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v

Prólogo

Este texto nació hace varios años como unos apuntes de clase para la materia de matemáticas discretas, 
constituido al principio solo por algunas decenas de páginas. Con el paso del tiempo los mismos fueron 
creciendo y tomando forma hasta ser lo que son hoy en día: un libro de texto en toda la extensión de la pa-
labra. En el mismo se plasma nuestro interés y experiencia docente a lo largo de muchos años de impartir 
la materia.

Está diseñado para brindar a los estudiantes que cursan la materia de matemáticas discretas una herra-
mienta adecuada, que cubra los conceptos fundamentales de sus principales áreas, pero abordados de una 
manera sencilla, clara y precisa, además de que sea fácil de leer y comprender, ya que no se pretende que 
sea un tratado demasiado riguroso sobre alguna parte concreta de las matemáticas discretas. 

Cabe hacer mención que algunos de los capítulos requieren para su mayor entendimiento que el lector 
tenga conocimientos básicos de álgebra a nivel bachillerato; nos referimos en particular al capítulo 2 Lógica 
y cálculo proposicional, en el tema de inducción matemática; el capítulo 4 Relaciones de recurrencia; el 
capítulo 5 Combinatoria; el capítulo 8 Sistemas algebraicos y el capítulo 9 Álgebra de Boole, debido a que en 
los mismos se efectúan diversos procedimientos algebraicos que requieren conocimientos elementales de 
álgebra.

Muchos de nuestros alumnos que han tomado este curso expresaron que eran necesarios más proble-
mas o ejercicios. Por ese motivo al final de cada capítulo se incluye una serie de problemas para resolver, 
además de los resueltos en los ejemplos de cada capítulo. Estos problemas también tienen la finalidad de 
reafirmar los conceptos aprendidos.

Hemos decidido no incluir programas de cómputo de manera explícita, esto debido al tiempo que se 
requiere para realizarlos; pero sí se presentan en algunos de los temas abordados diversos tratamientos 
algorítmicos que bien pueden resolverse con un programa.

Hasta estos momentos se ha hablado de la finalidad del libro, pero el lector se ha de estar haciendo las 
mismas preguntas que nos hacemos todos al iniciar un curso de esta naturaleza: ¿qué son las matemáti-
cas discretas? y ¿por qué estudiar esta materia? En el CD anexo al libro se encuentra una animación con la 
respuesta a estas interrogantes. Por eso recomendamos ver dicha animación antes de dar inicio a la lectura 
del libro.

Por último, esperamos que esta obra cumpla con los requerimientos y esté a la altura de las expectativas 
del lector.

“En matemáticas uno no entiende las cosas, se acostumbra a ellas.”

John von Neumann
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Conceptos 
fundamentales

1

Objetivos:

 Conocer las nociones básicas de la teoría de conjuntos.

 Comprender y aplicar las operaciones básicas de conjuntos en ejemplos cotidianos.

 Identificar las características que distinguen a los conjuntos finitos e infinitos numerables.

 Comprender las propiedades básicas presentes en el conjunto de los números enteros.

 Conocer el concepto de función.

 Comprender la dependencia de variables.

 Analizar el concepto de matriz como una herramienta básica para el uso ordenado y eficiente de datos.

 Comprender y aplicar las operaciones básicas de matrices.
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2 Capítulo 1 Conceptos fundamentales

1.1 Conjuntos
Este capítulo tiene como finalidad presentar y analizar los fundamentos básicos para el desarrollo y la 
aplicación de las matemáticas discretas. En esta sección abordamos las nociones básicas de la teoría de 
conjuntos, la cual ha permitido, en gran medida, la formalización y el desarrollo de las matemáticas. En un 
principio, Georg Cantor, matemático alemán (1845-1918), comenzó esta tarea mediante el análisis de las ba-
ses de las matemáticas, explicando todo con base en los conjuntos (por ejemplo, la definición de función se 
hizo estrictamente a través de conjuntos). El alcance del colosal trabajo realizado por Cantor, logró unificar 
las matemáticas y permitió la comprensión de nuevos conceptos.

Definiciones básicas de conjuntos
Para las matemáticas en general, la función que desempeñan las definiciones es básica, debido a que con 
ello se pretende establecer, sin ambigüedad, los conceptos utilizados. Aunque parezca poco increíble, la de-
finición formal de un conjunto es una de las más difíciles de establecer en matemáticas. Pues, si por ejemplo 
usamos la definición: “Un conjunto es una colección bien definida de objetos”; entonces, surge la siguiente 
pregunta: ¿qué es una colección? Luego, entonces, es posible definir, por ejemplo, una colección como “un 
agregado de cosas”; pero, ¿qué es un agregado?, y así sucesivamente hasta desarrollar más definiciones. 
Como se puede observar, es fácil deducir que esto se vuelve cíclico; por tanto, los matemáticos consideran 
que debe haber conceptos primitivos o sin una definición formal.

No obstante, para efectos prácticos, en este libro un conjunto se considera una colección bien definida 

de objetos, con la esperanza de que, aunque dicha definición no es formal, la cotidianidad de la palabra 
“colección” nos permita avanzar sin mayores dificultades hacia el logro de los objetivos planteados. En otras 
palabras, esto significa que un conjunto no es solo cualquier colección de objetos, sino que además este 
debe estar bien definido en el sentido de que, si se considera cualquier objeto, se puede saber con certeza si 
es parte o no de la colección.

Es importante establecer que a los objetos de un conjunto se les llama elementos o miembros del con-
junto, y es común representarlos con letras minúsculas, a, b, c…, mientras que la notación usual para los 
propios conjuntos es con letras mayúsculas, A, B, C….

Por otra parte, hay dos maneras comunes de especificar un conjunto dado. La primera es mediante la 
presentación de un listado de sus elementos entre llaves; por ejemplo, si aw consiste de todas las letras del 
alfabeto español, entonces a puede presentarse en la forma:

a � {a, b, c, …,z}

La segunda forma de presentar un conjunto es especificando una regla que establece la propiedad o 
propiedades que un objeto debe satifacer para ser considerado como un miembro del conjunto. Si se utiliza 
esta notación, el conjunto A puede ser presentado en la forma:

George Cantor (San Petersburgo, 1845-Halle, Alemania, 1918), matemático alemán de origen ruso. En 
1874, publicó su primer trabajo sobre teoría de conjuntos. Entre 1874 y 1897 demostró que el conjunto de 
los números enteros tenía el mismo número de elementos que el conjunto de los números pares, y que 
el número de puntos en un segmento es igual al número de puntos de una línea infinita, de un plano y 
de cualquier espacio. Es decir, que todos los conjuntos infinitos tienen “el mismo tamaño”. Sin embargo, 
hasta entonces, el concepto de infinito en matemáticas había sido un tabú, por lo que se ganó algunos 
enemigos, en especial Leopold Kronecker, quien hizo todo lo imposible por arruinar la carrera de Cantor. 
Estancado en una institución docente de tercera clase, privado del reconocimiento por su trabajo y con 
frecuencia atacado por Kronecker, Cantor comenzó a tener problema de salud mental, lo que provocó 
que en 1884 sufriera su primera crisis nerviosa.

En la actualidad, se le considera como el padre de la teoría de conjuntos, punto de partida de excep-
cional importancia en el desarrollo de la matemática moderna.

Cantor murió en 1918 recluido en una institución para enfermos mentales.

Figura 1.1 Georg Cantor  
(1845-1918).
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3Conjuntos

A � {a, t · q · a es una letra del alfabeto español}

Y se lee: “A es el conjunto de todos los elementos a, tales que a es una letra del alfabeto español”.
La notación que se usa para especificar que un objeto a es un elemento de un conjunto A es:

a � A

Y se lee: “a es un elemento de A” o, en forma alternativa, “a pertenece a A”.
Por otro lado, si el objeto a no es un elemento del conjunto A, entonces se escribe:

a � A

Y se lee: “a no es un elemento de A” o, en forma alternativa, “a no pertenece a A”. Por ejemplo, si A � {�, �, 

�, �}, se tiene que � � A, pero � � A.

De acuerdo con el concepto de conjunto definido antes, resulta claro que para  que un conjunto A sea 
igual a un conjunto B, lo cual se denota por A�B, ambos deben tener exactamente los mismo elementos.

Sean  A, B, C los siguientes conjuntos:

A � {1, 2, 3, 4}
B � {1, 2, 3, 4, 5}
C � {1, 3, 5, 2, 4}

Entonces, como B y C tienen exactamente los mismos elementos (aunque, en este caso, en orden distinto) B � C , 
pero A � B y A � C, ya que 5 � A y 5 � C, pero 5 � A.

E JEMPLO 

Como se puede notar en el ejemplo anterior, todos los elementos de A pertenecen al conjunto B; es decir, 
todo el conjunto A está contenido en B. Esto es, formalmente se dice que A es un subconjunto de B y se de-
nota por A � B si cada elemento de un conjunto A es también un elemento del conjunto B. En caso de que A 

no sea subconjunto de B, se escribe A � B.

A partir de esta definición, se puede ver que A � B si y solo si A � B y B � A.

De acuerdo con los conjuntos A, B y C del ejemplo anterior, es fácil ver que A � C. Además, B � C y C � B; por tanto, 
B � C. Si D � {1, 3, 5, 7}, entonces D � A y A � D.

E JEMPLO 

Es común utilizar la notación A � B para el caso en que A � B, pero A � B; entonces, se dice que A es 
subconjunto propio de B.

Si  A � {�, �, �, �, �} y B � {�, �, �, �} se tiene que B � A.

E JEMPLO 

El conjunto que no contiene elementos se conoce como conjunto vacío y se denota por � o � �. El conjun-
to vacío, �, a su vez, es subconjunto de cada conjunto A. Para ver esto, solo basta observar que � no tiene 
elementos y, por tanto, no contiene elementos que no estén en A, es decir � � A.

Como contraparte del conjunto vacío, se tiene otro extremo, “el más grande”, que se denomina conjunto 

universo. Un conjunto universo (o conjunto universal) es el conjunto de todos los elementos de interés en 
una discusión particular.
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4 Capítulo 1 Conceptos fundamentales

Operaciones con conjuntos
Así como los números se pueden sumar, restar, multiplicar o dividir, entre otras operaciones, para obtener 
nuevos números también se tienen diversas operaciones que se pueden realizar con conjuntos dados para 
obtener nuevos conjuntos. En esta sección se ilustran algunas de estas.

Unión
La unión de dos conjuntos A y B es el conjunto formado con todos los elementos que están en A y/o en B, y 
se denota por A � B.

Esto se simboliza de la siguiente forma:

A � B � {x t · q · x � A o x � B o x está en ambos}

Sean:  
A � {�, �, �, �, �} y B � {�, �, �, �}

entonces:
A � B � {�, �, �, �, �, �, �}

E JEMPLO 

Intersección
La intersección de dos conjuntos A y B es el conjunto formado con todos los elementos que están tanto en 
A como en B, y se denota por A � B. Esto se simboliza de la siguiente forma:

A � B � {x t · q · x � A y x � B}

Sean:  
A � {1, 2, 3, 4, 5}, B � {1, 3, 5, 7} y C � {2, 4, 6, 8}

entonces:
A � B � {1, 3, 5}
A � C � {2, 4}

B � C � �

E JEMPLO 

Sea U el conjunto universo y A es un subconjunto de U entonces el conjunto de todos los elementos en U 
que no están en A se conoce como el complemento de A y se denota por Ac o A’. En símbolos se tiene:

Ac � {x, t · q · x � U, x � A}

Sean:  
U � {1, 2, 3, 4, 5, 6, 7, 8} y A � {1, 3, 5, 7}

entonces:
Ac � {2, 4, 6, 8}

E JEMPLO 

Diferencia
La diferencia de conjuntos A�B es el conjunto de todos los elementos de A que no están en B, en símbolos:

A�B � {x t · q · x � A y x � B}.

La diferencia simétrica de A y B, que se denota por:

A � B � (A 	 B)�(B � A)
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5Conjuntos finitos e infinitos contables

Sean:  

A� {a, b, c, d} y B� {a, b, d, e}

entonces: A�B � {c}

  A � B � {c, e}

E JEMPLO 

Las siguientes propiedades rigen las operaciones en conjuntos.
Sea U un conjunto universo. Si A, B y C son subconjuntos arbitrarios de U, entonces:

Tabla 1.1 Propiedades de las operaciones en conjuntos

A � B � B � A Ley conmutativa para la unión

A � B � B � A Ley conmutativa para la intersección

A � (B � C) � (A � B) � C Ley asociativa para la unión

A � (B � C) � (A � B) � C Ley asociativa para la intersección

A � (B � C) � (A � B) � (A � C) Ley distributiva para la unión

A � (B � C) � (A � B) � (A � C) Ley distributiva para la intersección

(A � B)c � Ac � BC Ley de Morgan 1

(A � B)c � Ac � BC Ley de Morgan 2

Los diagramas de Venn son de gran 
utilidad para entender los conjuntos 
resultantes de cada operación defini-
da en conjuntos, pero sobre todo para 
resolver problemas de aplicación que 
incluyen conjuntos. En dichos diagra-
mas, el conjunto universo U se repre-
senta por un rectángulo, mientras que 
los subconjuntos de U se representan 
por regiones dentro del rectángulo. En 
la figura 1.2 se muestran los diagramas 
de Venn de las principales operaciones 
sobre conjuntos.

1.2 Conjuntos finitos e infinitos contables
Cuando se habla de conjuntos infinitos, mucho del sentido común y de la intuición carecen precisamente 
de sentido, pues resulta imposible considerar que dos conjuntos, en apariencia uno con muchos más ele-
mentos que el otro, tengan en realidad la misma cantidad de elementos. No obstante, esto se aclara en la 
presente sección. 

Recuérdese que la cardinalidad de un conjunto A es la cantidad de elementos distintos que posee el 
conjunto y se denota como: |A|.

A B

Conjunto A Conjunto B

A  B A  B A  B B A

Figura 1.2 Diagramas de Venn de algunas operaciones sobre conjuntos.
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6 Capítulo 1 Conceptos fundamentales

 a) Si A � {a, b, c}, A � {a, b, c} o A � {a, �, d} , entonces | A | � 3.
 b) Si A � {{a, b}, {c {d, e, f, g}}}, entonces | A | � 2.
 c) Si A � �, entonces | A | � 0.
 d) Si A � {1, 2, 3, …, n}, entonces | A | � n.

E JEMPLO 

Para encontrar el tamaño de dos conjuntos A y B, de manera comparativa, se utiliza el concepto de 
correspondencia biunívoca, que se define como: dados dos conjuntos A y B, se dice que existe una corres-
pondencia uno a uno (biunívoca) entre los elementos de A y los de B, si es posible “hacer corresponder” los 
elementos de A y los de B, de tal manera que para cada par de elementos distintos de A les “correspondan” 
dos elementos distintos de B.

Existe una correspondencia 
biunívoca entre los elementos 
de {a, b} y los de {y, z}  (véase 
figura 1.3a), también entre los de 
{a, b, c}  y los de {�, y, z}  (véase 
figura 1.3b). Pero, no existe una 
correspondencia biunívoca en-
tre los elementos de {a, b, c}  y 
los de {y, z}  (véase figura 1.3c).

E JEMPLO 

a

b

y

z

a

b y

zc

a

b

zc

y

a) b) c)

   Figura 1.3 a) y b) son correspondencias biunívocas; c) no es correspondencia biunívoca.

Existe una correspondencia biunívoca entre los elementos de {a, b} y los de {c, d}  y entre los de {a, b, c}  y los de 
{�, a, b}. Pero no existe una correspondencia biunívoca entre los elementos de {a, b, c}  y los de {a, d}.

E JEMPLO 

Ahora, es posible establecer de manera concisa el concepto de conjunto finito: se dice que un conjunto 
A es finito si existe una correspondencia biunívoca entre los elementos de A y los elementos de un con- 
junto de la forma {1, 2,…, n}, donde n es algún entero positivo fijo. Es fácil ver que si existe tal corresponden-
cia biunívoca se tiene que: |A|� n.

Tanto el conjunto A � {a, �, d} como el conjunto B � {a, b, d} son 
finitos y de cardinalidad 3, ya que existe una correspondencia bi-
unívoca entre los elementos de ambos conjuntos y los elementos 
del conjunto {1, 2, 3}, como se muestra en la figura 1.4.

Figura 1.4 La cardinalidad de ambos  
conjuntos es 3.

E JEMPLO 

{a, ∅, d } {a, b, d }

{1, 2, 3} {1, 2, 3}

�
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7Conjuntos finitos e infinitos contables

El concepto de conjunto infinito contable se establece de una extensión “natural” del caso de conjuntos 
finitos; se dice que un conjunto es infinito contable (o infinito numerable) si existe una correspondencia 
biunívoca entre los elementos del conjunto y los elementos de � � {1, 2, 3,…}.

El conjunto de los números naturales � es por sí mismo un conjunto infinito con-
table, dado que se puede establecer la correspondencia biunívoca de � a � (véase 
figura 1.5).

Figura 1.5 � es un conjunto infinito contable.

E JEMPLO 

{1, 2, 4,  . . .  } 3, 

{1, 2, 4,  . . .  } 3, 

El conjunto de todos los enteros pares no negativos P � �2, 4, 6,…� es un conjunto 
infinito contable, pues existe una correspondencia biunívoca entre dicho conjun- 
to y los números naturales (véase figura 1.6); a saber, al entero 2k se le puede hacer 
corresponder el número natural k, para k � 1, 2, ...; es decir:

Figura 1.6 El conjunto de los pares es infinito contable.

E JEMPLO 

{1, 2, 4,  . . .  } 3, 

{2, 4, 8,  . . .  } 6, 

De manera similar, el conjunto de todos los múltiplos de 7 no negativos {7, 14, 21, …} 
es infinito contable (véase figura 1.7).

Figura 1.7 Los múltiplos de 7 son un conjunto infinito contable.

E JEMPLO 

{1, 2, 4,  . . .  } 3, 

{7, 14, 28,  . . .  } 21, 

Una manera intuitiva de concebir lo que es un conjunto infinito contable es: un conjunto A es infinito 
contable si, comenzando con algún elemento fijo de A, es posible listar de manera sucesiva, uno detrás de 
otro, todos los elementos de A. Es fácil ver que de existir dicha lista, la correspondencia biunívoca del con-
junto A con los números naturales estaría garantizada.

El conjunto � � �…, �3, �2, �1, 0, 1, 2, 3, ...� es un conjunto infinito con-
table porque sus elementos pueden ser listados como � � �0, 1, �1, 2, �2, 
3, �3 ...� , y, por tanto, se tiene una correspondencia biunívoca entre los 
elementos de � y los de � (véase figura 1.8); es decir:

Figura 1.8  � es un conjunto infinito contable.

E JEMPLO 

{1, 2, 5,  . . .  } 3, 

{0, 1, 2,  . . .  } 1, 2, 

4, 
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8 Capítulo 1 Conceptos fundamentales

El conjunto de los números racionales � es un conjunto infinito contable, debido a que este puede ser listado 
como se muestra en la figura 1.9. Además, como se observa, es posible obtener una cantidad infinita contable de 
sublistas, en donde cada una es, al mismo tiempo, un conjunto infinito contable; la unión de todas estas es el con-
junto �.

 

0 . . .

. . .

. . .

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. . .

. . .

. . .

. . .

4

4/2

4/3

4/4

4/5

3

3/2

3/3

3/4

3/5

2

2/2

2/3

2/4

2/5

1

1/2

1/3

1/4

1/5

.

.

.

1

1/2

1/3

1/4

1/5

.

.

.

2

2/2

2/3

2/4

2/5

.

.

.

3

3/2

3/3

3/4

3/5

.

.

.

4

4/2

4/3

4/4

4/5

.

.

.

5

5/2

5/3

5/4

5/5

Figura 1.9 Lista de números racionales que demuestra que � es un conjunto infinito contable.

E JEMPLO 

Se dice que la cardinalidad de un conjunto infinito contable es �0. (� Aleph es la primera letra del alfabeto 
hebreo.)

Pero, también es posible encontrar conjuntos infinitos no contables, como el caso de los números reales 
entre 0 y 1. La manera de demostrarlo es a través de la reducción al absurdo; esto es, suponer que � es un 
conjunto infinito contable y llegar a una contradicción.

Esto es, suponiendo que el conjunto (0, 1) � � es infinito contable, necesariamente debe existir una co-
rrespondencia biunívoca entre (0, 1) y el conjunto �. En consecuencia, es posible listarlos de manera sucesi-
va, uno detrás de otro, de forma decimal, como se aprecia a continuación:

0. a11 a12 a13 a14…
0. a21 a22 a23 a24…
0. a31 a32 a33 a34…

�

0. ai1 ai2 ai3 ai4…
�

donde aij denota el j-ésimo dígito decimal del i-ésimo número de la lista.
Ahora, considérese el número donde:

  1 si aii � 9
 bi

  9�aii si aii � 0, 1, 2, …, 8

Para todo i.
El número 0. b1 b2 b3 b4… es un número real entre 0 y 1 que es distinto de cada uno de los números de la 

lista anterior, porque difiere del primer número listado en el primer dígito, del segundo en el segundo dígi-
to,… del i-ésimo número en el i-ésimo dígito y así sucesivamente. En consecuencia, se puede concluir que la  
lista anterior no incluye a todos los elementos del conjunto (0, 1), lo cual contradice el supuesto de que  
(0, 1) es infinito contable.
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9El conjunto de los números enteros

1.3 El conjunto de los números enteros
El sistema de los números naturales � tiene un defecto manifiesto; a saber, dados m, n � �, la ecuación m � 

x � n  puede o no tener solución; por ejemplo, la ecuaciones m � x � m y m � x � n (m � m ) carecen de solu-
ción. Es sabido que esto se soluciona introduciendo a los números naturales el cero y los números enteros 
negativos, a fin de formar el conjunto de los números enteros �.

Recuérdese que:
� � {1, 2, 3} y � � {0, 	1, 	2, 	3,…}

A continuación, se describen las propiedades algebraicas que satisfa-
cen el conjunto de los números enteros con las operaciones de adición y 
multiplicación �.

Adición
Si k, m, n � � son tres números enteros cualesquiera, entonces:

1. Propiedad de cerradura (k � m) � �

2. Propiedad conmutativa k � m � m � k

3. Propiedad asociativa (k � m) � n � k � (n � m)

4. Neutro aditivo 
 un único elemento 0 � �, tal que k � 0 � 0 � k � k, �k � �

5. Inverso aditivo Para cada k � � 
 un único elemento �k, tal que k � (�k) � (�k) � k � 0

Multiplicación

1. Propiedad de cerradura (k � m) � �

2. Propiedad conmutativa k � m � m � k

3. Propiedad asociativa (k � m) � n � k � (n � m)

4. Inverso aditivo 
 un único elemento 1 � �, tal que k � 1 � 1 � k � k

Leyes distributivas

1. k �  (m � n) � k � m � k � n

2. (k � n) � n � k � n � m � n

Los números enteros poseen un conjunto de gran importancia por sus diversas aplicaciones: los núme-
ros primos. Para definir con precisión qué es un número primo, primero introducimos el concepto de divisor: 
un entero a � 0 se llama divisor (o factor) de un b � �, lo cual denota como a | b, si c � � tal que b � a � c. 
Cuando a | b, se dice que b es un múltiplo de a.

 

 a) 2|6, ya que 6 � 2 � 3, con 3 � �.

 b) �3|15, ya que 15 � (�3) � (�5), con �5 � �.

 c) a|0, ya que � a � � se cumple 0 � a � 0, con 0 � �.

E JEMPLO 

El símbolo � proviene del alemán 

zahl, que significa número.

Nota

En este punto, es importante tener clara la diferen-

cia que existe entre  a | 0 y 0 | a; de hecho, este úl-

timo caso no es posible, pues implica una división 

por cero, la cual no está definida.

Nota
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10 Capítulo 1 Conceptos fundamentales

Entonces, se puede decir que ya se está en condiciones de aclarar, sin ambigüedad alguna, qué es un 
número primo: “se dice que un entero p es un número primo, si y solo si tiene exactamente cuatro divisores 
diferentes; a saber: 	1 y 	p. 

 a)  2 es primo, ya que sus únicos divisores son 	2, 	1.

 b)  �5 es primo, ya que sus únicos divisores son 	5, 	1.

 c)  6 no es primo, ya que sus divisores son 	6, 	3, 	2, 	1. 

 d)  39 no es primo, ya que sus divisores son 	39, 	13, 	3, 	1. 

 e)  1 no es primo, ya que solo tiene dos divisores 	1. 

E JEMPLO 

Es claro que �p es primo si y solo si p lo es, por lo que solamente será necesario referirse a los primos 
positivos.

Por último, otro concepto importante acerca de los números enteros es el de Máximo Común Divisor 
(MCD), el cual, para dos enteros positivos, a y b se define como el mayor entero positivo que es divisor tanto 
de a como de b. Matemáticamente se expresa de la siguiente manera: si a | b y a | c se dice que a es un divisor 
común de b y c; pero, si además todo divisor común de b y c también es de a, se dice que a es el máximo co-
mún divisor de b y c. 

El conjunto de divisores comunes (positivos) de 24 y  60 es {1, 2, 3, 4, 6, 12}. Entonces, en este caso, el MCD de 24 y 
60 es 12.

E JEMPLO 

1.4 Funciones
En matemáticas, el concepto de función es fundamental, incluyendo todas sus áreas de aplicación. Por 
ejemplo, en su desempeño profesional un biólogo puede necesitar conocer cómo depende el crecimiento de 
un cultivo de bacterias en función del tiempo y un químico puede requerir saber cuál es la rapidez de reac-
ción inicial de una sustancia en función de la cantidad utilizada, entre otras cosas. Pues, la relación entre 
cantidades es descrita de manera conveniente usando el concepto de función.

De manera intuitiva, se puede comparar a una función con una máquina, de tal suerte que si se introdu-
ce un número a dicha máquina, esta lo transforma en otro número. Por supuesto, las funciones no se limitan 
a números y, en general, se puede considerar una función f de un conjunto X a un conjunto Y, que se denota 
por f : X Y como una regla que asigna a cada elemento x de X uno y solo un elemento y de Y. 

Por tanto, es útil representar al número en la forma f (x), lo cual se lee f de x, pues dicha notación enfatiza 
el hecho de que el número y depende del número x. 

Sea f la función que transforma cada entero en su cubo, es decir f : � �, donde f se define por f (x) � x3. Entonces, 
por ejemplo, el número entero 2 es transformado por la regla f al número entero 8, ya que: f (2) � 23 � 8. 

E JEMPLO 

Dada una función f : X Y al conjunto de todos los elementos x � X que f puede transformar sin ambi-
güedad a un elemento y � Y, se le denomina dominio de f y se denota por dom� f �. Por su parte, al conjunto 
de todos los elementos y � f (x) que se obtienen al recorrer todo dom� f �, se le denomina rango o imagen de f 
y se denota por im� f �.
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11Funciones

Para la función f definida en � por: f x
x

x

1

2
( )= +

El dominio de la función son todos los números reales excepto x � 0, ya que dicho valor es el único que no tiene 
correspondencia con un valor real, pues la división por cero no está definida. Por tanto, podemos escribir:

dom{f} � {x � � t � q � x � 0}

E JEMPLO 

Si para una función en particular conocemos su regla de transformación f(x), es útil, en diversas aplica-
ciones, averiguar cuál es el elemento x que fue transformado al f (x) dado.

Por desgracia, no siempre es posible saber esto con certeza; por ejemplo, si consideramos al número 4 
como un elemento convertido por la regla f (x) � x2, es claro que existe ambigüedad para determinar el valor 
de x, ya que hay dos opciones posibles: x � 2 y x � �2. No obstante, dicha ambigüedad no existe para funcio-
nes f que tienen la característica de que para cada par de elementos x1, x2 � dom� f � con x1 � x2 las imágenes 
correspondientes también son distintas: f (x1) � f (x2).

Una función de este tipo se denomina biunívoca, la cual, como se dijo antes, por supuesto es equivalente 
al concepto de correspondencia biunívoca descrito y utilizado en la sección anterior.

Determinar si las funciones siguientes son o no biunívocas en todo su dominio.

 a) f(x) � 1 � 3x

 b) f(x) � 
x

1

1 2

 c) f(x) � x2

E jemplo 

Para verificar si una función es biunívoca o no, primero se puede asumir que dos valores transformados son 
iguales, f(x1) � f(x2), y si dicha aseveración implica que los argumentos son iguales, x1 � x2, entonces es posible 
concluir que la función es biunívoca (¿por qué?).

Entonces:

 a) Sea f(x1) � f(x2), es decir, 1 � 3x1 � 1 � 3x2. Si en la ecuación anterior restamos 1 en ambos lados se obtiene 
�3x1 � �3x2. Por último, si dividimos ambos lados de la ecuación por �3  se tiene que x1 � x2. Por tanto, 
es posible concluir que la función f es biunívoca.

 b) Del mismo modo, sea f(x1) � f(x2), es decir, 
+

=
+x x

1

1 2

1

1 21 2

. En este caso, primero multiplicamos ambos 

lados de la ecuación por los factores (1 � 2x1) (1 � 2x2), lo que da como resultado 1 � 2x2 � 1 � 2x1. Ahora 
bien, restamos 1 en ambos lados, con lo que se obtiene 2x2 � 2x1 . Por último, dividimos ambos lados de la 
ecuación por 2 y se obtiene 2x2 � 2x1 . Por tanto, concluimos que la función f es biunívoca.

 c) Ahora, aseguramos que la función dada no es biunívoca. Para ver esto, sea f (x1) � f (x2), es decir, (x1)
2 � 

(x2)
2. Es importante destacar que es fácil cometer el error de concluir que la última ecuación implica que 

x1 � x2 cuando en realidad se tiene que x1 � 	x2. Entonces, como no existe una único valor para el cual  
f(x1) � f (x2), se concluye que la función dada no es biunívoca.

Solución
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12 Capítulo 1 Conceptos fundamentales

1.5 Sucesiones
Es importante hacer notar que el término sucesión se usa con mucha frecuencia en el ámbito coloquial, ya 
que se emplea por lo común para indicar una serie de eventos, donde uno sigue a otro en un orden definido. 
Algo análogo ocurre con las sucesiones numéricas, solo que en lugar de tratarse de eventos se trata de tér-
minos numéricos.

De manera intuitiva, una sucesión S es una simple lista de objetos llamados elementos, los cuales for-
man un conjunto, donde además los elementos están uno detrás de otro en el orden natural creciente de los 
números naturales �.

Si la sucesión es finita, esta puede terminar después de un cierto número de términos o puede (en princi-
pio, al menos) seguir en forma indefinida; en este caso, se dice que es infinita. En este sentido, se puede decir 
que son conjuntos infinitos contables.

Una sucesión general, es decir una sucesión en la que no se especifican los términos, puede escribirse 
como:

x1, x2, x3,…
o algunas veces como:

xn, 1 
 n � �

Si x es una sucesión, entonces se escribe como:
X � (xn)

En un sentido formal, se dice que una sucesión (xn) es una función S:� � de una variable n donde  
dom{S} � �; es decir, a cada n � � le corresponde un número real xn, el término n-ésimo de la sucesión.

Una diferencia sustancial entre un conjunto cualquiera y una sucesión es que en una sucesión se pueden 
tener términos repetidos.

 a) (xn) � {1, 0, 0, 1, 1, 0, 0, ...}

 b) (xn) � {2, 4, 6, 8, ..., 2n, ...}

 c) xn � n2, 1 
 n � �, es decir (xn) � {1, 4, 9, 16, ...}

 d)  xn � (�1)n, 1 
 n � �, es decir  (xn) � {�1, 1, �1, 1, ...}

 e)  xn � 
1

2n , 1 
 n � �, es decir  (xn) � 
1

2
,

1

4
,

1

8
,

1

16
,{ }…

E JEMPLO 

 
1.6 Matrices
Hoy día, en el ámbito cotidiano existen muchos problemas prácticos que pueden ser resueltos mediante 
operaciones aritméticas aplicadas a los datos asociados al problema dado. Organizando los datos en arre-
glos numéricos de filas y columnas, es factible llevar a cabo de manera eficiente los cálculos aritméticos 
necesarios para resolver un problema de este tipo. Además, una gran ventaja de utilizar un ordenamiento 
de filas y columnas para los datos, es que el manejo en una computadora es muy sencillo y, por tanto, todos 
los cálculos pueden realizarse con precisión y eficiencia.

Desde el punto de vista formal, un arreglo rectangular de datos se denomina matriz. De este modo, se 
dice que una matriz que consta de m filas y n columnas tiene tamaño m � n; en tanto, cuando m � n se dice 
que la matriz es cuadrada. La entrada en el i-ésimo renglón y j-ésima columna en una matriz A se denota 
por aij; es decir:

 a11 a12 … a1n

 a21 a22 … a2n

 � � �

 am1 am2 … amn

�
A�
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13Matrices

Una forma práctica de denotar la matriz A es A � (aij).

Considerar la matriz:

  319 281 455 285
 A � 475 365 580 0
  545 425 180 880

a) Determinar cuál es el tamaño de la matriz.
b) Encontrar a32.
c) Determinar la suma de las entradas de la primera fila.
d) Establecer la suma de entradas de la cuarta columna.

 a) El tamaño de la matriz es 3 � 4, ya que la matriz 
consta de 3 renglones y 4 columnas.

 b) La entrada a32 corresponde al elemento de la 
matriz ubicado en el renglón 3 y columna 2, es 
decir a32 � 425

 c) La suma del primer renglón es  
319 � 281 � 455 � 285 � 1  340

 d) La suma de la primera columna es  
285 � 0 � 880 � 1  165

E jemplo Solución

Dos matrices A � (aij) y B � (bij) son iguales si y solo si tienen el mismo tamaño y sus entradas correspon-
dientes son iguales, es decir: 

aij � bij � i, j � �

Determinar w, x, y, de manera que:

 x 1 2w    
�

 �3 1 �4

 2 y�1 �1  2 0 �1

Considerando que las entradas correspondientes 
de las dos matrices deben ser iguales, entonces:  
x � �3, 2 � w ��4, y y � 1 � 0; por tanto, x ��3, 
w � �2 y y � 1. 

E jemplo Solución

Dado que una matriz es un arreglo de datos, es posible definir operaciones sobre esta. En primer lugar, si 
A y B son dos matrices del mismo tamaño, el resultado de la adición de A y B es la matriz suma A�B, que se 
obtiene de la adición de todas y cada una las entradas correspondientes de A y B; es decir:

A�B � (aij � bij )

De forma equivalente, la diferencia A�B es la matriz obtenida por restar las correspondientes entradas 
en B de A; es decir:

A�B � (aij � bij )

Considerar las siguientes matrices A y B:
  �2 7  1 14
 A� 3 �5 y    B� 10 �5
  1 0  �1 �3

entonces, se tiene que:
  �2 � 1 7 � 14  �1 21
 A�B� 3 � 10 �5 � (�5) � 13 �10
  1 � (�1) 0 � (�3)  0 �3

Y la diferencia de A�B es:
  �2�1 7�14  �3 �7
 A�B� 3�10 �5�(�5) � �7 0
  1�(�1) 0�(�3)  2 3

E JEMPLO 
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14 Capítulo 1 Conceptos fundamentales

Otra operación importante en aplicaciones de matrices es la multiplicación por un escalar (en este con-
texto, un escalar representa cualquier número real). De este modo, el producto de una matriz A por un esca-
lar c es la matriz que se obtiene de la multiplicación de cada entrada de la matriz A por el escalar c, es decir:

cA � (cai j )

Sean:     Entonces , cA es la matriz:

 3 2 1   (�4)(3) (�4)(2) (�4)(1)  �12 �8 �4
A�

  �1 0 4 
y   c � �4 cA� 

(�4)(�1) (�4)(0) (�4)(4) 
�

 4 0 �16

E JEMPLO 

Además de las anteriores, hay otra operación importante en aplicación matricial: la multiplicación de 
matrices. A diferencia de las operaciones consideradas hasta ahora, la multiplicación de matrices no tiene 
una definición “natural”. De este modo, si A es una matriz de tamaño m � n y B es una matriz de tamaño  
n � k; entonces, el producto de A con B, que se denota por AB � (cij ), es la matriz de tamaño m � k, cuya en-
trada en el renglón i y columna j, 1 
 i 
 m, 1 
 j 
 k, es:

⋯∑= = + + +
=

c a b a b a b a bij ik
k

n

ki i j i j in nj
1

1 1 2 2

Los puntos más importantes para recordar de esta definición son:

1. Para que exista el producto AB es necesario que el número de columnas de la primera matriz, de  
izquierda a derecha, A, sea igual al número de renglones de la segunda matriz, de izquierda a de-
recha, B.

2. Si se cumple el requisito del inciso a), con A de tamaño m � n y B es de tamaño n � k, entonces la ma-
triz producto tendrá el mismo número de renglones que A y el mismo número de columnas que B.

3. Para obtener el elemento de la matriz producto AB ubicado en el i-ésimo renglón y j-ésima columna, 
se deben sumar los productos que resultan de multiplicar la primera entrada del renglón i de A con 
la primera entrada de la columna j de B, la segunda entrada del renglón i de A con la segunda entrada 
de la columna j de B, y así sucesivamente.

Sean:

 A�
 �1 2 6

 
y    B�

 1 0 3

  0 3 �2
  �1 1 6

 5 �1 1

Determinar AB, siempre que el producto matricial esté definido.

E JEMPLO 

En este caso, primero debemos verificar si el producto matricial AB está bien definido; es decir, es indispensable 
comprobar que el número de columnas de la matriz A sea igual al número de renglones de la matriz B lo cual aquí 
se cumple. En segundo lugar, debemos establecer el tamaño de la matriz producto. La matriz producto debe tener 
el mismo número de renglones que A y el mismo número de columnas que B; por tanto, el tamaño de AB es 2 � 3. 
Entonces, el resultado esperado es una matriz de la forma

  c11 c12 c13
 AB �

 c21 c22 c23

Solución
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15Matrices

A continuación se describen las propiedades algebraicas que satisfacen las matrices con las operaciones de 
adición, multiplicación por un escalar y multiplicación matricial (la diferencia de matrices A�B se puede 
ver como la suma A�(�B)).

Si A, B, C son matrices del mismo tamaño, y c y d son dos números reales cualesquiera, entonces se cum-
plen las siguientes propiedades:

1. Propiedad conmutativa A � B � B � A

2. Propiedad asociativa (A � B) � C � A � (B � C)

3. Leyes distributivas c(A � B) � cA � cB y (A � B)c � Ac � Bc

4. Ley asociativa escalar c(dA) � (cd)A

Además, si los productos y las sumas están definidos para A, B, C, entonces:

5. Propiedad asociativa (AB) C � A (BC)

6. Ley distributiva A(B � C) � AB � AC

en la que para obtener el elemento ubicado en el primer renglón y en la primera columna,c11, se suman los productos 
obtenidos de la multiplicación del primer renglón de A con la primera columna de B, término a término, es decir:

c11 � a11b11 � a12b21 � a13b31

c11 � (�1)(1) � (2)(�1) � (6)(5) � 27

Del mismo modo, para calcular se suman los productos obtenidos de la multiplicación del primer renglón de A con 
la segunda columna de B, término a término, es decir:

c12 � a11b12 � a12b22 � a13b31

c12 � (�1)(0) � (2)(1) � (6)(�1) � �4

Si seguimos con este procedimiento, al cabo del mismo se obtiene:

c13 � (�1)(3) � (2)(6) � (6)(1) � 15

c21 � (0)(1) � (3)(�1) � (�2)(5) � �13

c22 � (0)(0) � (3)(1) � (�2)(�1) � 5

c23 � (0)(3) � (3)(6) � (�2)(1) � 16

lo que completa la matriz producto:

 27 �4 15
AB �

 �13 5 16

Continúa

Para:

 
 0 2 �1 

 2 4 10  1 2 �1 A � �1 3 2 , B � 
�8 �1 2

 , C � 
3 1 1  7 4 �6

E JEMPLO 
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16 Capítulo 1 Conceptos fundamentales

Resumen
En este capítulo se presentaron y analizaron los principales conceptos fundamentales relacionados con el 
desarrollo y la aplicación de las matemáticas discretas y de diversos objetos discretos, con la finalidad de 
adoptar una terminología común a lo largo del libro para poder trabajar con ellos de una manera adecuada. 

En primer lugar se abordaron las nociones básicas de la teoría de conjuntos, la cual ha permitido la for-
malización y desarrollo de las matemáticas, y por ende de las matemáticas discretas. Entre ellas pueden 
resaltar la de conjunto que, como se indicó, es una de las más difíciles de formalizar, además de analizar las 
principales operaciones que pueden efectuarse sobre los conjuntos.

Luego se habló de los conjuntos cuya cardinalidad es finita, y de aquellos cuya cardinalidad es infinita 
contable; esto es, en los que es posible establecer una correspondencia biunívoca entre los elementos del 
conjunto y los elementos de los números naturales.

Enseguida se presentaron las propiedades algebraicas del conjunto de los números enteros, para pro-
seguir con la definición y análisis del concepto de función, que a final de cuentas es una regla que asigna a 
cada elemento de un conjunto un y solo un elemento de otro conjunto.

Realizar la operación indicada siempre que esté definida:

 a)  AB b)  BA c) BA � 2C 

Continúa

 a) El producto AB no está definido, ya que el número de columnas de la primera matriz (de izquierda a  
derecha), es 3 y este número es diferente al número de columnas de la segunda matriz, que es 2.

 b) El producto BA sí está definido, pues B es de tamaño 2 � 3 (tres renglones) y la matriz A de tamaño 3 � 3  
(tres columnas). Por tanto, la matriz producto será de tamaño 2 � 3 (número de filas de B � número de  
columnas de A). De este modo, la matriz BA es:

 
BA �

 2(0) � 4(�1) � 10(7) 2(2) � 4(3) � 10(4) 2(�1) � 4(2) � 10(�6)

  �8(0) �(�1) (�1) � 2(7) �8(2) � (�1)(3) � 2(4) �8(�1) � (�1)(2) � 2(�6)

 Es decir:
  66 56 �54
BA �

 15 �11 �6

 c) Considerando que la matriz �2C es del mismo tamaño que la matriz BA, la operación BA�2C sí está definida:

 
 

66 56 �54  1 2 �1  66 56 �54  2 4 �2
 

BA�2C �
 15 �11 �6 

�2
 3 1 1 

�
 15 �11 �6 

�
 6 2 2

 Es decir:

  64 52 �52
BA�2C �

 9 �13 �8

Solución
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17Problemas propuestos

 1.19  A � Ac

 1.20 (A � B) 	 C

 1.21 (A 	 B) 	 C

 1.22 (A 	 B) � C

 1.23  (A 	 B) 	 Ac

 1.24 (A 	 B)c 	 C

 1.25 (A 	 B)c � Cc

En los ejercicios 1.26 a 1.29 determinar si el conjunto 
dado es finito, infinito numerable o infinito no nume-
rable.

1.26 A � {x t · q · x � � y 2 
 x 
 3 }

1.27  A � {x t · q · x � � y 2 
 x 
 � }

1.28  A � {x t · q · x � �  y 0 
 x 
 � }

1.29 A � {x t · q · x � � y �100 000 
 x 
 15 }

En los ejercicios 1.30 a 1.34 analizar si la corresponden-
cia dada define una función para todos los valores de 
su dominio.

1.30 f (x) � 10x

1.31  f (x) � x3 � x

1.32  ( )= − ± − ≥f x x x3 2 , 2

1.33  ( )= − − −f x x3 23

1.34  ( )=
−

≠f x
x

x
x

5
, 5

En los ejercicios 1.35 a 1.40 determinar si la función 
dada es biunívoca para todos los valores de su domi-
nio. 

1.35  f (x) � x2 � x

1.36  f (x) � x3 � x2

1.37   f x x x1, 1( )= − ≥

1.38   f (x) � | x |

1.39  ( )=
−

≠f x
x

x
x

5
, 5

1.40  f (x) � ln (x2)

1.41  Sea:   A� 
�1 2

 y  B � 
�1 2

   3 1  2 1

En los ejercicios 1.1 a 1.8 determinar si la proposición es 
falsa o verdadera.

 1.1 {1, 2, 3 ,4} � {4, 1, 2, 3}

 1.2 � � X

 1.3 X � X

 1.4 X � X

 1.5 0 � �

 1.6 0 � �

 1.7 {1, 2} � {1, 2, 3, 4}

 1.8 {Sentra®, Tsuru®, Xtrail® } � {Nissan®}

En los ejercicios 1.9 al 1.16 en un diagrama de Venn  
sombrear la región adecuada que represente la ope-
ración indicada.

A B

U

 1.9 Ac � B

 1.10 Ac � Bc

 1.11 (Ac � Bc)

 1.12 (A � B)c

 1.13  A � B

 1.14  Ac � B

 1.15  Ac � Bc

 1.16 A � B

En los ejercicios 1.17 a 1.25 determinar el conjunto re-
sultante de la operación indicada, considerando el 
conjunto universo como U � {x : x � �  y 1 
 x 
 9}, y  
los subconjuntos A � {2xt · q · x � �  y 1 
 x 
 4},  
B � {2x � 1t · q · x � �  y 1 
 x 
 4} y C � {x t · q · x � �  
y 1 
 x 
 4}.

 1.17 BC

 1.18 A 	 Bc

Problemas propuestos
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18 Capítulo 1 Conceptos fundamentales

  Determinar AB y BA. Con base en este ejemplo, 
definir si la mulwtiplicación matricial es conmu-
tativa.

1.42  Considerar las matrices:

   �2
  A�  [ 1   �1     7],        B � 3    

10

  ¿Es posible realizar la operación AB � 6? En caso 
afirmativo, realizar el cálculo.

En los ejercicios 1.43 a 1.50 considerar las matrices:

 4 2  4 �3 2  1 0 0 
A�   , B�    y C� 1 �4 0
  1 1  3 1 5  2 �1 5

Determinar si la operación indicada está definida. En 
caso afirmativo, indicar el tamaño de la matriz resul-
tante y realizar el cálculo explícito.

1.43  AB

1.44  BA

1.45  (AB)C

1.46  2AB � BC

1.47  B � 10BC

1.48  C2

1.49  (2AB � BC)2, donde A2 � AA

   1 0
1.50 IA y AI , donde  I � 

 0 1

¿Qué efecto produce I en la multiplicación por A?

Se dice que una matriz cuadrada A es invertible si exis-
te una matriz B que satisface las siguientes relaciones:

AB � BA � I

donde I es la matriz cuadrada con unos en la diago-
nal principal y ceros en el resto de las posiciones. A la 
matriz B,  que por lo general se denota por A�1,  se le 
denomina matriz inversa de A.

 a) Determinar las condiciones que debe cumplir la 
matriz siguiente para ser invertible.

   a11 a12
  A � 
   a21 a22

 b) Obtener la forma explícita de A�1, si A es invertible.

 c)  Demostrar que un sistema de m ecuaciones li-
neales con n incógnitas x1, x2, ..., xn :

   a11  x1 � a12 x2 �...� a1n xn � b11

   a21  x1 � a22 x2 �...� a2n xn � b21

    �

   am1  x1 � am2 x2 �...� amn xn � bm1

  se puede escribir matricialmente como:

AX � B

 d) Para el sistema cuadrado:

   2x1 � 4x2 � 2

   x1 � 3x2 � �2

  Encontrar la matriz A�1 y demostrar que la solu-
ción del sistema es:

 X � A�1 B

Problemas reto
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Objetivos

 Identificar las clases de proposiciones que se pueden encontrar en un enunciado.

 Analizar los enunciados para la elaboración de las tablas de verdad.

 Traducir proposiciones del lenguaje verbal a variables lógicas y viceversa.

 Identificar si un argumento es válido o inválido, así como demostrar su validez.

 Comprender los principios de las operaciones del cálculo proposicional y sus aplicaciones.

Lógica y 
cálculo 
proposicional

2
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20 Capítulo 2 Lógica y cálculo proposicional

2.1 Introducción
Lógica es un término que deriva del griego 	
��
� o 	
���
� (logiké o logikós), que a su vez proviene de 	
�
� 
(logos), que significa razón. La lógica se considera una ciencia formal cuyo objeto de estudio son los distintos 
principios de demostración que permitan comprobar que una afirmación pueda ser considerada como válida.

La metodología de trabajo de la lógica consiste en examinar la validez o la invalidez de una afirmación 
mediante la aplicación de una sistematización en los argumentos y, por ende, de un análisis de su estruc-
tura lógica, sin tener en cuenta el contenido de lo que se ha argumentado ni considerar siquiera el lenguaje 
utilizado, y sin contemplar el estado de realidad del contenido.

La lógica se aplica en muy diversas áreas. En ingeniería es de gran utilidad en la electrónica, para el dise-
ño de circuitos mediante compuertas lógicas, y en programación, para el diseño de programas que requieren 
la unión de operadores lógicos. En administración, porque esta hace uso de los conocimientos organizados 
para dar solución a problemas reales. En derecho, su aplicación se conoce como “lógica jurídica”, conside-
rada un método de investigación para entender a la ciencia del derecho, que obtiene su principal fuente del 
conocimiento en la razón y no de la experiencia.

 Bertrand Arthur William Russell, filósofo, lógico, matemático y escritor británico, realizó aportaciones inno-
vadoras a los fundamentos de las matemáticas y al desarrollo de la lógica formal contemporánea, así como 
a la filosofía analítica. Sus aportaciones a las matemáticas incluyen el descubrimiento de la paradoja Russell, 
la defensa del logicismo (la visión acerca de que las matemáticas son, en algún sentido significativo, reduci-
bles a la lógica formal), la introducción a la teoría de los tipos y el perfeccionamiento y la divulgación de la 
lógica de primer orden o cálculo de predicados de primer orden. Se le considera, junto con Kurt Gödel, como  
uno de los dos logicistas más destacados del siglo XX.

Figura 2.1 Bertrand Arthur 
William Russell (1872-1970).

2.2 Proposiciones y operadores lógicos
La proposición: características y estructura
Una proposición o enunciado constituye una oración que tiene un valor de verdad, es decir, puede ser verda-
dera o falsa, pero no ambas. La proposición es uno de los elementos fundamentales en lógica.

Si la oración es una pregunta, una orden, carece de sentido o es muy imprecisa, entonces no puede ser 
clasificada como verdadera o falsa, y por tanto no puede ser una proposición.

¿Cuáles de las siguientes oraciones son pro-
posiciones?

 1. La Tierra es plana.

 2. 3 � 6 � 8.

 3. La temperatura del núcleo del Sol es de 
6 000 °C.

 4. x � y � 24.

 5. ¿Vas a la tienda?

 6. Toma tu medicina.

 7. La selección mexicana ganará mañana 
la copa mundial.

E JEMPLO 

• Las oraciones 1 y 2 son proposiciones, ya que pueden tomar un 
valor verdadero o falso.

• En estos momentos no es posible determinar la certeza o false-
dad de la oración 3; sin embargo, en principio, sí puede deter-
minarse si es verdadera o falsa, por tanto también se considera 
una proposición.

• La 4 es una oración, pero no una proposición, ya que es verda-
dera o falsa dependiendo de los valores de x y y en determina-
do momento.

• La oración 5 es una pregunta, no una proposición.

• La oración 6 es una orden, pero no una proposición.

• La oración 7 es una proposición que puede ser verdadera o falsa, 
pero debemos esperar hasta mañana para saber su valor de verdad.

Solución
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21  Proposiciones y operadores lógicos

Clasificación de las proposiciones
Antes de clasificar las proposiciones, es preciso considerar cómo representarlas para luego hacer referencia 
a estas en diversas expresiones lógicas.

En matemáticas, las letras x, y, z, … se utilizan para representar variables que pueden ser reemplazadas 
con números, las cuales pueden ser combinadas con diversos operadores, como: �, �, �, �.

Por su parte, en lógica las letras p, q, r, … se usan para re-
presentar variables proposicionales, esto es, variables que 
pueden ser reemplazadas por proposiciones simples.

Así, es posible utilizar una proposición haciendo referen-
cia solo a la variable proposicional utilizada.

En lógica se pueden encontrar dos clases de proposiciones: 
simples o atómicas y compuestas o moleculares.

Proposiciones simples o atómicas
Las proposiciones simples o atómicas son aquellas que están estructuradas por una única oración. Para su 
representación, a la proposición se le asigna una variable proposicional.

p:  El oro es un metal precioso.

q:  Hoy es martes.

r:  Benito Juárez nació en Oaxaca.

s:  Rodolfo Neri Vela fue el primer astronauta mexicano.

E JEMPLO 

Supóngase que se quiere negar alguna proposición simple, denotada como “ ”; entonces, si se quiere 
decir que “Hoy no es martes”, se puede escribir “ q”, haciendo referencia a la variable proposicional elegida.

