Valencia de cada vértice
K, 1 0 0
K, 2 1 1
K, 3 3 2
K, 4 6 3
K, 5 10 4
K, n n(nz— Y n-1
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También se puede comprobar que el grafo completo K (véase figura 6.17)
cumple dichas propiedades, ya que tiene 6 vértices, 15 lados y 5 lados que
son incidentes en cada uno de los vértices del grafo; es decir, cada vértice
tiene valencia 5.

Grafo regular

Sea G = (V,E) un grafo simple. Si todo vértice v; € V tiene la misma valen-
cia, entonces se dice que el grafo es regular, pero si la valencia es n, es
decir §(v;) =n, entonces el grafo recibe el nombre de n-regular. En la figura V4
6.18 se muestran diversos grafos n-regulares.

Figura 6.17 Grafo completo K.

T

g . ./

Grafo 0-regular Grafo 1-regular Grafo 2-regular

P

. Grafo 3-reqular Grafo 4-regular Grafo 5-regular

Figura 6.18 Grafos n-regulares.

Como se observa en la figura anterior, el grafo completo K; es O-regular, el K, es 1-regular, el K; es 2-regular y
asi sucesivamente, por lo que se puede inferir que todo grafo completo K, es un grafo (n—1)-regular.

Ademas, se tiene que en un grafo n-regular el tamartio del grafo es igual al orden por la n (que es la valen-
cia de cualquier vértice) dividido entre dos; es decir:

V|-n
2

| =

E JEMPLO

Sea el grafo 5-regular de la figura 6.18; entonces, se tiene que su tamano es:

o5
=2
2
=15

que, en efecto, es el tamano del grafo.

This document is available free of charge on StUDOCU-com

Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)



https://www.studocu.com/co?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=matematicas-discretas

. Terminologia y caracterizacion de los grafos [197

Grafo bipartita

Sea G = (V, E) un grafo simple. Se dice que G es bipartita si el conjunto de vértices V se puede dividir en dos
conjuntos disjuntos no vacios de vértices V, y V,; es decir:

ViuV,=Vyv,NnVv,=4
De tal manera que cada vértice del conjunto V; sea adyacente en los vértices del conjunto V,.
Del mismo modo, se dice que un grafo bipartita es completo si todos los vértices del conjunto V, son ad-

yacentes en todos los vértices del conjunto V,.
Sim=|V |y n=]V,|, entonces el grafo bipartita se denota como K, ..

E JEMPLO

Los grafos de la figura 6.19 son los grafos bipartitas K, ¢ y K;4; aunque no son completos.

Por su parte, los grafos de la figura 6.20 son grafos bipartitas completos K3, K33 y Ks.

~

/
K, Kz,z KZ,S
’ 4
Figura 6.20 Grafos bipartitas completos.
L K

2,4 j

Figura 6.19 Grafos bipartitas.

E jemplo_

Determinar si es posible conectar tres casas con los nimeros 1,2 y 3 a los servicios publicos de luz, agua y drenaje,
de tal manera que no haya dos lineas de conexién de dichos servicios que se crucen una con otra; es decir, esta-
blecer si es posible resolver este problema modelandolo mediante un grafo aplanable.

. 4 I
Como se observa en la figura 6.21, el dnico o o o

resultado posible para dicho problema es el
grafo bipartita K. El cual no es un grafo apla- D D D D D ‘ D D D D ‘ D D D D D‘

nable. Mas adelante se vera por qué.

=]
[o]

o o

Figura 6.21 Grafo K;; como solucion al problema. \ //

'0'1(/.(‘/0'1/1/\/
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Subgrafos
Sea G = (V, E) un grafo (dirigido o no dirigido). Se dice que un grafo G, = (V,, E ;) es un subgrafode GsiE,CEy
V,CV, tal que los lados de E; sean incidentes en los vértice de V;.

Por otra parte, siE; C Ey V; C V, entonces se dice que G; es un subgrafo propio de G.

De acuerdo con la definicién anterior, se puede intuir que un subgrafo G, = (V4, E;) es un grafo contenido
dentro de otro mas grande G = (V, E).

Esto sugiere que para obtener el subgrafo G,, lo que hay que hacer es eliminar algunos de los lados del
grafo G. Y, en efecto, asi es. Pero, siempre hay que tener en cuenta que no hay ningun problema al eliminar
cualquier lado; aunque no es posible eliminar solo un vértice sin razén alguna, ya que el resultado no seria
un grafo, sino que también es necesario quitar todos los lados que lo tengan por extremo.

En resumen, para obtener un subgrafo a partir de un grafo, se requiere:

1. Eliminarlados de G.

2. Eliminar vértices de G, en cuyo caso se deben borrar también todos los lados que tengan por extremo
a estos veértices.

Ademas, se dice que el complemento de un subgrafo G, = (V,, E;) con respecto a un grafo G = (V, E) es
otro subgrafo G, = (V,, E,), también con respecto a G, donde: E,=E—E, 0 E=E, + E, y V, contiene a todos los
vértices con los cuales E, son incidentes.

Cuando un subgrafo G, = (V,, E;) contiene a todos los vértices del grafo G = (V, E), entonces se dice que G,
es un subgrafo generador de G, por lo que en este caso V, = V.

E JemPLO_

Sea el grafo G = (V, E) de la figura 6.22i), donde:
V' ={V, Vo, V3, V4, V5, Vg, V3, Ve} Y

E={e, e, 5 e, €5 ¢, e, €5 €4 €, €y, €1}

Y sea el grafo G, = (V,, E;) de la figura 6.22ii), donde:
Vi={Vy V3, Vi Vs, Vi, V2, Vel Y

Ey={ey €5, 5 €5 0y, €p)

Como £, C Ey V,C V, tal que los lados de E, son incidentes en los vértices de V;; por tanto G, es un subgrafo de G.
Ahora, considérese el grafo G, = (V,, E,) de la figura 6.22iii), donde:

Vo ={vy, vy, V3, V4 Ve, Vg, Vo) y

E;={ey ey €5 € €5 €}
En este caso, se tiene que E, = E—E; y V, contiene a los vértices con los cuales E, son incidentes, por lo que G, es el
complemento del subgrafo de G, con respecto al grafo G.
Ahora, sea el grafo G, = (V,, ;) de la figura 6.22 iv), donde:

Vi={v1 vy V3, V4 Vs, Ve, Vo, V)Y

Ei={e, ey e5 05 €5 €5 €y}

Como E;C Ey V,C V, tal que los lados de E; son incidentes en los vértice de V;; por tanto G, es un subgrafo de G.
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Paseos y circuitos

Continta

Como V, contiene todos los vértices de G, entonces G, es un subgrafo generador de G.

-

fii)

\

Figura 6.22 Grafo, subgrafo, complemento del subgrafo y subgrafo generador.

6.4 Paseos y circuitos

Para iniciar esta seccién, primero se aborda un problema interesante donde intervienen paseos y circuitos,
y se continta con una definicién mas formal de estos conceptos.

Esimportante destacar aqui que muchos problemas que surgen de situaciones en la vida cotidiana pue-
den ser modelados mediante el uso de grafos. Uno de los primeros modelos de los que se tiene conocimiento
fue desarrollado en 1736, cuando Leonhard Euler publicé un articulo que contenia la solucién del famoso
problema de los puentes de Kénigsberg. A continuacién, se aborda en qué consiste dicho problema.

Nota/

Problema de los puentes de Konigsberg

Conocido mas especificamente como el problema
de los siete puentes de Konigsberg, consiste en el
hecho de que dos islas, situadas en el rio Pregel, en
Koénigsberg (antes Prusia Oriental, en la antigua Ale-
mania, en la actualidad perteneciente a Rusia y se co-
noce como Kaliningrado), estan conectadas entre si'y
con la margen del rio a través de siete puentes, como

se muestra en la figura 6.23. &
Figura 6.23 Distribucion de los puentes de Konigsberg.
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Continta

El problema radica basicamente en partir desde cualquier lugar de tierra firme (4, B, Co D), seguir
caminando y pasar por cada uno de los puentes una sola vez y luego volver al punto de partida.
Aunrecorrido de este tipo se le [lama “circuito de Euler” (este se analiza con detalle mas adelante)
y puede representarse mediante un grafo como se ve en la figura 6.24.
La solucion o no solucion de este tipo de problemas se obtiene facilmente mediante el uso del
concepto de valencia de un vértice.
Mas adelante se retoma el tema y se demuestra que el problema de los puentes de Konigsberg no
tiene solucion.
Como dato interesante se tiene que dos de los siete puentes originales fueron destruidos por el \ D J
bombardeo de Konigsberg durante la Segunda Guerra Mundial y otros dos fueron demolidos mas
adelante y reemplazados por carreteras modernas; los tres puentes restantes ain permanecen  Figura 6.24 Representacion
en pie, aunque solo dos de ellos datan de la época de Euler, pues uno fue reconstruido en 1935. del problema de los puentes

. . . . Lo de Koénigsberg mediante un
Por tanto, en la actualidad solo existen cinco puentes en Kaliningrado, distribuidos de tal manera grafo.
que ahora es posible obtener un camino euleriano, es decir, un recorrido que comienza en una
isla y termina en otra; sin embargo, todavia no es posible obtener un circuito euleriano, es decir, un recorrido donde la ruta comience
y termine en el mismo lugar, lo cual era necesario para cumplir con las condiciones iniciales del problema.

Ahora es tiempo de definir qué es un camino y un circuito y luego los de Euler.

Caminos y circuitos

Existen muchos problemas en los cuales se pretende determinar si existe un camino o un circuito en un
grafo determinado o simplemente entre dos vértices cualesquiera.
Pero, antes de definirlos, primero es necesario conocer qué es una sucesion de lados.

Sucesion de lados
Una sucesion de lados es un conjunto de lados consecutivos donde termina un lado y comienza otro.
Con frecuencia, una sucesién de lados:

{(Vo, v1), (U1, Vy), .o, (Uno1, U}
se abrevia como:
(Vo, U1, Uy, ..., Uy)
- 4 )
Sea G = (V, E) el grafo no dirigido de la figura 6.25. . ,
1 2
La sucesion de lados:
(v, va), (v, v3) , (v Vi), (Vis, vs)}
se puede abreviar como: ,
(Vi) Vo, Vo, Ve, Vs)
Ve G v
Figura 6.25 Grafo no dirigido G. N 4
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Paseos y circuitos

Esimportante recordar aqui que un lado e también puede escribirse como e = (i, ), por lo que dicha suce-

sién de lados también puede escribirse como:

Caminos y circuitos

Sea G = (V,E) un grafo no dirigido y sean i y j dos vértices de G.
Una sucesién de lados de i a j puede clasificarse como:

a) Caminodelongitudndeiaj, sivadeiaj,y tiene nlados distintos entre si.

b) Camino simple de longitud ndeiaj, sies dela forma (vo, vy, Uy, ...

..., U, son distintos entre si.

c) Circuito si esun caminodevav.

d) Circuito simple sies un circuito de la forma (g, U4, Uy, ...

entre si.

,Un), donde vy =0,y Uy, Uy, ...

,U,), donde vy =1y U, =j V¥ Uy, Uy, Us,

,U,_; son distintos

En otras palabras, un camino es una sucesién de lados en la cual todos los lados son distintos. Asi, un cami-
no simple es una sucesién de lados en la cual todos los lados y todos los vértices son distintos; un circuito es
un camino queinicia y termina en el mismo vértice donde todos sus lados son distintos y un circuito simple
es un circuito en el cual todos los lados y todos los vértices son distintos, a excepcién del primero y tltimo
vértices, que en realidad son el mismo.

E jemplo_

Sea G = (V, E) el grafo no dirigido de la figura 6.26.

Determinar si las sucesiones de lados de la tabla 6.2 corresponden a un
camino, camino simple, circuito o circuito simple.

Num.

1

Sucesién de lados
U, Uy, Us, Uy, Uy)

Us, Us, U, Ug, Us, Uy, Uy)

(
(
(Ve, Us, Uy, Uy)
(U2, Us, Us, Uy, Uy, U3, Uy)
(

Us, Ug, Uy, Us)

N

Figura 6.26 Grafo no dirigido G.

Tabla 6.2 Sucesiones de lados del grafo de la figura 6.26
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202 | Capitulo 6 Teoria de grafos .

En la tabla 6.3 se muestra a qué corresponde cada una de las sucesiones de lados de la tabla 6.2.

Tabla 6.3 Solucidén de las sucesiones de lados de la tabla 6.2

Num. Camino  Camino simple  Circuito Circuito simple
1 NO NO NO NO
2 st NO NO NO
3 st st NO NO
4 st NO st NO
5 st NO st st

Como se observa en el ejemplo anterior, la primera sucesién de lados no puede ser un circuito, pues,
aunque inicia y termina en el mismo vértice, que es una condicién necesaria, pero no suficiente para la exis-
tencia de un circuito, y esta no representa ni siquiera un camino, pues no todos los lados son distintos entre
si, como ocurre con el lado {v,, v,}.

Asimismo, se observa con claridad que una sucesién de lados no puede ser simultaneamente de los cuatro
tipos de sucesiones consideradas, pues como maximo puede ser de tres tipos diferentes.

Paseos y circuitos de Euler (eulerianos)

Existen tipos especiales de paseos y circuitos, los cuales implican ciertas restricciones al momento de visitar
o recorrer los vértices de un grafo dado, estos son los paseos y circuitos denominados de Euler (eulerianos)
y de Hamilton (hamiltonianos).

En primera instancia, se veran los de Euler.

Paseo de Euler
Un paseo de Euler (o euleriano) es un camino que incluye todos los lados de un grafo dado una y solo una vez.

Circuito de Euler

Un circuito de Euler (o euleriano) es un circuito que incluye todos los lados de un grafo dado una y solo una
vez.

Al recorrer todos los lados del grafo, también se recorren todos los vértices del grafo; sin embargo, no
importa la repeticién de vértices, mientras no se repitan los lados.

Condiciones para determinar la existencia

de un paseo o circuito de Euler en un grafo no dirigido

Es importante destacar que existen algunas condiciones para determinar si un grafo no dirigido tiene un
paseo o un circuito de Euler, las cuales implican que el grafo debe ser conexo; por esa razén, lo primero es
definir dicho concepto.

Grafo conexo
Sea G = (V, E) un grafo no dirigido; se dice que G es un grafo conexo si, para cualquier par de vértices iy j dis-
tintos entre si, existe un camino deiaj.
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De acuerdo con la definicién anterior, entonces los grafos no dirigidos de las figuras 6.24, 6.25 y 6.26 se

consideran conexos.
Siun grafo no es conexo, entonces se dice que es disconexo.

E JeMPLO_

Sea G = (V, E) el grafo no dirigido de la figura 6.27. Como
se puede ver, este grafo es disconexo, ya que no existe un
camino entre algunos de sus vértices, como de v;a v, o de
v, a Vs, entre otros.

=< [ ]

Figura 6.27 Grafo no dirigido G disconexo. 4

SiG=(V,E)esun grafo dirigido, su grafo no dirigido asociado es el grafo obtenido de G si se omiten las direc-
ciones de los lados. Cuando este grafo asociado es conexo, se considera que G es conexo; pero, si es disco-
nexo, entonces se considera que G es disconexo.

E JEMPLO_

Sea G = (V, E) el grafo dirigido de la figura 6.28. Como se puede ver, este grafo es disconexo, ya que su grafo no
dirigido asociado (véase figura 6.29) es disconexo.

Figura 6.29 Grafo no dirigido asociado al grafo dirigido de la figura 6.28.

Cuando un grafo es disconexo, entonces se dice que esta formado por componentes, donde la cantidad de
componentes es la cantidad de grafos individuales conexos que tiene el grafo; se denota como K(G).
Por ejemplo, el grafo dirigido de la figura 6.29 consta de tres componentes; es decir: K(G) = 3.
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También se puede decir que un grafo no dirigido G = (V, E) es disconexo si y solo si V puede separarse
en al menos dos subconjuntos V, y V,, tales que no haya un lado en E de la forma {i, j}; donde: i € V, yj € V,.
Y que un grafo es conexo siy solo si tiene una componente conexa.

A continuacién se muestran las condiciones para determinar la existencia de un paseo o un circuito de
Euler en un grafo no dirigido G.

1. Un grafo no dirigido G tiene un paseo de Euler si y solo si es conexo y tiene cero o dos vértices de
valencia impar.

2. Ungrafonodirigido G tiene un circuito de Euler siy solo si es conexo y todo vértice de G tiene valencia
par.

3. Ungrafonodirigido G tiene un paseode Eulerdei=jsiysolosiiyjsonlos inicos vértices de valencia
impar. Esta condicién indica que el Ginico paseo de Euler posible en el grafo es iniciar en uno de los
vértices de valencia impar y terminar en el otro o viceversa.

P R R R R R R R R R R R A R T R R )

Carl Hierholzer, matematico aleman que estudio matematicas en la Universidad de Karlsruhe y obtuvo su
doctorado en la Universidad de Heidelberg, en 1865. En 1870, Hierholzer escribi6 sobre secciones canéni-
cas, en su obra titulada Ueber Kegelschnitte im Raum (Acerca de las secciones esféricas en el espacio), en
Karlsruhe, donde después fue profesor.

Hierholzer demostré que un grafo tiene un ciclo euleriano si y solo si es conexo y cada vértice tiene
valencia par. Este resultado habia sido dado, sin demostracion, por Leonhard Euler en 1736. Se presume
que Hierholzer hizo una demostracion a un colega justo antes de su prematura muerte en 1871, quien lue-
go organizé el contenido para su publicacion postuma, la cual aparecié en 1873, bajo el nombre Uber die
Maglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren (Sobre la posibilidad de
evitar una polilinea sin repeticion y sin interrupcion).

tessecesssssersscsoseene e
Cessssesessesosss s

Figura 6.30 Carl
Hierholzer (1840-1871),
matematico aleman.

E jemplo_

Sean los grafos no dirigidos de la figura 6.31.

Determinar cuales de estos grafos tendran un paseo o un circuito de Euler.

@
\ 4 5

. %
66
Figura 6.31 Grafos no dirigidos.
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En la tabla 6.4 se muestran cuales de los grafos no dirigidos de la figura 6.31 tienen un paseo o un circuito de Euler.

Tabla 6.4 Grafos de la figura 6.31 que tienen paseo o circuito
de Euler

Grafo Paseo de Euler Circuito de Euler

G, st NO
G, st st

G, st NO
G, st NO
Gs st st

Ge NO NO
G, NO NO

El grafo G, del ejemplo anterior corresponde al problema de los puentes de Konigsberg; como se observa,
todos sus vértices tienen valencia impar, por lo que no puede tener paseo ni circuito de Euler, lo que significa,
por tanto, que dicho problema no tiene solucién.

En el mismo ejemplo, el grafo G, tampoco tiene ni paseo ni circuito de Euler, debido a que es disconexo. En
realidad, se trata de dos triangulos, uno sobre otro, pero sin conexién alguna entre los vértices de uno al otro.

Los resultados obtenidos para grafos no dirigidos pueden extenderse de inmediato para grafos dirigidos.
Sin embargo, también existen algunas condiciones para determinar si un grafo dirigido tiene un paseo o
un circuito de Euler:

1. Un grafo dirigido G tiene un circuito de Euler si y solo si es conexo y la valencia de entrada de cual-
quier vértice es igual a su valencia de salida.

2. Un grafo dirigido G tiene un paseo de Euler si y solo si es conexo y la valencia de entrada de cual-
quier vértice es igual a la valencia de salida con la posible excepcién de solo dos vértices. Para estos
dos vértices la valencia de entrada de uno de ellos es mayor que su valencia de salida y la valencia de
entrada del otro es menor que su valencia de salida.

3. Ungrafodirigido G tieneun paseo de Eulerdei=j,siysolosiiesel vértice de valencia de salida mayor
yj es el vértice de valencia de entrada mayor. Esta condicién indica que el tinico paseo de Euler posi-
ble en el grafo es iniciar en el vértice de valencia de salida mayor y terminar en el vértice de valencia
de entrada mayor.

P R R R R R R R R R R R T

Dénes Konig, matematico htngaro judio, trabajo y escribi6 el primer libro de texto sobre el campo de la
teoria de grafos en 1936, titulado Theorie und de endlichen unendlichen graphen (Teoria de grafos finitos
e infinitos). En este libro, uno de los principales resultados obtenidos afirma que un grafo dirigido D es
euleriano si y solo si las valencias de entrada y salida de cada vértice de D son iguales. Esto marcé el
comienzo de la teoria de grafos como su propia rama de las matematicas. Konig también trabajo en la
factorizacion de grafos bipartitas, en conjunto con Philip Hall. Asimismo, usé grafos para dar una prueba
mas simple de un resultado determinante de Frobenius, lo que parece haber causado cierta hostilidad
entre los hombres de su época.

reescsssssessssosesaene
sevscssessresesess s

Figura 6.32 Dénes Konig (1884-1944) matematico hungaro.
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E jemplo

Sean los grafos dirigidos de la figura 6.33. Verificar si dichos grafos tienen un paseo o un circuito de Euler.

@

N
4

-

\ 1
Figura 6.33 Grafos dirigidos.

Si consideramos las condiciones antes descritas, el grafo G, tiene tanto un paseo como un circuito de Euler, ya
que cualquiera de sus vértices, de manera individual, tiene la misma valencia de entrada que de salida.

En cambio, el grafo G, unicamente tendra un paseo de Euler, pero no un circuito de Euler, ya que la valencia
de entrada de cualquier vértice, de manera individual, es igual a su valencia de salida, con la posible excep-
cion de solo dos vértices.

Paseos y circuitos de Hamilton (hamiltonianos)

Un problema similar a la determinacién de un paseo o un circuito de Euler, es el de determinar un paseo o
circuito de Hamilton, los que se definen a continuacion:

Paseo de Hamilton
Un paseo de Hamilton (o hamiltoniano) constituye un camino que pasa a través de cada uno de los vértices
de un grafo dado exactamente una vez.

Circuito de Hamilton
Un circuito de Hamilton (o hamiltoniano) es un circuito que pasa a través de cada uno de los vértices de un
grafo dado exactamente una vez.

Al recorrer todos los vértices del grafo, no es importante si no se recorren todos los lados del grafo.

E jzmeio | . .

Sea el grafo no dirigido G = (V, E) que se observa en la figura 6.34.

En dicho grafo, la sucesion de lados:

(V4 Vo, V3, Vi, Vs, Vi, V)

es un paseo de Hamilton.

En tanto que la sucesion de lados:

(Vi) Vo Vi, V3, Vg, Vs, Vg, V1)

Ve G v,

es un circuito de Hamilton. Figura 6.34 Grafo no dirigido G. N V.
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E JEMPLO

En el grafo no dirigido de la figura 6.35 se muestra un circuito de Hamilton,
donde se observa que se recorren todos los vértices (cada uno solo una vez),
pero no se recorren todos los lados.

Pero, en realidad, el grafo de la figura 6.35 corresponde a una solucién del juego
de ingenio denominado el “juego icosiano” (véase figura 6.36) disenado por
William Rowan Hamilton en 1859. A continuacion, se analiza en qué consiste
dicho juego.

En ese mismo ano, Hamilton presentd en una reunion de la British Associa-
tion, en Dublin, un curioso pasatiempo al que él denomind The Icosian Game
(Eljuego icosiano), cuyo objetivo es encontrar un camino sobre un dodecaedro
que pase una, y solo una vez, por cada uno de sus veinte vértices; no obstante
si esta permitido pasar por un mismo lado mas de una vez, como se observa
en la figura 6.36.

Un dodecaedro es uno de los cinco poliedros regulares existentes en la na-
turaleza, el cual, como su nombre lo indica, esta formado por 12 penta-
gonos regulares iguales; por tanto, tiene 12 caras, 20 vértices y 30 lados.
Ademas, es importante notar que el hecho de que Hamilton designa-

ra a su juego con el nombre de Icosian no se debid a que utilizara un
icosaedro en su desarrollo (otro de los cinco poliedros regulares de la
naturaleza, formado por veinte triangulos equilateros iguales), sino que
Hamilton tomo el prefijo Ico (que en griego significa veinte) en alusion al
ndmero de vértices del dodecaedro.

Figura 6.36 Juego icosiano de Hamilton.

tsecssescssssssrsoesen e

Este juego serviria para desarrollar en mayor medida la teoria de grafos.

Figura 6.37 William Rowan Hamilton (1805-1865).

Problema del caballo

El llamado “problema del caballo” es un antiguo problema matematico relacionado con el ajedrez, el cual consiste
en encontrar una secuencia de movimientos (validos) de esta pieza, a fin de que recorra todas las casillas del table-

ro, visitando cada una solo una vez.

Desde su aparicion, muchos matematicos han buscado solucion a este problema, entre ellos Euler; no obstante,
aun sigue sin conocerse el nimero exacto de soluciones que existe. Ademas, el problema ha sido planteado para
tableros de diferentes tamanos y distintas condiciones iniciales, y sigue siendo tan atractivo como hace 1200 anos.

William Rowan Hamilton realizo importantes contribuciones a la dinamica y la optica, inventd los
cuaterniones y comercializé el novedoso juego de ingenio, conocido como Juego Icosiano, que posterior-
mente se convertiria en una especialidad a desarrollar dentro de la teoria de grafos, que habia visto la luz
con Euler y el famoso problema: “Los siete puentes de Konigsberg”. A lo largo de su vida, Hamilton se dedicé
a la investigacion de diversas disciplinas. Cabe destacar que en 1859 vendi6 por 25 libras los derechos del
Juego icosiano o Juego del viajero que, como se vio antes, consistia en conectar mediante un camino simple
los vértices de una figura formada por tres pentagonos concéntricos encajados unos dentro de los otros.

Paseos y circuitos

\ b

Figura 6.35 Grafo no dirigido con
circuito de Hamilton.
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Nota

Determinar la existencia de
un paseo o un circuito de Ha-
milton en un grafo puede ser
una tarea complicada, sobre
todo si se trata de un grafo
grande, ya que no se conoce
ninguna condicion necesaria
y suficiente para demostrar
la existencia de un paseo o
un circuito de Hamilton en un
grafo.

Continda

Asimismo, algunas variaciones de este problema han sido estudiadas por los mate-
maticos, como:

 Buscar soluciones ciclicas (a través de las cuales se debe llegar a la misma casilla

de la cual se partio).

e Tableros de diferente numero
de columnas o bien de diferente
ndmero de filas, como el tablero
de 5x5 que se muestra en la figura
6.38.

e Juegos de dos jugadores basados
en la misma idea.

e Problemas usando ligeras varia-
ciones en la forma de mover el
caballo.

El problema del caballo es una forma
mas general de determinar un paseo o
circuito de Hamilton.

¢

; l.”“‘"
o "

¢

\V/

‘d:,%‘

"
-‘fl

Figura 6.38 Solucion a la variacion del
problema del caballo en un tablero de 5x5.

Los teoremas siguientes son resultados generales que establecen condiciones suficientes sobre la existencia
de circuitos de Hamilton en un grafo.

Teorema de Dirac

Sea G un grafo no dirigido con n vértices para n > 3, tal que todos los vértices de G tienen valencia mayor o igual
que g Entonces, G contiene un circuito de Hamilton.

Este teorema fue demostrado en 1952 por A. Dirac, a quien debe su nombre, mediante el uso de la reduccién

al absurdo.

Sea el grafo no dirigido G = (V, E) de la figura 6.39, el cual,

como se observa, tiene cuatro vértices y cuatro lados. v,

Entonces, se tiene que &(v;) =2,i=1,...,4 y que g =

Al ser:

Entonces, se cumple el teorema de Dirac y se tiene que G
debe tener un circuito de Hamilton que podria ser (v;, v5,

Vi, V3, Vi)

Figura 6.39 Grafo no dirigido G.
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Paseos y circuitos

Sin embargo, existen circuitos de Hamilton en un grafo que no cumplen con dicho teorema.

E JeMPLO_

Sea el grafo no dirigido G = (V, E) de la figura 6.40,
el cual, como se observa, tiene ocho vértices y ocho
lados.

Entonces, se tiene que 6(v) = 2,i =1, ... ,8 y que
n_—g4
. b

Por lo que no se cumple el teorema de Dirac.

Pero, se tiene que G si tiene un circuito de Hamilton:

(V3, Vs Vs, Vi, Vo Vg, Vi, Vs, V)

Figura 6.40 Grafo no dirigido G.

Otro resultado general sobre la existencia de paseos de Hamilton en un grafo es el teorema que se cita a

continuacion.

Teorema de Ore

Sea G un grafo no dirigido con n vértices paran > 3, tal que: 6 (i) + 6 (j) > n, para cada par de vértices no adyacentes

iyjdeG.

Entonces, G contiene un circuito de Hamilton.

El teorema de Ore es una aplicacién del teorema de Dirac, el cual fue demostrado por Oystein Ore en 1960,

también mediante el uso de la reduccién al absurdo.

E JemPLO_

Sea el grafo no dirigido G = (V, E) de la figura 6.41, el cual,
como se observa, tiene cuatro vértices y cinco lados.

Entonces, se tiene que:

o(vi) =2,
O(vy) =3,

6(vs) =2y
O(vy) =3

Dado que 6(v;) + 6(v)) > n = 4, para cualquier par de vérti-
ces no adyacentes, entonces se cumple el teorema de Ore.

Y se tiene que G debe tener un circuito de Hamilton que
podria ser:

(Vi Vo, V3, Vo i)

Figura 6.41 Grafo no dirigido G.
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Pero, también existen circuitos de Hamilton en un grafo que no cumple con el teorema de Ore, como se ve
en el siguiente ejemplo.

E JemPLO_

Sea el grafo no dirigido G = (V, E) de la figura 6.42, el cual, como .VW ‘VZ ‘V, ’V4
se observa, tiene 16 vértices.
En este caso, al ser 6(v;) + 6(v;) & n = 16, para cualquier par de
gl v, v V. v

vértices no adyacentes, no se cumple el teorema de Ore. P P P o'
Pero, se tiene que G si tiene un circuito de Hamilton:

(Vi Vi, V3, Vg Vg, Vo, Vg, Vi,V Vi Vi Visy Vias Vi, Vi Vs, Vi) ‘V9 .Vw 'Vn .Vu

[ @ @ L J
V'B V14 G VlS V16
Figura 6.42 Grafo no dirigido G. V|

Los resultados anteriores son condiciones suficientes para la existencia de un paseo o circuito de Hamilton
en un grafo; sin embargo, no ofrecen condiciones necesarias para su existencia.

E JEMPLO ~

Sea el grafo no dirigido G = (V, E) de la figura 6.43. Como se puede observar,
este grafo contiene un circuito de Hamilton, pero no cumple con ninguna de
las condiciones descritas antes en los teoremas de Dirac o de Ore, pues la
suma de las valencias de cualesquiera dos de sus vértices es 4.

Figura 6.43 Grafo con paseo de Hamilton.

6.5 Multigrafos y grafos pesados (grafos ponderados)

Cuando se requiere que no exista duda en la terminologia de grafos, suele utilizarse el término multigrafo
para indicar que un grafo tiene lados paralelos. Por tanto, a continuacién, se define de manera formal dicho
concepto.

Multigrafo dirigido
Sea G = (V,E) un grafo dirigido, donde V es un conjunto de vértices y E es un multiconjunto de pares ordenados
de VxV.

En estos términos, G es llamado multigrafo dirigido o multidigrafo, y en forma geométrica puede repre-

sentarse como un conjunto de vértices V' y un conjunto de flechas E entre los vértices, donde no existe res-
triccién en el numero de flechas de un vértice a otro.
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Multigrafos y grafos pesados (grafos ponderados)

Ejirio . .

Sea el grafo G = (V, E) de la figura 6.44 donde:

Vi={vy, vy V3 Va} y

E = {{vs vi), (v, va), (v1, v3), (v, Vi), (Vi Va), (Vi V), (V3 V),
(Vi Vi), (Vi Vi), (v3, va))

En este caso, como G tiene un multiconjunto E de pares

ordenados de V<V, entonces se dice que es un multi-
grafo dirigido.

Figura 6.44 Multigrafo dirigido. y |

Con el fin de que el concepto de multigrafo quede mas comprensible, cabe aclarar qué es un multiconjunto.

Multiconjunto

En matematicas, un multiconjunto (también llamado bolsa, o bag en inglés) difiere de un conjunto en que
cada miembro del multiconjunto tiene asociada una multiplicidad m € N, que indica cudntas veces este
elemento es miembro del conjunto.

E JEMPLO

Sea el multiconjunto {a, a, b, b, b, c}.

Las multiplicidades de los miembros a, b y ¢ son 2,3 y 1, respectivamente.

Mas formalmente, un multiconjunto se define como el par (A, m) donde:

Aesun conjuntoy m: A — N es una funcién de A a N.

En este caso, A se conoce como el conjunto subyacente de elementos. Esto es, para cada a € A, la multi-
plicidad de a es el nimero m(a).

Es comun escribir la funcién m como un conjunto de pares ordenados {(a,m(a)) tal que a € A}. Siendo esta,
sin duda, la definicién de la funcién m.

E JEMPLO

Sean los multiconjuntos A = {a, b, b}, B={a,a, b} y C = {a, b}.

Estos se pueden definir respectivamente como:

A={(a1),(b,2)}
B={(a.2) (b,1)}y
C={(a1) (b, )}

E JEMPLO

Utilizando la definicion de multiconjunto, se puede decir que el grafo G = (V, E) de la figura 6.44 quedaria definido
como:

V={v;, vy, V3, Vs} ¥y
E={((vs Vi), 2), (v va) 1), (V2 Vi) 1), (Vi V2, 2), (Vs V) 1) (V2 Vi) 1), (Vi V), ), (V3 va), 1))
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Considérese una representacion grafica de un mapa de las carreteras de algun lugar cualquiera, en el que un lado
entre dos ciudades corresponde a un carril de una autopista entre las dos ciudades. Debido a que, a menudo, hay
autopistas de varios carriles entre dos ciudades, esta representacion origina un multigrafo.

La nocién de multigrafo no dirigido puede definirse de manera similar a la de un multigrafo dirigido, como
se ve a continuacion.

Multigrafo no dirigido

Sea G = (V, E) un grafo no dirigido, donde V es un conjunto de vértices y E es un multiconjunto de pares no
ordenados de Vx V.

En estos términos, G es llamado un multigrafo no dirigido o simplemente multigrafo, y desde el punto
de vista geométrico puede representarse como un conjunto de vértices V y un conjunto de lados E entre los
vértices, donde no existe restriccion en el numero de lados de un vértice a otro.

E JEMPLO_

Sea el grafo G = (V, E) de la figura 6.45, donde:
V={v, vy v3Vu}y

E={{v, v}, (v va} {v1, va}, {vs, va}, (V1 v}, {vo, v},
{va v}, (i, vl {va, va}, (Vo v {v3, v3})

En este caso, como G tiene un multiconjunto E de pares no ordena-
dos de Vx V, entonces se trata de un multigrafo no dirigido.

4 )

Ahora bien, si se utiliza la definicién de multiconjunto, entonces este
quedaria definido como:

G=(V,E) Figura 6.45 Multigrafo no dirigido.

donde:
V={v,vy vy Vi}ly

E={({v va}, 5), ({va v3}, 2), ({vs, vah 1), ({va v}, 1), ({va, Va3 1), ({v3, Va3 1))

En resumidas cuentas, un multigrafo, ya sea dirigido o no dirigido, es aquel grafo dirigido o no dirigido que
contiene lados paralelos.

Grafo ponderado

En muchos casos, es preciso atribuir o asignar a cada lado de un grafo un ntimero o valor especifico, conocido
como ponderacién, peso, valuacién o coste, segiin el contexto del que se trate, con lo que se obtiene un grafo
ponderado (también denominado pesado, con peso o valuado).

El valor no negativo w(i, j) que estéa asociado con el lado (i, j) es la ponderacién de dicho lado.

Ademas, la ponderacién de un grafo es la suma de los pesos de sus lados.

E JeMPLO_

Supdngase un mapa carretero; si en este se interpretan las ciudades como vértices y los caminos entre estas como
sus lados, al asignarles un valor a los caminos, como la distancia que hay entre las ciudades, que sera la ponderacion
de cada lado, entonces resulta un grafo ponderado.
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En la figura 6.46 se muestra un grafo ponderado, el cual es simplemente un grafo con datos o valores que le han

sido asignados a sus lados.

. Representaciones matriciales

~

Figura 6.46 Grafo ponderado.

Matriz de pesos en un grafo ponderado

Sea G = (V, E) un grafo ponderado finito tal que V ={vy, ..., v,}. Se denomina matriz de peso del grafo G a la

siguiente matriz de orden nxn:
- w; S (v, v;) €E
ws (v, v;) ¢E

E JemPLO_

La matriz de pesos del grafo de la figura 6.46 es:

o 2 o0 oo ] 4 oo oo
6 oo oo 4 oo oo oo 4

En un grafo ponderado, se denomina camino mas corto o camino liviano entre dos vértices al camino
de pesos minimo entre dichos vértices, asi como camino mads largo o camino critico entre dos vértices al

camino de peso maximo entre dichos vértices.

6.6 Representaciones matriciales

Hasta ahora, se ha visto como representar un grafo a través de su representacién geométrica o su represen-

tacion algebraica.
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Ahora bien, cuando se desea analizar un grafo en una computadora, se requiere de una presentacion
mas formal, la cual se realiza principalmente a través de una matriz de adyacencia o de incidencia, cuya
construccién se trata a continuacion.

Matriz de adyacencia

Para obtener la matriz de adyacencia de un grafo G = (V, E), la cual se representa como A; = [a;], primero se
selecciona un orden arbitrario de vértices. A continuacién, se le asigna a las filas y a las columnas de una
matriz el mismo orden dado a los vértices.

El elemento de la matriz a; es 1, silos vértices correspondientes a la fila (rengléon) y a la columna de dicho
elemento estan unidos por un lado, es decir, si estos son adyacentes, y 0 sino lo son. Otra forma de expresar
lo anterior es:

j

_ ] 1si(vq, ;) son adyacentes
0 en caso contrario

E jemplo

Sea el grafo no dirigido G = (V, E) de la figura 6.47.

Obtener su matriz de adyacencia. s ™~

m 1 2 B

La matriz de adyacencia de dicho grafo es:

=
=

v, (01 0 1 0
v, |1 0 1 01

Agc=us [0 1 0 1 1 v, G v,
v, |10 100 A\ 4
s {01 100 Figura 6.47 Grafo no dirigido G.

En el caso de que un vértice de G sea adyacente consigo mismo, se considera su valencia como 1.

Sea el grafo no dirigido G = (V, E) de la figura 6.48.

Obtener su matriz de adyacencia.

La matriz de adyacencia del grafo es:

Up Uy Uz Uy Us

v, (0 1 0 0 O
v, |1 0 1 0 1 ®
Ac=vs |0 1 1 01 L i G s J
v, |0 0 0 0 1
wll1 1110 Figura 6.48 Grafo no dirigido G.
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. Representaciones matriciales

Es importante destacar aqui que en la matriz de adyacencia no es posible representar lados paralelos.
Con base en los dos ejemplos anteriores, entonces se puede decir que las caracteristicas de la matriz de
adyacencia son:

1. No es posible representar lados paralelos.

2. Un1enladiagonal principal representa un lazo.
3. Todaslas matrices de adyacencia son cuadradas.
4

Como todas las matrices de adyacencia son simétricas con respecto a la diagonal principal, la infor-
macién, a excepcién de la contenida en la diagonal, aparece dos veces.

5. Lavalencia de un vértice v se obtiene mediante la suma de la fila o la columna correspondiente.

De manera similar, los grafos dirigidos se pueden representar mediante una matriz de adyacencia, la
cual quiza no sea simétrica.

E jemplo

Sea el grafo dirigido G = (V, E) de la figura 6.49. - ~

Obtener su matriz de adyacencia. v, Y

La matriz de adyacencia de dicho grafo es:

Ui Uy Uz Uy
v
v, ([0 1 0 1 !
v, |0 0 0 1 G v
3
Ac=vs|0 1 0 0 N 4
v, (0 0 10 Figura 6.49 Grafo dirigido G.

Como se observa en el ejemplo anterior, la matriz de adyacencia del grafo en cuestién no es simétrica; sin
embargo, se contempla una nueva propiedad:

6. Lavalencia de salida de un vértice v se obtiene mediante la suma de la fila correspondiente y la va-
lencia de entrada mediante la suma de la columna correspondiente.

En general, la matriz de adyacencia no es una manera muy eficaz de representar un grafo.

Matriz de incidencia

Otra representacion Gtil de un grafo es la matriz de incidencia.

Para obtener la matriz de incidencia de un grafo, representada como I; = [b;], primero se selecciona un
orden arbitrario de vértices y lados, y luego se asigna a las filas las marcas correspondientes a los vértices y
a las columnas las correspondientes a los lados.

El elemento que corresponde a la fila y a la columna e es 1, si es incidente en algtn vértice v, y 0 en cual-
quier otro caso. Esto es:

j

_ ] 1sieson adyacentes v,
0 en caso contrario
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E jemplo

Sea el grafo no dirigido G = (V, E) de la figura R
6.50.

Obtener su matriz de incidencia.

La matriz de incidencia de dicho grafo es:

€ € € € € € €

v, (1 1 1 0 0O0 O
v, |0 0 1 110 1
le=v3/0 0 0 0 01 O
nwl110100 0 Figura 6.50 Grafo no dirigido G.
us {0 0 0 011 O

Con base en el ejemplo anterior, se puede decir que la matriz de incidencia tiene las siguientes caracteris-

ticas:
1. Permite representar lados paralelos y lazos de manera simulténea.
2. Un grafosinlazos en cada columna tiene dos cifras 1.
3. Lasuma de cada fila da como resultado la valencia del vértice correspondiente.
4. Una columna en la cual se tiene un unico 1, representa un lazo.
5. Dos columnas iguales, no necesariamente juntas, representan lados paralelos.

6.7 Isomorfismo de grafos

De manera coloquial, se dice que dos grafos son isomorfos si tienen la misma figura o se pueden modificar
para obtener la misma figura, excepto por los nombres de los vértices.

Ahora bien, de manera mas formal se dice que dos grafos, G, = (V4, E)) vy G, = (V,, E,), son isomorfos si
existe una funcién biunivoca f entre los vértices de G, y G,, y una funcién biunivoca g, entre lados de G, y G,
tales que un lado e esincidente aiyjen G, siy solo siel lado g(e) es incidente a los vértices f(i) y f(j) en G,. A
las funciones f y g se les denomina isomorfismo de G, en G,.

Una vez definido el isomorfismo de G, en G, se procede a etiquetar los grafos de tal manera que se con-
serve la adyacencia de los vértices y la incidencia de los lados.

E jemplo - ~

Sean los grafos no dirigidos G, = (V,, £)) y G, = (V5, E,)
de la figura 6.51.

Determinar un isomorfismo para dichos grafos.

Figura 6.51 Grafos no dirigidos G,y G,.
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Isomorfismo de grafos

Un isomorfismo para los grafos G, y G, esta definido por:

flv)=V,i=1..,5

Es decir:
flv)=V,
flv) =V,
flvs) = Vs
fiv) =V,
fvs) = Vs
Y:
gle)=E,i=1,..,5
Es decir:
gle) =&
8lex) =E,
gles) = E;
gles) =E,
8gles) =Es

Ahora, se etiquetan los grafos de acuerdo con el
isomorfismo definido, conservando la adyacen-
cia y la incidencia, como se muestra en la figura
6.52.

Figura 6.52 Isomorfismo de G, en G,.

Otra forma de demostrar que dos grafos son isomorfos es la que se cita a continuacién.
Dos grafos G, y G, son isomorfos si y solo si para alguna ordenacién de vértices y lados sus matrices de

incidencia son iguales.

E JEMPLO

Sean las matrices de incidencia de la figura 6.52, las que corresponden a los grafos G, y G,, respectivamente, de la

figura 6.51.
€ € € € €
v; [ 1 1 0 0 O
u, |0 1 1 0 O
=vs |0 0 1 10
u, |0 0 0 1 1
us |1 0 0 0 1

Como estas matrices son iguales, entonces se dice que los grafos G, y G, son isomorfos.

€ € €3 €4 €

v, |1 1 0
u, 0 1 1
IG2:U3 0 0 1
v, |0 0 0
vel1 0 0

0

SO~ - O

0

R 2 O O

Para verificar si dos grafos dirigidos, G, v G,, son isomorfos, primero se omite la direccién de los lados
y luego se obtienen sus matrices de incidencia. Si dichas matrices de incidencia son iguales, se considera
que esta es una condicién necesaria, pero no suficiente, para verificar si son isomorfos. El siguiente paso es
verificar si se conserva la incidencia de lados, respetando el sentido de los lados. Si esto ocurre, entonces los

grafos dirigidos G, y G, son isomorfos.
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6.8 Grafos aplanables

Este tipo de grafos, ademés de ser muy frecuentes, - ~
también cuentan con muchas propiedades intere-
santes. A continuacién se analizan algunas de las
mas importantes.

Grafo aplanable

Se dice que un grafo G = (V, E) es aplanable si este
puede dibujarse sobre un plano de tal manera que
ningun lado se cruce con otro, excepto, desde luego, 4
en los vértices comunes.

Por ejemplo, el grafo G = (V, E) de la figura 6.53 es
aplanable.

E JEMPLO

En apariencia, el grafo G, de la figura 6.54 no es
aplanable, ya que sus lados se cortan en un punto
distinto de sus cuatro vértices; sin embargo, este
también puede representarse como se muestra en
el grafo G, de la misma figura. Por tanto, se dice
que G; si es aplanable.

Figura 6.53 Grafo G aplanable.

\ 1 2 /j

Figura 6.54 E| G, es aplanable ya que puede representarse como G,.

Entonces, si un grafo, en apariencia, es no aplanable, pero se puede representar o redibujar como un grafo
aplanable, se considera que el grafo original es aplanable. Aunque, en realidad, dichos grafos tienen que ser
isomorfos.

Un grafo aplanable divide al plano en diversas areas, y cada una se denomina regién de un grafo aplana-
ble, 1a cual se define a continuacién.

Region de un grafo aplanable

Una regién (o cara) R de un grafo aplanable es un area del plano que esta acotada por los lados y no puede
continuar dividiéndose en subareas.

Ademss, se dice que una regién R es infinita si su area es infinita y finita si su area también lo es.

En un grafo aplanable se tiene exactamente una regién infinita.

E jemplo e )

Sea el grafo no dirigido aplanable G = (V, E) de la figura 6.55. Obtener la can-
tidad de regiones que tiene el mismo.

Figura 6.55 Grafo no dirigido aplanable G.  \_
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_ Grafos aplanables

Como se puede observar, el grafoen [~
cuestion tiene cuatro regiones; las
primeras tres se muestran en la figu-
ra 6.56i), las cuales son finitas, mien-
tras que la cuarta region es infinita y
se muestra en la figura 6.56i).

i) ii)
N 4

Figura 6.56 Regiones del grafo G. i) Tres finitas y ii) una infinita.

Formula de Euler para grafos aplanables

En ocasiones, resulta complicado identificar las regiones de un grafo aplanable. No obstante, Euler demostrd
que todas las representaciones aplanables de un mismo grafo dividen al plano en igual nimero de regiones,
lo que logré hallando una relacién entre el nimero de regiones, el tamario y el orden de un grafo aplanable.
Dicha relacién se conoce como férmula de Euler para grafos aplanables, la cual se representa de la siguien-
te manera:

V|—|E] + R =2

donde |V], |E| y R son el orden, el tamafio y la cantidad de regiones, respectivamente.
Sin excepcién alguna, todos los grafos aplanables conexos siempre deben satisfacer la férmula de Euler.

E jemplo. . \

Sea el grafo no dirigido G = (V, E) de la figura 6.57. Obtener la cantidad de regio-
nes que tiene el mismo.

Dado que|V|=5yY |E| =7, sise utiliza laférmula de Euler para grafos aplanables
y se despeja R, se tiene que:

R=IE| = V] +2 N J
/—=5+2=4 Figura 6.57 Grafo no dirigido G.

Esto es, el grafo tiene cuatro regiones. Vs ~
Para comprobar que esta es la cantidad correcta de regiones, se tiene que
buscar una representacion aplanable de dicho grafo; es decir, un grafo iso-
morfo aplanable.
Asi, un grafo isomorfo aplanable al de la figura 6.57 es el que se observa en la
figura 6.58, donde se puede ver que, en efecto, este tiene las mismas cuatro
regiones obtenidas por la férmula de Euler para grafos aplanables.

Figura 6.58 Grafo isomorfo aplanable al grafo de la figura 6.57. \ y
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Una relacién que se obtiene de la férmula de Euler para grafos aplanables es la siguiente:
En cualquier grafo aplanable conexo que no tenga lazos ni lados paralelos y que tenga dos o més lados,
se cumple la desigualdad:

[E| <3[V] -6

Debido a que el grafo no tiene lazos nilados paralelos, cada regién es acotada por tres o méas lados, por tanto
el nimero es mayor oigual que 3R. En la frontera, a lo largo de dos regiones, el nimero total es igual o menor
a 2|E|, asi se tiene que:

2[E|>3R

2

£IE| >R
Asi, de acuerdo con la férmula de Euler, se tiene que:

vi- B+ 28 > 2

31V]— 6 > [E]

E JEMPLO

La figura 6.54 en realidad constituye el grafo completo K, que, como ya se vio antes, es aplanable; por tanto, se
debe cumplir:

3|V| — 6 > |E]
En este caso, primero se tiene que:
V=4 [E]=6
Luego, se sustituyen dichos valores en la desigualdad:
(3)-(4)—6=6
6=56
con lo que se cumple la desigualdad.
E JEMPLOJ
Sea el grafo completo K; entonces, se tiene que:
[V| =5, |E| =10
Si se sustituyen estos valores en la desigualdad mencionada, se tiene:
3:5—-62>10
9%10
Como no se cumple la desigualdad, se puede inferir que K; no es grafo aplanable. Mas adelante se ratifica esta

afirmacion.

Homeomorfismo de grafos

Es evidente que el hecho de que un grafo no dirigido G = (V, E) sea aplanable no se ve afectado porque un
lado sea dividido en dos lados por la insercién de un vértice de valencia 2, como se observa en la figura
6.591) o si dos lados se combinan en un solo lado, al eliminar un vértice de este tipo, como se ve en la figu-
ra 6.5911).
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Grafos aplanables | 221

Dos grafos no dirigidos G, = (V;, E)) y G, = (V,, E,), am- [~ )
bos sin lazos, son homeomorfos (o grafos isomorfos bajo
vértices de valencia 2) si:

. e I
e Sonisomorfos.
e Pueden transformarse en grafos isomorfos me-
diante repeticiones de inserciones y/o elimina- ) "
. L. . ] I
ciones de vértices de valencia 2. V|

Figura 6.59 Inserciony eliminacion de vértices de valencia 2
en un lado de un grafo.

E jemplo

Sean los grafos no dirigidos G, = (V;, E) y G, = (V,, E,) de la figura 6.60.

Determinar si estos grafos son homeomorfos.

e

4

Figura 6.60 Grafos no dirigidos.

»
Solucion

Como G,y G, son grafos isomorfos mediante repeticiones de inserciones y eliminaciones de vértices de valen-
cia 2, como se muestra en la figura 6.61; entonces, se considera que son homeomorfos.

4 )
GT GZ

4

Figura 6.61 Grafos homeomorfos.
En su época, el matematico polaco Kazimiers Kuratowski (1896-1980) demostrd que un grafo es aplanable

mediante el uso del concepto de homeomorfismo de grafos y formuld el teorema de Kuratowski, que se cita
a continuacién.
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Teorema de Kuratowski

Un grafo es aplanable si, y solo si, no contiene ninglin subgrafo que sea homeomorfo a alguno de los [lamados
grafos de Kuratowski.

Los grafos de Kuratowski se observan con de-

talle en la figura 6.62. Dichos grafos son Ks y
K;, respectivamente. M

Figura 6.62 Grafos de Kuratowski. ’ “ y |

E jemplo

Sea el grafo G = (V, E) completo K,, que se muestra en la figura 6.63. Deter-
minar si este grafo es aplanable.

Figura 6.63 Grafo completo K. V|

En este caso, primero se rota a K, como se muestra en la figura 6.64i). Si se eliminan los lados horizontales
internos, se obtiene el subgrafo que se observa en la figura 6.64ii). Después, si se eliminan los lados inclinados
externos, tanto superiores como inferiores, se obtiene el subgrafo de la figura 6.64iii), el cual es K. Por altimo,
alargando o reduciendo la distancia de los lados verticales, se obtiene el subgrafo de la figura 6.64iv), el cual
efectivamente ratifica que es K;5. Por tanto, se dice que Kj tiene un subgrafo homeomorfo a K;;, por lo que
dicho grafo no es aplanable.

Otra opcion es rotar nuevamen-
te a Ky, como se muestra en la figura
6.64v). Luego, se elige un vértice y se
eliminan todos los lados que surjan
de este, como en la figura 6.64vi), el

cual se observa que es K. Por dltimo, )
alargando o reduciendo la distancia

/II
entre los lados de la parte inferior,
se obtiene el subgrafo de la figura
6.64vii), que ratifica que es K. Por
tanto, K, tiene un subgrafo homeo-
Vll

morfo a Ks, con lo cual se comprue- v
ba, nuevamente, que dicho grafo no 4
es aplanable. Figura 6.64 Procesos para verificar que K no es aplanable.
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. Algoritmos para grafos

Del ejemplo anterior se deduce que todo grafo completo K,,n > 5, no es aplanable, ya que siempre contendra
un subgrafo homeomorfo a K;0a Ks 5.

6.9 Algoritmos para grafos

Para el tratamiento de esta seccién, antes que nada se debe conocer lo que es un algoritmo, para luego apli-
car este concepto en los grafos.

Algoritmo
El término algoritmo proviene del arabe al-Khowdrizmi, sobrenombre del célebre matematico drabe Moha-
med ben Musa.

Por algoritmo, comunmente se entiende a la descripcién de cémo resolver un problema. El conjunto de
instrucciones que especifican la secuencia de operaciones a realizar, en orden, para resolver un sistema
especifico o clase de problemas, también se denomina algoritmo. En otras palabras, un algoritmo es una
“especie de férmula” para la resolucién de un problema.

Existen diversos algoritmos para grafos, los cuales se utilizan para resolver problemas especificos; dos de
los mas importantes son el algoritmo de Fleury y el algoritmo de Dijkstra.

Algoritmo de Fleury
El algoritmo de Fleury se utiliza para determinar si un grafo tiene un circuito de Euler.
Los pasos de dicho algoritmo son:

Comprobar que el grafo sea conexo y que todos los vértices tengan valencia par.
Elegir un vértice inicial de forma arbitraria.
En cada paso, recorrer cualquier lado disponible siempre y cuando el grafo siga siendo conexo.

Después de recorrer el lado, borrarlo y recorrer otro lado disponible.

ok e

Cuando ya no se pueda seguir el recorrido, se debe terminar; entonces, se dice que se ha encontrado
un circuito de Euler.

E jemplo - N

Sea el grafo G = (V, E) que se observa en la figura 6.65.

Utilizando el algoritmo de Fleury, encontrar un circuito de Euler en dicho grafo.

v v

\ 5 6 /j
Figura 6.65 Grafo no dirigido.

De acuerdo con el algoritmo de Fleury, primero se debe verificar que el grafo sea conexo y que todos los vér-
tices tengan valencia par; en este caso, el grafo cumple las condiciones necesarias. Luego, se elige en forma
arbitraria un vértice, sea v, dicho vértice.

Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)

223



224 Capitulo 6 Teoria de grafos o

Continua

Enseguida, siguiendo el algoritmo, se recorren
los lados disponibles, de tal forma que el gra-
fo siga siendo conexo. Todo lado recorrido se
borra y se recorre otro lado disponible.

Por dltimo, el algoritmo concluye cuando ya

no es posible seguir recorriendo lados. jii)

Todo el proceso se muestra en la figura 6.66.

vii) viii)
V1 VZ
Y
Vé
Xii)
V1 VZ VZ VZ
v, Y, v,
V6 V6 Vé
Xiii) Xiv) Xxv)
v, Y,
V6 Vﬁ
. . ) xvi) Xvii)
El circuito de Euler obtenido mediante el uso y |

del algoritmo de Fleury es el siguiente: . o ,
Figura 6.66 Proceso para obtener un circuito de Euler mediante el

(Vé, V3, Vg Vi, V3, Vi, Vi, Vo, Vg, Vé} algoritmo de Fleury.

Algoritmo de Dijkstra

El algoritmo de Dijkstra debe su nombre al matematico Edsger Dijkstra, quien lo descubrid en 1959. Este

algoritmo se utiliza para determinar el camino mas corto entre dos vértices en un grafo ponderado.
Existen muchas versiones para encontrar el camino mas corto entre dos vértices, pero la version de Dijk-

stra se aplica a grafos ponderados no dirigidos conexos que no tengan lados con pesos negativos.
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R Algoritmos para grafos [225

Uno de los aspectos principales del algoritmo de Dijkstra es que todos los vértices del grafo se tienen que
etiquetar; sea L(i) la etiqueta del vértice i.

Ademas, en este se considera el hecho de que habra vértices que tendran etiquetas temporales y otros
que tendran etiquetas permanentes.

Esimportante aclarar que antes deiniciar con el algoritmo, primero se debe seleccionar un vértice inicial.

Sean un grafo no dirigido ponderado conexo de N vértices, x el vértice inicial, D un vector de tamafio N
que guardara, al final del algoritmo, las distancias desde x al resto de los vértices.

Los pasos de dicho algoritmo son:

1. Inicializar todas las distancias en D con un valor infinito relativo, ya que estas son desconocidas al
principio, exceptuando la de x, que se debe colocar en 0, debido a que la distancia de x a x seria O.

2. Seaa=x;es decir, se toma el vértice a como el actual.
Se recorren todos los nodos adyacentes de a, excepto los nodos marcados (a estos se les llama v;).

4. Siladistancia desde x hasta v; guardada en D es mayor que la distancia desde x hasta a, sumada a la
distancia desde a hasta v; esta se sustituye con la segunda nombrada, esto es:

Si(Di>Da + d(a, vy)), entonces Di = Da + d(a, v;)
5. Semarca como completo el nodo a.

6. Setoma como préximo nodo actual el de menor valor en D (los valores pueden haberse almacenado
en una cola de prioridad) y se vuelve al paso 3, siempre y cuando haya nodos no marcados.

Una vez terminado el algoritmo, D estara completamente lleno.

E jemplo_

Sea el grafo G = (V, E) de la figura
6.67.

Utilizando el algoritmo de Di-
jkstra, encontrar el camino mas
corto del vértice v; al vg en dicho
grafo.

Figura 6.67 Grafo no dirigido.

Para la solucion de este problema, a continuacion se muestra y se describe cada uno de los pasos del proceso
para obtener el camino mas corto del vértice v; al vs.

Nomenclatura:
@ e @ Vértices y lados de la solucion temporal
& — — 4 Vérticesy lados candidatos
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Continua

Paso1 4

En este paso hay tres candida-
tos: los vértices v, v5 y v, En este
caso, se toma el camino del vér-
tice v; al v,, ya que es el camino
mas corto de los tres (véase figu-
ra 6.68).

Solucion temporal:

Camino: vy, vy

Distancia: 5 Figura 6.68 Paso 1.

Paso 2 4

Ahora, se anade un nuevo candi-
dato, el vértice vs, y el vértice vs,
pero esta vez a través del vértice
v,. No obstante, el camino mini-
mo surge al anadir el vértice v,
(véase figura 6.69).

Solucion temporal:

Camino: vy, vy, Vs

Distancia: 9 Figura 6.69 Paso 2.

Paso 3

En este paso no se anade ningln
candidato mas, ya que el dltimo
vértice es el mismo que en el
paso anterior. En este caso, el ca-
mino minimo (véase figura 6.70)
hallado es:

Solucion temporal:

Camino: vy, vy, Vs, V5 -/

Distancia: 11 Figura 6.70 Paso 3.
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Continua

Paso 4

En este paso se anaden dos can-
didatos nuevos, los vértices v,
y v;, ambos a través del vértice
v5. El camino minimo hallado en
todo el grafo hasta ahora (véase
figura 6.71) es:

Solucion temporal:
Camino: vy, Vy, V3, Vy, Ve

Distancia: 15

Paso 5

En este paso se anaden tres vérti-
ces candidatos: los vértices v, v
Yy Vs, aunque este Ultimo ya esta-
ba, pero en este paso aparece a
través del vértice v,. En este caso,
el camino minimo (véase figura
6.72), que cambia un poco con
respecto al anterior, es:

Solucion temporal:
Camino: vy, vy, Vs, Vy, V5

Distancia: 17

Paso 6

En este paso vuelve a aparecer
otro candidato: el vértice vg, pero
esta vez a través del vértice v,. De
todas formas, el camino minimo
(véase figura 6.73), aunque vuelve
a cambiar para retomar el cami-
no que venia siguiendo en los pa-
sos anteriores, es:

Solucion temporal:
Camino: v;, vy, V3, Vs, Vg, Vs

Distancia: 18
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Figura 6.73 Paso 6.
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Continua

Paso 7 v

En este paso solo se anade un
candidato: el vértice v, a través 1
del vértice v.. El camino minimo
(véase figura 6.74) y final obteni- v,
does:

10

Solucion final: W

4 5
Camino: vy, Vg, V3, Vy, Ve, Vs, Vg N /)

Distancia: 23 Figura 6.74 Paso7.

6.10 Coloreado de grafos

El coloreado de un grafo no dirigido conexo G = (V, E) ocurre cuando se asignan colores a los vértices de G, de
modo que siv;y v; son adyacentes, entonces v; y v; tendran colores distintos asignados. El nimero minimo
de colores necesarios para el coloreado propio de un grafo es lo que se conoce como numero cromatico del
grafo.

E jemplo. p N

Sea el grafo no dirigido G = (V, E) que se observa en la figura 6.75.
Obtener el ndmero cromatico de dicho grafo.

\ J

Figura 6.75 Grafo no dirigido.

Se desea colorear los vértices de G, de modo que no haya
dos vértices conectados del mismo color y utilizando la mi-
nima cantidad de colores posible.

En este grafo, el nimero cromatico es 4 (1 = rojo, 2 = azul,
3 = verde y 4 = amarillo), ya que es el nimero minimo de
colores para el coloreado (véase figura 6.76).

Figura 6.76 Grafo no dirigido G coloreado.
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Coloreado de grafos

Es importante destacar que no hay ningun algoritmo eficiente para colorear un grafo. No obstante, a
continuacién se muestra uno simple que consiste en comenzar coloreando los vértices de mayor valencia;
sin embargo, este algoritmo no siempre produce el mejor coloreado.

Algoritmo para colorear vértices

Los pasos para este algoritmo son:

1. Hacer lista de vértices segin el orden de su valencia, de mayor a menor:
6(u)) 26(vg) = ... 2 6(vy)
Se elige una ordenacién cuando dos vértices tienen igual valencia.

2. Asignar a v, el color 1, asi como a todos los vértices de la lista, en orden, que no sean adyacentes a
uno coloreado con el color 1.

3. Asignar el color 2 al primer vértice de la lista que no haya sido coloreado con el color 1. Seguir colo-
reando con el color 2 los vértices de la lista no coloreados que no sean adyacentes a vértices con el
color 2.

4. Continuar el coloreado hasta que se hayan agotado todos los vértices.

E jemplo_

Sea el grafo no dirigido G = (V, E) que se muestra en la figu-
ra 6.77. Utilizando el algoritmo para coloreado de vértices,
colorear dicho grafo.

Figura 6.77 Grafo no dirigido G coloreado.

De acuerdo con el algoritmo para el coloreado de vértices, los pasos para colorear el grafo son:

Paso 1

Obtener las valencias de cada vértice:
O(v5) = 2, 8(v,) = 4, &(v5) = 4, &(v4) =3, &(v5) = 6,
6(ve) = 4, 8(v7) = 2, 8(vg) = 3, 8(vs) = 4, 8(v10) = 2

Luego, los vértices se ordenan de mayor a menor, de acuerdo con su valencia, quedando:

Vs, V2, Vay Vs Vor Vg, Ve, Vi, Vi Vio
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Continua

Paso 2

Sean los colores rojo =1, azul = 2, verde = 3 y amarillo
= 4. De este modo, al vértice v; se le asigna el color 1,
que es el rojo, asi como a todos los vértices de la lis-
ta, en orden, que no sean adyacentes a uno coloreado
con el color rojo (véase figura 6.78).

Paso 3

A continuacion se asigna el color 2 (azul) al primer
vértice de la lista que no haya sido coloreado con el
color rojo, en este caso v, y se sigue coloreando con
el color azul los vértices de la lista no coloreados que
no sean adyacentes a vértices con el color azul (véase
figura 6.79).

Paso 4

Como en este paso aun hay vértices sin colorear, se
repite el procedimiento del paso anterior, y se asigna
el color 3 (verde) al primer vértice de la lista que no
haya sido coloreado con el color azul, en este caso v,
Colorear con el color verde todos los vértices de la
lista no coloreados que no sean adyacentes a vértices
con el color azul (véase figura 6.80).

Figura 6.80 Paso 4 en el coloreado del grafo.

Como después de este punto ya no quedan vértices sin colorear, se termina el algoritmo y se concluye que como
solo se utilizaron tres colores para colorear el grafo, entonces su nimero cromatico es precisamente tres.
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Teorema de los cuatro colores

Francis Guthrie, estudiante de Augustus de Morgan, se dio
cuenta de que solo bastaban cuatro colores para colorear un
mapa completo de los condados de Inglaterra (véase figura
6.81, donde solo se muestran los condados sin aplicar el teo-
rema).

Aqui naci6 la conjetura. Augustus de Morgan hizo publi-
cidad del problema entre los matematicos. Hasta la fecha se
han dado varias pruebas incorrectas del teorema de los cuatro
colores, la méas famosa es la del abogado inglés Alfred Kempe,
quien la publicé en 1879 y fue aceptada como correcta por los
matematicos hasta 1890, cuando Pearcy Heawood encontréd
un error en su demostracion.

Al final, este teorema fue demostrado por Kenneth Appel y
Wolfgang Haken(Estados Unidos de América) en 1976, quienes
para su demostracién utilizaron una supercomputadora para
examinar 2000 configuraciones diferentes de mapas, a las que
habian reducido el problema. Para la demostraciéon se necesi-
taron 1000 horas de proceso.

Coloreado de grafos

~

Sin embargo, esta demostracién no es aceptada por todos los matematicos, dado que seria impractica-
ble por su gran cantidad de detalles, de manera que una persona se veria imposibilitada para verificarlo en

forma manual.

Solo queda aceptar la exactitud del programa, el compilador y la computadora donde se ejecut6 la prue-
ba. Otro aspecto de la demostracién, el cual puede ser considerado negativo, es su falta de elegancia.
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Aunque este grafo es mucho mas complejo que el de la figura 6.75,
en este también es posible observar que el nimero cromatico es
4 (rojo, azul, verde y amarillo), pues (de nueva cuenta) es la minima
cantidad de colores para el coloreado (véase figura 6.83).

1. Rojo
2. Azul
3. Verde

4. Amarillo

Figura 6.83 Coloreado de la representacion de
los condados de Inglaterra.

Determinacién del nimero cromatico utilizando algebra lineal

Una manera de determinar el nimero cromatico de un grafo simple no dirigido conexo G = (V, E) es median-
te el analisis de los autovalores asociados a su matriz de adyacencia Ag.

La matriz de adyacencia depende de la ordenacién de los vértices; como se recordard, siempre sera una
matriz simétrica con diagonal principal.

El procedimiento para calcular los autovalores o eigenvalores es relativamente sencillo; no obstante, se
debe mantener el orden y evitar confusiones. El procedimiento es el siguiente:

1. Secrea el polinomio caracteristico, que es de la siguiente forma:
p(\) = determinante(A; — X - I)

Esto se hace armando la matriz A,y restando en cada uno de los componentes de la diagonal. Se
debe tener en cuenta que I es la matriz identidad, es decir la matriz que tiene todos 1 en la diagonal
y todos 0 en las otras posiciones de la matriz.

2. Seencuentran las raices Nigualando el polinomio caracteristico a cero. De esta forma, se encuentran
todos los autovalores para esta matriz.

Sise considera el grafo de la figura 6.84:

—

Figura 6.84 Grafo no dirigido sin lazos ni lados paralelos.

Este tiene como matriz de adyacencia:
Ao [ 01 ]
1 n
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o Resumen

Y comoI:

Entonces:

|AG — | =

Del determinante se obtiene el polinomio caracteristico:
N-1=A-1)(\+1)=0
Entonces, \; = 1y X\; = —1, son los autovalores.

Como la matriz de adyacencia es simétrica, los autovalores asociados a la misma son siempre nu-
meros reales. Por tanto, estos pueden ser ordenados de menor a mayor. Ademas, el grafo debe ser
CONexo.

Sea \, el autovalor mas grande y \, el autovalor mas pequerio. Six es el nimero cromatico de un grafo
simple, entonces se cumple:

1- M cx<1gn
A

En este caso: \; = 1y \; = —1. Aplicando la desigualdad se tiene que:
1- il <x<141,
1+1<x<1+1,
2<x<2
Por tanto, el nimero cromatico es 2.

El coloreado se muestra en la figura 6.85, utilizando los dos colores de acuerdo con el nimero cro-
matico obtenido.

o ®

"4

Figura 6.85 Grafo coloreado.

Es importante destacar que un problema es determinar el nimero cromatico de un grafo y otro muy
distinto es el de colorear el mismo.

En este capitulo se estudian las propiedades y caracteristicas de los grafos, las cuales, a fin de cuentas, son
solo abstracciones matematicas. Ademas, también se trata la utilidad de los grafos en la practica, pues estos
ayudan a resolver numerosos problemas importantes de la vida cotidiana.

Ademas, también se muestran diferentes alternativas para la representacion de los mismos, ya sea de
manera grafica, algebraica o formal mediante matrices y su posterior manipulacién en una computadora.

Asimismo, se estudia la clasificacién de los grafos y se muestran los diversos recorridos en los mismos
(caminos, caminos simples, circuitos y circuitos simples), ademas de casos especiales, como: paseos y cir-
cuitos de Euler y Hamilton.

Por Gltimo, se tratan aspectos formales de la teoria de grafos, como algunos algoritmos para grafos y el
coloreado de grafos.
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6.1 Determinar el nimero de lados que tiene el grafo
K,.

6.2 Determinar qué valencia tiene cada vértice de un
grafo K.

6.3 Establecer qué valencia tiene cada vértice de un
grafo K,,.

6.4 Determinar como se denomina un grafo en el que
hay datos asociados a sus lados.

6.5 Establecer qué tipo es cada uno de los grafos que
se muestran en las figuras siguientes.

/QA\@

Grafo simple

Grafo conexo jif) Grafo completo

Figura 6.86

Nota:
Un grafo puede ser de mas de un tipo.

6.6 Determinar cual de los siguientes grafos repre-
senta un subgrafo generador para K.

-

6.7 Establecer cual de los siguientes subgrafos es el
complemento del subgrafo con respecto a K,

A) B)
Q) D)

Figura 6.88

A) B)
Figura 6.87

” 4

6.8 Es un grafo en el que no existen lazos ni lados
paralelos.

6.9 Todos los siguientes subgrafos son generadores
de K,, excepto:

° °
° °
A) B)
° °
C D
N ) )
Figura 6.89

6.10 Se dice que un G, es un subgrafo generador de G
si contiene

6.11 El grafo G, es con respecto al grafo G;:

VATAN

61 GZ
\ S
Figura 6.90

~

a) Isomorfo con G,
c) Subgrafo generador de G,

b) Complemento de G,
d) Homeomorfo con G,

6.12 (Qué tipo es cada uno de los siguientes grafos?

. . 2
[/ 2 6 8 3
T 7
1 GZ G )
G, G, G, J
Figura 6.91
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Nota:

Un grafo puede ser de mas de un tipo.
a) Grafo ponderado d) Digrafo
b) Grafo no simple e) Grafo disconexo

c) Grafo completo f) Multigrafo

6.13 (Cuales de los siguientes grafos contienen un
circuito de Euler?
3K, b) K, K, d) K,
e) Ky f) K, 8) K, h) K;

Con base en el grafo siguiente, responder lo que
se pide en los problemas 6.14 a 6.17.

Figura 6.92

6.14 (Cual de las siguientes sucesiones de lados es un
camino?

a) vy, vy, V3, V3, Vi, V) b) (v, Vo, V3, Vi, V3, V)

) (vy, vy, V3, Vg, Vs, V3) d) (v vy Vi V3, Vi, V)

6.15 (Cual de las siguientes sucesiones de lados es un
camino simple?

a) (v Vo, Vs, Vs, Vi, ) b) (vi, va, V3, Vi, Vs, v3)

Q) (vy, vy V3 Vi, V) d) (vi vy, V3, Vs, Vi)

6.16 (Cual de las siguientes sucesiones de lados es un
circuito?

a) (vy, Vs, Vi, Vi, Vs, V4) b) (v, Va, V3, Vs, Vi, Vs, V1)

) (vy, v, V3, Vg, V3, i) d) (v, va Vi, v3, )

6.17 (Cual de las siguientes sucesiones de lados es un
circuito simple?

a) (v, vy V3, Vs, Vi, ) b) (v, Vo, V3, Vi, V3, V)

Q) (i, V3 Vs, Vi, V3, V) d) (vi vy, V3, Vs, Vi, V3, V1)

Problemas propuestos

Con base en el grafo siguiente, responder lo que
se pide en los problemas 6.18 a 6.21.

4

Figura 6.93

6.18 (Cual de las siguientes sucesiones de lados es un
camino?

a) (v, va, V3, vy, 3, Ve) b) (vi, va, V3, V4, v, v3)

) (Vi vy V3, Vi, Vi, V) d) (vy, v, vy, Vs, vy, V)

6.19 (Cual de las siguientes sucesiones de lados es un
camino simple?

a) (Vi vy V3, Va, Vs) b) (vi, i, V3, Va, Ve, v3)

) (i vy V3 Vi, V) d) (vy, vy, V3, Vi, Vs, Vi)

6.20 (Cual de las siguientes sucesiones de lados es un
circuito?

a) (vy, Vs, V3, Vi, V3, V4) b) (v, V3, V4, Vi, vy, v4)

) (Vi vy, V3, Vs, Vi, Vi) d) (vy, Vg, Vs, Vi, V3, V9)

6.21 (Cual de las siguientes sucesiones de lados es un
circuito simple?

a) (v Vo V3, Vs, Vi, V3, Vi) B) (v, vy, v, v, Vs, Vi)

C) (v, vy V3, Vi, V3, V1) d) (vy, Vs, Vi Vi, v3, v, )

6.22 Determinar cual de los siguientes grafos tiene en
forma simultanea un circuito de Euler y un circui-
to de Hamilton.

G G. G G

1 2 3 4

Figura 6.94
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6.23 En el siguiente grafo, todas las sucesiones de lados a) Un ndmero impar de vértices tiene grado par.
representan un circuito de Hamilton, excepto: b) Hay dos vértices de grado impar.

c) Hay al menos dos vértices de grado impar.
d) Algunos vértices tienen grado par.