Proposiciones compuestas o moleculares
Las proposiciones compuestas o moleculares son aquellas que están estructuradas por dos o más proposicio-
nes simples unidas por operadores lógicos, tales como , , , , entre otros. En el caso de las proposiciones 
compuestas, a cada proposición simple que la forma se le puede asignar una variable proposicional.

 a) Pitágoras era griego y geómetra.

 b) El sentido de la calle es hacia el norte o hacia el sur.

 c) Si salgo tarde, entonces no visitaré a la abuela.

 d) Iré al cine si y solo si tú pagas las palomitas.

E JEMPLO 

Al leer cualquiera de las proposiciones compuestas anteriores, es posible observar a simple vista que 
todas ellas están formadas por dos proposiciones simples.

Al analizar el inciso a), se comprueba que esta proposición compuesta está estructurada por las propo-
siciones simples:

p: Pitágoras era griego.
q: Pitágoras era geómetra.

Al combinar ambas proposiciones se utiliza el operador lógico “ ”, que se estudiará más adelante. Dicha 
proposición compuesta se puede representar como: “p y q”, haciendo referencia a las variables proposicio-
nales utilizadas.

Si se tiene la siguiente proposición: “La Tie-
rra es plana”, esta se puede representar eli-
giendo una variable proposicional, digamos 
“p”. De este modo, la proposición simple 
quedaría representada de la siguiente for-
ma: “p: La Tierra es plana”. 

E JEMPLO 
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22 Capítulo 2 Lógica y cálculo proposicional

Es importante destacar que, en ocasiones, los operadores están presentes de manera implícita dentro de 
la oración.

Sea la siguiente oración

Si estudio, triunfaré en la vida.

En primera instancia, esta parece una proposición simple, pero si se observa con mayor detalle, se nota que tiene 
dos verbos: estudiar y triunfar, lo que indica que tiene más de una proposición simple; por tanto, se trata de una 
proposición compuesta. En este caso el operador implícito es entonces, y se puede expresar de la siguiente manera:

Si estudio, entonces triunfaré en la vida.

Esto permite destacar que no siempre se “descubren” a primera vista los operadores en una proposición compuesta.

E JEMPLO 

Traducción del lenguaje natural al simbólico 
y del lenguaje simbólico al natural
Antes de estudiar cómo traducir del lenguaje natural al simbólico y viceversa, primero se define cada uno 
de estos lenguajes.

Lenguaje natural
Por lengua natural se entiende a la lengua utilizada normalmente (lengua materna) en una comunidad de 
individuos para la comunicación entre ellos. Es decir, el lenguaje que hablamos en nuestra vida cotidiana, 
que en nuestro caso es el español.

Lenguaje simbólico
La lógica cuenta con un sistema de símbolos construido en especial para lograr precisión y operativi- 
dad. La lógica se expresa, pues, en un lenguaje artificial. El lenguaje de la lógica es, además, un lenguaje 
formal constituido por símbolos.

Al simbolizar un lenguaje lo que se persigue es, básicamente, sencillez, claridad y exactitud. Pues, en este 
caso, es más sencillo y resulta más claro y exacto representar las cosas mediante símbolos. 

Por este motivo, la simbolización del lenguaje lógico permite examinar con mayor facilidad las formas 
del pensamiento y sus leyes.

Traducir
Trabajar con proposiciones requiere la aptitud de poder traducirlas del 
lenguaje natural al simbólico (también denominada traducción simbó-
lica) y viceversa.

En el apartado anterior vimos cómo representar proposiciones me-
diante variables proposicionales, las cuales pueden ser reemplazadas por 
proposiciones simples, lo cual constituye una traducción simbólica de di-
chas proposiciones.

Para traducir proposiciones compuestas, primero se eligen las varia-
bles proposicionales necesarias con base en las proposiciones simples involucradas, además de los respec-
tivos operadores lógicos que las relacionan.

En muchas ocasiones, elegimos las variables proposicionales de tal manera que hagan alusión al conte-
nido mismo de la proposición.

Aunque en la próxima sección se  es-

tudiarán los operadores lógicos con 

más detalle, aquí se pueden utilizar 

algunos de los ya vistos de una ma-

nera informal.

Nota
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23  Proposiciones y operadores lógicos

Si se tiene la proposición simple: “Miguel Hidalgo es el padre de la Patria”, es posible escoger las variables proposi-
cionales m para hacer alusión a “Miguel Hidalgo” y p para “padre de la Patria”.

E JEMPLO 

También es posible hacer lo mismo para las proposiciones compuestas.

Hacer la traducción lógica de la proposición compuesta:

Miss Universo es atractiva e inteligente.

En primera instancia, se puede observar que la proposición en cuestión está constituida por las proposiciones 
simples:

a:  Miss Universo es atractiva.

i:  Miss Universo es inteligente.

por lo que a  i es su traducción lógica.

E JEMPLO 

Pero, no solo se requiere traducir del lenguaje natural al simbólico; en muchas ocasiones también se 
requiere hacer una traducción del lenguaje simbólico al natural.

Sean las proposiciones simples:

g: Guadalajara gana el campeonato.

a: América gana el campeonato.

Y se desea traducir las siguientes proposiciones al lenguaje natural:

 1. g a

 2. g a

 3. g

 4. a

E JEMPLO 

 1. Guadalajara gana el campeonato y 
América no gana el campeonato.

 2. Guadalajara no gana el campeonato y 
América gana el campeonato.

 3. Guadalajara no gana el campeonato.

 4. América no gana el campeonato.

Solución

Cuando se vean más a fondo los operadores lógicos, entonces se podrán traducir proposiciones com-
puestas constituidas por más de dos proposiciones simples.

Operadores lógicos
Los operadores lógicos son aquellos símbolos que permiten decidir qué valor de verdad tiene una proposi-
ción.

El valor de verdad de una proposición simple puede ser verdadero o falso, y los únicos operadores lógicos 
que se pueden utilizar en estas proposiciones son la negación y la doble negación.

El valor de verdad de una proposición compuesta es verdadero o falso y depende de los valores de verdad 
de las proposiciones simples que la estructuran, las cuales están combinadas por operadores lógicos.

Ahora, se definen y analizan los operadores lógicos, incluyendo su tabla de verdad; aunque algunos de 
estos ya se mencionaron en el apartado anterior.

Negación ( )
La negación de cualquier proposición p será falsa cuando se niegue una proposición verdadera y será verda-
dera cuando se niegue una proposición falsa.
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24 Capítulo 2 Lógica y cálculo proposicional

Algunas formas de la negación son: no, nunca, ni, ja-
más, es falso, no es cierto, no ocurre, de ninguna forma, 
por nada de, en lo absoluto, entre otras. La tabla de ver-
dad de la negación se muestra en la tabla 2.1.

 p:  El acusado dice la verdad.

p:  El acusado no dice la verdad.

En este caso, p también se puede traducir como: “no es cierto que el acusado dice la verdad” o “es falso que el 
acusado dice la verdad”.

E JEMPLO 

Doble negación
Si la negación de cualquier proposición p verdadera es 
falsa, entonces cuando se vuelve a negar será nuevamen-
te verdadera; en caso contrario, si la negación de una pro-
posición falsa es verdadera, al volverse a negar esta será 
falsa de nuevo. 

La tabla de verdad de la doble negación se representa 
en la tabla 2.2, donde se observa que ( p) y p tienen los 
mismos valores de verdad. Entonces, la doble negación 
de una proposición es igual a la proposición original.

Algunas formas de la doble negación son: no es cierto que no, no ocurre que no, no es falso que, no es 
cierto que no ocurre que, no es cierto que jamás, etcétera.

 p: El acusado dice la verdad.

p: El acusado no dice la verdad.

( p): No es cierto que el acusado no dice la verdad.

Por tanto: el acusado dice la verdad.

E JEMPLO 

Conjunción ( )
Si p y q representan dos proposiciones simples, entonces la proposi-
ción compuesta p q, solo será verdadera cuando las dos proposicio-
nes lo sean.

Algunas formas de la conjunción son: y, además de, también, así 
como, pero, e, entre muchas otras.

Además, la conjunción es conmutativa, es decir:

p q � q p

La tabla de verdad de la conjunción se muestra en la tabla 2.3.

Tabla 2.1 Tabla de verdad de la negación

p p

V F

F V

Tabla 2.2 Tabla de verdad  
de la doble negación

p ( p)

V F

F V

Tabla 2.3 Tabla de verdad  
de la conjunción

p q p q

V V V

V F F

F V F

F F F
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25  Proposiciones y operadores lógicos

 p:  El acusado es pobre.

 q:  El acusado es honesto.

 p q:  El acusado es pobre, pero honesto.

 r:  El helio es más liviano que el aire.

 s:  El helio es explosivo.

 r s:  El helio es más liviano que el aire y es explosivo.

E JEMPLO 

Disyunción inclusiva ( )
Si p y q representan dos proposiciones simples, entonces la proposición 
compuesta p q solo será falsa cuando las dos proposiciones lo sean.

Algunas formas de la disyunción inclusiva son: o, o bien, u, entre 
otras.

La disyunción también es conmutativa, es decir:

p q � q p

La tabla de verdad de la disyunción inclusiva se muestra en la  
tabla 2.4.

Este operador se denomina inclusivo, precisamente porque es ver-
dadero, aun cuando se cumplen las dos disyuntivas.

 r:  Lloverá en la tarde.

 s:  Saldrá el Sol.

 r s:  Lloverá en la tarde o saldrá el Sol.

E JEMPLO 

Disyunción exclusiva ( )
Si p y q representan dos proposiciones simples, entonces la proposición compuesta p q solo será falsa 
cuando las dos proposiciones tuvieren el mismo valor de verdad. 

Se denomina disyunción exclusiva porque se tiene que elegir una de cualquiera de las dos disyuntivas, 
pero no ambas.

Algunas formas de la disyunción exclusiva son: o, o bien, u, o… o, 
entre otras.

La disyunción exclusiva es conmutativa, es decir: 

p q � q p

La tabla de verdad de la disyunción exclusiva se muestra en la 
tabla 2.5.

Tabla 2.4 Tabla de verdad de 
la disyunción inclusiva

p q p q

V V V

V F V

F V V

F F F 

Tabla 2.5 Tabla de verdad de 
la disyunción inclusiva

p q p q

V V F

V F V

F V V

F F F 
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26 Capítulo 2 Lógica y cálculo proposicional

 t:  Apruebas el ciclo escolar.

 u:  Repruebas el ciclo escolar.

 t u:  Apruebas o repruebas el ciclo escolar.

 r:  Estoy en Guadalajara.

 s:  Estoy en Monterrey.

 r s: Estoy o en Guadalajara o en Monterrey.

Ya que, como es evidente, no es posible que una persona se encuentre en ambos lugares al mismo tiempo, por eso 
solo debe estar en un solo lugar.

E JEMPLO 

2.3 Proposiciones condicionales
Condicional o implicación ( )
Si p y q representan dos proposiciones simples, entonces la proposición 
compuesta p q solo será falsa cuando p, llamado antecedente o hipó-
tesis, sea verdadero y q, llamado consecuente o conclusión, sea falso.

Algunas formas de la condicional o implicación son: si … entonces, 
se sigue, por tanto, se infiere, de ahí que, se deduce, implica, entre otras.

La condicional no es conmutativa, es decir: 

p q q p

La tabla de verdad de la condicional se muestra en la tabla 2.6.
Este operador tiene diversos sentidos, pero uno de los más utilizados 

es cuando no es posible que p sea verdadera y que, al mismo tiempo, q 
sea falsa. En este caso, la única posibilidad es que la condicional sea falsa.

 t:  Llueve.

 u:  Me mojaré.

 t u:  Si llueve, entonces me mojaré.

 p:  Estudio.

 q:  Aprobaré el ciclo escolar.

 p q: Si estudio, entonces aprobaré el ciclo escolar.

E JEMPLO 

La condicional también se puede encontrar en alguna de las formas siguientes:

Si p entonces q.

Si p, q.

p entonces q.

q si p.

p es condición suficiente para q.

q es condición necesaria para p.

p implica a q.

Tabla 2.6 Tabla de verdad de 
la condicional

p q p q

V V V

V F F

F V V

F F V 
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27  Tablas de verdad

En todos los casos anteriores, p es el antecedente y q el consecuente; en otras palabras, todos se repre-
sentan p q.

Bicondicional o equivalencia ( )
Si p y q representan dos proposiciones simples, entonces la proposi-
ción compuesta p q, solo será verdadera cuando ambas proposicio-
nes tengan el mismo valor de verdad. 

Algunas formas de la bicondicional son: si y solo si, entonces y 
solo entonces, es idéntico, equivale a, es equivalente a, entre otras 
más.

La bicondicional es conmutativa, es decir:

p q � q p

La tabla de verdad de la bicondicional se muestra en la tabla 2.7.
Además, si p q y q p entonces p q.

 p:  Si un polígono tiene cuatro lados, entonces es un cuadrilátero.

 q:  Si un polígono es un cuadrilátero, entonces tiene cuatro lados.

 p q: Un polígono es cuadrilátero si y solo si tiene cuatro lados.

E JEMPLO 

2.4 Tablas de verdad
Aunque ya se han utilizado las tablas de verdad para obtener los valores de verdad de proposiciones simples 
y compuestas, aún no las hemos definido formalmente.

Una tabla de verdad, o tabla de valores de verdad, es una tabla que muestra el valor de verdad de una 
proposición compuesta, así como de algunos casos de proposiciones simples, cuando estas utilizan los ope-
radores lógicos de negación y doble negación, dependiendo de los operadores lógicos usados y de los valores 
de verdad de las proposiciones simples involucradas.

La tabla de verdad de todos los operadores lógicos vistos antes se muestra en la tabla 2.8.

Tabla 2.7 Tabla de verdad de 
la bicondicional

p q p q

V V V

V F F

F V F

F F V 

Las tablas de verdad fueron desarrolladas por el filósofo y matemático estadounidense Charles Sanders 
Peirce el año 1880, pero el formato más popular es el que introdujo el matemático y filósofo británico Ludwig 
Wittgenstein (1889-1951) en su obra Tractatus logico-philosophicus, publicado en 1921. Según Wittgenstein, el 
método de tablas de verdad sirve para determinar las condiciones de verdad de un enunciado; es decir su 
significado, en función de las condiciones de verdad de sus elementos atómicos. En otras palabras, la tabla de 
verdad nos dice en qué situaciones el enunciado es verdadero y en cuáles es falso.

Figura 2.2 Ludwig Josef Johann 
Wittgenstein (1889-1951).
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28 Capítulo 2 Lógica y cálculo proposicional

Construir la tabla de verdad de la proposición compuesta:

Mi tío no vino a dormir y no fue a trabajar.

E jemplo 

 1. Asignar variables proposicionales.

Dicha proposición está compuesta por las proposiciones simples:

p: Mi tío no vino a dormir.

q: Mi tío no fue a trabajar.

Solución

Tabla 2.8 Tabla de verdad de los operadores lógicos

p q p q ( p) ( q) p q p q p q p q p q

V V F F V V V V F V V

V F F V V F F V V F F

F V V F F V F V V V F

F F V V F F F F F V V

Construcción de una tabla de verdad
La importancia de las tablas de verdad radica en que gran parte del razonamiento lógico y de las relaciones 
entre proposiciones se pueden ilustrar a través de estas.

Para construir una tabla de verdad se efectúan los siguientes pasos:

1. Asignar variables proposicionales a cada proposición simple.
2. Obtener la traducción lógica de la proposición compuesta.
3. Obtener la cantidad de todas las combinaciones de valores de verdad de las premisas. La cantidad  

de valores de verdad está dado por la fórmula 2n, donde n es la cantidad de variables proposiciona- 
les de las premisas.

 Así:

Tabla 2.9

Núm. de variables proposicionales Combinaciones

1 2

2 4

3 8

4 16

5 32

6 64

n 2n

4. Asignar a cada variable proposicional los valores de verdad correspondientes.
5. Resolver las operaciones lógicas.
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29  Los argumentos: premisas y conclusiones

 2. Realizar traducción lógica.

Como se observa, las proposiciones p y q están negadas, por lo que su traducción lógica es:

p q

 3. Obtener la cantidad de combinaciones de valores de verdad.

Como se tienen dos variables proposicionales, la cantidad de combinaciones de valores de verdad será:

22 � 4

 4. Asignar valores de verdad a variables proposicionales.

En este caso, también se incluyen los valores de verdad de las proposiciones negadas.

Tabla 2.10

p q p q

V V F F

V F F V

F V V F

F F V V 

 5. Resolver las operaciones lógicas.

Tabla 2.11

p q p q p q

V V F F F

V F F V F

F V V F F

F F V V V 

Continúa

2.5 Los argumentos: premisas y conclusiones
Los razonamientos que estudia la lógica se llaman argumentos y su tarea consiste en descubrir qué es lo que 
hace que un argumento sea válido y constituya una inferencia correcta.

Por su parte, la inferencia es una actividad con la cual se afirma una proposición sobre otra y otras pro-
posiciones se aceptan como punto de partida del proceso.

Un argumento es un conjunto de una o más proposiciones, la última de las cuales se denomina conclu-
sión, mientras que las anteriores se llaman premisas.

De manera intuitiva, las premisas son la evidencia o las razones que deben convencernos de la veracidad 
de la conclusión, y el argumento es la concatenación de las primeras con la última.

Es habitual representar los argumentos haciendo un listado de las premisas y la conclusión, separando 
la última mediante una línea, como se observa a continuación:

 Proposición 1
 Proposición 2 
 �  

Premisas

 Conclusión
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30 Capítulo 2 Lógica y cálculo proposicional

Otra manera de representar los argumentos es haciendo un listado de las premisas y la conclusión, se-
parándolos con el símbolo , que significa: por tanto.

Conviene hacer notar que cada argumento tiene solo una conclusión. El siguiente es un ejemplo que 
contiene tres proposiciones simples (en dos premisas).

Si Alfredo es elegido presidente de la asociación de colonos, entonces Bernardo es elegido vicepresidente y Car-
los es elegido tesorero. Bernardo no es elegido vicepresidente, por tanto Alfredo no es elegido presidente de la 
asociación de colonos.

En este caso, la proposición: “Si Alfredo es elegido presidente de la asociación de colonos, entonces Bernardo es 
elegido vicepresidente y Carlos es elegido tesorero”, representa la primera premisa; mientras que la proposición 
“Bernardo no es elegido vicepresidente” es la segunda premisa. De estas dos premisas se obtiene una tercera pro-
posición: “Alfredo no es elegido presidente de la asociación de colonos”, que es la conclusión.

Ahora, hay que asignar variables proposicionales a cada proposición simple que aparece en el argumento; esto es:

 a: Alfredo es elegido presidente de la asociación de colonos.

 b: Bernardo es elegido vicepresidente.

 c: Carlos es elegido tesorero.

Enseguida, se hace la traducción lógica de dicho argumento y se escribe en alguna de las dos formas descritas, para 
representar los argumentos:

 1. (a b)  c

2. b

a

o  1. (a b)  c

 2. b

a

Por último, solo falta verificar si el argumento es válido; no obstante, esa cuestión se analizará en las siguientes 
secciones.

E JEMPLO 

Como se puede observar, en el ejemplo anterior fue fácil identificar las premisas y la conclusión; sin em-
bargo, no siempre resulta sencillo poder identificar las premisas y la conclusión de un argumento, para esto 
pueden ser útiles los adverbios que se listan en la tabla 2.12:

Tabla 2.12 Adverbios que indican premisas o conclusiones

Adverbios que indican premisa Adverbios que indican conclusión

Puesto que Por tanto

Dado que Se sigue que

Si Resulta que

Considerando Se infiere que

Puesto Luego

Como Tomando en cuenta

Ya que Por consiguiente

Por que En consecuencia

Aunque Se deduce que

Toda vez que Por lo que 
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Clasificación de argumentos: tautología, contradicción y contingencia
A partir del resultado de las tablas de verdad, es posible clasificar los argumentos en tres tipos: tautología, 
contradicciones y contingencias.

2.6 Métodos de demostración
La demostración es un razonamiento o serie de razonamientos que prueba la validez de un nuevo conoci-
miento mediante el establecimiento de sus conexiones necesarias con otros conocimientos.

Cuando un conocimiento queda demostrado, entonces se le reconoce como válido y es admitido dentro 
de la disciplina correspondiente. La demostración es, por tanto, el enlace entre los conocimientos recién ad-
quiridos y el conjunto de los conocimientos adquiridos con anterioridad. El enlace entre los conocimientos 
recién adquiridos y los adquiridos con anterioridad está constituido por una sucesión finita de proposicio-
nes que bien son postulados o bien son conocimientos cuya validez se ha inferido de otras proposiciones 
mediante operaciones lógicas perfectamente coordinadas. La demostración permite explicar unos conoci-
mientos por otros; por tanto, constituye una prueba rigurosamente racional.

Hoy día, hay diversos métodos para demostrar la validez de un argumento, entre los principales desta-
can: el de las tablas de verdad, la prueba formal de validez, la prueba de invalidez, la prueba condicional y 
la prueba indirecta.

Método de tablas de verdad
Cuando un argumento es una tautología se considera que este es válido, pero si es una contradicción es 
inválido; lo mismo ocurre con una contingencia.

Para obtener la validez de un argumento por tabla de verdad se efectúan los siguientes pasos: 

1. Asignar variables proposicionales a cada proposición simple.
2. Obtener la traducción lógica de las premisas.
3. Organizar el argumento en forma horizontal, uniendo las premi-

sas con el operador lógico �.
4. Obtener la cantidad de todas las combinaciones de valores de 

verdad de las premisas. La cantidad de valores de verdad está 
dado por la fórmula 2n, donde n es la cantidad de variables propo-
sicionales de las premisas.

Tabla 2.13

p p p

V V

F V 

E JEMPLO 

Tabla 2.14

p p p  p

V F F

F V F 

E JEMPLO 

Tabla 2.15

p q p p q

V V F V

V F F F

F V V V

F F V V 

E JEMPLO 

Una tautología es una propo-
sición que es verdadera para to-
dos los posibles valores de verdad 
de sus componentes simples.

Una proposición es llamada 
contradicción o absurdo si ofrece 
un resultado falso para todos los 
posibles valores de verdad de sus 
componentes simples.

Una proposición es una con-

tingencia cuando puede ser ver-
dadera o falsa, dependiendo de 
los valores de verdad de sus com-
ponentes simples.

Por lo general, se utilizan líneas en la 

parte inferior de la tabla de verdad para 

ayudar a identificar las variables lógicas 

involucradas en una operación lógica.

Nota
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32 Capítulo 2 Lógica y cálculo proposicional

5. Asignar a cada variable proposicional los valores de verdad correspondientes.
6. Resolver las operaciones lógicas, iniciando por las premisas y finalizando con la conclusión. El sím-

bolo de por tanto ( � ) equivale a la condicional .

De acuerdo con el argumento de un ejemplo anterior: “Si Alfredo es elegido presidente de la asociación de 
colonos, entonces Bernardo es elegido vicepresidente y Carlos es elegido tesorero”. “Bernardo no es elegido 
vicepresidente, por tanto Alfredo no es elegido presidente de la asociación de colonos”, verificar su validez por 
tablas de verdad.

E jemplo 

 1. Asignar variables proposicionales.

a: Alfredo es elegido presidente de la asociación de colonos.

b: Bernardo es elegido vicepresidente.

c: Carlos es elegido tesorero.

 2. Realizar traducción lógica.

a. (a b) c

b b

a

 3. Organizar argumento.

{[(a b) c] b} a

 4. Obtener la cantidad de combinaciones de valores de verdad.

Como en este caso se tienen tres variables proposicionales, la cantidad de combinaciones de valores de 
verdad será: 23 � 8.

 5. Asignar valores de verdad a variables proposicionales.

Tabla 2.16

a b c {[(a b) c] b} a

V V V V V V F F

V V F V V F F F

V F V V F V V F

V F F V F F V F

F V V F V V F V

F V F F V F F V

F F V F F V V V

F F F F F F V V 

 6. Resolver las operaciones lógicas.

Tabla 2.17

a b c {[(a b) c] b} a

V V V V V V V V F F V F

V V F V V V F F F F V F

V F V V F F F V F V V F

Solución

www.full-ebook.com
Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)

lOMoARcPSD|5154029

https://www.studocu.com/co?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=matematicas-discretas


33  Métodos de demostración

V F F V F F F F F V V F

F V V F V V V V F F V V

F V F F V V F F F F V V

F F V F V F V V V V V V

F F F F V F F F F V V V

Como el argumento es una tautología, entonces se considera que es válido.

Considerar el siguiente argumento:

“Si Enrique estudia, entonces aprobará lógica y geometría. Enrique no aprobó lógica, en consecuencia, Enrique no 
estudió y no aprobó geometría”.

Verificar su validez por tablas de verdad.

E jemplo 

 1. Asignar variables proposicionales.

e: Ernesto estudia.
l: Aprobará lógica.
g: Aprobará geometría.

 2. Realizar traducción lógica.

a. e (l g)
b. l

( e g)

 3. Organizar argumento.

{[e  (l g)] l} ( l g)

 4. Obtener la cantidad de combinaciones de valores de verdad.

Como se tienen tres variables proposicionales, la cantidad de combinaciones de valores de verdad será: 
23 � 8.

 5. Asignar valores de verdad a variables proposicionales.

Tabla 2.18

e l g {[e (l g)] l} ( e g)

V V V V V V F F F
V V F V V F F F V
V F V V F V V F F
V F F V F F V F V
F V V F V V F V F
F V F F V F F V V
F F V F F V V F F
F F F F F F V V V

Solución
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34 Capítulo 2 Lógica y cálculo proposicional

 6. Resolver las operaciones lógicas.

Tabla  2.19

e l g {[e (l g)] l} ( e g)

V V V V V V V V F F V F F F
V V F V F V F F F F V F F V
V F V V F F F V F V V F F F
V F F V F F F F F V V F F V
F V V F V V V V F F V V F F
F V F F V V F F F F V V V V
F F V F V F F V V V F F F F
F F F F V F F F V V V V V V

Como el argumento es una contingencia, entonces se considera como inválido.

Continúa

Prueba formal de validez
Cuando el argumento tiene más de tres proposiciones simples diferentes no es fácil determinar la validez o 
invalidez de un argumento mediante tablas de verdad, pues resultaría bastante tedioso hacer dicha tabla de 
verdad, además de que se puede incurrir en errores involuntarios.

Por ese motivo, el método más conveniente para obtener la validez de los argumentos es la prueba 
formal de validez, la cual utiliza reglas válidas, como las reglas de inferencia y las reglas de reemplazo o 
equivalencia.

Pero, antes de utilizar las reglas de inferencia y las reglas de reemplazo o equivalencia, primero es nece-
sario conocer su definición y sus aspectos fundamentales.

Reglas de inferencia
Las reglas de inferencia son formas de argumentos cuya validez puede ser demostrada por tablas de verdad; 
además, estas reglas permiten establecer conclusiones muy bien formadas y válidas a partir de otras premi-
sas. En general son usadas para analizar los argumentos con muchas premisas o cuando se tienen cuatro o 
más proposiciones simples.

 1. Modus ponens (MP)

Permite eliminar el antecedente siempre que la segunda premisa sea dicho antecedente.
p q

p

q

 2. Modus tollens (MT)

Permite eliminar el consecuente siempre y cuando esté negado en la segunda premisa, dando como 
consecuencia el antecedente negado.
p q

q

p
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35  Métodos de demostración

 3. Silogismo disyuntivo (SD)

Permite eliminar una de las dos disyunciones siempre que una de las dos esté negada en la segunda premisa.

p q

p

 q

p q

q

 p

 4. Silogismo hipotético (SH)

Permite eliminar el consecuente de la primera premisa y el antecedente de la segunda premisa, siempre 
y cuando sean iguales.
p q

q r

p r

 5. Adición (AD)

Permite agregar las variables proposicionales que se necesiten.
p 

p q

 6. Simplificación (SIM)

Permite eliminar las variables proposicionales que no se necesiten.
   p q  p q

p q

 7. Conjunción (CONJ)

Permite unir dos premisas diferentes.
p

q

p r

 8. Dilema constructivo (DC)

Permite eliminar los antecedentes de las dos condicionales, dando como resultado la disyunción de los 
consecuentes.
(p q) (r s)
p r

q s

 9. Dilema destructivo (DD)

Permite eliminar los antecedentes de las dos condicionales, dando como resultado la disyunción de la 
negación de los consecuentes.
(p q) (r s)

q s

p q

10.  Absorción (ABS)

Permite reescribir el consecuente, dando como resultado la conjunción del antecedente y consecuente.
p q

p  (p q)

Reglas de reemplazo o equivalencia
No siempre un argumento válido o inválido se puede comprobar por medio de las reglas de inferencia; por 
eso, se utilizan otras reglas conocidas como reglas de reemplazo o reglas de equivalencia, que sustituyen o 
reemplazan (según sea necesario) para lograr la demostración o prueba de validez del argumento.
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36 Capítulo 2 Lógica y cálculo proposicional

 1. Leyes de De Morgan (DM)

Permite cambiar de disyunción a conjunción y viceversa, negando 
ambas variables lógicas.

(p q) p q

(p q) p q

 2. Conmutación (CONM)

Permite cambiar el orden de las variables lógicas sin cambiar el ope-
rador lógico.
(p q)  (q p)
(p q)  (q p)
(p q)  (q p)

 3. Doble negación (DN)

Si la negación de cualquier proposición p verdadera es falsa, entonces cuando se vuelve a negar esta será 
nuevamente verdadera y viceversa.

( p) p

 4. Distribución (DIS)

Permite distribuir la variable lógica de afuera y su operador lógico con las variables lógicas de dentro y 
su operador lógico.
p (q r) (p q) (p q)
p (q r) (p q) (p q)

 5. Tautología (TAU)

Permite unir dos variables lógicas en una sola.
(p p) p

(p p) p

 6. Asociación (ASO)

Permite agrupar diferentes formas de las variables lógicas, siempre y cuando sea el mismo operador 
lógico.
p (q r) (p q) r

p (q r) (p q) r

 7. Implicación material (IMP)

Permite cambiar de disyunción a condicional y viceversa.
(p q) ( p q)

 8. Transposición (TRAN)

Permite conmutar las variables lógicas de la condicional negando cada una de estas.
(p q)  ( q p)

 9. Exportación (EXP)

Permite cambiar de conjunción a condicional y viceversa, modificando su agrupación.
[(p q) r]  [p  (q r)]

10. Equivalencia material (EM)

Permite reescribir la bicondicional.
(p q)  [(p q) (q p)]
(p q)  [(p q) ( p q)]

Se utiliza el símbolo  para indicar 

la equivalencia de las proposiciones 

y no confundirlo con el símbolo , 

aunque lógicamente sean equiva-

lentes.

Nota
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Pasos para demostrar la validez de un argumento
La prueba formal de validez consiste en deducir la conclusión del argumento en función de sus premisas, 
esto es, que las premisas infieran la conclusión.

A fin de que una demostración, por la prueba formal de validez, resulte perfectamente clara, se deben 
seguir los siguientes pasos:

1. Asignar variables proposicionales a cada proposición simple.
2. Realizar la traducción lógica de las premisas.
3. Organizar el argumento con sus premisas en forma vertical, escribiendo antes de cada premisa un 

número de premisa consecutivo.
4. Utilizar las reglas de inferencia y/o de reemplazo que conduzcan a nuevas premisas (inferencias). 

Estas siempre deben ser antecedidas por un nuevo número de premisa. Al utilizar las reglas se debe 
escribir su abreviatura y el número o números de las premisas de las que se ha deducido.

5. El proceso de inferencia termina cuando se llega a la conclusión del argumento.

Además del proceso anterior, también es necesario considerar algunas condiciones para la demostración:

1. Utilizar todas las premisas.
2. Utilizar todas las nuevas premisas obtenidas.
3. Es posible utilizar las premisas las veces que sean necesarias.

Para entender el proceso descrito antes, se verá un par de ejemplos más detallados.

Considerar el siguiente argumento: “Si la ley no fue aprobada, entonces la constitución del país queda sin modi-
ficaciones. Si la constitución del país queda sin modificaciones no se puede elegir nuevos diputados. O se eligen 
nuevos diputados o el informe del presidente del país se retrasará. El informe no se retrasó un mes. Por lo que la 
ley fue aprobada”.

Verificar su validez por la prueba formal de validez.

E jemplo 

 1. Asignar variables proposicionales.

l:  La ley fue aprobada.

c:  La constitución del país quedará sin modifica-
ciones.

d:  Se pueden elegir nuevos diputados.

i:  El informe del presidente se retrasará un mes.

 2. Realizar traducción lógica.

l c

c d

d i

i

l

 3. Organizar argumento.

1. l c

2. c d

3. d i

4. i

l

 4. Utilizar las reglas de inferencia y/o equivalencia.

1. l c

2. c d

3. d i

4. i

l

5. d SD 3,4

6. c MT  2,5

7. l MT  1,6

 5. Como se llega a la conclusión, el proceso de infe-
rencia termina.

Solución
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38 Capítulo 2 Lógica y cálculo proposicional

Este proceso intenta obtener la conclusión mediante el uso de las reglas citadas antes. La premisa 5 se 
obtiene de las premisas 3 y 4, por un silogismo disyuntivo. En tanto, la premisa 6 se deduce de las premisas 
2 y 5 por un modus tollens. Por último, la premisa 7 se obtiene de las premisas 1 y 6, también por un modus 
tollens.

Ya que en este punto se obtiene la conclusión, aquí termina el proceso de inferencia, lo que indica que el 
argumento es válido.

Considerar el siguiente argumento: “Si el tiempo es agradable, entonces el cielo está despejado. Si el cielo está 
despejado, entonces iré de día de campo. Si el tiempo es agradable, entonces iré de día de campo implica que si 
el cielo está despejado entonces nadaré en el río. Si el tiempo es agradable, entonces nadaré en el río implica que 
me broncearé todo el cuerpo. Por tanto, me broncearé el cuerpo”.

Verificar su validez por la prueba formal de validez.

E jemplo 

 1. Asignar variables proposicionales.

a: El tiempo es agradable.

d: El cielo está despejado.

c: Iré de día de campo.

n: Nadaré en el río.

b: Me broncearé el cuerpo.

 2. Realizar traducción lógica.

a d

d c

(a c)  (d n)

(a n) b

b

 3. Organizar argumento.

1. a d

2. d c

3. (a c)  (d n)

4. (a n) b

b

 4. Utilizar las reglas de inferencia y/o equivalencia.

1. a d

2. d c

3. (a c)  (d n)

4. (a n) b

b

5. a c SH 1,2

6. (d n) MP 3,5

7. (a n) SH 1,6

8. b MP 4,7

 5. Como se llega a la conclusión, el proceso de infe-
rencia termina.

Solución

Verificar la validez del siguiente argumento por la prueba formal de validez, dada su traducción lógica:

 2. Traducción lógica.

( h i)  (j k)

( l m)  (k n)

E JEMPLO 

La premisa 5 se obtiene de las premisas 1 y 2 por un silogismo hipotético. La premisa 6 se deduce de las 
premisas 3 y 5 por un modus ponens, mientras que la premisa 7 se deduce de las premisas 1 y 6, también 
por un silogismo hipotético. Por último, la premisa 8 se obtiene de las premisas 4 y 7 por un modus ponens.

Ya que en este punto se obtiene la conclusión, aquí termina el proceso de inferencia, lo que indica que el 
argumento es válido.

En ocasiones se requiere verificar la validez de un argumento, del cual ya se da su traducción lógica. En 
este caso se ahorran los dos primeros pasos del proceso de verificación de la validez de dicho argumento. 

www.full-ebook.com
Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)

lOMoARcPSD|5154029

https://www.studocu.com/co?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=matematicas-discretas


39  Métodos de demostración

(h l)  (l h)

( l m) c

j n

 3. Organizar argumento.

1. ( h i)  (j k)

2. ( l m)  (k n)

3. (h l)  (l h)

4. ( l m) c

j n

 4. Utilizar las reglas de inferencia y/o equivalencia.

 1. ( h i)  (j k)

 2. ( l m)  (k n)

 3. (h l)  (l h)

 4. ( l m) c

j n

 5. l m SIM  4

 6. l SIM  5

 7. h l SIM  3

 8. k n MP  2,5

 9. h MT  6,7

10. h i AD  9

11. j k MP  1,10

12. j n SH 11,8

 5. Como se llega a la conclusión, el proceso de infe-
rencia termina aquí.

Continúa

En este caso, la premisa 5 se obtiene de la simplificación de la premisa 4; la premisa 6 de la simplificación 
de la premisa 5; la premisa 7 de la simplificación de la 3. Mientras que la premisa 8 de las premisas 2 y 5, por 
un modus ponens. La premisa 9 de un modus tollens de las premisas 6 y 7. La premisa 10 se obtiene al hacer 
una adición a la premisa 9. La premisa 11 se obtiene de las premisas 1 y 10 por un modus ponens y la premisa 
12 de las premisas 11 y 8, por un silogismo hipotético.

Ya que en este punto se obtiene la conclusión, aquí termina el proceso de inferencia, lo que indica que el 
argumento es válido.

Prueba de invalidez
Este método también se conoce como prueba por asignación de valores. Está muy relacionado con el método 
de tablas de verdad, la diferencia consiste en que en lugar de construir la tabla de verdad para el argumento, 
la demostración de la invalidez se hace de tal modo que se asignan valores de verdad a las proposiciones 
simples, de modo que las premisas sean verdaderas y la conclusión falsa; es decir, se dan valores a la con-
clusión tal que su resultado sea falso y luego se trata de utilizar esos valores de verdad en los antecedentes, 
junto con la combinación de estos, según sea la conveniencia.

Para obtener la invalidez de un argumento por el método de la prueba de invalidez se efectúan los si-
guientes pasos:

1. Asignar variables proposicionales a cada proposición simple.
2. Obtener la traducción lógica de las premisas.
3. Organizar el argumento de forma horizontal, uniendo las premisas con el operador lógico .
4. Asignar valores de verdad a la conclusión, de tal manera que esta resulte falsa.
5. Tomando en cuenta los valores de verdad asignados a la conclusión, hacer que las premisas del 

argumento sean verdaderas, resolviendo las operaciones lógicas indicadas. El símbolo de por tanto  
( ) equivale a la condicional .
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40 Capítulo 2 Lógica y cálculo proposicional

Se pretende demostrar la invalidez del siguiente argumento por la prueba de invalidez: “Si llueve entonces me 
mojo. Si sale el Sol entonces me pondré ropa ligera. Me mojo o sale el Sol. Por tanto, llueve o me pongo ropa 
ligera”.

E jemplo 

 1. Asignar variables proposicionales.

l: Llueve.

m: Me mojo.

s: Sale el Sol.

r: Me pondré ropa ligera.

 2. Realizar traducción lógica.

1. l m

2. s r

3. (m s)

(l r)

 3. Organizar argumento.

[(l m)  (s r)] (m s)]  (l r)

 4. Asignar valores a la conclusión para que sea falsa.

   [(1 n ) (s c)]  (n  s)]  (l  r)

     

        

                  

F F

F

 5. Hacer que las premisas sean verdaderas, tomando 
en cuenta los valores asignados a la conclusión.

[(1 m ) (s r)]  (m  s)]   (l  r)

 F        V F        F V        F F        F

 V V V F

  V

   V

    F

Como se puede observar, las premisas son verdaderas 
y la conclusión es falsa, por lo que el argumento es 
inválido.

Solución

La prueba de invalidez también se puede utilizar directamente para la traducción lógica del argumento.

Demostrar la invalidez del siguiente argumento por el método de la prueba de invalidez, dada su traducción 
lógica.

E jemplo 

 2. Traducción lógica.

 1. a  (b c)

 2. b  ( c d)

 3. (c d) e

a e

 3. Organizar argumento.

{[a  (b c)] [b  ( c d)]} (c d) e]   a e

 4. Asignar valores a la conclusión para que sea falsa.

{[a  (b c)] [b  ( c d)]} e]  a e

                                                          

V        F

F

Solución
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41  Métodos de demostración

Prueba condicional
Este método se aplica solo a argumentos que tengan como conclusión una condicional; en otros casos no 
sería posible utilizarlo, ya que el antecedente de la condicional resulta ser una premisa más, mientras que 
la conclusión se determina como una nueva conclusión a la cual se debe llegar con una prueba formal de 
validez.

Para demostrar la validez de un argumento por el método de la prueba condicional se deben seguir los 
siguientes pasos:

1. Asignar variables proposicionales a cada proposición simple.
2. Obtener la traducción lógica de las premisas.
3. Organizar el argumento con sus premisas en forma vertical, escribiendo antes de cada premisa un 

número de premisa consecutivo.
4. El antecedente de la conclusión se convierte en una premisa más, escribiendo a su derecha PC, para 

indicar que la premisa obtenida es por prueba condicional, y se deja el consecuente como la conclu-
sión.

5. Utilizar el procedimiento de la prueba formal de validez tomando en cuenta la nueva conclusión.
6. El proceso de inferencia concluye cuando se llega a la nueva conclusión del argumento.

Para entender este proceso, se analiza un ejemplo con mayor detalle.

 5. Hacer que las premisas sean verdaderas, tomando en cuenta los valores asignados a la conclusión.

{[a  (b c)] [b  ( c d)]} (c d) e] a e

 V  F F F V F F F F V F

  V F F F

  V V V

  V

  V

  F

Como se puede observar, las premisas son verdaderas y la conclusión es falsa, por lo que el argumento es inválido.

Continúa

Demostrar la validez del siguiente argumento por el método de la prueba condicional: “Si salgo temprano de 
trabajar, entonces iré a la fiesta. Si voy a la fiesta, entonces veré a la chica que me gusta. Si veo a la chica que me 
gusta, entonces bailaré toda la noche. Por lo que si salgo temprano de trabajar, entonces bailaré toda la noche”.

E jemplo 

 1. Asignar variables proposicionales.

t:   Salgo temprano de trabajar.

f:   Iré a la fiesta.

c:  Veré a la chica que me gusta.

b:  Bailaré toda la noche.

 2. Realizar traducción lógica.

t f

f c

c b

t b

 3. Organizar el argumento.

 1. t f

 2. f c

 3. c b

t b

Solución
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42 Capítulo 2 Lógica y cálculo proposicional

Si la conclusión está formada por varias condicionales, resulta necesario aplicar varias veces el paso 4, 
hasta que no quede ninguna condicional.

Demostrar la validez del siguiente argumento por el método de la prueba condicional: “Si estudio implica que 
sí apruebo lógica, entonces pasaré el semestre. Por tanto, si estudio, entonces aprobaré lógica implica que si 
estudio, entonces pasaré el semestre”.

E jemplo 

 1. Asignar variables proposicionales.

 e: Estudio.

 l: Aprobaré lógica.

 s: Pasaré el semestre.

 2. Realizar traducción lógica.

 e (l s)

(e l) (e s)

 3. Organizar el argumento.

 1. e  (l s)

  (e l) (e s)

 4. El antecedente de la conclusión se convierte en 
una premisa más y se deja el consecuente como 
la conclusión; las veces que sea necesario.

 1. e  (l s)

 2. e l  PC

 3. e  PC

s

 5. Utilizar la prueba formal de validez.

 1. e  (l s)

 2. e l PC

 3. e PC

s

 4. l s MP 1,3

 5. l MP 2,3

 6. s MP 4,5

 6. Como se llega a la nueva conclusión, el proceso 
de inferencia termina.

De esta manera se ha verificado la validez del argu-
mento.

Solución

 4. El antecedente de la conclusión se convierte en una 
premisa más y se deja el consecuente como la con-
clusión.

 1. t f

 2. f c

 3. c b

 4. t PC

b

 5. Utilizar la prueba formal de validez.

 1. t f

 2. f c

 3. c b

 4. t PC

b

 5. f MP 1,4

 6. c MP 2,5

 7. b MP 3,6

 6. Como se llega a la nueva conclusión, el proceso de 
inferencia termina.

De esta manera, se ha verificado la validez del argumento.

Continúa

Prueba indirecta
Este método también se conoce como prueba de reducción al absurdo. Mediante este, una demostración 
indirecta de validez para un argumento dado se construye como premisa adicional a la negación o la con-
tradicción de su conclusión, con lo que se deduce una contradicción explícita del conjunto aumentado de 
las premisas.
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43  Métodos de demostración

Por lo general, este método de demostración se utiliza cuando resulta complicado demostrar la validez 
de un argumento utilizando la prueba formal de validez.

Para demostrar la validez de un argumento por el método de prueba indirecta, se deben seguir los si-
guientes pasos:

1. Asignar variables proposicionales a cada proposición simple.
2. Obtener la traducción lógica de las premisas.
3. Organizar el argumento con sus premisas en forma vertical, escribiendo antes de cada premisa un 

número de premisa consecutivo.
4. Negar la conclusión escribiendo a su derecha PI, para indicar que la premisa es obtenida por prueba 

indirecta, e incluirla como una premisa más.
5. Del conjunto total de premisas, empleando las leyes lógicas, deducir una contradicción.
6. El proceso de inferencia concluye cuando se llega a dicha contradicción.

Para entender este proceso, a continuación se presenta un ejemplo más detallado.

Demostrar la validez del siguiente argumento por el método de la prueba indirecta: “Si el mar está tranquilo, en-
tonces el cielo está despejado y hace calor. Si el cielo está despejado o viajaré en lancha, entonces se verán las 
estrellas en la noche. Viajaré en lancha o el mar está tranquilo. Por tanto, se verán estrellas en la noche”.

E jemplo 

 1. Asignar variables proposicionales.

 t: El mar está tranquilo.

 d: El cielo está despejado.

 c: Hace calor.

 e: Se verán estrellas en la noche.

 l: Viajaré en lancha.

 2. Realizar traducción lógica.

 t  (d c)

(d c) e

(l t)

e

 3. Organizar el argumento.

 1. t  (d c)

 2. (d l) e

 3. (l t)

e

 4. Negar la conclusión.

 1. t  (d c)

 2. (d l) e

 3. (l t)

e

 4. e PI

 5. Deducir una contradicción.

 1. t  (d c)

 2. (d l) e

 3. (l t)

e

 4. e  PI

 5. (d l)  MT 2,4

 6. d l  DM 5

 7. l  SIM 6

 8. t  SD 3,7

 9. d c  MP 1,8

 10. d  SIM 9

 11. d  SIM 6

 12. d d  CONJ

6. Como la premisa 12 representa una contradicción, 
entonces termina el proceso de inferencia.

El proceso anterior indica que el supuesto e no es 
cierto y por consiguiente la conclusión e es válida.

Solución

Cabe señalar que el hecho de haber inferido en el ejemplo que d d representa solo una alternativa 
para la demostración de la validez del argumento. Pues, la validez también se puede demostrar si se puede 
inferir la contradicción de cualquier otra variable lógica que esté contenida en el argumento. 
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44 Capítulo 2 Lógica y cálculo proposicional

2.7 Inducción matemática
La inducción matemática es un método de demostración que se aplica sobre los conjuntos de los números 
enteros positivos �� o el de los números naturales �.

En el lenguaje coloquial o cotidiano, el término inducción hace referencia al hecho de que se deben ob-
tener conclusiones o resultados mediante un examen que va de lo general a lo particular. En este tema se 
mostrará cómo dicha palabra tiene un significado distinto, pues aquí generalizamos una propiedad, regla o 
condición utilizando fórmulas, que llamaremos fórmulas inductivas.

Se dará inicio con un ejemplo intuitivo, el cual dará idea general acerca de qué es la inducción matemá-
tica y cómo aplicarla.

Intuitivo

A este ejemplo lo llamaremos: “efecto dominó”. La figu-
ra 2.3 muestra, en la secuencia inicial, las primeras cinco 
fichas de un dominó compuesto por n fichas; como se 
puede ver, las fichas están dispuestas en forma vertical. 
En la segunda secuencia se empuja la primera ficha ha-
cia la derecha, la cual origina un “efecto dominó”; esto 
se puede considerar la base de la inducción, ya que se 
da un empujón inicial que pone en movimiento todo el 
proceso.

Al caer la primera ficha golpea a la segunda, la cual tam-
bién cae, como se observa en la tercera secuencia de 
la figura. Entonces, la intuición nos hace pensar que el 
proceso debe continuar; esto es, que al caer la segunda 
ficha golpea a la tercera, la cual cae y así sucesivamente 
hasta llegar a la n-ésima ficha y no quede ninguna ficha 
en forma vertical, como se ve en la cuarta secuencia de 
la figura.

Entonces, sabemos que las n fichas deben caer. Ahora 
bien, ¿cómo sabremos si la ficha n-ésima � 1 caerá como 
en la última secuencia de la figura 2.3? Como todas las 
fichas anteriores a la ficha n-ésima caen, entonces sabe-
mos que la ficha n-ésima � 1 también caerá.

E JEMPLO 

i)

ii)

iii)

iv)

v)

Figura 2.3 Efecto dominó.

Primer principio de inducción matemática
Consideremos una lista de proposiciones: p(1), p(2), p(3),…, con índices en los enteros positivos ��. Todas las 
proposiciones p(n) son verdaderas a condición que:

(B) p(1) sea verdadera.
(I) p(n � 1) es verdadera siempre que p(n) lo sea.

Nos referimos a (B), es decir al hecho de que p(1) es verdadera, como la base de la inducción, y nos referi-
mos a (I) como el paso inductivo. En la notación del cálculo proposicional, (I) equivale decir que:

La implicación p(n) p(n � 1) es verdadera n �
�
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45  Inducción matemática

Antes de analizar algunos ejemplos de cómo aplicar el primer principio de inducción matemática, es 
conveniente dar a conocer el siguiente concepto.

Notación sigma

Hay una abreviatura conveniente que se utiliza con frecuencia en conexión con las sumas. Esta es la letra 
griega  (sigma), debido a que la primera letra de la palabra suma es la letra s, y en griego esta equivale pre-
cisamente a  (sigma).

En matemáticas se utiliza la  para indicar la operación conocida como sumatoria. En general:

∑ = + + + +
=

a a a a ak n
k

n

1 2 3
1

El símbolo k debajo de la sigma indica dónde empezar la suma de los términos ai (en este caso 1), pero 
además se conoce como límite inferior. La n de la parte superior indica dónde detenerse o terminar, y se 
conoce como límite superior. La variable k recorre los valores enteros desde el límite inferior hasta el límite 
superior.

Siempre debe cumplirse que:

límite inferior ≤ límite superior

a a a a ak

k

∑ = + + + +
=

1 2 3 4
1

4

k n1 2 3 4 5
k

n
2 2 2 2 2 2 2

1
∑ = + + + + + +
=

k5 5 10 15 150
k

n

1
∑ = + + +
=

k k
1

1
1
2

1
6

1
12

1
20

k 1

4

∑ ( )+
= + + +

=

b b b b b b b bk
k

1 2 3 4 5 6 7
1

7

∑ = + + + + + +
=

k3 3 6 9 12 15 18 21 24
k 1

8

∑ = + + + + + + +
=

2 1 2 4 8 16k

k

1

1

5

∑ = + + + +−

=

k

k k

k

k

∑

∑

( )

( )( )

− = + + + +

− +
= + + + + +

=

=

3 2 1 4 7 10 13

1
2 1 2 1

1
3

1
3.5

1
5.7

1
7.9

1
9.11

1
11.13

1

5

1

6

E JEMPLO 

Ahora se verán con detalle algunos ejemplos de la aplicación del primer principio de inducción mate-
mática.

Demostrar por inducción que:

k n n n3 2 1
2

3
k

n
2

1
∑ ( )( )− = − ∀ ∈ +

=

E jemplo 

Se supone que p(n) es verdadera, es decir que el resultado es verdadero para n � k, para algún k � ��. Esto  
se conoce como hipótesis de la inducción. La parte derecha de la igualdad se conoce como fórmula in-
ductiva.

Solución

A continuación se presentan algunos ejemplos de la notación sigma:
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46 Capítulo 2 Lógica y cálculo proposicional

Nótese que p 1 1
1

2
3 1 12[ ] , de aquí que 1 � 1 es verdadera por inspección y esto establece la base de la 

inducción.

Ahora, supóngase que p(n) es verdadera para alguna n, esto es:

∑ ( )( ) ( )= − = −
=

p n k n n3 2
1

2
3

k

n
2

1

es verdadera.

Ahora se quiere probar que para p(n � 1) se tiene que:

p n k k k1 3 2
1 [ ]
2

3 1 1
k

n

1

2

es verdadera, tal como lo establece el paso inductivo. Además en este paso n toma el valor de k � 1.

Utilizando p(n) tenemos que:

∑ ∑ ( )[ ]( ) ( ) ( ) ( )− = − + + − = − + +
=

+

=

k k k k k k3 2 3 2 3 1 2
1

2
3 3 1

k

n

k

n

1

1

1

2

Para verificar p(n � 1) necesitamos comprobar que:

k k k k k
1

2
3 3 1

1

2
3 1 12 2( ) ( ) ( ) ( )− + + = + − +

Esto ya es un problema puramente algebraico, para lo cual se trabajará con el lado izquierdo de la igualdad; 
esto es:

k k k k k k

k k

k k

k k

k k

1

2
3 3 1

1

2
3 6 2

1

2
3 5 2

1

2
3 2 1

1

2
3 1 1 1

1

2
3 1 1

2 2

2

2[ ]

Entonces, p (n � 1) es verdadera siempre que p (n) lo sea. Por el primer principio de inducción matemática, se 
concluye que es verdadera  n � ��.