6.29 (Cuales de los siguientes grafos tienen un paseo
de Euler, un circuito de Euler o ambos?

| A O0) L]

G

1

a) (v, V3, Vi Vi, Ve, V3, Vo) D) (v, Vo, v, v, Vs, Vg, Vi)

C) (Vo V3, Vi Ve, Ve, Vi, Vo) d) (3, Ve, i, Vs, Vi, Vi, V3) Figura 6.98

Con base en el grafo siguiente, responder lo que

se pide en los problemas 6.24 2 6.27. 6.30 Para cuales valores de n, el grafo completo K, no

contiene un circuito de Euler.

a) Para todo n par b) Para cualquiern > 5

c) Paratodonprimo  d)Paratodo nimpar

Con base en el grafo siguiente, responder lo que

& 6, se pide en los problemas 6.31a 6.34, considerando
que cada una de las sucesiones de lados es un:
a) Camino
b) Camino y camino simple
5 & ) c) Caminoy circuito
Figura 6.96 d) Camino, circuito y circuito simple
6.24 (Cuales grafos tienen en forma simultanea un pa-
seo y un circuito de Euler? - ~
6.25 (Cuales grafos no tienen un circuito de Euler? p

6.26 (Cual grafo tiene un paseo pero no un circuito de

Euler? 2 Yy
6.27 Todos los grafos tienen un paseo de Euler, excep-
to
6.28 El siguiente grafo tiene un paseo de Euler porque s £
’ 4
Figura 6.99
6.31 (v3, Vs, Vi, Vi, Vs, V)
6.32 (V3, V4 Vs, Vy, V3)
6.33 (V1,V5, V3, Vi Vs, V3)
/ 6~34 (v]r Vz, v}r v4r VS)
Figura 6.97
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6.35 (Cuales de los siguientes grafos tienen un circuito
de Euler?

G G G G

1 2 3 4

Figura 6.100

6.36 Obtener la matriz de adyacencia que representa
el siguiente grafo.

~

4

Figura 6.101
6.37 Obtener la matriz de adyacencia que representa

el grafo completo K;.

6.38 La matriz de adyacencia que representa un grafo
G con todos sus vértices aislados entre si es:

o 1 1 1 0O O 0 O
1T 0 1 1 0O O 0 O
1 1 0 1 0O 0 0 O
1 1 1 O 0O O 0 O
A A
1 0 1 O 1 0 0 O
o 1 1 1 O 1 O O
1 0 0 1 O O 1 O
O 1 O O 0O 0 O 1
A A,

Problemas propuestos

6.39 (Cual de las siguientes matrices de incidencia
representa un grafo simple?

1T 0 1 1 1 10 1 1 1
0O 1 0 1 0 0O 1T 0 10
0O 0 1 0 O 0O 1T 1 0 O
1 1T 0 0 1 1 0 0 0 1
I'I /2
1 1 1T 0 O 10 1T 1 0
00 0 1 1 O 1T 0 1 1
1 1 1T 0 O 0O 1T 1 0 O
0 0 0 1 1 1 0 0 0 1

6.40 Obtener la matriz de incidencia que representa el
grafo completo K.

6.41 La matriz de incidencia que representa un grafo G
con exactamente un vértice aislado es:

T 0 1 1 1 0 0 1 0 O
0O 1 0 1 0 0O 1T 0 1 0
0O 00 0 O 0 1T 1 0 O
11 0 0 1 1 0 0 0 1
I'I /2
1 1.0 1 0 1 0 0 1 O
O 0 1 1 1 O 1 0 0 O
1 0 1T 0 O 0O 0 1 0 O
O 1T 0 0 1 0O 0 0 1 1

I I

6.42 Todas las siguientes matrices de incidencia repre-
sentan grafos que contienen un paseo de Euler,
excepto:

- O O —
- o — o
o — o —
o — o —
o —- — o
oo — —
- O O —
— o — O

0
1
1
0

O O — —

h

~—
N
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238 Capitulo 6 Teoria de grafos

6.46 Obtener la matriz de adyacencia que representa

o1 1 1T O 1 1 1T 0 O
0O 00O 1 0 1 0 0 1 1 el siguiente grafo.
1 1 0 0 O 0O 0 0 1 1
1 0 1 0 1 0O 1 1 0 0
I /,

6.43 (Cual de las siguientes matrices de incidencia
representa un grafo que contienen un circuito de

Euler?
00 1T 11 1 100
01 1 0O O 1 10
1T 1 0 0 1 0O 0 1 1 Figura 103
R 100 6.47 Comprobar si las siguientes parejas de grafos son
h h homeomorfas.
11 10 01 100
O 1 0 1 10 1 0 1
O 0 10 O 1T 0 1 1
1 0 0 1 10 0 10 )
1

/

—~

~

3

6.44 Las siguientes matrices de incidencia representan
un grafo completo K;, excepto:

ii) .

1 0 1 1 1 O 1 0 1 1 0 1
1 1 O o 1 1 0O 1 O o 1 1
0O 1 1 1 0 1 1T 1 1 1 1 0
I] /2 /3 /4
6.45 Determinar el grafo no dirigido que corresponde jii)
a la matriz de adyacencia:
O 1 O O O
1 0 0 0 O
0O 0 O 1 1
0O 0 1T O 1
OO0 1 1T O

Utilizando el acomodo de vértices que se mues-

7
@ =
A
<>
o

tra a continuacion: v)
v1 VS
[ ] { ]
eV,
vi)
(] (]
v, v ’ 4
Figura 6.102
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vii)

S
i) N\ J
"4
Figura 6.104

6.48 Determinar el nimero de regiones del siguiente
grafo y obtener un grafo isomorfo aplanable a di-
cho grafo para comprobar el resultado obtenido.

~

4

Figura 6.105

Con base en los siguientes grafos, contestar lo
que se pide en los problemas 6.49 a 6.53.

G G G G

1 2 3 4

Figura 6.106

6.49 (Cuales grafos no son aplanables?

6.50 {Cuales grafos tienen un circuito de Hamilton?
6.51 (Cuales grafos son aplanables?

6.52 {Cuales grafos tienen un circuito de Euler?
6.53 (Cuales grafos son isomorfos?

6.54 Si G = (V, E) es un grafo aplanable, determinar
cuando un subgrafo G, de G sera aplanable.

a) Nunca b) A veces

c) No siempre d) Siempre

Problemas propuestos

6.55 Determinar el nimero de regiones del siguiente
grafo y obtener un grafo isomorfo aplanable a di-
cho grafo para comprobar el resultado obtenido.

&

Figura 6.107

&

6.56 Obtener el nimero cromatico de los siguientes
grafos, asi como el grafo coloreado respectivo.

P

&
Figura 6.108
6.57
®
. D>-
[ ]
&
Figura 6.109
6.58
&
Figura 6.110
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6.59 ~
4
Figura 6.111
6.60
~
4
Figura 6.112
6.61 ~
&
Figura 6.113
6.62 ~
&
Figura 6.114
6.63
4
Figura 6.115

6.64

Figura 6.116

L Problemas reto_

Con base en el siguiente grafo, contestar los siguientes
10 problemas

n

Y,

o\l Vr\,lrl |

V.

Figura 6.117

e

N o v

®

10.

Determinar si el grafo es conexo.
Determinar si el grafo es simple.

Determinar el nimero cromatico y dibujar el gra-
fo coloreado.

Obtener la matriz de adyacencia.
Determinar si existe un circuito de Euler.
Determinar si existe un paseo de Euler.

Determinar si existe un paseo de Hamilton; en
caso afirmativo, representarlo en forma grafica.

Determinar si existe un circuito de Hamilton.

Determinar qué sucede al eliminar el lado (v, vs),
{habra paseos y circuitos de Euler?

Utilizar el algoritmo de Fleury y comprobar si
existe o no un circuito de Euler.
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Objetivos

m Distinguir los distintos tipos de arboles.
= Conocer los conceptos basicos de los arboles.
m Evaluar expresiones algebraicas mediante el uso de arboles binarios.

m Construir arboles de busqueda binaria.

Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)



242

Capitulo 7 Arboles .

7.1 Introduccion

Hay un tipo especial de grafos que se presentan en multiples aplicaciones que reciben el nombre de arboles,
los cuales son Utiles en especial en ciencias de la computacién. Pues, por ejemplo, casi todos los sistemas
operativos almacenan sus archivos en una estructura de arbol. A continuacion, se listan algunas otras apli-
caciones de arboles en informéatica: 1. organizacién de informacién, con el fin de que sea posible efectuar
con eficacia operaciones que conciernan a esa informacién; 2. construccién de algoritmos eficientes para
localizar articulos en una lista; 3. construccién de cédigos eficientes para almacenar y transmitir datos;
4. modelacién de procedimientos que son llevados a cabo al utilizar una secuencia de decisiones.

Toda vez que los arboles solo son un caso especial de grafos que se utilizan de manera particular en com-
putacién, es precisamente un especialista en computo a quien se considera el principal representante de
esta clase de grafos: Robert W. Floyd. A continuacién, se presenta una pequena biografia de este importante
cientifico estadounidense.

P R R R R R R R R R R R A R T R R )

Robert W. (Bob) Floyd nacio el 8 de junio de 1936, en Nueva York, y muri6 el 25 de septiembre de 2001, en
Stanford, California; fue un eminente cientifico en computacion. Sus contribuciones incluyen el diseno
del algoritmo de Floyd-Warshall (independientemente de Stephen Warshall), que se encuentra de manera
eficiente en todos los caminos mas cortos en un grafico, el ciclo del hallazgo de Floyd, algoritmo para la
deteccion de los ciclos en una secuencia, y su trabajo en el analisis. En un articulo independiente, Floyd
introdujo el concepto importante de difusion de error, también [lamado tramado Floyd-Steinberg (aunque
también distingue el tramado de difusion). Fue pionero en el campo de la verificacion de programas con
afirmaciones logicas; esto es, asignar significados a los programas. Esta fue una importante contribucion
a lo que mas tarde se convirtio en la l6gica de Hoare. En 1978, Floyd recibié el Premio Turing “por tener
Figura 7.1 Robert una clara influencia sobre las metodologias para la creacion de software eficiente y fiable, y por ayudar a
W. (Bob) Floyd encontrar los siguientes subcampos importantes de la ciencia de la computacion: la teoria del analisis, las
(1936-2001), cientifico semanticas de los lenguajes de programacion, el manual del programa, la verificacion automatica, la sintesis

estadounidense en d AT . ”
» e programas y el analisis de algoritmos”.
computacion.

teesessssrs st s st OsEEEEnE
“ecescssssssrssesssscoses e

7.2 Arboles

En esta seccién se abordan los conceptos generales de los arboles, como definicién, componentes, carac-
teristicas distintivas, entre otros aspectos. Por supuesto, en secciones posteriores, el texto se centra en los
arboles que tienen mayor aplicacién en el campo de la computacién: los drboles binarios.

Con base en los conceptos vistos en el capitulo 6, es facil definir el concepto central del presente capitulo.
Entonces, se puede definir que un arbol es cualquier grafo no dirigido, conexo y que no contiene circuitos. A
continuacién se presentan algunos ejemplos.

Considérense los grafos i) y ii) de la figura 7.2. Ambos son grafos no dirigidos (es decir, sus lados no contienen direc-
cion alguna), son conexos (esto es, entre cada par de vértices existe un camino que los conecta).

Ademas, ninguno de los dos tiene circuitos (es decir, no existe forma de dar un paseo partiendo de un vértice y
regresar a este sin pasar dos veces por el mismo lado); por tanto, se dice que son arboles.
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Figura 7.2 Grafos que son arboles.

Toémense en cuenta los grafos i) y i) de la figura 7.3.

-

oy

ii)

\

Figura 7.3 Grafos que no son arboles.

Arboles

En este caso, ninguno de estos grafos es arbol. El grafo 7.3 i) no puede considerarse arbol porque contiene circuitos;
por ejemplo, la sucesion de lados (b, e, ¢, b) es un circuito; el grafo 7.3 i) tampoco es arbol, ya que es disconexo, pues

contiene un vértice aislado (vértice g).

Con frecuencia, es necesario considerar una colecciéon de arboles disjuntos, a dicha coleccién se le denomi-

na bosque.

E JemPLO_

Considérense los grafos i) y ii) de la figura 7.2; como se vio antes, estos son arboles y como ambos son disjuntos,

entonces forman un bosque.

En los arboles se utilizan nombres especiales para identificar sus vértices; a saber, un vértice de valencia 1
en un arbol se le llama nodo hoja (o simplemente hoja) o nodo terminal y un vértice de valencia mayor que

1 recibe el nombre de nodo rama (o simplemente rama) o nodo interno.
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244 cCapitulo 7 Arboles R

Considérese el grafo i) de la figura 7.2; entonces, se tiene que los vértices b, ¢, d, f, g, i son nodos hoja, mientras que
los vértices g, e, h, son nodos rama.

A continuacion, se detallan algunas de las propiedades que distinguen a los arboles.
e Existe un Uinico paseo entre dos vértices cualesquiera.

e Elnumero de vértices es mayor que el numero de lados.
e Un arbol con dos o méas vértices tiene al menos una hoja.

Ademas de su definicién, es posible identificar si un grafo dado es un arbol a partir de las siguientes carac-
teristicas:
e UngrafoG=(V,E)en el cual existe un tinico paseo entre cada par de vértices es un arbol.

e Ungrafoconexo G = (V,E) con |[E| = |V| — 1 es un arbol, donde |E| y [V| son el tamafio y orden del grafo,
respectivamente.

e UngrafoG=(V,E)con|E|=|V|— 1 que no tiene circuitos es un arbol.

Estas propiedades y los resultados pueden verificarse con mucha facilidad a partir de la definicién de arbol.

7.3 Arboles enraizados

Al contrario de los arboles que existen en la naturaleza, cuyas raices se localizan en la parte inferior del
mismo, arraigadas en la tierra, en la teoria de arboles, los drboles enraizados pueden verse con la raiz en la
parte superior, como se trata en esta seccién.

= * * *

Arbol dirigido

Un grafo dirigido es un arbol dirigido, si se convierte en un arbol cuando se ignoran las direcciones de sus
lados.

E JemPLO_

El grafo dirigido de la figura 7.4/) constituye un arbol dirigido, pues al omitir la direccién de los lados cumple con las
caracteristicas de un arbol, como se observa en la figura 7.4ii).

4 )
°

{ ]
\ J

Figura 7.4 Grafo dirigido que es un arbol dirigido.

Arbol enraizado

Un arbol dirigido es un arbol enraizado si existe exactamente un vértice cuya valencia de entrada sea O y las
valencias de entrada de los otros vértices sean 1.
El Vél"tice Con Valp,, - 1. - -+ - N __1M_____33_ 7 311 <. 1 ______*__ 3_
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E JEMPLO

El grafo de la figura 7.5 es un arbol enraizado.

Arboles enraizados [ 245

\

«—_ oz
raiz

Figura7.5 Arbol enraizado.

Enun arbol enraizado, un vértice cuya valencia de salida es cero se denomina hoja o nodo terminal; en tanto,
un vértice cuya valencia de salida es diferente de cero se denomina rama o nodo rama o nodo interno.

Considérese el arbol dirigido de la figura 7.6.

Entonces, se tiene que los vértices a, b, ¢, f, h son nodos rama, en
tanto que los vértices d, e, g, i, j, k, [ son nodos hoja.

Relaciones entre los vértices de un arbol enraizado

' ™
b ¢
(] [ ] [ ] h
d e g
[ [ J [ ] [ ]
i j k /
\ b

Figura 7.6 Arbol enraizado conraizen a.

También existen las relaciones entre los vértices de un arbol enraizado, las cuales se identifican con nom-

bres especiales. Veamos cuéles son.

Sea a un nodo rama en un arbol enraizado T. Se dice que un vértice b es un hijo de a si existe un lado
dirigido del vértice a al vértice b. Ademas, se dice que el vértice a es el padre del vértice b. Por su parte, dos
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246 Capitulo 7 Arboles R

vértices son hermanos si son hijos del mismo vértice. En tanto, se dice que un vértice ¢ es un descendiente
del vértice a si existe un paseo dirigido del vértice a al vértice c. Ademas, se dice que el vértice a es un ances-
tro del vértice c.

E JEMPLO

Considérese el arbol dirigido de la figura 7.6.

Entonces, se tienen las siguientes relaciones entre sus vértices:

by cson hijos de a
d, ey fson hijos de b
gy hson hijos de ¢
i,j y k son hijos de f
[ es hijo de h

aespadredebyc
bespadreded, ey f
cespadredegyh
fespadredei,jyk
h es padre de [

by ¢ son hermanos
d, ey f son hermanos
gy h son hermanos
i,j y k son hermanos

[ no tiene hermanos

Ademas, se tiene que:

b,c,d, e f, g h,ij kylsondescendientes de g
d, e, f i, jykson descendientes de b

i,j y k son descendientes de f

g hy [son descendientes de ¢

[ es descendiente de h

aesancestrodeb, ¢, d, e, f,g h,i,j k!
besancestroded, e, f,iyj
fesancestrodei,jyk
cesancestrodeg, hy !

h es ancestro de [
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R Arboles enraizados [ 247

Subarbol

Sea a un nodo rama en un arbol enraizado T = (V, E). Por el subdarbol con raiz a se entiende el subgrafo
T'=(V',E')deT, tal que V' contiene a a y a todos sus descendientes y E' contiene los lados de todos los paseos
dirigidos que surjan de a. Por un subarbol de g, se entiende un subarbol que tiene a a como raiz.

E JEMPLO

Considérese el arbol dirigido i) de la figura 7.7. Los arboles de ii), iii), iv) y v) son todos subarboles de i).
/ N

(] ( f [ h [ J [ ] [ ]
d e g i j k /
[ ] [ [ ] (]
i j k /
i) iii) iv) v)

Figura 7.7 ii), iii), iv) y v) subarboles del arbol /).

Del ejemplo anterior, es facil ver que los arboles ii), ii1), iv) y v) de la figura 7.7 son subarboles de i) con raices
a, b, f,cy h, respectivamente.
Esimportante aclarar que para un arbol dado existen tantos subarboles como nodos rama tenga el arbol.

Nota/

Cuando se traza un arbol enraizado, es posible omitir las di-
recciones de los lados siguiendo la convencion de colocar
los hijos de un nodo rama debajo de este, ya que con dicho
acuerdo se entiende que las direcciones de todos los lados
son hacia abajo.
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E Eweio- 0 )
Si se considera el arbol enraizado de la figura 7.7 y se

toma en cuenta el acuerdo de la nota anterior, el resul-
tado es el arbol que se muestra en la figura 7.8.

. ™
i) i)
\ 4
Figura 7.9 Arboles isomorfos (solo si se consideran como grafos).
4
Figura 7.8 Arbol enraizado de la figura 7.7 omitiendo la
direccion de sus lados. ) ii)

A pesar de que los arboles enraizados i) yii) delafi-  Figura710 Arboles ordenados.
gura 7.9 son isomorfos (si se consideran como grafos),
en ciertas aplicaciones estos pueden representar dos situaciones por completo diferentes.

Esto motiva a la definicién de un arbol ordenado, 1o cual permitira referirse sin ambigliedades a cada uno
de los subarboles de un nodo rama.

Arbol ordenado

Un arbol ordenado es un arbol enraizado con lados etiquetados con los enteros 1, 2, ..., i... . Por tanto, los
subarboles de un nodo rama pueden ser referidos como el primero, el segundo, ..., y el i-ésimo subarbol
del nodo rama, los cuales corresponden a los lados incidentes desde el nodo, y que pueden ser enteros no
consecutivos.

Ahora, supdéngase que los arboles de la figura 7.9 se etiquetan como se observa en la figura 7.10.

Arboles isomorfos

Se dice que dos arboles ordenados son isomorfos si existe un isomorfismo de grafos entre estos, de tal suerte
que las etiquetas de los lados correspondientes coincidan.

E JEmPLO_

Los arboles ordenados i) y ii) de la figura 710 no son isomorfos; en cam-
bio, los de la figura 711 si lo son.

Figura 711 Arboles isomorfos.
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Arbol m-ario
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Un arbol ordenado en el que cada nodo rama tiene a lo mas m hijos se conoce con el nombre de arbol
m-—ario. Se dice que un arbol m-ario es regular si cada uno de sus nodos ramas tiene exactamente m hijos.

Una clase importante de arboles m-arios son los llamados arboles binarios. En los arboles binarios, en
lugar de referirse al primero o al segundo subarbol de un nodo rama, a menudo se hace referencia a estos
como subarbol izquierdo o subarbol derecho del nodo.

Considérense los ar-
boles T,y T, de la figu-
ra 712. En este caso, el
arbol T, es ternario, ya
que cada nodo rama
tiene a lo mas tres
hijos, pero ademas es
ternario regular, pues
cada nodo rama tie-
ne exactamente tres
hijos. En cambio, el

Figura 712 T, esunarbol ternario regulary T, es un arbol ternario.

arbol T, es Gnicamente ternario.

7.4 Longitud de paseo en arboles enraizados

Cuando se representa un problema mediante un arbol, en muchas
ocasiones es necesario determinar la cantidad de lados que existen
desde la raiz de arbol enraizado hasta determinado vértice.

La longitud de un paseo para un vértice en un arbol enraizado es
el nimero de lados en el paseo desde la raiz hasta el vértice.

E JEmPLO_

Considérese el arbol enraizado T, que se observa en la figura 713. En este,
como la raiz de T es g, entonces la longitud de paseo del vértice k es 4,
mientras que la del vértice j es 3; por su parte, la longitud de paseo para

el vértice a (que es la raiz) es cero, pues no hay aristas que recorrer. Figura 713 Arbol enraizado T.

Altura de un arbol
La altura h de un arbol T es el maximo de las longitudes de los paseos en un arbol, y se denota como: h(T).

E JemPLO_

La altura del arbol enraizado T de la figura 713 es 4; de acuerdo con la definicion anterior, entonces también puede
escribirse como: h(T) =4, y es el maximo de las longitudes de todos los paseos posibles en T.
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7.5 Codigo de prefijos (prefijos codificados)

A continuacién se analiza cémo codificar las diferentes longitudes de paseos en las hojas de los arboles bi-
narios regulares; de este modo, entonces cada nodo hoja del arbol debe tener exactamente dos hijos.

Codigo de prefijos
Se dice que un conjunto de sucesiones es un cédigo de prefijos, si no existe una sucesién del conjunto que
sea un prefijo de otra sucesién del conjunto. Por ejemplo, el conjunto {000, 001, 01, 10, 11} es un cddigo de
prefijos, ya que ninguna sucesién es un prefijo de otra sucesién en el mismo conjunto. En tanto, el conjunto
{1, 00, 01, 000, 0001} no es un cédigo de prefijos, ya que, en este caso, la sucesion 00 es un prefijo de la suce-
sién 000.

Cabe mencionar que es posible obtener un cédigo de prefijos a partir de un arbol binario, mediante el
etiquetado de sus lados de una manera adecuada, con ceros y unos: los lados que corresponden al subarbol
izquierdo se etiquetan con O y los que corresponden al subarbol derecho con 1.

E JEMPLO

Considérese el arbol binario de |a figura 714 ).
En este, es facil ver que el conjunto de suce-
siones asignadas a sus hojas es un cédigo de
prefijos, como se observa en la figura 7.13ii).
El codigo de prefijos obtenido es: {000, 001,
01,10, 11}

Figura 714 Arbol binario y codigo de prefijos
obtenido en dicho arbol.

Respecto al ejemplo anterior, es facil ver en este que la correspondencia entre un arbol binario y un cédigo
de prefijos es biunivoca; por tanto, dado un cédigo de prefijos, también es posible reconstruir el &rbol binario
correspondiente.

Considérese el codigo de prefijos {001, 000, 01, 1} con el que se obtiene el arbol binario de altura 3, que se observa
en la figura 715.

Figura 7.15 Arbol binario obtenido a partir de un cédigo de prefijos.
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Ejemplo practico

Al almacenar o transmitir grandes cantidades de texto, con frecuencia conviene buscar la forma de comprimirlo
en el menor ndmero posible de bits. Pues, el tiempo necesario para transmitir cierto mensaje es proporcional a su
ndmero de bits; por tanto, al comprimir los datos a enviar, puede reducirse el tiempo de transmision. Ademas, los
datos comprimidos necesitan menos bits para su almacenamiento o transmision.

Una manera comun de hacerlo es mediante la eliminacion de la restriccion de que todos los codigos de caracteres
deben tener la misma longitud. Si en un idioma, los codigos de letras comunes como e y t fueran mas cortos que
los codigos de los menos comunes como x y z, disminuiria el nimero de bits totales necesarios para almacenar o
transmitir el texto. Dicho esquema de codificacion se conoce con el nombre de cédigo dependiente de frecuen-
cia o codigo Huffman, y se basa precisamente en codigos de prefijos. Al utilizar este método de codificacion para
cualquier aplicacion particular, primero han de conocerse las frecuencias de aparicion a priori a cada caracter.

El primer paso para construir el cédigo
Huffman es escribir la probabilidad de
cada caracter debajo de este. El orden
en que se acomodan los caracteres no 1.00
importa y pueden combinarse durante 0 !
la construccion, para mayor legibilidad.
Después, se buscan las dos probabilida- *0.57
des mas pequenas y se anade una nueva 0
probabilidad igual a la suma de aquellas.
Las dos probabilidades se marcan para 1032 043

no ser utilizadas de nuevo y se trazan dos 0
lados que unan a la nueva probabilidad 017
con las que le dieron origen. Este proce- '
so se repite unay otra vez, hasta que solo 0 1
quede una probabilidad sin marcar, que %0.09 1
seraigual a 1.00. :

8

4 )

*0.23

AN

*0.10 *0.13

1
0 V\ V\
A continuacion se construye el codigo
3 2 1 7 6 5 4

0 0
Huffman para una supuesta transmision 004 005 008 015 025 005 005 006 007 020
* * * * * * * * * *

de datos que solo consta de digitos O, ... , 9, \ J

9

basandose en las frecuencias de aparicion
de cada digito mostradas en la tabla 71. Figura 7.16 Arbol binario para obtener codigo Huffman.

Tabla 7.2

Digito 0 1 2 3 4 5 6 7 8 9
Frecuencia 0.20 0.25 0.15 0.08 0.07 0.06 0.05 0.05 0.05 0.04

El arbol resultante es el que se muestra en la figura 7.16.

Asi, el codigo Huffman resultante para cada digito es mostrado en la tabla 7.2.

Tabla 7.2 Cédigo Huffman resultante

Digito 0 1 2 3 4 5 6 7 8 9
Codigo 11 01 001 0001 1011 1010 1001 1000 00001 00000
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7.6 Arboles de biisqueda binaria

Supoéngase que se dispone de una cantidad determinada de objetos sobre los cuales existe un ordenamiento
lineal <. Para fines practicos, el ordenamiento puede ser numeérico, alfabético, alfanumérico, etcétera.

Por ejemplo, sean K, K,, ..., K, los n objetos de una lista ordenada, los cuales son conocidos como las cla-
ves; considérese que el orden lineal es de la forma K; < K, < ... < K,.. Entonces, dado un objeto x el problema
consiste en buscar las claves y determinar si x es igual a alguna de estas.

Un procedimiento de busqueda consiste en una serie de comparaciones entre x y las claves, donde cada
comparacién de x con una clave indica si x es igual, menor que o mayor que dicha clave.

Un arbol de busqueda binaria para las claves K;, K,, ..., K, es un arbol binario, en el cual los nodos estan
etiquetados con los elementos de una lista ordenada, esto es:

Ki<K,<... <K,

En dicho arbol, todos los elementos de cualquier subarbol izquierdo con raiz x son menores que x y todos
los elementos de su subarbol derecho con raiz x son mayores de x. En este caso, las claves pueden ser numé-
ricas, alfabéticas o alfanumeéricas.

Sean las claves {6, 8,10, 12,14, 15, ™
18}y sean los arboles T,y T, de la 15

figura 717. En este caso, el arbol / \ /
3 y [ 6

T, es un arbol de busqueda bi-
naria para dichas claves, mien- \
tras que el arbol binario T, no

. . . 8 12
es de busqueda binaria, ya que / /
si se considera el elemento 10,
todos los elementos del sub- . .

arbol izquierdo son menores; ' ’ Y

sin embargo, no todos los ele-
mentos del subarbol derecho  Figura 717 Elarbol T, es un arbol de busqueda binaria y T, es solo un arbol binario.

son mayores, ya que en este,
el elemento 6 es menor que 10
y deberia ir en el subarbol iz-
quierdo.

Operaciones en arboles de biusqueda binaria

Las operaciones que se pueden realizar en arboles de busqueda binaria son:
e Busqueda de unnodo

e Inserciény eliminacién de un nodo

e Recorrido

Es importante dejar en claro que en esta secciéon solo se aborda la busqueda, insercién y eliminacién de no-
dos, ya que para el recorrido se dedica una secciéon completa mas adelante (véase seccioén 7.9).

Busqueda de un nodo

Como lo dice su nombre un arbol de busqueda Corresponde aun procedlmlento de buisqueda; en este, se
comienzaconlarafz~ =" "o T e e “~ 7" 7o xcon laetiqueta de
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. Arboles de busqueda binaria

la raiz K. Si x es igual a K;, se dice que la busqueda ha terminado, pero si x es menor que K;, entonces x se
compara con el hijo izquierdo, y si x es mayor que K; se compara con el hijo derecho de la raiz.

Esta comparacién se continta para los nodos rama sucesivamente, hasta que x concuerde con una clave
o se alcance una hoja; es este caso, x no se encuentra en el arbol de blisqueda.

Ademas, se puede realizar la busqueda para claves con valores numéricos, alfabéticos, alfanumeéricos,
entre otros.

E JEMPLO

Sean {AB, CF, EG, PP} las claves K;, K,, K3, K, en un arbol de busqueda binaria, £G
como se muestra en la figura 718. Dado el objeto x = BB, los pasos de bus- / \
queda son: Jr o
1. Comparar BB con EG. \
2. Como BB es menor que EG, se compara BB con AB. F
3. Como BB es mayor que AB, se compara BB con CF, que es una hoja. r
&
Asi, se concluye que el objeto BB no se encuentra en el arbol de bisqueda  Figura 718 Proceso de busqueda en

binaria. un arbol de busqueda binaria T.

Insercion de un nodo

Los algoritmos para insertar nodos utilizan la ubicacién de un elemento, de tal forma que si se encuentra
el elemento buscado, no es necesario hacer nada; en otro caso, se realiza la insercién del nuevo elemento
exactamente en el lugar donde finalizé la busqueda.

E JemPLO_

Considérese el caso de agregar el nodo 6 al arbol de la figura 719. En este caso, el recorrido debe comenzar en el
nodo raiz 24; por tanto, la insercion debe estar en el subarbol izquierdo de 24 (6 < 24). Por su parte, en el nodo 8, la
posicion de 6 debe ubicarse en el subarbol izquierdo de 8, que es vacio. Por ultimo, el nodo 6 se inserta como hijo
izquierdo de 8 y se obtiene el arbol que se observa en la figura 7.20.

) )

” 4 ” 4

Figura 719 Arbol binario antes de insertar Figura 7.20 Arbol binario después de insertar el
el nodo 6. nodo 6.
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Eliminacion de un nodo

De manera equivalente a la insercién de nodos, la eliminacién de nodos debe preservar la propiedad que
establece que el drbol resultante sea, nuevamente, un arbol de busqueda. Los pasos que deben seguirse para
lograr la eliminacién son:

1. Lo primero es buscar en el &rbol hasta encontrar la posicién del nodo que se ha de eliminar.

2. Sielnodo a eliminar tiene menos de dos hijos, es necesario reajustar los lados de sus antecesores.

E jemplo_

/
Considérese el arbol de la figura 7.21. Eliminar el elemento 33 de
este arbol.
Figura 7.21 Arbol binario antes de eliminar el nodo 33, \_ .
Dado que el subarbol donde se encuentra el nodo 33 es una ™
hoja, en este caso solo es necesario reajustar los lados del Q

nodo precedente en el camino de busqueda. Entonces, el arbol
que se obtiene después de realizar los ajustes mencionados es

el que se muestra en la figura 7.22. o @

Figura 7.22 Arbol binario después de eliminar el nodo 33.

7.7 Arboles generadores y conjuntos de corte

La situacién que se describe a continuacién constituye un ejemplo de un problema practico donde surge la
necesidad del concepto de arboles generadores. Sea G un grafo conexo donde los vértices representan edi-
ficios y los lados tuneles de conexién entre los edificios. Se requiere determinar un subconjunto de tineles
que deben mantenerse, a fin de poder llegar a un edifico desde otro a través de estos tineles. Ademas, se
desea determinar los subconjuntos de tuneles que al ser obstruidos separarian a algunos edificios de otros
(subconjunto de lados de conexién y subconjunto de lados de no conexién de un grafo).

Arbol y arbol generador de un grafo

El arbol de un grafo es un subgrafo del grafo que es, en si m1smo un arbol. En tanto, un arbol generador de
un grafo conexo cone*™ " 7 T o T o e e o .
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a N
Considérese el grafo G de la figura 7.23. En la misma figura,
G'es un arbol del grafo G, ya que es un subgrafo de G, que
es un arbol. Por ultimo, en esta figura, G" es un arbol gene-
rador del grafo G, ya que es un subgrafo generador de G, ° o
que es un arbol.
p ¢ ¢

Figura 7.23 Grafo G; G arbol de Gy G” arbol generador de G. /j

Cuerda

Una cuerda o enlace de un arbol es un lado del grafo que no esta en el arbol. El conjunto de cuerdas de un
arbol se conoce como el complemento del arbol.

E JEMPLO_ S

Considérese el grafo G de la figura 7.23; entonces, el subgrafo de a figura 7.24 es el complemen-
to del arbol de la figura G, con respecto a G.

Figura 7.24 Complemento del arbol G” de la figura 7.23.

N S

Un grafo conexo siempre contiene un arbol generador. Por tanto, si un grafo es conexo y no contiene circui-
tos, entonces es un arbol. Por su parte, si el grafo contiene uno o mas circuitos, se puede eliminar un lado de
los circuitos y aun asi tener un subgrafo conexo.

Conjunto de corte

Un conjunto de corte es un conjunto (minimo) de lados en un grafo, tal que la eliminacién del conjunto
incrementa el nimero de componentes conexas en el subgrafo restante, en tanto que la eliminacién de
cualquier subconjunto propio de este no lo haria.

De esto se tiene que en un grafo conexo, la eliminacién de un conjunto de corte divide el grafo en dos
partes; es decir, crea un grafo disconexo con dos componentes, esto es K(G) = 2.

E JemPLO_

Sea G el grafo conexo de la figura 7.25, para este grafo los conjuntos de lados
siguientes:

{en e €5 €6 €7} y {€y €4 €5, €3}

Constituyen conjuntos de corte, ya que su eliminacion dejara subgrafos disco-
nexos con dos componentes conexas, como las de la figura 7.27.

Figura 7.25 Grafo conexo G.

Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)



256 | Capitulo 7 Arboles R

Por su parte, el grafo de la figura 7.26 es isomorfo al grafo de la figura 7.25; donde es posible ver con mas claridad la
division de los vértices para obtener un subgrafo disconexo con dos componentes, como el que se muestra en la

figura 7.27.
' )
\
VZ
eZ
v, L 1A Y;
3
e3
. v,
N 4
- /)
Figura 7.26 Grafo isomorfo al grafo de la figura 7.25. Figura 7.27 Subgrafos disconexos con dos componentes.

7.8 Arboles generadores minimos

Una interpretacion fisica de este problema consiste en considerar los vértices de un grafo como ciudades y
los pesos de los lados como las distancias entre estas ciudades. Supdéngase que se quiere construir una red
de comunicaciones que conecte a todas las ciudades del grafo a un costo minimo. Entonces, el problema
consiste en determinar un arbol generador minimo. El peso de un arbol generador es la suma de los pesos de
los lados del arbol. Por tanto, un arbol generador minimo es aquel con peso minimo.

Un procedimiento para resolver este problema se basa en observar que, entre todos los lados en un cir-
cuito, el lado con mayor peso no esté en el arbol generador minimo.

Enseguida, se construye un subgrafo del grafo pesado, paso por paso, al tiempo que se examina cada lado
en orden creciente de pesos. Luego, se agrega un lado al subgrafo parcialmente construido, si esta no origina
un circuito, y se descarta en caso contrario. La construccién termina cuando todos los lados han sido exami-
nados. Es claro que esta construccién da origen a un subgrafo que no contiene un circuito, el cual también
es conexo. Asi, el subgrafo construido es un arbol, que ademas es generador minimo.

E JEmPLO_

Considérese el grafo pesado de figura 7.28).

De acuerdo con el proceso descrito antes, pri-
mero se construye el grafo de la figura 7.28ii), 12 4
que es un arbol generador minimo.

i)

Figura 7.28 Grafo pesado y su arbol generador minimo.
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- Recorridos en un arbol

7.9 Recorridos en un arbol

Como se menciond al inicio de este capitulo, la principal utilidad de los arboles es su aplicacién en el area de
la computacién y la informatica. Por esa razén, y con el fin de lograr su correcta utilizacién en una compu-
tadora, en esta seccién se describe la estructura de un arbol binario y, sobre todo, como recorrerlo de modo
eficiente. Dado que la intencién del presente texto no es utilizar un lenguaje en particular, por tanto solo
se aborda el tema en forma genérica (con algunos usos en lenguaje C), aunque sin pretender ser un texto
especializado en codificacién de arboles.

Estructura de arboles binarios

La estructura de un arbol binario se realiza a partir de nodos, cada uno de los cuales debe contener el campo
dato (datos a almacenar) y dos campos de tipo puntero: uno al subarbol izquierdo y otro al subarbol derecho.
Para indicar un arbol o un subarbol vacio se utiliza el valor NULL. En lenguaje C, para representar un nodo
se utiliza “struct”, en donde se agrupan todos los campos que lo conforman. Cada nodo contiene los campos
dato: “izdo” (nodo rama izquierda) y “dcho” (nodo rama derecha). Pero, el tipo de dato de los elementos se
generaliza como “tipoElemento”.

Es posible acceder a los deméas nodos de un arbol a partir de la raiz; por tanto, el puntero que permite
acceder al arbol es el que hace referencia a la raiz. Considerando, ademas, que las ramas izquierda y dere-
cha son, a su vez, arboles binarios con su propia raiz, se procede en forma recursiva hasta que se llega a las
hojas del arbol.

Para lograrla formacién de un arbol se construye cada uno de los nodos y el enlace con el correspondien-
te nodo padre. Ademas, es necesario reservar memoria para cada nodo, asignar el dato al campo correspon-
diente e inicializar los punteros izdo, dcho a NULL.

E JemPLO_

En este ejemplo se utiliza un esquema secuencial y una estructura auxiliar de tipo Pila para generar un arbol binario
de cadenas de caracteres en C, mismo que se observa en la figura 7.29.

Arbol Binario raiz, arl, ar2;
Pila pilal;

nuevoArbol (&arl, NULL, “Alicia”, NULL);

nuevoArbol (&ar2, NULL, “Francisco”, NULL);

\

nuevoArbol (&raiz, arl, “Martha”, ar2);
. . . Erika
insertar(&pilal, raiz); -
nuevoArbol (&arl, NULL, “Alma”, NULL);
nuevoArbol (&ar2, NULL, “Martin”, NULL);
nuevoArbol (&raiz, arl, “Andrea”, ar2);
insertar(&pilal, raiz);

! ' ‘ Alicia ‘ ‘ Francisco ‘ ‘ Alma ‘ ‘ Martin ‘
ar2=quitar(&pilal); 4
arl=quitar(&pilal); Figura7.29 Arbol binario de cadenas de caracteres

_ . enerado en lenguaje C.
nuevoArbol (&raiz, arl,”Erika”,ar2); § S
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Recorridos en arboles binarios

Para acceder a los datos almacenados en un arbol, primero es necesario recorrer el arbol o visitar los nodos
de este. Para lograr el recorrido de un arbol existen diferentes métodos, pues en la mayoria de las aplicacio-
nes resulta muy importante el orden en que son visitados los nodos.

Se dice que se logra un recorrido de un arbol binario siempre que cada nodo del arbol sea visitado una
y solo una vez. Basicamente hay dos formas principales de llevar a cabo el recorrido de un arbol, las cuales
se describen a continuacion:

1. Recorrido en profundidad. En este tipo de recorrido se sigue un camino, comenzando desde la raiz,
a través de un hijo, siguiendo al descendiente mas cercano del primer hijo antes de continuar con
el segundo hijo. En resumen, en el recorrido de profundidad se recorren todos los descendientes del
primer hijo, después se recorren todos los descendientes del segundo hijo, y asi sucesivamente.

2. Recorrido en anchura. En este tipo de recorrido se sigue un camino “horizontal”, que empieza en la
raiz, a través de todos sus hijos, luego se recorren los hijos de sus hijos y asi sucesivamente, hasta que
se recorren todos los nodos. En resumen, en el recorrido de anchura se recorre por completo cada
nivel, antes de comenzar con el siguiente nivel.

En este texto solo se analiza el recorrido en profundidad, el cual puede llevarse a cabo en tres formas en
esencia distintas: recorrido en “preorden”, recorrido “enorden” y recorrido “postorden”.

Recorrido en preorden
El recorrido en preorden (nodo—izquierdo—derecho o NID) se resume en tres pasos principales:

1. Visitar el nodo raiz (N)
2. Recorrer el arbol izquierdo (I) en preorden (NID)

3. Recorrer el subarbol derecho (D) en preorden (NID)

Por tanto, en el recorrido en preorden, en primer lugar se visita la raiz del &rbol y luego el subarbol izquier-
do (que es a su vez un arbol), utilizando el orden nodo—izquierdo—derecho. Una vez recorrido el subarbol
izquierdo se continia con el derecho utilizando el orden NID.

Ejiwrio ; .

Considérese el arbol de la figura 7.30. En este caso, para este arbol
se realiza el recorrido en preorden de acuerdo con los dos pasos si-
guientes: 1. se visita la raiz (nodo r); 2. se recorre el subarbol izquier-
do de r, el cual se compone de los nodos g, ¢ y d. Considerando

que el subarbol es, a su vez, un arbol, primero se recorre el nodo g, o o
después el ¢ (izquierdo) y por ultimo el d (derecho). Acto seguido,
se continda con el recorrido del subarbol derecho de r, que es un
arbol con nodos b, e y f. Otra vez se sigue el orden NID, recorriendo

en primer lugar el nodo b, luego el nodo e (I) y al final el nodo f (D). ° 0 ° °
N 4

Por tanto, el recorrido en preorden para el arbol de la figura 730 es: V|

r—d—c—d—b—e—f Figura 7.30 Arbol binario recorrido en preorden.
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Considérese el arbol de la figura 7.31. En este caso, para este arbol se
realiza el recorrido en preorden de acuerdo con los pasos siguien-
tes: 1. se visita la raiz (nodo r); 2. se recorre el subarbol izquierdo de
r, que se compone de los nodos g, ¢ y el subarbol con raiz d y nodos
&, h. Por tanto, primero se recorre el nodo a, después el ¢ (izquierdo)
y finalmente el d; considerado como subarbol, este se recorre en
preorden (NID), es decir se visita d, luego g y por ultimo h. Luego,
se continua recorriendo el subarbol derecho de r, que es un arbol
con nodos b, e y f. Otra vez se sigue el orden NID, recorriendo en
primer lugar el nodo b, luego el nodo e (1) y finalmente el nodo f (D).
Por tanto, el recorrido en preorden para el arbol de la figura 7.31 es:

r—a—c—d—g—h—b—e—f

Recorrido en enorden

Recorridos en un arbol

4

Figura 7.31 Arbol binario recorrido en preorden.

El recorrido en enorden (izquierdo—nodo—derecho o IND) puede resumirse en tres pasos principales:

e Recorrer el subarbol izquierdo (I) en enorden (IND)
e  Visitar el nodo raiz (N)

e Recorrer el subarbol derecho (D) en enorden

Entonces, de acuerdo con lo expuesto antes, en este tipo de recorrido de un &rbol binario, primero se recorre

el subarbol izquierdo, después la raiz y por Gltimo el subarbol derecho.

E JEMPLO

Considérese el arbol de la figura 7.32. En este caso, para este arbol
se realiza el recorrido enorden de acuerdo con los pasos siguientes:
1. se visita el subarbol izquierdo del nodo raiz, el cual contiene los
nodos g, cy d, y es, en si mismo, otro arbol con raiz g; para recorrer-
lo se sigue el orden IND, es decir, se recorre en primer lugar el nodo
¢ (nodo izquierdo), a continuacion el nodo a (raiz) y finalmente el
nodo d (nodo derecho); 2. una vez recorrido el subarbol izquierdo,
se visita la raiz r y 3. por ultimo se visita el subarbol derecho, que
consta de los nodos b, d y e. Siguiendo el orden IND en el subar-
bol derecho, se visita primero el nodo e (nodo izquierdo), luego el
nodo b (raiz) y finalmente el nodo e (nodo derecho). Por tanto, el
recorrido en enorden para el arbol de la figura 7.32 es:

c—a—d—r—e—b—f

J

Figura 7.32 Arbol binario recorrido en enorden.
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260 Capitulo 7 Arboles R

Considérese el arbol de la figura 7.33. En este caso, para este arbol
se realiza el recorrido enorden conforme los pasos siguientes: 1. se
visita el subarbol izquierdo del nodo raiz, el cual contiene los no-
dos g, cy d, y es, en si mismo, otro arbol con raiz g; para recorrerlo 0 0
se sigue el orden IND, es decir, se recorre en primer lugar el nodo ¢
(nodo izquierdo), a continuacion el nodo a (raiz) y al final el subarbol
con raiz d; al recorrerse este enorden, entonces se visitan los nodos
en el orden g, d, h (IND); 2. una vez recorrido el subarbol izquierdo 0 e e 0
se visita la raiz r y 3. por ultimo el subarbol derecho, que consta de
los nodos b, d y e. Siguiendo el orden IND en el subarbol derecho,
se visita primero el nodo e (nodo izquierdo), luego el nodo b (raiz) y @ @
por ultimo el nodo e (nodo derecho). Por tanto, el recorrido enor- N V.
den para el arbol de la figura 733 es:

c—a—g—d—h—r—e—b—f

Figura 7.33 Arbol binario recorrido en enorden.

Recorrido en postorden
Elrecorrido en postorden (izquierdo—derecho—nodo o IDN) se resume en tres pasos principales:

1. Recorrer el subarbol izquierdo (I) en postorden (IDN)
2. Recorrer el subarbol derecho (D) en postorden (IDN)
3. Visitar el nodo raiz (N)

Entonces, en este tipo de recorrido de un arbol binario, primero se recorre el subarbol izquierdo, después el
subarbol derecho y por ultimo el nodo raiz.

E JEMPLO

Considérese el arbol de la figura 7.34. En este caso, se realiza el re-
corrido postorden de acuerdo con los siguientes pasos: 1. se visita °
el subarbol izquierdo del nodo raiz, el cual contiene los nodos a, ¢
y d, y es, en si mismo, otro arbol con raiz g; para recorrerlo se sigue
el orden IDN, es decir, se recorre en primer lugar el nodo ¢ (nodo iz- o o
quierdo), a continuacion el nodo d (nodo derecho) y al final el nodo
a(nodo raiz); 2. una vez recorrido el subarbol izquierdo se recorre el
subarbol derecho de r, que consta de los nodos b, d y e; siguiendo
el orden IDN en el subarbol derecho, se visita primero el nodo e

(nodo izquierdo), luego el nodo f (nodo derecho) y enseguida el o o ° 0
nodo b (nodo raiz). 3. Por ultimo, se visita el nodo raiz r. Por tanto, el
recorrido en postorden para el arbol de la figura 7.34 es:

c—d—a—e—f—b—r

“4

Figura 7.34 Arbol binario recorrido en postorden.
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R Arboles de expresién [ 261

Considérese el arbol de la figura 7.35. En este caso, se realiza el re-
corrido postorden conforme los pasos siguientes: 1. se visita el su-
barbol izquierdo del nodo raiz, el cual contiene los nodos g, c y el
subarbol con raiz d; para recorrerlo se sigue el orden IDN, es decir, 0 0
se recorre en primer lugar el nodo ¢ (nodo izquierdo), a continua-
cion el subarbol derecho con raiz d, en orden IND, esto es g, h, d, y
por ultimo el nodo a (nodo raiz). 2. se recorre el subarbol derecho

de r, que consta de los nodos b, d y e; siguiendo el orden IDN en el ‘ 0 e c
subarbol derecho, se visita primero el nodo e (nodo izquierdo), lue-
go el nodo f(nodo derecho) y enseguida el nodo b (nodo raiz). 3. Por
ultimo, se visita el nodo raiz r. Por tanto, el recorrido en postorden @ @
para el arbol de la figura 7.35 es:

’ 4

c—g—h—d—a—e—f—b—r Figura 7.35 Arbol binario recorrido en postorden.

7.10 Arboles de expresién

Una de las més importantes aplicaciones de los drboles binarios son los arboles de expresién. En este con-
texto, una expresion se define de manera formal como una secuencia de tokens (componentes de algiin
léxico que guardan ciertas reglas establecidas). Cada token puede ser un operando o un operador.

En términos formales, un arbol de expresion constituye un arbol binario que cumple con las tres propie-
dades siguientes:

1. Cadahoja es un operando
2. Tanto el nodo raiz como los nodos rama son operadores

3. Los subarboles son subexpresiones con la caracteristica de que sunodo raiz es un operador

E JEMPLO

Considérese la expresion

axb+c)+d*(e+f) \

la cual se representa en la figura 7.36 mediante un arbol binario de ° °
expresion.

” 4

Figura 7.36 Arbol binario de expresion.

Una observacién importante aqui es que los paréntesis no se almacenan en el &rbol, sino que se representan
de manera implicita en la forma que tiene el arbol en si mismo. Tomando en cuenta que los operadores con-
templados son binarios (cada operador contempla dos operandos), un arbol de expresién se puede construir
considerando la raiz como un operador y a los subarboles izquierdo y derecho como los operandos izquierdo
y derecho, respectivamente. Cada uno de los subarboles puede ser una literal (a, b, x, etc.) o una subexpre-
sién representada como un subarbol.
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262 | Capitulo 7 Arboles

E jemplo

Dibujar el arbol binario que representa la expresion:

(x = y)*(z+w)

En este caso, el operador * constituye el operador que se con-
sidera en la raiz, pues en el subarbol izquierdo se considera la
operacion (x — y) y en el derecho la operacion (z + w), cuyos
resultados son operadas entre si con el operador *.

En la figura 7.37 se observa el arbol resultante de la expresion
(x —y)*(z + w).

Figura 7.37 Arbol de expresion para la expresion (x — y) * (z + w).

E jemplo_

Dibujar el arbol binario que representa la expresion:

ax(b+c)—(a—>b)

En este caso, el operador — es el operador que se considera en
la raiz, pues en el subarbol izquierdo se considera la operacién a
* (b + ¢) y en el derecho la operacion (a — b), cuyos resultados
son operadas entre si con el operador —.

En la figura 738 se observa el arbol resultante de la expresion
a*(b+c)—(a—Db)

Figura 7.38 Arbol binario para la expresion a * (b + ¢) — (a — b).

E jemplo

Obtener la expresion dada por el arbol de expresion binario de la

figura 7.39.

La expresion que resulta es:

at|

b
c—d

Figura 7.39 Arbol de expresion binario.
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E jemplo_

Arboles de expresién

Obtener la expresion dada por el arbol de expresion binario de la figura 7.40.

La expresion resultante es:

E jemplo

—(c+b)

Figura 7.40 Arbol de expresion binario.

\

Obtener el arbol binario correspondiente a cada una de las siguientes expresiones:

1 axb 5 ax(b+c)
" (c—d)xe i d

El arbol de expresion correspondiente se muestra en la figura 7.41.

El arbol de expresion correspondiente se muestra en la figura 7.42.

4 )

N\ 4

Figura 7.41 Arbol binario para la expresion
axb/(c—d)xe.

ONNO
\ J

Figura 7.42 Arbol binario para la expresion
ax(b+c)/d
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Algoritmo para construir arboles de expresion

De manera primordial, los arboles de expresion se utilizan para evaluar expresiones en programacion. Por
tanto, es importante establecer el algoritmo basico para la construccién de un arbol de expresion, el cual se
puede resumir en cinco pasos:

1. Alencontrar el primer paréntesis izquierdo se genera un nodo y se hace en el nodo raiz. Este nodo se
considera como nodo actual y su puntero se coloca en una pila.

2. Cada que se encuentra un nuevo paréntesis izquierdo, se crea un nuevo nodo. De este modo, si el
nodo actual no tiene hijo izquierdo, el nodo recién creado se establece como hijo izquierdo, en caso
contrario se establece como hijo derecho y el nuevo nodo se establece como el nodo actual.

3. Al encontrar un operando, se crea un nodo nuevo y se asigna el operando al correspondiente campo
de datos. Si el nodo actual no tiene hijo izquierdo, el nodo recién creado se establece como hijo iz-
quierdo, en caso contrario se establece como hijo derecho.

4. Alencontrar un operador, se debe sacar un puntero de la pila y colocar el operador en campo de datos
del nodo del puntero.

5. Sedeben ignorar los paréntesis derechos y espacios en blanco.

7.1 Arboles balanceados o arboles AVL

Se dice que un arbol es o estd balanceado (equilibrado), si y solo si en cada nodo las alturas de sus dos
subarboles difieren cuando més en 1. Los arboles balanceados son ttiles sobre todo en el manejo adecuado
de datos organizados en forma jerarquica. Los arboles balanceados también se conocen como arboles AVL,
en honor a los matematicos rusos G. M. Adelson-Velsitii y E. M. Landis. Entonces, un arbol AVL es un arbol
binario de busqueda con una condicién de equilibrio, la cual asegura que la complejidad de la busqueda es
logaritmica: O(log(n)).

La idea mas simple de equilibrio con- ™\
siste en exigir que los subarboles izquierdo
y derecho tengan la misma altura, sin soli-
citar que el arbol sea poco profundo. Por lo
anterior, esta idea de equilibrio es poco efi-
clente, como se muestra en la figura 7.43.

Otra condicién de equilibrio exige que
todo nodo debe tener subarboles izquier-
do y derecho a la misma altura. Sila altura
de un arbol vacio se define como —1, solo
los éarboles perfectamente equilibrados
de 2* — 1 nodos satisfacen este criterio. No
obstante, aunque esto garantiza arboles
de profundidad pequetia, la condicién de
equilibrio es demasiado rigida para ser util,
ya que es necesario que esta sea moderada.

Un arbol AVL es idéntico a un arbol bi-
nario de busqueda, excepto porque en un
arbol AVL la altura de todos sus subarbo-

les, izquierdo y derecho, pueden diferir a K //
lomas en 1. La altura de un arbol vacio se  Figura7.43 Un mal arbol binario, pues la condicion en la raiz no es suficiente
define como —1. (esto sienifica aue no es AVL ).
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- Arboles balanceados o arboles AVL [ 265

En la figura 7.44i) se observa un arbol de busqueda, mientras que en la figura 7.43ii) se distingue un arbol AVL.

4 )

) ii)

<
Figura 7.44 i) Arbol AVL. ii) Arbol de busqueda.
En la figura 745 se muestran cinco arboles, todos son ejemplos de arboles AVL.
4 )
\ J

Figura 7.45 Arboles AVL.

Para determinar la altura de un arbol AVL, por lo comun se acostumbra utilizar la altura maxima, pues
calcular la altura promedio puede llegar a ser complicado. El objetivo de calcular la altura es que el nimero
resultante representa el numero de iteraciones que se realizan para bajar desde la raiz hasta el nivel méas
profundo. Por tanto, la eficacia de los algoritmos utilizados en arboles depende de su altura.

El 4&rbol AVL, de n nodos, menos denso tiene como altura:

h =~ 1.44log(n)

Donde n es el nimero de nodos, en el peor de los casos, de un arbol AVL de altura h y; por tanto, se puede
afirmar que la complejidad de una busqueda es: O(log(n)).

Ahora bien, cuando se hace una insercién es necesario actualizar toda la informaciéon de equilibrio para
losnodos en el camino a la raiz; la razén de que la insercién sea potencialmente dificil se debe a que insertar
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266 Capitulo 7 Arboles

un nodo puede violar la propiedad de ser AVL. Si este
es el caso, es necesario restaurar la propiedad antes
de considerar terminado el paso de insercién. Esto se
puede hacer modificando siempre en forma sencilla el
arbol; dicho paso se conoce como rotacién.

L * *
Rotacion simple o sencilla

Considérense los arboles de buiisqueda binaria de 1a fi-
gura 7.46, los cuales tienen los mismos elementos.
Como se puede ver en la figura, en primer lugar es-
tos dos arboles son k; < k,. En segundo lugar, todos los
elementos del subarbol son menores que k,, en ambos
arboles. En tercer lugar, todos los elementos del subar-

Y

Figura 7.46 Rotacion simple o sencilla.

bol son mayores que k,. Por ultimo, todos los elementos del subarbol z estan entre k, y k,. El proceso de
transformacién de uno de los arboles a otro es a lo que se denomina rotacién. En una rotacién solo inter-
vienen unos cuantos cambios de apuntadores y cambia a estructura del arbol que preserva la propiedad de

busqueda.

No es preciso que la rotaciéon se realice en la raiz del arbol, esta también se puede hacer en cualquier
nodo del arbol, ya que cualquier nodo es la raiz de algun subarbol, y puede transformar cualquier arbol en
otro. Este se considera un método sencillo para arreglar un arbol AVL. Si la insercién causa que algiin nodo
pierda la condicién de equilibrio, entonces se hace una rotacién en ese nodo. El algoritmo basico de la rota-
cién consiste en iniciar en el nodo insertado y subir en el &rbol, actualizando la informacién de equilibrio
en cada nodo del camino. De este modo, si se llega a la raiz sin encontrar ningin nodo desequilibrado, el
proceso termina. En caso contrario, se aplica una rotacién al primer nodo incorrecto que se encuentre.

En el arbol de la figura 7.47 i) se observa la insercion del nodo 6.5, el cual genera desequilibrio en el arbol AVL, mien-

tras que la rotacion que se observa en el arbol 7.47 i) corrige dicho desequilibrio.

/

\

ii)

~

4

Figura 7.47 i) Arbol con propiedad AVL destruida con la insercién del nodo 6.5. ii) Arbol i) con propiedad AVL restablecida después

de una rotacion.
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o Arboles balanceados o arboles AVL | 267

E jemplo/

Construir un arbol AVL de 7 vértices.
Se comienza con un arbol vacio y se insertan las llaves del
1al 7, en forma secuencial. El primer problema surge al
momento de insertar la lave 3, porque la propiedad AVL >
se viola en la raiz. Dicho problema se resuelve, como se
vio antes, a través de una rotacion (véase figura 7.48).

Una vez hecha la rotacion, se inserta el nodo 4, lo que
no ocasiona problemas con la propiedad AVL. Sin embar-

| colocar el nodo 5, se prod iolacion enel 4
g0, al colocar el nodo 5, se produce una violacion en e

nodo 3, por tanto se vuelve a aplicar una rotacion para Figura 7.48 Rotacion simple para preservar la propiedad
corregir el problema generado (véase figura 7.49). AVL.

Después, se inserta el nodo 6, lo que ocasiona un problema de equilibrio en la raiz, ya que el subarbol derecho
tendra altura 2 y el izquierdo altura 0. Ante esto, se lleva a cabo una rotacién simple entre 2 y 4 (véase figura
7.50).

Por ltimo, se inserta el nodo 7, lo que origina otra violacion en el nodo 6; por tanto, se vuelve a efectuar una
rotacion simple (véase figura 7.51).

ﬂ In- AN

”

Figura 7.50 Rotacion simple para preservar la propiedad AVL.
Figura 7.49 Rotacion simple para preservar la propiedad AVL.

N N

N (o)

O, ® O

Figura 7.51 Rotacion simple para preservar la propiedad AVL.
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Rotacion doble

Existe un caso en el que una rotacién simple no es suficiente para restablecer la propiedad AVL. Por ejemplo,
sien el ultimo arbol obtenido (véase figura 7.51), se insertan los nodos del 1 al 15 en orden inverso; la inser-
ci6én del 15 es facil, ya que no destruye la propiedad AVL, pero alinsertar el 14 se ocasiona un desequilibrio de
altura en el nodo 7; por tanto, como se muestra en la figura 7.52, una rotacién simple no corrige el problema.

4 )

. ) J

Figura 7.52 La rotacion simple no recupera la propiedad AVL.

Como se puede ver en la figura 7.52, la rotacién simple no corrige el desequilibrio de altura. El problema es
que el desequilibrio fue ocasionado por un nodo insertado en el arbol que contiene los elementos medios,
al tiempo que los otros &rboles tienen altura idéntica. La solucién se conoce como rotacién doble, que es se-
mejante a la rotacién simple, solo que esta abarca cuatro subarboles en lugar de solo tres (véase figura 7.53).

4 )

® & — ® ()

CC )

Figura 7.53 Rotacion doble, derecha-izquierda.
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_ Arboles balanceados o arboles AVL 269

De manera similar, es posible realizar la rotacién doble izquierda-derecha (véase figura 7.54).

N

Figura 7.54 Rotacion doble, izquierda—derecha.

E jemplo/

Considérese el arbol de la figura 7.52. Realizar una rotacion doble para lograr la propiedad AVL en dicho arbol y

continuar con la insercion de los nodos 13,12 y 11.

En este caso, primero se lleva a cabo una rotacion doble, derecha-izquierda (véase figura 7.55).

/

\\

\

Figura 7.55 Rotacion doble, se recupera la propiedad AVL.
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270 | Capitulo 7 Arboles

Una vez recuperada la propiedad AVL, se inserta el siguiente nodo: 13. Es importante hacer notar que esta inser-
cion también requiere una rotacion doble para recuperar el estatus AVL del arbol (véase figura 7.56).

4 )

J

Figura 7.56 Rotacion doble, mediante la cual se recupera la propiedad AVL.

Siahorase inserta el nodo 12, entonces aparece un desequilibrio con la raiz, pero una rotacion simple basta aqui
para lograr recuperar la propiedad AVL (véase figura 7.57).

4 )

Figura 7.57 Rotacion simple mediante la cual se recupera la propiedad AVL.
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Luego, se inserta el nodo 11; esta insercion también requiere una rotacion simple para obtener un arbol AVL
(véase figura 7.58).

o

Figura 7.58 Rotacion simple mediante la cual se recupera la propiedad AVL.

Por ultimo, se inserta el nodo 10, y de nuevo es necesaria una rotacion simple, pues dicha insercion viola la
propiedad AVL. Lo mismo sucede para el caso del vértice 9, no asi para el 8, que no requiere rotacion. Al final,
después de realizar las dos rotaciones mencionadas, se obtiene el arbol AVL de la figura 7.59.

7

Figura 7.59 Arbol AVL de 15 vértices.
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En este capitulo se introduce el concepto de arbol y su estructura formal, que se utiliza en una gran variedad
de aplicaciones de programacién. El tipo de estructura de arbol que mas se utiliza es el arbol binario. Se dice
que un arbol es binario si cada uno de los vértices que lo componen tiene a lo més dos hijos. La altura de
un arbol se define como la longitud méaxima de todos los caminos que existen en el arbol desde la raiz. Los
tipos de arboles binarios mas utilizados en aplicaciones son los arboles de busqueda, los de expresién y los
balanceados o AVL.

Los arboles de busqueda son estructuras que permiten la localizacién de una clave de busqueda con
una complejidad logaritmica. No obstante, para arboles degenerados, la eficiencia en la busqueda deja de
ser adecuada.

Los arboles balanceados o AVL son arboles de busqueda en los que las longitudes de sus subarboles
izquierdo y derecho difieren a lomas en 1. Esta caracteristica hace que los arboles AVL optimicen el proceso
de buisqueda. No obstante, las operaciones de insercién y eliminacién en estos drboles son mas costosas que
en los arboles no equilibrados.

O Problemas propuestos 713 Un vértice de un arbol enraizado con valencia de

En los problemas 71a 7.8 conteste V, si el enunciado se salida O se conoce como nodo

refiere a un arbol, o F en caso contrario. o ) . .
714 Un vértice de un arbol enraizado con valencia

71 Contiene exactamente un circuito. [ ] de salida diferente de O se conoce como nodo

7.2 Esun grafo no conexo. [ ]
715 Un vértice de un arbol enraizado con valencia de

7.3 Unarbol de cinco vértices es isomorfoa K. [ ] entrada O se conoce como nodo

74 Un arbol con dos o mas vértices tiene una hoja. [ ] 716 Un arbol donde cada nodo rama tiene exacta-
mente m hijos se denomina
7.5 Es un grafo en que el nimero de lados es mayor
que el ndmero de vértices. [ ] 717 Un arbol donde cada nodo rama tiene a lo mas m
hijos se denomina
7.6 Es un grafo con |E| = |V| — 1 que no contiene cir-

. En los problemas 718 a 7.25 determinar si el conjunto
cuitos. [ ]

dado es un cédigo de prefijos.

77 Es un grafo en el que hay un unico paseo entre

cada par de vértices. [ ] 7k {1, 00T, 97 o)

7.8 Esun grafo que es conexo. [ ] e {1, O, 9, 0T, 0]

En los problemas 7.9 a 717 complete el enunciado. 7.20 {1, 00, 01, 000, 0001}

79 Ungrafodirigido esun arbol dirigido si se convier- 7.21 {1,01,10, 000, 001}

te en un arbol cuando se ignora
7.22 (1,01, 001, 000}
710 Un vértice de un arbol con valencia igual a 1 se

conocecomonodo | 7.23 {1,01,10, 000, 00T}

711 Para que un grafo con vértices sea un arbol debe 7.24 (11,10, 01,000, 00T}
tener

) 7.25 {1,011, 010, 001, 000}
712 Para que un grafo con nueve lados sea un arbol

tiene que tener
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En los problemas 7.26 a 7.29 determinar si el grafo co- 7.28
rrespondiente es un arbol.
7.26
” 4
Figura 7.62
Y 4 7.29
) )
Figura 7.60
727
” 4
Figura 7.63
4
Figura 7.61

Para los problemas 7.30 a 7.33 considerar los siguientes arboles.

Figura 7.64

" 4
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7.30 Todos son arboles m-arios regulares, excepto:
7.31 Es un arbol ternario de altura 4.
7.32 Es un arbol binario.

7.33 Son conexos.

Dados los siguientes arboles, contestar lo que se pide en los problemas 7.34 a 7.37.

6/12\15
~.

15 10

10 18 6/ \14
~

™~

12 8§ 14 18 8§ 12

\18
6/ \14 10/ 15/

N

’ 4

Figura 7.65

7.34 Es un arbol de busqueda binaria.
7.35 Es un arbol binario.
7.36 Es un arbol binario regular.

7.37 Es un arbol enraizado.

Dado el siguiente grafo, contestar los problemas 7.38 a 7.41.

Figura 7.66

7.38 Dar un ejemplo de un arbol generador del grafo.

7.39 Dar un ejemplo de un conjunto de corte.

740 Dar un ejemplo de un arbol del grafo.

7415Si{e, e,, e, e,, e, e, €5} es un arbol de dicho grafo, encontrar su complemento.
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. | Sistemas
algebraicos

%ﬁ-‘ -

Objetivos

m Conocer los conceptos basicos de las estructuras algebraicas: grupos, anillos y campos.

® Manejar de modo eficiente las estructuras algebraicas basicas para comprender sus aplicaciones en
informatica, fisica, quimica y otras ciencias basicas.

m Conocer las aplicaciones de las estructuras algebraicas finitas en encriptacion de informacion.
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8.1 Introduccion

Elalgebra abstracta (o algebra moderna) es larama de las matematicas que estudia las estructuras algebrai-
cas conocidas como grupos, anillos, campos (también conocidos como cuerpos) y los espacios vectoriales.
En la actualidad, todas estas estructuras son vistas como conjuntos dotados de operaciones que satisfacen
clertos axiomas, que juegan un papel fundamental en diversas aplicaciones de interés. A continuaciéon se
mencionan algunos ejemplos de las citadas aplicaciones:
1. Sistemas fisicos, como los cristales y el atomo de hidrégeno, pueden ser modelados por grupos de
simetria. De este modo, se puede decir que la teoria de grupos esté en estrecha relacién con diversas
aplicaciones en la fisica y la quimica.

2. Enlaactualidad, los campos finitos de orden 2" (campos binarios) han logrado especial importancia
debido a sus multiples aplicaciones en seguridad informatica, como en la banca electrénica, las tar-
jetas inteligentes, la votacion electrénica, etcétera.

P R R R R R R R R R R R R I A I R T R R R

Evariste Galois (Bourg-la-Reine 1811-Paris, 1832) matematico francés. Proveniente de una familia de politi-
cos y juristas, Galois fue educado por sus padres hasta los 12 anos, edad en que ingresé al College Royal de
Louis-le-Grand, donde enseguida mostré extraordinarias aptitudes para las matematicas.

A la edad de 16 anos, interesado en hallar las condiciones necesarias para definir si una ecuacion
algebraica era susceptible de ser resuelta por el método de los radicales, empez6 a esbozar lo que mas
adelante se conoceria con el nombre de teoria de Galois, mediante el analisis de todas las permutaciones
posibles de las raices de una ecuacion que cumplieran condiciones determinadas.

Mediante dicho proceso, que en terminologia actual equivale al de hallar el grupo de automorfismos
de un cuerpo, sento las bases de la moderna teoria de grupos, una de las ramas mas importantes del
algebra. Galois intuyo que la solubilidad mediante radicales estaba sujeta a la solubilidad del grupo de
automorfismos relacionado.

A pesar de sus revolucionarios descubrimientos, o tal vez por esa misma causa, todas las memorias que
publicé con sus resultados fueron rechazadas por la Academia de las Ciencias, algunas por matematicos
tan eminentes como Cauchy, Fourier o Poisson. Los fallidos intentos por ingresar a la Escuela Politécnica estuvieron acompanados de
importantes fracasos, lo que le provocé una profunda crisis personal, agravada en 1829 por el suicidio de su padre.

Miembro activo de la oposicion antimonarquica, se vio implicado en un duelo cuyos motivos aun hoy son confusos. Previendo su
inminente muerte en el lance, trabajo con ahinco y dedicacion en una especie de testamento cientifico que dirigié a su amigo Auguste
Chevalier. A los pocos dias tuvo lugar el duelo y el matematico, herido en el vientre, muri6 unas horas después, apenas cumplidos 21anos.

.
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: Figura 8.1 Evariste Galois
(1811-1832), matematico
francés.

8.2 Grupos

La primera estructura algebraica que se analiza aqui se conoce como grupo. Un grupo consta de un con-
junto G de objetos y una operacién binaria * (que opera elementos por parejas) que satisface las siguientes
cuatro condiciones (denominadas axiomas de grupo):

1. Para todo g4, g, € G se cumple g, * g, € G. A este axioma se le conoce como cerradura e implica, en
términos generales, que el resultado de operar dos elementos del conjunto con la operacién debe ser
igual a otro elemento del mismo conjunto.

2. Paratodo gy, g,, g; € G se cumple (g, * g,) * g3 =9, * (9, * g5). A este axioma se le conoce como asociativi-
dad e implica, en términos generales, que, dado que la operacién es binaria (se realiza por parejas), al
tener tres elementos operandose, existen dos opciones de operar por parejas, pero sin importar cual
pareja se tome primero, el resultado esigual.

3. Existe un elemento en G que se denota por e, que satisface g e = g para todo g € G. A este axioma
se le conoce como existencia del neutro y tiene la Caractenstlca peculiar de que cualquier elemento del
conjuntoque~"~ 7 o
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. Grupos

4. Paratodo g € G existe otro elemento g' también en G que satisfaceg=g' =g'*g =e. A este axioma
se le conoce como existencia de los inversos e implica, en términos generales, que cada elemento en el
grupo contiene su inverso, es decir, un elemento que operado con g produce el elemento identidad e.

La forma correcta de referirse a un grupo es mediante la idea de conjunto y a la operaciéon binaria definida
en este. Esto se debe a que en un mismo conjunto se pueden definir diferentes operaciones binarias que sa-
tisfacen los axiomas de grupo, aunque es evidente que estos representan grupos diferentes. Para denotarlo
se utiliza la notacién <G, #>.

E JEMPLO

Considérese el conjunto de los nimeros enteros Z. Como es conocido, la operacion adicion satisface ciertas pro-
piedades en dicho conjunto, aunque en particular satisface los axiomas de grupo:

1. Cerradura.Si n,m, € Z se cumple que n + m € Z. Es decir, la suma (resultado de la adicion) de dos enteros
siempre es otro entero.

2. Asociatividad. Sin, m, k € Z se cumple que (n + m)+ k=n+ (m + k).

Existencia del neutro. Existe un elemento, que se denota por O, que satisface n+0= 0+ n=n para todo
entero n.

4. Existencia de inversos. Para cada entero existe otro entero —n, que satisface la relacion n+ (—n) = (—n)+n=0.

Por tanto, el conjunto de los enteros con la operacion adicion es un grupo y se denota por (Z,+).

Esté claro que el conjunto de los enteros satisface una condicién extra a los axiomas de grupo: la conmuta-
tividad. En general, si <G,*> es un grupo que satisface la condicién de que g, * g, = g, * g, (conmutatividad)
para todo par de elementos g, g, € G recibe el nombre de grupo abeliano, en honor al matematico Niels H.
Abel, cuyo trabajo fue fundamental en la unificacién de la teoria de grupos.

L N Y TRy

Neils Henrik Abel (Finnoy, 1802-Cristiania, hoy Oslo, 1829), matematico norego. Hijo de un pastor pro-
testante, crecio en un ambiente familiar de gran tension a causa del alcoholismo que padecia sus padres.
Enviado junto con su hermano a una escuela de la capital, sus precoces aptitudes para las matematicas
fueron muy apreciadas por uno de sus profesores, Holmboe, quien tras la muerte de su padre le financio
sus primeros anos en la universidad.

La propuesta de Holmboe, C. Hansteen y otros profesores, Abel recibi6 por decreto real una beca
de viaje. Asi, entre 1000 825,827, conocio a los demas eminentes matematicos de Alemania y Francia, y
al mismo tiempo recibio la mayor parte de sus trabajos, los cuales se publicaron una revista alemana en
matematicasCrelles Journal. Entre los matematicos de su tiempo, el profesor Degen, de Copenhague, y el
Figura 8.2 Niels consejero Crelle, de Berlin, fueron quienes de inmediato comprendieron la gran la grandeza de Abel. Crelle
Henrik Abel (Finndy; se encargo de Abel tuviera una plaza de profesor en Berlin, pero la tuberculosis pulmonar acabo con su vida
1802-Cristiania, 1829), antes de poder ejercer dicho cargo; y 1829, a la temprana edad de 27 afios, moria este genial matematico.
matematico noruego. Teniendo en cuenta su corta vida, la mente de Neils Henrik Abel fue sumamente por prolifica, y son nu-

merosas sus aportaciones a las matematicas. Vemos lo que las ecuaciones algebra ica generales no pueden
resolverse algebraica mente cuando son de grado superior al cuatro; estudio las funciones algebraica, las elipticas, las trascendentes de
orden superior y las integrales definidas; establecio la doble periodicidad de las funciones elipticas y descubrio su teorema dia adicion;
finalmente, descubre una nueva clase de ecuaciones, las lamadas ecuaciones abelianas.

Ademas de los ndmeros enteros, es facil verificar que los siguientes pares forman grupos abelianos con la adicion:

1. {(Q, +)Numeros racionales. 2. (R, +)Numeros reales. 3. (C, +) Numeros complejos.
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El siguiente ejemplo permite aclarar por qué es tan importante hacer alusién al conjunto y a la operacién
para denotar un grupo.