Demostración

No siempre es necesario el uso del símbolo de sumatoria para aplicar la inducción matemática, también 
puede utilizarse parte del desarrollo de la misma, como se muestra en los siguientes ejemplos.

Demostrar por inducción que: 

p n n
n n

( )
( )

= + + + + =
+

1 2 3
1

2

E jemplo 
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47  Inducción matemática

La n-ésima proposición p (n) es:

p n n
n n

( )
( )

= + + + + =
+

1 2 3
1

2

Nótese que p 1 1
1 1 1

2
( )

( )
= =

+
, donde 1 � 1. Así p(1) asegura que 1 � 1; es verdadera por inspección, tal como lo 

establece la base de la inducción matemática.

Para el paso inductivo, supongamos que p(n) es verdadera para algún n, esto es:

p n n
n n

( )
( )

= + + + + =
+

1 2 3
1

2

es verdadera.

Ahora, queremos probar que es verdadera para p(n � 1), y como en este paso n � k � 1:

p n k k
k n[ ]

( ) ( )
( ) ( )

+ = + + + + + + =
+ + +

1 1 2 3 1
1 1 1

2
es decir:

p n k k
k k

( ) ( )
( )( )

+ = + + + + + + =
+ +

1 1 2 3 1
1 2

2

es verdadera, tal como lo establece el paso inductivo.

Como p(n) es verdadera por hipótesis, trabajando con el lado izquierdo de la igualdad tenemos que:

k k
k k

k

k k k

k k

( )
( )

( )

( ) ( )

( )( )

+ + + + + + =
+
+ +

=
+ + +

=
+ +

1 2 3 1
1

2
1

1 2 1

2
1 2

2

Entonces, p(n � 1) es verdadera siempre que p(n) lo sea. Por el primer principio de inducción matemática, se 
concluye que p(n) es verdadera  n � ��.

Demostración

Johann Carl Friedrich Gauss, matemático y físico alemán, es considerado uno de los mejores 
matemáticos de todos los tiempos, al grado que en algunos ámbitos se le denomina el “Príncipe 
de las Matemáticas”.
 Cuando tenía 8 años y cursaba el equivalente a la educación primaria, su maestro le enco-
mendó el “ejercicio” de determinar  el resultado de sumar los números del 1 al 100; Gauss en 
menos de un minuto escribió en su pequeña pizarra la respuesta correcta: 5050.
 ¿Cómo obtuvo el resultado? Muy fácil, 1 � 100 es igual que 2 � 99, que 3 � 98, y así sucesi-
vamente; como hay 50 de estas sumas y cada una de estas operaciones suma 101, en total se tiene 
101 por 50, cuyo resultado es 5050.
 Entonces, la demostración anterior constituye una generalización de dicho “ejercicio”.

Figura 2.4 Johann Carl 
Friedrich Gauss (1772-1855).
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48 Capítulo 2 Lógica y cálculo proposicional

Demostrar por inducción que:

n n n( ) ( )+ + + + = +2 4 6 2 1

E jemplo 

La n-ésima proposición  es:
p n n n n( ) ( ) ( )= + + + + = +2 4 6 2 1

Nótese que p(1) � 2 � (1)(2), donde 2 � 2. Así p(1) asegura que 2 � 1(1 � 1) y como es verdadera por inspección, 
tal como lo establece la base de la inducción matemática. 

Para el paso inductivo, supongamos que p(n) es verdadera para algún n, esto es:

p n n n n( ) ( ) ( )= + + + + = +2 4 6 2 1

es verdadera.

Ahora, queremos probar que para p(n � 1), y como en este paso n � k � 1:

p n k k k k[ ]( ) ( ) ( ) ( ) ( )+ = + + + + + + = + + +1 2 4 6 2 2 1 1 1 1

es decir:

p n k k k k( ) ( ) ( ) ( )( )+ = + + + + + + = + +1 2 4 6 2 2 1 1 2

es verdadera, tal como lo establece el paso inductivo.

Como p(n) es verdadera por hipótesis, y trabajando con el lado izquierdo de la igualdad, tenemos que: 

k k k k

k k k

k k k

k k

( ) ( ) [ ] ( )

( ) ( )

( ) ( )

( )( )

+ + + + + + = + + + + + +

= + + +

= + + +

= + +

2 4 6 2 2 1 2 4 6 2 2 2 2

1 2 2

1 2 1

1 2

Entonces, p(n � 1) es verdadera siempre que p(n) lo sea. Por el primer principio de inducción matemática, se 
concluye que p(n) es verdadera  n � ��.

Demostración

Es importante hacer notar que no todas las demostraciones tienen que ver con sumas, también se puede 
aplicar la inducción para demostrar desigualdades, como se muestra en el siguiente ejemplo.

Demostrar por inducción que:
n n n2 5 1 5( )+ − ≤ ∀ ∈ +

E jemplo 

La n-ésima proposición p(n) es: n n2 5( 1) 5+ − ≤  y nótese que:
p 1 2 5( )= ≤

Entonces, como p(1) es verdadera por inspección, esto es lo que establece la base de la inducción.

Ahora, supóngase que p(n) es verdadera para algún n; esto es:

n n2 5( 1) 5+ − ≤

es verdadera.

Demostración
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49 Resumen

En ocasiones, la base de la inducción cambia un poco en el sentido en que no necesariamente se debe 
cumplir p(1), pero puede ser cierto para algunos valores de p mayores que cierto valor de n.

Ahora, queremos probar que para p (n � 1):
k k2 5 1 1 5 1( )( ) ( )+ + − ≤ +

Esta debe ser verdadera como lo establece el paso inductivo. 

Simplificando:
k k2 5 5 5+ ≤ +

Como p (n) es verdadera por hipótesis, y trabajando con la desigualdad, tenemos que:

k k k k2 5 5 5 5 5

2 5

+ − ≤ − +

≤

Entonces, p(n � 1) es verdadera siempre que p(n) lo sea. Por el primer principio de inducción matemática se 
concluye que p(n) es verdadera  n � ��.

Demostrar por inducción que:
n n2 ! 4n < ∀ ≥

E jemplo 

La n-ésima proposición p(n) es 2n n! y nótese que p(1),  p(2) y p(3) no son verdaderas, y no necesitamos que 
sean verdaderas.

Ahora bien:
p 4 2 16 4! 244( )= = < =

Así que p(4) es válida, como lo establece nuestra base inductiva.

Ahora, supóngase que p(n) es verdadera para algún n, esto es:

2n n!

es verdadera.

Ahora, queremos probar que para p(n � 1) se tiene que:
p n k1 2 1 !k 1( ) ( )+ = < ++

tal como lo establece el paso inductivo. Utilizando p(n), se multiplican ambos lados de la desigualdad por 2, 
para obtener n  4:

k k k k2 2 2 2 ! 1 ! 1 !k k 1( )( ) ( ) ( )( ) ( )= < < + = ++

Entonces, p(n � 1) es verdadera siempre que p(n) lo sea. Por el primer principio de inducción matemática se 
concluye que p(n) es verdadera n 4∀ ≥ .

Demostración

Resumen
Cuando se desea establecer una verdad, o se quiere convencer a alguien de que una posición o idea son co-
rrectas, por lo general se recurre a un razonamiento o se presentan evidencias que lo respaldan.

Este razonamiento o evidencia presentada con el propósito de demostrar algo constituye un argumento. 
Entonces, un argumento es un conjunto de dos o más proposiciones simples, la última de las cuales se de-
nomina conclusión, mientras que las anteriores se llaman premisas.
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50 Capítulo 2 Lógica y cálculo proposicional

Las premisas son la evidencia o razones que deben convencer acerca de la veracidad de la conclusión. 
Así, el argumento es la concatenación de las primeras con la última.

La lógica estudia las formas del pensamiento desde el punto de vista de la estructura de los argumentos; 
esto es, analiza las relaciones entre las proposiciones y no el contenido de estas; en particular, se analiza la 
veracidad o falsedad de un razonamiento.

Existen diversos métodos para demostrar la validez de un argumento, si se tienen pocas proposiciones 
(dos o máximo tres), se utiliza el método por tablas de verdad. Pero, si se tienen más de tres proposicio- 
nes simples se debe hacer uso de otros métodos, como la prueba formal de validez, la prueba de invalidez, 
la prueba condicional o la prueba indirecta.

 2.1 ¿Cuáles de las siguientes oraciones son proposi-
ciones? Justificar la respuesta.

 a) El uranio es un elemento radiactivo.

 b) ¡Camina rápido!

 c) 4 � y � 2x

 d) ¿A qué hora llegaste?

 e) Es tarde.

 f) La casa de la esquina es azul.

 g) México limita al norte con Canadá.

 h) Haré lo que pueda.

 i) El agua es un líquido incoloro.

 j) La Luna gira alrededor de la Tierra.

 k) El Sol es el centro del Universo.

 l) El oro es muy lujoso y costoso.

 m) El Everest no es la montaña más alta de la Tierra.

 2.2 Traducir del lenguaje natural al simbólico las si-
guientes proposiciones:

 a) Si llueve, entonces me mojo.

 b)  Los meteorólogos no se equivocan.

 c) Si llueve o hace frío, entonces no es cierto 
que los meteorólogos no se equivocan.

 d) No es cierto que llueva y me mojo.

 e) Si llueve, entonces habrá buenas cosechas y 
abundantes frutas.

 f) Llueve, nieva y graniza.

 g) Si llueve y hace frío, entonces granizará.

 h) Iré al cine si y solo si no llueve y no hace frío.

 i) Iremos de vacaciones o a la playa o a la mon-
taña.

 j) No llueve o no me mojo.

 k) Si Pedro va al cine y Luis al circo, entonces to-
marán un taxi o el autobús.

 l) Si la Luna gira alrededor de la Tierra hay ma-
reas.

 m) Si hay estrellas o el cielo está sereno, enton-
ces no lloverá.

 2.3 Si las proposiciones simples p y q son falsas y r y s 
son verdaderas, ¿cuál es el valor de verdad de las 
siguientes proposiciones compuestas?

 a) (p r)

 b) p r

 c) q s

 d) p q

 e) ( p q)

 f) [(p q) r]

 g) ( p q) s

 h) p p r

 i) [(p q) ( r s)]

 j) [ ( p) ( q)]

 2.4 Sean las proposiciones simples:

 f: Como frutas y verduras

 s: Estoy sano

  Traducir del lenguaje simbólico al natural las si-
guientes proposiciones:

 a) f s

 b) f

 c) ( f)

 d) f s

 e) (f s)

 f) (f s)

 g) (f s)

 h) f (f s)

 i) (f s)

 j) ( f) (  s)

Problemas propuestos
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51Problemas propuestos

 2.5 Obtener la tabla de verdad de las siguientes pro-
posiciones compuestas:

 a) r s

 b) (r s)

 c) r s

 d) r (r s)

 e) (r r) s

 f) (r s) s

 g) (r s)

 h) ( r)  (s t)

 i) (r s)  (r t)

 j) r (s t)

 2.6 Traducir y verificar la validez de los siguientes ar-
gumentos por tablas de verdad.

 a) Si el proveedor surte las semillas, entonces si 
las semillas se siembran a tiempo, entonces las 
plantas nacen en agosto. Las plantas nacen 
en agosto. Por tanto, si el proveedor surte las 
semillas, entonces las semillas se siembran a 
tiempo. 

 b) Si el proveedor surte las semillas, entonces si 
las semillas se siembran a tiempo, entonces las  
plantas nacen en agosto. Las semillas se siem-
bran a tiempo. Por tanto, si el proveedor surte 
las semillas, entonces las semillas se siembran  
a tiempo. Luego, si las plantas no nacen en 
agosto, entonces el proveedor no surtió las 
semillas.

 2.7 Verificar la validez de los siguientes argumentos 
por tablas de verdad.

 a) 1. (a b)  (b c)

  2. b c

a

 b) 1. a  (b c)

  2. a c

b

 c) 1. a  (b c)

  2. b

  a c

 d) 1. a  ( b c)

  2. c a

  b a

 e) 1. a  (b c)

  2. c a

  3. a b

  c b

 f) 1. (a b)  (b d)

  2. a b

  d

 g) 1. a  (a b)

  2. a a

  a b

 h) 1. a  (b c)

  2. a  (b c)

  b c

 2.8 Verificar la validez de los siguientes argumentos 
por la prueba formal de validez.

 a) 1.  a b

  2. b d

  3. b d

  4. a

  5. (e f) c

(e f)

 b) 1. e m

  2. m s

  3. s t

  4. e

t

 c) 1. (m n)  (e f)

  2. e

n

 d) 1. y w

  2. y  (w v)

  3. w

v w

 e) 1. (t b)

  2. (b p)

  3. (t p)  (b j)

  4. (t j) k

k

 f) 1. a b

  2. a c

b

 g) 1. (w v) (c t) 
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52 Capítulo 2 Lógica y cálculo proposicional

  2. (w s)

s

 h) 1. (c t)  (d v)

  2. (t p)  (s c)

  4. (p k) t

c k

 i) 1. a b

  2. a c

  3. c d

d

 j) 1. a b

  2. a

b  c

 2.9 Verificar la invalidez de los siguientes argumen-
tos por la prueba formal de invalidez.

 a) 1. a b

  2. c d

  3. b c

a d

 b) 1. a  (b c)

  2. b  ( c d)

  3. (c d) e)

a e

 c) 1. a b

  2. b  (c d)

  3. c  (a e)

  4. a e

a e

 d) 1. a  (b c)

  2. b  ( a c)

  3. c  (a b)

  4. b

a c

 e) 1.  a b

  2. c d

  3. b c

a d

 f) 1. h  (i j)

  2. j  (s x)

  3. s

h x

 g) 1. (p j) k

  2. k  (j d)

  3. p  ( c j)

  4. (c p) d

j k

 2.10 Demostrar la validez de los siguientes argumen-
tos por la prueba condicional.

 a) 1. a  (b c)

b  (a c)

 b) 1. (a  b)  (a c)

a  (b c)

 c) 1. a b

  2. b c

  3. c d

a d

 d) 1. (a b)  (a c)

a  (b c)

 e) 1. (a b)

a  (a  b)

 f) 1. (m n)  (n e)

  2. (f m)  (e f)

( m e)  ( m e)

 g) 1. (m n)  (e f)

  2. (h m)  (i a)

  3. (i n)  (f a)

  4. e

h i

 h) 1. b p

  2. j k

  3. b  ( j d)

  4. d

p k

 i) 1. (j k)  ( d c)

  2. k c

  3. j c

d c

 j) 1. y w

  2. (w v) t

v  (y t)

 2.11 Demostrar la validez de los siguientes argumen-
tos por la prueba indirecta.

 a) 1. (a b)  (c d)
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53Problemas propuestos

  2. (b d) e

  3. e

( a  c)

 b) 1. (a b)  (c d)

  2. (c e)  ( f  g)

  3. (f h)  (a b)

e

 c) 1. (a b)  (c d)

  2. ( b e)  (d f)

  3. (e g)  ( f h)

  4. a  c

g  h

 d) 1. a  (b c)

  2. a c

c

 e) 1. (a b)  (c d)

  2. ( d e)  (a c)

d

 f) 1. (a b)  (c d)

(a c)  (b d)

 g) 1. (a b)  (c d)

( b d)  ( a c)

 h) 1. (a b)

(a b)  (a c)

 2.12 Demostrar por inducción que:

 a) k n2 2 ( 1) 2k n

k

n
1

1
∑ ( )= + − +

=

 b) 2 2 1k n

k

n
1

1
∑ = −−

=

 c) k
n n 1

4k

n
3

2 2

1
∑

( )
=

+

=

 d) 
k k

n

n

1

1 1k

n

1
∑
( )+

=
+=

 e) 2 3 3 1k n

k

n
1

1
∑ ( )= −−

=

 f) k k n! 1 ! 1
k

n

1
∑ ( )⋅ = + −
=

 g) n
n n( )( )

+ + + + =
+ +

1 2 3
1 2 1

6
2 2 2 2

 h) n
n n n

( )
( )( )

+ + + + − =
− +

1 3 5 2 1
2 1 2 1

3
2 2 2 2

i) 
n n

n

n( )( )⋅
+
⋅
+
⋅
+ +

− +
=
+

1

1 4

1

4 7

1

7 10

1

3 2 3 1 3 1

j) 
n n

n

n( )( )⋅
+
⋅
+
⋅
+ +

− +
=
+

1

1 3

1

3 5

1

5 7

1

2 1 2 1 2 1

k) 
n

n n

n n

n( )( )

( )

( )⋅
+
⋅
+
⋅
+ +

− +
=

+

+

1

1 3

2

3 5

3

5 7 2 1 2 1

1

2 2 1

2 2 2 2

 I. Verificar la validez del siguiente argumento por 
tablas de verdad.

  1. [(a b) c] d

 2. (b c)

a

 II. Verificar la invalidez del siguiente argumento por 
la prueba de invalidez.

 1. p  (q r)

 2. q  ( r s)

 3. [r  (q t)]  (p q)

 4. [u  (s t)] (t w)

 5. [(q r) u]  [u  (q r)]

 6. (q v) v

  u v

Problemas reto
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3

Relaciones

Objetivos

 Aplicar los conceptos de relaciones binarias desde un punto de vista discreto.

 Determinar diversas relaciones binarias sobre los elementos de uno o dos conjuntos.

 Efectuar diversas operaciones entre relaciones binarias.

 Definir las propiedades que satisface determinada relación binaria.

 Identificar tipos especiales de relaciones binarias (relaciones de equivalencia y órdenes parciales).
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55Definición y representación

3.1 Introducción
Las relaciones entre los elementos de dos o más conjuntos son frecuentes tanto en matemáticas como en 
sus aplicaciones, en especial en informática. 

Algunos ejemplos prácticos de relaciones son las de orden y divisibilidad entre números, las relaciones 
de equivalencia entre los datos de entrada de un programa respecto a la detección de posibles errores de 
programación (validación de programas), la relación de dependencia entre las distintas fases de producción 
en una industria o la agrupación de datos aislados en complejas bases de datos con relaciones de depen-
dencia entre sus campos.

Desde el punto de vista matemático, estas relaciones se pueden describir simplemente como subconjun-
tos de un cierto producto cartesiano.

De entre los diversos tipos de relaciones, las funciones pueden considerarse un caso especial en donde 
se interpreta que uno de los campos es el resultado de realizar determinada operación con el resto de estos.

Por su parte, las relaciones de equivalencia describen similitudes entre elementos con respecto a una 
propiedad particular. En tanto, las relaciones de orden establecen una jerarquía con respecto a un criterio 
fijado. Por último, las relaciones entre múltiples conjuntos son el fundamento matemático del modelo rela-
cional de bases de datos, que es el más extendido hoy día por su simplicidad, potencia y coherencia teórica 
y práctica.

3.2 Definición y representación
En la forma intuitiva, una relación es una comparación entre dos elementos de un conjunto; esta se expresa 
usando pares ordenados. Por tanto, en la forma abstracta, una relación, R, se define como un conjunto de 
pares ordenados. En este contexto, se considera que el primer elemento del par ordenado está relacionado 
con el segundo elemento del par ordenado.

Existen varias definiciones de par ordenado, aunque la que se considera más común es la formulada en 
1921 por Kazimierz Kuratowski, matemático y lógico polaco, la cual en la actualidad también es la más 
aceptada. La idea básica es muy sencilla: un par ordenado se distingue de una mera colección de dos ele-
mentos en que el primero está ordenado y el segundo no. Esto significa que para que un par sea ordenado 
basta que podamos distinguir su primer elemento del segundo. En otras palabras, basta poder reconocer 
que el par ordenado está relacionado de manera diferente con cada miembro.

Figura 3.1 Kazimierz 
Kuratowski (1896-1980).

Por lo general, la forma de relacionar ambos elementos es mediante una regla o característica que per-
mita establecer una relación entre dichos elementos; por ejemplo, decir que el segundo elemento es el doble 
que el primer elemento, como el par ordenado (2, 4), o que el primer elemento es igual al triple del segundo 
elemento, como el par ordenado (6, 2). 

Para iniciar, es necesario primero recordar el concepto de producto cartesiano, que se enuncia a conti-
nuación.

Producto cartesiano

Si A y B son dos conjuntos no vacíos, entonces el producto cartesiano A  B será el conjunto de todos los 
pares ordenados (a, b), donde a A y b B. Es decir:

A  B  {(a, b) t ∙ q ∙ a A b B}
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56 Capítulo 3 Relaciones

Sean los conjuntos A  {1, 2, 3} y B  {r, s}

Entonces:

A  B  {(1, r), (1, s), (2, r), (2, s), (3, r), (3, s)} y

B  A  {(r, 1), (r, 2), (r, 3), (s, 1), (s, 2), (s, 3)}

E JEMPLO 

Como se puede observar en el ejemplo anterior, A B  B A; es decir, en este caso el producto cartesiano 
no es conmutativo.

En el contexto de las relaciones binarias, el producto cartesiano juega el papel de conjunto universal o 
de universo de discusión.

Relación binaria

Una relación binaria R de un conjunto A en un conjunto B es un subconjunto del producto cartesiano A B, 
es decir:

R (A  B)

En este caso, A  B; por tanto, se dice que R es una relación del conjunto A en el conjunto B, o simple-
mente que R es una relación de A en B. Si el par ordenado (a, b)  R se escribe a R b y significa que a está en 
relación con b.

Además, si el par ordenado (a, b) R se escribe a R  b, para indicar que a no está relacionado con b. 
Si A B, es decir los dos conjuntos son iguales, o si simplemente se utiliza un único conjunto, se dice que 

R es una relación sobre el conjunto A, o simplemente que R es una relación sobre A. En este caso, se tiene 
que la relación R es un subconjunto de A  A. Es decir:

R (A  A)

Como se mencionó antes, los elementos de los conjuntos se relacio-
nan por una regla o característica. Hay tres formas diferentes para repre-
sentar la regla que permita relacionar a dichos elementos.

Véase un ejemplo en el cual se trata de expresar las condiciones que 
forman la relación, primero de una forma verbal y luego de una ma- 
nera formal.

Si A es un conjunto cualquiera de números naturales y se quiere establecer una relación, R, sobre el conjunto A, 
en la cual se tenga que el primer elemento es menor o igual al segundo elemento del par ordenado; entonces, las 
diferentes formas de representar o expresar a R son las siguientes:

 a) R  {(a, b) t ∙ q ∙ a b, a, b A}

 b) (a, b)  R si a b, a, b A

 c) a R b si a b, a, b A

E JEMPLO 

En el ejemplo, la primera es la forma más común para representar a las relaciones. Si no existe confusión 
con respecto a los elementos del conjunto, entonces se puede omitir que a, b A.

Cuando A B también se pueden utilizar las tres formas mencionadas, veamos a continuación cómo. 

Como siempre se trabajará con re-

laciones entre los elementos de dos 

conjuntos, se omitirá la palabra bina-
ria en el resto del capítulo.

Nota
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57  Definición y representación

Supóngase que A y B son dos conjuntos cualesquiera y que se quiere establecer una relación, R, del conjunto A en 
el conjunto B, en la cual el primer elemento es diferente al segundo elemento; entonces, dicha relación se puede 
expresar de las siguientes maneras:

 a) R {(a, b) t ∙ q ∙ a b, a A  b B}

 b) (a, b) R si a b, a A  b B

 c) a R b si a b, a A  b B

E JEMPLO 

De nueva cuenta, si no existe confusión con respecto a los elementos de los respectivos conjuntos se 
puede omitir que a A  b B.

Ahora, se verá un ejemplo de cómo obtener los pares ordenados de una relación a partir de la regla que 
permite relacionar los elementos de los conjuntos.

Sean el conjunto A {1, 2, 3, 4} y R una relación sobre 
el conjunto A definida como sigue:

R {(a, b) t ∙ q ∙ a | b (división entera)}

¿Cuáles pares ordenados forman dicha relación? 

Entonces, se tiene que el primer elemento debe dividir 
en forma entera al segundo elemento; es decir, con 
residuo igual a cero. Entonces:

R {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)}

En este caso, R es una relación sobre el conjunto A.

E jemplo Solución

Como se observa en los ejemplos anteriores, existe una analogía entre la regla para formar una relación 
y la forma de definir un conjunto por comprensión; así, en la relación que se obtuvo hay una analogía con la 
forma de definir un conjunto por extensión, esto se debe precisamente a que las relaciones son conjuntos.

En una relación R de un conjunto A en un conjunto B, se identifican dos conjuntos especiales, denomi-
nados dominio y codominio.

Dominio

Si R  (A  B) es una relación de A en B, el dominio de R, que se escribe Dom(R), es el conjunto de los elemen-
tos del conjunto A que están relacionados con elementos del conjunto B. El dominio se expresa de manera 
formal como sigue:

Dom(R) {a A t ∙ q ∙ (a, b)  R, para algún b B}

Sean los conjuntos A  {1, 2, 3, 4, 5} y B  {r, s, t}. Sea R una relación del conjunto A en el conjunto B definida como sigue:

R  {(1, r), (1, s), (2, s), (3, s)}

Entonces:

Dom(R)  {1, 2, 3}

E JEMPLO 

Una manera intuitiva de determinar el dominio de R es escribir los primeros elementos de los pares or-
denados de R sin repetirlos.

Codominio

Si R  (A  B) es una relación de un conjunto A en un conjunto B, el codominio (también conocido como ran-
go, imagen o recorrido) de R, se escribe Cod(R)y es el conjunto de los elementos de B que están relacionados 
con elementos del conjunto A. Es decir:
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58 Capítulo 3 Relaciones

Cod(R)  {b B t ∙ q ∙ (a, b)  R, para algún a A}

Sean los conjuntos A {x, y, z, w} y B {a, b, c, d} y R una relación del conjunto A en el conjunto B definida como 
sigue:

R {(x, a), (x, b), (y, b), (z, a)}

Entonces:

Cod(R)  {a, b}

E JEMPLO 

De nueva cuenta, una manera intuitiva para determinar el codomi-
nio de R consiste en escribir los segundos elementos de los pares orde-
nados de R sin repetirlos.

Las relaciones, además de ser representadas como conjuntos de pa-
res ordenados, también se pueden representar de otras formas.

Una representación gráfica adecuada facilita la comprensión del 
producto cartesiano de dos conjuntos por ende, también de las relacio-
nes, debido a eso se utilizan diversas maneras de representar las rela-
ciones.

Entre las formas más comunes de representar a las relaciones, ade-
más de los pares ordenados, se pueden mencionar las siguientes: 

1. Tablas Esta representación se utiliza con mucha frecuencia cuando se requiere expresar la relación 
de forma tabular. Pero, hay dos variantes de esta representación. En la primera, los elementos del 
primer conjunto corresponden a las filas o los renglones de la tabla y las columnas de la tabla a los 
elementos del segundo conjunto; en esta, los elementos relacionados se representan con una “palo-
mita” (✓) o un signo de bien u “OK”. En la segunda, las columnas corresponden a los conjuntos, y en 
esta se representan únicamente los elementos que están relacionados; esta forma es poco utilizada, 
ya que si R tiene muchos elementos, la tabla tiende a crecer de modo considerable.

2. Diagramas Es muy similar a los diagramas de Venn, donde los elementos relacionados se unen con 
flechas. En el caso de las relaciones es una representación muy poco utilizada.

3. Matriz de relación Es una representación matricial de una relación. En esta, los elementos del primer 
conjunto corresponden a las filas o los renglones de la matriz, mientras que las columnas pertenecen 
a los elementos del segundo conjunto. Si dos elementos están relacionados son representados con un 
1 (en la intersección fila-columna correspondiente) y con un 0 en caso contrario. 

4. Dígrafos Aunque más adelante se estudia con detalle qué es un dígrafo (grafo dirigido) y los elemen-
tos que lo constituyen, aquí se puede decir de manera intuitiva que es la representación gráfica de 
los elementos de un conjunto y las relaciones que existen entre estos. Por lo general, dicha represen-
tación se utiliza cuando R es una relación sobre A.

5. Cartesiana Es una representación que hace uso del plano en un sistema de ejes de coordenadas car-
tesianas. Por lo común, esta se utiliza cuando tanto los elementos del conjunto A como los del con-
junto B pueden ser representados en un plano con un sistema de coordenadas cartesianas, aunque 
más habitualmente se utiliza cuando R es una relación sobre A.

Con respecto a la relación R de los dos 

ejemplos anteriores, es importante 

hacer notar que no se ha dado la regla 

para formarla, aunque sí se han dado 

los elementos de la misma. En este 

caso, se debe trabajar con dicha rela-

ción tal cual y no preocuparse por la 

regla que la formó.

Nota

Sean los conjuntos A {1, 2, 3} y B {r, s} y R una relación del conjunto A en el conjunto B definida como sigue:

R {(1, r), (1, s), (2, r), (3, s)}

E JEMPLO 
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59  Operaciones con relaciones

Como se mencionó antes, la representación mediante grafos dirigidos y de forma cartesiana, se utiliza 
por lo general cuando R es relación sobre A.

Sean el conjunto A {1, 2, 3, 4} y R una relación sobre el conjunto A definida como sigue:

R {(a, b) t ∙ q ∙ a b}

De este modo:

R {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)}

Su representación como dígrafo y car-
tesiana se observan en la figura 3.3.

Figura 3.3 Representaciones como dígrafo 
y cartesiana para la relación R sobre A.

1 2

3

4

Dígrafo

4

1

2

3

41 2 3

Cartesiana

E JEMPLO 

En la representación como dígrafo, los puntos reciben el nombre de vértices y representan los elementos 
del conjunto A. 

Las flechas reciben el nombre de aristas dirigidas (o lados dirigidos) de a hacia b y representan el hecho 
de que (a, b) R; es decir, los elementos que están relacionados.

Las flechas que representan elementos de la forma (a, a), es decir los elementos que están relacionados 
consigo mismos, se llaman lazos.

3.3 Operaciones con relaciones
Puesto que las relaciones son conjuntos de pares ordenados, las nociones de unión, intersección, diferencia 
y diferencia simétrica de dos relaciones se obtienen de manera similar a las correspondientes para los con-
juntos.

Además de la representa-
ción por pares ordenados, 
en la figura 3.2 se observan 
las representaciones por 
tablas, diagrama y matriz de 
relación para la relación R 
anterior.

 Figura 3.2 Tres representaciones para la relación R de A en B.

Continúa
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1
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60 Capítulo 3 Relaciones

A continuación se hace una recapitulación breve de dichas operaciones sobre conjuntos, extendiendo sus 
definiciones a las relaciones, y al final se aborda un ejemplo donde se utilizan operaciones con relaciones.

Antes que nada, no hay que olvidar que el conjunto universal, en las relaciones, es el producto cartesiano 
A B o A A, dependiendo si es una relación de A en B o sobre A, respectivamente.

R S

U

Figura 3.4 Unión de dos relaciones.

Figura 3.7 Diferencia simétrica de 
dos relaciones.

R S

U

Figura 3.5 Intersección de dos 
relaciones.

R S

U

Figura 3.6 Diferencia de dos 
relaciones.

R S
U

Unión de relaciones

La unión de dos relaciones R y S, denotada por R S, es la relación cuyos 
pares ordenados son exactamente los pares ordenados de R o S, o en ambas 
relaciones. De manera formal se expresa como:

a(R S)b  a R b  a S b

En forma gráfica se puede representar como se ve en la figura 3.4.

Intersección de relaciones

La intersección de dos relaciones R y S, denotada por R S, es la relación 
cuyos pares ordenados son exactamente los pares ordenados que están 
tanto en R como en S. Desde el punto de vista formal, se expresa como:

a(R S)b  a R b  a S b

De manera gráfica se representa como se ve en la figura 3.5.

Diferencia de relaciones

La diferencia de dos relaciones R y S, denotada por R � S, es la relación que 
contiene exactamente aquellos pares ordenados de R que no están en S. De 
manera formal, se expresa como:

a(R 	 S)b  a R b  a S  b

En forma gráfica se representa como se ve en la figura 3.6.

La diferencia simétrica

La diferencia simétrica de dos relaciones R y S, denotada por R S, es la re-
lación que contiene todos los pares ordenados que están en R o en S, pero 
no en ambas relaciones. La diferencia simétrica equivale a la unión menos 
la intersección de ambas relaciones, es decir:

R S  (R S) � (R S)

De manera formal, se expresa como:

a(R S)b  (a R b  a S b) � (a R b  a S b)

De modo gráfico se representa como se ve en la figura 3.7.

Además, se tiene que si R y S son dos relaciones del conjunto A en el conjunto B, entonces: R S, R S,  
R S y R S son también relaciones del conjunto A en el conjunto B.
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61  Operaciones con relaciones

Sean los conjuntos A  {a, b, c} y B  {1, 2, 3} y sean R y S dos relaciones del conjunto 
A en el conjunto B definidas como sigue:

R {(a, 1), (a, 2), (b, 3)} y

S {(a, 2), (b, 3)}

Determinar R S, R S, R � S y R S.

R S  {(a, 1), (a, 2), (b, 3)}

R S  {(a, 2), (b, 3)}

R � S  {(a, 1)}

R S  {(a, 1)}

E jemplo Solución

Otra operación utilizada con frecuencia con conjuntos es el complemento. La cual, extendida a relacio-
nes, se define como:

Complemento de una relación

Sean A y B dos conjuntos. El complemento de una relación R son todos los 
pares ordenados del producto cartesiano A B (el cual juega el papel de 
conjunto universal) que no forman parte de la relación R; se denota como R’ 

o RC. De manera formal, se expresa como:

a(R’)b  a R  b

En forma gráfica, el complemento de una relación se puede representar 
como en la figura 3.8.

Sean los conjuntos A {a, b, c} y B  {x, y, z} y sean 
R y S dos relaciones del conjunto A en el conjunto B 
definidas como sigue:

R  {(a, x), (a, y), (b, z)}

S  {(a, y), (b, z)}.

Determinar R’ y S’.

Si A B  {(a, x), (a, y), (a, z), (b, x), (b, y), (b, z), (c, x),  
 (c, y), (c, z)}

Entonces:

R’  {(a, z), (b, x), (b, y), (c, x), (c, y), (c, z)} y

S’  {(a, x), (a, z), (b, x), (b, y), (c, x), (c, y), (c, z)}

E jemplo Solución

Una operación que se utiliza a menudo es el inverso de una relación, la cual no se aplica en conjuntos; 
en este caso, se define como:

Inverso de una relación

Sea R una relación de un conjunto A en un conjunto B, el inverso u opuesto de R, que se denota como R-1 o 
R , es la relación del conjunto B en el conjunto A, expresada de manera formal como:

R�1  {(b, a) t ∙ q ∙ (a, b)  R} 

Sean los conjuntos A  {2, 3, 4} y B  {3, 4, 5, 6, 7} y sea 
R una relación del conjunto A en el conjunto B, defini-
da como sigue:

R  {(a, b) t ∙ q ∙ a | b}
Determinar R 1.

Primero, es necesario determinar los elementos de R.

R  {(2, 4), (2, 6), (3, 3), (3, 6), (4, 4)}

Entonces:

R 1  {(4, 2), (6, 2), (3, 3), (6, 3), (4, 4)}

E jemplo Solución

De lo anterior se deduce que a R b  b R 1 a.
En muchos casos, también resulta muy importante determinar la cantidad de elementos de una relación.

Figura 3.8 Complemento de una 
relación.

R
R ’U
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62 Capítulo 3 Relaciones

Cardinalidad de una relación

La cardinalidad de una relación R de un conjunto A en un conjunto B se representa como: |R|, y constituye el 
número de pares ordenados distintos que forman la relación.

Si R  {(2, 4), (2, 6), (3, 3), (3, 6), (4, 4)}
Entonces:
|R|  5

E jemplo 

Una última operación sobre conjuntos, que también se aplica a las relaciones, es el conjunto potencia de 
una relación, la cual se define y explica a continuación.

Conjunto potencia de una relación

Sea R una relación de un conjunto A en conjunto B, el conjunto potencia de R, denotado como P(R), es el 
conjunto que contiene a todos los subconjuntos de R; es decir:

P(R)  {S t ∙ q ∙ S  R}

Además si |R| n, entonces |P(R)| 2n. Este valor indica la cantidad de elementos de P(R).

Sean el conjunto A  {1, 2, 3} y R una relación sobre el 
conjunto A definida como:

R  {(1, 1), (1, 2), (1, 3)}

Determinar |P(R)|.

Primero, |R|  3 y |P(R)|  23  8.

Esto significa que el conjunto potencia de R tiene 8 
subconjuntos:

P (R)  { , {(1, 1)}, {(1, 2)}, {(1, 3)}, {(1, 1), (1, 2)}, {(1, 1), (1, 3)}, 
{(1, 2), (1, 3)}, {(1, 1), (1, 2), (1, 3)}}

E jemplo Solución

3.4 Composición de relaciones
La composición de relaciones también constituye una operación frecuente, la única diferencia radica en que 
en vez de requerir uno o dos conjuntos se requieren tres (que pudiera ser el mismo para los tres conjuntos), 
además de dos relaciones con las características dadas en la siguiente definición.

Definición de composición de relaciones
Sean R una relación de un conjunto A en un conjunto B y S una relación de un conjunto B en un conjunto 
C. La composición de R y S, denotada S R, es una relación consistente de los pares ordenados (a, c), donde  
a A y c C, para los cuales existe un b B, tal que (a, b) R y (b, c) S; es decir, a R b y b S c. De manera for-
mal, se expresa como:

S R {(a, c) t ∙ q ∙ (a, b)  R  (b, c)  S, a A, b B, c C}

Sean los conjuntos A {1, 2, 3}, B {1, 2, 3, 4} y  
C {0, 1, 2} y sean las relaciones:

R {(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)} de A en B y

S {(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)} de B en C.

Determinar S R.

S R  {(1, 0), (1, 1), (2, 1), (2, 2), (3, 0), (3, 1)}

E jemplo Solución

Después de ver el ejemplo, nos cabe la pregunta: ¿S R  R S? Esto es: ¿la composición de relaciones es con-
mutativa? Antes de contestar esta interrogante, véase otro ejemplo.
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63  Composición de relaciones

Sean los conjuntos A {1, 2, 3}, B {2, 4, 6, 8} y  
C {s, t, u} y sean las relaciones:

R {(1, 2), (1, 6), (2, 4), (3, 4), (3, 6), (3, 8)} de A en B

S {(2, u), (4, s), (4, t), (6, t), (8, u)} de B en C.

Determinar S R.

S R {(1, u), (1, t), (2, s), (2, t), (3, s), (3, t), (3, u)}

E jemplo Solución

Con ambos ejemplos se puede afirmar que S R  R S; es decir, que la composición de relaciones no es 
conmutativa. Para reafirmar la respuesta, se verá otro ejemplo.

Sean los conjuntos A {a, b, c, d}, B {s, t, u, v} y  
C {1, 2, 3, 4, 5} y sean las relaciones:

R {(a, s), (a, t), (c, v), (d, u)} de A en B y

S {(s, 2), (t, 1), (t, 4), (u, 3)} de B en C

Determinar S R.

S R {(a, 1), (a, 2), (a, 4), (d, 3)}

E jemplo Solución

La composición de relaciones también puede representarse en forma gráfica. Esta representación ayuda a 
visualizar cómo se relacionan los pares ordenados de las relaciones.

En dicha representación gráfica, primero se escriben los conjuntos A, B y C, así como sus elementos de-
bajo de cada uno de los conjuntos. Luego, se unen con flechas aquellos elementos que están relacionados en 
las relaciones R y S, respectivamente. Acto seguido, se escriben los conjuntos A y C, debajo los elementos de 
cada uno y se unen con flechas aquellos elementos que inician en el conjunto A y terminan en el conjunto 
C. Por último, dichos elementos se escriben como pares ordenados.

Representar de manera gráfica la composición S R obtenida en el ejemplo anterior.

E jemplo 

Como se recordará, en el ejemplo anterior se tienen los conjuntos:

A {a, b, c, d}, B {s, t, u, v} y C {1, 2, 3, 4, 5}.

Y las relaciones:

R  {(a, s), (a, t), (c, v), (d, u)} de A en B y

S  {(s, 2), (t, 1), (t, 4), (u, 3)} de B en C

Desde el punto de vista gráfico, la com-
posición S R se representa como se ob-
serva en la figura 3.9.

Por tanto:

S R {(a, 1), (a, 2), (a, 4), (d, 3)}

Este es el mismo resultado obtenido en 
el ejemplo anterior.

Solución

R S
A B C

a

b

c

d

s

t

u

v

1

2

3

4

5

a

b

c

d

1

2

3

4

5

RS
A C

Figura 3.9 Representación gráfica de la composición de relaciones.

Pero el concepto de composición de relaciones también se puede extender a más de dos relaciones.
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64 Capítulo 3 Relaciones

Composición de tres relaciones
Sean R una relación de un conjunto A en un conjunto B, S una relación de un conjunto B en un conjunto 
C y T una relación de un conjunto C en un conjunto D. La composición de R, S y T constituye una relación 
consistente de los pares ordenados (a, d), donde a A y d D, y para los cuales existen un b B y un c C, 
tal que (a, b) R, (b, c) S y (c, d) T. Es decir: a R b, b S c y c T d. La composición de tres relaciones se denota 
como T S R, si R, S y T son relaciones. 

Además, se tiene que T (S R) (T S) R, lo que significa que la composición de más de dos relaciones es 
asociativa. 

Sean los conjuntos: A {a, b, c, d}, B {s, t, u, v},  
C {1, 2, 3, 4, 5} y D {*, #, }.

Sean las relaciones:

R {(a, s), (a, t), (c, v), (d, u)} de A en B,

S {(s, 2), (t, 1), (t, 4), (u, 3)} de B en C,

T {(2, *), (1, #), (4, ), (5, #)} de C en D

Determinar T S R y comprobar que T (S R)  (T S) R.

E jemplo 

El primer paso consiste en obtener T (S R). Se inicia 
determinando:

 S R {(a, 1), (a, 2), (a, 4), (d, 3)}

Después se determina:

 T (S R) {(a, #), (a, *), (a, )}

Ahora, se obtiene (T S) R. Para esto hay que determi-
nar en primera instancia:

 T S {(s, *), (t, #), (t, )}

y por último:

 (T S) R  {(a, #), (a, *), (a, )}

Como se observa, este resultado es igual al resultado 
anterior.

Solución

Por otra parte, las potencias de una relación R se pueden definir utilizando la composición de funciones.

Potencias de relaciones
Sean A un conjunto y R una relación sobre el conjunto A. La composición de la relación R consigo misma se 
denota como sigue:
 R R1

 R R  R2

 R R R  R R2  R3

 R R R R  R R3  R4

�
 R Rm�1  Rm

Y se dice que son las potencias de la relación dada.

Sean el conjunto A {a, b, c, d} y la relación R sobre el conjunto A definida como:

R {(a, a), (b, a), (c, b), (d, c)}
Encontrar las potencias Rm.

E jemplo 

Como R R R2, entonces:
R2  {(a, a), (b, a), (c, a), (d, b)}

Solución
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3.5 Propiedades de las relaciones
A continuación se definirán y presentarán algunos ejemplos de las principales propiedades de las relacio-
nes. Es importante destacar que dichas propiedades se utilizan, entre otras cosas, para clasificar las relaciones 
sobre un conjunto determinado.

Primero, se definen algunas relaciones que serán útiles a lo largo de esta sección.
Sean el conjunto A {1, 2, 3, 4} y las siguientes relaciones sobre A:

 R {(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)}
 S {(1, 1), (1, 2), (2, 1)}
 T {(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)}
 U {(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)}
 V {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4),(3, 3), (3, 4), (4, 4)}
 W {(3, 4)}

Relación reflexiva
A la relación R sobre un conjunto A se le conoce con el nombre de reflexiva; esto es, si (a, a) R, a A. Se 
expresa de manera formal como sigue:

R es reflexiva  a (a R a)

Lo anterior significa que para que una relación R sea reflexiva debe contener todos los elementos del 
conjunto A relacionados consigo mismos en R.

Determinar cuáles relaciones son reflexivas. En este caso, T y V son reflexivas, ya que todos los pa-
res ordenados de la forma (a, a) a A son elementos 
de T o de V, respectivamente; es decir, (1, 1,), (2, 2), (3, 3), 
(4, 4) son elementos de T o de V.

E jemplo Solución

Relación irreflexiva
A la relación R sobre un conjunto A se le conoce como irreflexiva si(a, a) R, a A; este tipo de relación se 
expresa de manera formal como sigue:

R es irreflexiva  a (a R  a)

Entonces, para que una relación sea irreflexiva no debe contener ninguno de los elementos del conjunto 
A relacionados consigo mismos en R.

Además, como R R2 R3, entonces:
R3 {(a, a), (b, a), (c, a), (d, a)}

Siguiendo con el proceso R R3 R4, entonces:
R4 {(a, a), (b, a), (c, a), (d, a)}

Pero, como R4 R3, y si se siguiera el proceso siempre se obtendría R3, por lo que se deduce que: 

Rm R3

Continúa
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66 Capítulo 3 Relaciones

Determinar cuáles relaciones son irreflexivas. En este caso, U y W son irreflexivas, ya que ninguno 
de los pares ordenados de la forma (a, a) a A son 
elementos de U o de W; esto es: (1, 1,), (2, 2), (3, 3) y (4, 4) 
no son elementos de U o de W.

E jemplo Solución

Por medio de tablas es fácil reconocer o determinar cuándo una relación es reflexiva o irreflexiva, basta 
con observar la diagonal principal de las mismas.

En el caso de que en la tabla todos los elementos de la diagonal estén marcados, se puede asumir que 
la relación es reflexiva (véase figura 3.10b); por el contrario, si ninguno de los elementos de la diagonal está 
marcado, entonces se asume que la relación es irreflexiva (véase figura 3.10c). Pero, si en la tabla solo algu-
nos de los elementos de la diagonal están marcados, entonces se considera que la relación no es reflexiva 
ni irreflexiva (véase figura 3.10a).

1

2

3

4

1 2 3 4R

1

2

3

4

1 2 3 4T

1

2

3

4

1 2 3 4U

a) b) c)

Figura 3.10 a) Relación que no es reflexiva ni irreflexiva. b) Relación reflexiva. c) Relación irreflexiva.

En las matrices de relación, si la diagonal principal tiene exclusivamente unos, representa una relación 
reflexiva; en caso contrario, si la diagonal tiene exclusivamente ceros representa una relación irreflexiva.

En los dígrafos, si todos los vértices tienen lazos, representa una relación reflexiva; por el contrario, si 
ningún vértice los tiene, entonces el dígrafo representa una relación irreflexiva.

Relación simétrica
Una relación R sobre un conjunto A es simétrica si (a, b)  R, lo que implica que (b, a)  R. La relación simé-
trica se expresa de manera formal como:

R es simétrica  a b (a R b  b R a)

Entonces, para que una relación R sea simétrica, todo par ordenado de R debe tener su inverso.

Determinar cuáles relaciones son simétricas. En este caso, S y T son simétricas, ya que todo par or-
denado (b, a) es elemento de S o de T siempre que  
(a, b) sea elemento de S o de T, es decir, cada par orde-
nado de S o T tiene su inverso.

E jemplo Solución

Relación antisimétrica
Una relación R sobre un conjunto A es antisimétrica si (a, b)  R y (b, a)  R, entonces a  b, a, b A. De ma-
nera formal, una relación antisimétrica se denota como:
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67  Propiedades de las relaciones

R es antisimétrica  a b (a R b  b R a  a  b)

Una forma equivalente de expresar esta relación es diciendo: si a b se tiene que a R  b o b R  a. Lo que 
de manera formal se denota:

R es antisimétrica  a b (a R  b  b R  a)

Pero, si todavía queda duda, para que una relación R sea antisimétrica ningún par ordenado de esta debe 
tener su inverso; por tanto, hay que olvidarse de los pares ordenados de la forma (a, a).

Determinar cuáles de las relaciones anteriores son  
antisimétricas.

Las relaciones antisimétricas son U, V y W, ya que en 
estas no hay pares de elementos (a, b) con a b, tales 
que (a, b) sean elementos de U, V o de W y (b, a) sean 
elementos de U, V o de W; es decir, ningún par orde-
nado de U, V o de W tienen su inverso, sin considerar a 
los pares ordenados de la forma (a, a).

E jemplo Solución

Gracias a las tablas es posible identificar con rapidez este tipo de relaciones. En este caso, aquí no deben 
importar los elementos de la diagonal, pues estos únicamente sirven como un eje de simetría, para verificar 
si cada par ordenado de la relación tiene su respectivo inverso.

En el caso de que la relación tenga la propiedad de simetría (véase figura 3.11b), todo par ordenado tiene 
su inverso, o si ningún par ordenado tiene su inverso, esto en el caso de que la relación tenga la propiedad de 
antisimetría (véase figura 3.11c).

No obstante, también puede darse el caso de que la relación no sea ni simétrica ni antisimétrica; en este 
caso, solo algunos elementos tendrán su inverso (véase figura 3.11a).

1

2

3

4

1 2 3 4R

a)

1

2

3

4

1 2 3 4T

b)

1

2

3

4

1 2 3 4U

c)

Figura 3.11 a) Relación ni simétrica ni antisimétrica.  b) Relación simétrica.  c) Relación antisimétrica.

En las matrices de relación, si los unos están dispuestos en forma simétrica con respecto a la diagonal 
principal, esto representa una relación simétrica. En caso contrario, si ninguno de los unos está dispuesto de 
forma simétrica con respecto a la diagonal principal, esto representa una relación antisimétrica.

En los dígrafos, si un vértice tiene una arista que sale a otro vértice, este último debe tener su corres-
pondiente arista de regreso desde ese vértice; en este caso, esto representa una relación simétrica. Pero, si 
un vértice tiene una arista que sale a otro vértice y este último no tiene una arista de regreso, entonces esto 
representa una relación antisimétrica.

Es importante destacar que estas dos propiedades pueden presentarse en la misma relación; sin embar-
go, esto no ocurre con la reflexividad e irreflexividad. Si una relación R posee elementos exclusivamente en 
la diagonal principal, entonces R tiene las propiedades de simetría y antisimetría al mismo tiempo.
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68 Capítulo 3 Relaciones

Relación transitiva
Una relación R sobre un conjunto A recibe el nombre de transitiva si ( a, b, c) A, donde (a, b) R  (b, c) R;  
esto es, (a, c) R. De manera formal esta se denota como:

R es transitiva  a b c (a R b  b R c a R c)

Determinar cuáles relaciones son transitivas. En este caso, se puede comprobar que U, V y W son 
relaciones transitivas, ya que si (a, b) son elementos 
de U, V o de W y (b, c) son elementos de U, V o de W; 
entonces (a, c) U, V o de W, respectivamente.

E jemplo Solución

La relación transitiva se representa en una tabla como se muestra en la 
figura 3.12.
Se sabe que la relación U es transitiva puesto que:

(3, 2)  U y (2, 1)  U  (3, 1)  U

(4, 2)  U y (2, 1)  U  (4, 1)  U

(4, 3)  U y (3, 1)  U  (4, 1)  U

(4, 3)  U y (3, 2)  U  (4, 2)  U

En una tabla no es fácil reconocer a simple vista si la relación es transitiva, 
por lo que es más conveniente utilizar la representación mediante un dígrafo.

Un dígrafo de una relación transitiva tiene la propiedad de que si existen 
aristas dirigidas de x a y y de y a z, también existe una arista dirigida de x a z, 
tal como se observa en el dígrafo de la figura 3.13.

Para comprobar la condición de transitividad de una relación como pares 
ordenados, hay que tener en cuenta que si a  b y si (a, b) R  (b, c) R, enton-
ces (a, c) R; en este caso, (a, c)  (b, c). Si b  c y (a, b) R  (b, c) R, entonces 
(a, c) R; en este caso, (a, c)  (a, b), por lo que no hay que verificar de manera 
explícita toda la condición en dichos casos.

Para comprobar la condición de transitividad, primero hay que eliminar los 
casos a  b y b  c y luego solo hay que verificar los pares ordenados restantes. 
Esto ahorrará una gran cantidad de comparaciones.

Extensión transitiva
Sea una relación R sobre un conjunto A, la extensión transitiva de R, denotada por R1, es la relación sobre A 
tal que R  R1; es decir, R1 contiene a R, y además si (a, b) R  (b, c) R, entonces (a, c) R1. 

Sean el conjunto A {a, b, c, d} y R una relación sobre 
el conjunto A definida como:

R {(a, b), (b, c), (c, b), (c, d)}

Determinar la extensión transitiva de R.

R1 {(a, b), (a, c), (b, b), (b, c), (b, d), (c, b), (c, c), (c, d)}

E jemplo Solución

1

2

3

4

1 2 3 4U

Figura 3.12 Tabla que representa 
una relación transitiva.