E JemPLO_

En el ejemplo anterior se especifica que el conjunto de los ndmeros reales forma, a su vez, un grupo con la opera-
cion adicion. No obstante, el mismo conjunto no forma un grupo con la multiplicacion. Para comprobarlo, basta
con ver que los primeros tres axiomas de grupo se satisfacen para todo nimero real, donde destaca el 1, que es el
neutro, pues 1-a=a-1= a para todo ndmero real a. Sin embargo, para el O no existe inverso multiplicativo, pues
no existe ningun numero real que multiplicado por O sea igual a 1; es decir, la ecuacion 0- x = 1no tiene solucion
en los ndmeros reales. Por tanto, debido a que no se satisface el axioma 4 para todos los ndmeros reales con la
multiplicacion se concluye que dicho par no forma un grupo.

Del ejemplo anterior es facil ver que los nimeros racionales y los nimeros complejos no forman un grupo con la
multiplicacion; no obstante, debido a que lo Unico que falla es la no existencia del inverso multiplicativo para el O,
es evidente que los siguientes conjuntos si forman grupos abelianos con la multiplicacion:

(Q*, -y Nameros racionales sin el cero.
(R*, -y Nameros reales sin el cero.

(C*, ) Numeros complejos sin el cero.

Es importante destacar que los grupos no se limitan a conjuntos de nimeros; aunque hasta ahora solo se
han abordado estos por constituir los ejemplos més comunes, hay una diversidad de ejemplos importantes
de grupos en geometria, analisis, etcétera. A continuacién se presenta un ejemplo de estos casos.

E jEpio_ .

Considérese un triangulo equila-
tero en el plano y sea G el con-
junto de todas las rotaciones
del triangulo en el plano que lo
dejan sin cambio. Es facil ver que
el conjunto G consta de tres ro-
taciones: 120; 240° y 360° (véase B c A B ¢ A
figura 8.3). ! R, R,

4

La rotacion de 360° deja al trian-
gulo en su posicién original; por
tanto, esta rotacion es el elemento identidad (/). La rotacion de 240° (/) equivale a rotar 2 veces 120° R,. La opera-
cion definida en G se denota por el simbolo ° y se denomina composicion de rotaciones. Como se puede observar,
R,°R,= R,°R,=1 pues R, ° R, consiste en rotar el triangulo en 240° y luego en 120° y R, ° R, equivale a rotar el
triangulo en 120° y luego en 240’ Es facil ver aqui que los cuatro axiomas de grupo se satisfacen para en G, por
lo que (G, °) es un grupo.

Figura 8.3 Rotaciones que dejan invariante a un triangulo equilatero.

En la siguiente lista de teoremas se destacan algunas de las propiedades més importantes en un grupo.

Teorema 8.1
Sea (G, ) un grupo y sean g,, ¢,, g, € G. Entonces:
1. Sig, xg, =g, *g, Se tiene que g, = g, (Ley de cancelacién por la izquierda).
2. Sig,*g, =gy*"~

ot /Yo A Vs __ M- 3 ____ 1 _\
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D EMOSTRACION

En primer lugar, supdngase que se cumple la igualdad:
§*8 =8 *8, RI°R2

Como (G, *) es un grupo, por el axioma 4 existe g,y aplicando en ambos lados de la igualdad se tiene:

& *(88)=8"*(8*8)
Ahora, al aplicar la ley asociativa se tiene:

(67 %8)*8 =(8"*8)*8

exg, =exg,
8§ =83

La demostracion para el caso 2 es equivalente; por lo que se deja como ejercicio para el lector.

Teorema 8.2
Sea (G, ) un grupo. Entonces, el elemento neutro es Unico.

D EMOSTRACION

Supdngase que existen dos elementos e,, e, € G que satisfacen:
e*rg=8*6=§
e, xg=gxe,=g
Para todo g en G. Entonces, se tiene que:
e, =e *xe,=e,

de donde se concluye que e, = e,; luego entonces, el elemento neutro es Unico.

Teorema 8.3
Sea (G, x) un grupo y g € G. Entonces, existe un Unico inverso para g.

D EMOSTRACION

Supéngase que existen dos elementos g™, g € G que satisfacen:

g lxg=9gxg =e
glxg=gxg =e
Entonces, se tiene que:

gxg  =g*g" =e

y al aplicar la ley de cancelacion por la izquierda se tiene:

Esto es, el inverso de cualquier elemento g en un grupo (G, *) es Unico.

Cuando el conjunto en cuestién es finito, existe la posibilidad de representar la operacién binaria definida
en este mediante una tabla. Para la construccién de dicha tabla, primero se acomodan los elementos del
grupo en un cierto orden, tanto en el lado izquierdo como en la parte superior de la tabla. Mientras que en la
interseccién del renglén i-ésimo con la columna j-ésima se coloca el resultado de:

(elemento i-ésimo * elemento j-ésimo)
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E JEMPLO

El grupo finito mas simple es el que consta de un solo elemento, el cual debe ser el elemento neutro (grupo trivial).
Por su parte, el primer caso no trivial es el grupo de dos elementos G = {e, g}, donde se asume que e es el elemen-
to neutro necesario en cualquier grupo. En este caso, para construir la tabla de grupo se elige algtn orden para los
elementos de, por ejemplo, e, g, y se acomodan en la tabla en dicho orden (véase tabla 81).

Tabla 8.1 Orden para los
elementos de G.

*

e 9
e

9

Como se puede observar, en la primera fila y la primera columna de esta tabla los elementos se repiten, ya que es
el neutro y, por tanto, se debe cumplir:

exe=e

exg=gre=g

Es decir:
Tabla 8.2 Acomodo

parcial de la tabla para los
elementos G.

Por dltimo, g debe tener su elemento inverso en G, es decir debe existir un elemento que operado con g dé como
resultado el neutro. Para este caso es evidente que la Unica opcidn es que g sea su propio inverso (pues e no fun-
ciona); esto es, que g* g = e. Por tanto, la tabla de grupo se muestra en la tabla 8.3.

Tabla 8.3 Tabla de grupo

e g
e e g
g g e

Por construccion, la tabla anterior en automatico satisface los axiomas de grupo 1,3 y 4. Por tanto, se deja al lector
verificar que la tabla construida asi, también satisface el axioma 2 de grupos (asociatividad).

Del ejemplo anterior, por intuicién se deduce que, a excepcién del acomodo y el nombre de los elementos,
solo existe una forma de construir la tabla de un grupo de cardinalidad 2. La observacién anterior da lugar a
un importante concepto en algebra que se denomina: “isomorfismo de grupos”. Este concepto es tan impor-
tante que se ha decidido dedicar la seccién 8.3 a su estudio.

Con base en la misma idea tratada en el ejemplo anterior, en este ejemplo se busca construir un grupo de tres ele-
mentos. Asi, por el axioma 3 de grupo, uno de los elementos de G debe ser el neutro; por tanto, G se denota en la
forma:

G:{e’ 8 gz}
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El orden en que aparecen los elementos en G se muestra en la tabla 8.4.

Tabla 8.4 Orden para los
elementos de G.

* e 91 92
e
91
9>

Considerando que e es el neutro, la primera fila y la primera columna deben ser idénticas.

Tabla 8.5 Acomodo

parcial de la tabla para los
elementos G.

*

e 91 9>
e e 91 92
91 91
92 [P

Pero, para llenar los cuatro lugares restantes y que se satisfagan los axiomas de grupo, la tnica opcion es la que se

observa en la tabla 8.6.
Tabla 8.6 Tabla de grupo.

*

e 91 9>
e e 91 92
91 91 92 e
92 92 e 91

Se deja como ejercicio para el lector probar que la tabla asi construida satisface los axiomas de grupo.

Una observacién importante acerca de las dos tablas de grupo construidas en ambos ejemplos es que cada
elemento (sin tomar en cuenta los encabezados, primera fila y primera columna) aparece exactamente una
vez por fila y por columna. Lo anterior no es casualidad, es una consecuencia de que, en un grupo, las ecua-
clones siguientes tienen exactamente una y solo una soluciéon.

g1 xX=0,
yxg=e
Este resultado es facil de probar, considérese x = g,  g,; sustituyendo en g, * x = g, se obtiene;
gL#(g," +0,)=(91%,")*xg, =exg, =3,
-1

De donde se concluye que g;' *g, es una solucién, que ademas es Unica, debido a que los inversos en un
grupo son unicos (teorema 8.3).

Grupos de congruencias

Una clase especial de grupos finitos, debido a sus multiples aplicaciones en electrénica, informatica, cripto-
grafia, entre otras disciplinas, son los grupos de congruencias médulo. Recuérdese que un nimero entero X
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se dice congruente con un entero modulo n, lo que se denota por x =y mod(n) si la diferencia x — y es un
multiplo de n; en simbolos:

x=ymod(n)siysolosix—y=nk,conkeZ

La relacién de congruencias modulo n es una relacién de equivalencia y por tanto genera una particion del
conjunto Z en clases de equivalencia. Las clases de equivalencia se denotan por:

z,={0}1].[2),....n—=1J

W,

donde la clase [x] es el conjunto de todos los numeros enteros “y” tal que x — y es multiplo de n, es decir:

1. [0]={0,n, —n,2n, —2n, ...}, ya que las diferencias 0 — n,0 — 2n,0 — (— 2n),..., son multiplos de n.

2. M={Ln+1,—n+1,2n+1,-2n+1,...},yaque las diferencias 1—(—2n+1),..., son multiplos de n.

E JEMPLO

Para el caso de las cuatro clases de equivalencia son:
[0]={0,4,—4,8-8,..},
M={,5-39-7..},
21={2,6,—2,10,—6, ...},
B]={3,7-1,1,-5..}

De la forma de las clases de equivalencia del ejemplo anterior, se puede observar que la unién de estas es
todo el conjunto de nimeros enteros y que son disjuntas entre si.

Con las clases de congruencias médulo n es posible definir dos operaciones importantes: adicién de clases
y multiplicacion de clases, de la siguiente forma:

X+ [yl=[x+y]y [x]-[y]=[xy]

A continuacioén, se enuncian dos teoremas (se omite la demostracién) del conjunto de clases de con-
gruencias modulo n con las dos operaciones definidas para las clases.

Teorema 8.4
Elconjunto Z, ={[0],[1], ..., [n — 1]} es un grupo abeliano con la adicién de clases, donde el neutro aditivo es [0]

Teorema 8.5
Sip es un niimero primo, entonces el conjunto Z, = {1], ..., [p — 1]} es un grupo abeliano con la multiplicacién
de clases, donde el neutro multiplicativo es [1].

E JEMPLO

Considérese el conjunto Z, = {[0], [1], [2], [3]}. De acuerdo con el teorema 8.4, este conjunto forma un grupo con la
adicion de clases. En la tabla 8.7 se muestra la tabla de grupo.

Tabla 8.7 Tabla de grupo con
la adicién

o] | o] [ [z [3]
3 I I R A N € B (¢
21 | 2 B [0 [

rma1 ra1 rAl ra1 ral
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. Grupos

Considérese el conjunto Z, = {[0], [1], (2], [3], [4]}. De acuerdo con el teorema 8.5, este conjunto forma un grupo
con la multiplicacion de clases. En la tabla 8.8 se muestra la tabla de grupo.

Tabla 8.8 Tabla de grupo con
la multiplicacién

o | [ 2 B[4
3 I I 4 B A R K B )
21 | B [ [0 [
81 | [4] 18] 2] [1]

Grupos ciclicos

Otra clase especial de grupos es el que esta constituido por aquellos grupos que pueden ser generados com-
pletamente por un solo elemento; a tales grupos se les denomina grupos ciclicos. De manera formal, si (G, )
es un grupo en el cual existe un elemento x € G, tal que:

G={x"t-qnez}

donde X" representa a x operado consigo mismo n veces.

Considérese el conjunto Z, = {[0], [1], [2], [3]}. En la seccion anterior se afirma que (Z,, +) es un grupo de congruen-
cias, pero ademas es un grupo ciclico, pues el [1] genera todo Z,; a saber:

[
M+=(2],
[+ 0+[=[3],
[+ {1+[+{1=[0]

El grupo <Z5> es ademas un grupo ciclico, pues el [2] genera todo Z,,; a saber:

2]
Rl+[R21=[4]
Rl+[21+21=0]
RI+R21+[2+21=[1

Teorema 8.6
Cualquier grupo (G, ) ciclico es abeliano.

D EMOSTRACION

Sea (G, ) ciclico. Entonces, como (G, *) es ciclico existe al menos un elemento en x en G que lo genera; es decir:

G={x"t-qnez}
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Para probar que (G, *) es abeliano se debe demostrar que para cualquier par de elementos g, g, € G se cumple que
& *8& =&, *&. En efecto, como x genera todo G se tiene que:

§=x"yg=x"
de donde:

m+n,

__Un n, __ _ ymtn __ n no__
g*%& =X"*kX7? =X =X =XPxX =g,%8,

Teorema 8.7
Todo subgrupo (véase seccidén 8.3) de un grupo ciclico es ciclico.

D EMOSTRACION

Sea (G, ) ciclico y sea H un subgrupo de G. Entonces, como (G, ) es ciclico existe al menos un elemento en x en G
que lo genera. Si H consta solo del elemento identidad, entonces H es ciclico.

En otro caso, si H consta de mas de un elemento, es necesario encontrar un generador para H. Como H es subgrupo
de G sus elementos son de la forma x”. Sea m el entero positivo mas pequeno tal que x™ € H; entonces, este ele-
mento debe ser el generador buscado. Es decir, cualquier otro elemento y = x" de H debe ser una potencia de x™.
Para demostrar esta ultima afirmacion se puede utilizar el algoritmo de la division para escribir n:

n=mq-+r
donde el residuo r satisface 0 <r < m; entonces:
Xn _ qu+r — (Xm)q Xr
Y al despejar x” se tiene:
X' = (X’">_q x"
Como x" €Hy x" €H y H es un subgrupo, necesariamente:
(xm)fq x"=x"€eH

Por dltimo, como m se eligio como el menor entero positivo, tal que x™ € Hy 0 <r <m, la Gnica opcidn es que r =
O; por tanto:

Grupos de permutaciones

En matematicas de la simetria existe otra clase importante de grupos denominados grupos de permutacio-
nes. Con el fin de dar una introduccién al concepto estructura algebraica de permutaciones, supéngase que
hay un conjunto de seis objetos acomodados en un cierto orden inicial, los cuales pueden ser etiquetados
conlos enteros 1, 2, 3,4, 5y 6. Este arreglo inicial, que se denota por | (permutacién identidad), se representa
de la siguiente manera:

(18355

Para representar una permutacién de elementos se usa la letra f, considerando que cada permutacién puede
verse como una funcién de un conjunto al conjunto mismo. Los cambios se representan en el renglén infe-
rior, con lo cual se deja invariante el renglén de arriba; es decir, el renglén de arriba representa el dominio de
f, mientras que el renglén de abajo representa la imagen. Por ejemplo, si se considera:

f=2 f@=5fB)=1fA=3 f5=4 f6)=6
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Se representa mediante:

f=(5%3535 )

Grupos

Ahora, es posible llevar a cabo una sucesion de permutaciones, 1o que se puede expresar cComo una composicion
de funciones o, mas especifico, como una composicién de permutaciones.

E JemPLO_

Para llevar a cabo la composicion de permutaciones f o g, con:

| isse ) o=( ittt

se lleva a cabo como una composicion de funciones estandar, es decir:

fogl)=r(gl)

De modo explicito, al recorrer los seis valores se obtiene:

fle@) =)=
fe®)=f6)=
f(g®)=r0=

Por ultimo, se representa por:

Es muy simple obtener la permutacién inversa de una permutaciéon dada mediante la representacién que
se ha utilizado. A continuacién, se ilustra esto mediante un ejemplo.

E jemplo

Encontrar f ', co

n:

Para construir la funcién inversa de f, se busca una permutacion que anule el efecto de f; es decir, f 'of =1

Flof()=F"(f()=x

De modo explicito, al recorrer los cinco valores se obtiene:

Por dltimo, se representa por:

N ="Q=1
Ff@Q)=f"0=2

FER)=F"()=3
FE@)=F"03)=4

FHFE)=F"#=5
~ =)
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Verifique que la permutacion:

- {8

es la inversa de la permutacion:

f:( 12345 )
25134
Es suficiente con mostrar que la composicion de permutaciones produce la permutacion identidad; es decir,

flof=I

De modo explicito, al recorrer los cinco valores se obtiene:

FIEm=F"'@=1
FIEQ)="0=2
FEE)=F"0=3
FEE)="0=4
FEG)=Ff"@=5

Entonces:

Resulta importante destacar que existe una notacién extra
para representar permutaciones, que se conoce como notaciéon 1 2 3
ciclica. Para explicar esta notacién, considérese que se cuenta
con un tablero de ajedrez en el cual se ubican un alfil en la po-
sicién 1, una torre en la posicién 2 y un caballo en la posicién
3. Supdngase, ademas, que se lleva a cabo la siguiente permu- >€<
tacion: se mueve el alfil de la posicién 1 a la posicién 2, 1a torre

de la posicién 2 a la posicién 3 y el caballo de la posicién 3 a la
posicién 1 (véase figura 8.4)

La notacién para representar esta permutacién es (1, 2, 3),
que se lee: el objeto ubicado en la posicién 1 se permuta a la posi-
cién 2; el objeto ubicado en la posicién 2 se permuta a la posicion = = 4
3; el objeto ubicado en la posicién 3 se permuta a la posicién 1. :l'cgl'l';: 8.4 llustracion que representa lanotacion

En general, un ciclo de longitud n de la forma (x, X,, ..., X,) €s ‘
un ciclo correspondiente a la permutacién:

Xy Xy X3 Xy
Xy X3 Xy Xy

Cualquier permutacién con un conjunto finito de elementos siempre se puede escribir como un producto
de ciclos disjuntos. Mediante la notacién ciclica, es posible construir una tabla de grupo para resumir las
operaciones. Por ejemplo, el conjunto de todas las permutaciones de tres objetos se denomina grupo simé-
trico S;. El elemento identidad que en notacién ciclica se representa simplemente como (1) y el resto de las
permutaciones son: (1, 2, 3), (1, 3, 2), (1, 2), (1, 3) y (2, 3).

El grupo de permutaciones de tres objetos es el que describe todas las permutaciones posibles entre las
tres piezas (el alfil, la torre y el caballo) de 1a figura 8.4.

La tabla de grupo~-— "

[
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Subgrupos

Obsérvese la parte sombreada en color gris oscuro de la tabla; esta secciéon se resaltd porque por si sola
forma un grupo; es decir, es un subgrupo del grupo (S;, o} (véase seccién 8.3). Este es un subgrupo conocido
como el grupo A y se denomina grupo alternante de tres elementos. Los grupos alternantes son aquellos
gue consisten Unicamente de todas las permutaciones que reciben el nombre de pares, que es el tema de
estudio de la siguiente seccién.

Tabla 8.9 Tabla de grupo para (S, o)

o (1) (123) (132) (120 (13) (23)
(1) (1) (123) (132) " (12) (13) (23)
(123)  (123) (1320 (1) (23) (120 (13)
(132) | (132 (@ (123) (13) (23) (12

12)  (12) (13 (@3 (1) (123) (132
13)  (13) (23 (12 (132 (1)  (123)
23)  (23) (120 (13) (123) (132) (1)

8.3 Subgrupos

Toda vez que se consideran varios ejemplos de grupos, es comun encontrar el caso en que algunos de estos
estan dentro de otros. Esta importante observaciéon da lugar al siguiente concepto matematico: si (G, ) y
(H, % son dos grupos con la misma operacién binaria * y H G se dice que H es subgrupo de G y se denota
por H < G. Cabe aclarar que no es suficiente con que un conjunto contenga al otro, es necesario que formen
grupo con la misma operacién. Entonces, un subconjunto H de un grupo (G, ) se dice que es subgrupo de si
forma por si solo un grupo con la misma operacion .

Para un grupo (G, ) se tiene que G < Gy que {e} <G. Es decir, cada grupo es subgrupo de si mismo y el ele-
mento neutro también forma un subgrupo de G. A estos dos subgrupos se les conoce como subgrupo impropio
y subgrupo trivial, respectivamente.

En la seccion anterior se destacan varios ejemplos de grupos, entre los cuales aparecen (Z, +), (Q, +), (R, +) y
(C, +). De acuerdo con la definicion de subgrupo es facil notar que se cumple:

ZH<@H<®RH<C+

E JEMPLO

Considere los grupos (Q*, ) y (R, +). Es claro que Q* C R; no obstante, (Q*, ) no es un subgrupo de (R, +) pues
son grupos con operaciones distintas.

E JEMPLO

Considérese el conjunto de todas las matrices invertibles de nimeros reales de tamano 2 x 2. Este conjunto, a su vez,
formaun grupo conlamultiplicacion matricial, al que se conoce como grupo general lineal y sedenota por (GL, (R), 9.
El conjunto de todas las matrices de nimeros reales de tamano 2 x 2 con determinante igual a 1 es un subgrupo de
(GL, (R), 9. El subgrupo en cuestion se conoce como grupo especial lineal y se denota por (SL, (R), ).
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E JEMPLO

Considérese el grupo (Z,,, +). Entonces el conjunto {0], [3], (6], [9]} es un subgrupo de Z,, y su tabla de grupo se
muestra en la tabla 8.10.

Tabla 8.10 Tabla de
grupo para (Z, +).

+ | [o] 3] [6] [9]
[o] | [o] [3] [6] [9]
(31 | 31 [e] [ [0]
(61 | (6] [ [0] [3]
o1 | [0 [0o] (3] [6]

8.4 Isomorfismo de grupos

En la seccién 8.2 se construyen tablas para grupos de orden 2 y orden 3. En dicho proceso y buscando que se
cumplieran los axiomas de grupo, resulto ser Unica la forma de construir la tabla. Si se toma en cuenta que
se manejan conjuntos y operaciones arbitrarias, se puede pensar en que solo existe, en esencia, un unico
grupo de orden 2 y un unico grupo de orden 3. En efecto, cualquier grupo de orden 2 (o de orden 3) es estruc-
turalmente Gnico. En esta secciéon se establece de manera formal cuando dos grupos son estructuralmente
idénticos (isomorfos).

Se dice que dos grupos (G, % y (G', °) son isomorfos, si existe una funcién biyectiva f de G a G' que satisface
la condicién:

f(9:%9,)=f(9)° f(9,)

Ala funcién f se le conoce como isomorfismo entre Gy G'.

La condicién de biyectividad garantiza que cada elemento del grupo G puede ser apareado con un elemen-
to del grupo G'; de manera burda, esto significa que G tiene tantos elementos como G'. Por otro lado, la condi-
cién f (9, %9,)= f(g,)o f(9,) garantiza que la estructura dada por la operacién ° en G esidéntica a la estructura
dada por la operacién e en G' (a excepcién del “nombre” de los elementos y del “nombre” de la operacién).

E JEMPLO

Sean los grupos (R, +) (numeros reales con la adicién) y <]R*, > (ndmeros reales positivos con la multiplicacion).
Ademas, considérese la funcion f : (R, +) — <R+, > definida por f (x) = e*. A continuacion, se demuestra que f de-
fine un isomorfismo de grupos:

1. f(x)=f(y),siy solosie*= e’ siy solosix =y por tanto, f es inyectiva.
2.Siy €K', entonces f (In(y)) = e"”) = y, donde In(y) € R; por tanto, f es sobreyectiva.
3.Seanx,y €K entonces f (x + y)=e"" =e*e’ =1 (x)-f(y)

De los puntos 1,2y 3 se concluye que f es un isomorfismo; por tanto, los grupos (R, +) y (R*, ) son estructuralmente
idénticos (isomorfos).

La primera imagen que por lo general se tiene al comenzar con isomorfismo de grupos es que si son estruc-
turalmente idénticos, entonces son de igual tamario. No obstante, en grupos isomorfos infinitos, la frase de
igual tamariio se debe cambiar por tlene tantos elementos como el otro. El eJemplo antenor ilustra esta situacion:
(R, +)y<]R<+ )sonma**””"’ e oo - “deR.

This document is available free of charge on StUDOCU com

Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)


https://www.studocu.com/co?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=matematicas-discretas

R Grupos cociente [289

E JEMPLO

Sean los grupos (Z, +) (ndmeros enteros con la adicion) y (3Z, +) (multiplos enteros de 3 con la adicion). Ademas,
considérese la funcion f : (Z, +) — (3Z, +): definida por f (n) = 3n. A continuacion, se demuestra que f define un
isomorfismo de grupos:

1. f(n)=f (m)siy solo si 3n = 3m siy solo sin = m; por tanto, f es inyectiva.

2. Si m & 3Z, entonces m es un multiplo entero de 3; es decir, es de la forma m = 3k, con k € Z; por tanto, como
k € Z se tiene que f (k) = 3k = m luego, f es sobreyectiva.

3. Seanm, n € Z, entonces f (m+n) =3(m-+n)=3m+3n=1f(m)+f(n).

De los puntos 1,2 y 3 se concluye que fes un isomorfismo; por tanto, los grupos (Z, +) y (3Z, +) son isomorfos.

Cuando dos grupos son isomorfos, estos deben tener las mismas propiedades estructurales; es decir, si uno
es abeliano el otro debe serlo, y si uno es ciclico el otro debe serlo, etcétera.

Considérense los grupos (Z, +) y (Q, +). Entonces, estos grupos no son isomorfos, pues mientras (Z, +) es un
grupo ciclico (con generador 1) (Q, +) no lo es.

En la seccién 8.1 se construyen los grupos de 1, 2 y 3 elementos. En ese punto se sefiala que su construccién
es Unica, ahora se puede decir que son Unicos salvo isomorfismos. Para el caso de cuatro elementos, existen
dos grupos (salvo isomorfismos) que son estructuralmente diferentes. Uno de estos corresponde al grupo de
congruencias (Z,, +) y el otro es el llamado grupo de Klein. A continuacién, se muestran las tablas de grupo
de ambos grupos.

1. Grupo (Z4, +) (véase tabla 8.11) 2. Grupo de Klein (véase tabla 8.12)

Tabla 8.11 Tabla de
grupo para (Z, +). grupo de Klein.

R P + (o] [ 2] 3]

o] | o] (1] [21 (3] [o] | 0] [1] [2] [3]

| @ B[ 2| [ o @B [

21 | 21 (31 [0 (1] 21 | 27 1B [0 [1]

B3] | 381 [0] [1] [2] [B11 31 [2] [ 0]

Luego de observar las tablas de grupo resulta evidente que no son isomorfos, pues en el grupo de Klein cada
elemento es su propio inverso, mientras que el grupo (Z,, +) no.

8.5 Grupos cociente

Es posible estudiar un grupo (G, %) a partir de sus subgrupos propios, lo cual resulta conveniente debido a que
estos subgrupos tienen orden inferior al orden de G. Con este propésito, se define la siguiente relacién de
equivalencia. Si H es un subgrupo propio de G se define la relacién:

x=y(H)siysolosi(x'*y)eH

El conjunto de clases de equivalencia que se obtiene a partir de esta relacién se denota por G/H y se conoce
como conjunto cociente. Para que el conjunto cociente pueda tener estructura de grupo es necesario, ademas
de definir la operacién de clases, que H sea un subgrupo normal; esto es, se dice que un subgrupo (H, =) de
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un grupo G, # es normal, y se denota por H<G, si (xxH)x(y*H) = (x*y)+ H. Aqui, x+ H significa operar x con
todos los elementos de H, es decir:

xxH={xxht-q-heH}

E JEMPLO

Para el grupo de los enteros con la adicion (Z, +) se toma el subgrupo (5Z, +) (conjunto de enteros multiplos de
5). A continuacién, se demuestra que (5Z, +) <(Z, +).

Six, y son enteros, entonces:
X+5Z={x+5kt-q-k€Z}yy+5Z={y+5kt-qkeZ}

De lo anterior queda claro que:

(X+5Z)+(y +5Z)={(x +5k)+ (y +5m) t-q-k, m€ Z}
={(x+y)+5k+m)t-q-k, meZ}
={(x+y)+5k t-q-k €Z}
=(x+y)+5Z

Por tanto:
(x +5Z)+(y +5Z)=(x + y)+5Z

Y asi:
(5Z, +)<(Z, +)

El ejemplo anterior es un caso particular del siguiente resultado. Si (G, % es un grupo abeliano y (H, x) <(G, )
entonces H <1 G; es decir, cualquier subgrupo de un grupo abeliano es normal. Ademas, si (G, ¥ es un grupo
finito y (H, ) es un subgrupo normal de G el orden del grupo cociente G/H esta dado por:

&)

|G/H]| =
|H|

E JEMPLO

Considérese el grupo (Z,, +) y sea H el subgrupo de Z,,, dado por:
H={[0], [3] [6], [9}
Entonces, como Z, es abeliano, H es normal y G/H forma un grupo con 12/4 = 3 elementos diferentes, que son:
0]+ H={[0l, 3], [6]. [T}
[+ H={1.[4]. 7], hol}
2]+ H ={2], [5], [8], ("}

8.6 Anillos

Antes, cuando se defini6 el concepto de grupo, se establecié que esta estructura matematica consta de un
conjunto y una operacién definida en este, la cual satisface cuatro axiomas. No obstante, por la experiencia
que se tiene desde la educacién bésica, en los conjuntos de numeros se define mas de una operacién. La
generalizacion de esta idea da lugar a la estructura algebraica denominada anillo.

Formalmente, un anillo es un conJunto con dos operaciones binarias definidas en este, que se denota por
(R, +,-)yquesatisfac~ '~~~
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- Anillos

1. (R, +,) forma un grupo abeliano.

2. La operacién multiplicacién es asociativa.

3. Paratodox,y,z € R se cumplen las leyes distributivas:
X-(y+z)=x-y+x-z
(x+y)-z=x-z4+y-z

Cabe aclarar que lanotacién (R, +, -) es la que mas se utiliza para representar un anillo; sin embargo, los sim-
bolos + y - no necesariamente constituyen la adicién y la multiplicacién estdndares, sino que esto depende del
tipo de objetos que conforman a R. Luego de esta aclaracién, y con cierto abuso del lenguaje, en lo sucesivo
se hace referencia a las operaciones + y - como adicién y multiplicaciéon.

E JEmPLO_

Entre los diversos ejemplos de grupos abelianos que se han abordado en esta unidad, quiza los mas comunes son:
(Z,+),{Q, +), (R, +) y (C, +). Pues, en dichos grupos abelianos, el lector ha manejado la multiplicacion estandar
y, como es bien sabido, esta operacion es asociativa y se cumplen las leyes distributivas en los cuatro conjuntos.
Por lo anterior, las cuatro tripletas <Z, A > <Q, AR > <R, +, > y <(C, +, > son anillos.

Cuando el anillo cuenta con neutro multiplicativo, recibe el nombre de anillo con unidad. Pero, si ademas es
conmutativo con la multiplicacién, el anillo recibe el nombre de anillo conmutativo.

Los anillos (Z, +, ), (Q, +, ), (R, +, ) y (C, +, ) considerados en el ejemplo anterior, son anillos conmutativos
con unidad.

Al igual que los grupos, también existen anillos que contienen a otros anillos, lo cual da lugar al concepto
de subanillo. Un subconjunto S de un anillo R se denomina subanillo de R si S satisface la cerradura con +y
con -,y ademas S forma un anillo bajo esas operaciones.

E JEMPLO

El anillo (Z, +, ) es un subanillo de (Q, +, ), (R, +,-) y (C, +, -). De manera similar, se tiene que (Q, +, ) es un
subanillode (R, +, ) y (C, +, -), y que (R, +, ) es un subanillo de (C, +, -).

E JEMPLO

Sea (R, -+, -) cualquier anillo, entonces el conjunto:
R[x]= {ao +ax+---+a,x" t-q-a, R, neN}
Y sean

P(x)= Zn:a,x, y Q(x)= iba,.x’
= =

dos polinomios cualesquiera de R[x]. Entonces, el conjunto R[x] forma un anillo con las operaciones + y - (se supo-
ne, sin perder generalidad, que n > m):

P(x)+Q(x)= i(a, +b)x' + i ax'

i=0 i=m+1
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donde:

Con el fin de aclarar cémo llevar a cabo las operaciones del ejemplo anterior, a continuacién se proponen
dos ejemplos de anillos de polinomios especificos.

E JEMPLO_

Considérese el anillo (Z, +, -), entonces el conjunto:
Z[x]:{ao +ax+---+ax"t-q-ag€Z, nGN}
es un anillo de polinomios.
Sean:
P(x)=3x"+x+2y Q(x)=x>—x
Entonces, la suma de P(x) con Q(x) es:
P(x)+Q(x)= x> +3x* +2
Por otro lado, su producto es:

POOQ(X) = (3x* +x+2)(x* —=x) =3x" +x* —x’ —x* —2x

E JEMPLO

Considérese el anillo <Zé, +, ) entonces el conjunto:
Z,[x]= {[ao]+[aw]x+---+[an]x” t.q.[a]€eZ,, ne N}
es un anillo de polinomios.
Sean:
P()=[3]x" +[x+[2] y Q) =[x —[1x
Entonces, la suma de P(x) con Q(x) es:
P(x)+Q(x) = x" +[3]x" +[2]

Por otro lado, para el producto se puede reescribir Q(x) en la forma Q(x) =[1]x> +[5]x, ya que el inverso aditivo de
[1] es [5], en Zg. Por tanto, se obtiene:

P(x)Q(x) = (131x* + [ x +[2)) ([1x° +[5]x)
=[3]x* +[1x* +[5]x* +[5]x* +[4]x

Un elemento x = 0 (donde O representa al neutro aditivo) de un anillo (R, +, -), se dice que es un divisor de
cero si existe un elemento y = 0, que satisface:

v.7—0n hien .y —0N
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- Isomorfismo de anillos

En(Z,, +, ), [2] y [3] son divisores de cero, ya que:

E JEMPLO

En no existen divisores de cero, ya que:
x-y=0
Esto implicaquex=0y/0 que y=0

Considérese el anillo de todas las matrices de tamafo 2 x 2 con entradas reales, que se denota por (M*(R), +, -). En
este anillo si existen divisores de cero, ya que, por ejemplo, las siguientes matrices son distintas de la matriz cero y
no obstante su producto es la matriz cero:

oo lla oo
o o5 oS e

En un anillo (R, +, -) que no tiene divisores de cero, se satisfacen las leyes de cancelacién por la izquierda y
por la derecha; es decir, si:

Pero:

X-y=Xx-zsetleneque y=z
y-z=z-xsetlenequez=y

para todox,y,z €R

Alos anillos que no tienen divisores de cero, se les denomina dominio integral o dominio de integridad.

8.7 Isomorfismo de anillos

Del mismo modo en que dos grupos pueden ser estructuralmente idénticos, es posible que dos anillos sean
matematicamente iguales. Dados dos anillos (R, +, -} y (R', +, -} se dice que son isomorfos si existe una fun-
cién biyectiva:

frRA4I—= R+
Tal que todo par de elementos x, y € R, se satisfacen:

fE+Y)=f@+fy)y fxy)=fX-f()

Considérense los anillos (R, +, ) y (C, +, -), donde el producto en se R’ define por
(x, ¥)-(z, w) = (xz — yw, xw + yz).

Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)

293



294 Capitulo 8 Sistemas algebraicos

La funcion:
f: (R, +)—(C +, )
definida por
F((x y)=x+iy
es un isomorfismo entre (R,, +, -) y (C, +, ), ya que, f es, por definicion, biyectiva y ademas:
F(x y)+ @ w)=Ff((x+2z y+w)
=(x+2)+(y+w)i
=(x+iy)+(z+iw)
=f((x ) +£((z w))

f((x, y)(z, w)) =f((xz— yw, xw + yz))
=(xz—yw)+(xw + yz)i
=(x+iy)+(z+iw)
=f(x, y)f(z,w)

E JEMPLO

Considérense los anillos (C, +, -) y (M, +, ), donde:

[ weres
M= t-qg-x, yeR
y X

con la adicién y multiplicacion estandar de matrices. La funcion:
f{C 4 ) = (M, +, )

definida por:

Fx +iy) :[;_Xy ]

es un isomorfismo entre (M, +, -) y (C, +, -), ya que f es, por definicion, biyectiva, y ademas:
f(x+iy)+@+iw)=f(x+2)+(y +w)i)

[xtz=(y+w)
_[y—l-w X+z ]

e

=f(x+ivVI\+f(z+iw)
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. Campos

f((x+iy)-(z+iw)=f (xz — yw)+ (xw + y2)i)

_[xz — yw—(xw + yz)]
w4 yz xz—yw

:[X_Y n Z—W]
y X Wz

=f(x+iy)+f(z+iw)

8.8 Campos

En sentido algebraico, un campo es un sistema aritmético con adicién y multiplicacién, tal que las operacio-
nes son conmutativas, asociativas, distributivas e invertibles (excepto que no existe inverso multiplicativo
para el cero). En otras palabras, un campo es un dominio integral conmutativo, con unidad, con inversos
multiplicativos para cada elemento distinto de cero.

E JemPLO_

Losanillos (Q, +, ), (R, +, ) y (C, +, -) son todos ejemplos de anillos conmutativos, con unidad, con inversos mul-
tiplicativos para cada elemento distinto de cero y sin divisores de cero; es decir, todos estos son campos.

E JemPLO_

El anillo (Z, +, ) es un anillo conmutativo con unidad y sin divisores de cero; sin embargo, no es un campo, ya que
en 7Z no existen los inversos multiplicativos para enteros diferentes de 1y —1.

Campos finitos

Los campos finitos son de gran importancia en la informética, la electrénica, la criptografia, entre otras mu-
chas areas de interés actuales. Para el estudio adecuado de estos campos, primero se muestran sus propie-
dades fundamentales. Como la intencién del presente texto no es ser ‘rigurosamente matematico”, algunas
de las demostraciones se omitiran.