1 2

3

U

4

Figura 3.13 Relación transitiva 
representada por un dígrafo.
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69  Relaciones de equivalencia

Cerradura transitiva
Si R2 denota la extensión transitiva de R1, y en general Ri 1 denota la extensión transitiva de Ri, la cerradura 
transitiva de R, denotada por R*, es el conjunto unión de R, R1, R2,…, Rj.

De acuerdo con la definición anterior:

R* {R  R1  R2 … Rj–1  Rj}

Sin embargo, por definición de extensión transitiva se tiene que:

R  R1  R2  … Rj–1  Rj

Entonces:
R*  Rj

Hay que tener en cuenta que si R es una relación transitiva, entonces R1 R; si R1 es una relación tran-
sitiva entonces R2 R1; si R2 es una relación transitiva entonces R3 R2 y en general si Rj�1 es una relación 
transitiva, entonces R j Rj�1.

Así, se concluye que la cerradura transitiva R* de una relación R siempre deberá ser una relación transitiva.

Sean el conjunto A {a, b, c, d} y R una relación sobre 
el conjunto A definida como sigue:

R {(a, b), (b, c), (c, b), (c, d)}

Determinar la cerradura transitiva de R.

R1 {(a, b), (a, c), (b, b), (b, c), (b, d), (c, b), (c, c), (c, d)}

R2 {(a, b), (a, c), (a, d), (b, b), (b, c), (b, d), (c, b), (c, c), (c, d)}

Y como R2 es una relación transitiva, entonces:

R* R2 {(a, b), (a, c), (a, d), (b, b), (b, c), (b, d), (c, b),  
 (c, c), (c, d)}

E jemplo Solución

En la figura 3.14 se repre-
senta el proceso para obtener 
R* mediante dígrafos.

Figura 3.14 Proceso para obtener R*.

3.6 Relaciones de equivalencia
Para definir una relación de equivalencia, primero se debe establecer el concepto de partición de un conjun-
to, debido a que una partición puede generar dicha relación.

Partición de un conjunto
Una partición S de un conjunto A es una colección de subconjuntos disjuntos no vacíos de A que tienen a A 
como su unión; en otras palabras, la colección de subconjuntos Ai, i I (donde I es un conjunto de índices), 
forma una partición S del conjunto A si y solo si:

Ai ,i  I, A i A j   cuando i j y además

Ai
i I

a b

c

a b

c

R

d

a b

c d

a b

c d

R
1

R*
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70 Capítulo 3 Relaciones

Entonces, S {A1, A2,… , Ak} es una partición de A; por tanto:

A A1  A2  …  Ak

Los subconjuntos Ai reciben el nombre de bloques de la partición.

Sea el conjunto A {x t ∙ q ∙ x son letras del alfabeto} y sean los siguientes subconjuntos de A:

A1 {a, e, i, o, u}, 

A2 {w, c}, 

A3 {b, f, g, h, j, k, l}, 

A4 {m, n, ñ, p, q}, 

A5 {r, s, t, v}, 

A6 {x, y} y 

A7 {d, z}

Entonces:

S  {{a, e, i, o, u}, {w, c}, {b, f, g, h, j, k, l}, {m, n, ñ, p, q}, {r, s, t, v}, {x, y}, {d, z}}

O también

S  {A1, A2, A3, A4, A5, A6, A7}

Es una partición de A, ya que todos los subconjuntos Ai son no vacíos. Además, cualesquiera dos subconjuntos 
distintos son disjuntos. Por último, la unión de todos los subconjuntos da como resultado el conjunto A.

Por tanto:

A A1  A2  A3  A4  A5  A6  A7

E jemplo 

Los elementos del mismo bloque de una partición también se pueden representar con una barra sobre 
sí mismos, aunque esta representación es poco utilizada, ya que si el conjunto es numérico puede existir 
confusión con los elementos del bloque.

Sean el conjunto A {a, b, c, d, e, f, g, h} y S {{a, b}, {c, d, e}, {f}, {g, h}} una partición de A. 

En este caso, la partición S también se puede representar como:

{ }=S ab cde f gh, , ,

E jemplo 

Ahora, resulta conveniente ejemplificar esta representación de los bloques de una partición mediante el 
uso de valores numéricos.

Sean el conjunto A {2, 4, 6, 8, 10, 12} y S {{2, 4}, {6, 8, 10}, {12}} una partición de A. 

En este caso, si los elementos de los bloques de la partición S se representan con una barra sobre estos, dicha 
representación quedaría:

{ }=S 24, 6810, 12

Como se puede ver, hay una confusión entre los elementos de cada bloque.

E jemplo 
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71  Relaciones de equivalencia

En muchas ocasiones, una partición es útil para definir una relación R. Por tanto, el siguiente teorema es 
importante para definir relaciones generadas por una partición.

Teorema 3.1

Sea S una partición sobre un conjunto A. Se dice que a R b si para algún Ai en S,a  Ai b  Ai. Entonces, R es 
reflexiva, simétrica y transitiva.

Demostración

Sean A un conjunto y a  A. Además, sea S una partición de A. Por definición de partición, todo a A debe 
pertenecer a algún bloque Ai de S. Entonces, al obtener la relación R siempre va a ocurrir que (a, a) R a A.

Ahora, supóngase que (a, b) R, entonces tanto a Ai como b Ai ; esto es, pertenecen al mismo bloque Ai 
de S. Y como pertenecen al mismo bloque, entonces: (a, b) R y (b, a) R, lo que significa que R es simétrica.

Por último, supóngase que (a, b) R y (b, c) R, entonces tanto a Ai como b Ai ; esto es, pertenecen al 
mismo bloque Ai de S. Además, se tiene b Aj como c Aj, lo que indica que también pertenecen al mismo 
bloque Aj de S, pero como b debe pertenecer exactamente al único bloque de S, entonces se tiene que Aj  Aj. 
Por tanto, a como c deben ser parte de Ai y (a, c) R. Con esto se demuestra que R es transitiva.

Para aplicar el teorema 3.1 sobre una partición se efectúa el producto cartesiano de cada uno de los blo-
ques de la partición.

Sean A {a, b, c, d, e, f} y S {{a, c, e}, {b, f}, {d}} una partición de A. La relación R definida por el teorema 3.1 es:

R {(a, a), (a, c), (a, e), (c, a), (c, c), (c, e), (e, a), (e, c), (e, e), (b, b), (b, f), (f, b), (f, f), (d, d)}

E jemplo 

En este caso:

R es reflexiva, puesto que (a, a), (b, b), (c, c), (d, d), (e, e) y (f, f) son elementos de R.

R es simétrica, ya que siempre que (a, b)  R también (b, a)  R; es decir, todo par ordenado tiene su inverso. 

R es transitiva, puesto que siempre que (a, b) y (b, c)  R también (a, c)  R. 

Solución

Al representar la relación R obtenida por el teorema 3.1 a través de dígrafos, como en la figura 3.15, es 
posible observar con claridad que los elementos de cada bloque son independientes por completo con res-
pecto a los elementos de otro bloque.

a c

e

b

f

d

Figura 3.15 Dígrafo de una partición.
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72 Capítulo 3 Relaciones

Relación de equivalencia
Se dice que una relación R que es reflexiva, simétrica y transitiva, sobre un conjunto A, es una relación de 
equivalencia sobre un conjunto A o simplemente que es una relación de equivalencia sobre A.

Sea la relación R obtenida en el ejemplo anterior. Como R es reflexiva, simétrica y transitiva, entonces R 
es una relación de equivalencia sobre A.

E jemplo Solución

Sean A {1, 2, 3, 4} y R una relación sobre el conjunto A.

R {(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4, 4)}

Determinar si R es una relación de equivalencia sobre el conjunto A.

E jemplo 

R es reflexiva, ya que (1, 1), (2, 2), (3, 3) y (4, 4) son elementos de R.

R es antisimétrica, ya que (2, 1), (3, 1), (4, 1), (3, 2), (4, 3) y (4, 2) no son elementos de R.

R es transitiva, puesto que siempre que si (a, b) y (b, c)  R también (a, c)  R.

Dado que R no es simétrica, se tiene que no es una relación de equivalencia sobre el conjunto A.

Solución

Dada una relación de equivalencia sobre un conjunto A, es posible hacer una partición S de dicho con-
junto, ya que puede suponerse que los elementos relacionados son parte del mismo bloque.

La siguiente definición muestra cómo obtener dicha partición.

Clases de equivalencia
Sea R una relación de equivalencia sobre un conjunto A. El conjunto de todos los x A que están relaciona-
dos a un a A se conoce con el nombre de clase de equivalencia de a y se denota por [a]. De manera formal 
se expresa como:

[a] {x A t ∙ q ∙ x R a}
Además, se tiene el conjunto:

S {[a] t ∙ q ∙ a A}

que es una partición de A; en otras palabras, el conjunto de todas las clases de equivalencia de A forman 
una partición del conjunto A.

Sean el conjunto A {a, b, c, d, e, f } y R una relación de equivalencia sobre A definida como:

  R {(a, a), (a, c), (a, e), (c, a), (c, c), (c, e), (e, a), (e, c), (e, e), (b, b), (b, f), (f, b), (f, f), (d, d)}

Obtener las clases de equivalencia de A.

E jemplo 

Se tiene que:

[a] {a, c, e}, 

[b] {b, f}, 

[c] {a, c, e}, 

[d] {d}, 

[e] {a, c, e}  y 

[f] {b , f} 

Solución
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73  Órdenes parciales

Enseguida se ve un ejemplo con un conjunto numérico.

Sean el conjunto A {1, 2, 3, 4} y R una relación de 
equivalencia sobre A definida como:

R {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4)}

Obtener las clases de equivalencia de A.

Se tiene que:

[1] {1, 2}, 

[2] {1, 2}, 

[3] {3, 4} y 

[4] {3, 4}

por lo cual

[1] [2] {1, 2} y 

[3] [4] {3, 4}

Además, se tiene que:

S {{1, 2}, {3, 4}}

es una partición de A.

E jemplo Solución

De los ejemplos anteriores, es posible distinguir las siguientes propiedades de las clases de equivalencia:

Si a R b, entonces [a] [b].
Si [a] [b], entonces [a] [b] .
Si [a] [b] , entonces a R b.

En resumen, dos clases de equivalencia de dos elementos de A son idénticas o disjuntas.

3.7 Órdenes parciales
En muchas ocasiones, las relaciones resultan útiles cuando se quieren ordenar los elementos de algún con-
junto bajo cierto criterio. Un orden parcial implica un orden determinado, tal como se ve a continuación.

Relación de orden parcial
Se dice que una relación R sobre un conjunto A es una relación de orden parcial si es reflexiva, antisimétrica 
y transitiva sobre dicho conjunto.

Si R es una relación de orden parcial (o simplemente orden parcial) sobre un conjunto A, se utiliza la 
notación a 
 b para indicar que (a, b) R. Esta notación sugiere que se está interpretando la relación como 
orden sobre los elementos.

Donde:

[a] [c] [e] {a, c, e},

[b] [f] {b, f}  y 

[d] {d}

Esto significa que solo se tienen tres clases de equiva-
lencia de A.

Además, se tiene que:

S {{a, c, e}, {b, f}, {d}}

es una partición de A.

Continúa
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74 Capítulo 3 Relaciones

Sean el conjunto A {1, 2, 3, 4, 5} y R una relación sobre el conjunto A defi-
nida como:

R {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 2), (2, 3), (2, 5), (3, 3), (3, 5), (4, 4), (4, 5), (5, 5)}

Representada en una tabla en la figura 3.16.

Como R es reflexiva, antisimétrica y transitiva, se trata de una relación de 
orden parcial sobre el conjunto A.

  Figura 3.16 Relación de orden parcial.

E JEMPLO 

1

2

3

4

1 2 3 4R

5

5

Conjunto parcialmente ordenado
Un conjunto A junto con un orden parcial R sobre A se conoce con el nombre de conjunto parcialmente 
ordenado y se denota por (A, R). Un conjunto parcialmente ordenado también se conoce como POSET (del 
inglés: Partially Ordered SET).

En realidad, un conjunto parcialmente ordenado se denota como (A, ).

Sean A el conjunto de  y R una relación sobre  
A, t ∙ q ∙ (a, b) R si a|b.

Determinar si (A, R) es un conjunto parcialmente or-
denado.

Como cualquier entero se divide a sí mismo, es decir, 
a|a, entonces R es reflexiva. 

Si a|b significa que b|a, a menos que sea a b, por lo 
que R es antisimétrica.

Por último, ya que si a|b y b|c, entonces a|c, por lo que 
R es transitiva.

En consecuencia, R es un orden parcial sobre  y (A,R) 
es un conjunto parcialmente ordenado, por lo que se 
debe denotar como (A, ).

E jemplo Solución

Comparabilidad e incomparabilidad
Sea R un orden parcial sobre el conjunto A. Si a A y b A y si a  b  a  b, se dice que a y b son comparables. 

Y si a A y b A y a  b  a  b se dice que a y b son incomparables.

Sean el conjunto A {1, 2, 3, 4, 5} y R el orden parcial sobre el conjunto A definida como:

 R {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 2), (2, 3), (2, 5), (3, 3), (3, 5), (4, 4), (4, 5), (5, 5)}

Determinar cuáles elementos del conjunto A son comparables o incomparables.

E JEMPLO 

Como 1  1, 1  2, 1  3, 1  4 y 1  5, entonces 1 es comparable con 1, 2, 3, 4 y 5.

Como 2  2, 2  3 y 2  5, entonces 2 es comparable con 2, 3 y 5.

Como 3  3 y 3  5, entonces 3 es comparable con 3 y 5.

Solución
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75  Órdenes parciales

También se puede establecer la relación de un conjunto A junto con su orden parcial R si todos los ele-
mentos de A son comparables, de acuerdo con la siguiente definición.

Conjunto totalmente ordenado
Sea R un orden parcial sobre un conjunto A. Si cualquier par de elementos de A son siempre comparables, 
se dice que R es un orden total. Es decir, un orden parcial R sobre un conjunto A es un orden total si y solo si 

a, b, a b  b a es siempre verdadero. En este caso, se dice que (A, ) es un conjunto totalmente ordenado.

Sean A el conjunto de los números naturales  y R una relación sobre A, t ∙ q ∙ (a, b) R si a  b.

Determinar si (A, ) es un conjunto totalmente ordenado.

E jemplo 

Como cualquier natural o entero es mayor o igual a sí mismo, es decir, a a, entonces R es reflexiva. 

Si a b significa que ba, a menos que sea a b, por lo que R es antisimétrica.

Por último, ya que si a b y b c, entonces a c, por lo que R es transitiva.

En consecuencia, R es un orden parcial sobre  y (A, R) es un conjunto parcialmente ordenado.

Ahora, si tomamos cualesquiera dos elementos de , se puede comprobar que a b  b a; es decir, son 
comparables, ya que por la propiedad de la tricotomía, al comparar dos números se tiene que:

a b, a  b o a b

Por tanto, en este caso R es un orden total y (A, R) es un conjunto totalmente ordenado.

Solución

Cadena
Sean A un conjunto y (A, ) un conjunto parcialmente ordenado, y sea Ai un subconjunto de A. Se dice que 
Ai es una cadena si cualesquiera dos elementos de Ai son comparables; es decir, si están relacionados.

De acuerdo con la definición anterior, también se cumple que un conjunto totalmente ordenado  
(A, R) sea una cadena, ya que es un orden parcial donde cada par de elementos es comparable. Debido a esto, 
también se le suele llamar cadena a un conjunto totalmente ordenado (A, R).

De igual modo, también es posible establecer la relación de un conjunto A junto con su orden parcial R si 
todos los elementos de A son incomparables, de acuerdo con la siguiente definición.

Anticadena
Sean A un conjunto y (A, ) un conjunto parcialmente ordenado, y sea Ai un subconjunto de A. Se dice que 
Ai es una anticadena si cualesquiera dos elementos de Ai son incomparables; es decir, no están relacionados. 
En otras palabras, en Ai no hay dos elementos distintos que estén relacionados.

Como 4  4 y 4  5, entonces 4 es comparable con 4 y 5.

Como 5  5, entonces 5 es comparable con 5.

Como 2 4 ni 4 2, entonces 2 y 4 son incomparables.

Como 3 4 ni 4 3, entonces 3 y 4 son incomparables.

Continúa
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76 Capítulo 3 Relaciones

Lo mismo ocurre si todos los elementos del conjunto A son incomparables, por lo que también se dice 
que (A, ) es una anticadena.

El siguiente ejemplo involucra tanto cadenas como anticadenas.

Sean el conjunto A  {1, 2, 3, 4, 5} y R un orden parcial sobre el conjunto A definido como:

 R {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 2), (2, 3), (2, 5), (3, 3), (3, 5), (4, 4), (4, 5), (5, 5)}

En este caso, entonces (A, R) es un conjunto parcialmente ordenado.

Ahora, sean los siguientes subconjuntos de A:

{1, 2, 3, 5} {1}

{2, 4}  {3, 4}

{1, 2, 3}  {1, 2, 4}

{1, 4, 5}

Determinar cuáles subconjuntos son cadenas y cuáles anticadenas.

E jemplo 

{1, 2, 3, 5}  es una cadena. {1}  es una cadena y una anticadena.

{2, 4}  es una anticadena. {3, 4}  es una anticadena.

{1, 2, 3}  es una cadena.  {1, 2, 4}  no es ni cadena ni anticadena.

{1, 4, 5} es una cadena.

Solución

3.8 Diagrama de Hasse y láttices
Cuando se tiene un orden parcial (A, ), su representación mediante un dígrafo (grafo dirigido) puede sim-
plificarse.

Como un orden parcial (A, ) es reflexivo, cada vértice está conectado con sí mismo a través de un lazo. 
Pero, para simplificar, en el dígrafo se borrarán todos los lazos.

El dígrafo representado en la figura  
3.17 a) puede representarse como en la 
figura 3.17 b), después de haberse elimi-
nado todos los lazos.

 Figura 3.17 Eliminación de lazos en un dígrafo.

E JEMPLO 

y z

x

a)

y z

b)

x

En el dígrafo también pueden eliminarse todas las aristas que están implicadas por la propiedad 
transitiva. Por tanto, si a  b y b   c implica que a  c. En este caso, se omite la arista que va desde a hasta c; 
sin embargo, sí se dejan las aristas que van de a a b y de b a c. 
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77  Diagrama de Hasse y láttices

Si se eliminan las aristas que están involucradas por la propiedad transi-
tiva del dígrafo de la figura 3.17 b), el dígrafo resultante se ve como el que 
se muestra en la figura 3.18.

Figura 3.18 Eliminación de elementos transitivos.

E JEMPLO 

y z

x

Es importante destacar que también conviene dibujar el dígrafo de un orden parcial (A, ) con todas las 
aristas apuntando hacia arriba, puesto que las flechas pueden omitirse de las aristas.

Por último, los círculos de los vértices se reemplazan por puntos.

Al eliminar las flechas de las aristas y al reemplazar los círculos por puntos en el dígrafo, el diagra-
ma final de la figura 3.17 b) se observa en la figura 3.19.

Figura 3.19 Eliminación de las fechas y reemplazo de los círculos.

E JEMPLO 

y

z

x

El diagrama resultante de un orden parcial (A, ) es más simple que su dígrafo; a este se le denomina 
diagrama de Hasse de un orden parcial o de un conjunto parcialmente ordenado.

Los diagramas de Hasse deben su nombre al matemático alemán Helmut Hasse, quien los introdujo en 1926 
en su libro Höhere Algebra (Álgebra Superior) como ayuda para el estudio de las soluciones de ecuaciones 
polinomiales. El diagrama de Hasse es una representación gráfica de un conjunto parcialmente ordenado 
finito. Esto se consigue mediante la eliminación de información redundante. En el diagrama de Hasse, la re-
presentación se hace mediante un dígrafo (grafo dirigido). Este diagrama es útil cuando se necesita un orden 
total que incluya un orden parcial dado.

Figura 3.20 Helmut 
Hasse (1898-1979).
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78 Capítulo 3 Relaciones

Para comprender mejor este concepto se presenta otro ejemplo.

Sean el conjunto A {1, 2, 3, 4, 12} y R un orden parcial sobre el conjunto A definido como:

R {(a, b) t ∙ q ∙ a|b}

Esto es, si a A  b A, a b, si y solo si a|b. 

Obtener el diagrama de Hasse de (A, ).

E JEMPLO 

Primero, se obtienen los elementos de R:

R {(1, 1), (1, 2), (1, 3), (1, 4), (1, 12), (2, 2), (2, 4), (2, 12), (3, 3), (3, 12), (4, 4), (4, 12), (12, 12)}

A continuación, se representa (A, ) como el dígrafo de la figura 3.21.

Luego, se eliminan los lazos del dígrafo (véase figura 3.22).

A continuación, se eliminan las aristas de los elementos (a, c) que están involucradas por la propiedad transitiva 
del dígrafo (véase figura 3.23).

Enseguida, se redibuja el dígrafo para que todas las aristas apunten hacia arriba (véase figura 3.24).

Luego, se eliminan las flechas de las aristas (véase figura 3.25).

Por último, se reemplazan los círculos por puntos y el diagrama de Hasse queda listo (véase figura 3.26).

Solución

2

1

3

12

4

2

1

3

12

4

2

1

3

12

4

2

1

3

12

4

2

1

3

12

4

2

1

3

12

4

Figura 3.21 Representación del orden 
parcial como dígrafo.

Figura 3.22 Eliminación de lazos. Figura 3.23 Eliminación de los 
elementos transitivos (a, c).

Figura 3.24 Redibujando el grafo para 
que las aristas apunten hacia arriba.

Figura 3.25 Eliminación de flechas.

Figura 3.26 Mediante el reemplazo 
de círculos por puntos el diagrama 
de Hasse queda listo.
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79  Diagrama de Hasse y láttices

Otro ejemplo interesante es el siguiente.

Sean la relación R {(1, 1), (1, 2), (1, 3)} y P(R) el conjunto potencia de R.

Obtener el diagrama de Hasse del conjunto parcialmente ordenado P(R) con el orden parcial ; es decir, (P(R), ).

E JEMPLO 

Primero, sea:

P(A)  { , {(1, 1)}, {(1, 2)}, {(1, 3)}, {(1, 1), (1, 2)}, {(1, 1), (1, 3)}, {(1, 2), (1, 3)}, {(1, 1), (1, 2), (1, 3)}}

El conjunto potencia de la relación R.

Por lo que el conjunto parcialmente ordenado (P(R), ) que se obtiene es el siguiente:

Solución

{ , 

 {{(1, 1)}, {(1, 1)}}, 

 {{(1, 2)}, {(1, 2)}}, 

 {{(1, 3)}, {(1, 3)}}, 

 {{(1, 1), (1, 2)}, {(1, 1), (1, 2)}},

 {{(1, 1), (1, 3)}, {(1, 1), (1, 3)}},

 {{(1, 2), (1, 3)}, {(1, 2), (1, 3)}},

 {{(1, 1), (1, 2), (1, 3)}, {(1, 1), (1, 2), (1, 3)}}

 { ,{(1, 1)}},

 { ,{(1, 2)}},

 { ,{(1, 3)}},

 { , {(1, 1), (1, 2)}},

 { , {(1, 1), (1, 3)}},

 { , {(1, 2), (1, 3)}},

 { , {(1, 1), (1, 2), (1, 3)}},

 {{(1, 1)}, {{(1, 1), (1, 2)}},

 {{(1, 1)}, {{(1, 1), (1, 3)}},

 {{(1, 1)}, {{(1, 1), (1, 2), (1, 3)}},

 {{(1, 2)}, {{(1, 1), (1, 2)}},

 {{(1, 2)}, {{(1, 2), (1, 3)}},

 {{(1, 2)}, {{(1, 1), (1, 2), (1, 3)}},

 {{(1, 3)}, {{(1, 1), (1, 3)}},

 {{(1, 3)}, {{(1, 2), (1, 3)}},

 {{(1, 3)}, {{(1, 1), (1, 2), (1, 3)}},

 {{(1, 1), (1, 2)}, {{(1, 1), (1, 2), (1, 3)}},

 {{(1, 1), (1, 3)}, {{(1, 1), (1, 2), (1, 3)}},

 {{(1, 2), (1, 3)}, {{(1, 1), (1, 2), (1, 3)}}}

El cual se representa mediante un dígrafo como se ob-
serva en la figura 3.27.

Enseguida, se eliminan los lazos (véase figura 3.28).

Acto seguido, se continúa con la eliminación de las 
aristas de los elementos (a, c) que están involucradas 
en la propiedad transitiva del dígrafo (véase figura 
3.29).

En este caso, no se redibuja el dígrafo para que todas 
las aristas apunten hacia arriba, pues estas ya lo hacen.

Entonces, lo que se hace es eliminar las flechas de las 
aristas (véase figura 3.30).

Por último, se reemplazan los círculos por puntos. El 
diagrama de Hasse resultante es el que se muestra en 
la figura 3.31.

Figura 3.27 Representación del orden parcial como dígrafo.

{[1, 1],

[1, 2],

[1, 3]}

{[1, 1],

[1, 2]}

{[1, 1],

[1, 3]}

{[1, 2],

[1, 3]}

{[1, 1]} {[1, 2]} {[1, 3]}
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{[1, 1],

[1, 2],

[1, 3]}

{[1, 1],

[1, 2]}

{[1, 1],

[1, 3]}

{[1, 2],

[1, 3]}

{[1, 1]} {[1, 2]} {[1, 3]}

{[1, 1],

[1, 2],

[1, 3]}

{[1, 1],

[1, 2]}

{[1, 1],

[1, 3]}

{[1, 2],

[1, 3]}

{[1, 1]} {[1, 2]} {[1, 3]}

{[1, 1],

[1, 2],

[1, 3]}

{[1, 1],

[1, 2]}

{[1, 1],

[1, 3]}

{[1, 2],

[1, 3]}

{[1, 1]} {[1, 2]} {[1, 3]}

{[1, 1], [1, 2], [1, 3]}

{[1, 1], [1, 2]} {[1, 1], [1, 3]} {[1, 2], [1, 3]}

{[1, 1]}

{[1, 2]}

{[1, 3]}

Figura 3.28 Eliminación de lazos.

Figura 3.30 Eliminación de flechas.

Figura 3.31 Reemplazando los círculos por puntos 
se obtiene el diagrama de Hasse.

Figura 3.29 Eliminación de elementos transitivos (a, c).

El diagrama de Hasse de un conjunto ordenado totalmente siempre será una línea recta, como el que se 
observa en la figura 3.19.
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81  Diagrama de Hasse y láttices

Elementos extremos de un conjunto parcialmente ordenado
En los conjuntos parcialmente ordenados (A, ) (o POSET) se distinguen ciertos elementos que tienen pro-
piedades especiales, que tienen alguna importancia en diversas aplicaciones. A estos se les denomina ele-

mentos extremos o elementos extrémales. A continuación, se presentan y definen dichos elementos.

Elemento maximal
Sean un conjunto parcialmente ordenado (A, ) y a A. Se dice que a es un elemento maximal de A si a  x 
implica que a  x, para todo x perteneciente a A. Desde el punto de vista formal, este elemento se expresa 
como:

x A(a  x a  x)

Y significa que a A es un elemento maximal si y solo si no existe en A un elemento distinto que lo siga.

Elemento minimal

Sean un conjunto parcialmente ordenado (A, ) y a A. Se dice que a es un elemento minimal de A si x  a im-
plica que x  a, para todo x perteneciente a A. Desde el punto de vista formal, este elemento se denota como:

x A(x  a x  a)

Lo que quiere decir que a A es un elemento minimal si y solo si no existe en A un elemento distinto que 
lo preceda.

Sea un conjunto parcialmente ordenado  
(A, ), cuyo diagrama de Hasse se muestra en 
la figura 3.32.

Los elementos a, b y c son elementos maxi-
males de A, y los elementos d, e y f son los 
elementos minimales de A. Se puede obser-
var que como no existe una línea recta entre 
e y f, no se puede decir que e  f ni que f  e.

  Figura 3.32 Diagrama de Hasse de un conjunto parcialmente ordenado.

E JEMPLO 

c
a

ed

b

f

Sea A el conjunto parcialmente ordenado (A, ) de todos los números reales no negativos  con el orden usual 
. Entonces, el cero es el elemento minimal de A y no existen elementos maximales.

En tanto, el conjunto parcialmente ordenado con el orden usual  no tiene elementos maximales ni minimales.

E JEMPLO 

Máximo y mínimo

A un elemento a A se le llama máximo de A, si x a para todo x A. En tanto, a un elemento b A se le llama 
mínimo de A, si b  x para todo x A. Lo que formalmente se denota como:

a es elemento máximo de A si y solo si x(x A x  a)
y

b es elemento mínimo de A si y solo si x(x A b  x).
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Sean la relación R {(1, 1), (1, 2), (1, 3)} y P(R) el conjunto potencia de R. 

Sea el conjunto parcialmente ordenado P(R) con el orden parcial ; es decir, (P(R), ).

Entonces, el conjunto vacío es el elemento mínimo de (P(R), ) y R es el elemento máximo, como se muestra en 
la figura 3.31. En tanto que el conjunto parcialmente ordenado  con el orden habitual  no tiene ni máximo ni 
mínimo.

E JEMPLO 

Teorema 3.2

Un conjunto parcialmente ordenado tiene a lo sumo un elemento máximo y uno mínimo.

Demostración

Supóngase que a y b son los elementos máximos de un conjunto parcialmente ordenado (A, ). Entonces, 
a  b, puesto que b es máximo y b  a, porque a también es máximo. Por la propiedad antisimétrica se con-
cluye que a b.

Cota superior (mayorante) y cota inferior (minorante)

Sea (A, ) un conjunto parcialmente ordenado y B A. A un elemento a A se le llama cota superior o ma-

yorante de B si b  a para todo b B. En tanto, a un elemento c A se le llama cota inferior o minorante de B si  
c  x para todo x B.

Mínima cota superior (supremo)

Sea (A, ) un conjunto parcialmente ordenado y B A. A un elemento a A se le llama mínima cota superior o 
supremo de B si a es una cota superior de B y se cumple que a  a1 siempre que a1 sea una cota superior de B. 
El supremo de B se denota como sup(B).

Máxima cota inferior (ínfimo)

Sea (A, ) un conjunto parcialmente ordenado y B A. A un elemento a A se le llama máxima cota inferior 
o ínfimo de B si a es una cota inferior de B y se cumple que a1  a siempre que a1 sea una cota inferior de B.  
El ínfimo de B se denota como inf(B).

Las cotas inferiores en (A, ) corresponden a las cotas superiores en (A, ) y las cotas superiores en  
(A, ) corresponden a las cotas inferiores en (A, ). Lo mismo puede decirse de las máximas cotas inferiores 
y las mínimas cotas superiores.

Sea el conjunto parcialmente ordenado (A, ) representado por el diagrama de  
Hasse que se muestra en la figura 3.33.

Determinar las cotas superiores e inferiores de los siguientes subconjuntos de A:

B {a, b}

C {c, d, e}

E JEMPLO 

En este caso, el subconjunto B no tiene cota inferior, mientras que sus cotas supe-
riores son c, d, e, f, g y h.

El subconjunto C tiene como cotas superiores f, g y h y como cotas inferiores c, a y b.

Figura 3.33 Diagrama de Hasse de un conjunto parcialmente ordenado.

Solución

c

a

ed

b

f g

h
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83  Diagrama de Hasse y láttices

Sea el conjunto parcialmente ordenado (A, ), repre-
sentado por el diagrama de Hasse de la figura 3.33. Y 
sean los subconjuntos de A:

B  {a, b} y 

C  {c, d, e}

Determinar la mínima cota superior y la máxima cota 
inferior de B y C.

El subconjunto B no tiene cotas inferiores; por tanto, 
carece de máxima cota inferior. En este caso, la mínima 
cota superior de B es c.

Puesto que las cotas inferiores de C son c, a y b, enton-
ces la máxima cota inferior es c.

Las cotas superiores de C son f, g y h; pero, f y g no 
son comparables, por tanto C no tiene mínima cota 
superior.

E jemplo Solución

Láttice
Los láttices son una nueva familia de conjuntos parcialmente ordenados. Estos poseen características espe-
ciales que los convierten en herramientas útiles en diversas aplicaciones relacionadas con los modelos de 
flujo de datos, además de que juegan un papel importante en el álgebra de Boole.

Definición de láttice

Sea (A, ) un conjunto parcialmente ordenado. Se dice que (A, ) es un láttice (retículo o red) si en todos sus 
subconjuntos de dos elementos {a, b}, elementos de A, existe un supremo y un ínfimo de dicho par; entonces, 
se dice que (A, ) es un láttice.

Todo conjunto totalmente ordenado es un láttice. En efecto, dados cualesquiera dos elementos de dicho 
conjunto, como son comparables, uno será el supremo y el otro será el ínfimo del conjunto que estos cons-
tituyen.

Sea A el conjunto de los números naturales � y sea la relación R sobre el conjunto A definida como sigue:

R {(a, b) t ∙ q ∙ a|b}

Antes quedó demostrado que (A, R) es un orden parcial y que además (A, ) es un conjunto parcialmente ordenado 
donde todos sus elementos son comparables, por lo que (A, ) es un conjunto totalmente ordenado.

Sea además d  mcd(a, b); dado que d divide a a y a b. Por otra parte, d es múltiplo de cualquier otro divisor común 
de a y de b. Es decir, d será el ínfimo.

De manera similar, haciendo d ’  mcm (a, b), entonces d ’ será un múltiplo de a y de b. Asimismo, d ’ es un divisor 
de cualquier otro múltiplo común de a y b. En consecuencia, d ’ será el supremo.

E JEMPLO 

Por lo general, el supremo y el ínfimo de un láttice (A, ) se denotan como a b y a b, respectivamente; 
es decir:

a b  sup{a, b}
a b  inf{a, b}

Entonces, en el ejemplo anterior se tiene que:

d’  a b  sup{a, b}
d  a b  inf{a, b}
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Resumen
Las relaciones binarias, o simplemente relaciones, son la forma más básica de relacionar los elementos de 
dos conjuntos. Además, sobre dichas relaciones se pueden aplicar la mayoría de las operaciones sobre con-
juntos, ya que, a fin de cuentas, las relaciones binarias son conjuntos de pares ordenados.

Para poder clasificar las relaciones, también es muy importante conocer sus propiedades, y así enfocarse 
en los dos tipos más importantes de relaciones binarias: las relaciones de equivalencia y las de orden parcial.

Las relaciones de equivalencia son las que permiten clasificar los elementos de un conjunto. El objetivo 
del estudio de relaciones de equivalencia es reconocer que el resultado de toda equivalencia da lugar a una 
partición de los elementos del conjunto y viceversa; en otras palabras, toda partición de un conjunto proce-
de de una relación de equivalencia.

Las relaciones de orden parcial son aquellas que ordenan los elementos de un conjunto. El objetivo del 
estudio de un orden parcial es conocer los diferentes tipos de órdenes que existen y, en particular, entender 
la estructura de orden de los diferentes conjuntos de números, ya sean naturales, enteros o reales.

 3.2 Sean el conjunto A  {a t ∙ q ∙ a  10, a � �} y  
R  {(a, b) t · q · 5|(a – b), a  b} una relación sobre 
el conjunto A. 

Determinar los elementos de R.

 3.3 Sea R una relación de equivalencia sobre . 

  Determinar el codominio de R.

 3.4 Sean el conjunto A {1, 2, 3, 4} y R {(x, y) t ∙ q ∙ 
x  y 3} una relación sobre el conjunto A. 

Determinar el dominio de R. 

 3.5 Sean el conjunto A {1, 2, 3} y R {(1, 1), (2, 1),  
(3, 2), (1, 3)} una relación sobre el conjunto A. 

  ¿Cuáles declaraciones son verdaderas y cuáles 
falsas?

a) 1 R 1

b) 1 R  2

c) 2 R 3

 3.6 Sean los conjuntos A {1, 2, ... , 10} y B {1, 2, 3, 4}  
y sea R {(a, b) t ∙ q ∙ a 3b  13} una relación 
de A en B. 

  Determinar los elementos de R.

 3.7 Sea el conjunto A {1, 2, 3} y sea R {(1, 1), (2, 1), 
(3, 2), (1, 3)} una relación sobre el conjunto A. 

  ¿Cuáles declaraciones son verdaderas y cuáles 
falsas?

a) 2 R  1

b) 3 R 2

c) 3 R  1

Responder en forma correcta lo que se pide en cada 
caso.

 3.1 Sean las siguientes relaciones en el conjunto de 
los números enteros:

R {(a, b) t ∙ q ∙ a b}
S {(a, b) t ∙ q ∙ a b}
T {(a, b) t ∙ q ∙ a  b o a  �b}
U {(a, b) t ∙ q ∙ a  b}
V {(a, b) t ∙ q ∙ a  b  1}
W {(a, b) t ∙ q ∙ a  b  3}

¿Cuáles de estas relaciones contienen a los pares 
ordenados de la tabla 3.1?

Tabla 3.1

R S T U V W

(1, 1)

(1, 2)

(2, 1)

(1, �1)

(2, 2)

(4, 3)

(1, 3)

(�1, �2)

(3, �3 )

(2, 5)

(�3, 2)

(2, 4)

(�1, 3)

Problemas propuestos
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85Problemas propuestos

 3.8 Sean los conjuntos A {1, 2, 3, 4} y B {1, 2, ... , 10} 
y sea R {(a, b) t ∙ q ∙ 3a b  13} una relación de 
A en B. 

  Determinar los elementos de R. 

 3.9 ¿Cuáles de los siguientes conjuntos son rela-
ciones del conjunto A {a, b, c} en el conjunto  
B {1, 2}?

a) R {(a, 1), (a, 2), (c, 2)}

b) U {(1, a), (2, a), (2, c)}

c) T 

3.10 Sean los conjuntos A 1, 2, 3, 4  y B 5, 6, 7  
y sean las relaciones R (1, 1), (2, 2), (3, 3), (4, 4) ,  
S (1, 2), (3, 2)  y T (1, 7), (2, 6) .

  ¿Cuáles declaraciones sobre las relaciones son 
verdaderas y cuáles son falsas?

a) R sobre A, S de A en B, T de A en B.

b) R de A en B, S de A en B, T de A en B.

c) R sobre A, S sobre A, T de A en B.

d) R sobre A, S sobre A, T sobre A.

 3.11 Sean los conjuntos A {a, b, c} y B {1, 2} 

  ¿Cuáles conjuntos son relaciones de A en B?

a) R {(a, 2), (b, 1)}

b) S A  B

c) T {(2, a), (1, b)}

 3.12 Sean los conjuntos A  {1, 2, 3, 4} y B {5, 6, 
7} y sean las relaciones R {(1, 2), (2, 3), (3, 4)},  
S {(3, 5), (4, 6)} y T {(1, 7), (4, 6)}.

  ¿Cuáles declaraciones sobre las relaciones son 
verdaderas y cuáles falsas?

a) R de A en B, S de A en B, T de A en B

b) R sobre A, S de A en B, T de A en B

c) R sobre A, S sobre B, T de A en B

d) R sobre A, S sobre B, T sobre A 

 3.13 Sea el conjunto A {a � t ∙ q ∙ a|10} y sea  
R {(a, b) t ∙ q ∙ a|b} una relación sobre A.

  Determinar los elementos de R.

 3.14 Sea R {(a, b) t ∙ q 2|b} una relación sobre �  . 

  Determinar el codominio R.

 3.15 Sea el conjunto A {a � t ∙ q ∙ a|8} y sea  
R {(x, y) t ∙ q ∙ a|b} una relación sobre A.

  Obtener la matriz de relación resultante. 

 3.16 Sea el conjunto A {1, 2, 3} y sean R {(1, 1),  
(2, 2), (3, 3)} y S {(1, 1), (1, 2), (1, 3)} dos relaciones so- 
bre A.

  Efectuar las siguientes operaciones sobre las re-
laciones.  

a) R S

b) R S  

c) R � S

d) S � R

e) R S

f) R’

g) S’

h) S �1

i) S R

j) R1

 3.17 Sea el conjunto A {1, 2, 3, 4, 5} y sea R {(a, b)  
t ∙ q ∙ a  b�1} una relación sobre el conjunto A.

  Obtener lo que se pide en cada caso.

a) Los elementos de R.

b) Los elementos de R�1.

c) El dominio de R.

d) El dominio de R�1.

 3.18 ¿Cuál de las siguientes operaciones sobre 
relaciones siempre es verdadera?

a) R 

b) R R 

c) R �

d) R R

 3.19 Las siguientes operaciones sobre relaciones son 
siempre verdaderas, excepto una. Indicar cuál.

a) R R

b) R 

c) R �

d) R R 

 3.20 Sean R y S dos relaciones reflexivas. ¿Será verda-
dero que R S y R S son reflexivas?

 3.21 Sean los conjuntos A {1, 2}, B {a, b, c} y  
C {c, d}.

  Determinar (A B) (A C).
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 3.22 Sean A el conjunto de los números naturales y  
R {(a, b) t ∙ q ∙ 3a  4b 17} una relación sobre A.

  Determinar R–1.

 3.23 Sean R y S dos relaciones simétricas sobre algún 
conjunto A; entonces, ¿será siempre verdadero 
que R S y R S son simétricas?

 3.24 Sean los conjuntos A {a, b}, B {1, 2} y C {2, 3}.

  Determinar (A B) (A C).

 3.25 Sean A el conjunto de los números naturales y  
R {(a, b) t ∙ q ∙ 4a  3b  17} una relación sobre A. 

  Determinar R–1.

 3.26 Sea el conjunto A {1, 2, 3, 4, 5, 6} y sean las 
relaciones R {(2, 4), (2, 6), (3, 3), (3, 6), (4, 4)} y  
S {(3, 3), (4, 2), (4, 4), (6, 2), (6, 3)} dos relaciones 
sobre A.

  ¿De qué operación es resultado la relación S con 
respecto a la relación R?

 3.27 Sean el conjunto A {1, 2, 3, 4} y R {(1, 1), (2, 1), 
(3, 2), (4, 3)} una relación sobre A. 

  Determinar (R R)�1

 3.28 Sean el conjunto A {1, 2, 3, 4} y R {(1, 1), (2, 1), 
(3, 2), (4, 3)} una relación sobre A.

  Determinar R R.

 3.29 Las siguientes propiedades de la composición de 
relaciones son verdaderas excepto:

a) S R R S

b) S R R S

c) T (S R) (T S) R.

d) (S R)�1 R�1 S�1

3.30 Sean el conjunto A {1, 2, 3, 4} y R {(1, 2), (3, 2)} 
una relación sobre A.

  Determinar el codominio de R R�1.

 3.31 Sean el conjunto A {1, 2, 3, 4} y R {(1, 2), (3, 2)} 
una relación sobre A.

  Determinar el dominio de R�1 R.

 3.32 ¿Cuál propiedad de la composición de relaciones 
es siempre verdadera?

a) S R R S

b) S R R S

c) T (S R) (T S) R

d) T (S R) R(S T)

 3.33 Sean R {(1, 1), (1, 2), (2, 1)} y S {(1, 1), (1, 2), (2, 2)}
dos relaciones.

  Determinar la matriz de relación que representa S R.

 3.34 Sea R {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)} una relación 
definida sobre el conjunto A {1, 2, 3}. 

  Determinar el conjunto resultante de R R.

 3.35 Sean el conjunto A {a, b, c, d} y R {(a, b), (a, c), 
(c, b)} una relación sobre el conjunto A.

  Determinar el codominio de R R.

 3.36 Sean el conjunto A {a, b, c, d} y R {(a, b), (a, c), 
(c, b)} una relación sobre el conjunto A.

  Determinar R R.

 3.37 Sean R {(1, 2), (2, 2), (3, 4)} y S {(1, 3), (2, 5), (3, 1),  
(4, 2)} dos relaciones. Encontrar R (S R).

 3.38 ¿Cuáles propiedades tiene cada una de las 
siguientes relaciones sobre el conjunto A {a, b, 
c, d}?

Tabla 3.2

R a b c d S a b c d T a b c d U a b c d V a b c d

a a a a a

b b b b b

c c c c c

d d d d d
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3.39 ¿Cuáles propiedades tiene cada una de las siguien-
tes relaciones sobre el conjunto A {1, 2, 3}?

a)  {(a, b) tal que a b}

b)  {(a, b) tal que a b}

c)  {(a, b) tal que a b}

d)  {(a, b) tal que a   b 3}

 3.40 ¿Cuáles de las siguientes declaraciones sobre las 
relaciones son verdaderas y cuáles falsas?

 a) Si R es simétrica, entonces R�1 es simétrica.

 b) Si R y S son transitivas, entonces R S es transitiva.

 c) Si R y S son reflexivas, entonces R S es re-
flexiva.

3.41 ¿Cuáles declaraciones sobre las relaciones son 
verdaderas y cuáles falsas?

 a) Si R y S son transitivas, entonces R S es tran-
sitiva.

 b) Si R es reflexiva, entonces R�1 es reflexiva.

 c) Si R y S son reflexivas, entonces R S es re-
flexiva.

 3.42 ¿Cuáles propiedades tiene cada una de las si-
guientes relaciones sobre el conjunto A {1, 2, 3, 4}?

a) {(1, 2), (2, 3), (1, 3)}

b) {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3), (4, 4)}

c) {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)}

3.43 Sea L el conjunto de las rectas del plano. ¿Qué 
relación será transitiva sobre L?

U  L1RL2 si L1 es paralela a L2

T  L1RL2 si L1 es perpendicular a L2

 3.44 Una relación R es simétrica sobre un conjunto A si

a) (a, b) R  (b, a) R a b A

b) (a, b) R a A

c) (a, b) R  (b, a) R a b A

d) (a, b) R  (b, a) R a b A

 3.45 ¿Cuáles propiedades tiene la relación represen-
tada por el siguiente dígrafo?

 Figura 3.34

 3.46 Una relación R es irreflexiva sobre un conjunto A si:

 a) (a, b) R (b, a) R a b A

 b) (a, a) R a A

 c) (a, b) R (b, a) R a b A

 d) (a, a) R a A

 3.47 ¿Cuáles propiedades tiene la relación represen-
tada por el siguiente dígrafo?

   Figura 3.35

 3.48 Sean el conjunto A {a, b, c, d} y R {(a, b), (b, c), 
(c, b), (c, d)} una relación sobre A. 

  Determinar R1.

 3.49 Sea el conjunto A {1, 2, 3, 4}.

  Determinar cuál matriz de relación representa 
una relación irreflexiva.

    
a) b)

    
c) d)

 Figura 3.36

0 1 1 1
1 1 1 1
1 1 1 1
1 1 1 0

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

0 1 1 1
1 0 0 1
1 0 0 1
1 1 1 0

www.full-ebook.com
Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)

lOMoARcPSD|5154029



88 Capítulo 3 Relaciones

 3.50 Sea R {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4), (4, 5), 
(5, 4), (5, 5)} una relación de equivalencia sobre el 
conjunto A {1, 2, 3, 4, 5}.

  Obtener la partición S sobre A originada por R.

 3.51 Determinar la relación de equivalencia cuyas cla-
ses de equivalencia son: [a] {a}, [b] [d] 
{b, d} y [c] {c}. 

 3.52 Determinar la relación de equivalencia cuyas cla-
ses de equivalencia son: [1] [2] {1, 2}, [3] {3}, 
[4] {4}.

 3.53 Sean el conjunto A  {1, 2, 3, ... , 10} y R {(a, b)  
t ∙ q ∙ a � b es divisible por 5} una relación sobre A.

  Determinar [2].

 3.54 Sean el conjunto A {1, 2, 3, ... , 20} y R {(a, b)  
t ∙ q ∙ a – b es divisible por 4} una relación sobre A.

  Determinar [1].

 3.55 Sean el conjunto A {1, 2, 3, ... , 20} y R {(a, b)  
t ∙ q ∙ a – b es divisible por 5} una relación sobre A.

  Determinar [5].

 3.56 Sea el conjunto A {1, 2, 3, ... , 15}. Considerar la 
relación de equivalencia  sobre A A, definida 
por (a, b) (c, d), si ad bc. 

  Determinar la clase de equivalencia de (3, 2).

 3.57 Sea A {1, 2, 3, ... , 15}. Considerar la relación de 
equivalencia ~ sobre A A, definida por (a, b) ~  
(c, d), si a d  b c. 

  Determinar la clase de equivalencia de (2, 11).

 3.58 Sean el conjunto A {1, 2, 3, 4, 5, 6} y R  {(1, 1),  
(1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4), (5, 5), (5, 6), 
(6, 5), (6, 6)} una relación sobre el conjunto A.

  Determinar cuál es la partición S originada por la 
relación anterior sobre A.

 3.59 Sea R la relación “tiene el mismo tamaño que”, 
definida en todos los subconjuntos finitos de �; 
es decir, a R b si y solo si |A| |B|.

  Demostrar que R es una relación de equivalencia 
sobre �.

 3.60 En una relación de equivalencia sobre un conjun-
to A son válidas las siguientes afirmaciones ex-

cepto:

a) Si a R b, entonces [a] [b]  .

b) S {[a] t � q �  a A} es una partición de A.

c) Si a R b, entonces [a] [b].

d) Si [a]  [b], entonces [a] [b] .

 3.61 Sea R la relación “es semejante a”, definida en el 
conjunto de todos los triángulos, es decir, T1 R T2 
si y solo si T1 es semejante a T2.

  Demostrar que R es una relación de equivalencia.

 3.62 Sea R  {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)} una 
relación sobre el conjunto A {1, 2, 3, 4, 5, 6}. 

  Determinar cuál es la partición originada por la 
relación anterior sobre el conjunto A.

 3.63 En una relación de equivalencia sobre un conjun-
to A, ¿cuál de las siguientes afirmaciones es válida?

 a) Si a R  b, entonces [a] [b].

 b) Si a R b, entonces [a] [b] .

 c) Si [a] [b], entonces [a] [b] .

 d) Si a R b, entonces [a]  [b] .

 3.64 Sea el conjunto A {1, 2, 3, 4, 5} y sean las siguien-
tes relaciones sobre A.

  ¿Cuáles relaciones son de equivalencia sobre A?

 a) {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 4), (5, 5)}

 b) {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}

 c) {(1, 1), (1, 3), (1, 5), (2, 2), (3, 1), (3, 3), (3, 5), (4, 4), (5, 
1), (5, 3), (5, 5)}

 d) {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 
4), (4, 4), (5, 5)}   

 3.65 ¿Cuáles de las siguientes relaciones son órdenes 
parciales sobre �?

R  {(a, b), tal que a  b  1}

S  {(a, b), tal que a  b}

T  {(a, b), tal que a  b} 

U  {(a, b), tal que a|b}

V  {(a, b), tal que a  b  3}

W  {(a, b), tal que a  b*2}

 3.66 Una relación R sobre un conjunto A, que es 
reflexiva, antisimétrica y transitiva recibe el 
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nombre de ____________.

 3.67 Todas las siguientes relaciones sobre  son 
órdenes parciales excepto:

 R {(a, b) t ∙ q ∙ a  b}

S  {(a, b) t ∙ q ∙ a|b}

T  {(a, b) t ∙ q ∙ a  b}

U  {(a, b) t ∙ q ∙ a  b}

 3.68 Sean el conjunto A {1, 2, 3, 4} y R una relación de 
orden parcial sobre A definida como:

  R  {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3), (4, 4)}

  ¿Cuáles de los siguientes subconjuntos de A son 
cadenas y cuáles son anticadenas?

 a) A  {2}

 b) B  {2, 4}  

 c) C  {1, 2, 3} 

 d) D  {1, 2, 3, 4}

 3.69 En un orden parcial R sobre un conjunto A, si  
a A, b A y c A y si a R b y b R c. Las siguientes 
afirmaciones se cumplen excepto:

 a) b R b   

 b) b R a    

 c) a R a  

 d) a R c

 3.70 Sean A un conjunto cualesquiera y P(A) el con-
junto potencia de A y sea R una relación sobre el 
conjunto P(A) definida como:

  R  {S  P (A) t ∙ q ∙ S  A}

  Demostrar que (P(A), R) es un conjunto parcial-
mente ordenado.

 3.71 Sean A el conjunto � y R una relación sobre A 
definida como:

  R  {(a, b) t ∙ q ∙ a  b es par}

  ¿Será (A, R) un conjunto parcialmente ordenado 
(POSET)?

 3.72 Sean A el conjunto �  y R una relación sobre A 
definida como:

  R  {(a, b) t ∙ q ∙ a b}

  Demostrar que R no es un orden parcial sobre A.

 3.73 Sean el conjunto A {1, 2, 3, 4} y (P(A), ) un con-
junto parcialmente ordenado sobre A. Sean, ade-
más, los siguiente pares de subconjuntos de A:

 a) {2, 4, 1} y {1, 2}

 b) {1, 2, 3} y {2, 3, 4}

  ¿Son comparables o incomparables? Justificar la 
respuesta.

 3.74 Sean A el conjunto � y R una relación de orden 
parcial sobre A definida como:

  R {(a, b) t ∙ q ∙ a|b}

  ¿Cuáles de los siguientes subconjuntos de A son 
cadenas y cuáles son anticadenas?

 a) A  {5, 8, 21}

 b) B  {6, 30, 10}

 c) C  {4, 16, 64, 8}

 d) D  {7}

 e) E  {30, 10, 60}

 f) �  {1, 2, 3, ...}

 3.75 Sea el conjunto A {a, b, c, d, e} con la relación R 
correspondiente al orden lexicográfico habitual 
de las letras del alfabeto.

  Dibujar el diagrama de Hasse correspondiente.

 3.76 Sea el siguiente dígrafo de una relación de orden 
parcial.

c

a

ed

b

 Figura 3.37
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  Dibujar el diagrama de Hasse correspondiente.

 3.77 Sean el conjunto A  {2, 4, 6, 12, 18, 36} y R la 
relación de orden parcial sobre el conjunto A de-
finida como:

  R  {(a, b) t ∙ q ∙ a|b}

  Dibujar el diagrama de Hasse correspondiente.

 3.78 Sea un conjunto parcialmente ordenado (A, ), 
cuyo diagrama de Hasse es el siguiente:

c

a
e

d

b

f

 Figura 3.38

  Determinar sus elementos maximales y minimales.

 3.79 Sea un conjunto parcialmente ordenado (A, ) 
sobre el conjunto A  {8, 12, 16}, cuyo diagrama 
de Hasse es el siguiente:

128

16

 Figura 3.39

  Determinar sus elementos maximales y minimales.

 3.80 Sean un conjunto parcialmente ordenado (A, ) 
sobre el conjunto A  {2, 4, 6, 12, 20} y R una rela-
ción de orden parcial definida como:

  R  {(a, b) t ∙ q ∙ a|b}

  Determinar sus máximos y mínimos.

 3.81 Sea un conjunto parcialmente ordenado (A, ), 
cuyo diagrama de Hasse es el siguiente:

1

43

5

2

6

7

 Figura 3.40

  Determinar sus máximos y mínimos. 

 3.82 Sea un conjunto parcialmente ordenado (A, ) 
sobre el conjunto A  {1, 2, 3, 4, 5, 6, 7}, cuyo dia-
grama de Hasse es el siguiente:

1

43

5

2

6 7

 Figura 3.41

  Determinar las cotas superiores e inferiores del 
subconjunto B  {3, 4, 5}.
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91Problemas reto

 3.83 Sea un conjunto parcialmente ordenado (A, ), 
cuyo diagrama de Hasse es el siguiente:

a

f

c

ed

b

 Figura 3.42

  Determinar si es un láttice.

 3.84 Sea un conjunto parcialmente ordenado (A, ), 
cuyo diagrama de Hasse es el siguiente:

a

f

c

ed

b

 Figura 3.43

Dar las razones por las cuáles no es un láttice.

 1. Encontrar alguna relación que al mismo tiempo 
sea una relación de equivalencia y una relación 
de orden parcial.

 2. Sea el siguiente diagrama de Hasse de un conjun-
to parcialmente ordenado:

a

f

c

e

d

b

 Figura 3.44

Obtener el dígrafo que dio origen a dicho diagrama.

Problemas reto
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4

Relaciones de 
recurrencia

Objetivos

 Aplicar los conceptos de relaciones binarias desde un punto de vista discreto.

 Determinar diversas relaciones binarias sobre los elementos de uno o dos conjuntos.

 Efectuar diversas operaciones entre relaciones binarias.

 Definir las propiedades que satisface determinada relación binaria.

 Identificar tipos especiales de relaciones binarias (relaciones de equivalencia y órdenes parciales).
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93Progresiones aritméticas y geométricas

4.1 Introducción
La solución de las relaciones de recurrencia es un tema de vital importancia para abordar distintos tipos de 
problemas en matemáticas y ciencias de la computación.

De manera tradicional, la bibliografía que propone métodos de resolución de recursividades lineales se 
basa en el planteamiento de ecuaciones polinómicas difícilmente programables, pero solucionables me-
diante relaciones de recurrencia.

Sin embargo, como las relaciones de recurrencia mantienen una relación muy cercana con los algorit-
mos recursivos, estas surgen de manera natural con el análisis de este tipo de algoritmos.

Asimismo, las relaciones de recurrencia pueden considerarse técnicas avanzadas de conteo, ya que estas 
pueden resolver cierto tipo de problemas que no pueden resolverse con el uso de las técnicas tradicionales 
de conteo, como permutaciones, combinaciones o técnicas derivadas del principio de inclusión-exclusión.

4.2 Progresiones aritméticas y geométricas
Las progresiones constituyen casos especiales de sucesiones. Así, una progresión se define como una su-
cesión numérica que cumple con ciertas condiciones con respecto al valor entre un término y el siguiente.

Su origen, al igual que el de tantas otras ramas de las matemáticas, es incierto. No obstante, se conservan 
algunos documentos que atestiguan la presencia de progresiones desde varios siglos antes de nuestra era, 
por lo que no debe atribuirse su paternidad a ningún matemático en especial.

Bhaskara, matemático hindú del siglo XII, también conocido como Bhaskara II o Bhaskaracharya, que signi-
fica “Bhaskara el maestro”, es probablemente el matemático hindú más conocido de la antigüedad. En su 
obra más conocida, el Lilavati, plantea diversos problemas sobre progresiones aritméticas y geométricas, 
además de estudiar algunas ecuaciones diofánticas y geometría plana. Bhaskara también es reconocido 
por la aportación de dos famosos algoritmos de multiplicación de números en base diez.

Figura 4.1 Bhaskara, matemático hindú del siglo XII.

A pesar de que hoy día el problema de calcular el tiempo en que se duplicaría una cantidad de dinero a 
un determinado interés compuesto es muy conocido, se sabe que este fue propuesto por los babilonios (2000 
a.C.-600 a.C.), lo que nos permite deducir que esta cultura conocía de alguna manera la fórmula del interés 
compuesto y, por tanto, las progresiones geométricas.

No obstante, en el libro IX de Los elementos de Euclides, que data aproximadamente del año 300 a.C., apa-
rece la transcripción de una fórmula de la suma de n términos consecutivos de una progresión geométrica 
muy semejante a la actual.

Progresiones aritméticas
Antes de definir qué es una progresión aritmética, a continuación se trata un ejemplo en el que aparece una 
progresión de este tipo.

Escalera de Jacob

Jacob posee un rascacielos en el que hay una escalera que va desde el ras del suelo hasta la cima de la construcción. 
El primer escalón mide 18 centímetros, mientras que los posteriores miden 19 centímetros.

E JEMPLO 
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94 Capítulo 4 Relaciones de recurrencia

Ahora, se considerarán las siguientes sucesiones:

{an}  {10, 14, 18, 22, ____, ____, ____,...}
{bn}  {3, 3.5, 4, 4.5, ____, ____, ____,...}
{cn}  {9, 6, 3, 0, ____, ____, ____,...}

El objetivo es detectar el patrón que siguen estas y llenar los espacios en blanco en cada una.
Como se puede observar, no es difícil encontrar el valor de dichos términos; pero, ¿qué tienen en común 

estas tres sucesiones? Simplemente que, en cada caso, se puede obtener un término sumando un número 
fijo al término anterior.

Estas sucesiones también son casos de progresiones aritméticas, por lo que ahora es tiempo de definirlas.

Progresiones aritméticas
Una progresión aritmética constituye una sucesión infinita de números donde cualquier término (distinto 
del primero) se obtiene sumando un número fijo al anterior.
Si se denota a tal sucesión como:

a1, a2, a3,…

entonces, se satisface la fórmula recursiva (que más adelante se define de manera formal):

an  an 1 d

donde d es un número fijo llamado diferencia común.
Además, el valor de d es muy importante, ya que si es:

Positivo, entonces la progresión aritmética es creciente; es decir, cada término es mayor que el an-
terior.

¿A qué altura del ras del suelo está el escalón 800? 
(véase figura 4.2).

Con base en un análisis de la figura 4.2, se tiene que:

a1  18

a2  18 1(19)  37

a3  18 2(19)  56

a4  18 3(19)  75

…

a800  18 799(19)  15 199

Por tanto, como se puede observar, el escalón 800 
está a 15 199 centímetros sobre el ras del suelo.

Asimismo, también se genera la siguiente sucesión:

{an}  {18, 37, 56, 75, ... , 15 199}

la cual, como se ve más adelante, es en efecto una progresión aritmética.

Continúa

18 cm

19 cm

Piso

19 cm

19 cm

19 cm

19 cm

19 cm

a
1

a
5

. . .a
4

a
3

a
2

a
800

Figura 4.2 Escalera de Jacob hasta el escalón 800.
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95  Progresiones aritméticas y geométricas

Cero, entonces la progresión aritmética es constante; es decir, tiene todos sus términos iguales.

Negativo, entonces la progresión es decreciente; es decir, cada término es menor que el anterior.

Ahora bien, ¿se puede obtener una fórmula explícita?; es decir, 
una fórmula para encontrar de manera directa el valor de 
cualquier término sin necesidad de determinar estos de uno 
en uno, como se haría con la fórmula recursiva. La respuesta 
es sí. Para ello, primero véase la figura 4.3.

Como se puede ver, los valores de la parte inferior de esta fi-
gura (a1, a2, a3, a4) corresponden a los cuatro primeros términos 
de una progresión aritmética general; así que aplicando la 
fórmula recursiva se tiene que:

a1  a1

a2  a1 d

a3  a2 d  (a1 d) d  a1 2d

a4  a3 d  (a1 d d) d  a1 3d

 �

Como se observa, las d deben sumarse con a1 una vez menos que el subíndice de a. Esto significa que:

an  a1 (n 1)d

A esta ecuación se le conoce como  y con esta es posible 
calcular cualesquier término an en función del primer término a1, del total de términos n o número de térmi-
nos que preceden a n 1, y de la diferencia común d.

Retomar las siguientes progresiones aritméticas:

{an}  {10, 14, 18, 22, ...}

{bn}  {3, 3.5, 4, 4.5, ...}

{cn}  {9, 6, 3, 0, ...}

Determinar el valor del término 100 en cada caso.

Si se utiliza la fórmula recursiva, se tendría que determinar los términos de uno en uno, hasta llegar al término 100.

E jemplo 

Así que, en este caso, primero se determinará la fórmula explícita correspondiente para cada una de las progre-
siones aritméticas. De este modo, se tiene que:

an  10 (n 1) (4)  6 4n

bn  3 (n 1) (0.5)  2.5 0.5n

cn  9 (n 1) ( 3)  12 3n

Una vez que se determinaron las fórmulas explícitas correspondientes, es fácil encontrar el valor de cualquier 
término de forma independiente.

Así, el valor del término 100 en cada caso es:

a100  6 4 (100)  406

b100  2.5 0.5 (100)  52.5

c100  12 3 (100)  288

Solución

a
1

a
4

a
3

a
2

a
1

a
1

a
1

a
1

d

d d

d

d

d

Figura 4.3 Auxiliar para obtener la fórmula explícita 
para una progresión aritmética.
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96 Capítulo 4 Relaciones de recurrencia

Además de la fórmula explícita, también es posible deducir otros elementos de la progresión aritmética:

El primer término: a1  an (n 1)d

La diferencia común: d
a a

n 1
n 1=
−

−

La cantidad de términos: n
a a

d
1n 1=

−
+

A continuación se ve un ejemplo de cada uno de estos elementos que es posible deducir.

Determinar el valor del término a1 de una progresión 
aritmética, donde el término a9 12 y la diferencia 
común d  2.

Como a1 an (n 1) d, entonces, al sustituir los va-
lores dados, se tiene que:

a1  12 (9 1) 2

  12 (8) 2

  12 16

  4

De este modo, la progresión aritmética resultante es:

          {an} { 4, 2, 0, 2, 4, 6, 8, 10, 12, ...}

E jemplo Solución

Determinar el valor de la diferencia común d en una 
progresión aritmética donde el valor del término  
a1  2 y el del término a7  16.

Como =
−

−
d

a a

n
n

1
1 , entonces al sustituir los valores 

dados, se tiene que:

 d
16 2

7 1

18

6
3

( )

( )
=

− −

−

=

=

donde la progresión aritmética resultante es:

{an}  { 2, 1, 4, 7, 10, 13, 16, ...}

E jemplo Solución

Determinar la cantidad de términos de una progresión 
aritmética donde el valor del término a1  4 y el del 
término a7  34, además de que el valor de la diferen-
cia común es d  5.

Como ( )=
−

+n
a a

d
n 11 , si se sustituyen los valores da-

dos, entonces se tiene que:

 
n

34 4

5
1

6 1

7

( )=
−
+

= +

=

De este modo, la progresión aritmética resultante es:

{an}  {4, 9, 14, 19, 24, 29, 34, ...}

E jemplo Solución
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97  Progresiones aritméticas y geométricas

Asimismo, también es posible calcular cualquier término an en función de otro término cualesquiera ak, 
siempre y cuando dicho término sea anterior a an; es decir, k n.

Por ejemplo, sea la progresión aritmética:

a1, a2, a3,…, an 1, an

De acuerdo con la fórmula explícita para progresiones aritméticas, se tiene que:

an  a1 (n 1)d
ak  a1 (k 1)d

Y si se hace la sustracción de an ak, entonces se tiene que:

 an ak  nd kd

 an ak  (n k )d
 an  ak (n k )d

Ahora bien, si ocurriera que k n, es decir, que se buscara algún término en función de otro posterior, se 
tendría la sustracción en forma invertida; esto es, ak an, y entonces se tendría que:

an  ak (k n)d

Calcular el valor del término a9 de una progresión arit-
mética, sabiendo que el término a3  1 y la diferencia 
común d  2.

Como an  ak (n k)d, si se sustituyen los valores 
dados, entonces se tiene que:

an  1 (9 3)(2)

  1 12

  13

De este modo, la progresión aritmética resultante es:

{an}  { 3, 1, 1, 3, 5, 7, 9, 11, 13, ...}

E jemplo Solución

Suma de términos de progresiones aritméticas
Supóngase que a1, a2, a3,… es una progresión aritmética y sea:

An  a1 a2 a3 … an 1 an

Entonces, debe hacerse esta suma dos veces, una de ida y otra de vuelta, y después hay que sumar término 
a término:

An a1 a2 … an 1
an

An an an 1
… a2 a1

2An (a1 an) (a2 an 1) … (an 1 a2) (an a1)

En este caso, cada par de elementos resultantes tiene la misma suma, es decir:
(a1 an)

Además, también véase que:

(a2 an 1)  a1 d an 1 d  a1 an

Como hay n adiciones, entonces:

A
n

a a
2n n1( )= −
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98 Capítulo 4 Relaciones de recurrencia

A esta fórmula se le conoce como .

Determinar la suma de los términos de la siguiente 
progresión aritmética:

1 2 3 ... 100

Aquí n  100, a1  1 y an  100. Por tanto:

( )

( )( )

= + + + +

= +

=

=

A 1 2 3 100

100

2
1 100

50 51

5 050

100

E jemplo Solución

Otro buen ejemplo sería el siguiente:

Calcular la suma de los primeros 350 términos de la progresión aritmética:

1 3 5 ... (2n 1)

E jemplo 

Para calcular an, primero se utiliza la fórmula explícita:

an  a1 (n 1) d

Donde n  350, d  2 y a1  1; entonces:

a350  1 (349)2  699

Por último, utilizando la fórmula de suma con n  350, se tiene que:

A350 � 1 � 3 � 5 � ... � 699

� 350
2  (1 � 699)

� (175) (700)

� 122 500

Solución

El resultado anterior también puede 

obtenerse con facilidad en la siguien-

te fórmula inductiva:
n n 1

2

( )+

Antes, por inducción matemática, se 

demostró que esta fórmula era vá-

lida para cualquier valor de n. (Para 

recordar la demostración, véase el 

capítulo 2.)

Nota

Propiedad de los términos equidistantes  
de una progresión aritmética
Sea la progresión aritmética:

a1, a1 1, a1 2,…, a1 k,…, an k,…, an 2, an 1, an

donde los términos:
a1 k y an k

son dos términos equidistantes, respectivamente, de:

a1 y an

Por la fórmula explícita para progresiones aritméticas, se tiene que:

a1 k  a1 kd

an k  an kd
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99  Progresiones aritméticas y geométricas

Ahora bien, si se suman los términos de las ecuaciones anteriores se tiene que:

a1 k an k  a1 an

lo cual significa que la suma de dos términos equidistantes de los extremos es igual a la suma de los dos 
términos extremos.

En una progresión aritmética se sabe que los términos 
a1  2, a32  91 y a16  43. 

Determinar el valor del término a17.

Primero, se tiene que 1 32  16 17  33, entonces 
se dice que los términos a16 y a17 son equidistantes de 
los extremos; por la propiedad de los términos equi-
distantes se tiene que:

 a1 a32  a16 a17

2 91  43 a17

 a17  46

Además, también es posible encontrar el valor de la 
diferencia común d; esto es:

d � an � a1

n � 1

 � 91 � (�2)
32 � 1

 � 
93
31

 � 3

Que se verifica con los términos a16 y a17.

E jemplo Solución

Interpolación de medios aritméticos
En primera instancia, podemos decir que la palabra interpolar equivale a intercalar o insertar; pero, tratán-
dose de términos de una progresión aritmética, significa situar o intercalar dichos términos entre otros dos.

Entonces, interpolar uno o más términos, llamados , entre otros dos términos dados, 
es determinar los términos que hacen falta en una progresión aritmética, de la cual uno de estos debe ser el 
primer término a1 y el otro debe ser el último an, intercalando tantos términos intermedios como número de 
términos que se quiera interpolar.

Si se quiere interpolar k medios aritméticos entre a1 y an, basta con calcular la diferencia común de la 
progresión aritmética que van a formar esos k términos con los a1 y an, en total n  k 2 términos; esto es, 
los k términos que se desea interpolar más los términos inicial y final a1 y an.
De este modo, en la fórmula:

an  a1 (n 1)d

se tiene que despejar el valor de la diferencia común d:

a a n d

d
a a

n

1

1

n

n

1

1

( )− = −

=
−

−

La fórmula anterior es correcta cuando no se tiene que interpolar ningún término, pero para un caso de 
interpolación no funciona, porque en lugar de n, se tienen k 2 términos.
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100 Capítulo 4 Relaciones de recurrencia

Entonces, en la fórmula para el cálculo del valor de la diferencia común d, se tiene que sustituir n por  
k 2, esto es:

d
a a

k

d
a a

k

2 1

1

n

n

1

1

( )
=

−

+ −

=
−

+

Determinar la diferencia común d para interpolar 5 
medios aritméticos entre 26 y 80.

Para calcular d se tiene que:

d
a a

k 1

80 26
5 1

54
6

9

n 1=
−

+

=
−

+

=

=

La progresión aritmética resultante es:

{an}  {26, 35, 44, 53, 62, 71, 80, ...}

E jemplo Solución

Progresiones geométricas
Antes de definir qué es una progresión geométrica, también se analiza primero un ejemplo en el cual apa-
rece una progresión de dicho tipo.

Escalera de oro de Jacob

En sus sueños, Jacob visualizó una escalera de oro por la que subían y bajaban ángeles. En el sueño de Jacob, el 
primer escalón de la escalera medía 18 centímetros, pero en adelante cada escalón tenía una altura de 5/4 centí-
metros más que el anterior. Determinar a qué altura estará el escalón 800 (véase figura 4.4).

Con base en un análisis de la figura 4.4, se tiene que:

( )

( )

( )

( )

( )

( )

( )

( )

=

=

=

=

=

a

a

a

a

a

18

18
5

4

18
5

4

18
5

4

18
5

4

1

2

3

2

4

3

800

799

E JEMPLO 
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A continuación, se consideran las siguientes sucesiones. De nueva cuenta, la idea es detectar el patrón 
que siguen estas sucesiones y llenar los espacios en blanco de cada una.

{an}  {3, 6, 12, 24, ____, ____, ____,…}
{bn}  {12, 4, 4/3, 4/9, ____, ____, ____,…}
{cn}  {0.6, 6, 60, 600, ____, ____, ____,…}

Aquí tampoco resulta difícil encontrar el valor de dichos términos. El rasgo común de estas tres sucesio-
nes es que en cada caso se puede obtener un término multiplicando el término anterior por un número fijo.

Por tanto, se puede decir que estas sucesiones también son casos de progresiones geométricas; así que 
es tiempo de definirlas.

Progresiones geométricas
Una progresión geométrica consiste en una sucesión infinita de números, donde cualquier término (distinto 
del primero) se obtiene luego de multiplicar un número fijo al término anterior.

De este modo, la altura del escalón 800 es de (18) ( 54  ) 799 centímetros arriba del ras del suelo.

18 cm
Piso

a
1

a
5

. . .a
4

a
3

a
2

a
800

Figura 4.4 Escalera de oro de Jacob.

Como se puede deducir del planteamiento anterior, esta escalera de oro de Jacob es para ángeles y no para huma-
nos. Por tanto, el escalón 800 tiene 4.86 1074 kilómetros de alto. 

A modo de comparación, podemos decir que el Sol está a 14.88 107 kilómetros de distancia de la Tierra, mientras 
que Alpha Centauri, la estrella más cercana a la Tierra, está a 4 1013 kilómetros de nuestro planeta.

De acuerdo con las dimensiones que alcanza, podemos decir que esta escalera en verdad alcanza el cielo y los 
límites del universo conocido.

En la sucesión anterior, cada término era 54  centímetros veces más alto que el anterior. 

Además, se generó la sucesión siguiente:

{an}  {18, (18) (54  ), (18) (54  )2, (18) (54  )3, ...}
la cual, como se ve más adelante, es una progresión geométrica.

Continúa
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102 Capítulo 4 Relaciones de recurrencia

De este modo, una progresión geométrica, a1, a2, a3,…, satisface la fórmula recursiva:

an  ran 1

donde r es un número fijo llamado razón común.
En esta fórmula, el valor de r también es importante, ya que si:

es mayor que uno, la progresión es creciente; es decir, cada término es mayor que el anterior.

está comprendida entre cero y uno, la progresión es decreciente; es decir, cada término es menor que 
el anterior.

es igual a uno, la progresión es constante; es decir, tiene todos los términos iguales.

es menor que cero, la progresión es alterna; es decir, sus términos son alternativamente positivos y 
negativos.

Además, al dividir cualquier término con el término antecesor se observa que:

a

a

a

a

a

a

a

a
rn

n

2

1

2

1

2

1 1

= = = = =
−

lo que significa que la razón de cualquier término con su antecesor siempre debe ser el mismo valor, en este 
caso la razón común r.

Para obtener la fórmula explícita correspondiente se tiene que:

a2  r(a1)
a3  r(a2)  r(r a1)  r2(a1)
a4  r(a3)  r(r2 a1)  r (a1) 
 

…

an  rn 1 a1

En este caso, el exponente de r es uno menos que el subíndice de a. 
Esto significa que:

an  a1 rn 1

A esta ecuación se le conoce como  y con esta se puede 
calcular un término cualquiera an en función del primer término a1, del total de términos n o número de 
términos que le precede n 1 y de la razón común r.

Si se retoman las siguientes progresiones aritméticas:

{an}  {3, 6, 12, 24,...}

{bn}  {12, 4, 4
3
 , 4

9
 ,...}

{cn}  {0.6, 6, 60, 600,...}

Determinar el valor del término 20 en cada caso.

E jemplo 

Si se utiliza la fórmula recursiva, sería necesario determinar los términos de uno en uno, hasta llegar al término 20.

En este caso, primero se determina la fórmula explícita correspondiente, que para cada una sería:

an  (3)(2)n 1

bn  (12) ( 13 ) n 1

cn  (0.6)(10)n 1

Solución
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103  Progresiones aritméticas y geométricas

Además de la fórmula explícita, también es posible deducir otros elementos de la progresión geométrica:

El primer término: =
−

a
a

r
n

n1 1

La razón común: = −r
a

a
n

n

1

1

La cantidad de términos: = +n

a

a

r

log

log
1

n

1

 
Para una mayor comprensión de este tema, a continuación se analiza un ejemplo de cada elemento que es 
posible deducir.

Ahora bien, una vez que se determinaron dichas fórmulas, resulta muy fácil encontrar el valor de cualquier término 
de forma independiente.

De este modo, el valor del término 20 en cada caso es:

a20  (3)(2)19

b20  (12)( 1
3 )19

c20  (0.6)(10)19

Continúa

Determinar a1 de una progresión geométrica donde el 
término a3  4 y la razón común r 2 . Como =

−
a

a

r
n

n1 1 , al sustituir los valores dados se 

tiene que:

( )

=

=

=

−
a

a

r

4

2

2

1
3

3 1

2

Por tanto, la progresión resultante es:

{ }{ }= …a 2, 2 2, 4, 4 2, 8, 8 2,n

E jemplo Solución

Determinar el valor de la razón común r en una progre-
sión geométrica donde los términos a1  2 y a6  64.

Como: = −r
a

a
n

n

1

1

Al sustituir los valores dados, se tiene que:

 
r

64

2

32

2

5

5

Por tanto, la progresión resultante es:

{an}  {2, 4, 8, 16, 32, 64, ...}

E jemplo Solución
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104 Capítulo 4 Relaciones de recurrencia

Determinar la cantidad de términos de una progresión 
geométrica donde los términos a1  1 y a5  81 y la 
razón común r  3.

Como:

= +n

a

a

r

nlog

log
11

Al sustituir los valores dados, se tiene que:

( )
= +

= +

= +

=

n
log

81

1
log3

1

log81

log3
1

4 1

5

Por tanto, la progresión resultante es:

{an}  {1, 3, 9, 27, 81, ...}

E jemplo Solución

Asimismo, también se puede calcular cualquier término an en función de otro término cualquiera ak, siem-
pre y cuando sea anterior a an; es decir, k n.

Sea la progresión geométrica 
a1, a2, a3,… , an 1,an

De acuerdo con la fórmula explícita para progresiones geométricas, se tiene que:

an  a1 rn 1

ak  a1 rk 1

Si se hace la división de 
a

a
n

k

, entonces:

=

=

= ⋅

−

−

−

−

a

a

r

r

a

a
r

a a r

n

k

n

k

n

k

k

n k
n k

1

1

1

Ahora bien, si ocurriera que k n; es decir, que se buscara algún término en función de otro posterior, se 
tendría la división en forma invertida, esto es:

a

a
k

n
Entonces, se obtendría que:

= ⋅ −a a rk n
n k
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105  Progresiones aritméticas y geométricas

Suma de términos de progresiones geométricas
Supóngase que a1, a2, a3,… es una progresión geométrica y sea:

An a1 a2 a3 … an 1 an

Que puede escribirse como:
An a1 a1r a1r2 … a1r

n 2 a1rn 1

Ahora se multiplica An por r, se resta el resultado de An, y haciendo un poco de álgebra para obtener An, 
se tiene que:

An a1 a1r a1r
2 … a1r

n 1

rAn
a1r a1r

2 … a1r
n 1 a1r

n

An rAn
a1 0 0 … 0 a1r

n

Donde se obtiene que:

An rAn  a1 a1r
n

Al factorizar se tiene que:

An (1 r)  a1 (1 rn)

Por último, despejando An se obtiene:
( )

=
⋅ −

−
≠A

a r

r
r

1

1
, 1n

n
1

A esta fórmula se le conoce como .

Determinar el término a10 de una progresión geométrica donde el término a3  4 y la razón común r 2 .

E jemplo 

Como an � ak � r
n�k , entonces al sustituir los valores dados, se tiene que:

( )

= ⋅

=

=

−a a r

4 2

32 2

10 3
10 3

7

Por tanto, la progresión geométrica resultante es:

{ }{ }=an 2, 2 2 , 4, 4 2 , 8, 8 2 , 16, 16 2 , 32, 32 2 ,

Solución

Hay una antigua leyenda que dice que cuando el rey de Persia aprendió a jugar ajedrez estaba tan contento que 
intentó recompensar al inventor.

Luego de que el hombre estuvo ante la presencia del rey, este prometió cumplirle cualquier petición que hiciera. 
Ante esta oportunidad, el hombre pidió un grano de trigo por el primer cuadro del tablero del ajedrez, dos por 
el segundo, cuatro por el tercero y así sucesivamente. Es decir, el hombre había pedido 1 2 22 23 ... 263  
granos de trigo.

El rey pronto se dio cuenta que dicha petición nunca podría ser cumplida. A continuación, véase por qué.

E jemplo 
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106 Capítulo 4 Relaciones de recurrencia

Propiedad de los términos equidistantes 
de una progresión geométrica
Sea la progresión geométrica:

a1, a1 1, a1 2,… , a1 k, …, an k,… , an 2, an 1, an

donde los términos:

a1 k y an�k

son dos términos equidistantes, respectivamente, de:

a1 y an

Por la fórmula explícita para progresiones geométricas se tiene que:

a1 k  a1 rk

an k  an r k

Y si se suman término a término las ecuaciones anteriores, se tiene que:

a1 k an k  a1 an

lo que significa que el producto de dos términos equidistantes de los extremos es igual al producto de los 
dos términos extremos.

Si n  64, a1  1 y r  2, se tiene que:
( )

=
−

−

= −

≈

≈ ×

A
1 1 2

1 2

2 1

18446744073709600000

1.845 10

64

64

64

19

Algo así como dieciocho trillones, cuatrocientos cuarenta y seis mil setecientos cuarenta y cuatro billones, se-
tenta y tres mil setecientos nueve millones, seiscientos mil granos de trigo.

Ante tal petición del hombre, el rey sonrió y solo le dio un saco de trigo.

Comentario

Como se puede observar, el resultado del número de granos de trigo está dado por 20 cifras. Por ende, el peso 
aproximado de semejante cantidad de granos sería 10,000’000,000 toneladas.

Toda la producción mundial de trigo de un siglo no sería suficiente para obtener tal cantidad de granos.

Además, si toda la superficie del planeta fuera cultivada con sembradíos de trigo, aún no llegaría a dar semejante 
cantidad de trigo en varios años.

Solución
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107  Progresiones aritméticas y geométricas

Producto Pn de términos de progresiones geométricas
Sea la progresión geométrica:

a1, a2, a3, … , an 2, an 1, an

Entonces, el producto de todos los términos de dicha progresión sería:

 Pn  a1 a2 a3 , … , an 2 an 1 an (i)

Además, como el orden de los factores no altera el producto, también es posible decir que:

 Pn  an an 1 an 2 , … , a3 a2 a1 (ii)

Ahora bien, teniendo en cuenta la propiedad de los términos equidistantes de una progresión geométrica, si 
se multiplican (i) y (ii) y después se multiplican término a término, se tiene que:

Pn a1 a2
… a1 rn 1

Pn an an 1
… a1 rn 1

Pn
2 (a1 an) (a2 an 1) … (an 1 a2) (an a1)

Lo cual es lo mismo que:

Pn 
 (a1 an) (a1 an) … (a1 an)

          n factores
Es decir:

P2
n � (a1 an )

n

O bien:
P a an n

n
1( )= ⋅

En una progresión geométrica se sabe que los términos 
a1 6, a12 0.0029296875 y a6 0.1875. 

Determinar el valor del término a7.

Primero, se tiene que:

6 7  1 12  13

Entonces, los términos a6 y a7 son equidistantes de 
los extremos, y por la propiedad de los términos 
equidistantes se tiene que:

a6 a7  a1 a12

(0.1875) a7  (6)(0.0029296875)

a7  0.09375

Así, la progresión resultante sería:

{an}  {6, 3, 1.5, 0.75, 0.375, 0.1875, 0.09375,...}

Además, también se podría encontrar el valor de la 
razón común r; esto es:

( )

=

=

=

=

−r
a

a
n

n

0.0029296875 6

0.00048828125

0.5

1

1

11

11

que se verifica con los términos a6 y a7.

E jemplo Solución
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108 Capítulo 4 Relaciones de recurrencia

Esta igualdad también puede expresarse como:

( )

( )= ⋅

= ⋅

= ⋅

= ⋅

( )

( )

−

−

−

P a a

a a r

a r

a r

n n
n

n n

n n n

n
n n

1

1 1
1

1
2 1

1

1
2

que da el valor de Pn, en función de a1, r y n.

Sea la progresión geométrica:

1, 2, 4, 8, 16, 32

Determinar el producto de sus términos.

Como en este caso son pocos los términos, se puede 
hacer la multiplicación de forma manual y luego com-
probarla con la fórmula respectiva.

El producto de dichos términos es:

1  2  4  8  16  32  32 768

Al aplicar la fórmula del producto de términos de una 
progresión geométrica, se tiene que:

P a a

P

n n

n

n

( )

( )

( )

= ⋅

= ⋅

=

=

=

1 64

64

64

32 768

1

6

6

3

con lo cual se comprueba que es el mismo resultado.

E jemplo Solución

Otro ejemplo sería:

Sea la progresión geométrica:

1, 3, 9, ... , 59 049, 177 147, 531 441

Determinar el producto de sus términos.

E jemplo 

Primero, hay que determinar el valor de n para poder utilizar la fórmula para el producto de términos de una 
progresión geométrica.

 Luego, para calcular el valor de n, es decir, la cantidad de términos de la sucesión, se tiene la fórmula vista 
antes:

= +n

a

a

r

nlog

log
11  

(i)

Solución
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109  Progresiones aritméticas y geométricas

Interpolación de medios geométricos
Como en el caso de las progresiones aritméticas, también es posible la interpolación de uno o más términos, 
denominados medios geométricos, en una progresión geométrica entre dos términos dados: el término inicial 
a1 y el final an de una progresión geométrica.

Si se quiere interpolar k medios geométricos entre a1 y an, primero se debe calcular la razón común r  
de la progresión geométrica que van a formar esos k términos con los a1 y an, en total n  k 2 términos;  
esto es, los k términos que se desean interpolar más los términos inicial y final, a1 y an respectivamente.

Antes, ya se obtuvo la fórmula siguiente:

= −r
a

a
n

n

1

1

Para aplicar esta fórmula, primero se requiere el valor de r, el cual puede obtenerse con dos términos consecutivos. 
Entonces:

r
9

3
3

Ahora, al sustituir este valor en la expresión (i) se tiene que:

( )
= +

= +

= +

=

n
log

531 441

1
log3

1

log531 441

log3
1

12 1

13

Una vez que ya se obtuvo el valor de n, es posible utilizar la fórmula para calcular el producto de términos de una 
progresión geométrica. Entonces:

( )= ⋅P a an n

n

1

Sustituyendo de a1, an  y n, se tiene que:
( )= ⋅

≈ ×

1 531 441

1.64 10

13

37

Asimismo, también puede calcularse con la fórmula:

= ⋅
( )−

P a rn

n
n n

1

1

2

donde, al sustituir los valores de a1, r y n, se obtiene:

 113 3((13)(12))/2

 378

 1.64 1037

cuyo resultado, como se puede observar, es el mismo valor obtenido antes.

El valor exacto del producto de los términos de la progresión geométrica es:

16’423,203’268,260’658,146’231,467’800,709’255,289

Continúa
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110 Capítulo 4 Relaciones de recurrencia

Esta fórmula es correcta cuando no es necesario interpolar ningún término; no obstante, para el caso de 
interpolación no funciona, porque en lugar de n términos, se tienen k 2.

Por tanto, en la fórmula para el cálculo del valor de d se debe sustituir n por k 2; esto es:

=

=

( )+ −

+

r
a

a

a

a

nk

nk

1

2 1

1

1

Determinar la razón común r para interpolar 8 medios 
geométricos entre 11 y 5 632.

Para calcular r se tiene que:

r
a

a
n

k=

=

=

=

+

+
5 632

11

512

2

1

1

10 1

9

99

Y la progresión geométrica resultante es:

{an}  {11, 22, 44, 88, 176, 352, 704, 1 048, 2 816, 5 632, .. . }

E jemplo Solución

Suma de los términos de una progresión geométricacuando  
la razón común r es menor que 1 y el número de términos es infinito
Si a la fórmula:

( )
=

⋅ −

−
A

a r

r

1

1n

n
1

se le cambia el orden en el que se han colocado los valores del numerador y el denominador, el resultado no 
cambia.
Esto significa que:

( )
=

⋅ −

−
A

a r

r

1

1n

n
1

Es lo mismo que:
( )

=
⋅ −

−
A

a r

r

1

1n

n
1

Los valores de An son iguales porque si la razón común r es mayor que 1, tanto el numerador como el deno-
minador serían negativos, pero el cociente de dos números negativos será positivo.

Si la razón común r es menor que 1, tanto el numerador como el denominador serán positivos, al igual 
que el cociente.

Obsérvese que la operación 34 � 21
7

 también puede escribirse como 
34
7

 � 21
7

, y el resultado es el mismo.

Lo mismo que para dividir una suma o diferencia indicada por un 
número, se divide cada término por el denominador o divisor.

Esto quiere decir que:
( )

=
⋅ −

−
A

a r

r

1

1n

n
1

No hay que olvidar que se está tra-

tando el caso en que el número de 

términos es  (infinito) y la razón 

común r es menor que la unidad.

Nota
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111  Progresiones aritméticas y geométricas

puede escribirse como:

=
⋅ −

−

=
⋅

−
−
−

A
a r a

r

a r

r

a

r

1

1 1

n

n

n

1 1

1 1

Un número menor que 1 es una fracción de la unidad, como:  1
2

, 1
3

, 1
4

, 1
7

, etcétera.

Si la razón común r � 1
5

, y este valor se eleva a infinito, se tiene que:

=
∞ ∞

∞

1
5

1
5

Como se puede observar, el numerador vale 1 (sin tener en cuenta las indeterminaciones), mientras que el 
denominador vale infinito.

Esto es como dividir 1 entre un número extremadamente grande, digamos 123’456,789’000,000’000,000’
000,000 y todavía no se llega ni remotamente a . El cociente sería algo como:

0,00000000000000000000000000000000000009…

Que en realidad sería cero.
Luego de la igualdad:

=
⋅ −

−

=
⋅

−
−
−

A
a r a

r

a r

r

a

r

1

1 1

n

n

n

1 1

1 1

Se observa que:
⋅

−
=

a r

r 1
0n1

Debido a que rn  0, el producto de este valor multiplicado por a1 también será cero. Pero, si a 0 lo dividimos 
por cualquier valor que no sea cero, es posible afirmar que el cociente también vale cero, con lo cual la fór-
mula para el cálculo de la suma de infinitos términos quedaría como sigue:

A
a

r 1n
1=−
−

O bien:

A
a

r1n
1=
−

Calcular la suma de los 100 mil millones de términos de la progresión:

{ }=an

1

3
,

1

9
,

1

21
,

1

81
,

E jemplo 

En este caso, primero es necesario determinar la razón común r:

r

3

9
1

3

1
9

1
3

Solución
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Entonces, la suma de los términos infinitos será:

=
−

=
−

=
−

=

=

A
a

r
n 1

1

1

2

1

1
3

1
3

1
3

3
3

1
3

1
3

2
3

Continúa

4.3 Relación de recurrencia y sucesión de recurrencia
Con frecuencia, es posible desarrollar relaciones entre los elementos de una sucesión, las cuales reciben 
el nombre de . A continuación, se ilustra el concepto con un ejemplo y luego se 
ofrece una definición más formal.

Una persona invierte 10 000 pesos a una tasa de 15% de interés compuesto anual. Si An representa el monto de 
cada n años.

Determinar una relación entre An y An 1. 

E jemplo 

Al cabo de n 1 años el monto será An 1. Esto es, después de un año más se tendrá la cantidad de An 1 más el 
interés del año, entonces:

An An 1 (0.15) An 1

 1.15 An 1

 El valor inicial A0 10 000, junto con la ecuación anterior, permiten calcular el valor de An n. Por ejemplo:

A3   1.15 (A2)

  (1.15) (1.15) (A1)

  (1.15) (1.15) (1.15) (A0)

  (1.15)3 (10 000)

  15 208.75

Por tanto, al final del tercer año, la cantidad sería de 15 208.75 pesos. 

En este caso, se puede efectuar el cálculo para cualquier valor de n y se obtiene:

An 1.15 (An 1)

(1.15) (1.15) (An 2)  (1.15)2 (An 2)

(1.15)2 (1.15) (An 3)  (1.15)3 (An 3)

  �

Solución
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113  Relación de recurrencia y sucesión de recurrencia

Hasta aquí hemos trabajado con el concepto de relación de recurrencia; sin embargo, aún no se ha dado 
una definición formal, así que es momento de hacerlo.

Relación de recurrencia
Una relación de recurrencia para una sucesión a0, a1, a2,…, an, constituye una ecuación que relaciona a an con 
algunos de sus antecesores:

a0, a1, a2,…, an 1

Además, se llaman valores iniciales a los dados en forma explícita:

a0, a1, a2,…, an 1

Los cuales son necesarios para empezar a calcular los términos de la sucesión, mediante el uso de la relación 
de recurrencia.

Sucesión de recurrencia
La sucesión originada por la relación de recurrencia junto con los valores iniciales se conoce como 

 o .

(1.15)n 2 (A2)

(1.15)n 1 (A2)

(1.15)n (10 000)

Así que si se quiere saber la cantidad resultante al cabo de 20 años, entonces:

 (1.15)20 (10 000)  163 665.37

Resultado con base en la fórmula obtenida antes.

La ecuación An  (1.15) An 1 proporciona un ejemplo de una relación de recurrencia. Y dicha relación define una 
progresión geométrica dando el n-ésimo valor en términos de uno antecesor.

Continúa

Una de las más antiguas relaciones de recurrencia define la 
sucesión de recurrencia conocida como sucesión de Fibo-
nacci.

 Esta sucesión se encuentra por primera vez en el libro de 
este autor, Liber abaci, donde él se preguntó lo siguiente: 

E jemplo 

Sea fib1 el número de parejas de conejos al cabo del i-ésimo mes. Como al inicio solo hay una pareja de conejos, 
entonces:

fib0  1 (i)

Solución

¿Cuántas parejas de conejos habrá después de un año, 

si al comienzo solo hay una pareja, y sabemos que cada 

pareja produce al mes una nueva pareja, la cual se vuel-

ve productiva al mes? Se da por sentado que no ocu-

rren muertes y que la pareja inicial es recién nacida.

Nota

www.full-ebook.com
Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)

lOMoARcPSD|5154029



114 Capítulo 4 Relaciones de recurrencia

Y como al final del primer mes sigue habiendo solo una pareja, ya que comienza a ser productiva al cabo de este 
tiempo, se tiene que:

 fib1  1 (ii)

En este caso, las ecuaciones (i) y (ii) constituyen los valores iniciales para la sucesión de Fibonacci. El aumento en 
las parejas de conejos fibn 1, fibn, del mes (n 1) al mes (n) se debe a que cada pareja viva del mes (n 2) produce una 
pareja adicional. 

Esto es:

fibn fibn 1  fibn 2,

O

 fibn  fibn 1 fibn 2   (iii)

La relación de recurrencia (iii), con los valores iniciales (i) y (ii), define la sucesión de Fibonacci.

Véase la figura 4.5, la cual muestra lo que ocurre con los conejos hasta el mes cuatro.

Inicio

Mes

Mes 1

Mes 3

Mes 2

Mes 4

1

Número

de parejas

1

3

2

5

                                 Figura 4.5 Primeros cuatro meses del crecimiento de conejos.

De acuerdo con lo que se planteó, es necesario completar hasta el término fib12, para conocer la cantidad de co-
nejos que se tendrían al cabo de un año:

fib0  fib1  1

fib2  fib1 fib0  1 1  2 

fib3  fib2 fib1  2 1  3

fib4  fib3 fib2  3 2  5

fib5  fib4 fib3  5 3  8

fib6  fib5 fib4  8 5  13

fib7  fib6 fib5  13 8  21

fib8  fib7 fib6  21 13  34

fib9  fib8 fib7  34 21  55

fib10  fib9 fib8  55 34  89

fib11  fib10 fib9  89 55  144

fib12  fib11 fib10  144 89  233

Esto significa que después de un año se tienen 233 parejas de conejos.

Continúa
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115  Relación de recurrencia y sucesión de recurrencia

La sucesión de Fibonacci es la base para construir 
una sucesión de cuadrados adyacentes, como la 
que se muestra en la figura 4.7, cuyos lados miden 
los números de Fibonacci y se adhieren unos con 
otros en el sentido del giro de las agujas del reloj. 

Como se puede observar, dentro de esa suce-
sión de cuadrados se pueden ir trazando de ma-
nera continua cuadrantes de circunferencia que 
dan lugar a una bonita espiral llamada espiral de 

Fibonacci.
Es sorprendente ver cómo la -

 aparece de manera recurrente en la natura-
leza; así, puede observarse:

a) Al contar las escamas de una piña (véase figura 4.8). Tras observar este fruto, es posible distinguir 
que aparecen espirales alrededor del vértice, en igual número a los términos citados en la sucesión 
de Fibonacci.

b) En las piñas del girasol (véase figura 4.9). En estas se forma una red de espirales, donde unas van en 
el sentido de las agujas del reloj y otras en sentido contrario; aunque, en cualquiera de los casos, las 
cantidades de unas y de otras siempre son los términos consecutivos de la sucesión de Fibonacci.

c) En las ramas de los árboles, en la flor de la alcachofa, en el arreglo de un cono o en la disposición de 
las hojas en el tallo. Solo hay que tener en cuenta que en estos casos se distribuyen buscando la luz 
del Sol (véase figura 4.10).

Leonardo de Pisa, Leonardo Pisano o Leonardo Bigollo, también conocido como Fibonacci, matemático 
italiano del siglo XIII, fue el primero en describir la sucesión matemática que lleva su nombre. Hacia 1202, 
Fibonacci ya hablaba de dicha sucesión cuando publicó su Liber abaci (Libro del ábaco o Libro del cálculo).

Algunos de sus principales aportes se refieren a la geometría, la aritmética comercial y los números 
irracionales, además de haber sido vital para el desarrollo del concepto del cero.

Figura 4.6 Leonardo de Pisa, Leonardo Pisano o Leonardo Bigollo,  
también conocido como Fibonacci (1170-1250).

Figura 4.8 Escamas de una piña. Figura 4.9 Piña de un girasol.

Figura 4.7 Espiral de Fibonacci.

1

1
2

3

5

813
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116 Capítulo 4 Relaciones de recurrencia

d) El número de espirales en numerosas flores y frutos también se ajusta a parejas consecutivas de 
términos de esta sucesión (véase figura 4.11).

e) También está presente en los huracanes (véase figura 4.12 i), en algunas galaxias (véase figura 4.12 ii) 
y en las conchas tipo caracoles, entre otras (véase figura 4.12 iii).

f) En algunas partes del cuerpo de los seres humanos y de los animales, como en el caso de la relación 
entre la altura de un ser humano y la altura de su ombligo, la relación entre la distancia del hombro 
y sus dedos y la distancia del codo a los dedos o la relación entre las articulaciones de las manos y los 
pies (véase figura 4.13).

Figura 4.10 Espiral de Fibonacci en la naturaleza. i) Ramas de un árbol; ii) flor de la alcachofa; iii) arreglo de un cono; iv) disposición de 
la hojas de un tallo.

i) ii) iii) iv)

Figura 4.11 La espiral de Fibonacci en diversos flores y frutos.

iii)ii)i)

Figura 4.12 La espiral de Fibonacci de nuevo en la naturaleza.
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117  Relación de recurrencia y sucesión de recurrencia

g) La espiral de Fibonacci también está presente en el arte, como en los violines; en estos, se pueden 
ver en la ubicación de las efes (los “oídos” u orificios en la tapa) (véase figura 4.14 i). Además, también 
aparece en las relaciones entre altura y ancho de los objetos y las personas que aparecen en las obras 
de Miguel Ángel (véase figura 4.14 ii), Durero (véase figura 4.14 iii) y Da Vinci (véase figura 4.14 iv), 
entre otros.

Figura 4.13 La espiral de Fibonacci en partes corporales de los seres humanos.

Otro problema interesante donde aparecen las relaciones de recurrencias es el siguiente.

Problema de las torres de Hanói

Considérese que se tienen n discos y 3 torres. Los discos están 
apilados en la torre 1, ordenados de mayor a menor (véase figura 
4.15). 

El objetivo es pasar los discos uno por uno a la torre 3, colocados 
en el orden original. No obstante, en el proceso no se permite que 
un disco mayor se coloque sobre otro menor. 

Si an es el número de movimientos que se requieren para pasar los 
disco de la torre 1 a la torre 2, determinar la relación de recurrencia 
para calcular an.

E jemplo 

Torre 3Torre 2Torre 1

Figura 4.15 Juego de las torres de Hanói.
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118 Capítulo 4 Relaciones de recurrencia

Para mover n discos basta con mover n 1 discos a una torre libre, mover el disco mayor a la otra torre libre y 
mover de nuevo los n 1 discos sobre el disco mayor. 

Por tanto, an cumple la relación de recurrencia:

an  2 an 1 1

En este caso, hace falta un valor inicial, por lo que aquí se va a considerar que a1  1, ya que para un único disco 
se tiene que efectuar solo un movimiento. De acuerdo con la relación de recurrencia y el valor inicial, se tiene 
que:

a1  1

a2  2 a1  2(1) 1  3

a3  2 a2  2(3) 1  7

a4  2 a3  2(7) 1  15

a5  2 a4  2(15) 1  31

  
…

Para comprobar en forma gráfica que la relación anterior es correcta, a continuación se ve el caso donde  
n  3; es decir, cuando se tienen tres discos, lo que implica que deben utilizarse solo 7 movimientos para pasar 
los discos de la torre 1 a la torre 3, como se observa en la figura 4.16.

Torre 3Torre 2Torre 1 Torre 3Torre 2Torre 1

Torre 3Torre 2Torre 1 Torre 3Torre 2Torre 1

Torre 3Torre 2Torre 1 Torre 3Torre 2Torre 1

Torre 3Torre 2Torre 1 Torre 3Torre 2Torre 1

Estado inicial Primer movimiento

Segundo movimiento Tercer movimiento

Cuarto movimiento Quinto movimiento

Sexto movimiento Séptimo movimiento – Estado final

Figura 4.16 Movimientos de las torres de Hanói para 3 discos.

Solución

www.full-ebook.com
Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)

lOMoARcPSD|5154029

https://www.studocu.com/co?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=matematicas-discretas


119  Relación de recurrencia y sucesión de recurrencia

Un ejemplo interesante aplicado a la geometría es el que se analiza a continuación:

François Édouard Anatole Lucas fue un importante matemático francés, reconocido sobre todo por sus 
trabajos sobre la serie de Fibonacci y por el test de primalidad que lleva su nombre. Asimismo, también fue 
el creador de algunos juegos recreativos matemáticos, como el de las torres de Hanói.

 No obstante, es reconocido principalmente por su estudio de las llamadas sucesiones generaliza-
das de Fibonacci, las cuales comienzan por dos enteros positivos cualesquiera y, a partir de ahí, cada nú- 
mero de la sucesión es la suma de los dos predecesores. La sucesión más sencilla es la conocida como  
sucesión de Fibonacci: 1, 1, 2, 3, 5, 8, 13, 21, ...;  y quizá la inmediatamente más sencilla es: 1, 3, 4, 7, 11,  
18, ... , la cual es conocida como sucesión de Lucas.

Figura 4.17 François Édouard Anatole 
Lucas, matemático francés (1842-1891).

Se quiere determinar el número de regiones en las cuales queda dividido un plano al trazar en este n rectas, de 
forma que estas se corten de dos en dos, y de tal manera que tres rectas no tengan un punto común.

Si an es el número total de regiones, encontrar una relación de recurrencia para calcular an.

E jemplo 

Los cuatro primeros casos de división del plano, con las condiciones mencionadas, se observan en la figura 4.18.

1 43

5

2
6 71

2

43

1

2

a
0
  1 a

1
  2 a

2
  4 a

3
  7

      Figura 4.18 División del plano.

Como se puede observar, el caso a0  1 es trivial. Mientras que en los demás casos, es decir, cuando n 1, se 
observa que la n-ésima recta corta a las otras en n 1 puntos distintos; por tanto, la n-ésima recta quedará 
dividida en n segmentos distintos, cada uno de los cuales divide, a su vez, a las regiones obtenidas, en el caso 
inmediato anterior, en dos partes.

 Como consecuencia, la relación de recurrencia que se obtiene es:

an  an 1 n

Sin embargo, en esta hace falta un valor inicial, el cual se obtiene del caso trivial antes mencionado.

Así, de acuerdo con la relación de recurrencia y el valor inicial, se tiene que:

a0  1

a1  a0 1  1 1  2

a2  a1 2  2 2  4

a3  a2 3  4 3  7

a4  a3 4  7 4  11

         

…

Solución
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120 Capítulo 4 Relaciones de recurrencia

Asimismo, se pueden encontrar relaciones de recurrencia en la ciencia de la biología.