Teorema 8.8
El orden de cualquier grupo finito es una potencia de un nimero primo. Dada cualquier potencia de un nu-
mero primo p" existe, salvo isomorfismos, un Unico campo de dimension p".

Asi, en primer lugar se consideran los campos de orden primo p. De acuerdo con el teorema 8.8, existe,
salvo isomorflsmos, un tnico campo de dimension p. Entonces, como los conjuntos de congruencias Z, for-
man un grupo abeliano con la adicién y (excepto el cero) forman un grupo abeliano con la multiplicacién,
(Zy, +, -) es el tnico campo de dimension p que existe.
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Considérese el campo de orden 5; su algebra completa puede analizarse con sus respectivas tablas de grupo (véan-
se tablas 813 y 8.14).

Tabla 8.13 Tabla de grupo Tabla 8.14 Tabla
para la adicién. de grupo para

multiplicacién.
+ o] [ [2] [3]

or | [0 [ [2] [3]

(£ I I R A T I G 3 I O A B T I O
(21 [ 21 B8] [4 [0 [21 | 21 (4 [ (3
(81| 8] [4 [0 [1] (81| 8] [ [4] [2]
(4 | [4] [0 [1] [2] (4 | [4] [38] [2] [1]

Considérese el anillo de congruencias (Z,, +, -) de orden cuatro. De su tabla de multiplicacion se puede ver que no
forma un grupo con esta operacion; por tanto, no es un campo (véase tabla 8.15).

Tabla 8.15 Tabla para el anillo
de congruencias (Z,, +, -), la cual
muestra que no es un grupo con

esta operacion.

Debido a que en esencia existe un Unico campo con exactamente p" elementos (p primo y n € N) —dos re-
presentaciones cualesquiera son isomorfas— y que, como ya se discuti6 antes, los campos de orden primo p
son precisamente los campos (Z,, +, -), solo falta analizar los campos de dimensién p" conn > 1. Los campos
finitos, en general, reciben el nombre de campos de Galois y se representan como GF(p")

Sin > 1, GF(p") no posee la aritmética modular, pero puede ser construido a partir del campo primo Z,;
entonces, se dice que GF(p") es una extension de Z,.

Parailustrar el proceso de extension, primero se genera el campo GF(2")., para lo cual primero se encuen-
tra un polinomio de grado 2, con coeficientes en 7Z,; sin embargo, este no puede ser factorizado en Z, (para
generar GF(2"). debe usarse un polinomio de grado n). En este caso, el inico polinomio con tales caracteristi-
cas es [1]x* +[1]x +[1], lo que significa que no existe solucién en Z, para la ecuacion:

[1]%* +[1x+[1]=[0]

Entonces, la extensién es creada mediante la introduccién de un nuevo elemento o, que es definido como
solucién de la ecuacién anterior, justo como cuando son creados los numeros complejos a partir de los nu-
meros reales, se define el elemento imaginario i para resolver la ecuacién x? + 1 = 0. Ademas de o, también
se debe agregar el elemento o +[1], para satisfacer la cerradura con la adicién.

Asi, se tiene:

GF(2")={0],[1), o, o +[1]}

Con aritmética determinada univocamente por el hecho de que o satisface la ecuacién cuadratica
[1]x* +[1]x +[1]=[0]. Por ejemplo, se puede calcular el cuadrado de o de la siguiente manera:
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Campos

Donde se hizo uso del hecho de que [1] es su propio inverso aditivo mod(2). De manera similar, se tiene:
(+) =" +[l=0+[1]+[1]=0

Las tablas de adicién y multiplicacién completas para GF(2?) se muestran a continuacién.

Tabla 8.16 Tabla de
adicién para GF(2?).

e Adicién en el campo: GF(2?)

uE 1 o o?

1 o o’
1 0 o° o
o o’ 0 1
o? 0 1 o

e Multiplicaciéon en el campo:

Tabla 8.17 Tabla de

multiplicacién para

GF(2?) - {0}.
. 1 o o’
1 1 o o’
o o o’ 1
o? o’ 1 o

En resumen, los elementos de GF(2?) son generados por potencias de un elemento primitivo o, el cual es una
raiz de un polinomio de grado n que es irreducible en Z,.

Por otro lado, el campo GF(2%) puede considerarse como un espacio lineal de dimensién n, asi que cual-
quier a € GF(2°) es una combinacién lineal de los elementos de una base {6, 9,, ..., 0, }:

n
a=Y ab,a €7,
i=1

El analogo de una base ortogonal es la llamada base autodual (la cual existe siempre para GF(2?), que satis-
face la condicién tr(ﬁlﬂj) = 6;; asi que a; = tr(af)), donde la operacion traza tr: GF (2”) — Z, esté definida por:

tr(B)=0+06+06" +-+5"

Por ejemplo, {7, 0°} es una base autodual para GF(2%), ya que cualquier elemento del campo puede escribirse
como combinacién lineal de estos; a saber:

=040’ (c+1)=0’

E jemplo_

Construir el campo finito GF(2?).
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De acuerdo con lo que se discute en paginas previas, para construir el campo finito primero se hace una
extension del campo Z, tomando un polinomio cubico irreducible en Z,. Es facil verificar que el polinomio
[x* +[1x +[1] es irreducible en Z,, pues para la ecuacion:

X’ +[x+[]=0

ninguno de los dos elementos de Z, = {[0], [1]} son solucién. Sea o una solucién de la ecuacion anterior en el
campo extendido, entonces de la ecuacién [Tjo” + [T +[1] = O se obtiene:

o =o+[]
Si se multiplica sucesivamente por o se obtiene:

o'=0"+o

oc=c'+0'=c"+o+]
o’ =o" +[1
o =[1

Entonces, el campo finito de dimension 8 se puede representar con los elementos:

6F(2)= {01 [1.0. %, -+ 1.+ 0,0" +0 11,0 +1]

E jemplo_

Escribir las tablas del campo finito GF(2°).

Del ejemplo anterior se sabe que los elementos de campo son:
GF(2)={0l.[.0.0%. 0’ =0+[l,0* =0’ +0,0" =0 + o +[, 0° =0* +[I}
y que o satisface la ecuacion:
[lo* +[o+[1=0

Con esta informacion es facil escribir las tablas de adicion y multiplicacion. Primero, se muestra la tabla de
adicion, luego se muestra la tabla de multiplicacion.

Tabla 8.18 Tabla de adicién para el campo Tabla 8.19 Tabla de multiplicacién
finito GF(23). para el campo finito GF(23).

+ O 11 ¢ & & o & o : 1 o o> oo o o o°
O [0] [ o+ ¢ & o o O 1 M1 o & o o o o°
(1 [ o o o° o o ot o o o @ o o o & [l
o o o [0 ¢ [1] & o o o o o o o o [1 o
P2 @& ¢ o 0 & s o [ ad o ¢ o & (1] o
o o o 11 o [0 o ¢ o o ot o o [1] o o o
O ot o’ o’ o o [0] [1] o’ o’ o’ a®  [1] o o’ o’ ot
o’ o’ o* o® o o2 [1] [0] o a° a® [1] o o’ o’ ot o’
® o o o [ ¢ P o [0
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. Aplicaciones a criptografia de llave piblica

8.9 Aplicaciones a criptografia de llave publica

La disciplina de la criptografia constituye el conjunto de procedimientos que se utilizan para transformar
informacién, de tal manera que esta sea “invisible” para observadores sin autorizacién.

Desde que se tiene registro de la humanidad, siempre ha habido la necesidad de ocultar informacién a
personas no deseadas. Por ejemplo, existe evidencia que indica que ya en la época del imperio egipcio se
usaban métodos para encriptar informaciéon.

En la época moderna, la criptografia comenzé a tomar un gran auge con la aparicién de nuevos medios
de comunicacién, como el telégrafo. Asi que la tendencia fue buscar métodos cada vez mejores para la en-
criptacién de datos. En este sentido, la Segunda Guerra Mundial es quiza el mejor ejemplo de la importancia
de la encriptacién de datos, pues como es bien sabido, muchas batallas fueron posibles gracias a la intercep-
tacién y descifrado de informacién entre los distintos rivales.

El tipo de criptografia utilizada durante la Segunda Guerra Mundial es aquella que se conoce como crip-
tografia de llave privada, la cual consiste en que toda la proteccién de la informacién depende de la capa-
cidad del método y de la capacidad de cada uno de los usuarios de mantener su clave privada en secreto. La
principal desventaja de este método es que para descifrar la informacién es suficiente con tener dicha llave,
lo cual hace que el sistema completo sea en extremo vulnerable.

Con el fin de corregir el problema de vulnerabilidad total del sistema, surgié una nueva técnica para
encriptar datos: la criptografia de llave ptublica. En este tipo de criptografia, cada uno de los usuarios tiene
dos llaves, una llave publica y una llave privada, pero solo una de estas es necesaria para descifrar la infor-
macién que se cifra con la otra. Asi, la seguridad del sistema se ve incrementada.

De este modo, si se combinan los dos tipos de criptografia (llave publica y llave privada), es posible lograr
los siguientes puntos, mismos que son clave en la encriptacién de datos:

a. Garantizar la autenticidad del origen de la informacioén.

b. Garantizar la autenticidad del contenido e integridad del mismo.
c. Incorporar protocolos que dificulten ataques de espias.

d. Verificar la identidad de los comunicantes.

Hoy dia, todavia continta la tendencia a utilizar la criptografia de llave piblica como complemento de la de
llave privada, con lo que se logra incrementar la seguridad de los métodos criptogréaficos utilizados y elimi-
nar las lagunas que existen en la aplicacién de la criptografia de llave privada.

A continuacioén, se presenta una pequena lista de algunos conceptos matematicos necesarios para el
desarrollo de la criptografia:

e Numeros coprimos o primos entre si. Se dice que dos nimeros enteros positivos son coprimos (o
numeros primos entre si) si su maximo comun divisor es 1. Es decir, dados dos numeros m, n, € X, se
dice que son coprimos si y solo si:

m.c.d(mn=1

e Funcién de Euler. La funcién de Euler, para un entero positivo N se define como la cantidad de copri-
mos que existen menores que N. Es decir, considerando la descomposicién de N en sus factores primos:
N =pi'ps* -
La funcién de Euler se calcula como:
e(N)=[]p " (0;-1)
i=1

e Numeros primos fuertes: Se dice que dos numeros primos, P y Q, son nimeros primos fuertes si son
numeros grandes (se considera “grande” a partir del orden de 200 digitos) y de la forma:

P=2p+1
Q=2q+1
Donde p y q son numeros primos grandes.
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e Algoritmo de Diffie-Hellman. En los algoritmos de llave secreta es necesario conservar la llave pri-
vada para evitar que toda comunicacién posterior sea vulnerable con facilidad. Esta condicién pro-
voca que sea muy complicado el intercambio de las llaves, lo cual se debe hacer mediante el uso de
protocolos jerarquicos rigidos.

En 1976, W. Diffie y M. E. Hellman inventaron un método de intercambio de llaves secretas a través de un
canal abierto. Con lo que nacié la criptografia de llave publica. Este algoritmo es muy simple de describirse:

Considérese un numero primo grande p y un numero entero cualquiera g. Para este caso, los valores de p
y g son publicos. Ahora bien, sean K, y K; las llaves privadas que dos comunicantes, A y B, desean intercam-
biar. Para lograrlo, A genera un valor entero aleatorio x,, donde 1 < x, < p — 1; de manera similar, B genera
un valor aleatorio x; con 1 < x5 < p — 1. Acto seguido, A envia a B el valor publico:

Y, =g*(mod p)
Y de manera analoga, B envia a A el valor (también publico):
Y, =g (mod p)
Asi, B calcula el valor secreto:
Zyy = ¥,'=g"" (mod p)
Y de la misma forma, A calcula:
2, =Yy =g""(mod p)

Por ultimo, se deduce, z,, = 7,,, que puede ser utilizado como llave secreta compartida por ambos comuni-
cantes.
e Ataques al Diffie-Hellman. Los ataques al método de Diffie—Hellman pueden catalogarse en dos
partes: ataques pasivos y ataques activos.

Un ataque pasivo es aquel en el que el “espia” trata de descifrar algo a partir de informacién ci-
frada interceptada. Por su parte, un ataque activo es aquel en el que el atacante desea no solo espiar
informacién interceptada, sino también poder manipularla a su conveniencia.

Por ejemplo, intentar obtener la llave secreta z,,, a partir de p, g, V., V», cOnstituye un ataque pasi-
vo. Pero un intento de este tipo es muy dificil que pueda lograrse, pues se necesitaria obtener x, o0 x,
y para ello deberia resolverse alguna de las siguientes operaciones:

X, = logy,(mod p)
x, = log, yy(mod p)

Lo cual es inviable para nimeros grandes, pues solo bastaria elegir p y g lo suficientemente grandes
para evitar este ataque.

Para que exista un ataque activo, es posible que el atacante (que puede ser identificado por C)
intervenga de forma activa en el intercambio. Asi, por ejemplo, si C genera un entero aleatorio x. con
1<xc<p—1cuandoAenvieaBy, Cinterceptarala comunicaciény enviara a B y. = g*(mod p). Ense-
guida, B recibird y. con la creencia de que procede de A, y este respondera enviando y,. Nuevamente,
Cinterceptaré la comunicacién y enseguida enviara y. a A.

Asi, A calcula:
=y =g (mod p)

y B calcula:

Z, = Vo= g (mod p)

No obstante, ambas llaves también pueden ser calculadas por el atacante. Asi, cuando A envie una
informacioén cifrada con z., a B, el atacante la interceptard, la decodificarg, la manipulara a su antojo,
la encriptara con z., y la enviara a B.Y lo mismo sucedera cuando B envie informacién cifrada a A.

Este ataque es dificil de evitar y de descubrir, pero requiere la intervencién continua del atacante
para no ser descihierta
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Aplicaciones a criptografia de llave piiblica

Algoritmo RSA. En 1977, R. L. Rivest, A. Shamir y L. Adleman propusieron un algoritmo de cifrado
asimétrico de llave publica, que bautizaron como RSA, y que mas tarde fue patentado por el MIT
(Massachussets Institute of Technology).

Los algoritmos de cifrado asimétrico son aquellos en los que cada comunicante tiene dos llaves
diferentes, una publica y una privada, siendo publicos el o los algoritmos de cifrado. Ademas, deben
cumplir:

- Ambos comunicantes calculan sus llaves en tiempo polinémico.

— El emisor A puede, si conoce la llave publica de B, enviarle en tiempo polinémico un mensaje ci-
frado con la llave publica de B.

— El receptor B debe poder descifrar el mensaje cifrado de A en tiempo polinémico con su llave
secreta.

- Un atacante debera enfrentarse a costos cuya complejidad computacional los haga inviables
cuando trate de calcular, bien las llaves secretas, bien los mensajes en claro a partir de los men-
sajes cifrados.

Algoritmo RSA. Sean p y q dos numeros primos grandes, y sea N = pq su producto comun ®(N)=(p—1)
(a-1).

Sea e, 1 < e < N un numero aleatorio relativamente primo con ®(N), y d un entero que verifica que
ed=1 (mod ®(N)). Asi dispuesto, se verifica que para un cierto mensaje M, resulta que M*! = M(mod N),
y por tanto, si C = M¢(mod N), resulta que M = C4mod N).

El algoritmo RSA utiliza estas propiedades para establecer un sistema criptografico de cifrado
asimétrico, en el que N, e corresponderian a la llave publica y d a la llave privada.

Ataques al RSA. Notese que en un sistema RSA existird un conjunto de mensajes que no pueden ser
cifrados. Se dice que un mensaje M no puede ser cifrado si M® = M(mod N). Esto se puede reescribir
de tal forma que M no podra ser cifrado si:

M® = M(mod p)
M® = M(mod q)

Asi, se puede calcular que el numero de mensajes no cifrables de un sistema RSA esta definido
por la expresién:

on=[1+m.c.d.(e-1,p-1)][1 + m.c.d.(e-1,g—1)]
Mientras que los mensajes no cifrables seran de la forma:
M ={q[q "(mod p)]M; + p[p~*(mod q)]M} (mod N)

Donde:
M,=[ M® = M(mod p)]
My=[ M® = M(mod q)]

Se han propuesto multitud de ataques al algoritmo RSA, aunque hasta la fecha ninguno ha de-
mostrado ser efectivo:
El ataque por factorizacién de la llave publica. La forma més evidente de romper la seguridad de un
sistema RSA pasa por factorizar su llave. Ello no obstante constituye la forma més dificil de lograrlo,
ya que si los factores primos p y q son numeros lo suficientemente grandes, la complejidad compu-
tacional de los algoritmos de factorizacién hace inviable la factorizacién de N en un tiempo finito.

El ataque ciclico. El ataque ciclico se basa en la idea de que los sistemas RSA son grupos multipli-
cativos con un numero finito de elementos. Asi, para descifrar C = M*(mod N) no seria necesario
conocer la llave privada d, sino que bastaria con realizar cifrados sucesivos con la llave publica e,
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hasta obtener el mensaje cifrado C (recordemos que RSA se basa en la aritmética modular). Si C; es
el i—ésimo cifrado realizado con la llave publica e, y C; = C(mod N), entonces resulta obvio que C;_,
debe corresponder a M.

Este ataque puede evitarse si los valores primos p y q que forman la factorizacién de N son nu-
meros primos fuertes, ya que entonces la complejidad computacional aumenta hasta convertir el
problema en irresoluble.

Ataque de Merkle-Hellman. Este ataque, propuesto por R. Merkle y M. Hellman, en 1981, se basa en
laidea de que se puede romper el cifrado de un sistema conociendo un mensaje cifrado y su corres-
pondiente texto en claro (algo que en el RSA es a todas luces, posible).

La justificaciéon matematica del ataque es muy compleja, pero su modo de funcionamiento es
relativamente simple de describir. Este se basa en realizar pruebas de encriptaciéon con un mensaje
M, hasta obtener una coincidencia que permita obtener la llave privada pareja de la llave publica
(conocida) e. Se puede demostrar que este método de criptoanalisis es mejor que los métodos de
fuerza bruta.

No obstante, también se demuestra que la probabilidad de hallar una llave valida disminuye

cuando los factores p y g son numeros primos fuertes. Si los nimeros p y q estan bien elegidos, en-
tonces este ataque se vuelve impracticable.
Ataque por control de tiempos. Este ataque se basa en la idea de medir el tiempo invertido por el
dispositivo cifrante en realizar el cifrado de los mensajes, y a partir de estos tiempos medidos tratar
de extraer informacién acerca de la llave usada. No obstante, es complicado y hay ciertas sencillas
técnicas algoritmicas que permiten evitar este ataque.

Ataque por introduccién de faltas. La idea de este ataque se refiere a la introduccién de alteraciones
en el mensaje que se va a cifrar con la clave privada, para observar después la diferencia entre el
mensaje cifrado con los valores erréneos y el mensaje que se hubiera cifrado de no haberintroducido
errores. Tiene el evidente inconveniente de que resulta necesario que el atacante tenga cierto control
sobre el dispositivo a atacar.

Como se puede observar, resulta bastante evidente que, a pesar de la multitud de ataques pro-
puestos contra el algoritmo RSA, no hay ninguno de estos que tenga la suficiente efectividad como
para comprometer seriamente la credibilidad de dicho algoritmo.

Otros algoritmos de cifrado de llave publica

Cabe aclarar que RSA no es el tinico algoritmo de cifrado de llave publica que existe, aunque seguramente si
es el mas popular; no obstante, en la literatura es posible hallar algunos otros ejemplos interesantes.

Cifrado de Rabin. Este método de cifrado fue descrito en 1979. Se basa en la existencia de dos nume-
ros primos grandes, py q, tal que p =g =3(mod 4), siendo N =pq la llave publica, y el par (p,q) la llave
privada. Asi, el cifrado de un cierto mensaje M se obtendria:

C = M?(mod N)

Asi, para descifrar el mensaje C seria necesario calcular su raiz cuadrada (mod N), lo cual solo es
posible si se conocen los factores primos p y q, ya que en otro caso la complejidad de los algoritmos
lo hace inviable. Aun asi, existe el problema de que hay cuatro posibles soluciones para dicha raiz
cuadrada, y de ahi el problema de elegir una, ya que si el mensaje M debe tener sentido en alguna
lengua humana, entonces un operador humano podra decidir, pero si el mensaje M es aleatorio o no
tiene sentido para un operador humano, o no puede establecerse una relacién con un diccionario,
entonces este método de cifrado resulta inviable.

Existe una modificacién a este método de cifrado introducida por H. C. Williams en el afio 1980,
orientada a eliminar el inconveniente de la multiplicidad de las raices cuadradas (mod N).
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. Aplicaciones a criptografia de llave piiblica

e Cifrado de El Gamal. Este sistema de cifrado fue propuesto por T. El Gamal en 1985. Se basa en la
dificultad del célculo de los logaritmos discretos con nimeros enteros grandes.

Sean p un numero primo grande y g un nimero entero (grande). Ambos valores son publicos. Sea
xtal que 1 < x < p — 1 un valor aleatorio secreto, con una llave publica asociada y, definida por:

y =g* (mod p).

Asi, el cifrado de un cierto mensaje M se realizara eligiendo un valor aleatorio k/1<k<p—1, siendo
k relativamente primo con (p—1). Por tanto, el mensaje cifrado estara dado por la pareja de valores:

r =g (mod p)
s = My* (mod p)

La recuperacién del mensaje en claro a partir del cifrado se calcula como:

M = (s/r¥)(mod p)
Ya que:
M = (s/1%)(mod p) => M = (My*/y*)(mod p) = M(mod p).

Este método de cifrado tiene la particularidad de que dado un mismo mensaje en claro puede
tener varios cifrados diferentes. No obstante, tiene el problema de que el cifrado tiene una longitud
doble del mensaje original, lo que puede dar como resultado problemas de espacio y de manejo de
cifrado.

Aplicaciones de la criptografia de llave publica

Después de examinar los algoritmos de llave publica y comprobar su efectividad, cabe preguntarse por sus
aplicaciones. Ya se ha explicado como es que estos algoritmos cumplen con su principal aplicacién, que es
la de cifrar (ocultar) la informacién. Asi pues, a continuacién se intenta dar una visién somera de las otras
aplicaciones que tiene la criptografia de llave publica.

Recuérdese que al principio se planteaban las siguientes necesidades:

e Garantizar la autenticidad del origen de la informacién.
e Garantizar la autenticidad del contenido e integridad del mismo.
e Incorporaciéon de protocolos que dificulten los ataques de espias.

o Verificar la identidad de los comunicantes.

La autenticacién pretende, pues, obtener constancia de que la informacién que se recibe procede de un
emisor esperado y no de un atacante. En la criptografia de llave publica la solucién a este punto es trivial,
ya que resulta evidente que cualquier informacién que se descifre con la llave publica del emisor tiene por
fuerza haber sido cifrada con su llave privada. No obstante, la criptografia de llave publica suele presentar
el inconveniente de que resulta mas lenta en el cifrado y descifrado que la de llave privada.

Por lo expuesto antes, una posible solucién puede ser la utilizacién de una llave de sesion para cifrar la
informacién mediante un algoritmo de llave privada (p. ej. E1 DES), que permita ocultar de modo convenien-
te la informacién, y a continuacién la encriptacién de la llave de sesién mediante la llave privada de cada
persona. El posterior descifrado del mensaje se realiza mediante el descifrado de la llave de sesién, que al
ser de menor longitud que el mensaje, resulta més rapida.

Al respecto de la identificacién de los comunicantes, existen protocolos establecidos para permitir la
identificacién electrénica, el mas conocido y extendido de los cuales es la utilizacion de certificados. En este
protocolo, una autoridad certificadora se encarga de dar constancia de que la llave publica contenida en el
certificado procede del comunicante que realiza la afirmacién, y no de otro individuo. Con esta medida, se
prevé que toda comunicacién contara con las garantias propias de la criptografia de llave publica.

Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)

303



304 cCapitulo 8 Sistemas algebraicos o

Sobre la garantia de integridad del contenido se ha establecido un protocolo de firma digital que solucio-
na los problemas de integridad como parte de los problemas de autenticacién de la fuente y de los ataques
de espias. Este protocolo se basa en la existencia de funciones resumen (hash), tales que, dada una informa-
cién, el resultado de la funcién resumen es unico y cualquier modificacién introducida en la informacion
producira un resultado distinto de la funcién resumen (la probabilidad de que exista una informacién si-
milar a la original con un resumen de igual valor es infima). Asi, se realizaria un resumen del texto a firmar,
y el resultado se cifraria con la clave privada y se colocaria anexo al texto original. Cualquier alteracién de
la informacién seria detectada de inmediato solo con desencriptar el resumen, y ademas el hecho de estar
encriptado este con la llave privada del firmante, permite autenticar la identidad del mismo.

Existen diferentes estructuras algebraicas que pueden utilizarse en aplicaciones de informética, criptogra-
fia, fisica, quimica, entre otras disciplinas. Las principales estructuras algebraicas de interés son los grupos,
los anillos y los campos.

Un grupo es un conjunto junto con una operacién binaria que satisface las propiedades de cerradura,
asociatividad, existencia de un elemento neutro y existencia de elementos inversos. Cuando un grupo H esta
dentro de otro grupo G se dice que H es un subgrupo de G. Un grupo en el cual existe un elemento que genera
todos los demés elementos (operando dicho elemento consigo mismo) recibe el nombre de grupo ciclico. Se
dice que dos grupos (G, % y (G', o) son isomorfos, si existe una funcién biyectiva f entre G y G' que satisface
f(9,%9,)= f(9,)° f(9,) para todo g,, §,€G.

Un anillo es un conjunto junto con dos operaciones binarias, (R, +, -), tal que, (R, +) es un grupo y se sa-
tisfacen las leyes distributivas:

xX(y+z)=xy+xz
(x+Vy)z=xz+yz
paratodo x,y,z €R.

Se dice que dos anillos (R, +, -) y (R', +, -) son isomorfos, si existe una funciéon biyectiva f entre R y R' que sa-
tisface las siguientes propiedades:

fE+y)=f®@+ )
fx-y)=fX)-f(y)

vx,y €R.
Por Glltimo, un campo es un anillo que forma también un grupo con la multiplicacién.

En los problemas 8.1a 810 explicar si el conjunto dado,
junto con la operacion definida en este, forman un

grupo. En caso de que no formen un grupo, especificar 87 S=R — (1, —1} definida por x * y = xy — xy
al menos un axioma de grupo que no se satisface.

8.5 R* con la multiplicacion estandar.

8.6 QT con la multiplicacion estandar.

8.8 S=R — (1, —1} con la multiplicacion estandar.

81 Z con la operacion — resta). 89 S=R — (1, —1} con la adicion estandar.

8.2 7 con la multiplicacion estandar.
8.0 El conjunto de todas las matrices de la forma:

{[] O] t-q-xER}
8.4 R con la multiplicacion estandar. x 1
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811 Considérese la siguiente tabla:

Tabla 8.20

. e X y z

e|le x y z
X X X e e
y|ly e y e
Z % e e Z

Proporcionar al menos dos razones por las cuales
no representa un grupo.

8.12 Examinese la operacion A definida sobre el con-
junto {Verdadero, Falso}. {Cuales de los axiomas
de grupo se satisfacen?

813 Demostrar que si (G, *) es un grupo y g € G en-
tonces:

1\ !
(87) =
814 Demostrar que el conjunto de matrices inverti-

bles de tamano 2 x 2 forma un grupo con la mul-
tiplicacion matricial.

815 Demostrar que si (G, *) es un grupoy g h € G

entonces:
(gxhy' —h'+g"
816 Demostrar que un grupo (G, ) es abeliano si y
solo si:
(gxh)" =g xh”

817 Sea (G, ) un grupo. Definir una nueva operacion
® en G, mediante:

g h=hxg
Demostrar que: (G, ®)

En los ejercicios 818 a 8.30 indicar si los grupos
dados son o no isomorfos. En caso negativo, pro-
porcionar al menos una propiedad estructural
que tiene uno de estos y el otro no.

818 (Z, +)y (Z), )
819 (Z,+)y (5Z,+)
820 (Z,+)y (R, +)

821 (3Z,+)y (5Z, +)

822 (Q% )y (Z,+)

8.23 (Q% )y (R, +)

8.24 (Z¢, +) y (S5 °) (donde S; es el grupo de todas las
permutaciones de 3 objetos).

825(Z,, +)y (Zy,")
8.26 (5Z,+)y (Zs, +)
827 (Zy +) y (S5 °)

8.28 (Zs, +) y cualquier grupo (G, ) de tres elemen-
tos.

829 (Z,, )y (G, donde G={i,—1, —i,1},i=+—1
830 (Z +)y (Q +)

En los ejercicios 8.31a 8.40 indicar si H es subgrupo del
grupo G dado.

831 (H,

Hy G H=R +)

(@.
(Z,+)y (6. 5= (R, )

8.32 (H,

(3Z, +) y (G, x)=(Z, +)
R, +)y (G %=(C)
R, +)y (G % =(R,)
@Q@+)yGH=R"
(Zy, +) y (G %) =(Zy, +)
(
(
(

8.34 <H *

835 (H, x

836< L%

)=
)
833 (H, %)
%)

837 (H,

Zy, )y (G0 =(ZLoo, +)
Zn, +)y (G0 =Ly )
)=S0, +)

839 (H,

)
)
)
838 (H, )
)
)

840 (H, x)=(S,, +)y (G,

En los ejercicios 8.41 a 8.46 indicar si (R, +, -) es un
anillo.

841 (Zy, +)

842 (N, +, )

8.43 (Q,+,°)
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844 (Zy, +,-)
845 (C, +,)
8.46 (37, +,)

En los ejercicios 8.47 a 8.50 indicar si (R, +, -) es un
campo.

847 (Zn, +, )
8.48 (N, +,-)
849 (Q +,-)

8.50 (Z; +, -)
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Algebra
de Boole

Objetivos

m Reconocer los principios algebraicos que sustentan el algebra de Boole.

m Describir la relacion entre el algebra de Boole y las compuertas |dgicas que constituyen los componentes
basicos de los circuitos logicos.

m Aplicar el dlgebra de Boole a la resolucion de problemas de operaciones automatizadas.

m Simplificar expresiones booleanas optimizando y aplicando sus propiedades.
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Capitulo 9 Algebra de Boole .

9.1 Introduccion

Por definicidn, el dlgebra de Boole o &lgebra booleana es un concepto del algebra que permite abstraer las
principales operaciones algebraicas en un sistema binario. Esta debe su nombre al matematico inglés Geor-
ge Boole, quien la cred y desarrollé a mediados del siglo x1x. Sin embargo, fue hasta mediados del siglo xx
que el &lgebra booleana adquiere auge y una gran importancia practica, que se ha incrementado de ma-
nera considerable a ultimas fechas, en especial en el terreno del manejo de informacién digital (en lo que
se conoce como logica digital). Gracias a esta, Claude Elwood Shannon (1949) pudo formular su teoria de la
codificaciéon y John von Neumann pudo enunciar el modelo de arquitectura que define la estructura interna
de las computadoras desde la primera generacion.

Por tanto, los principales campos de aplicacién del algebra booleana son la informatica, la electrénica
digital y la computacién, en virtud del hecho de que la légica de la computadora se basa en el sistema bina-
rio; esto es, en los circuitos electrénicos de una computadora la informacién se trata en esencia como una
secuencia de ceros y unos.

900 000000000000 00000000000000000000000000000000000000000000000000000000060000000000008008000006000000008000800800808080080

Claude Elwood Shannon dedicé gran parte de su trabajo al problema de la eficiencia de los diferentes
métodos de transmision de la informacion que hay, tanto mediante el flujo, a través de hilos o cables,
como de tipo aéreo, por medio de corrientes eléctricas fluctuantes o bien moduladas por la radiacion
electromagnética. Oriento sus esfuerzos hacia la comprension fundamental del problema, lo que le per-
miti6 desarrollar en 1948 un método para expresar la informacion de forma cualitativa. Sus publicaciones
demostraron como se podia analizar dicha cuantificacion (expresada en una magnitud a la que denominé
bit) mediante métodos estrictamente matematicos.

La rama de las matematicas inaugurada por Shannon se denomina teoria de la informacién y
resultd ser en extremo Util, no solo en el diseno de circuitos de computadoras y la tecnologia de comuni-
caciones, sino que también ha hallado aplicaciones fecundas en campos tan diversos como la biologia, la
psicologia, la fonética e, incluso, la semantica y la literatura.

tessscesossssssss st nee
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Figura 9.1 Claude Elwood
Shannon (1916-2001).

Es importante destacar que todas las variables y constantes del algebra booleana admiten solo uno de dos
valores en sus entradas y salidas: si/no, 1/0, encendido/apagado, con voltaje/sin voltaje o verdadero/falso.
Estos valores bivalentes y opuestos pueden ser representados por numeros binarios de un digito (bits); por
tanto, el 4lgebra booleana se puede entender como el dlgebra del sistema binario.

Aligual que en el algebra tradicional, en el &lgebra booleana también se utilizan letras del alfabeto para
denominar a las variables y formar ecuaciones, con el objetivo de obtener el resultado de ciertas operaciones
mediante una ecuacién o expresién booleana; es evidente que los resultados de las operaciones correspon-
dientes también seran binarios.

P R R R R R R R R R R R R I A I R T R R R

George Boole a mediados del siglo xix, Boole en sus libros The Mathematical Analysis of Logic (Un analisis
matematico de las logica), escrito en 1847,y An Investigation of the Laws of Thought (Una investigacion de
las leyes del pensamiento), publicado en 1854, la idea de que las proposiciones l6gicas podian ser tratadas
mediante herramientas matematicas.

Las proposiciones l6gicas (frases o predicados de la [6gica clasica) son aquellas que solo pueden tomar
valores de verdadero/falso o preguntas cuyas tnicas respuestas posibles son si/no.

Segtin Boole, estas proposiciones solo pueden ser representadas mediante simbolos; por tanto, desa-
rroll6 una teoria que permite trabajar con estos simbolos, sus entradas (variables) y sus salidas (respuestas),
a la que denomino légica simbélica, misma que cuenta con operaciones logicas que siguen el com-
portamiento de las reglas algebraicas. De este modo, al conjunto de reglas de la légica simbélica se le
denomina algebra de Boole.
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~ Algebra de Boole (algebra booleana) 309

9.2 Algebra de Boole (algebra booleana)

El dlgebra booleana constituye un sistema matematico deductivo centrado en los valores 1 y 0, que propor-
ciona operaciones y reglas para trabajar con dichos valores.

Las operaciones booleanas basicas son: suma booleana, producto booleano y complemento booleano, las
cuales se definen a continuacién.

Suma booleana

La suma booleana de dos elementos del conjunto binario, que se denota por el simbolo +, es una operacion
con las reglas siguientes:

1+1=1
0+1=1
1+0=1
0+0=0

La suma booleana equivale a la operacién logica disyuncién inclusiva Vv, solo que en esta Vy F cambian por
1yO.

Producto booleano

El producto booleano de dos elementos del conjunto binario, denotada por el simbolo -, es una operacién
con las reglas siguientes:

o r O
oo -
I

o o o R

Esta equivale a la operaciéon logica conjuncién A, donde también solo cambia Vy F por 1y 0.

Complemento booleano

El complemento booleano de un elemento del conjunto binario es una operacién con las reglas siguientes:

1'=0
0=1

El complemento booleano equivale a la operacién légica negacién ~, donde también solo cambia V y F por
1yO.

Un conjunto B se considera algebra booleana siy solo si ademés de contener las dos operaciones binarias
de suma booleana (+) y producto booleano (-), asi como la operacién unaria de complemento booleano ('), se
verifican las siguientes propiedades bésicas sobre cualquier a, b, y c € B:

B1. Identidad

a)a+0=a
b)a-1=a
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B2. Propiedad conmutativa
a)a+b=b+a
bja-b=b-a

B3. Propiedad distributiva

a)a+(b-c)=@+b)-(a+c
bja-(b+c)=(a-b)+(a-c)

B4. Propiedad asociativa

a)a+b)+c=a+(b+c)
b)(a-b)-c=a-(b-c)

BS. Propiedad de complementos

El elemento 0 se denomina neutro respecto a la suma, en tanto que el elemento 1 se denomina elemento
neutro respecto al producto.
Es importante destacar que por convencién es posible eliminar el simbolo del producto booleano -.

En algebra booleana, 0 y 1son nombres sim- m

bolicos que en general no tienen nada que Con el uso de la convencion anterior, la propiedad distributiva puede es-

ver los nimeros 0 y 1. De igual manera, los cribirse como:

simbolos + y « son solo operadores binarios
/ ? a+bc=(a+b)a+d

que no tienen relacion con las operaciones de
adicion y multiplicacién comunes. alb + ¢)=ab + ac

Alolargo de este capitulo puede utilizarse o no, de manera indistinta, el simbolo del producto booleano.

Asimismo, por convencién se establece que el complemento booleano tiene mayor prioridad que el pro-
ducto booleano, el cual, a su vez, tiene mayor prioridad que la suma booleana; no obstante, los paréntesis ()
pueden cambiar el orden de la prioridad.

E JEMPLO

Mediante el uso de la convencion anterior, se tiene que:

a+b-c
Esto significa:
a+(b-c)
En vez de:
(a+b)-c
Y que:
a-b
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Esto significa:

En lugar de:

Algebra de Boole (algebra booleana)

Propiedades adicionales del algebra booleana

En algebra booleana existen propiedades adicionales que se pueden demostrar utilizando las propiedades

bésicas vistas antes.