La relación de recurrencia an  3an 1, n 0, puede definir las siguientes sucesiones de recurrencia:

{an}  {5, 15, 45, ...}

{bn}  {7, 21, 63, ...}

{cn}  {2, 6, 18, ...}

{dn}  {3, 9, 27, ...}

  

…

Es decir, puede definir una infinidad de sucesiones de recurrencia.

Ahora bien, si se especifica que en:

{an} el término a0  5

{bn} el término a0  7

{cn} el término a0  2

{dn} el término a0  3

Entonces, en cada caso se define una sucesión de recurrencia única.

La misma relación de recurrencia con valor inicial a0  1, define la siguiente sucesión de recurrencia, la cual también 
es única:

{an}  {1, 3, 9, 27, ...}

la cual, además, también es una progresión geométrica.

E JEMPLO 

Considérese que el número de bacterias de una co-
lonia se duplica cada hora. Si an es el número total de 
bacterias en n horas, encontrar una relación de recu-
rrencia para calcular an.

Dado que el número de bacterias en la hora n es el doble 
de las que había en la hora n 1, entonces, como conse-
cuencia, la relación de recurrencia que se obtiene es:

an  2an 1

Si suponemos que la colonia comienza solo con un par 
de bacterias, es decir, a0  2; entonces, de acuerdo con 
la relación de recurrencia, se tiene que:

a0  2

a1  2a0  2(2)  4

a2  2a1  2(4)  8

a3  2a2  2(8)  16

a4  2a3  2(16)  32

                

…

E jemplo Solución

De este modo, una relación de recurrencia define una sucesión de recurrencia única, siempre y cuando se 
definan los valores iniciales. Pero, si a dicha relación no se le especifican los valores iniciales, entonces esta 
relación define una infinidad de sucesiones de recurrencia. 

Los valores iniciales no necesariamente son los primeros términos de la sucesión de recurrencia, pues di-
chos valores pueden ocupar cualquier posición en dicha sucesión, con los cuales también es posible calcular 
tanto términos anteriores como posteriores.

www.full-ebook.com
Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)

lOMoARcPSD|5154029

https://www.studocu.com/co?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=matematicas-discretas


121  Relación de recurrencia y sucesión de recurrencia

Considérese la relación de recurrencia siguiente:

3an 5an 1 2an 2  0

cuyos valores iniciales son: a3  1 y a4  4.

Calcular los términos a5 y a6, además de los términos a2, a1 y a0.

E jemplo 

Primero, se despeja an:

an  [5an 1 2an 2] / 3

Luego, se calculan los términos a5 y a6:

a5  [5a4 2a3] / 3 

 [(5) (4) (2) (1)] / 3

 [20 2] / 3  18 / 3  6

y

a6  [5a5 2a4] / 3 

 [(5) (6) (2) (4)] / 3

 [30 8] / 3  22 / 3

y así sucesivamente, para cualquier término posterior. 

De igual modo, es posible calcular a2, a1 y a0, aunque dichos términos sean anteriores; en cuyo caso, lo único 
que varía es el despeje de an, ya que en realidad se tiene que despejar an 2 y el valor de n; en este caso, no va a 
ser el valor del subíndice, ya que, por ejemplo, para encontrar a2, n debe valer 4, es decir, si:

an 2  [ 3an 5an 1] / 2

entonces:

a2  [ 3a4 5a3] / 2 

 [ (3) (4) (5) (1)] / 2

 [ 12 5] / 2  7 / 2 

a1  [ 3a3 5a2] / 2 

 [ (3) (1) (5) ( 7 / 2)] / 2

 [ 3 ( 35 / 2)] / 2  41 / 2 

y por último:

a0  [ 3a2 5a1] / 2 

 [ (3) ( 7 / 2) (5) ( 41 / 2)] / 2

 [21 / 2 ( 205 / 2)] / 2  184 / 2

De este modo, la sucesión de recurrencia resultante es:

  {an}  { 184/2, 41/2, 7/2, 1, 4, 6, 22/3, ...}

Solución

Relación de recurrencia lineal con coeficientes constantes
De los ejemplos vistos hasta aquí, se puede concluir que las relaciones de recurrencia constituyen un  
modelo, ya sea para crecimiento de conejos, para obtener la tasa de interés compuesto o para el pago con 
granos de trigo; no obstante, estas también pueden aplicarse en otras áreas, como crecimiento de colonias 
de bacterias, regiones producidas en el plano, etcétera.
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122 Capítulo 4 Relaciones de recurrencia

Es importante resaltar que también existe una familia de relaciones de recurrencia, las cuales pueden 
resolverse aplicando algunas reglas fijas; esta familia es la que está integrada por las relaciones de 
recurrencia lineales con coeficientes constantes, las cuales se estudian a continuación.

Relación de recurrencia lineal con coeficientes constantes
Una relación de recurrencia que tiene la forma:

an  C1an 1 C2an 2 … Ckan k  f(n)

o bien que en su forma implícita es:

C0an C1an 1 C2an 2 … Ckan k  f(n)

donde:
C0, C1, C2,… , Ck son constantes; es decir, Ci  . 

Dicha relación de recurrencia se denomina relación de recurrencia lineal con coeficientes constantes (RRLCC) 
de k-ésimo orden, siempre que C0 ≠ 0 y Ck ≠ 0. 

Cuando f(n)  0, se dice que es una relación de recurrencia lineal homogénea con coeficientes constantes 
(RRLHCC), es decir:

C0an C1an 1 C2an 2 … Ckan k  0

A esta relación de recurrencia se le llama lineal, porque cada an se eleva a la potencia 1 y no hay productos 
como an am. Además de que para obtener el orden de la misma, es necesario obtener la diferencia entre los 
subíndices mayor y menor de los miembros de la secuencia que ocurre en la relación de recurrencia.

Determinar cuáles de las siguientes relaciones de recu-
rrencia son lineales con coeficientes constantes y de 
estas determinar su orden.

a) 2an � 2an�1 � 2n

b) an � 3ran�1

c) 3an � 5an�1 � 2an�2 � n2 � 5

d) an � 7an�2

e) an � 3an�1 � an�2

f) an � 3an�3

g) 2ar � a2
n�1 � 2n

a)  Es una RRLCC de primer orden.

b)  No es una RRLCC, ya que su coeficiente de un tér-
mino no es constante.

c)  Es una RRLCC de segundo orden.

d)  Es una relación de RRLHCC de segundo orden.

e)  No es una RRLCC, ya que no debe haber produc-
tos entre los términos.

f)  Es una RRLHCC de tercer orden.

g)  No es una RRLCC, ya que no debe haber ningún 
término que esté elevado a una potencia diferente 
de 1.

E jemplo Solución

4.4 Soluciones homogéneas
A través del tiempo se han formulado diversos procedimientos sistemáticos para resolver las relaciones de 
recurrencia lineales con coeficientes constantes. De estos, a continuación se analizan algunos de los más 
importantes.

Sin embargo, antes de profundizar en dichos métodos, resulta indispensable formular la siguiente 
pregunta: ¿qué es resolver una relación de recurrencia? Como se recordará, en el tratamiento de los temas 
de las progresiones aritméticas y geométricas se encontró una fórmula explícita para determinar el valor de 
cualquier término de las mismas sin necesidad de hacerlo de uno en uno, como se haría con las relaciones 
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123  Soluciones homogéneas

de recurrencia respectivas. Con base en la experiencia de las progresiones aritméticas y geométricas, se 
pretende hacer algo similar con las relaciones de recurrencia lineales con coeficientes constantes, es decir, 
encontrar una fórmula o ecuación que se utilice para determinar el valor de cualquier término de la relación 
de recurrencia.

A esta fórmula se le denomina  o  de la relación de recurrencia lineal con 
coeficientes constantes, la cual consiste en la suma de dos funciones numéricas discretas, una denominada 

 an

h( ), la cual satisface la relación de recurrencia cuando f(n) 0, esto es:

C0an C1an 1 C2an 2 … Ckan k  0

Y otra denominada , a n
(p) 

 la cual satisface la relación de recurrencia cuando f(n) ≠ 0; esto 
es:

C0an C1an 1 C2an 2 … Ckan k  f(n)

Por tanto, la función numérica discreta (la cual sería análoga a la fórmula explícita de las progresiones 
aritméticas y geométricas, por lo que también suele recibir el nombre de solución explícita), que es solución 
de la relación de recurrencia lineal con coeficientes constantes, es la suma de la solución homogénea y la 
solución particular, es decir:

a a an n

h

n

p
= +( ) ( )

Una solución homogénea para la relación de recurrencia lineal con  
coeficientes constantes tiene la siguiente forma exponencial:

, 0n
1

donde 1  se conoce como una raíz característica.
Ahora bien, si se sustituye n por an en la relación de recurrencia

C0an C1an 1 C2an 2 … Ckan k  0

se obtiene
C0

n C1
n 1 C2

n 2 … Ck
n k  0

que puede simplificarse como:

C0
k C1

k 1 C2
k 2 … Ck  0

Esta ecuación recibe el nombre de ecuación característica (o polinomio característico) asociada a la relación de 
recurrencia lineal con coeficientes constantes.

En general, la ecuación característica de k-ésimo grado tendrá k raíces características i, i 1,…, k.
En este caso, cada una de las raíces características respectivas dará lugar a las respectivas soluciones de 

la relación de recurrencia.
Por tanto, si 1 es una de las raíces de la ecuación característica (esta es la razón por la cual 1 recibe el 

nombre de raíz característica), entonces r
1  es una solución homogénea de la relación de recurrencia. 

Para determinar la solución homogénea an

h( ), primero es necesario encontrar la ecuación característica, la 
cual se obtiene a través del siguiente proceso:

1. Se hace f(n)  0.

2. Se obtiene el orden de la relación de recurrencia lineal homogénea con coeficientes constantes re-
sultante.

3. Se sustituye cada an por , conservando los signos y los coeficientes de cada término de la relación 
de recurrencia. 

4. Se construye la ecuación característica de grado igual al orden de la relación de recurrencia lineal 
homogénea con coeficientes constantes.

Se llama ecuación característica aso-

ciada a la relación de recurrencia, como 

se ve en siguiente ejemplo, pero por 

simplicidad se conoce simplemente 

como ecuación característica.

Nota
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124 Capítulo 4 Relaciones de recurrencia

Sea la relación de recurrencia lineal con coeficientes 
constantes:

3an 5an 1 2an 2  n² 5.

Determinar su ecuación característica.

Para esto se realiza cada uno de los pasos del proceso 
para encontrar la ecuación característica:

 1. Se hace f(n)  0, esto es:

3an 5an 1 2an 2  0

 2. Se obtiene el orden de la RRLHCC resultante, en 
este caso: segundo orden.

 3. Se sustituye cada an por , conservando los signos 
y coeficientes, esto es:

3  5  2   0

 4. Se construye el polinomio característico de grado 
igual al orden de la RRLHCC:

3 2 5  2  0

El resultado de este proceso constituye la ecuación 
característica asociada a la relación de recurrencia. 

E jemplo Solución

Determinar la solución homogénea de la relación de 
recurrencia lineal con coeficientes constantes:

3an 5an 1 2an 2  0

Ya en el ejemplo anterior se determinó la ecuación 
característica asociada a dicha relación de recurrencia:

3 2 5  2  0

Como se puede observar, esta ecuación característica 
tiene dos raíces características:

1  2/3 y 1  1

De esta ecuación se obtiene, por la forma general para 
cuando todas las raíces características son distintas, 
que la solución homogénea correspondiente es:

( )= +( )a A An

h n

1
2

3 2

Donde las dos constantes, A1 y A2, son determinadas a 
partir de los valores iniciales en la solución total.

E jemplo Solución

Ahora, si todas las raíces características de la ecuación característica son distintas, la forma general de la 
solución homogénea es:

= + + +( )a A A An

h n n
k k

n
1 1 2 2

donde 1, 2,…, k son las distintas raíces características de la ecuación característica y A1, A2,…, Ak son las 
constantes que van a ser determinadas por los valores iniciales en la solución total.

Pero, si algunas de las raíces de la ecuación característica son raíces múltiples, entonces si 1 es una raíz 
de multiplicidad m, la forma general que deberá tener la solución homogénea es:

( )( )= + + + +( ) − −
−a A n A n A n An

h m m
m m

n
1

1
2

2
1 1

donde también A1, A2,…, Am son constantes que serán determinadas por los valores iniciales en la solución 
total.
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125  Soluciones homogéneas

Otro ejemplo para obtener la solución homogénea de una relación de recurrencia lineal con coeficientes 
constantes es el siguiente:

Determinar la solución homogénea para la sucesión de 
Fibonacci.

La relación de recurrencia lineal homogénea con  
coeficientes constantes de segundo orden para la su-
cesión de Fibonacci es:

an  an 1 an 2 o an an 1 an 2  0

Entonces, la correspondiente ecuación característica 
es:

2  1  0

la cual tiene dos raíces características distintas:

=
+

=
−1 5

2
y

1 5

21 2

de donde se obtiene, por la forma general para cuan-
do todas las raíces características son distintas, que la 
solución homogénea correspondiente es:

=
+

+
−( )a A An

h

n n

1 5

2

1 5

21 2

donde las dos constantes A1 y A2 serán determinadas 
a partir de los valores iniciales a0  1 y a1  1 en la so-
lución total.

E jemplo Solución

Determinar la solución homogénea de la relación de 
recurrencia lineal con coeficientes constantes:

an 9an 1 27an 2 27an 3  0

La ecuación característica asociada a la relación de 
recurrencia es:

3 9 2 27  27  0

la cual tiene una raíz característica triple, ya que al fac-
torizar la ecuación característica se tiene que:

 (  3) (  3) (  3)  (  3)3  0

Esto es:

1  2  3  3

de donde se tiene, por la forma general para cuando 
existen raíces de multiplicidad, que la solución homo-
génea correspondiente es:

( )( )= + + −( )a A n A n An

h n
31

2
2 3

donde las constantes A1, A2 y A3 se determinarán a par-
tir de los valores iniciales en la solución total.

E jemplo Solución

En los ejemplos anteriores todas las raíces características son diferentes; ahora bien, en el siguiente solo 
existe una raíz de multiplicidad.
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126 Capítulo 4 Relaciones de recurrencia

Pero, también puede darse el caso de que al determinar las raíces características se obtengan alguna raíz 
de multiplicidad y otras diferentes. 

Determinar la solución homogénea de la siguiente re-
lación de recurrencia lineal con coeficientes constan-
tes:

ar 7ar 1 16ar 2 12ar 3  0

La ecuación característica asociada es: 
3 7 2 16  12  0

y las raíces características son:

1  2  2, y 3  3

En consecuencia, combinando las dos formas genera-
les, la solución homogénea es:

( )= + +( )a An A An

h n n2 31 2 3

donde las constantes A1, A2 y A3 se determinarán a par-
tir de los valores iniciales en la solución total.

E jemplo Solución

4.5 Soluciones particulares
En este punto, es importante hacer notar que no hay un procedimiento general para determinar la solución 
particular de una relación de recurrencia lineal con coeficientes constantes. Sin embargo, para ciertas fun-
ciones f(n), tales como polinomios de grado t en n y potencias de constantes, se conocen formas generales 
de soluciones particulares.

A continuación, se analizan algunos de los principales casos en los cuales aparecen con mayor frecuen-
cia, al determinar la solución particular de las relaciones de recurrencia lineales con coeficientes constantes.

Cuando f(n) es de la forma de un polinomio de grado t en n, es decir:

f(n)  C1n
t C2n

t 1 … Ctn Ct 1

donde los Ci  son los coeficientes del polinomio, entonces la solución particular correspondiente 
tiene la forma:

A1n
t A2n

t 1 … Atn At 1

donde las Ai son constantes a determinar.

Encontrar la solución particular para la relación de recurrencia lineal con coeficientes constantes siguiente:

 an 5an 1 6an 2  3n2 2n 5 (i)

E jemplo 

Como f(n) tiene la forma de un polinomio de grado 2 en n, entonces la solución particular tiene la forma:

 A1n
2 A2n A3 (ii)

donde A1, A2 y A3 son constantes a determinar. 

Al sustituir la expresión (ii) en el lado izquierdo de (i) se obtiene que:

A1n
2 A2n A3 5A1(n 1)2 5A2(n 1) 5A3 6A1(n 2)2 6A2(n 2) 6A3

Solución
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127  Soluciones particulares

lo que puede simplificarse como:

 12A1n
2 ( 34A1 12A2)n (29A1 17A2 12A3) (iii)

Ahora bien, si se compara (iii) en la parte derecha de (i) se obtienen las siguientes ecuaciones:

  12A1  3

34A1 12A2  2

 29A1 17A2 12A3  5

donde:

A

A

A

1

4
13

24
167

288

1

2

3

Por tanto, la solución particular es:

= + +( )
a n nn

p 1

4

13

24

167

288
2

Continúa

Cuando f(r) es una constante, la solución particular es una constante A.

Encontrar la solución particular para la relación de re-
currencia lineal con coeficientes constantes siguiente:

an 5an 1 6an 2  8

Puesto que f(r) es una constante, la solución particular 
también lo es, así que dicha constante es A. 

Al sustituir A en la parte izquierda de la relación de 
recurrencia, se tiene que:

A 5A 6A  8

Simplificando se tiene que:

2A  8

o bien:

A  4

Por tanto, la solución particular es:

=( )an

p 4

E jemplo Solución

Cuando f(n) tiene la forma:
C n

la correspondiente solución particular tiene la forma:

A n

donde C , y A es una constante a determinar, siempre y cuando  no sea una raíz característica 
de la relación de recurrencia lineal con coeficientes constantes.
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128 Capítulo 4 Relaciones de recurrencia

Cuando f(n) es de tipo:
n

la correspondiente solución particular tiene la forma:

Anm 1 n

siempre que  sea una raíz característica de multiplicidad m 1 de la relación de recurrencia lineal 
con coeficientes constantes.

Encontrar la solución particular para la relación de re-
currencia lineal con coeficientes constantes siguien-
tes:

 an 5an 1 6an 2  84 4n (i)

La forma general de la solución particular es:

 A4n (ii)

Sustituyendo (ii) en el lado izquierdo de (i) se tiene 
que:

A4n 5A4n 1 6A4n 2

que se puede simplificar como:

 A
21

8
4n (iii)

Comparando (iii) con el lado derecho de (i), se tiene 
que:

A
21

8
84=

o bien:

A  32

Por tanto, la solución particular es:

= ⋅( )
an

p n32 4

E jemplo Solución

Encontrar la solución particular para la relación de re-
currencia lineal con coeficientes constantes siguiente:

 an 2an 1  6 2n  (i)

Como 2 es una raíz característica de multiplicidad 1, 
entonces la forma general de la solución particular es:

 An2n (ii)

Si se sustituye (ii) en el lado izquierdo de (i), se obtiene:

An2n 2A(n 1)2n 1

Simplificando:

 A2n (iii)

y comparando (iii) con el lado derecho de (i), se tiene 
que:

A2n  6 2n

o lo que es lo mismo:

A  6

Por tanto, la solución particular es:

=( )a nn

p n6 2

E jemplo Solución
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129  Soluciones particulares

Cuando f(n) es de tipo de un polinomio de grado t en n por n, es decir:

(C1n
t C2n

t 1 … Ctn Ct 1)
n

donde los Ci  son los coeficientes del polinomio; entonces, la correspondiente solución particular 
tendrá la forma:

(A1n
t A2n

t 1 … Atn At 1)
n

donde las Ai son las constantes a determinar, siempre y cuando  no sea una raíz característica de la 
relación de recurrencia lineal con coeficientes constantes.

Encontrar la solución particular para la relación de re-
currencia lineal con coeficientes constantes siguiente:

 an an 1  9n2n (i)

En este caso, la forma general para la solución par-
ticular es:

 (A1n A2)2
n (ii)

Ya que 9n es un polinomio de grado 1 y al sustituir (ii) 
en el lado izquierdo de (i) se tiene que:

(A1n A2)2
n [A1(n 1) A2]2

n 1

lo que se puede simplificar como:

 
An A An n3

2
2

1

2

1

3
21 1 2( ) ( )([ ])

 (iii)

Comparando (iii) con el lado derecho de (i) se obtie-
nen las siguientes ecuaciones:

=

− + =

A

A A

3

2
9

1

2

3

2
0

1

1 2

de donde se obtiene que:

A1  6 y A2  2

Por tanto, la correspondiente solución particular es:

( )= +( )
a nn

p n6 2 2

E jemplo Solución

Cuando f(n) es de tipo de un polinomio de grado t en n por r, es decir:

(C1n
t C2n

t 1 … Ctn Ct 1)
n

donde los Ci  son los coeficientes del polinomio, entonces la correspondiente solución particular 
tendrá la forma:

nm(A1n
t A2n

t 1 … Atn At 1)
n

donde las Ai son las constantes a determinar, siempre y cuando  sea una raíz característica de mul-
tiplicidad m de la relación de recurrencia lineal con coeficientes constantes.
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130 Capítulo 4 Relaciones de recurrencia

4.6 Soluciones totales
Para obtener la solución total, es necesario realizar la suma de la solución homogénea an

h( ) y la solución par-
ticular an

p( ); es decir:

= +( ) ( )a a an n

h

n

p

Además de determinar las constantes A1, A2,…, Ak de la solución homogénea.
Para una relación de recurrencia de k-ésimo orden, las k constantes de la solución homogénea pueden 

determinarse mediante los valores iniciales:

a0, a1,…, ak 1

Pero, dichos valores deben ser consecutivos.
Si todas las raíces de la relación de recurrencia son distintas, entonces la solución total es de la forma:

( )= + + + +a A A Ak p nn
n n

k
n

1 1 2 2

donde p(n) es la solución particular.

Encontrar la solución particular para la relación de re-
currencia lineal con coeficientes constantes:

 an 4an 1 4an 2  (n 1)2n (i)

Ya que 2 es una raíz característica de multiplicidad  
m  2, entonces la forma general que tiene la solución 
particular es:

 n2(A1n A2)2
n (ii)

Al sustituir (ii) en el lado izquierdo de (i) se obtiene 
que:

n2 (A1n A2) 2
n (n 1) 2 [A1(n 1) A2] 2

n 1 

(n 2) 2 [A1 (n 2) A2] 2
n 2

Al simplificar queda:

 6A1n2n ( 6A1 2A2)2
n (iii)

Al comparar (iii) con el lado derecho de (i) se obtienen 
las ecuaciones:

 6A1n2n  n2n

( 6A1 2A2)2
n  2n

o lo que es lo mismo:

 6A1  1

6A1 2A2  1

donde se tiene que:

A A
1

6
y 11 2

Por tanto, la correspondiente solución particular es:

= +( )
a n

n
n

p n

6
1 22

E jemplo Solución
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131  Soluciones totales

Además se tiene el siguiente sistema de ecuaciones lineales:

⋯

⋯

⋯

⋮

⋯ ( )

( )

( )

( )

= + + + +

= + + + +

= + + + +

= + + + −−
− − −

a A A A p

a A A A p

a A A A p

a A A A p k

0

1

2

1

k

k k

k k

k
k k

k k
k

0 1 2

1 1 1 2 2

2 1 1
2

2 2
2 2

1 1 1
1

2 2
1 1

de k ecuaciones, que sirven para obtener las constantes:
A1, A2,…, Ak

Determinar la solución total para la relación de recu-
rrencia asociada a la sucesión de Fibonacci.

En páginas anteriores, en este mismo capítulo, se ob-
tuvo la solución homogénea de la relación de recu-
rrencia asociada a la sucesión de Fibonacci, la cual es:

=
+

+
−

a A An

n n

1 5

2

1 5

21 2

Con valores iniciales a0  1 y a1  1.

La forma general para la solución total es:

= + ( )( )a a an n

h

n

p

Pero, como la relación de recurrencia para la sucesión 
de Fibonacci es lineal homogénea con coeficientes 
constantes, entonces no tendrá solución particular. 
Por tanto, la forma de la solución total es:

=
+

+
−

a A An

n n

1 5

2

1 5

21 2

Ahora bien, al utilizar los valores iniciales se obtiene el 
siguiente sistema de ecuaciones:

=
+

+
−

=
+

+
−

a A A

a A A

1 5

2

1 5

2

1 5

2

1 5

2

0 1

0

2

0

1 1

1

2

1

Sustituyendo los valores iniciales se tiene que:

= +

=
+

+
−

A A

A A

1

1
1 5

2

1 5

2

1 2

1 2

Ahora, al despejar A1 y A2 de las ecuaciones anteriores 
se tiene que:

= =−A A
1

5
y

1

5
1 2

E jemplo Solución
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132 Capítulo 4 Relaciones de recurrencia

Determinar la solución total para la relación de recu-
rrencia asociada al problema de las torres de Hanói.

Como se vio antes, la relación de recurrencia lineal 
con coeficientes constantes asociada al problema de 
las torres de Hanói es:

an  2an 1 1

o bien:

an 2an 1  1

Con valor inicial a0  1.

La ecuación característica asociada a la relación de 
recurrencia es:

 2  0

la cual tiene una única raíz característica:

  2

de donde se tiene, por la forma general para cuando 
todas las raíces características son distintas, que la so-
lución homogénea correspondiente es:

= ⋅( )a An

h n21

Dado que f(r) es una constante, la solución particular 
también lo será; dicha constante es A. Ahora bien, al 
sustituir A en la parte izquierda de la relación de recu-
rrencia, se obtiene:

A 2A  1

A  1

         A  1

por lo que la solución particular es:

=−( )
an

p 1

Como la forma general para la solución total es:

= + ( )( )a a an n

h

n

p

E jemplo Solución

Otro buen ejemplo es determinar la solución total del problema de las torres de Hanói.

Por tanto, la solución total para la relación de recu-
rrencia asociada a la sucesión de Fibonnaci es:

=
+

−
−

an

n n

1

5

1 5

2

1

5

1 5

2

o bien:

=
+

−
−

an

n n

1

5

1 5

2

1 5

2

SoluciónContinúa
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133  Soluciones totales

Entonces, se tiene que:

an  A1 2n 1

Utilizando el valor inicial, se tiene la ecuación siguiente:

 a1   A1 21 1

o bien:

  1   A 2 1

donde:

 2   2A

 A   1

Por tanto, la solución total es:

 an   2n 1

SoluciónContinúa

Sea la relación de recurrencia:
 an 5an 1 6an 2  42 4n (i)

Con valores iniciales a0  19 y a1  56.

Por tanto, la ecuación característica asociada a la relación de recurrencia es:
2 5  6  0

la cual tiene dos raíces diferentes:

1  3 y 2  2 

de donde se obtiene, por la forma general para cuando todas las raíces características son distintas, que la solución 
homogénea correspondiente es:

( )an

h   A1 ( 3)n A2 ( 2)n

Por tanto, la forma general de la solución particular es:

 A4n (ii)

Al sustituir (ii) en el lado izquierdo de (i) se tiene que:

A4n 5A4n 1 6A4n 2

Lo que se puede simplificar como:

 
21

8
A4n (iii)

Comparando (iii) con el lado derecho de (i), se tiene que:

21

8
A  42

donde:

A  16

Por tanto, se tiene que la solución particular es:
( )

an

p   16 4n

E JEMPLO 
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134 Capítulo 4 Relaciones de recurrencia

Por último, la solución total queda como sigue:

an  A1 ( 3)n A2 ( 2)n 16 4n

Utilizando los valores iniciales se tiene el siguiente sistema de ecuaciones:

a0  A1 ( 3)0 A2 ( 2)0 16 40

 a1  A1 ( 3)1 A2 ( 2)1 16 41

Al sustituirlos se tiene que:

 19  A1 A2 16

56  3A1 2A2 64

donde se tiene que:

A1  2 y A2  1

Así, la solución total queda como sigue:

an  2 ( 3)n ( 2)n 16 4n

Continúa

Encontrar la solución total de la relación de recurrencia siguiente:

 an 7an 1 10an 2  3n (i)

con los valores iniciales a0  0 y a1  1.

La ecuación característica asociada a la relación de recurrencia es:
2 7  10  0

En esta se tienen dos raíces diferentes:

1  2 y 2  5 

de donde se obtiene, por la forma general para cuando todas las raíces características son distintas, que la solución 
homogénea correspondiente es:

( )an

h   A1(2)n A2(5)n

La forma general de la solución particular es C n; entonces, la correspondiente solución particular tiene la forma:

 A3n (ii)

Al sustituir (ii) en el lado izquierdo de (i) se tiene que:

A3n 7A3n 1 10A4n 2

la cual se puede simplificar como:

 
2

9
A3n (iii)

Al comparar (iii) con el lado derecho de (i), se tiene que:

2

9
A  1

donde:

=−A
9

2
Por tanto, la solución particular es:

( )
an

p  
2

9
 (3)n

E JEMPLO 
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135  Soluciones totales

Entonces, la solución total es:

an  A1(2)n A2(5)n 
9

2
(3)n

Ahora, al sustituir los valores iniciales se tiene que:

 0  A1 A2 
9

2
 1  2A1 5A2 

27
2

donde se obtiene que:
A

A

8

3

11

6

1

2

Por tanto, la solución total es:

( ) ( ) ( )= + −an

n n n8

3
2

11

6
5

9

2
3

Continúa

Si algunas de las raíces de la ecuación característica son raíces múltiples y si 1 es una raíz de multipli-
cidad m, donde 2  m  k, y k es el grado de la relación de recurrencia lineal con coeficientes constantes, 
entonces la parte de la solución total relacionada con la raíz 1 es de la forma:

( )( ) ( )= + + + + +− −
−a A n A n A n A p nn

m m
m m

n
1

1
1

2
1 1

donde A1, A2,…, Am, son constantes y p(n) es la solución particular.

Encontrar la solución total de la relación de recurrencia:

ar 4ar 1 4ar 2  0

con los valores iniciales a0  1 y a1  3.

La ecuación característica asociada a dicha relación de recurrencia es:
2 4  4  0

la cual tiene una raíz característica doble, ya que al factorizar la ecuación característica se obtiene que:

(  2)(  2)  (  2)2  0

esto es:

1  2  2

donde se tiene, por la forma general para cuando existen raíces de multiplicidad, que la solución homogénea co-
rrespondiente es:

( )an

h   (A1n A2)2
n

En este caso no existe solución particular, ya que es una relación de recurrencia lineal homogénea con coeficientes 
constantes; entonces, la solución total es precisamente:

an  (A1n A2)2
n

donde se tiene que 1  2 es una raíz de multiplicidad m  2. 

Ahora, al sustituir los valores iniciales se tiene que:

 1  A2

E JEMPLO 
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136 Capítulo 4 Relaciones de recurrencia

3  2A1 2A2

donde:
A

A

1

2
1

1

2

Por tanto, la solución total queda:
= +

= +

= +

= +

= +

−

−

a
n

n

n

n

n

n

n

n n

n
n

n n

n n

2
1 2

1

2
2 2

2

2
2

(2 ) (2 ) 2

(2 ) 2

1

1

Continúa

Resumen
Desde los inicios de la historia de las matemáticas se han estudiado las propiedades de las progresiones y 
de las sucesiones de recurrencia, mismas que han sido aplicadas en diversas áreas de las matemáticas, las 
ciencias e incluso en el arte y la música.

El estudio de las progresiones aritméticas es paralelo al de las progresiones geométricas por cuanto 
las propiedades de estas últimas emanan de las primeras, sin más que convertir las sumas en productos, 
diferencias en cocientes y el producto por un número natural en una potencia de exponente natural.

Toda relación de recurrencia para una sucesión de recurrencia es simplemente una fórmula que expresa 
cada término en función de uno o más de los términos que le preceden. Los valores de los términos necesarios 
para empezar a calcular la sucesión de recurrencia son los valores iniciales. 

Además, dada su naturaleza, las relaciones de recurrencia ponen de manifiesto la necesidad de deter-
minar, de manera explícita, mediante algún método o técnica, el término n-ésimo de la sucesión que repre-
sentan. 
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137Problemas propuestos

 d) {dn}  {log(10000), log(1000), log(100), ...} 

 e) { }=en 1,
1

2
,

1

3
,

1

4

 4.11 Determinar el término a1 de una progresión arit-
mética si:

a8  47 y a9  53

 4.12 Determinar el término a5 de una progresión 
geométrica si:

a1  4 y a2  6

 4.13 Calcular el primer término a1 de una sucesión 
geométrica cuyos términos son:

a6 1010x 9 y a5  108x 7

 4.14 Calcular el primer término a1 de una sucesión 
aritmética cuyos términos son:

a10  x 37 y a11  x 42

 4.15 Obtener el octavo término a8 de la progresión 
geométrica:

{an}  {300, 30, 3, ...}

 4.16 Sabiendo que, de una progresión geométrica,  
el término a8 

1
2

 y r  1
2

. Determinar el valor del 
término a2.

 4.17 Dadas las siguientes sucesiones, determinar si 
son progresiones aritméticas o geométricas:

 a) {an}  {1, 1, 1, 1, ...} 

 b) {bn}  {96, 48, 24, 12, ...}

 c) {cn}  {2, 4, 8, 16, ...}

 d) {dn}  {2, 2 x 1, 22 x 1, 23 x 1, ...}

 e) {en}  {1, 1, 2, 3, 5, ...}

 f) {fn}  {25(1.03), 25(1.07), 25(1.011), 25(1.15), ...}

 g) {gn}  {25(1.01), 25(1.04), 25(1.09), 25(1.16), ...}

 h) {hn}  {25(1.05), 25(1.05)2, 25(1.05)3, 25(1.05)4, ...}

 i) {in}  {22, 44, 88, 176, ...}

 j) {jn}  {log2(2), log2(4), log2(8), ...}

 k) {kn}  {1, ( x/3), (x2/9), ( x3/27), ...}

 l) {ln}  {ln(3), ln(9), ln(27), ln(81), ...}

 m) {mn}  {12(2.01), 12(2.04), 12(2.08), 12(2.13), ...}

 n) {nn}  {12(2.01), 12(2.01)2, 12(2.01)3, 12(2.01)4, ...}

 o) {on}  {12(2.01), 12(2.02), 12(2.03), 12(2.04), ...}

 4.1 Dada la sucesión {an}  {1, 4, 7, 10, ...}, responder 
lo siguiente:

 a) ¿Qué tipo de progresión es?

 b) ¿Cuál término tiene el valor de 88?

 4.2. Dada la sucesión {an}  {2, 6, 18, 54, ...}, responder 
lo siguiente:

 a) ¿Qué tipo de progresión es?

 b) ¿Cuál término tiene el valor de 118 098?

 4.3 Determinar el término a7 de una progresión 
geométrica si a1  3 y a2  35/3.

 4.4 Determinar la razón común r de la progresión 
geométrica:

{ }= −a
x x x

n 9
,

27
,

81
,

3 3 3

 4.5 Una pelota se deja caer desde 2 048 metros de al-

tura. Su elasticidad es tal que rebota hasta llegar 
a 3

4
 partes de la altura desde la cual cayó. ¿A qué 

altura llega la pelota en el quinto rebote?

 4.6 Dada la sucesión {an}  {1, 1, 1, 1, ...}, determinar 
qué tipo de progresión es.

 4.7 Dada la sucesión {an}  {3, 5, 7, 9, ...}, responder lo 
siguiente:

 a) ¿Qué tipo de progresión es?

 b) ¿Cuál término de la sucesión tiene el valor de 
163?

 4.8 Determinar la razón común r de la progresión 
geométrica:

{an}  {2, 2x 1, 22x 1, 23x 1, ...}

 4.9 Determinar la razón común r de la progresión 
geométrica:

 {an}  {10, 102x 1, 104x 3, 106x 5, ...}

4.10 Dadas las siguientes sucesiones, determinar si son 
progresiones aritméticas o geométricas:

 a) { }= …an 2sen , 2,
4

2
,4

 b) {bn}  {100(1.05), 100(1.07), 100(1.09), 100(11.1), ...}

 c) {cn}  {1, 3, 6, 10, ...}

Problemas propuestos
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138 Capítulo 4 Relaciones de recurrencia

 4.18 Calcular el término a11 de una sucesión aritmética 
cuyos términos son:

= + =a a2 2 y 31 2

 4.19 Determinar la razón común r de la sucesión 
geométrica 10, 102x 1, 104x 1, 106x 1.

 4.20 Sabiendo que, de una progresión aritmética, los 
términos a8  47 y a9  53, calcular el valor del 
término a1.

4.21 Sea la progresión geométrica {an}  {3, 6, 12, 24, ...}. 
Calcular el producto de los primeros 5 términos.

4.22 En la progresión geométrica {an}  { 1
25

, 1
5

, 1, ...}, 

si se supone que la misma consta solo de 10 
términos.

Calcular:

 a) El valor del último término.

 b) La suma de los 10 términos.

 c) El producto de todos los términos.

 4.23 En una progresión aritmética, el primer término 
a1 vale 4 y el último 16. Si se sabe que la diferen-
cia común d vale 2. ¿Cuántos términos tiene la 
progresión?

4.24 Calcular el valor del término a11, en forma de 
fracción, de la progresión:

{an}  {3 2, 3 3, 3 4, 3 5, ...}

4.25 Calcular la suma de los 20 primeros términos de 
la progresión aritmética:

{an}  {2, 4, 6, 8, ...}

4.26 En la progresión aritmética {an}  {1, 3, 5, 7, ...}, 
la suma de todos sus términos es 196. ¿Cuántos 
términos tiene la progresión?

4.27 Calcular la suma de los 1 000 primeros números 
naturales.

4.28 Calcular la suma de los 1 000 primeros números 
impares.

4.29 Calcular la suma de los 1 000 primeros números 
pares.

4.30 Entre 65 y 165 queremos interpolar 9 medios arit-
méticos. Calcular:

 a) La diferencia común d.

 b) La suma de todos los términos.

4.31 Entre 5 y 35 se quieren interpolar 5 medios 
aritméticos. 

 a) Determinar la diferencia común d para inter-
polar dichos términos.

  b) Escribir la progresión resultante.

4.32 Las edades de 11 personas están en progresión 
aritmética y la suma de todas estas es de 561 
años; si la mayor de dichas personas tiene 86 
años, ¿cuántos años tiene la más joven?

4.33 Sea la progresión geométrica:

{ }=an 7, 7 , 1,
7

7
,

Calcular:

a) La razón común r.

b) El valor del término a7.

c) La suma de los 7 términos.

4.34 La suma de dos términos consecutivos de la pro-
gresión geométrica {an}  {6, 18, 54, 162, ...} es 
157 464. ¿Cuáles son estos términos?

4.35 En la progresión geométrica {an}  {3
4

, 3
2

, 3, 6, ...}, 

el producto de dos términos consecutivos es 
1 152. ¿Cuáles son estos términos?

4.36 Entre 11 y 5 632 se quieren interpolar 8 medios 
geométricos. 

 a) Determinar la razón común r para interpolar 
dichos términos.

 b) Escribir la progresión resultante.

4.37 La suma de los términos infinitos de una pro-
gresión geométrica indefinida de razón común  

r  1
2

es igual a 1. ¿Cuánto vale el primer término?

4.38 Sean las siguientes relaciones de recurrencia:

 a) ( /2)an 2  3nan 1 an 

 b) an 2  an 1 an  

 c) an  an 1 2a
n 2 3n  

 d) an  2nan 1

Determinar cuál es lineal homogénea con coefi- 
cientes constantes.
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139Problemas propuestos

 4.39 Sean las siguientes relaciones de recurrencia: 

 a) an  3an 1 an 2 8an 3

 b) 2an  2an 1 n2n

 c) 4an  3an 1 3an 2

 d) an  5nan 1 2an 2 6n²

Determinar cuál es lineal homogénea con coefi-
cientes constantes.

4.40 Todas las siguientes relaciones de recurrencia son 
lineales con coeficientes constantes EXCEPTO:

 a) an 9an 1 7an 2 2an 3  0  

 b) an 3an 1 ar 2  6n3 2n2 n 3

 c) an 2nan 1 5an 2  6n3 5  

 d) an 2an 1  n2n

4.41 Sean las siguientes relaciones de recurrencia:

 a) n2 1
3

 an sen
2

an 1  ln(5)an 2 

 b) ar 5nan 1 2an 2  6n² 5 

 c) 4an 3an 1 3an 2  0 

 d) an 3  (an 2 an 7an 1)/5

 e) 2an 2an 1  n2n 3 

 f) 2an 4an 1 2an 2  6n² 5 

 g) an 3an 1 ar 2 8an 3  0

 h) an  an 1 an 2  

 i) an  an 1 4an 2 7an 3 

 j) an  5n² 2 5nan 1 2an 2

 k) an  an 1 3an 2 an 3 an 4 

 l) an  (3n 4an 1 )/3  

  Determinar cuáles de estas son:

 1) Lineales con coeficientes constantes (RRLCC).

 2) Lineales homogéneas con coeficientes cons-
tantes (RRLHCC).

 3) Además, determinar el orden de las que lo 
sean.

4.42 En cada uno de los siguientes casos se da una 
fórmula explícita. Determinar el término indica-
do en cada caso.

 a) an  2n 3;  a4   
 b) an  n/(n 1);  a5  

 c) an  (2n 1)2;  a4  

 d) an  ( 3)n; a3 

4.43 Determinar la fórmula explícita que representa 
cada una de las siguientes progresiones.

 a) 1, 3, 5, 7, ...

 b) 17, 14, 11, 8, ...

 c) 1, 1
2

, 1
4

, 1
8

 d) 1, 9, 25, 49, ...

4.44 Sean las siguientes sucesiones de recurrencia: 

 a) 9, 3, 3, 9, ... 

 b) 1, 3, 3, 15, ... 

 c) 9, 3, 9, 2457, ... 

 d) 9, 3, 1, 1/3, ... 

 e) 9, 3, 3, 45/8 , ... 

Y sean las siguientes relaciones de recurrencia:

 1) an  ( an 1)/3  

 2) an  (12an 1 12an 2 an 3) / 8

 3) an  2an 1 an 2

 4) an  3an 1 81an 2 243an 3

 5) an  2an 1 3an 2 

Hacer corresponder cada sucesión de recurren-
cia con su respectiva relación de recurrencia.

4.45 Encontrar el valor del término a3 en la sucesión 
generada por an  (2n 1)2 

4.46 Sean las siguientes sucesiones de recurrencia:

 a) 2, 6, 10, 14, ...

 b) 2, 6, 12, 20, ... 

 c) 2, 4, 6, 10, ... 

 d) 2, 5, 10, 17, ... 

 e) 2, 9, 37, 148, ...

 f) 2, 6, 17, 50, ...

 Y sean las siguientes relaciones de recurrencia:

 1) an  an 1 an 2

 2) an  an 1 2n 1

 3) an  an 1 2n

 4) an  an 1 4

 5) an  3an 1 1

 6) an  4an 1 1

  Hacer corresponder cada sucesión de recurren-
cia con su respectiva relación de recurrencia.
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140 Capítulo 4 Relaciones de recurrencia

4.47 Un concurso tiene 5 premios que suman un total 
de 5 000 pesos. Entre los premios sucesivos habrá 
una diferencia de 100 pesos. Calcular el valor del 
quinto premio.

4.48 Sea la relación de recurrencia lineal con coefi-
cientes constantes:

an 1 n  n2 an

  Determinar su solución homogénea.

4.49 Sea la relación de recurrencia lineal con coefi-
cientes constantes:

2an  7an 1 3an 2 2n

  Determinar la ecuación característica asociada.

4.50 Sea la relación de recurrencia lineal con coefi-
cientes constantes:

= +− −a a an n n1 2

  Determinar la ecuación característica asociada.

4.51 Determinar la relación de recurrencia con lineal 
con coeficientes constantes, si 1  3 y 2  2 son 
las raíces características asociadas a la ecuación 
característica.

4.52 Sea la relación de recurrencia lineal con coefi-
cientes constantes:

an 6an 1 5an 2  0

  Determinar su solución homogénea.

4.53 Sea la relación de recurrencia lineal con coefi-
cientes constantes:

an 3an 1 2an 2  0

  Determinar la ecuación característica asociada.

4.54 Determinar la relación de recurrencia lineal 
con coeficientes constantes, si 1  5 y 2  1  
son las raíces características asociadas a la ecua-
ción característica. 

4.55 Dada la relación de recurrencia lineal con coefi-
cientes constantes:

an 5an 1 6an 2  0

  Determinar su solución homogénea.

4.56 Dada la ecuación característica:

2 8  16  0

  Determinar la relación de recurrencia lineal con 
coeficientes constantes correspondiente.

4.57 Dada la relación de recurrencia lineal con coefi-
cientes constantes:

an 3an 1 2an 2 3an 3  0

  Determinar la ecuación característica correspon-
diente.     

4.58 Determinar la relación de recurrencia lineal 
con coeficientes constantes, si 1  1 y 2  2  
son las raíces características asociadas a la ecua-
ción característica.

4.59 Dada la relación de recurrencia lineal con coefi-
cientes constantes:

an 4an 1 3an 2  0

  Determinar su solución homogénea.

4.60 Dada la relación de recurrencia lineal con coefi-
cientes constantes:

2an  7an 1 3an 2 2n

  Determinar la ecuación característica asociada.

4.61 Determinar la relación de recurrencia lineal con 
coeficientes constantes, si 1  3 y 2  2  
son las raíces características asociadas a la ecua-
ción característica.

4.62 Dada la relación de recurrencia lineal con coefi-
cientes constantes:

an 5an 1 6an 2  0

  Determinar su solución homogénea.

4.63 Determinar la relación de recurrencia con coe-
ficientes constantes, si 1  1 y 2  2 son las 
raíces de la ecuación característica.

4.64 Dada la relación de recurrencia lineal con coefi-
cientes constantes:

2an  7an 1 3an 2 2r

  Determinar la ecuación característica asociada.
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141Problemas reto

4.65 Dada la relación de recurrencia lineal con coefi-
cientes constantes:

an 3an 1 3an 2 an 3  0

  Determinar su solución homogénea.

4.66 Determinar la relación de recurrencia lineal con 
coeficientes constantes si 1   2  1 son las raí-
ces características de la ecuación característica.

4.67 Dada la relación de recurrencia lineal con coefi-
cientes constantes:

an  3an 4

  Determinar la ecuación característica asociada.

4.68 Dada la relación de recurrencia lineal con coefi-
cientes constantes:

an n  3n2 an 1

  Determinar su solución homogénea.

4.69 Determinar la relación de recurrencia lineal con 
coeficientes constante si 1  1 y 2  4 son las 
raíces características de la ecuación característica.

4.70 Dada la relación de recurrencia lineal con coefi-
cientes constantes:

2an  7an 1 3an 2 2r

  Determinar su solución homogénea.

4.71 Dada la relación de recurrencia lineal con coefi-
cientes constantes:

3an  3n an 1 7an 2

  Determinar la forma de la solución particular. 

4.72 Dada la relación de recurrencia lineal con coefi-
cientes constantes:

3an  3n an 1 7an 2

  Determinar la forma de la solución particular.

4.73 Dada la relación de recurrencia lineal con coefi-
cientes constantes:

an 2an 1  3n

  Con valor inicial a0  3. 

  Determinar su solución total.

4.74 Dada la relación de recurrencia lineal con coefi-
cientes constantes:

an 2an 1  2n

  Con valor inicial a0  2. 

  Determinar su solución total.

4.75 Dada la relación de recurrencia lineal con coefi-
cientes constantes:

an an 1  3n2 n

  Con valor inicial a0  3. 

  Determinar su solución total.

 1. En una progresión geométrica a1  4 y la razón 
común r  3. La suma de dos términos consecu-
tivos es 1  296 y el producto de estos mismos tér-
minos es 314 928.

 2. Determinar cuáles son estos dos términos conse-
cutivos.

 3. Dada la relación de recurrencia lineal con coefi-
cientes constantes:

9an 6an 1 an 2  3(2n) 7(3n)

  Con valores iniciales a0  1 y a1  4.

  Determinar su solución total.

 4. En algunas ocasiones, una relación de recurren-
cia, que en apariencia no es lineal con coeficien-
tes constantes, puede transformarse en una rela-
ción de este tipo haciendo un cambio de variable 
adecuado. 

  En los siguientes problemas, hacer el cambio de 
variable apropiado para después obtener la solu-
ción total a la relación de recurrencia resultante.

 a) Sea la relación de recurrencia:

21 2= ++ −b b bn n n

cuyos valores iniciales son b0  b1  1.

Determinar su solución total. 

Problemas reto
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142 Capítulo 4 Relaciones de recurrencia

Sugerencia: hacer el cambio de variable 

xn  bn

 b) Sea la relación de recurrencia:

2

1

= −

−

c
c

c
n

n

n

cuyos valores iniciales son c0  8 y c1  1
2

2 .

Determinar su solución total. 

Sugerencia: hacer el cambio de variable  xn  log2 cn .
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Objetivos

 Conocer los principios básicos de conteo.

 Entender la diferencia esencial entre permutaciones y combinaciones para resolver problemas de conteo.

 Aplicar los métodos de conteo para resolver problemas de la vida cotidiana.

Combinatoria

5
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5.1 Introducción
En este capítulo se estudian las diferentes técnicas o reglas para contar los elementos de un conjunto espe-
cífico, para lo cual estos deben cumplir una condición o característica específica. El estudio y la aplicación 
de las técnicas o reglas de conteo es lo que en el lenguaje propio de las matemáticas se conoce como com-

binatoria.
Los primeros indicios del surgimiento de la combinatoria datan del año 2200 a.C., con el problema de los 

cuadrados mágicos (arreglos numéricos que tienen la propiedad de que la suma de todos los elementos de 
cualquier columna, renglón o diagonal siempre es el mismo número). El problema de los cuadrados mágicos 
fue encontrado por primera vez en un libro de origen chino, el cual era de carácter religioso. No obstante, no 
fue sino hasta principios del siglo xviii que se fundó una auténtica escuela de matemática combinatoria, 
que fue creada y liderada por Leonhard Euler.

En sus publicaciones acerca de la partición y descomposición de enteros positivos en sumandos, Euler 
estableció las bases del método de las funciones generadoras. De igual modo, Euler planteó y resolvió el 
problema de los Puentes de Königsberg mediante el uso, por primera vez, de los conceptos y métodos de la 
teoría de grafos. El problema de los cuatro colores (planteado a mediados del siglo xix), que consiste en 
demostrar que cuatro colores son suficientes para pintar las regiones de un mapa, de tal manera que to-
das aquellas regiones con frontera tengan asignado un color distinto, pasó de ser un mero acertijo mate-
mático a una fuente de importantes problemas y resultados en teoría de gráficas de interés tanto teórico 
como en aplicaciones.

Hoy día, dicho acertijo constituye uno de los problemas teóricos más desafiantes en la historia de la 
combinatoria, además de que se considera el detonante de que la combinatoria haya alcanzado una gran 
importancia tanto en la investigación teórica como en diversas aplicaciones de ingeniería.

Leonhard Paul Euler cursó estudios en la universidad de Basilea, Suiza, con el matemático suizo Johann 
Bernoulli, donde obtuvo el grado de doctor a la edad de 17 años. En 1727, invitado por la emperatriz de 
Rusia, se integró como miembro del profesorado de la Academia de Ciencias de San Petersburgo, donde 
impartió las asignaturas de física en 1730 y de matemáticas en 1733. En 1741, se convirtió en profesor de 
matemáticas en la Academia de Ciencias de Berlín, a petición del rey de Prusia, Federico el Grande. En 
su obra Introducción al análisis de los infinitos (1748), Euler realizó el primer tratamiento analítico com-
pleto de álgebra, la teoría de ecuaciones, la trigonometría y la geometría analítica. Asimismo, en otras 
de sus obras, también trató el desarrollo de series de funciones y formuló la regla por la cual solo las 
series convergentes infinitas pueden ser evaluadas de manera adecuada. También abordó las superficies 
tridimensionales y demostró que las secciones cónicas se representan mediante la ecuación general de 
segundo grado en dos dimensiones.

Euler es conocido en el mundo de la ciencia como poseedor de una asombrosa facilidad para los nú-
meros y del raro don de realizar cálculos mentales de largo alcance. Como anécdota, se dice que en cierta 

ocasión cuando dos de sus discípulos realizaban la suma de unas series de 17 términos y no estaban de acuerdo con los resultados en una 
unidad de la quincuagésima cifra significativa, tuvieron que recurrir a Euler, quien repasó el cálculo mentalmente y en poco tiempo llegó 
al resultado correcto.

Euler también realizó aportaciones a la astronomía, la mecánica, la óptica y la acústica. Entre sus obras más destacadas se encuentran: 
Instituciones del cálculo diferencial (1755), Instituciones del cálculo integral (1768-1770) e Introducción al álgebra (1770). 

Antes de cumplir los 30 años de edad perdió parcialmente la visión y se quedó casi ciego al final de su vida. Regresó a San Petersburgo 
en 1766, donde murió el 18 de septiembre de 1783.

Figura 5.1 Leonhard 
Paul Euler (1707-1783), 
matemático y físico suizo.