Ley del doble complemento o ley de la involucién

(@) =a
VaeB.
O bien:
a+() =1 por B5 a-(a) =0 por B5
=a+ad porB5 =ag-da porB5
=d +a porB2 =d-a porB2
(@) =a eliminando a’ en ambos lados (@) =a eliminando @’ en ambos lados
Ley de la dominacion
@Wa+1=1
a-0=0
YaeB.
aa+)=(a+1-1 por B b) (@-1) =(a-1)+0 por Bl
=(a+1)-(a+d)  porB5 =(a-1)+(a-a) por B5
=a+(1-d) por B3 =a-(1+a) por B3
—a+d por Bl =a-a por Bl
=1 por B5 =0 por B5
Ley de la idempotencia
a+a=a
a-a=a
vV acB.
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D EMOSTRACION

a)(a+a)=(a+a)-1 por Bl
=(a+a)-(a+a) porB5

=d-+(a-ad) por B3
=g+0 por B5
=a por Bl

Ley de la absorcion

D EMOSTRACION

a) a+(a-b) =(a-1)+(a-b) porBI

b) (-a)=(a-a)+0
=(a-a)+(a-a)
=a-(a+ad)

|
Q

|
Q

a)a+(a-b)=a
b)a-(a+b)=a
VaybeB.

por B1
por B5
por B3
por B5
por Bl

b) a-(a+b) =(a+0)-(a—+b) porBi

=a-(1+b) por B3 =a—+(0-b)
=a-(b+1) por B2 =a+(b-0)
=a-l Ley de la dominacion =a+0
=a por Bl =a
Ley de De Morgan
a)(a+b)=a-b
b)(a-b)=a +b
VaybeB.

D EMOSTRACION

por B3
por B2
Ley de la dominacion

por Bl

La Ley de De Morgan solo se comprueba si se satisface B5; es decir, se debe demostrar que si y es el complemento

de x, entonces:

x+y=1

x-y=0

a) (@a+b)+d-b ={a+b)+a}-{(a+b)+Db}
={b+a)+a}-{la+b)+b)
={b+@+a)-{a+b+Db)}
=b+1:-a+1
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o Algebra de Boole (algebra booleana)

(+b)-da-b ={a-da-b}y+{b-a-b} por B3
={a-d-by+{b-b-d} por B2
={(a-a)b}+{b-b)a} por B4
=0:-b4+0-a por B5
=040 Ley de la dominacion
=40 por Bl

b) (@-b):a+b ={a-b)-a}+{(a-b)-b} por B3
={(b-a)-a}+{(a-b)-b} por B2
={{b-(a-a)+{a-(b-b)} por B4
=b.-0+a-0 por B5
=040 Ley de la dominacion
—0 por Bl

(a-b)+d+b ={a+d+b}-{b+ad+Db} por B3
={a+d+b}-{b+b +a) por B2
={(a+a)+b}-{(b+Db)+a} por B4

=14+b-1+a por B5
=1-1 Ley de la dominacion
=1 por Bl

Leyes de De Morgan generalizadas

Las leyes de De Morgan pueden generalizarse para cualquier cantidad de elementos de B, como se muestra
a continuacioén:

)

a) (@ +ay+ - +a) =ay-a,--al,

Es decir, el complemento de la suma légica de dos o mas elementos de B equivale al producto légico de los
complementos de cada uno de estos elementos:

b)(a,-a,- - -a) =a1+a,+ - +a,

Esto es, el complemento del producto l6gico de dos o mas elementos de B equivale a la suma légica de los
complementos de cada uno de dichos elementos.
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Figura 9.3 Augustus De
Morgan (1806-1871), l6gico
y matematico britanico.

Augustus De Morgan nacido en Madura (India), contribuy6 de manera considerable al avance de la l6gica
en el siglo Xix.

A'los 16 anos ingreso al Trinity College de Cambrigde. Al concluir sus estudios universitarios fue nom-
brado profesor del University College, en Londres. Ademas, escribio diferentes libros sobre diversos temas,
como aritmética, algebra, anlisis y l6gica; es precisamente esta ultima disciplina el campo en el que mas
sobresalio.

De todas sus obras, Trigonometry and double algebra (Trigonometria y algebra doble) es aquella en la
que mejor expone una interpretacion geométrica de los nimeros complejos. Por su parte, Formal Logic
(Logica formal) constituye su obra mas notable, ya que en esta es donde expone un buen sistema de nota-
cion para la logica simbdlica e incluye el concepto de cuantificacion de predicados, con el cual era posible
resolver algunas cuestiones que no tenian respuesta dentro de la l6gica aristotélica; una de sus mas grandes

aportaciones. No obstante, es mas reconocido por las leyes que llevan su nombre.

Asimismo, en estas paginas se establecen y desarrollan algunos teoremas importantes.

Teorema de la simplificacion

D EMOSTRACION

aja+(a-b)=a+b
bja-(@ +b)=a-b
Va,b,yceB.

a) a+ad =1 por B5
(a+d)-b=b por Bl
(a-b)+(d-b) =b por B3

a+(@a-b)+(a-b)=a+b Sumando a

a+(a-b)=a+b Ley de la absorcion

b) a-a =0 por B5
(a-d)+b=>b por Bl
(a+b)-(d+b)=b por B3
a-(a+b)-(d+b)=a-b Sumando a
a-(d+b)=a-b Ley de la absorcion

Teorema del complemento unico
ParaVa € B, su complemento a’ es Unico.

D EMOSTRACION

Supdngase que se tienen dos complementos para a. Sean y dichos complementos.

Como y son complementos de a se debe cumplir que:

a) a+ay=T,a+d,=1 porB5

b) a-a,=0;a-d,=0 porB5
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. Funciones booleanas o funciones légicas

Para demostrar el inciso a) se tiene que: Ahora, para demostrar el inciso b) se tiene que:
a,=a-1 por Bl a,=d, +0 por Bl
=a-(a+ a) por B5 =a, +(a-a)) por B5
=a,-a+ad-a, por B3 =d\+a-d,+ad, porB3
=0+d,-a, por B5 =1-d,+d, por B5
=a-a,+dy,-a,  porB5 =a+d,-d,+a, porB5
=(a+d)-ad, por B3 =(a-a))+d, por B3
=1.d, por B5 =0+a, por B5
=a, por Bl =a, por Bl

Por tanto, el complemento de cualquier elemento de B siempre es Unico.

Principio de dualidad

El 4lgebra booleana B satisface el principio de dualidad, que a la letra m

dice:

Por tanto, basta demostrar uno de los enunciados, para luego deducir Todo enunciado deducible de las
el otro por dualidad. propiedades del algebra booleana es

Con base en esta definicién del principio de dualidad, puede observarse valido si se intercambian los simbolos
que en la definicién de algebra de Boole las propiedades basicas en sus +y -,y los elementos 0 y 1, entre si.
incisos b) son duales de los incisos a) y viceversa.

E jemplo

Obtener el dual del enunciado:

(1+a)-(b+0)=b

El dual del enunciado anterior es:

(0-a)+(b-)=b

Ademas, se tiene que el dual de cualquier teorema en el dlgebra booleana también es un teorema.
Asi, en el ejemplo anterior solo seria suficiente demostrar el primer enunciado para que quede demostra-
do por dualidad el segundo o viceversa, aunque también es posible demostrarlo de manera independiente.
Como se puede observar, en las propiedades adicionales del &lgebra booleana y en el teorema de sim-
plificacién se han demostrado tanto el inciso a) como el b), pero bastaria con haber utilizado el principio de
dualidad para demostrar el inciso b) en cada caso.

9.3 Funciones booleanas o funciones légicas

En el capitulo 1 de este libro se presenta el concepto de funcién, mismo que sera aplicado en algebra boo-
leana.
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Antes de continuar, es necesario definir algunos conceptos que se utilizan en forma amplia a lo largo de
este tema.

Constante légica o booleana
Una constante logica es cualquier elemento del conjunto B, es decir 0 o 1.

Variable l6gica o booleana

Una variable x que solo puede tomar valores de 0 o 1 se denomina variable Idgica o variable booleana y repre-
senta ya sea un elemento de B o una expresién booleana completa.

E JEMPLO

Sea la expresion:
x=(a+b)-c

En esta expresion, la variable x es una variable l6gica, ya que solo puede tomar el valor de 0 o 1. Lo mismo ocurre
cona, b y c que también son variables logicas.

Literal
Es toda ocurrencia de una variable, ya sea complementada o sin complementar, en una expresién de logica.

E JEMPLO

Sea la expresion logica:
a-b+c-a+d+b-1
Donde:
a, b, cy dson variables.
a,b,c,d,ayb son literales.

1 es una constante.

Funciones booleanas

Se llama funcién booleana o funcién légica F a todo conjunto de variables légicas relacionadas entre si por
una expresién que representa la combinacion de un conjunto finito de simbolos, mediante la representacion de cons-
tantes o variables unidos por las operaciones producto l6gico, suma légica o sus complementos.

Las funciones booleanas se describen con una expresién del algebra booleana.

Sea la expresion booleana:
Fla b,c)=a-b+ad-c+a-b

Esta es una funcion booleana.
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. Funciones booleanas o funciones légicas

Tipos de términos de una funcién booleana
Hay diferentes tipos de términos en una funcién booleana, entre los principales se tienen los siguientes:

e Término producto: es una expresion logica que consiste en un conjunto de variables (o sus comple-
mentos) unidas por productos légicos. Por ejemplo:

F(a,b,c)=a-b

e Término suma: es una expresion légica que consiste en un conjunto de variables (o sus complemen-
tos) unidas por las sumas logicas. Por ejemplo:

F(a,b,c)=a+Db

e Término minimo o MINTERM : es una expresién loégica que consiste en un conjunto de TODAS las
variables (o sus complementos) unidas por productos légicos. Por ejemplo:

F(a,b,c)=a"-b-c

e Término maximo o MAXTERM : es una expresion légica que consiste en un conjunto de TODAS las
variables (o sus complementos) unidas por sumas logicas. Por ejemplo:

F(a,b,c)=a +b +c

Cuando una funcién booleana se expresa en forma de suma de MINTERM, se denomina suma de expansioén
de productos o forma normal disyuntiva (FND).

Ahora bien, cuando una funcién booleana se expresa en forma de producto de MAXTERM, se denomina
producto de expansién de sumas o forma normal conjuntiva (FNC).

Ademas, con n variables légicas se pueden formar 2" MINTERM y 2" MAXTERM,; un ejemplo de esta situa-
cién se presenta en la tabla 9.2.

Representacion de las funciones
booleanas

Las funciones booleanas pueden representarse de dos formas diferentes: mediante una tabla de verdad o en
forma canénica.

Tablas de verdad

La manera mas facil de representar una funcién booleana es mediante una tabla de verdad, ya que en este
tipo de tabla se muestran los valores légicos de salida para cada combinacién de las variables légicas de
entrada.

Las tablas de verdad de funciones booleanas son similares a las que se tratan en el capitulo 2, a excepcién
de que en este caso se sustituye la V por 1y la F por 0.

E jemplo

Dada la funcion logica:
Fla,b,c)=a+(b- )

Obtener su tabla de verdad.
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.
Solucion

En la tabla 91 se muestra la tabla de verdad de la funcion l6gicaa + (b - ©).

Tabla 9.1 Tabla de verdad de la funcién légica a + (b - ¢’).

b F(a, b, c)

_ R, ks O O O O W
_ ) O O B B O O
= el = el = el = el -
_ R R, O -k O O

Formas canénicas de una funcién

Cuando una funcién booleana se halla expresada en forma normal disyuntiva o en forma normal conjunti-
va se dice que esta en forma candnica. Esto significa que toda funcién booleana puede expresarse en alguna
de estas dos formas canénicas.

Estas formas de una funcién booleana pueden simplificarse mediante la aplicacién directa de las leyes
del dlgebra booleana, o bien de manera sistemaética a través de métodos de reduccién, los cuales se analizan
mas adelante.

Forma canénica disyuntiva

Es aquella forma candnica constituida de manera exclusiva por MINTERMS sumados que aparecen una sola
vez.

Sea la funcion booleana:
Fla,b,c)=abc+ ab'c’ + ab’c + abc’ + abc

Esta funcion booleana esta en forma canénica disyuntiva.

Para simplificar la escritura en forma de suma canénica de productos se utiliza una notacién especial. Esto
es, a cada MINTERM, denotado como m;, se le asocia un nimero binario de n bits resultantes de considerar
como 0 las variables complementadas y como 1 las variables sin complementar.

AlLMINTERM a'b’c, le corresponde la combinacion:
a=0,b=0,c=1

Como se puede observar, esta combinacion representa el ndmero binario 001, cuyo valor decimal es 1. Por tanto, a
este MINTERM se le identifica como m..
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" Funciones booleanas o funciones légicas [ 319

De esta forma, la funcién légica:
F(a,b,c)=a’b’c+ ab’c’ + ab’c + abc’ + abc

Se puede expresar como:
F(a,b,0)=)_,(1,456,7)
Esto significa que es la sumatoria de los MINTERM 1, 4, 5,6, 7.

Forma canénica conjuntiva
Es aquella constituida exclusivamente por MAXTERM multiplicados que aparecen una sola vez.

Sea la funcion booleana:
Fla,b,c)=(@+b+c)a+b +c)a+b +<C)

Esta funcion booleana esta en forma candnica conjuntiva.

De manera analoga al caso anterior, la expresién de la funcién booleana se puede simplificar indicando los
MAXTERM; sin embargo, en este caso se hace al contrario del presentado antes.

Estoes, a cada MAXTERM, denotado como M;, se le asocia un nmero binario de n bits resultantes de con-
siderar como 1 las variables complementadas y como 0 las variables sin complementar.

ALMAXTERM d' + b + c le corresponde la combinacion:
a=1b=0,c=0

Como se puede observar, esta combinacion representa el nimero binario 100, cuyo valor decimal es 4. Por tanto, a
este MAXTERM se le identifica como M,.

De esta forma, la funcién légica:
Fla,b,)=(@+b+)@+b +c)a+b +c)
se puede expresar como:

F(a,b,¢)=]].(023)

Esto significa que es el producto de los MAXTERM O, 2, 3.
Ademas, a cada MINTERM se le asocia con la combinacién de entrada, para la que la funcién produciria
un 1,y acada MAXTERM con la combinacién de salida, para la que produciria un 0.

E jemplo

Sea la funcion logica:
Fla,b,c)=a- (b + ¢)
Obtener los MINTERM y los MAXTERM asociados.

Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)



320 Capitulo 9 Algebra de Boole

En la tabla 9.2 se muestran los MINTERM y los MAXTERM asociados con cada combinacion en una tabla de

verdad de tres variables logicas, con 2° = 8 MINTERM y MAXTERM.

Tabla 9.2 MINTERM y MAXTERM de la funcién booleana a - (b + c).

Valor decimal a c F(a, b, ) MINTERM MAXTERM
0 0 0 0 0 my=a'b'c M, = a+b+c
1 0 0 1 0 m,=ab’c M; = a+b+c’
2 0 1 0 0 m, = a’bc’ M, = a+b’+c
3 0 1 1 0 m; = a’bc M, = a+b'+c’
4 1 0 0 0 m,=ab’c M, = a'+b+c
5 1 0 1 1 ms = ab’c Ms =a'b+c’
6 1 1 0 1 me = abc’ Mg=a'+b'+c
7 1 1 1 1 m, = abc M; =a'+b'+c

De acuerdo con la tabla 9.2, para determinar el término producto o suma, para los MINTERMS cada variable
sin complementar se asocia con un 1y cada variable complementada se asocia con 0, mientras que para los

MAXTERM la regla es la inversa.

E jemplo_

Expresar como una suma de MINTERM la funcion booleana:

Fla,b,c)=a+b'-c

Solucion

Primero, se obtiene la tabla de verdad de la expresion y luego se toman los MINTERM (véase tabla 9.3).

Enseguida, se evalta la funcion para todas las combinaciones y se toman los MINTERM de la tabla para los

cuales la funcion vale 1.

Tabla 9.3 Tabla de verdad de la funcién légica a + b’ - c con MINTERM.

Valor decimal a ) c F(a, b, )
0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 1

MINTERM

m,=a’b’c

m,=ab'c
ms = ab’c
me = abc’

m, = abc
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. Funciones booleanas o funciones légicas

Entonces, la respuesta es:
Fla,b,c)=abc+ ab'c’ + ab’c + abc’ + abc

Otra notacion que se puede utilizar es:

Fla b,c)=>_,.(4567)
Que significa que es la sumatoria de los MINTERM 1,4, 5, 6, 7.

Teoremas de expansion canénica

Otra forma de obtener una expresién booleana como una suma de MINTERM o como producto de MAXTERM
es a través de la aplicacion de los teoremas de expansién canénica para las variables faltantes, los cuales se
describen a continuacién.

Teorema 1
Para obtener la forma candnica de una funcién suma de productos se multiplica por un término de la forma

(x+x)
donde falte un literal, para que el término sea canénico.

Teorema 2
Para obtener la forma canénica de una funcién producto de sumas se suma un término de la forma

(x - x)

donde falte un literal, para que el término sea canénico.

E jemplo

Expresar la siguiente funcion booleana como una suma de MINTERM mediante el uso de los teoremas de expan-
sion canonica:

Fla,b,c)=a+b'-c

|_Solucién ]
a+bc
alb+b)c+ )+ bcla+ a)
(ab+ab)c+ )+ bca+bca
abc + abc’ + ab’c+ ab'c + ab'c + d'b'c
abc+ab'c + ab'c + abc + abc
Entonces:

Fla,b,c)=abc+ ab'c’ + ab’c + abc’ + abc

Como se observa, este es el mismo resultado obtenido en el ejemplo anterior.
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E jemplo_

Expresar la siguiente funcion booleana como un producto de MAXTERM:

Fla,b,c)=a+b'-c

Hay dos formas de resolver este problema: 1) construyendo una tabla de verdad o 2) con manipulacién algebrai-
ca mediante el uso de los teoremas de expansion candnica.

Formal

Primero, se obtiene la tabla de verdad de la funcion y luego se toman los MAXTERM desde dicha tabla de ver-
dad (véase tabla 94).

Enseguida, se evalta la funcion para todas las combinaciones y se toman los MAXTERM de la tabla para los
cuales la funcion logica vale O.

Tabla 9.4 Tabla de verdad de la funcién légica a + b’ - c con MAXTERM.

Valor decimal a b c F(a, b, ) MAXTERM
0 0 0 0 0 M, = a+b+c
1 0 0 1 1
2 0 1 0 0 M, = ab'c
3 0 1 1 0 M, = ab’c
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 1

Entonces, la respuesta es:
Fla,b,c)=(@+b+c)a+b +c)a+b +<C)

Que puede expresarse como:
F(a, b,c)=]].(0.2,3)

Esto significa que es el producto de los MAXTERM O, 2, 3.

Forma 2

Mediante manipulacion algebraica, utilizando los teoremas de expansion candnica, se tiene que:
a+bc

(a+b)a+c)

(a+ b+ cc)a+c+bb)

(a+b +c)a+b +c)(a+c+b)a+c+b)
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(@a+b +c)a+b +c)la+b+c)a+b +c)
(a+b +c)la+b +c)a+b+c)
(a+b+c)a+b +c)a+b +c)

Entonces:

Funciones booleanas o funciones légicas

Fla,b,c)=(a+b+c)a+b +c)la+b +c)

Como se observa, este es el mismo resultado que el obtenido en la primera forma.

De acuerdo con lo visto antes, es muy importante observar la simetria que existe entre la suma de produc-
tos y el producto de sumas de una expresiéon. Asi pues, si m; es el MINTERM para la combinacién iy M; es el

MAXTERM, se tiene que:

E JEMPLO

Sea el MAXTERM:

Si:

Entonces, se tiene que:

E JEMPLO

Sea el MINTERM:

Si:

Entonces, se tiene que:

La transformacién de una férmula de MINTERM en otra de MAXTERM se basa en la del doble complemento,

esto es:

Ademaés, para convertir de una forma canénica a otra se intercambian los signos ¥ y II, y se reemplazan los

M. =m/

m, =M
Mi=a+b+ ¢
m,=ab’c
m=a+b+c
m,=ab'c
M,=d +b+c
M,=ab’c

(F) =F

numeros correspondientes a las combinaciones no incluidas en la forma original.

Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)

323



324 Capitulo 9 Algebra de Boole -

E jemplo/

Sea la forma candnica de la suma de productos:

> .(0,13,57)

Convertir esta en forma canonica de productos de sumas.
La forma canonica equivalente en productos de sumas es:

[1.2456)
> .0.1357)=]].2 46

Por tanto:

9.4 Circuitos logicos

Al interior de la electrénica digital, se suscitan, con mucha regularidad, un gran ntimero de problemas por
resolver. Por ejemplo, es muy comun que al disefiar un circuito electrénico se necesite tener el valor opues-
to al de un punto determinado, o que cuando un cierto numero de pulsadores estén activados, una salida
permanezca apagada.

Todas estas situaciones pueden expresarse mediante ceros y unos, y tratarse a través de circuitos légicos
(o circuitos digitales).

Un circuito légico es un ™
dispositivo que tiene una o A
mas entradas y exactamente
una salida. En cada instante,
cada entrada tiene un valor, O 1 1 1 1
o 1; estos datos son procesa-
dos por el circuito para dar un
valor en su salida, O o 1. 0 0 0 0 y

Los valores 0 y 1 pue- \ /j
den representar ciertas situa-
ciones fisicas, como presencia
y/o ausencia de voltaje en un conductor (véase figura 9.4).

Los circuitos légicos se construyen a partir de ciertos circuitos elementales, denominados compuertas
légicas. Desde un punto de vista practico, se puede considerar a cada compuerta como una caja negra, en la
que se introducen valores digitales en sus entradas, mientras que el valor del resultado aparece en la salida.

En un circuito légico, cada compuerta tiene asociada una tabla de verdad, la cual expresa, en forma
de lista, para cada combinacién posible de estados en la entrada, el estado de su salida.

Figura 9.4 Presenciay ausencia de voltaje en un conductor.

Compuertas logicas basicas

Existen tres tipos basicos de compuertas légicas: OR, AND y NOT, cada una de las cuales realiza una deter-
minada operacién y se indica mediante simbolos especiales.

1. Compuerta légica OR

Esta compuerta puede recibir dos o més entradas booleanas (unos y/o ceros) y produce una salida
igualalasum-"- """~ S S Y o [6 (<5
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Circuitos logicos

N lsix=1oy=1
X
MNoen cualquier otro caso

El simbolo con dos entradas de esta compuerta se observa en la figura 9.5.

En el caso de esta compuerta, se utiliza como operador el mismo de la suma booleana, aunque tam-
bién se puede utilizar el operador v.

Por su parte, el simbolo de esta compuerta con varias entradas se observa en la figura 9.6.

x —>
X+y
y ——>»
Figura 9.5 Simbolos de la compuerta l6gica Figura 9.6 Simbolo de la compuerta l6gica OR con
OR con dos entradas. mas de dos entradas.

Su tabla de verdad se muestra en la tabla 9.5.

Tabla 9.5 Tabla de verdad de la compuerta légica OR.

% y X+y

1 1 1

1 0 1

0 1 1

0 0 0
Compuerta légica AND

Esta compuerta puede recibir dos o méas entradas booleanas (unos y/o ceros) y produce una salida
igual al producto booleano - de los valores de las variables légicas de entrada. Donde:

lsix=1oy=1
Xy ,
0 en cualquier otro caso

El simbolo con dos entradas de esta compuerta logica se observa en la figura 9.7.

En el caso de esta compuerta, se utiliza como operador el mismo del producto booleano; ademas,
también se puede utilizar el operador A o eliminarlo al igual que en el producto booleano.

Por otra parte, el simbolo con varias entradas de esta compuerta se ve en la figura 9.8.

X —>
X-y
y —»
Figura 9.7 Simbolo de la compuerta légica AND Figura 9.8 Simbolo de la compuerta l6gica AND con mas
con dos entradas. de dos entradas.
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La tabla de verdad de esta compuerta logica se muestra en la tabla 9.6.

Tabla 9.6 Tabla de verdad de la
compuerta légica AND.
X-y : Y
X —)

Figura 9.9 Simbolo de la compuerta l6gica NOT.

S O - -
o — &8 —
SO O O -

3. Compuerta NOT

Este tipo de compuertas solo acepta una entrada booleana (uno o cero) y produce el complemento
de este valor como salida. Donde:
,_{1ﬁx=0
- |osix=1

El simbolo de esta compuerta se muestra enla figura 9.9. Su operador es’, aunque también se pueden
utilizar los operadores o ~.
La tabla de verdad de esta compuerta se observa en la tabla 9.7.

Tabla 9.7 Tabla de verdad de la
compuerta légica NOT.

)

X X
1 0
0 1

Compuertas logicas derivadas

Es importante destacar aqui que existen otras compuertas logicas, las cuales, aunque no son bésicas, son
muy Utiles al momento de combinarse en diferentes expresiones logicas.

1. Compuerta légica NOR

Esta compuerta puede recibir dos o méas entradas booleanas (unos y/o ceros) y produce una salida
igual al complemento de la suma booleana de los valores de las variables 16gicas de entrada. Donde:

Osix=1loy=1
(x+y) = A
1 en caso contrario
El simbolo con dos entradas de esta compuerta se representa en la figura 9.10.
Esta compuerta equivale a una compuerta OR seguida de una compuerta NOT (véase figura 9.11).

X > ) N>
(x+y) x+y x+y)'
y—— y—>
Figura 910 Simbolo de la compuerta l6gica Figura 9.1 Equivalencia de la compuerta l6gica NOR con dos entradas.

NOR con dos entradas.
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- Circuitos légicos | 327

La tabla de verdad de la compuerta NOR se muestra en la tabla 9.8.

Tabla 9.8 Tabla de verdad de la
compuerta légica NOR.

x+y)
1 1 0
1 0 0
0 1 0
0 0 1

2. Compuerta légica NAND

Esta compuerta puede recibir dos o mas entradas booleanas (unos y/o ceros) y produce una salida igual
al complemento del producto booleano de los valores de las variables légicas de entrada. Donde:

, Osix=1loy=1
(x-y) = :
1 en cualquier otro caso

El simbolo con dos entradas de esta compuerta légica se observa con detalle en la figura 9.12.
Esta compuerta equivale a una compuerta AND seguida de una compuerta NOT (véase figura 9.13).

X ——> >
(x-y)’ X-y -y

y ——> y——>
Figura 9.12 Compuerta l6gica NAND con dos entradas. Figura 9.13 Equivalencia de la compuerta |6gica NAND con dos entradas.

La tabla de verdad de esta compuerta logica se muestra en la tabla 9.9.

Tabla 9.9 Tabla de verdad de la
compuerta légica NAND.

y (x-y)

X
1
1
0
0

o - O »
= 2 2 O

3. Compuerta légica XOR

Esta compuerta puede recibir dos o mas entradas booleanas (unos y/o ceros) y produce una salida
igual a cero si las variables de entrada son iguales y uno si son diferentes. Esta compuerta equivale a
la OR, exclusiva del célculo proposicional; donde:

Osix=y
1 en cualquier otro caso

(X-y)={

El simbolo con dos entradas de esta compuerta se muestra en la figura 9.14.
La tabla de verdad de la compuerta légica XOR se muestra en la tabla 9.10.
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Tabla 9.10 Tabla de verdad de la
compuerta légica XOR.
X ——

(x-y) X y (x-y)

y———>

Figura 9.14 Compuerta l6gica XOR con dos

entradas.

Esta compuerta equivale a la expresién légica:

1 1 0

1 0 1

0 1 1

0 0 0
XY‘y+X -yY

que se representa en la figura 9.15. Para comprobar esta equivalencia basta con obtener la tabla de
verdad de dicha expresién (tabla 9.11) y compararla con la de la XOR y verificar que son idénticas.

Tabla 9.11 Tabla de verdad de la
expresién x’-y + x-y'.

x y X ¥y x.y x-y xX-y+x-y
1 1 0 O 0 0 0
1 0 1 1 0 1 1
o 1 1 0 1 0 1
0O o0 1 1 0 0 0

Circuitos logicos

Las compuertas logicas descritas antes pueden
combinarse entre si para formar circuitos loégicos y

simbolizar diferentes expresiones logicas.

[E jemplo_

~

-
y >
—{>7

N

Figura 9.15 Equivalencia de la compuerta l6gica XOR con dos

entradas.

/
Sea la expresion logica:
X
X=(x r4
(x+y) P
Representar el circuito l6gico correspon-
diente mediante el uso de las compuertas
logicas.
N

Xty >QM\_>
X
e T
7I——»

Figura 9.16 Circuito logico utilizando compuertas (égicas basicas.

o
Solucién

El circuito légico correspondiente a la expresion
légica anterior puede representarse utilizando
exclusivamente compuertas logicas basicas (véa-
se figura 916) o utilizando compuertas légicas de-
rivadas (véase figura 9.17).

Figura 9.17 Circuito |ogico utilizando compuertas
logicas derivadas.

-

N

X —» (X+y)’
y X

4

7 —»
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Circuitos légicos

Es facil observar que las tablas de verdad correspondientes a las compuertas légicas OR, AND y NOT son,

respectivamente, idénticas a las tablas de verdad de la disyuncién Vv, la conjuncién A y la negacién ~, en el

calculo proposicional visto en el capitulo 2, solo que en estas se cambia Vy F por 1y 0, respectivamente.
Por tanto, cualquier expresion légica tiene su equivalencia en el calculo proposicional.

E jemplo

Sea la expresion logica:
X = (xyxx3)

Mediante el uso de compuertas légicas representar el circuito légico correspondiente y obtener su equivalencia
en el calculo proposicional.

El circuito logico correspondiente X )
1

a la expresion |ogica anterior se re- X, )—I
presenta en la figura 9.18. X
X, —>

)

Figura 9.18 Circuito logico de la expresion logica X = (x;-x,+X3)

La expresion logica equivalente en el calculo proposicional es:

~pAa)vn)

Ademas, también es posible representar expresiones logicas més complejas y obtener su equivalencia en el
calculo proposicional.

Sea la expresion logica: X
1
’ Y X

X = (((qHx705) +XgXs)+XgeXs5(Xs) ) Xi >

Utilizando las compuertas 6gicas re-
presentar el circuito logico correspon- X, ———> \

Y VY

diente y obtener su equivalencia en el X,
calculo proposicional.
El circuito logico correspondien-

te a la expresion logica anterior se \ ’ 4
muestra en la figura 919.

Y

Figura 9.19 Circuito logico de la expresion logica
X = (((atxamx5) x4 X)X Xse(x5) )

La expresion logica equivalente en el calculo proposicional es:

~((~(pV gV V(s At)Vs At A ~t)
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9.5 Propiedades de los circuitos logicos

Luego de estudiar las compuertas logicas OR, AND y NOT (véase seccién 9.4), resulta pertinente resaltar
que al combinarse estas pueden implementarse como circuitos logicos, ademas de que se puede obtener la
equivalencia de los circuitos légicos en el calculo proposicional.

Ahora, se analizan algunas de las propiedades de los circuitos 16gicos utilizando las compuertas logicas.
Dichas propiedades pueden demostrarse mediante el uso de los valores de las variables 16gicas de las tablas
de verdad de cada una de las compuertas.

Si+y - son los operadores binarios de las compuertas légicas OR y AND, respectivamente, y’ es el opera-
dor unario de la compuerta légica NOT, entonces se deben cumplir las siguientes propiedades sobre cual-
quier x4, X,, y X3 € {1, 0}.

1. Identidad

a)x;+0=x,
b)x;-1=x,

D EMOSTRACION

Si se supone que en la figura ~

9.20i) x, = 0y x; = 0; es decir, x, Ny N
+ x; = O, entonces, sin impor- 1 ” _ X *
tar el valor légico de x;, la salida vy —4 0 —
correspondiente siempre sera 0
igual a x,. Con lo que se com- ;
prueba el inciso a).

i, > X, —> X
Ahora, si se supone que en la : = :
figura 9.20i) x, =1y x; = 1; es X, —» [
decir, x, + x; = 1, entonces, sin X, 1 >
importar el valor légico de x,, la
salida correspondiente siempre 4
seraigual ax,. Conloque queda  Figura9.20 Circuitos |6gicos para la propiedad identidad.
comprobado el inciso b).

2. Propiedad conmutativa
)Xy + X, =X, + X4
b) Xy« X =%+ %y

En este caso, tanto en la figura 9.21i) )
como en la figura 9.21ii), basta con Ny XX, Xy ———> X+,
obser.var las tablas 9.5 y 9.6, corres- X, Ty,
pondientes a las tablas de verdad
de las compuertas OR y AND, res- i
pectivamente, para verificar que se H—> XX KT 5K
cumple dicha propiedad tanto en el X, ——> X
inciso a) como en el b). /j

Figura 9.21 Circuitos |ogicos para la propiedad conmutativa.
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3. Propiedad distributiva

D EMOSTRACION

Para demostrar esta propiedad, la
figura 9.22i) nos permite obtener
las tablas de verdad para ambos
lados de la igualdad (véanse tablas
912 y 913), ademas de que en esta
se observa que tienen los mismos
valores de verdad de salida, con lo
que se demuestra el inciso a).

Enseguida, se obtienen las tablas
de verdad para ii) de la figura 9.22
(véanse tablas 914 y 915), donde se
observa que se tienen los mismos
valores de verdad de salida, con lo
que también se comprueba el in-
ciso b).

Tabla 9.12 Tabla de verdad de la operacién

légica x; + (x, - X3).

Xy X X3 X, X3 X1 +(X; - X3) X; X

= Nl = Pl © Kell © Ne)
= Nl © Hel — Bl © Ne)
~ O B O BB O r O
BN © &N © BN O &N O

a) X1+ (X5 + X3) = (X + X)) + (X1 + X3)
b) Xy« (Xp + X3) = (X1 + Xg) + (X1 + Xa)

Propiedades de los circuitos légicos

4 N
i X
X » L
1 Ll
% y Yy —> D—>
X — Y —
i) X, ——>]
X ——3
X, > :
X —— PEEEN
X} —_— X} NN
N

Figura 9.22 Circuitos logicos para la propiedad distributiva.

Tabla 9.13 Tabla de verdad de la operacién

légica (x; + X,)-(X; + Xa).

X3 XX, X+Xz (X + Xp)-(X1 + X3)
0 0 0 0 0 0 0
0 0 0 1 0 1 0
0 0 1 0 1 0 0
1 0 1 1 1 1 1
1 1 0 0 1 1 1
1 1 0 1 1 1 1
1 1 1 0 1 1 1
1 1 1 1 1 1 1

Tabla 9.14 Tabla de verdad de la operacién

légica x;- (X, + Xs).

Xy X3 X3 X, + X3
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 1
0 1 0 1 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 0 0 1 0 0
1 0 1 1 1 1 0 1
1 1 0 1 1 1 1 0
1 1 1 1 1 1 1 1

_ ~r O O O O o O

Tabla 9.15 Tabla de verdad de la operacion

légica (x; - x,) + (X, - X3).

Xy - (X5 + X3) Xy X; X3 XXy, XpoXz  (Xp- X))+ (X -X3)

B O B O O O o O
S - Bl © El © =l ©
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4. Propiedad asociativa

a) (X 4 Xo) + X3 =X + (X, + Xs)
b) (X1 + X)) * X3 = X1+ (X5 * X3)

D EMOSTRACION

Para la demostracion de esta -

~
propiedad, al igual que para la Noox X S

propiedad distributiva, primero DL 2/ >
deben obtenerse las tablas de % ’ j\ L >

verdad (véanse tablas 916 y 917) % > 5

para ambos lados de la igual-

dad de la figura 9.23 /), donde se % — —
observa que ambos tienen los X, —> } X, > :}_l-»

mismos valores de verdad de
salida, con lo que se demuestra \
el inciso a).

Figura 9.23 Circuitos |ogicos para la propiedad asociativa.
Enseguida, también se obtienen

las tablas de verdad para ambos
lados de la figura 9.23 /i) (véanse tablas 918 y 919), donde de nuevo se observa que ambos tienen los mismos valores
de verdad de salida, con lo que también se comprueba el inciso b).

Tabla 9.17 Tabla de verdad de la operacién
légica x;+ (x, + Xa).

Tabla 9.16 Tabla de verdad de la operacién
légica (x;+ X,) + Xa.

Xy 0 A% Xy + X (X X)) X, Xy X5 X3 X,+X3 X1+ (X5 + X3)
0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 1 1 1
0 1 0 1 1 0 1 0 1 1
0 1 1 1 1 0 1 1 1 1
1 0 0 1 1 1 0 0 0 1
1 0 1 1 1 1 0 1 1 1
1 1 0 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 1

Tabla 9.18 Tabla de verdad de la operacién

Tabla 9.18 Tabla de verdad de la operacién

légica (X1 © Xz) © X3. légica (xl Y XZ) : X3‘

<
s
b
I
b
w
b
N
b
w

X+ (X5 X3)

0

0 0
0 0
1 0
0 0
0 0
0 0
1 1

_ ) P2 O O O O
~ N O O B »r O O
= el — Kol — el = Ke)
~ N O O O O O O
= el © el © kel © [Ke)
~ N P2, O 0O O O
- ) O O Br »r O O
= el — Kol — el = Ke)
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5. Propiedad de complementos

D EMOSTRACION

Para demostrar esta propiedad, tanto en la figura 9.24 i) como en la figura 9.24 i), hay que observar las tablas 9.5 y
9.6, las cuales corresponden a las tablas de verdad de las compuertas OR y AND. Sin importar el valor |6gico de x;,

se cumple tanto el inciso a) como el b).

X+ =1
X+ =0

Propiedades de los circuitos légicos

-

>

N

X

Y

Y

Y

X

~

Figura 9.24 Circuitos |6gicos para la propiedad de complementos.

6. Leyes de De Morgan

D EMOSTRACION

Para demostrar esta propie-
dad, primero se obtiene la
tabla de verdad para ambos
lados de la igualdad en la fi-
gura 9.25i) (véase tabla 9.20),
donde se puede observar que
se tienen los mismos valores
de verdad de salida, con lo
que se demuestra el inciso a).

Enseguida, se obtiene la ta-
bla de verdad para la figura
9.25ii) (véase tabla 9.21), don-
de se observa que tienen los
mismos valores de verdad de
salida, con lo que también se
comprueba el inciso b).