5.2 Reglas de la suma y el producto
En combinatoria existen dos principios sencillos básicos que dan lugar a expresiones matemáticas sofisti-
cadas para el conteo: 1. la regla de la suma y 2. la regla del producto.
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Reglas de la suma y el producto 145

En esta sección solo nos enfocamos en el estudio de la primera de estas, para lo cual, de nuevo, debe-
mos considerar que para cualquier conjunto finito S, se escribe |S| para denotar su cardinalidad; de esta 
manera,|S|  |T| precisamente cuando S y T tienen la misma cantidad de elementos. Observemos que | |  0 
y |{1, 2, 3, …, n}|  n n .

Principio o regla de la suma
El principio o regla de la suma puede enunciarse de la siguiente manera:
Si S y T son dos sucesos mutuamente excluyentes o disjuntos, es decir, que no se presentan al mismo tiempo, 
el suceso S se puede realizar de m maneras y el suceso T de n maneras; ello significa que los sucesos S o T  
pueden realizarse de m  n maneras distintas. Este principio también puede extenderse a más de dos sucesos 
mutuamente excluyentes. Desde la perspectiva de las matemáticas, el principio de la suma se escribe como:

|S  T |  |S |  |T |
siempre que S y T sean finitos y S  T  . 

En general, si S y T son dos conjuntos finitos no disjuntos, la cardinalidad de la unión de S y T se puede 
escribir como:

|S  T |  |S|  |T |  |S  T|

La razón intuitiva por la cual se cumple la ecuación anterior es que cuando se calcula |S|  |T| se están 
contando dos veces los elementos de S  T (una vez cuando se considera |S| y otra vez cuando se considera 
|T|), por lo que debemos restar |S  T| de la suma de |S|  |T| para obtener el valor exacto de |S  T|.

Cuando se considera el caso de conjuntos no disjuntos, el principio es mejor conocido como principio de 

inclusión exclusión. De manera gráfica, la regla de la suma se muestra en la figura 5.2:

Una biblioteca tiene 40 libros de texto de sociología y 50 de antropolo-
gía. Determinar por el principio o regla de la suma de cuántos libros de 
texto se dispone para conocer acerca de estos temas.

E jemplo 

Por la regla de la suma, un alumno puede elegir entre 40  50  90 
libros de texto para aprender acerca de alguno de estos temas.

Solución

En una escuela, 20 alumnos toman clases de computación, 30 de física y 7 de ellos toman ambas asignaturas. 
¿Cuántos alumnos hay en total?

E jemplo 

Sean:

C  {x t · q · x es un alumno que toma la clase de computación}

y

F  {x t · q · x es un alumno que toma la clase de física}

Al aplicar la regla de la suma se tiene: 

|C  F|  |C|  |F|  |C  T|  20  30  70  43

De este modo, hay 43 alumnos en total.

Solución

S T

Figura 5.2 Representación gráfica de 
la regla de la suma.
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Capítulo 5  Combinatoria146

De 200 estudiantes que conforman la matrícula de un plantel educativo, 50 toman el curso de matemáticas dis-
cretas, 140 el curso de economía y 24 cursan ambas asignaturas. Como los profesores de ambos cursos programa-
ron exámenes para el mismo día, solo los estudiantes que no cursen ninguna de estas asignaturas podrán asistir a 
la fiesta programada para la noche. Determinar cuántos estudiantes pueden asistir a la fiesta.

E jemplo 

Sean:

A1  {x t · q · x es alumno de matemáticas discretas}

y

A2  {x t · q · x es alumno de economía}

Por la regla de la suma se tiene que:

|A1  A2|  50  140  24  166

Esto es, el número de alumnos que toman uno o ambos cursos.

Por tanto:

200  166  34

Entonces, 34 estudiantes son quienes pueden asistir a la fiesta en cuestión.

Solución

¿Cuántos enteros en A  {1, 2, 3, ..., 1 000} son divisibles entre 3 y/o entre 5?

E jemplo 

Sean:

D3  {n  A t · q · n es divisible por 3}

Y

D5   {n  A t · q · n es divisible por 5}

En este caso, se busca |D3  D5|, que no es tan obvio. Como puede verse, |D3|  333; entonces, basta con dividir 
1 000 entre 3 y tomar la parte entera. De forma similar, se tiene que:

|D5|  200

Además, se tiene que:

|D3  D5|  |D15|  66

Por tanto:

|D3  D5|  |D3|  |D5|  |D3  D5|  333  200  66  467

Esto es,  467 números de A son divisibles entre 3 y/o entre 5.

Solución

En muchas ocasiones, en matemáticas es mucho más fácil contar los elementos de un conjunto que no 
cumplen con la condición requerida para restar dicho número del total. A continuación, se presenta un 
ejemplo representativo de este caso.
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¿Cuántos números naturales menores a 1 000 000 no son capicúas (capicúa es un número que se lee igual de iz-
quierda a derecha que de derecha a izquierda; por ejemplo, 21 312).

E jemplo 

Sean:

U  {n   t · q · n < 1 000 000}

y

A  {n t · q · n no es capicúa}

Entonces, se desea calcular |A| pero esto es equivalente a |A|  |U|  |U  A|. Los elementos de U  A tienen 
1, 2, 3, 4, 5 o 6 cifras. 

Calculando por separado, según el número de cifras, se tiene que:

 • Capicúas con una cifra: Hay 9 en total: 1, 2, ..., 9.

 • Capicúas con dos cifras: La segunda cifra debe ser igual a la primera; por tanto, hay 9  en total.

 • Capicúas con tres cifras: La primera y tercer cifras deben ser iguales y distintas de cero. La elección de la 
segunda cifra es independiente de las otras; entonces, se tiene en total: 9  10 90.

 • Capicúas con cuatro cifras: Las únicas que pueden elegirse ahora son la primera y la segunda cifras; ya que 
la primera debe ser igual a la última y la segunda igual a la penúltima, se tienen 9 elecciones posibles para 
la primera cifra y 10 para la segunda. Esto es, en total 9  10  90.

Razonando de forma análoga se tiene que:

 • Hay 9  10  10  900 capicúas de 5 cifras.

 • Hay 9  10  10  900 capicúas de 6 cifras.

Por tanto, el resultado deseado es:

|A|  |U|  |U  A|  999 999  (9  9  90  90  900  900)  998 001

Solución

¿Cuántos números hay del 50 al 12 000, excluyendo los múltiplos de 3 y de 5?

E jemplo 

En este caso, lo primero es analizar el problema: del 50  al 12 000 hay 12 000 – 50  1  11 951 números. Entonces, 
de esta cantidad se tiene que restar todos aquellos números que son múltiplos de 3 y o 5

Así, sean:

N3  {n  A t · q · n es múltiplo de 3 y 50  n  12 000}

y:

N5  {n  A t · q · n es múltiplo de 5 y 50  n  12 000}

Solución
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El ejemplo anterior muestra que se puede generalizar la regla de la suma.
Formalmente, si A1, …, An son n conjuntos finitos con cardinalidad |A1|, …, |An|, respectivamente, se veri-

fica que si A  {A1, A2 …, An} es una partición del conjunto A entonces:

|A|  |A1|  |A2|  …  |An|

O bien

|A1  A2  …  An|  |A1|  |A2|  …  |An|

Más adelante, se retoma el estudio de la generalización de la regla de la suma cuando los conjuntos no son 
necesariamente disjuntos; es decir, el principio de inclusión-exclusión.

Regla del producto (principio de elección)
El segundo principio básico del conteo es el principio de elección o regla del producto y se enuncia de la 
siguiente manera: si U es un suceso que puede descomponerse en dos etapas sucesivas e independientes 
entre sí, S y T, la etapa S se puede realizar de m maneras y la etapa T de n maneras, independientemente de 

entonces, la solución se puede calcular a partir de:

1 1  951  |N3  N5|

Sea además:

|N3  N5|  | N3 |  | N3 |  |N3  N5|

Nótese que ser múltiplo de 3  y de 5  es lo mismo que ser múltiplo de 15, por lo que:

N15  {n  A t · q · n es múltiplo de 15 y 50  n  12 000}

Además, se tiene que: |Nk|  (12 000/k)  (49/k) la división es entera. 

Entonces:

|N3|  (12 000/3)  (49/3)  4 000  16  3 984

|N5|  (12 000/5)  (49/5)  2 400  9  2 391

y:

 |N3|  (12 000/15)  (49/15)  800  3  797.

Así:

|N3  N5|  3 984  2 391  797  5 578

Por tanto, la cantidad buscada es:

11 951  5 578  6 373

Un instructor de ciencias de la computación tiene cinco libros de cada uno de los cuatro siguientes lenguajes de 
programación: Basic, Fortran, C y Pascal, por lo que puede recomendar cualquiera de estos 20 libros a un estudiante 
interesado en aprender un lenguaje de programación.

E JEMPLO 
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cuál haya sido el resultado en la etapa; entonces, U se podrá realizar de m  n maneras distintas. Este princi-
pio, al igual que el principio de la suma, también puede generalizarse a más de dos etapas.

Para conjuntos finitos S y T se tiene que |S  T |  |S|  |T |, ya que:

S  T  {(s, t) t · q · a  S y t  T}

En tanto, para cada una de las |S | selecciones de s en S hay |T | elecciones para t en T.

Sean S  {1, 2} y T  {a, b, c}, entonces |S|  2 y |T|  3, por lo que:

|S  T|  |S|  |T|  2  3  6

E jemplo 

Dichos elementos son: 

 S  T  {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}

Solución

Calcular el número de maneras distintas de seleccionar 5 cartas con reemplazo de una baraja de 52 cartas. 

E jemplo 

Aquí, lo primero es contar quintillas ordenadas de cartas de la baraja. El término reemplazo significa que cada 
carta se regresa a la baraja antes de sacar la nueva carta. El conjunto de formas de seleccionar 5 cartas con 
reemplazo está en correspondencia uno a uno con D  D  D  D  D  D5, donde D es el conjunto de todas las 
cartas (|D|  52). 

Por tanto, por la regla del producto, el conjunto tiene 525  elementos diferentes a seleccionar. 

Otra forma de ver esto es la que se relata a continuación. Como se puede observar, hay 52 maneras de seleccio-
nar la primera carta; después, al regresar la carta hay 52  maneras de seleccionar la segunda y así sucesivamente; 
por tanto, hay 52  52  52  52  52  380 204 032 formas de seleccionar cinco cartas con reemplazo.

Solución

Calcular la forma de seleccionar 5 cartas distintas sin reemplazo de una baraja de 52 cartas. Sin reemplazo significa 
que una vez seleccionada una carta ya no es posible regresarla a la baraja. 

E jemplo 

En primera instancia, se puede aplicar la regla del producto de la siguiente manera: la primera carta puede 
seleccionarse de 52  maneras. Una vez seleccionada, la segunda carta puede elegirse de 51 maneras. La tercera 
puede escogerse de 50 formas, la cuarta de 49 y la quinta de 48. De manera que para elegir 5 cartas sin reem-
plazo existen 52  51  50  49  48  311 875 200 formas diferentes.

Solución

La generalización del principio del producto es muy simple, para ver esto, sean los conjuntos finitos S1, S2, 
…, Sk donde se tiene que:

S S S Sk j
j

k

1 2
1
∏× × × =
=

De manera más general, supongamos que un conjunto dado puede verse como n-adas ordenadas 
(S1, …, Sn) con la siguiente estructura: hay n1 elecciones posibles s1.; dado s1 hay n2 elecciones posibles s2. 
Dados s1 y s2 hay n3 elecciones posibles de s3. En general, dados S1, S2, …, Sn hay nn elecciones posibles Sn. En-
tonces, el conjunto tiene n1  n2  …  nn elementos.
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5.3 Recursos de conteo: listas y árboles
Tanto las listas como los árboles constituyen importantes recursos de conteo, además de que son herra-
mientas indispensables que se utilizan cuando se quieren conocer los posibles resultados de un evento o 
de una sucesión de eventos, con el fin de poder visualizarlo mediante una enumeración detallada de los 
elementos resultantes; es decir, mediante una lista o una forma gráfica de árbol (en el capítulo 7 se verá  con 
más detalle qué son los árboles).

Para comprender mejor estos recursos, a continuación se observa un ejemplo detallado:

El club de teatro de una universidad realiza ensayos para una obra de teatro que se presentará el próximo año.

Si seis hombres y ocho mujeres ensayan para los papeles principales (masculino y femenino), por la regla del pro-
ducto, el director puede elegir a la pareja principal de 6  8  48 formas diferentes.

E JEMPLO 

En una fábrica donde se producen placas de automóvil, cada placa consta de dos letras y cuatro dígitos, como se 
observa en la figura 5.3.

 a) Si ninguna letra o dígitos se puede repetir habrá:

  27  26  10  9  8  7  3 538 080

  placas diferentes posibles.

 b) Si se permite repetir las letras y los dígitos será posible tener:

  27  27  10  10  10  10  7 290 000

  placas diferentes.

 c) Si no se permite que dos dígitos juntos se repitan, entonces habrá:

  27  27  10  9  9  9  5 314 410

  placas diferentes.

E JEMPLO 

LL9999

Figura 5.3 Placas de un 
automóvil.

El menú de un restaurante consta de dos entradas, tres platos principales y cuatro bebidas, como se observa a 
continuación:

Entrada Plato principal Bebida

Nachos (N) Hamburguesa (H) Té helado (T)

Ensalada (E) Quesadillas (Q) Limonada (L)

Filete de res (F) Cerveza (C)

Refresco (R)

Determinar cuántas posibles combinaciones de comidas diferentes se pueden realizar que consten de un plato 
principal y una bebida.

E jemplo 
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Si se listan todas las posibles comidas que constan de un plato principal y una bebida se tiene:

HT, HL, HC, HR, 
QT, QL, QC, QR, 

FT, FL, FC, FR

Esto significa que hay 12 comidas (opciones) diferentes.

  Ya que hay 3 platos principales y 4 bebidas, por la regla del producto se tiene que:

3  4  12

comidas diferentes.

 Además, existen 24 comidas diferentes que constan de una entrada, un plato principal y una bebida, las 
cuales son:

NHT, NHL, NHC, NHR, NQT, NQL, 
NQC, NQR, NFT, NFL, NFC, NFR,
EHT, EHL, EHC, EHR, EQT, EQL, 
EQC, EQR, EFT, EFL, EFC, EFR

Dado que hay dos entradas, tres platos principales y cuatro bebidas, se tiene que (por la regla del producto) 
existen:

2  3  4  24

comidas diferentes.

Las posibles opciones de comidas en el menú se pueden representar no solo por listas que sirven para enume-
rar las posibles alternativas, sino que también se pueden representar en forma gráfica mediante árboles, como 
se muestra en la figura 5.4.

Mediante el árbol que se observa en la fi-
gura 5.4 se representan las 12 posibles op-
ciones para elegir una comida que conste 
de un plato principal y una bebida.

En cambio, en la figura 5.5 se muestra el 
árbol de las 24 diferentes opciones que 
constan de una entrada, un plato principal 
y una bebida.

Solución

T L C R

H

T L C R

Q

T L C R

F

Figura 5.4 Árbol que representa las opciones que constan de un plato 
principal y una bebida.

T L C R

H

T L C R

Q

T L C R

F

T L C R

H

T L C R

Q

T L C R

F

E N

Figura 5.5 Árbol que representa las diferentes opciones de una comida compuesta por una entrada, una bebida y un plato 
principal.
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Como se observa en el ejemplo anterior, estos recursos de conteo (listas o árboles) son útiles cuando los 
elementos a representar son pocos.

Pero, cuando los elementos que es necesario representar constituyen un número considerable, entonces 
no es práctico utilizarlos, ya que sería bastante complicado tratar de hacerlo con estos recursos.

5.4 Permutaciones y combinaciones
Es común que cada uno de los pasos en que se divide un proceso de conteo se interprete como un ordena-
miento o selección de k objetos diferentes elegidos de un conjunto de n objetos, también diferentes.

Con el objetivo de contabilizar las selecciones posibles en un conjunto, estas pueden dividirse en dos 
categorías esencialmente distintas: permutaciones y combinaciones. 

La diferencia entre una permutación y una combinación radica en que en las permutaciones el orden en 
que se realiza la selección es importante mientras que en las combinaciones el orden no importa.

De manera formal, dado un conjunto que contiene n elementos distintos X  {x1, x2, …, xn}, se tiene que:

a) Una permutación de X es una ordenación de los n elementos x1, x2, …, xn

b) Una permutación-k, o k-permutación, de X, donde k  n es una ordenación de un subconjunto de k 
elementos de X.

c) El número de permutaciones–k de un subconjunto de n elementos distintos se denota como P(n, k) o 
nPk

d) Una combinación-k, o k-combinación, es una selección no ordenada de k elementos de X,; es decir, 
un subconjunto de  elementos de X.

e) El número de combinaciones-k de un conjunto de n elementos distintos se denota como 
C n k nCkk

n, , o( )( ) .

Si consideramos el conjunto X  {a, b, c} en este caso las posibles permutaciones de X son: abc, bac, bca, y cba.

Esto es, existen seis formas distintas de ordenar los tres elementos de X; desde el punto de vista de una selección 
de objetos, por ejemplo para cab esto significa que en primer lugar se selecciona c, luego a y, por último b.

 Además 

 • Las permutaciones-1 de X son: a, b, c.

 • Las permutaciones-2 de X son: ab, ba, ac, ca, bc, cb.

 • Las permutaciones-3  de X son: las permutaciones de X, es decir, abc, acb, bac, bca, cab y cba.

Por otro lado, solo existe una combinación de X puesto que, al no ser importante el orden de selección, se tiene 
que abc  acb  bca  cab  cba.

 Además 

 • Las combinaciones-1 de X son: a, b, y c.

 • Las combinaciones-2  de X son: ab, ac, bc.

E JEMPLO 

 La importancia del orden (permutaciones) se debe a que cada selección representa algo diferente; 
para comprender con más detalle esto, en el siguiente ejemplo se observa un caso práctico que se 
presenta por lo común en la vida cotidiana.
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De un grupo de 15 personas se deberá elegir un comité formado por un presidente, un secretario y un vocal, ¿de 
cuántas formas se puede formar dicho comité?

E jemplo 

Este, con toda claridad, es un problema donde el orden es muy importante; a saber, si consideramos el conjun-
to de todas las personas elegibles P  {P1, P2, ..., P15} y que la primera persona seleccionada será presidente, la 
segunda el secretario y la tercera el vocal, es claro que, por ejemplo, la selección P1P2P3 es diferente a la selec-
ción P1P3P2, pues mientras en la primera la persona etiquetada como P2 tomaría el puesto de secretario y P3 de 
vocal, en la segunda P3 tomaría el puesto de secretario y P2 el de vocal.

Por lo anterior, para calcular los distintos comités que es posible formar, primero se deben calcular las permu-
taciones-3 de P. Así, para elegir al presidente se tienen 15 opciones; una vez elegido el presidente, entonces se 
dispone de solo 14 opciones para elegir al secretario;  por último, el vocal se puede elegir de 13 opciones. Por 
la regla del producto, el total de comités equivale a:

15  14  13  2 730

Solución

El método utilizado en este ejemplo se generaliza en el siguiente teorema.

Teorema
El número de permutaciones-k de un conjunto de n objetos distintos es P(n, k)  (n)(n  1)(n  2)…(n  k  1).
La demostración de este teorema es directa aplicando la regla del producto.

Existe una forma alternativa de calcular el número de permutaciones en un conjunto de n elementos con-
siderando lo siguiente:

P n n n n n n, 1 2 3 2 1 !( ) ( )( ) ( )( )( )= − − =

y que 
( ) ( ) ( )( )( )− = −n k n k! 3 2 1  

Además:
P n k n k n, ! !( ) ( )⋅ − =

Por tanto:

…

… ⋯

⋯

( ) ( )

( )( )

( )( )

( )

( )( )( )

( )( )( ) ( )

( )

= − − − +

=
− − − + −

− − −

=
−

P n k n n n n k

n n n n k n k

n k n k

n

n k

, 1 2 1

1 2 1 1
1 1

!
!

¿De cuántas maneras se pueden seleccionar un presidente, un vicepresidente, un secretario y un tesorero entre 
un grupo de 10 personas?

E jemplo 

De acuerdo con este teorema, el número de permutaciones-2 de X  {a, b, c, d} es: 4  3  12, las cuales son: 

ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc

E JEMPLO 
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Capítulo 5  Combinatoria154

¿De cuántas maneras posibles pueden formarse en una fila 7 personas con nacionalidad mexicana y 5 estadouni-
denses si ninguna pareja de estadounidenses puede estar junta?

E jemplo 

Se puede formar a los mexicanos y a los estadounidenses mediante un proceso de dos partes. Los mexicanos 
pueden formarse de 7!  5 040 maneras distintas. 

Ahora bien, una vez formados los mexicanos, como ninguna pareja de estadounidenses puede estar junta, estos 
últimos tienen 8 posiciones en las cuales pueden acomodarse; esto es:

__M1 __ M2 __M3 __M4 __M5 __M6 __M7 __

Así, los estadounidenses pueden formarse de:

( )
( )

=
−

=8, 5
8!

8 5 !
6 720P

maneras distintas. 

Por último, por la regla del producto tenemos que existen:

 5 040  6 720  33 868 800

filas diferentes de mexicanos y estadounidenses con las condiciones mencionadas.

Solución

Se requiere colocar 3 pelotas, una de color rojo, una azul y una blanca, en cajas numeradas del 1 al 10. Por tanto, se 
desea conocer el número de maneras distintas en que pueden ser colocadas las pelotas en las cajas, considerando 
que cada caja solo puede contener una pelota.

E jemplo 

Primero, colocamos las pelotas una a la vez, iniciando con la pelota roja, luego la azul y después la blanca. 
Puesto que la pelota roja puede colocarse en cualquiera de las 10 cajas, la azul en cualquiera de las 9 restantes 
y la blanca en cualquiera de las 8 restantes, el número total de maneras distintas de colocar estas pelotas es:

P 10, 3
10!

10 3 !
720( )

( )
=

−
=

Solución

De acuerdo con el teorema sobre permutaciones, la respuesta es:

( )
( )

=
−

=10, 4
10!

10 4 !
5040P

Por supuesto, si se aplica la regla del producto se obtiene el mismo resultado:

10  9  8  7  5 040

Solución
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Determinar de cuántas maneras posibles pueden ser programados tres exámenes dentro de un periodo de 5 días, 
de modo que no sean programados 2 exámenes el mismo día.

E jemplo 

En total, hay 60 formas de hacer la programación de exámenes:

P 5, 3
5!

5 3 !
60( )

( )
=
−

=

Solución

Determinar cuántas maneras distintas de ordenar las letras ABCDEF contienen las letras DEF juntas, pero en cual-
quier orden.

E jemplo 

Este problema se puede resolver en dos pasos. Primero, si se fija un ordenamiento para las letras DEF, el núme-
ro de ordenamientos de acuerdo al ejemplo anterior es 24. En segundo lugar, es necesario considerar que las 
letras DEF se pueden ordenar de P (3, 3)  3!  6 formas distintas, por lo que el número de ordenamientos que 
contiene a las letras DEF juntas pero en cualquier orden es:

6  24  144

Solución

Determinar cuántas maneras distintas de ordenar las letras ABCDEF contienen las letras DEF juntas, y en ese orden.

E jemplo 

Para garantizar la presencia del patrón DEF, en los ordenamientos, se puede considerar a las letras DEF como un 
solo objeto, pues estas tres letras deben estar juntas y en ese orden. Entonces, se desea calcular el número de 
permutaciones del conjunto X  {DEF, A, B, C}, es decir, el número de selecciones de cuatro objetos distintos 
de X, considerando que el orden es importante, por lo que la respuesta es:

P (4, 4)  4!  24

Solución

Se requiere colocar tres pelotas de colores diferentes en 10 cajas con numeración distinta; para ello, supóngase 
que una caja puede contener tantas pelotas como se quiera.

E jemplo 

En este caso, la primera pelota puede colocarse en cualquiera de las 10 cajas, como puede hacerse con la se-
gunda y la tercera pelotas; de acuerdo con esto, el número total de colocaciones diferentes es:

10  10  10  1 000

En general, hay nk maneras de colocar k pelotas de colores dentro de n cajas numeradas, si una caja puede 
contener tantas pelotas como queramos.

Solución
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Capítulo 5  Combinatoria156

Ahora, regresemos al tema de las combinaciones. Como se discutió antes, en problemas de conteo donde el 
orden es importante, es claro que las permutaciones-k son relevantes. No obstante, muchas veces el orden 
no es importante, en cuyo caso la habilidad para contar conjuntos también adquiere importancia. 

Se sabe que un conjunto S con n elementos tiene 2n subconjuntos en total. Para 0  r  n sea ( )k
n  el número 

de subconjuntos de S con k elementos. El número ( )k
n  se llama coeficiente binomial y se lee “n en k”; en oca-

siones, también se le llama el número de combinaciones de n objetos, tomando k a la vez.
El siguiente teorema formaliza la relación que existe entre ( )k

n  (número de combinaciones-k) con ( )−
n

n k
'

!   
(número de permutaciones k) de un conjunto con n elementos.

Teorema
Para 0  k  n se tiene que:

n

n k k
k
n !

! !
( )

( )
=

−

Sea S un conjunto con n elementos. Para cada subconjunto de T en S elementos hay k! permutaciones de S que 
utilizan elementos de T; por tanto, hay kk

n !( )  permutaciones de S en total, es decir:

( )
( )

= =
−

! ,
!

!
n

k
k P n k

n

n k

Entonces:

( )
=
−

!

! !
n

k

n

n k k

DEMOSTRACIÓN 

¿Cuántas manos diferentes de póker hay en una baraja de 52 cartas? 

E jemplo 

Es claro que el orden de selección de las cinco cartas que conforman una mano de póker no importa; es decir, 
al ser las mismas cinco cartas no es relevante el orden en que fueron seleccionadas, pues constituye la misma 
mano de póker. Entonces, el número total de manos de póker es:

( )
=

−
=

52
2

52!

52 5 !5!
258960

Solución

Se quieren colocar tres pelotas, todas del mismo color, en 10 cajas que están numeradas del 1 al 10.  El objetivo es 
conocer el número de maneras distintas en que las pelotas pueden distribuirse, si cada caja puede contener solo 
una pelota.

E jemplo 

La respuesta (otra vez) equivale a una combinación- k; es decir: 

( )
=

−
=

10
3

10!

10 3 !3!
120

maneras distintas de colocar las pelotas.

Solución
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En el siguiente ejemplo se plantea el hecho de elegir un comité de tres personas, en el cual ninguna de estas 
tendrá cargo alguno. Por tanto, en este caso el orden de selección no es importante (combinaciones), a dife-
rencia del ejemplo donde se buscaba seleccionar un presidente, un secretario y un vocal (permutaciones) 
para un comité.

Una ama de casa desea programar cenas que incluyan espagueti tres veces por semana. Determinar de cuántas 
maneras distintas puede el ama de casa hacer dicha programación de cenas.

E jemplo 

La cantidad de maneras distintas de programar las cenas es:

( )
=
−

=
7
3

7!

7 3 !3!
35

Solución

Un grupo de cinco estudiantes, María, Pedro, Rosa, Andrés y Norma decidió hablar con el jefe del Departamento 
de Matemáticas para solicitar que esta área ofrezca más cursos de matemáticas discretas.

El jefe de departamento notificó que solo hablará con tres estudiantes en su oficina. Determinar de cuántas ma-
neras se puede elegir los tres estudiantes para hablar con el jefe del departamento.

E jemplo 

Como ya se aclaró antes, el orden de selección no es importante; por tanto, el resultado es:

( )
=
−

=
5
3

5!

5 3 !3!
10

maneras diferentes de elegir a las tres personas del grupo de cinco personas.

Solución

Determinar de cuántas formas puede elegirse un comité de k personas de entre un grupo de n personas (n  k).

E jemplo 

Este ejemplo generaliza el resultado anterior. Por tanto, existen:

( )
=
−

!

! !
n

k

n

n k k

maneras distintas de elegir el comité.

Solución

Determina de cuántas maneras distintas puede elegirse un comité de dos mujeres y tres hombres de un grupo de 
cinco mujeres y seis hombres.

E jemplo 

En este caso, las mujeres pueden elegirse de 102
5( )=  formas y los hombres de 203

6( )=  formas. Por la regla del 
producto, se tiene que el número total de maneras que se puede seleccionar el comité es 10  20  200.

Solución
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5.5 Permutaciones y combinaciones generalizadas
Hasta ahora se han visto las combinaciones y permutaciones donde todos los elementos del conjunto son 
distintos entre sí. Pero en ocasiones se presentan problemas en los cuales existen objetos idénticos dentro 
de un conjunto. 

En este caso, se dice que son permutaciones generalizadas si el orden de los objetos es importante o com-
binaciones generalizadas si el orden no es relevante.

Permutaciones generalizadas (particiones ordenadas)
Con frecuencia, en el mundo cotidiano, es necesario encontrar el número de permutaciones de ciertos 
elementos, algunos de los cuales están repetidos. La fórmula general para calcular tales ordenamientos se 
establece en el siguiente teorema:

Teorema
Supóngase que una sucesión S de n objetos tiene n1 objetos idénticos del tipo 1, n2 objetos idénticos del tipo 
2,... nt, objetos idénticos del tipo t, tal que n n n nt1 2+ + + = ; es decir, forman una partición del entero n. 
Entonces, el número de ordenamientos de S es:

n

n n nt

!
! ! !1 2

Determinar cuántas cadenas de 8 bits contienen exactamente 4 unos.

E jemplo 

La respuesta es (¿por qué?):

=
8
4

70

cadenas diferentes.

Solución

Para crear un orden de S, primero se deben asignar las posiciones de cada uno de los n objetos. Es posible asignar las 
posiciones de los n objetos del tipo 1 en C (n, n1)  formas. Una vez realizada esta asignación, pueden asignarse las po-
siciones de los n2 objetos del tipo 2 en C(n  n1, n2) maneras, etcétera. Entonces, por la regla del producto se tiene:

( )

( )

( )

( )

( )

− − − − − − −
=

=
−

⋅
−

− −

− − − −

− − − −

−

−

−

!

! !

!

! !

!

! !

1

1

2

1 2

3

1 2 1

1 1

1

1 2 2

1 2 1

1 2 1

n

n

n n

n

n n n

n

n n n n

n

n

n n n

n n

n n n n

n n n n

n n n n n n

t

t

t

t t t

Por último, simplificando se tiene:

n

n n nt

!

! ! !1 2

DEMOSTRACIÓN 
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Determinar de cuántas maneras es posible ordenar las letras de la palabra ISSTE.

E jemplo 

Debido a la repetición (dos veces) de la letra S, la respuesta no es 5!, sino un número inferior. Para comprobar 
esto, consideremos el problema de llenar 5 espacios en blanco:

__  __  __  __  __

con las letras dadas. 

Esto significa que hay 2
5( ) maneras de escoger posiciones para las dos letras S. Una vez seleccionadas las dos 

posiciones para la letra S, existen 1
3( ) maneras de elegir la posición para la letra I. Ahora, una vez seleccionada 

la posición para la letra I, hay 1
2( ) maneras de escoger un lugar para la letra T. Por último, queda un único lugar 

para ser llenado por la letra E, 1
1( ).

Combinando este razonamiento con el teorema enunciado antes, se tiene que existen: 

⋅ ⋅ ⋅
= =

5!

2! 1! 1! 1!
5
2

3
1

2
1

1
1

60

maneras distintas de ordenar dichas letras. 

Solución

Determinar de cuántas formas se pueden repartir ocho libros distintos entre tres estudiantes, si Guillermo recibe 
cuatro libros, en tanto que María y Silvia reciben dos libros cada una.

E jemplo 

Si representamos a Guillermo con la letra G, a Silvia con la letra S y a María con la letra M, es posible representar 
cada repartición posible con un ordenamiento de las letras GGGGMMSS, considerando, por ejemplo, que el 
ordenamiento GGGGMMSS significa que a Guillermo se le dan los primeros 4 libros, a María los libros 5 y 6 y a 
Silvia los libros 7 y 8. Por tanto, el total de formas de repartir los libros con las condiciones dadas es:

8!

4! 2! 2!
420

Solución

Determina de cuántas maneras pueden formarse tres comités distintos de un grupo de 20 personas, si los comités 
deben tener 3, 5 y 7 personas, respectivamente.

E jemplo 

La respuesta es:
20!

3! 5! 7! 5!

maneras posibles de formar dichos comités.

Recuérdese que las permutaciones generalizadas en realidad son particiones de un entero, por ese motivo 
fue necesario completar con 5!, que es el número de personas que no son elegidas en este momento para un 
comité.

Solución

www.full-ebook.com
Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)

lOMoARcPSD|5154029



Capítulo 5  Combinatoria160

Una partida de bridge es una partición ordenada de 52 
cartas que comprende 4 conjuntos de 13 cartas cada uno. 
¿Cuántas partidas distintas de bridge existen?

En total hay:

52!

13! 13! 13! 13!
5.3645 1028= ×

partidas de bridge.

E jemplo Solución

Determinar de cuántas maneras distintas pueden distri-
buirse 12 estudiantes en 3 grupos, cada uno conformado 
con 4 estudiantes, de manera que el primer grupo estudie 
un tema, el segundo un tema diferente y el tercero otro 
diferente a los dos anteriores.

El número total de formas de distribuir los estu-
diantes en los tres grupos es:

12!

4! 4! 4!
34 650

E jemplo Solución

Determinar de cuántas maneras pueden distribuirse 19 
estudiantes en 5 grupos, de tal manera que 2 grupos que-
den integrados por 5 estudiantes y 3 grupos por 3, con el 
fin de que cada grupo estudie un tema distinto entre sí.

Para este caso se tienen en total:

19!

5! 5! 3! 3! 3!
3.911 1010= ×

posibles maneras de distribuir a los estudiantes.

E jemplo Solución

Determinar de cuántas formas es posible hacer una par-
tición de un conjunto de 100 elementos en 50 conjuntos 
diferentes de 2 elementos cada uno.

En total, se tiene que hay:

100!

2! 2! 2! 2! 2!

100!

2
8.28903 10

50 veces

50
142

…
� �������� ��������
⋅ ⋅ ⋅ ⋅

= ≈ ⋅

formas posibles.

E jemplo Solución

De forma más general, el mismo problema del ejemplo 
anterior puede enunciarse de la siguiente manera: Deter-
minar de cuántas formas es posible hacer una partición de 
un conjunto con 2n elementos en n conjuntos de 2 ele-
mentos cada uno.

Entonces, la respuesta es:
n n

n

n

2 !

2! 2! 2! 2! 2!

2 !

2
veces

…
� �������� ��������

( ) ( )

⋅ ⋅ ⋅ ⋅
=

formas posibles.

E jemplo Solución
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Combinaciones generalizadas
No obstante, en diversas ocasiones también será necesario encontrar el número de combinaciones de cier-
tos elementos, algunos de los cuales están repetidos. La fórmula general se cita en el siguiente teorema.

Teorema
Si X es un conjunto que contiene  elementos, entonces el número de selecciones de k elementos, no ordena-
das, con repeticiones permitidas y tomando del conjunto X es:

+ −
=
+ −

−

n k

k

n k

n

1 1
1

Es importante destacar que puede utilizarse de manera indistinta cualquiera de los dos términos de la igual-
dad. Más adelante se demostrará la misma.

En el siguiente ejemplo se busca verificar que se cumple la igualdad combinatoria del teorema.

Sea n  8 y k  3, entonces:

( )

+ −
=
+ −

=

=
−

=

1 8 3 1
8

10
8

10!

10 8 !8!

45

n k

k

Por otro lado:

( )

+ −

−
=

=
−

=

1
1

10
2

10!

10 2 !2!

45

n k

n

E JEMPLO 

Es posible que k sea mayor que n cuan-

do se permiten repeticiones.

Nota

Supóngase que se tienen tres pilas de pelotas, una de pelotas rojas, una de azules y una de verdes, cada una de las 
cuales contiene al menos ocho pelotas.

 a) Determinar de cuántas formas se pueden seleccionar 8 pelotas.

 b) Determinar de cuántas maneras se pueden seleccionar 8 pelotas si se debe tener al menos una de cada color.

E jemplo 

 a) Por el teorema inmediato anterior, el número de formas para elegir 8 pelotas es:

  + −
= =

8 3 1
8

10
8

45

Solución

www.full-ebook.com
Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)

lOMoARcPSD|5154029



Capítulo 5  Combinatoria162

Determinar de cuántas maneras es posible colocar 10 ca-
nicas rojas en 5 bolsas.

El resultado se obtiene con facilidad a partir de:

+ −

−
= =

10 5 1
5 1

14
4

1 001

E jemplo Solución

Establecer cuántas soluciones enteras no negativas tiene 
la ecuación 291 2 3 4x x x x+ + + = .

Cada solución es equivalente a elegir 29 elemen-
tos xi del tipo i, i  1, 2, 3, 4. Por tanto, el número 
de soluciones es:

+ −

−
= =

29 4 1
4 1

32
3

4 960

E jemplo Solución

Una tienda ofrece 20 tipos diferentes de donas. Si supo-
nemos que al menos hay una docena de cada tipo cuando 
entramos a la tienda, determinar de cuántas formas se 
puede elegir una docena de donas.

Se puede elegir una docena de donas de:

+ −

−
= =

12 20 1
20 1

31
19

141 120525

formas diferentes.

E jemplo Solución

Determinar de cuántas maneras es posible seleccionar 10 
monedas de un abasto ilimitado de monedas de dos, cin-
co, diez y veinte pesos.

El número total de selecciones es:

+ −

−
= =

10 4 1
4 1

13
3

286

E jemplo Solución

Determinar de cuántas formas pueden distribuirse 12 li-
bros idénticos de matemáticas discretas entre 4 estudian-
tes.

En total, se pueden distribuir de:

+ −

−
= =

12 4 1
4 1

15
3

455

formas diferentes.

E jemplo Solución

 b) Si se selecciona exactamente una pelota de cada color (esto asegura que haya al menos una pelota de cada 
color), para completar la elección, deben escogerse 5 pelotas más. Esto es:

  

+ −

−
= =

5 3 1
3 1

7
2

21

  formas diferentes.
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Principio de inclusión-exclusión 163

5.6 Principio de inclusión-exclusión
El principio de inclusión-exclusión hace referencia al tamaño de una unión de conjuntos no disjuntos. 

Sean A1, A2, …, An conjuntos finitos.
Recuérdese que si estos conjuntos forman una partición de un conjunto A, entonces:

∪ ∪ ∪ = + + +| | | | | | | |2 2 1 2A A A A A An n

Para una mejor comprensión, veamos primero que:
Para n 2 la regla de la suma afirma que:

|A1 A2|  |A1|  |A2|  |A1 A2 |

Para n 3 el principio de inclusión-exclusión afirma que:

|A1 A2 A3|  |(A1 A2) A3|

 |A1 A2|  |A3| |(A1 A2) A3|

 |A1|  |A2| |A1 A2|  |A3| |(A1 A3) (A2 A3)|
 |A1|  |A2| |A1 A2|  |A3| |A1 A3| |A2 A3|  |(A1 A3) (A2 A3)|
 |A1|  |A2|  |A3| |A1 A2| |A1 A3| |A2 A3|  |A1 A2 A3|

Para n 4 el principio de inclusión-exclusión afirma que:

|A1 A2 A3  A4| |A1|  |A2|  |A3|  |A4| |A1 A2|

|A1 A3| |A1 A4| |A2 A3| |A2 A4|

|A3 A4|  |A1 A2 A3|  |A1 A2 A4| 
|A1 A3 A4|  |A2 A3 A4|

|A1 A2 A3 A4|

Generalizando:

∪

⋯

… …∑ ∑ ∑ ( )

∪ ∪ ∪ =

= − ∩ + ∩ ∩ − + − ∩ ∩
= = =

<
=

< <

−

A A A

A A A A A A A A A

n

i
i

n

i
i

n

i j
i j
i j

n

i j k
i j k
i j k

n
n

n1

1 2

1 1 , 1 , , 1

1
1

En general, el principio de inclusión-exclusión se puede enunciar de la siguiente forma: para calcular la 
cardinalidad de A1  A2  …  An, primero debemos calcular el tamaño de todas las posibles intersecciones 
de conjuntos {A1, A2, …, An}, sumar los resultados obtenidos al intersecar un número impar de conjuntos y 
restar los resultados obtenidos al intersecar un número par de conjuntos.

En este caso, los términos “inclusión-exclusión” indican que hay que incluir o sumar los tamaños de los 
conjuntos, después excluir o restar los tamaños de las intersecciones de dos conjuntos, luego incluir o su-
mar los tamaños de todas las intersecciones de tres conjuntos, y así sucesivamente.

Tal como se analiza en la regla de la suma, este principio también puede utilizarse como una alternativa 
a dicha regla, sin alterar el resultado.

Contar el número de enteros en S  {1, 2, 3, …, 2 000} que son divisibles por 9, 11, 13 o 15.

E jemplo 

Primero, para cada k   hacemos |Dk|  {n  S: t · q · n es divisible por k} y buscamos:

|D9  D11  D13  D15|

utilizando el principio de inclusión-exclusión.

Solución
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Capítulo 5  Combinatoria164

Nótese que:

| |
2 000

D
k

k

con división entera. Por tanto, en primer lugar se calcula la cardinalidad de cada conjunto individual:

Parte entera de
2 000

9
222

Parte entera de
2 000

11
181

Parte entera de
2 000

13
153

Parte entera de
2 000

15
133

9

11

13

15

D

D

D

D

En segundo lugar, se calcula de la misma manera la cardinalidad de las intersecciones por parejas, es decir:

20

17

44

13

12

10

9 11 99

9 13 117

9 15 45

9 13 143

11 15 165

13 15 195

D D D

D D D

D D D

D D D

D D D

D D D

∩ = =

∩ = =

∩ = =

∩ = =

∩ = =

∩ = =

Aquí, por ejemplo 9 11 99D D D∩ = , significa que para que un número esté en la intersección de D9 y D11 dicho 
número deberá ser divisible por ambos de manera simultánea, es decir, debe ser divisible por 9  11  99

Obsérvese, por ejemplo, que D9  D15  D45 y no D135, ya que el mínimo común múltiplo de 9 y 15 es 45.

En tercer lugar, se considera la cardinalidad de las intersecciones por ternas, es decir:

1

4

3

9 11 13 1287

9 11 15 495

9 13 15 585

D D D D

D D D D

D D D D

∩ ∩ = =

∩ ∩ = =

∩ ∩ = =

Por último, se considera la intersección de los cuatro conjuntos:

09 11 13 15 6435D D D D D∩ ∩ ∩ = =

Ahora, por el principio de inclusión-exclusión se tiene:

222 181 153 133 20 17 44 13 12 10 1 4 3 0 0 5819 11 13 15D D D D ( ) ( )∪ ∪ ∪ = + + + − + + + + + + + + + − =

Entonces, hay 581 enteros en S que son divisibles por 9, 11, 13 o 15.
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Principio de inclusión-exclusión 165

Supóngase que se tienen seis computadoras con las siguientes especificaciones que se listan en la tabla:

Computadora
Quemador Blue Ray

(A1)
Procesador CoreQuad

(A2)

Pantalla 
HD
(A3)

I SÍ SÍ NO

II SÍ SÍ SÍ

III NO NO NO

IV NO SÍ SÍ

V NO SÍ NO

VI NO SÍ SÍ

Determinar cuántas computadoras tienen uno o más de los 3 tipos de hardware.

E jemplo 

Por el principio de inclusión-exclusión, se tiene que:

2, 5, 3

2, 1, 3

1

1 2 3

1 2 1 3 2 3

1 2 3

A A A

A A A A A A

A A A

= = =

∩ = ∩ = ∩ =

∩ ∩ =

Por tanto:

2 5 3 2 1 3 1 51 2 3A A A∪ ∪ = + + − − − + =

Esto es, 5 computadoras tienen uno o más de los tipos de hardware.

Solución

Determinar el número de enteros positivos n de A  {1, 2, 3, …, 100} y tal que n no es divisible entre 2, 3 o 5.

E jemplo 

Sean:

D2  {n A t · q · n es divisible por 2}

D3  {n A t · q · n es divisible por 3}

D5  {n A t · q · n es divisible por 5}

Entonces:

= = =

∩ = =

∩ = =

∩ = =

∩ ∩ = =

50, 33, 20

16

10

6

3

2 3 5

2 3 6

2 5 10

3 5 15

2 3 5 30

D D A

D D D

D D D

D D D

D D D D

Solución
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Aplicando el principio de exclusión inclusión, tenemos que:

50 33 20 16 10 6 3 742 3 5D D D∪ ∪ = + + − − − + =

Por tanto, 100 – 74  26, números que no son divisibles entre 2, 3 o 5. Estos números son los siguientes: 

1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 91, 97

En una fábrica de automóviles se armaron 50 vehículos. Las opciones existentes son: equipado con reproductor 
MP3, con aire acondicionado y con frenos ABS. Se tiene que 15 de los vehículos tienen reproductor MP3, 17 aire 
acondicionado y 20 frenos ABS, además 5 tienen reproductor MP3 y aire acondicionado, 8 aire acondicionado y 
frenos ABS, 7 reproductor MP3 y frenos ABS y 3 tienen las 3 opciones. Entonces, sean:

A1  {x A t · q · x es un vehículo que tiene reproductor MP3}

A2  {x A t · q · x es un vehículo que tiene aire acondicionado}

A2  {x A t · q · x es un vehículo que tiene frenos ABS}

De este modo:

15, 17, 20

5, 7, 8

3

1 2 3

1 2 1 3 2 3

1 2 3

A A A

A A A A A A

A A A

= = =

∩ = ∩ = ∩ =

∩ ∩ =

El dueño de la fábrica le ha pedido a su supervisor que le entregue un informe donde solicita lo siguiente:

 a)  ¿Cuántos vehículos distintos hay que tienen al menos una opción?

 b) ¿Cuántos vehículos distintos hay que no tienen ninguna opción?

 c) ¿Cuántos vehículos distintos hay que tienen únicamente una o dos opciones?

 d) ¿Cuántos vehículos distintos hay que tienen exactamente dos opciones?

 e) ¿Cuántos vehículos distintos hay que tienen exactamente una opción?

E jemplo 

En este ejemplo, solo las dos primeras preguntas pueden ser contestadas en forma directa con el principio de 
inclusión-exclusión.

 a) La respuesta a la pregunta del inciso a) es: todos los vehículos que tienen una, dos o las tres opciones; esto 
es:

15 17 20 5 7 8 3 351 2 3A A A∪ ∪ = + + − − − + =

 b) La respuesta a la pregunta del inciso b) es: todos los vehículos, excepto aquellos que tienen al menos una 
opción, es decir: 50 – 35  15 vehículos.

Para contestar las restantes preguntas tenemos que auxiliarnos de un diagrama de Venn. 

Como se sabe, en este se dibujan tres círculos, uno para cada conjunto, como se observa en la figura 5.6 i). 

Luego, se etiqueta cada círculo con la del conjunto, tal como se ve en la figura 5.6 ii). Acto seguido, se es-
cribe la cardinalidad de la intersección de los tres conjuntos, como se muestra en la figura 5.6 iii). 

Después, se escriben las cardinalidades de las intersecciones de dos conjuntos; considérese que ya hay 
elementos, como se distingue en la figura 5.6 iv). 

Solución
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Principio de Dirichlet 167

5.7 Principio de Dirichlet
Otro principio muy útil en combinatoria es el 
denominado principio de Dirichlet, también 
conocido como el principio del palomar, debi-
do a que este se concibe a partir del siguiente 
problema: “si se introducen n palomas a un pa-
lomar con k nidos, k  n, al menos en un nido 
habrá 2 o más palomas”.

Para ello, imaginemos 5 palomas introdu-
ciéndose en los 3 nidos de un palomar; en este 
caso, es claro que al menos dos de las palomas 
se meterán en el mismo nido (véase figura 5.7).

Por último, escribimos los valores restantes para completar las cardinalidades de cada conjunto, como se 
ve  en la figura 5.6 v).

i ) ii ) iii )

iv) v)

A
1

A
2

A
3

A
1

A
2

A
3

A
1

A
2

A
3

A
1

A
2

A
3

4
3

2

3

5

6 2 7

4
3

5

8

Figura 5.6 Diagrama de Venn del principio de inclusión-exclusión.

  Una vez construido el diagrama de Venn, ya estamos listos para contestar las preguntas restantes.

 c) Así pues, la respuesta a la pregunta del inciso c) es sumar todas las cardinalidades de los conjuntos, sin 
considerar la cardinalidad de la intersección de los tres conjuntos, esto es: 6  8  7  2  4  5  32 
vehículos.

 d) Para la respuesta a la pregunta del inciso d), hay que sumar únicamente las cardinalidades de las intersec-
ciones de dos conjuntos, esto es: 2  4  5  11 vehículos.

 e) Por último, para responder la pregunta del inciso e), es necesario sumarlas cardinalidades de los conjuntos 
que tienen una única opción, es decir: 6  7  8  21 vehículos.

Figura 5.7 Como hay más palomas que nidos, algún nido debe tener al 
menos dos palomas.
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Capítulo 5  Combinatoria168

Este principio no hace referencia al hecho de cómo localizar el nido que contiene 2 o más palomas, solo 
afirma la existencia de un nido con 2 o más palomas.

Para aplicar ese principio, primero se debe establecer cuáles objetos desempeñan el papel de las palomas 
y cuáles el de los nidos.

En un conjunto de 32 personas, al me-
nos 2 celebran su cumpleaños el mis-
mo día del mes.

En este caso, si consideramos a las personas como palomas y a los días 
del mes como los nidos y aplicamos el principio de Dirichlet, al menos 
dos o más personas cumplirán años el mismo día del mes.

E jemplo Solución

Demostrar que cualquier subcon-
junto de tamaño seis del conjunto 
S  {1, 2, 3, 4, 5, 6, 7, 8, 9} contiene al 
menos dos elementos cuya suma 
es 10.

En este caso, con base en el principio de Dirichlet, los números 1, 2, 3, 4, 5, 
6, 7, 8, 9  representan el papel de las palomas, mientras que son los sub-
conjuntos {1, 9}, {2, 8}, {3, 7}, {4, 6}, {5} desempeñan el papel de los nidos.

Entonces, cuando las palomas van a sus respectivos nidos, deben ocupar 
al menos uno de los subconjuntos cuyos miembros suman 10.

E jemplo Solución

Los nombres de un conjunto de 10 
personas son: María, Bernardo y Car-
los, mientras que sus apellidos son 
García, Pérez y López. Demostrar que 
al menos 2 personas tienen el mismo 
nombre y apellido.

Hay 9 nombres y apellidos diferentes que seleccionar, pero son diez 
personas en total.

Si consideramos a las 10 personas como las palomas y a los nombres y 
apellidos como los nidos, por el principio de Dirichlet se puede decir 
que al menos dos personas tienen el mismo nombre y apellido.

E jemplo Solución

Juan regresa de la lavandería con 12 pares de calcetines (cada par de distinto color) en una bolsa, al sacar cada 
calcetín de la bolsa aleatoriamente tendrá que sacar cuando mucho trece calcetines para obtener el primer par.

E JEMPLO 

María opera una computadora que tiene una unidad de disco duro externo para respaldar la información de la 
oficina donde trabaja. Un día le dan otro disco duro externo que contiene 600 000 “palabras” de cuatro o menos 
letras minúsculas. En el disco duro las palabras consecutivas se separan con un carácter en blanco. ¿Puede suceder 
que las 600 000 palabras sean distintas entre sí?

E jemplo 

A partir de las reglas del producto y de la suma, el número total de palabras distintas posibles de cuatro o 
menos letras es:

274  273  272  27  551 880

Si a estas 551 880 palabras las consideramos como los nidos y a las 600 000 palabras del disco duro como a las 
palomas, de acuerdo con el principio de Dirichlet, es posible afirmar que al menos una palabra se repite en el 
disco duro externo.

Solución
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5.8 Identidades básicas combinatorias
En la sección combinaciones generalizadas se hace mención de que el cálculo de combinaciones generali-
zadas puede realizarse ya sea con el número combinatorio:

+ −n k

k

1

o con el número combinatorio:

+ −

−

n k

n

1
1

Es decir, se afirma que tales números son iguales, lo cual en conteo se denomina “identidad combinatoria”. 
Dicha identidad sugiere la posibilidad de que algunos números combinatorios que, en apariencia, son 

distintos, en realidad representan el mismo entero. 
En esta sección demostramos algunas identidades combinatorias que son muy útiles en el desarrollo 

matemático de la combinatoria.
En general, cualquier identidad que se obtiene de un proceso de conteo es considerada como una iden-

tidad combinatoria. Los siguientes ejemplos están destinados a presentar algunas identidades combinato-
rias, así como a su demostración matemática

Antes de iniciar los ejemplos, es importante recordar que por definición:

( )
=

−

n

k

n

n k k

!
! !

para los enteros positivos n y k que satisfacen la desigualdad k  n.