!
x,+x)

b x)’

Figura 9.25 Circuitos |6gicos para las Leyes de De Morgan.
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Tabla 9.20 Tabla de verdad para el inciso a) |8 Tabla 9.21 Tabla de verdad para el inciso b) de
de las Leyes de De Morgan. las Leyes de De Morgan.

1 1
X X X +X (X4%) X; X3 Xx'-x%

0 0 0 1
0o 1
1 0
1 1

S O P -
oS = O -
S O O -

1 0
1 0
1 0

X

0
0
1
1

Xy X;0%X, (%-%))

0
1
0
1

—~ O O O

1
1
1
0

x';

© el — N

x',

< Ml © B

x| + X
1

1
1
0

Como se deduce de la seccién anterior, las propiedades de los circuitos l6gicos son idénticas a las propieda-
des del algebra booleana, ya que todas las operaciones de los circuitos légicos son operaciones booleanas
ademas de que, en ambos casos, producen salidas idénticas. Lo Uinico que puede variar es la representacién

de los operadores y de las variables légicas.

Circuitos logicos equivalentes

Se dice que dos circuitos légicos son equivalentes si cada uno tiene entradas x,, X, ... , X, y una sola salida;

los circuitos con las mismas entradas siempre producen las mismas salidas.

E jemplo_

Comprobar si los circuitos l6gicos de las figuras 9.26 i) y 9.26 ii) son equivalentes.

>
Solucién

Primero, se elaboran las tablas de verdad; en
este caso, la tabla de la izquierda de la tabla
9.22 corresponde al circuito logico de la figura
9.26 ), mientras que la de la derecha correspon-
de a la figura 9.261i).

Como se puede observar, las tablas de verdad
tienen las mismas salidas, por lo que se dice
que son circuitos |6gicos equivalentes.

Tabla 9.22 Tablas de verdad para los circuitos légicos
i) y ii) de la figura 9.26.

(x1 + %))’
0O O 0 1
0 1 1 0
1 0 1 0
1 1 1 0

-
i)
X, —————
XZ
i)
X, ———>]
X
X,
\

Figura 9.26 Circuitos |6gicos equivalentes.

X
0
0
1
1

Xy
0
1
0
1

xl

1
1
0
0

S O © -
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9.6 Simplificacion de circuitos

El proceso de la simplificacién consiste en aplicar las propiedades y leyes del &dlgebra booleana para llegar a
la expresién méas simple de una expresion booleana, la cual, por lo general, se presenta en su forma de suma
de productos minima.

E jemplo

Simplificar la expresion booleana:

Fa, b, c)=ab’(c + a + cb’)

Fla, b, c)=ab'(c + a + cb’)

=ab'c+aba+ab'cb B3

=ab'c+ab' +ab'c Ley de idempotencia
=abc + ab’ Ley de idempotencia
=ab’ Ley de la absorcion

E jemplo

Simplificar la expresion booleana:

Fla, b, c)=d'bc’ + abc + ab’c’ + ab'c + abc

Fa, b, c)=abc + d'bc + ab'c’ + ab’c + abc

=ab(c’ +¢)+ab'(c + ¢) + abc B3
=(c'+c)db +ab’)+ abc B3
=1(ab + ab’)+ abc B5
=ab +ab + abc B1
=ab+a(b’ + bc) B3
=ab+a((b' +b)b" + <)) B3
=ab+a(l(b'+ <)) B5
=ab+alb' + ¢ BI
=ab+ab +ac B3

Aunque de manera mas estricta, todavia se tendria que:
=a®b+ac Definicion &

No obstante que este resultado es correcto no esta expresado en sumas de productos, por lo que la simplifi-
cacion es:

Fla,b,c)=db+ ab' + ac
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Expresiones booleanas minimales

Considérese una expresion booleana E. Dado que E puede representar un circuito légico, es posible que se
pretenda obtener una expresion F que, siendo equivalente a la expresién original, sea en algin sentido mi-
nima; de esta forma, se lograria minimizar la cantidad de compuertas logicas utilizadas para implementar
la operacién buscada, con la consecuente economia de recursos.

En este apartado se estudia la forma minimal de las expresiones booleanas que estan en forma de suma
de productos.

De este modo, si E es una expresion booleana en forma de suma de productos, E; denota el numero de
literales en E (contados con sus repeticiones) y Es denota el nimero de sumandos en E.

E JemPLO_

Si E es la expresion booleana:

E(a, b,c)=abc + ab'd+ ab'cd + a'bcd

Entonces:
E,=14yE =4

4 )
Sea F una expresioén booleana de suma de productos equivalente
a E. Entonces, se dice que E es més simple que F si se cumple que:

E,<F, y Es<Fs
Y por lo menos una de las relaciones es una desigualdad estricta.
1 0
\ J

* *
Diagramas de subconjuntos .
Figura 9.27 Representacion del 1y O |6gicos

Los diagramas de subconjuntos ofrecen una manera sencilla de  tilizando diagramas de subconjuntos.
visualizar las relaciones que puede haber entre diversas variables
logicas. Es probable que los diagramas mas sencillos de todos sean )
los que representan al 1 16gico, el cual puede representarse como
un cuadro completamente lleno, y al 0 1égico, el cual puede repre-
sentarse como un cuadro vacio por completo, como se observa en
la figura 9.27.

En este tipo de diagramas no solo se pueden representarel 1y
el 0, también es posible representar variables légicas. El diagrama X
mas sencillo de todos es el que se utiliza para representar una sola N v
variable, mismo que esta dividido en dos partes: una parte “llena”, ~ Figura9.28 Representacion de una variable
que es la parte en la cual la variable x toma el valor de 1 (la parte  \98ic@ utilizando diagramas de subconjuntos.

en color gris de la figura 9.28) y la parte “vacia”, que es la parte en ————
la cual la variable x toma el valor de 0 (la parte sin pantalla de la
figura 9.28)

Con estos diagramas no solo se puede representar una variable
logica, también es posible representar el complemento o inverso 16-
gico delavariable, que se observa como se muestra en la figura 9.29.

Del mismo modo, también es posible representar una segunda
variable y, ademas del complemento de la misma, como se muestra \_ J
en la figura 9.30. Figura 9.29 Representacion del complemen-

En la figura 9.31 se muestran las regiones en las que ambas va- 1o de una variable logica utilizando diagramas
riables logicas se sup~—" "7 o7 Tt oo o
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4 N )
y y, Xy X/y Xy/ X/y/
N 7 BN =
Figura 9.30 Representacion de unasegunda  Figura 9.31 Regiones donde se intersecan las dos variables logicas.
variable l6gica y su complemento con el uso
de diagramas de subconjuntos.
/ ) 4 )
Xy Xy/ X/y( X/y
z
Z/
X+y X' +y' Xy +x'y
N N J

Figura 9.32 Regiones que representan las sumas booleanas x + y,

x'+y'y la OR exclusiva.

Figura 9.33 D
tres variables.

jagrama de subconjuntos para

4 ™
Xy Xy! XVy! X/y Xy Xy! XVy! X/y Xy Xy/ XVy! X/y
z z 7
7' 7' 7'
xyz xy'z X'y'z
Xy Xy/ X’y’ X/y Xy Xy/ XVy! X/y Xy Xy[ XVy! X/y
z z z
7' 7' 7'
x'yz xyz' X'z
Xy Xy X'yt xy Xy Xy’ Xyt xy
z z
7 7
X!ylz/ X/yzl

\

Figura 9.34 Regiones donde se intersecan las tres variables (ogicas.
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La regién en la cual las variables légicas x y y se unen, en vez de intersecarse, es la parte del diagrama en
donde pueden estar ya sea en x o en y; es decir, la regién que representaria la suma booleana x + y de dichas
variables. Lo mismo ocurre con la suma légica de sus complementos. Asimismo, se puede representar la
expresién booleana xy’ + x'y, que representa la OR exclusiva. Estas sumas booleanas se representan como
se observa en la figura 9.32.

Sise quiere representar una tercera variable z, se puede hacer en un arreglo como el que se muestra en
la figura 9.33.

Al superponer las tres variables l6gicas en el mismo diagrama, las regiones donde se intersecan se mues-
tran en la figura 9.34.

Al superponer las tres variables l6gicas en el mismo diagrama, las regiones donde se intersecan dos de
las tres variables se muestran en la figura 9.35.

Por ultimo, las regiones que representan una sola variable légica se muestran en la figura 9.36.

La region en la cual las variables légicas x, y, z se unen, en vez de intersecarse, es la parte del diagrama
en donde pueden estar ya sea en x,0 eny, o en z; es decir, la regién que representaria la suma booleana x +
y + z de dichas variables. Lo mismo ocurre con la suma légica de sus complementos, tal como se muestra
enla figura 9.37.

. ™
Xy xy' x'y' X'y Xy xy' x'y' X'y Xy xy' x'y' X'y
z z z
7' 7' 7'
Xy xy' X'y
Xy xy' x'y' X'y Xy xy' x'y' X'y Xy xy' x'y' X'y
z z z
7' 7' 7'
X'y b4 y'z
Xy wooooxy Xy X wooooxy Xy X wooooxyt Xy
z z z
7' 7' 7'
x'z xz' y'z
Xy xy' X'y X'y Xy xy' X'y X'y Xy xy' X'y X'y
z z z
7' 7' 7'
x'z' yz' yz
N J

Figura 9.35 Regiones ¢
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4 N
Xy Xy’ lel X’y Xy XyV lel X’y Xy Xyl lel X’y
z z z
7' 7' 7'
X y z
Xy Xy/ X/y/ X/y Xy Xy/ X/y/ X/y Xy Xy/ X/y/ X/y
z z z
7' 7' 7'
X! yV Z!

\ J

Figura 9.36 Regiones que representan una sola variable logica.

Xy Xy’ Xy’ Xy Xy Xy Xy Xy

X+y+z X +y +7

N

Figura 9.37. Regiones que representan las sumas booleanasx +y +zyx' +y + 7.

V

Ademas, se pueden representar diversas sumas booleanas considerando las regiones de las interseccio-
nes de las variables consideradas.

E jemplo

Sean las siguientes sumas booleanas:

a) Xz+xy

S

) nyv +y’Z’

)

) xz+xy' +y7

Q

) x+Z2
e) xZ'+xyz
f) xy+yzZ +xyz

Obtener el diagrama de subconjuntos correspondiente.
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.
Solucion

En cada caso basta con unir cada una de las regiones correspondientes de las intersecciones de las variables con-
sideradas en cada uno de los términos de las sumas booleanas de cada inciso, como se observa en la figura 9.38.

; N
Xy xy' X'y’ X'y Xy xy' X'y’ X'y
z z
4 4
a)X'z+x'y' by x'y' +y'z'
Xy wooooxy Xy Xy wooooxy Xy

Oxz+xy' +y'z d)x+7'
Xy Xy/ X/y/ X/y Xy Xy/ X/y/ X/y
e) X'z +xyz f)xy+yz +x'y'z

N V)

Figura 9.38 Diagramas de sumas booleanas.

Mapas de Karnaugh

El método de los mapas de Karnaugh constituye un método grafico para encontrar las formas minimales de
sumas de productos para expresiones booleanas que involucran un méaximo de seis variables. No obstante,
en esta seccién solo se tratan los casos de dos, tres y cuatro variables logicas.

P R R R R R R R R R R R A R T R R )

Maurice Karnaugh graduado en la Universidad de Yale, en 1952. Trabajé como fisico y matematico de los
laboratorios Bell. Aunque es muy conocido por crear, en 1950, el método tabular o mapa de Karnaugh
(también conocido como tabla de Karnaugh o diagrama de Veitch, abreviado como K-Mapa o KV-Mapa),
un diagrama utilizado para la minimizacion de funciones algebraicas booleanas. Estos mapas o diagramas
aprovechan la capacidad del cerebro humano de trabajar mejor con patrones que con ecuaciones y otras
formas de expresion analitica.

Un mapa de Karnaugh consiste en una serie de cuadrados, cada uno de los cuales representa una linea
de la tabla de verdad. Puesto que la tabla de verdad de una funcion de N variables posee 2" filas, el mapa K
correspondiente también debe poseer 2" cuadrados. Cada cuadrado alberga un 0 o un 1, dependiendo del
valor que toma la funcion en cada fila.

FeescsEEsEOELEEEEEEEERIEOLESE
FecsecscsssOePEEsEERIEERIEOOEE

Figura 9.39 Maurice Karnaugh (n.1924), ingeniero estadounidense en telecomunicaciones.
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Producto fundamental

Un producto fundamental es un término producto de dos o mas variables légicas donde ninguna tiene la
misma variable complementada o sin complementar.

Los términos producto:
xy'z, Xy, zx't
son productos fundamentales, mientras que los términos producto:
XX,y zx'yx

no son productos fundamentales.

Sea un conjunto de variables légicas {x,, X, ... , X,}, con estas se pueden formar los productos fundamentales
P, que contienen todas las variables, ya sea en su forma complementada o en su forma sin complementar.

Productos fundamentales adyacentes

Dados dos productos fundamentales, se dice que P, y P, son adyacentes si difieren exactamente en una li-
teral, la cual tiene que ser una variable complementada en uno de los productos y sin complementar en el
otro.

Sea el conjunto de variables logicas {x, y, z, w}

Los productos fundamentales x'yz, xyZ, xyw no son adyacentes, ya que tales productos no contienen todas las
variables.

 Los pares de productos fundamentales:

a) Xyzw, xyzw'

b) xyzw, xX'yzw’

c) xy'zw, xyzw

No son adyacentes porque difieren en mas de una literal.
 Los pares de productos fundamentales:

a) Xyzw, xyzw

b) xyzw, xy'zw

c) xy'zw,xy'Zw

Son adyacentes porque difieren exactamente en una literal, que es una variable complementada en uno de los
productos y sin complementar en el otro o viceversa.

En un mapa de Karnaugh, cada uno de los productos fundamentales P; que contienen todas las variables
logicas es representado en forma grafica por un cuadrado, y la relacién de adyacencia entre tales productos
es representada por la adyacencia geomeétrica. Los cuadrados adyacentes son aquellos que representan
MINTERM y que difieren solo en una variable 16gica.
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Mapas de Karnaugh de dos variables

Sean las variables légicas x y y; con estas pueden formarse cuatro productos fundamentales P; que contie-
nen todas las variables:

Xy X'y

xy’ X'y’

Cada uno de estos productos fundamentales se representa por un cuadrado en la figura 9.40, respetando la
relacién de adyacencia de los MINTERM.

Los MINTERM que representan las celdas se escriben dentro de estas mismas, como se aprecia en la figura
9.41, 1a cual constituye la representacién mas utilizada; no obstante, también pueden representarse como
se observa en la figura 9.42.

e ™ e ™ 4 h
' ’ X
X X X X 1 0
y
y y| v Xy 1wy X'y
y; yl Xyr Xryl 0 Xy/ lel
N J N J N J
Figura 9.40 Representacion para mapas Figura 9.41 Representacion masusadade  Figura 9.42 Segunda forma representa-
de Karnaugh de dos variables l6gicas. MINTERM. cion de MINTERM.

Mapas de Karnaugh de tres variables

Sean las variables légicas x,y, z. Con estas pueden formarse ocho productos fundamentales P; que contienen
todas las variables:
Xyz xXy'z X'y'z X'yz
xy'z' xy'z xXy'z xX'yz'
Cada uno de estos productos fundamentales se representa por un cuadrado (véase figura 9.43), respetan-
do la relacién de adyacencia de los MINTERM.

Los MINTERM que representan las celdas se escriben dentro de estas, como se observa en las figuras 9.44

y 9.45.
e N N R
Xy Xy/ X/y/ X/y Xy Xy/ X/y/ le Xy Xy/ X/y/ le
z z xyz Xy'z X'y'z X'yz z Xyz X'z X'y'z x'yz
Z’ zl Xy/z/ Xy/z/ X/y/z/ Xryz[ Z/ XyVZV Xylzl X/y/Z/ XVyZV
\ J J O\ J
Figura 9.43 Representacion paramapasde  Figura 9.44 Representacion de Figura 9.45 Segunda forma de

Karnaugh de tres variables '* =~~~ “ot" 77~ de MINTERM.
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Mapas de Karnaugh de cuatro variables
Sean las variableslégicas x,y,z, w. Con estas pueden formarse 16 productos fundamentales P; que contienen
todas las variables:

XyzZWw xXy'zw X'y'zw X'yzw
xyzw’ xy'zw’ X'y'zw’ X'yzw’
Xyz,w, Xylzle X’y'z'w, Xsz)wl

’ R ) ' K )
Xyz'w Xy'z'w Xy'z'w X'yz'w

Cada uno de estos productos fundamentales se representa por un cuadrado (véase figura 9.46), respetan-

do la relacién de adyacencia de los MINTERM.
Cada uno de estos productos fundamentales se representa por un cuadrado (véanse figuras 9.47 y 9.48),

respetando la relacién de adyacencia de los MINTERM.

a N (O N
Xy Xy/ X/y/ X/y Xy Xyl X!yl le
w w xyzw xy'zw X'y'zw x'yzw
w' w' xyzw' xy'zw' X'y'zw' x'yzw'
Z/W/ zl WI Xyzl W! XyIZ/W/ X/y/zl W/ X/yz/ W/
'w I'w xyz'w xy'z'w Xy'zw X'yz'w

N d N v

Figura 9.46 Representacion para mapas de Karnaugh de cuatro Figura 9.47 Representacion de MINTERM.
variables logicas.

Patrones basicos
Dado que las expresiones booleanas se minimizan mediante este método, también es conveniente estar fa-
miliarizado con los patrones de las posibles celdas adyacentes de los productos fundamentales y los grupos
de unos, los cuales se encerraran mediante 6valos.

Los patrones basicos para los productos fundamentales adyacentes de dos variables légicas se observan

con claridad en la figura 9.49. - ~
X X X X
VR /TN
/ Y \ y ’I 1 ‘\ y ,/ 1 \\
11 10 00 01 L R
w ‘ : ‘ !
' ! ’ \ !
1 xyzw xy'zw x'y'zw X'yzw AN 1//' y " 1//
10 xyzw' xy'zw' X'y'zw' X'yzw' X X' X X
y | 10 y
00 xyz'w' xy'z'w Xy'z’w' X'yz'w' i
y! y/ ,\/ -I -l \/\
01 xyz'w xy'z'w Xy'zw Xyz'w R
\ J Figura 9.49 Celdas adyacentes de los productos
Figura 9.48 Segunda forma de representacion de MINTERM. fundamentales de dos variables |6gicas.
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Para los patrones basicos de los productos fundamentales adyacentes de
tres variables légicas, los cuadrados de los extremos izquierdo y derecho tam-
bién se consideran adyacentes entre si, como si los cuadrados fueran un cilin-

dro unido por ambos extremos, como se muestra en la figura 9.50.

4 ™
yooowoxy Xy oo Xy Xy
7 ’/ 1 \\ ’ 1 \\
1 ! | \
1 L 1
\ ! \ 1
1
zl \‘ 1 I’ ' 1
N \ //
Xy Xy’ Xy’ X'y Xy Xy’ X'y Xy
N 2
z S S
I ! \
1 ] 1
| " I
ZI ‘\ 1 ‘\ 1 I’
\\/ \\/
Xy Xy! lel X’y Xy Xyl X!y! le
z | 10
7 1 1 :\
Xy Xy/ X/y/ X/y Xy Xy/ X!y/ X/y
z 1 10
S & 1
wooohooxy oy yooowoxy oy
z 7 1
7 1 17
Xy Xy’ Xy’ Xy Xy Xy’ X'y Xy
Z 1 :l ( /']
7 10 :’1
N

S

Figura 9.51 Celdas adyacentes de los productos fundamentales de dos celdas para tres
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Figura 9.50 Extremos
considerados como celdas
adyacentes de los productos
fundamentales.

Los patrones basicos para los
productos fundamentales adya-
centes de dos celdas para tres va-
riables légicas se muestran en la
figura 9.51.

Los patrones bésicos para los
productos fundamentales adya-
centes de cuatro celdas para tres
variables légicas se muestran en
la figura 9.52.

De forma analoga al caso de
tres variables, en este caso los cua-
drados de los extremos izquierdo
y derecho también se consideran
adyacentes entre si, lo mismo que
los cuadrados de los extremos su-
perior e inferior, que también se
consideran adyacentes entre si.

Dada la gran cantidad de pro-
ductos fundamentales, solo se
muestran aqui algunos casos. Asi,
en las figuras 9.53, 9.54 y 9.55 se
observan algunos de los produc-
tos fundamentales que se repre-
sentan mediante grupos de 2" (2%,
22y 2%) cuadrados adyacentes.

Los patrones bésicos para los
productos fundamentales adya-
centes de dos celdas para cuatro
variables légicas se observan en
la figura 9.53 y los de cuatro cel-
das para cuatro variables logicas
en la figura 9.54; por su parte, los
de ocho celdas para cuatro varia-
bles légicas se distinguen en la
figura 9.55.
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e ™
wooowoxy Xy wooonoxy Xy
2|, 1, z R T,
/ \ / \
.' - :
\ ! \ 1
I RN 1. Z N 1.
wooowooxy oy wooowooxy oy
z 1 T FA RN 1
/ \ \ /
1 \ !
|\ I' ! \
7 \\1 1 ,/ 7 /’I// \\']
Xy Xy, X/y/ X’y xy Xy/ X’y, X’y
22 | 1 17 z
z 21T | 1 173

N V

Figura 9.52 Celdas adyacentes de los productos fundamentales de cuatro celdas para
tres variables logicas.

Xy Xy/ X/y/ X’y Xy XyV leV le
w w
N - = =<
' [T ' (1 1
| | I e
1 1
I'w' V1 'w'
'w 'w
’ ’,! ! ! . ’
Xy X Xy Xy Xy Xy Xy Xy
T
1
w V1 w
</
w' w'
7w 7w 15 a
’ I\ ’
z'w 1Y z'w
! \

N - V|
Figura 9.53 Celdas adyacentes de los productos fundamentales de dos celdas para cuatro variables
logicas.
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4 ™
W W Xy Xy W W Xy Xy
w w KN
1 1
P BN I !
w' 1 [ w' P
! \I ! 1
T
’ol \ 1 ! it ! 1 !
I'w N L ’'w Pl
S~ - - 1
1
Z'w Zw N
N2
Xy x' Xy Xy Xy X' Xy Xy
w w
ZW! Zwr = ~ - -
™, 1
I e M= 5 < /7 \
Zw | <] 1 1 1 7w 1. W
I'w I'w
Xy ¥ Xy Xy Xy X' Xy Xy
\ ’ —_ -
w N | w | <1
w' w'
zI'w' zI'w'
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Figura 9.54 Celdas adyacentes de los productos fundamentales de cuatro celdas
para cuatro variables logicas.
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Figura 9.55 Celdas adyacentes de los productos fundamentales de ocho celdas
para cuatro variables logicas.
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Simplificacion de circuitos

Minimizacion de circuitos mediante mapas de Karnaugh

Considérese una expresion booleana E en forma de suma de productos; a fin de encontrar la expresiéon boo-
leana F equivalente a E en forma minimal de suma de productos, se deben seguir los siguientes pasos:

Se construye el mapa de Karnaugh, de acuerdo con el nimero de variables de E.
En el mapa de Karnaugh, todos los productos fundamentales de E se representan mediante cruces.
Todas las cruces se encierran con 6valos que contengan 2" cruces adyacentes.

Cada 6valo debe encerrar la mayor cantidad posible de cruces.

Ui e

Se escribe la expresién F como suma de los productos fundamentales representados por los évalos
resultantes.

E jemplo

Sea la siguiente expresion booleana
Eby)=xy +xy' +y

Encontrar su forma minimal de suma de productos F resultante utilizando el mapa de Karnaugh y dibujar el circui-
to légico correspondiente.

. ™
El mapa de Karnaugh resultante de esta expresion booleana se muestra en la figura X X
9.56.
y|it
En la representacion de las sumas de los términos representados en los ovalos, la P
forma minimal de E es: P R
yle )
Fixy)=x+y
\ J

Mientras que el circuito l6gico correspondiente es como el que se observa en la
figura 9.57. Figura 9.56 Mapa de

Karnaugh.
X §>_F>
] 2

Figura 9.57 Circuito resultante.

Ahora, para comprobar que la simplificaciéon es correcta, esta se hace de manera algebraica:

EX, y)=xy+xy +V

=xy+y Ley de la absorciéon
=x+Yy Teorema de simplificacién
Por tanto:
F,y) =x+y’

Como se observa, este es el mismo resultado obtenido utilizando un mapa de Karnaugh.
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En diversas ocasiones, escribir la expresion F como suma de los productos fundamentales representados
por los évalos resultantes es una tarea complicada, pues, algunas veces, la interpretacién de los mismos no

es tan obvia.

Porlo general, para una mejor comprension acerca de como interpretar los mapas de Karnaugh, es nece-

sario hacer una analogia con los diagramas de subconjuntos.

E jemplo

Sea la siguiente expresion booleana:

Ex,y,2)=xyz+Xyz+Xyz+xyZ

Encontrar su forma minimal de suma de productos F resultante utilizando un mapa de Karnaugh.

Primero, se realiza el mapa de Karnaugh resultante, que en este caso
es como el que se observa en la figura 9.58. -

Como se puede observar, este mapa tiene mucha similitud con los
diagramas de subconjuntos vistos en la seccion anterior, pues en .
este diagrama se tienen tres 6valos, cada uno de los cuales corres-
ponde a cada una de las regiones que representan las intersecciones

/
Xy Xy’

de las variables légicas consideradas, donde el dvalo con lineas re-

presenta:

Figura 9.58 Mapa de Karnaugh.

Por tanto, la forma minimal de E es:

E jemplo

Fix,y,2) =Xy +xz+yz

Sea la siguiente expresion booleana:

E(x,y,2) =xyz+xyz+Xy'z+xyZ + xy'z + Xyz

Encontrar su forma minimal de suma de productos F resultante utilizando un mapa de Karnaugh.

Primero, se realiza el mapa de Karnaugh resultante, que en este caso
es como el que se observa en la figura 9.59.

Si se compara este mapa con los diagramas de subconjuntos, se ob- z | 1

tienen las regiones representadas en cada évalo:

Por tanto, la forma minimal de E es:

Fix,y,2)=x+vy
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En este capitulo se estudia el 4lgebra de Boole o dlgebra booleana, que no es més que una estructura mate-
matica, la cual, como tal, abarca un sinnumero de situaciones; ademas de que esta centrada en los valores
binarios 1y 0, y proporciona operaciones y reglas para trabajar con dichos valores.

La aplicacién méas importante del &dlgebra booleana es en la informatica, la computacién y los circuitos
légicos, debido a que la légica y el tratamiento de la informacién en estas areas se basan precisamente en
valores binarios.

Asimismo, en este capitulo se estudian las propiedades que deben cumplirse para que un conjunto, a
la par con las operaciones de suma, producto y complemento booleano, sea considerado algebra booleana.
También se estudia qué son las funciones booleanas y como simplificarlas.

Aqui también se tratan aspectos fundamentales de los circuitos légicos, los cuales estan constituidos
por circuitos més elementales llamados compuertas logicas, las cuales, a su vez, tienen asociadas tablas de
verdad y simbolos para representar los posibles estados binarios de entrada y la tinica salida binaria posible.

Por uiltimo, se estudia como dichos circuitos légicos pueden ser simplificados, ya sea de forma algebraica
o mediante el método de los mapas de Karnaugh.

91 Sea la siguiente igualdad booleana:

9.2 Sea la siguiente expresion booleana:
(@ - (b (c+d))

a-b+d-c=(a-b)+(b-)+(d-c Representarla mediante compuertas logicas.

Escribir los pasos para demostrar que esta igual-
dad es verdadera.

a-b+d-c=a-b+d-c
=(a@-b+a-b-c)+(d-c+ad-c-b)

=a-b+d-c+a-b-c+ad-c-b

=a-b+d-c+a-b-c+a-b-c

=a-b+d-c+(a+a)-b-c

=a-b+ad-c+()-b-c

=a-b+d-c+b-c

=d-b+b-c+d-c

Justificar cada paso utilizando las propiedades y
los teoremas del algebra booleana.

9.3 Sea la funcion booleana:
Fla,b,c)=a +b-c

Expresar sus formas canénicas disyuntiva y con-
juntiva.

9.4 Sea la siguiente la tabla de verdad de una funcion
booleana.

Tabla 9.23

= =y — = = =& © [&
N S OO0 Pk OO
No oo Bo
= I = =) — B8] S =

Expresarla en sus formas candnicas disyuntiva y
conjuntiva.
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9.5

9.6

9.7

9.8

9.9

9.10

9

9.12

Simplificar la siguiente funcion booleana utili-
zando las propiedades y los teoremas del dlgebra
booleana:

Fla, b,c)=a+ a’b + abc’+ ac + ac’

Simplificar la siguiente funcion booleana utili-
zando las propiedades y teoremas del algebra
booleana:

Fla, b, ¢) = (a + b)-(a + b)+(a’ + b)

Simplificar la siguiente funcion booleana utili-
zando las propiedades y teoremas del algebra
booleana:

Fla, b, ¢, d) = (d + da’ + bc)

Simplificar la siguiente funciéon booleana utili-
zando las propiedades y teoremas del algebra
booleana:

Fla,b,c,d)=ad + ab’+ bc + ac’
Sea la siguiente expresion booleana:
E(x,y,z) =xyz+ xy'z + xyz + xyz

Encontrar su forma minimal de suma de produc-
tos F resultante utilizando un mapa de Karnaugh.

Sea la siguiente la tabla de verdad de una expre-
sion booleana:

Tabla 9.24

= = — = © =) < [
N, O O0ORr R OO
Moo ™o ™o
Slo™N- No ™o

Encontrar su forma minimal de suma de produc-
tos F resultante utilizando un mapa de Karnaugh.

Simplificar la siguiente funcion booleana utili-
zando las propiedades y los teoremas del algebra
booleana:

Fa, b, c)={[(@b) +c]-(a+c)y

Simplificar la siguiente funcion booleana utili-
zando las propiedades y teoremas del algebra
booleana:

Fla,b,c) = a'b + (abc) + c(b’ + a)

913

9.14

915

9.16

9.17

Sea la siguiente la tabla de verdad de una expre-
sion booleana:

Tabla 9.25

= = = S © @)
N N, OORr P, OO
R OFRr OFr OR O
N, OO0 O0ORrR KL O

Encontrar su forma minimal de suma de produc-
tos F resultante utilizando un mapa de Karnaugh.

Sea la siguiente expresion booleana:
Exy,2)=xyz+XyZ + Xyz + xy'Z + xyZ
Encontrar su forma minimal de suma de produc-

tos F resultante utilizando un mapa de Karnaugh.

En los problemas 915 a 919 obtener la expresion
booleana que representa cada uno de los diver-
sos circuitos l6gicos que se muestran en la figura
correspondiente.

Figura 9.60

z:%}

C N

Figura 9.61

Figura 9.62
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9.18
; Z>—|_\[>—>
Figura 9.63
919 )
@—>
—— -
b —)l>o—>
(—»
N
Figura 9.64

Con base en la siguiente expresion booleana, re-
solver los problemas 9.20 a 9.23.

Fix.y,2) =[x y)- x+2)]
9.20 Escribir su tabla de verdad.
9.21 Representar esta mediante compuertas logicas.

9.22 Escribir los MINTERM y los MAXTERM asociados
a cada combinacion de variables.

9.23 Obtener las formas canonicas disyuntiva y con-
juntiva.
9.24 Utilizando tablas de verdad, verificar la siguiente
igualdad:
[x-y)+2z] =y -2
9.25 Sea la siguiente la tabla de verdad de una expre-
sion booleana:

Tabla 9.26

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

Problemas propuestos

Obtener las formas candnicas disyuntiva y con-
juntiva.

9.26 El complemento de una funcion booleana se pue-

de obtener a partir de su funcién, reemplazando
cada variable de esta ultima por su complemen-
to. Obtener el complemento de la siguiente fun-
cion booleana:

Fla,b,c,d)=(a-b"-c)+(d-c)+(a - b)

9.27 Sea la siguiente igualdad booleana:

Woy)ez4x-Z+ly+2 =x+y

Escribir los pasos para demostrar que es verdade-
ra dicha igualdad.

Xey)ez+x-Z+y+2) =Ky z+x-Z+
(v+2)
=Xy z+x-Z+y -7

=Wey) 2+ t+y)-Z

=k+y)z+x+y)-7Z

=x+y)-z+2)

—(c+y)1
:x-|—y’

Justificar cada paso utilizando las propiedades y
los teoremas del algebra booleana.

Con base en la siguiente tabla de verdad contes-
tar los problemas 9.28 a 9.31.

Tabla 9.27

b

_ 2 B L, O O O O
_ 2 O O ~r O O M4
_ O B, O r O KFr o
= o &) o B o B o
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9.28 Escribir una expresion booleana que la represen-
te como suma de productos.

9.29 Representar esta expresion booleana mediante
compuertas logicas.

9.30 Encontrar su forma minimal de suma de produc-
tos F resultante utilizando un mapa de Karnaugh.

9.31 Representar F mediante compuertas logicas, uti-
lizando a lo sumo una compuerta AND, una com-
puerta OR y una compuerta NOT.

Con base en las siguientes formas candnicas
disyuntiva y conjuntiva, resolver los problemas
932 a934.

Forma canénica disyuntiva

Fly, 2) =2 . (2,3,4,5,6,7)

Forma canénica conjuntiva

Fix,y,2)=1 L, (01)

9.32 Escribir la tabla de verdad de la expresion boo-
leana que representa.

9.33 Escribir la funcién booleana que se representa
como producto de sumas.

9.34 Encontrar su forma minimal de suma de produc-
tos F resultante utilizando un mapa de Karnaugh.

9.35 Obtener la expresion booleana x + y utilizando
exclusivamente compuertas l6gicas NAND.

Sugerencia
Se recomienda utilizar la ley de la idempotencia.

9.36 Obtener la expresion booleana x - y utilizando
exclusivamente compuertas logicas NOR.

Sugerencia
Se recomienda utilizar la ley de la idempotencia.

Con base en el siguiente enunciado, resolver los
problemas 9.37 a 9.39.

Existe una compuerta légica derivada denomina
XNOR, la cual es el complemento de la compuer-
ta l6gica XOR; es decir (x + y), cuyo simbolo es:

)

Figura 9.65

9.37 Obtener la tabla de verdad de la compuerta logi-
ca derivada.

9.38 Representar la compuerta l6gica XNOR exclusi-
vamente con compuertas légicas basicas.

9.39 Teniendo en cuenta la equivalencia logica de la
compuerta XOR (x - y + x - y'), obtener la expre-
sion |6gica equivalente a la compuerta XNOR.

Con base en la siguiente igualdad, resolver los
problemas 940 y 9.41.

Xy elz+w) =K. - (z+w)
9.40 Utilizando tablas de verdad, verificar que se cum-

ple la igualdad.

9.41 Utilizando compuertas logicas, representar cada
uno de los lados de la igualdad.
9.42 Sea la funcion booleana:
Fla, b, c)=a + bc’ + abc

Expresar esta en sus formas candnicas disyuntiva
y conjuntiva, utilizando los teoremas de expan-
sion canonica.

9.43 Sea la funcion booleana:
Fla,b,c)=(a+ b)(b + )

Expresar esta en sus formas candnicas disyuntiva
y conjuntiva, utilizando los teoremas de expan-
sion canodnica.

9.44 Simplificar la siguiente funcion booleana utili-
zando las propiedades y los teoremas del algebra
booleana:

Fix, y) = (x +y) + [x +y)y]
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945 Simplificar la siguiente funcion booleana utili-
zando las propiedades y los teoremas del dlgebra
booleana:

F(x,y,z, W) =x+xyz + Xyz + xw + xw' + X'y
9.46 Sea la funciéon booleana:
Flx,y,2)=x+yz

Expresarla en sus formas candnicas disyuntiva y
conjuntiva utilizando los teoremas de expansion
canonica.

Con base en el siguiente enunciado resolver los
problemas 947 a 9.50. Toda compuerta légica
basica AND, OR y NOT puede ser sustituida uti-
lizando exclusivamente compuertas légicas deri-
vadas NAND y NOR.

9.47 Obtener el circuito légico equivalente a la com-
puerta logica AND utilizando exclusivamente
compuertas logicas derivadas NAND.

9.48 Comprobar algebraicamente la equivalencia (6-
gica del circuito obtenido utilizando las propie-
dadesy los teoremas del algebra booleana. Es de-
cir, la salida del circuito obtenido debe ser igual a
la salida de la compuerta l6gica AND.

9.49 Obtener el circuito logico equivalente a la com-
puerta légica OR utilizando exclusivamente
compuertas logicas derivadas NOR.

9.50 Comprobar algebraicamente la equivalencia [6-
gica del circuito obtenido utilizando las propie-
dades y los teoremas del algebra booleana. Es de-
cir, la salida del circuito obtenido debe ser igual a
la salida de la compuerta légica OR.

Problemas propuestos

[\ Problemas reto

Se desea construir un circuito logico que se utilizara
en un dispositivo electrénico para el registro de las
votaciones en el Consejo del Instituto Estatal Elec-
toral, el cual esta conformado por un presidente, un
vicepresidente y dos consejeros.

Las decisiones son tomadas por mayoria, pero el pre-
sidente tiene voto de calidad; es decir, en caso de em-
pate su voto es el decisivo.

e Hallar la tabla de verdad que representa la situa-
cion antes mencionada.

«  Simplificar al maximo la funcién booleana que se
obtiene.

» Disenar el circuito |6gico para el dispositivo elec-
tronico.

Sugerencia

Ante una determinada proposicion, cada uno de los
miembros del consejo puede votar a favor (1) o en
contra (0); es decir, la decision de cada integrante del
Consejo del Instituto Estatal Electoral es una variable
booleana binaria.
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