Demostrar las siguientes identidades:

=
−

=
−
+
−

−

a)

b) 1
1

n

k

n

n k

n

k

n

n k

n

k

E jemplo 

Demostrar que en cualquier conjunto de 8 números enteros existen al menos dos números a y b, tales que (a  b) 
es múltiplo de 7.

E jemplo 

El resto de dividir un número por 7 es uno de los siete números enteros entre 0 y 6. En consecuencia, si tenemos 
un conjunto de 8 números, al menos dos de ellos, a y b tienen el mismo resto, r, en la división por 7.

Esto es:

7 y 7 'a q r b q r= + = +

donde:

0  r  6

Por tanto, (a  b)  7(q  q’) es múltiplo de 7.

Solución
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a) Para demostrar cualquier identidad, siempre debe tomarse uno de los dos lados de esta y transformarlo al 
otro, mediante el uso de álgebra y, por supuesto, de la información y las identidades disponibles (que ya han 
sido verificadas antes).

Entonces, si para el inciso a) se toma el lado derecho y se aplica esta definición, se obtiene:

( )( ) ( )

( ) ( )

( ) ( )

−
=
− − −

=
− + −

=
−

!

! !

!

! !

!

! !

n

n k

n

n n k n k

n

n n k n k

n

k n k

donde se puede ver, de la última expresión, que se obtiene:

( ) ( )−
=

!

! !

n

k n k

n

k

Para el caso del inciso b), si tomamos el lado derecho de la identidad y aplicamos la definición, entonces se 
obtiene:

( )

( )

( )

( )( ) ( )

−
+
−

−
=

−

− −
+

−

− − − −

1 1
1

1 !

1 ! !

1 !

1 1 ! 1 !
n

k

n

k

n

n k k

n

n k k

Simplificando la última expresión obtenemos:

( )

( )

( )

( ) ( )

−
+
−

−
=

−

− −
+

−

− −

1 1
1

1 !

1 ! !

1 !

! 1 !
n

k

n

k

n

n k k

n

n k k

Ahora, para sumar estas dos fracciones elegimos como denominador el mínimo común múltiplo de ambos 
denominadores, el cual es:

! !n k k( ) ( )−

pues, por definición de factorial:
! 1 !

! 1 !

n k n k n k

k k k

( ) ( )( )

( )

− = − − −

= −

Entonces, la suma de las dos fracciones es:

1 !

1 ! !

1 !

! 1 !

1 ! 1 !

! !

n

n k k

n

n k k

n k n k n

n k k

( )

( )

( )

( ) ( )

( )( ) ( )

( )

−

− −
+

−

− −
=
− − + −

−

recordar que a
b

c
d

da bc
bd( )+ = +

Ahora, factorizando el término 1 !n( )−  y simplificando se llega al resultado deseado:

( ) ( )

( )

( ) ( )

( )

( )

− − +

−
=
−

−

=
−

=

1 !

! !

1 !

! !

!

! !

n n k k

n k k

n n

n k k

n

n k k

n

k

Solución
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Comprobar que se cumple la identidad del inciso b) del ejemplo anterior para n  10 y k  4.

E jemplo 

En este caso, en primer lugar calculamos el número combinatorio:

( )
= =

−
=

10
4

10!

10 4 !4!
210n

k

Por otro lado, también calculamos la suma:

( ) ( )

−
+
−

−
= +

=
−

+
−

= +

=

1 1
1

9
4

9
3

9!

9 4 !4!

9!

9 3 !3!

126 84

210

n

k

n

k

donde se verifica la identidad para este caso.

Solución

Demostrar la siguiente identidad de números combinatorios:

+

+
= +

−
+ +

1
1

1n

k

n

k

n

k

k

k

E jemplo 

Aquí, primero tomamos el lado izquierdo de la igualdad y la aplicamos a la identidad (ya demostrada):

=
−
+
+

+

1 1
1

n

k

n

k

n

k

Por tanto:

+

+
= +

+

1
1 1

n

k

n

k

n

k

Enseguida, se vuelve a aplicar la misma identidad al último número combinatorio y se obtiene:

+

+
= +

−
+
−

+

1
1

1 1
1

n

k

n

k

n

k

n

k

Repitiendo este mismo proceso (aplicación de la identidad al último número combinatorio), entonces se logra 
el resultado deseado:

+

+
= =

−
+
−
+ +

1
1

1 2n

k

n

k

n

k

n

k

k

k

Solución
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Capítulo 5  Combinatoria172

Determinar el valor de la suma 1  2  …  n.

E jemplo 

En primer lugar, hay que notar que:

=
1

,n
n

pues:

( )

( )

( )

=
−

=
−

−

=

1

!

1 !1!

1 !

1 !1!

n n

n

n n

n

n

Entonces, la suma 1  2  …  n se puede escribir como:

+ + + = + + +1 2 1
1

2
1 1

n
n

Utilizando la identidad del ejemplo anterior (k  1), entonces se puede reescribir:

+ + +
1
1

2
1 1

n

a la forma:

( )

( )

( )( )( )

( )

( )

+ + + =
+

=
+

+ −

=
+ −

−

+

1
1

2
1 1

1
2

1 !

1 2 2!

1 1 !

1 !2!

1

2

n n

n

n

n n n

n

n n

para al final obtener:

1 2
1

2

( )
+ + + =

+
n

n n

Solución

La suma del ejemplo anterior fue calculada por Gauss a la edad de 11 años, cuando su profesor le pidió a él y 
a sus compañeros de clase calcular la suma de los primeros 100 números naturales (al parecer con el fin de 
dormir un rato durante la clase). Al contrario de lo que pensaba el mentor de Gauss, este calculó la respuesta 
de forma casi inmediata utilizando esta identidad combinatoria. En el siguiente ejemplo se puede observar 
el resultado obtenido por Gauss.
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Teorema del binomio (binomio de Newton) y triángulo de Pascal 173

Un ejemplo de extrema importancia en el uso de las identidades combinatorias es el teorema del binomio,  
por tanto decidimos dedicar en este libro toda una sección a este y a una construcción numérica íntima-
mente relacionada: el triángulo de Pascal.

5.9 Teorema del binomio (binomio de Newton) 
y triángulo de Pascal
Los números combinatorios ( )k

n  también reciben el nombre de coeficientes binomiales, pues aparecen en el 
desarrollo del binomio (a  b) elevado a alguna potencia n. Entonces, el teorema del binomio proporciona 
una expresión explícita para calcular los coeficientes que se obtienen en el desarrollo de (a  b)n donde:

( ) ( )( ) ( )+ = + + +…
	 
���������� �����������

a b a b a b a b
n

n factores

Calcular la suma de los primeros 100 números naturales.

E jemplo 

Ahora que se conoce la identidad del ejemplo anterior, lo que podría representar un trabajo muy tedioso, esta 
se transforma a una multiplicación y una división. Es decir:

( )
+ + + =

= ⋅

=

1 2 100
100 101

2
50 101

5050

Solución

Si n  2, se tiene:

 (a � b)2 � (a � b) (a � b)

  � aa � ab � ba � bb

  � a2 � 2ab � b2

E JEMPLO 

Si n  2, se tiene:
3( ) ( )( )( )+ = + + +

= + + + + + + +

a b a b a b a b

aaa aab aba abb baa bab bba bbb

Simplificando la última expresión, por último se obtiene:

3 33 3 2 2 3( )+ = + + +a b a a b ab b

E JEMPLO 

De los dos ejemplos anteriores se puede inferir que un término de la forma a bn k k proviene de tomar el nú-
mero real a de n k factores y el número real b de k factores.
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Sin embargo, esta puede hacerse de ( )k
n  formas. En la sección 5.4, Permutaciones y combinaciones, se pro-

bó que el término ( )k
n  constituye el número de formas de seleccionar k de los n objetos dados. Por tanto, a bn k k 

aparece ( )k
n  veces. Este análisis sugiere que el desarrollo del binomio debe ser de la forma:

( )+ = + + +−a b
n

a b
n

a b
n

n
a b

n n n n

0 1
0 1 1 0

Este resultado se conoce como teorema del binomio, que se enuncia y se demuestra de manera formal a 
continuación.

Teorema
Si a y b son números reales y n  , entonces

∑( )( )+ =
=

−a b a b
n

k
n

k

n
n k k

0

La siguiente demostración se llevará a cabo por inducción sobre n. 

 • Paso base. Primero, llevamos a cabo el paso base de la inducción; es decir, verificamos que el resultado sea 
verdadero para el primer valor de n. Si n  1, el lado derecho de la igualdad en el teorema es:

  (a  b)

  El paso base se completa comprobando que se obtiene el mismo resultado del lado derecho:

  
1 1

0
0
1 1 0

1
1 1 1 1∑( ) ( ) ( )= + = ⋅ + ⋅ = +

=

− −a b a b a b a b a bk

n

k

n
n k k

 • Paso inductivo. En segundo lugar se lleva a cabo el paso inductivo, que consiste en establecer la hipótesis de 
inducción (la cual ya está fundamentada por el paso base) y probar que se cumple la igualdad para el siguiente 
entero.

 • Hipótesis inductiva. Supóngase que el resultado es correcto hasta un entero m, m  1, 2 …,; es decir, afirmamos 
que:

  

  0
∑( )( )+ =
=

−a b a b
m

k

m

k

m
m k k

  Con base en la hipótesis inductiva, se debe probar que:

  

1 1

0

1
1∑( )( )+ =+ +

=

+
+ −a b a b

m

k

m

k

m
m k k

  Tomando el lado izquierdo de la igualdad anterior, se debe llegar al lado derecho solo con el uso de la hipótesis 
inductiva y álgebra. Entonces, en primer lugar (a  b)m se puede expresar como:

  
1( ) ( )( )+ = + ++

a b a b a b
m m

  Enseguida, el último término se puede reemplazar mediante el uso de la hipótesis inductiva:

  0 0

1

0

1∑ ∑ ∑( ) ( ) ( )( )( ) ( )+ + = + = +
=

−

=

− +

=

− +a b a b a b a b a b a b
m

k

m

k

m
m k k

k

m

k

m
m k k

k

m

k

m
m k k

  De la primera suma se extrae el primer término y de la segunda el último para, respectivamente, obtener:

  0

1
0

1 0

0

1∑ ∑( ) ( ) ( )= +
=

− + +

=

− +a b a b a bk

m

k

m
m k k m m

k

m

k

m
m k k

DEMOSTRACIÓN 
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  y

  
∑ ∑= +
=

− + +

=

−
− +

0

1 0 1

0

1
1m

k
a b

m

m
a b

m

k
a b

k

m
m k k m

k

m
m k k

  Considerando que se quiere expresar el resultado en una sola sumatoria, se realiza el cambio de variable (en 
la segunda sumatoria) k  1  j, con el cual se logra que, cuando k  0, j  1 y cuando k  j  1, j  m. Para la 
primera sumatoria, solo se toma k  j y se obtiene:

∑ ∑

∑

∑

∑

+
+ +

+

+
+

−

+
+ +

−
+

+

+

+
+

−
+

+

+

=
+

( )+

=

− + +

=

− −

+ − + +

=

+ − + +

=

− +

=

+

1
0

1
1 1

1
0 1

1
1

1
0 1

1
1

1

1 0

1

1 0 1

1

1

1 0 1 0 1

1

1 0 1 0 1

1

1

0

1

m
a b

m

j
a b

m

m
a b

m

j
a b

m
a b

m

j

m

j
a b

m

m
a b

m
a b

m

j
a b

m

m
a b

m

j
a b

m

j

m
m j j m

j

m
m j j

m m j j m

j

m

m m j j m

j

m

m j j

j

m

Donde se hizo uso del hecho de que ,0 0
1

1
1( ) ( ) ( ) ( )= =+
+
+m m

m

m

m

m  y de la identidad 1
1( ) ( ) ( )= ++
−j

m

j

m

j

m . Entonces, por úl-
timo se obtiene:

∑( )+ =
++ − +

=

+ 11 1

0

1

a b
m

j
a b

m m j j

j

m

Esto completa la demostración.

Es importante notar que en el desarrollo de (a  b)n se presentan las siguientes propiedades:

Se generan n  1 términos.

La suma de los exponentes de a y b en cada término es siempre n.

Los exponentes de a decrecen desde n hasta 0 mientras que los de b crecen de 0 a n.

Isaac Newton (Woolsthorpe, Lincolnshire, 1642-Londres, 1727) científico inglés. Durante sus primeros años 
de vida, su madre preparó para él un destino de granjero; sin embargo, luego de un tiempo se convenció 
del talento de su hijo y lo envió a la Universidad de Cambridge, en donde tuvo que trabajar para pagarse los 
estudios. Allí, Newton no destacó especialmente, pero asimiló los conocimientos y principios científicos 
de mediados del siglo XVII, con las innovaciones introducidas por Galileo, Bacon, Descartes, Kepler y otros.

   Y fue hasta el año de 1665 que descubrió y postuló el teorema del binomio, el cual fue notificado por 
primera vez en dos cartas que envió el funcionario y administrativo de la Royal Society, Henry Oldenburg, 
en 1676. La primera de estas cartas fue fechada el 13 de junio de 1676, en respuesta a un pedido del filóso-
fo, jurista y matemático alemán Gottfried Wilhelm von Leibniz, quien quería tener conocimiento de las 
labores e investigaciones de matemáticos británicos acerca del tema de series infinitas. A partir de este 
hallazgo, Newton intuyó que era posible operar con series infinitas del mismo modo que con expresiones 
polinómicas finitas.

   Es importante destacar que Newton no se encargó de publicar jamás el teorema del binomio; tarea que realizó el matemático bri-
tánico, John Wallis, en 1685, en su libro Álgebra, en el cual atribuyó a Newton el gran hallazgo.

Figura 5.8 Isaac Newton 
(1642-1727).
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Capítulo 5  Combinatoria176

Los coeficientes de los términos equidistantes de los extremos son iguales.

( )k
n

 es el coeficiente de cualquier término, donde k siempre es el exponente del término b y n  k el de a.

Es posible que no se desee encontrar todo el desarrollo del binomio, sino solo algún término de dicho 
desarrollo; en estos casos, también es muy útil el uso del teorema del binomio.

A continuación, se presenta un ejemplo para observar con mayor detalle cómo se utiliza el teorema del 
binomio en estos casos.

Tomando n  3, para el desarrollo del binomio se tiene (a  b)3.

( )+ = + + +
3
0

3
1

3
2

3
3

3 3 2 2 3a b a a b ab b

E jemplo 

Reemplazando los valores de cada número combinatorio que aparece en la igualdad anterior, por último se 
obtiene:

3 33 3 2 2 3( )+ = + + +a b a a b ab b

Solución

Tomando n  5, para el desarrollo del binomio se tiene (a  b)5.

a b a a b a b a b ab b( )+ = + + + + +
5
0

5
1

5
2

5
3

5
4

5
5

5 5 4 3 2 2 3 4 5

E jemplo 

Reemplazando los valores de cada número combinatorio que aparece en la igualdad anterior, al final se obtie-
ne:

( )+ = + + + + +5 10 10 55 5 4 3 2 2 3 4 5a b a a b a b a b ab b

Solución

Encontrar el quinto término que se obtiene del desarrollo del binomio (a  b)10.

E jemplo 

La expresión:
−n

k
a bn k k

representa precisamente cómo se obtendría un término en particular. 

 Como n es el valor del exponente y el término solicitado menos uno representa el valor de k (recuérdese 
que k corre a partir de 0, donde el quinto término es k  4); entonces, el término buscado es:

=−10
4

21010 4 4 6 4a b a b

Solución

Asimismo, también se puede expresar cualquier binomio sin importar el formato de sus términos.
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Desarrollar el binomio (2xy3  3z2)3.

E jemplo 

Para obtener el desarrollo basta con identificar el monomio 2xy3 con a y el monomio 3z2 con b, con el fin de 
aplicar directamente el teorema del binomio; es decir, como en un ejemplo anterior, se obtuvo:

3 33 3 2 2 3( )+ = + + +a b a a b ab b

Haciendo el cambio de variable 2 y 33 2a xy b z  se obtiene:

( ) ( ) ( ) ( ) ( )( ) ( )+ = + + +2 3 2 3 2 3 3 2 3 33 2 3 3 3 3 2 2 3 2 2 2 3
xy z xy xy z xy z z

Por último, para obtener el resultado final solo es necesario simplificar:

2 3 8 36 54 273 2 3 3 9 2 6 2 3 4 6( )+ = + + +xy z x y x y z xy z z

Solución

Desarrollar el trinomio (x  y  z)3.

E jemplo 

Primero, se agrupan dos términos del trinomio para poder identificarlo como un binomio [(x  y)  z]3; es decir, 
el cambio de variable:

a  x  y y b  z

transforma el trinomio a la forma:

[(x  y)  z]3  (a  b)3

cuya expansión es:

(a  b)3  a3  3a2b  3ab2  b3

Por tanto:

[ ]( ) ( ) ( ) ( )+ + = + + + + + +

= + + + + + + + + +

3 3

3 3 3 6 3 3 3

3 3 2 2 3

3 2 2 3 2 2 2 2 3

x y z x y x y z x y z z

x x y xy y x z xyz y z xz yz z

Solución

El teorema del binomio también es útil si se quiere encontrar el desarrollo de un trinomio, cuadrinomio, 
etcétera.

En estos casos, lo primero que se debe hacer es agrupar los términos y utilizar de manera normal dicho 
teorema.

El siguiente ejemplo ilustra con mayor detalle cómo hacerlo.

Triángulo de Pascal
Los coeficientes binomiales también pueden expresarse  mediante un arreglo triangular conocido como 
triángulo de Pascal, donde los dos lados superiores están formados por números 1 y cualquier valor interior 
constituye la suma de los dos números que están por encima y a los lados de este (véase figura 5.9).

Estos coeficientes se utilizan de manera directa al escribir el desarrollo de un binomio. A continuación se 
presenta un ejemplo en el que se desarrolla con mayor detalle uno de estos casos.
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En apariencia, resulta muy sencillo utilizar este triángulo; sin embargo, el problema empieza cuando se pre-
tende desarrollar un binomio grande, pues es muy posible cometer errores en los coeficientes.

El triángulo de Pascal también puede expresarse en forma de coeficientes binomiales (véase figura 5.11).

Encontrar el desarrollo del binomio (a  b)5.

E jemplo 

En este caso, primero 
utilizamos los valores 
de los coeficientes en 
el triángulo de Pascal 
(véase figura 5.9), así 
obtenemos en forma 
directa los coeficien-
tes buscados, es decir: 

5 10 10 55 5 4 3 2 2 3 4 5( )+ = + + + + +a b a a b a b a b ab b

Solución

Figura 5.11 Triángulo de Pascal con coeficientes binomiales.

          1

         1  1

        1  2  1

       1  3  3  1

      1  4  6  4  1

     1  5  10  10  5  1

    1  6  15  20  15  6  1

   1  7  21  35  35  21  7  1

  1  8  28  56  70  56  28  8  1

 1  9  36  84  126  126  84  36  9  1

1  10  45  120  210  252  210  120  45  10  1

          .

          .

          .

Figura 5.9 Triángulo de Pascal.
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Coeficientes multinomiales
Otra manera de desarrollar el trinomio, o en general un polinomio, es considerándolo como un coeficiente 
multinomial. Dados los enteros no negativos n1, n2, …, nk, tales que n1  n2  …  nk  n, el número:

=
… ⋯

n

n n n
n

n n nkk, , ,
!

! ! !1 2 1 2

Demostrar que cada elemento en el triángulo de Pascal corresponde a un número combinatorio ( )k
n .

E jemplo 

En primer lugar, se etiquetan los renglones del triángulo con el entero n (al renglón inicial se le asigna n  0) y 
las diagonales con el entero k (a la diagonal inicial, de izquierda a derecha se le asigna k  0). Entonces, es fácil 
ver que todos los elementos de la diagonal k  0 son de la forma 0( )

n , ya que:

( )
=
−

= =
0

!

0 !0!

!

!
1n n

n

n

n

En segundo lugar, los elementos finales de cada renglón son de la forma ( )n
n , ya que:

n

n

n

n n n

n

n( )
=
−

= =
!

! !

!

!
1

Por último, los elementos restantes del triángulo, ubicados en el renglón n - ésimo y diagonal k-ésima, se obtie-
nen mediante la suma de los elementos ubicados en el renglón anterior (n  1), de la misma diagonal (k) y de la 
diagonal siguiente (k  1); es decir, debemos probar que:

=
−
+
−

−

1 1
1

n

k

n

k

n

k

No obstante, este resultado es la identidad probada en el inciso b) del primer ejemplo de la sección 5.8, Iden-
tidades básicas combinatorias.

Solución

Blaise Pascal filósofo, físico y matemático francés, fue un genio precoz a quien su padre inició muy pron-
to en la geometría e introdujo en el círculo de Mersenne, la Academia, a la que él mismo pertenecía. 
Allí, Pascal se familiarizó con las ideas de Girard Desargues, por lo que en 1640 redactó su Ensayo sobre 
las cónicas (Essai pour les coniques), que contenía lo que hoy se conoce como teorema del hexágono 
de Pascal.

En el Traité du triangle arithmétique (Tratado del triángulo aritmético), publicado en 1654, Blaise Pas-
cal reúne varios resultados ya conocidos sobre el triángulo y los emplea para resolver problemas ligados a 
la teoría de la probabilidad; a través de estos, él demuestra la relación entre el triángulo y la fórmula del 
binomio. El triángulo de Pascal fue nombrado así por Pierre Raymond de Montmort (1708), quien lo llamó 
“Tabla del Sr. Pascal para las combinaciones”, y por Abraham de Moivre (1730) quien lo llamó Triangulum 
Arithmeticum Pascalianum (del latín: Triángulo aritmético de Pascal), que se convirtió en el nombre occi-
dental moderno.

Figura 5.10 Blaise Pascal 
(Clermont-Ferrand, 
Francia, 1623-París, 
1662), filósofo, físico y 
matemático francés.
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es conocido como coeficiente multinomial. Dicho coeficiente se utiliza para generalizar el teorema del bino-
mio, el cual se enuncia a continuación.

Teorema
Si a1, a2, …, ak son k números reales y n un entero positivo, entonces:

⋯
…

⋯⋯∑( )+ + + = + + ++ + + =a a a
n

n n n
a a ak

n
n n n n

k

n n
k
n

t

k

, , ,1 2
1 2

1 11 2

1 2

1

Calcular el coeficiente multinomial 
8

4, 2, 2
 .

E jemplo 

Por la definición de coeficiente binomial se tiene:

= =
8

4, 2, 2
8!

4!2!2!
420

Solución

Utilizar el teorema anterior para desarrollar el siguiente trinomio:

(a  b  c)3

E jemplo 

En este caso, primero hay que considerar todas las tripletas de enteros no negativos (n1, n2, n3), para los cuales 
se cumple la igualdad n1  n2  n3  3. Es fácil ver aquí que tales tripletas son:

(3, 0, 0), (2, 1, 1), (2, 0, 1), (1, 1, 1), (0, 3, 0), (0, 2, 1), (1, 2, 0), (0, 0, 3), (1, 0, 2), (0, 1, 2)

Entonces, de acuerdo con el teorema inmediato anterior se obtiene:

3 3 6 3 3 3 3

3
3, 0, 0

3 3 0 0
2, 1, 0

3 2 1 0
2, 0, 1

3 2 0 1

3, 1, 1
3 1 1 1

0, 3, 0
3 0 3 0

0, 2, 1
3 0 2 1

1, 2 , 0
3 1 2 0

0, 0, 3
3 0 0 3

1, 0, 2
3 1 0 2

0, 1, 2
3 0 1 2

3 2 2 3 2 2 3 2 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )+ + = + +

+ + +

+ + + +

= + + + + + + + + +

a b c a b c a b c a b c

a b c a b c a b c

a b c a b c a b c a b c

a a b a c abc b b c ab c ac bc

Como se observa, este coincide con el desarrollo obtenido antes.

Solución

Resumen
Los principios básicos de conteo, la regla de la suma y la regla del producto representan la base para el desa-
rrollo de técnicas más sofisticadas de la combinatoria. Por un lado, la regla de la suma es aplicable cuando 
se desea conocer el número de elementos (sin redundancia) que existe en una unión de n conjuntos finitos 
disjuntos. 
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181Problemas propuestos

Por su parte, en el caso de que tales conjuntos no sean disjuntos, la regla de la suma es mejor conocida 
como el principio de inclusión-exclusión. Por otro lado, la regla del producto es aplicable cuando se desea 
contabilizar el número de elementos que existe en un producto cartesiano de n conjuntos finitos. 

A partir de los principios básicos de conteo, es posible obtener técnicas de conteo más sofisticadas, entre 
las que destacan las permutaciones y las combinaciones. Mientras que una permutación puede identifi-
carse como una selección ordenada de objetos (es decir, donde el orden de elección es importante), una 
combinación consiste en una selección no ordenada de objetos (selecciones donde el orden de elección no 
importa). Cuando los objetos seleccionados son indistinguibles (iguales) las selecciones ordenadas y no or-
denadas reciben el nombre de permutaciones y combinaciones generalizadas, respectivamente.

En la siguiente tabla se resumen los principales resultados de las técnicas de conteo contempladas en 
este capítulo; además, en esta también se destaca el tipo de problema con el que se relacionan.

Tabla 5.1

Selecciones de k objetos elegidos 
de un conjunto de n objetos

Distribución de k objetos en n cajas 
diferentes

Selecciones ordenadas (no existen 
elementos idénticos). ( )−

n

n k

!
!

Distribución de k objetos distintos 
en una sola caja.

Selecciones no ordenadas (no 
existen elementos idénticos).

( )
=

−

n

k

n

n k k

!
! !

Distribución de k objetos idénticos, 
uno por caja.

Selecciones ordenadas (existen 
elementos idénticos, que se 
repiten n1 veces,…,  nk veces, 
respectivamente).

n

n n nk

!
! ! !1 2

Distribución de k objetos distintos, 
sin límite de objetos por cada caja.

Selecciones no ordenadas (no 
existen elementos idénticos).

+ −
=
+ −

−

n k

k

n k

n

1 1
1

Distribución de k objetos idénticos, 
sin límite de objetos por cada caja.

El teorema del binomio de Newton y su relación con el triángulo de Pascal se establecen como parte de las 
aplicaciones de las técnicas de conteo y de las identidades combinatorias.

El teorema del binomio afirma que la expansión del binomio (a  b)n está dado por:

 5.2 Establecer cuántos alumnos distintos hay que no 
toman ninguno de estos cursos.

 5.3 Determinar cuántos alumnos distintos hay que 
toman al menos un curso.

 5.4 Definir cuántos alumnos distintos hay que toman 
exactamente dos cursos.

 5.5 Determinar cuántos alumnos distintos hay que 
toman exactamente un curso.

Los problemas 5.6 a 5.9 hacen referencia a una escuela 
donde se ofrecen cinco cursos por la mañana y siete 

∑( )+ = −

=

a b
n

k
a b

n n k k

k

n

0

Los problemas 5.1 a 5.5 se refieren a una escuela de 
deportes, donde hay 140 alumnos, de los cuales 40 to-
man clases de basquetbol, 50 de natación, 45 de ciclis-
mo, 7 de natación y de basquetbol, 6 de natación y de 
ciclismo, 8 de basquetbol y de ciclismo y 3 que toman 
los tres cursos.

 5.1 Determinar cuántos alumnos distintos hay que 
solo toman uno o dos cursos.

Problemas propuestos
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por la tarde. Determinar cuántas opciones tiene un 
alumno si quiere inscribirse en:

 5.6 Un curso en la mañana y otro en la tarde.

 5.7 Un único curso.

 5.8 Dos cursos en la mañana y dos en la tarde.

 5.9 Todos los cursos posibles.

Los problemas 5.10 a 5.14 se refieren a una escuela de 
artes marciales en la que hay 110 alumnos, de los cua-
les 30 toman la clase de karate, 40 la de tae kwan do, 
35 la de judo, 9 las de karate y tae kwan do, 11 las de tae 
kwan do y judo, 8 las de karate y judo y 6 que toman 
los 3 cursos.

 5.10 Determinar cuántos alumnos distintos hay que 
toman uno o dos cursos únicamente.

 5.11 Establecer cuántos alumnos distintos hay que no 
toman ninguno de estos cursos.

 5.12 Definir cuántos alumnos distintos hay que toman 
al menos un curso.

 5.13 Determinar cuántos alumnos distintos hay que 
toman exactamente dos cursos.

 5.14 Establecer cuántos alumnos distintos hay que to-
man exactamente un curso.

Los problemas 5.15 a 5.18 hacen referencia a una escue-
la donde se ofrecen ocho cursos por la mañana y seis 
por la tarde. Cuántas opciones tiene un alumno para 
tomar cursos en dicha escuela si quiere inscribirse en:

 5.15 Un curso en la mañana y otro en la tarde.

 5.16 Un único curso.

 5.17 Dos cursos en la mañana y dos en la tarde.

 5.18 Todos los cursos posibles.

Los problemas 5.19 a 5.22 se refieren a una academia 
en la cual hay 130 alumnos, de los cuales 43 toman un 
curso de cerámica, 57 uno de pintura y 29 uno de es-
cultura; en tanto, en los cursos de cerámica y pintura 
hay 10 alumnos, 5 en los de pintura y escultura, 5 en 
los de cerámica y escultura y 2 alumnos que toman los 
tres cursos. 

 5.19 Establecer cuántos alumnos distintos hay que to-
man exactamente un curso.

 5.20 Definir cuántos alumnos distintos hay que toman 
al menos un curso.

 5.21 Determinar cuántos alumnos distintos hay que 
toman exactamente dos cursos.

 5.22 Establecer cuántos alumnos distintos hay que 
toman uno o dos cursos únicamente y cuántos 
alumnos distintos hay que no están inscritos en 
ninguno de estos cursos.

 5.23 En un torneo de futbol participan 32 equipos. Los 
premios a entregarse son: copa de oro, copa de 
plata, copa de cobre y copa de bronce, del prime-
ro al cuarto lugares, respectivamente. Establecer 
de cuántas formas pueden repartirse las copas, si 
un equipo solo puede ganar una copa.

 5.24 Definir cuántas maneras diferentes hay de asignar 
la posición de salida de ocho autos que partici-
pan en una carrera de fórmula 1.

Los problemas 5.25 a 5.28 hacen referencia a la asignación 
de los números del seguro social en México, los cuales 
constan de nueve dígitos. Para su formación, se permiten 
repeticiones. Determinar cuántos números distintos de 
seguridad social existen en los siguientes casos.

 5.25 Si se toman todos los posibles números que se 
puedan formar.

 5.26 Si el primero y el último dígitos no pueden ser 
ceros.

 5.27 Si ningún dígito puede ser un 8.

 5.28 Si todos los dígitos deben ser pares.

5.29 Determinar cuántas cadenas se pueden formar 
con las letras BENZENE.

 5.30 Definir de cuántas maneras puede un agricultor 
sembrar cinco productos diferentes en cinco 
campos agrícolas si solo cultiva un producto en 
cada campo.

 5.31 En el Mundial de Futbol Alemania 2006 participa-
ron 32 equipos. Los premios fueron medallas de 
oro, plata y bronce, para el primero, el segundo y el 
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183Problemas propuestos

tercer lugar, respectivamente. Establecer de cuán-
tas formas distintas se pudieron repartir las meda-
llas, si un equipo solo podía ganar una de estas.

 5.32 Establecer cuántas cadenas de 8 bits tienen exac-
tamente 3 ceros.

 5.33 Si se tiene un conjunto de 6 hombres y 7 mujeres, 
establecer de cuántas maneras se puede elegir un 
comité de 5 personas.

 5.34 Determinar de cuántas maneras es posible repar-
tir 12 libros idénticos de matemáticas discretas 
entre 4 estudiantes.

 5.35 Establecer cuántas cadenas se pueden formar 
con las letras de la palabra FANTASMA.

 5.36 Determinar cuántas cadenas de 8 bits tienen 
exactamente 5 ceros.

 5.37 Definir de cuántas maneras puede un agricultor 
sembrar 4 productos diferentes en 4 campos agrí-
colas, si solo cultiva un producto en cada campo.

 5.38 De un conjunto de 8 hombres y 4 mujeres, ¿de 
cuántas maneras se puede elegir un comité de 5 
personas?

 5.39 Definir cuántas “palabras” pueden formarse reor-
denando las letras de la palabra SALESPERSONS, 
si las cuatro S deben ser consecutivas (juntas).

 5.40 Establecer cuántos números telefónicos de siete 
dígitos podemos obtener si el primero, el quinto 
y el último dígitos no pueden ser cero y se permi-
ten repeticiones.

5.41 El gerente general  de un centro comercial de-
sea implementar ventas nocturnas tres veces a la 
semana. Definir de cuántas maneras distintas se 
pueden implementar dichas ventas.

 5.42 Un cargamento de 50 microprocesadores con-
tiene 4 piezas defectuosas. Establecer de cuántas 
maneras es posible seleccionar 4 microprocesa-
dores no defectuosos.

 5.43 En una casa de huéspedes hay 30 habitaciones; 
durante una temporada vacacional llega una ex-
cursión con 35 personas que desean alojarse en 
el lugar y no quieren estar juntas. De acuerdo con 
esto, ¿qué asegura el principio de Dirichlet?

 5.44 Determinar de cuántas formas puede elegirse un 

comité de 4 republicanos,3 demócratas y 2 inde-
pendientes de un grupo de 10 republicanos, 12 
demócratas y 4 independientes.

 5.45 Establecer de cuántas maneras se pueden repar-
tir 15 libros de matemáticas idénticos entre 6 es-
tudiantes.

 5.46 Calcular el coeficiente del término xy3 que resul-
ta del desarrollo del binomio (3x  2y)4.

 5.47 Definir cuántos términos (distintos monomios) 
tiene en total el desarrollo del trinomio (2x  3y 

 z)3?.

 5.48 Determinar el coeficiente del término x4y7 que se 
obtiene al desarrollar el binomio (x  y)11.

 5.49 Calcular el coeficiente del término x2y2 que resul-
ta del desarrollo del binomio (3x  2y)4.

 5.50 Establecer cuántos términos se obtienen en total 
del desarrollo del trinomio (x  y  z)2?.

 5.51 Considerar la expansión del binomio (x2  y)n. 
Determine y determinar el valor que debe tomar 
el entero positivo n para que el cuarto término 
de la expansión contenga x10, así como también 
determinar el monomio completo.

En los problemas 5.52 a 5.53 calcular la suma indicada.

 5.52 + + +
0

2
1

2n n n

n

n

5.53 + + +
0

2
1

2n n n

n

n

En los problemas 5.54 a 5.56 demostrar la identidad de 
los números combinatorios que se indica.

5.54 =
−

−

1
1

n

k

n

k

n

k

5.55 +

+
= +

−
+ +

1
1

1n

k

n

k

n

k

k

k

5.56 m n

k

m n

k

m n

k

m

k

n+
= +

−
+ +

0 1 1 0
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En el siguiente problema se pide combinar el conteo 
con la probabilidad; por tanto, es necesario que quien 
se disponga a resolverlo tenga nociones básicas de 
probabilidad junto con cierta destreza en el conteo, 
a fin de poder responder el problema de manera sa-
tisfactoria.

En un cierto día, la combinación de un sorteo público 
para ganar una bolsa de 60 000 000 resultó ser:

3, 7, 13, 19, 32, 37

Como la bolsa no fue repartida, al día siguiente se 
efectuó un nuevo sorteo, en el cual se obtuvieron las 
siguientes combinaciones de números:

10, 16, 19, 37, 47, 49

Problemas reto Como se puede apreciar, en ambos sorteos aparece la 
misma pareja de números: 19 y 37.

Entonces, si se considera que en el sorteo se seleccio-
nan 6 números de entre 1 y 99, ¿cuál es la probabilidad 
de que en dos sorteos consecutivos aparezca la pa- 
reja de números 19  y 37? O lo que es lo mismo, ¿cuál 
es la probabilidad de que en dos sorteos consecutivos 
aparezca la misma pareja de números, fija pero arbi-
traria?
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Teoría de 
grafos

Objetivos

 Conocer la nomenclatura y la simbología utilizadas en la teoría de grafos.

 Diferenciar los diversos tipos de grafos con base en sus propiedades y características.

 Exponer diversos algoritmos para grafos y mostrar su aplicación en problemas cotidianos.

 Comprender y utilizar algunos de los métodos usados en las demostraciones en la teoría de grafos.

 Relacionar la teoría de grafos con problemas de otras ramas de las matemáticas y de otras disciplinas.

6
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186 Capítulo 6 Teoría de grafos

6.1 Introducción
La teoría de grafos es considerada una de las ramas más importantes de las matemáticas modernas, dada 
su relativa novedad, pues su nacimiento tuvo lugar en 1736 y estuvo a cargo del matemático suizo Leonhard 
Euler.

Su objeto de estudio son las propiedades y las características de los grafos, que constituyen una de las 
herramientas básicas para la modelización de fenómenos discretos, además de que se consideran la piedra 
angular para la fundamentación matemática en varias áreas de las ciencias de la computación, como la 
teoría de cambio y lógica de diseño, la inteligencia artificial, los lenguajes formales, los gráficos por compu-
tadora, los sistemas operativos, los compiladores y la organización y recuperación de información; así como 
también para la comprensión de las estructuras de datos y el análisis de algoritmos.

Pero, los grafos no solo son importantes para los matemáticos y las ciencias de la computación, también 
son de gran utilidad para la representación de circuitos eléctricos, además de que se pueden emplear para 
determinar el trayecto óptimo de una empresa de mensajería (el menor costo y el más rápido) que debe re-
partir y recoger numerosos paquetes a diversos clientes; asimismo, la red de carreteras puede modelarse por 
un grafo, cuyas líneas son las vías carreteras de una ciudad a otra, donde a cada línea del grafo se le pueden 
asociar varios valores: longitud del camino correspondiente, tiempo de recorrido, peajes, entre otras. Con un 
grafo también se pueden representar las líneas del ferrocarril, entre muchos otros usos. 

Por si fuera poco, los grafos también pueden utilizarse en áreas como las ciencias sociales, la lingüística, 
las ciencias físicas (como la física teórica o la física nuclear), las ciencias económicas, la antropología, la quí-
mica, la biología, la zoología, y en diversas ingenierías (como la ingeniería en comunicaciones), entre otras 
muchas áreas donde es posible aplicar dicha teoría. 

Por desgracia, hasta hoy día no existe una terminología estandarizada en la teoría de los grafos, por lo 
que es importante señalar que las definiciones y los conceptos de este libro pueden variar con respecto a 
otras publicaciones donde se trate este mismo tema. 

Este hecho es hasta cierto punto natural, dada la gran diversidad de campos en los que la teoría de grafos 
se aplica; sin embargo, en ocasiones, esto suele ser complicado, en especial cuando un mismo término, en 
particular, se utiliza en diferentes publicaciones para referirse a conceptos diferentes; además, tampoco es 
raro encontrar que varios términos diferentes suelen ser usados como sinónimos.

6.2 Definiciones básicas y su representación
Para empezar a conocer el concepto de grafo, iniciaremos con un ejemplo intuitivo y después definiremos sus 
componentes básicos.

Sea el mapa de las carreteras de algún lugar, como el 
que se muestra en la figura 6.1.

Determinar si existe una ruta por carretera entre dos 
ciudades (puntos específicos) en el mapa.

Figura 6.1 Mapa carretero.

E jemplo 
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187  Definiciones básicas y su representación

Primero, en el caso de que exista una carretera entre dos ciudades que las una directamente, estas se unirán en 
el mapa con una línea recta, como se muestra en la figura 6.2.

 Figura 6.2 Unión de dos ciudades con una línea recta si hay una  
 carretera entre estas.

Después, si se representan las ciudades con puntos y a continuación se borra todo, excepto los puntos y las 
líneas de unión, el dibujo resultante (véase figura 6.3) se conoce como grafo.

  Figura 6.3 Grafo de ciudades de algún lugar y las  
  carreteras que las unen.

Solución

Como se ve en el capítulo 3, una relación binaria puede representarse mediante un grafo, al igual que todo 
grafo puede ser representado como una relación binaria (véase el siguiente ejemplo).

Sea el conjunto C {a, b, c, ... , n} de las ciudades y R una relación binaria sobre C definida como:

R {(a, b)  t � q � existe una carretera de la ciudad a a la ciudad b}

Determinar los elementos de esta relación binaria.

E jemplo 
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188 Capítulo 6 Teoría de grafos

El término grafo proviene de la expresión graphic notation (notación gráfica), usada por primera vez por Ed-
ward Frankland y adoptada posteriormente por Alexander Crum Brown, en 1884, la cual hacía referencia a 
la representación gráfica de los enlaces entre los átomos de una molécula.

Aún, hoy día, no existe una definición precisa acerca de lo que es un grafo, aunque, de manera intuitiva, 
siempre se ha trabajado con ellos; por tanto, este es el momento preciso para hacerlo. No obstante, cabe 
señalar que hay dos maneras de definirlo:

a) Grafo: definición geométrica

Desde el punto de vista geométrico, a la representación gráfica de los elementos de un conjunto y las 
relaciones binarias sobre estos se les conoce como grafo y consta de puntos en el espacio, algunos de 
los cuales están unidos entre sí mediante líneas.

Los puntos del grafo se llaman vértices o nodos y representan los elemen-
tos del conjunto. Por su parte, las líneas se conocen con el nombre de lados o 
aristas y representan a aquellos elementos de la forma (i, j) que establecen 
relación entre los vértices; esto es, los vértices i y j están relacionados.

Así, de acuerdo con la definición anterior, el dibujo de la figura 6.5 repre-
senta un grafo.

Es importante señalar que un grafo solo contiene información topológica; 
es decir, datos sobre la conectividad o, lo que es lo mismo, acerca de la rela-
ción que existe entre los elementos del conjunto; sin embargo, estos carecen 
de toda información geométrica en el sentido euclidiano, como distancias, 
ángulos, etcétera. De este modo, los dos dibujos de la figura 6.6 representan 
el mismo grafo.

Para obtener los elementos de dicha relación binaria, primero se pueden etiquetar los vértices del grafo de la 
figura 6.3, como se muestra en la figura 6.4 y luego obtener la relación binaria correspondiente.

a

b

c

d

e
f

h

g

i

j

k

l

m n

  Figura 6.4 Grafo con los vértices etiquetados.

Entonces:

R {(a, b), (b, c), (c, d), (c, e), (d, e), (e, f), (f, g), (g, h), (g, i), (g, k), (i, j), (j, k), (k, l), (l, m), (m, n)}

es la relación binaria obtenida para dicho grafo.

Solución

Figura 6.5 Representación de un 
grafo.
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b) Grafo: definición algebraica

Un grafo G (V, E, ), es una tripleta que 
consta de un conjunto V no vacío de los vér-
tices del grafo, un conjunto E (V V) de 
los lados del grafo y una función , la cual 
es una función de los lados del conjunto E a 
un conjunto de pares ordenados o no orde-
nados de los elementos (repetidos o no) de 
V. Donde los conjuntos V y E del grafo son 
finitos. Por su parte, la función  se conoce 
como función de incidencia (más adelante se 
define el concepto de incidencia).

En el caso de que algún lado e E, se tiene que:

(e) (i, j)
Donde:
i y j son los vértices extremos de e, también conocidos como los extremos de e.
Para representar algebraicamente un grafo, primero es preciso etiquetar los vértices del grafo por 

vi  y los lados por ej y enseguida aplicar la función de incidencia a los lados de E.

Figura 6.6 Dos dibujos que representan el mismo grafo.

Si el primer grafo de la figura 6.6 se etiqueta como se mencionó antes, resulta el grafo que se observa en la figura 
6.7. Entonces, algebraicamente se puede expresar de la siguiente forma:

G (V, E, )
Donde:

V {v1, v2, v3, v4}

E {e1, e2, e3} y

Y  está definida por:

(e1) (v1, v2)

(e2) (v2, v3)

(e3) (v2, v4)

O lo que es lo mismo:

(e1) (v2, v1)

(e2) (v3, v2)

(e3) (v4, v2)

Debido a que, como se dijo antes, no importa el orden en que se tome el par de vértices.

E JEMPLO 

En lugar de escribir (e) (i,  j) es más común escribir simplemente e (i,  j) para denotar a cualquier lado 
de un grafo.

Como se observa en el ejemplo anterior, al aplicar la función de incidencia a cada uno de los lados del 
grafo y al hacer la unión de los mismos, en realidad se obtiene la relación binaria R que origina al grafo.

v
1

v
4

v
2

v
3

e
1

e
2

e
3

Figura 6.7 Grafo etiquetado para 
su representación algebraica.
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190 Capítulo 6 Teoría de grafos

Además, es más conveniente denotar a un grafo como G (V, E), pues es la nomenclatura más utilizada, 
aunque también se puede denotar simplemente como G.

Hay que hacer notar que la definición de grafo implica que para cada lado del grafo se puede asociar un 
par ordenado o no ordenado de vértices pertenecientes al grafo.

6.3 Terminología y caracterización de los grafos
Al interior de la terminología básica de la teoría de grafos hay inmersos diversos conceptos, entre los que 
destacan: grafo dirigido, grafo no dirigido, orden, tamaño, grafo finito, grafo nulo, grafo completo, entre otros. 
Dichos conceptos y otros más se analizan con mayor detalle a continuación.

Grafo dirigido
Un grafo dirigido (o dígrafo) G (V, E) consta de un conjunto V de vértices y un conjunto E (V V) de lados, 
tal que cada e E está asociado a un único par ordenado de vértices i, j V y se escribe e (i, j).

Además, la dirección de un lado en un grafo dirigido se indica o denota mediante una flecha dirigida 
sobre este.

En el caso del grafo de la figura 6.7 se tienen tres vértices, por lo que:

e v v v v v vj

j

, , , , ,
1

3

1 2 2 3 2 4( ) { }( )( ) ( )=
=

O también:

e v v v v v vj

j

, , , , ,
1

3

2 1 3 2 4 2( ) { }( )( ) ( )=
=

Como se puede observar, cualquiera de los dos casos equivale a la relación binaria R que da origen a dicho grafo, 
esto es:

R {(v1, v2), (v2, v3), (v2, v4)}

o:

R {(v2, v1), (v3, v2), (v4, v2)}

E JEMPLO 

La figura 6.8 representa un grafo dirigido G (V, E), donde:

V {v1, v2, v3, v4, v5, v6}

E {e1, e2, e3, e4, e5, e6, e7}

O también:

E {(v2, v1), (v2, v5), (v2, v3), (v3, v2), (v3, v6), (v6, v4), (v6, v6)}

E JEMPLO 
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Figura 6.8 Grafo dirigido G.
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191  Terminología y caracterización de los grafos

Grafo no dirigido
Un grafo (o grafo no dirigido) G (V,  E) consta de un conjunto V de vértices y un conjunto E  (V V) de lados 
tales que cada lado e E está asociado a un par no ordenado de vértices.

Si un lado e está asociado a un único par no ordenado de vértices i, j V se escribe e (i, j) o e (j, i).
También se suele denotar a un par no ordenado de vértices como {i, j}, lo que representa {(i, j), (j, i)}. Aun-

que (i, j) (j, i) solo si i j, se tiene que {i, j} {j, i} para cualquier par de vértices i, j V.

La figura 6.9 representa un grafo no dirigido G (V, E), donde:

V {v1, v2, v3, v4, v5, v6, v7, v8}

E {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11} 

o también

E {{v1, v4}, {v1, v2}, {v2, v3}, {v3, v8}, {v7, v8}, {v6, v7}, {v5, v6}, {v4, v5}, {v1, v5}, {v2, v7}, {v2, v8}}
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 Figura 6.9 Grafo no dirigido G.

E JEMPLO 

En el contexto de grafos, el lado (i, j) denota un lado de un grafo dirigido o no dirigido y no a un par ordenado 
de números.

Además, en general, si no se especifica que un grafo G (V, E) es dirigido o no, se entiende que este es no 
dirigido.

Orden y tamaño
En un grafo (dirigido o no dirigido) G (V, E), el número de vértices de G, denotado como |V|, se denomina 
orden del grafo. Por lo general, se utiliza n para denotar el orden del grafo; esto es:

n |V|

En tanto, el número de lados de G, denotado como |E|, se conoce como tamaño del grafo. Por lo común, se 
utiliza m para denotar el tamaño del grafo; esto es:

m |E|

Sea el grafo de la figura 6.8, su orden |V| 6, mientras que su tamaño |V| 7.

En tanto, si se considera la figura 6.9, su orden es |V| 8 y su tamaño |E| 11.

E JEMPLO 
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192 Capítulo 6 Teoría de grafos

Grafo finito
Un grafo (dirigido o no dirigido) es finito si |V| y |E| son finitos; esto es, un grafo es finito si su orden y tamaño 
lo son.

Cabe hacer mención que en este libro solo se estudian grafos finitos.
Por ejemplo, tanto el grafo de la figura 6.8 como el de la figura 6.9 son finitos, ya que en ambos casos |V| 

y |E| son finitos.

Incidencia y adyacencia
En un grafo dirigido G (V, E), para cualquier lado e (i, j) se dice que e es incidente en los vértices i y j, los 
cuales son sus vértices extremos, i es adyacente hacia j, mientras que j es adyacente desde i. Además, el vértice 
i es el origen o fuente del lado (i, j) y el vértice j es el término o vértice terminal de dicho lado.

En un grafo no dirigido G (V, E), para todo lado e {i, j} se dice que e es incidente en los vértices i y j, los 
cuales son sus vértices extremos. Además, se dice que los vértices i y j son vértices adyacentes. 

Por tanto, en cualquiera de los dos casos, se puede decir que dos vértices son adyacentes si están unidos 
por un mismo lado.

En el grafo no dirigido G (V, E) de la figura 6.10 se tiene que el lado e1 

está asociado al par no ordenado de vértices {v1, v2}, por lo que se escri-
be e1 (v1, v2), o también e1 (v2, v1).

Además, se tiene que el lado e1 es incidente en los vértices v1 y v2, ya 
que son sus vértices extremos; por tanto v1 y v2 son vértices adyacentes, 
pues están unidos por el mismo lado.

E JEMPLO 
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Figura 6.10 Grafo no dirigido G.

Si se considera el grafo dirigido G (V, E) de la figura 6.11, se tiene que los 
lados dirigidos están indicados por flechas y que el lado e1 está asociado 
al par ordenado de vértices (v2, v1), por lo que se escribe e1 (v2, v1).

También se tiene que el lado e1 es incidente en los vértices v1 y v2, ya que 
son sus vértices extremos; por tanto, v1 y v2 son vértices adyacentes, pues 
están unidos por el mismo lado.

Además, el lado e7 está asociado con el par ordenado de vértices (v6, v6), 
por lo que se escribe e6 (v6, v6), donde e6 es incidente en v6 y dicho vér-
tice es adyacente consigo mismo.

E JEMPLO 
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Figura 6.11 Grafo dirigido G.

Grafo nulo
Se dice que un grafo (dirigido o no dirigido) G (V, E) es nulo si tiene todos sus vértices aislados. Por vértice 
aislado se entiende aquel que no es extremo de ningún lado o que no tiene ningún lado incidente sobre sí.

En este caso, se tiene que E es vacío, es decir, que |E| 0.
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193  Terminología y caracterización de los grafos

Lados paralelos y lazos
En un grafo (dirigido o no dirigido) G (V, E), cuando dos o más lados distintos son incidentes al mismo par 
de vértices, estos reciben el nombre de lados paralelos.

Por su parte, un lado de la forma (i, i) que inicia y termina en el mismo vértice se conoce como lazo; es 
decir, el vértice es adyacente consigo mismo.

En la figura 6.12 se observa un grafo G (V, E) nulo, ya que 
todos sus vértices son aislados.

Figura 6.12 Grafo nulo G.

E JEMPLO 

Sea G (V, E) el grafo no dirigido de la figura 6.13, don-
de: e1 (v1, v2) y e2 (v1, v2), lo que significa que tiene 
lados paralelos, pues son incidentes con el mismo par 
de vértices.

Además, el lado e3 (v2, v2) es un lazo, ya que es inci-
dente consigo mismo.

Figura 6.13 Grafo con lados paralelos y lazo.

E JEMPLO 
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Grafo simple
Un grafo (dirigido o no dirigido) G (V, E) que no tiene lazos ni lados paralelos recibe el nombre de grafo 
simple.

Sean los grafos no dirigidos de la figu-
ra 6.14. En este caso, el grafo G1 es un 
grafo simple y el grafo G2 es un grafo 
no simple, ya que este último tiene un 
lazo.

Figura 6.14 Ejemplo de grafos. G1 grafo 
simple y G2 grafo no simple.

E JEMPLO 
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194 Capítulo 6 Teoría de grafos

Valencia de un vértice
En un grafo no dirigido, G (V, E), se llama valencia (o grado) de un vértice, v, al número de lados incidentes 
en v, y se denota como (v).

En un vértice que sea adyacente consigo mismo, solo se considerará una vez para el cálculo de la valen-
cia; sin embargo, hay ocasiones que se considerará como doble, por ejemplo para determinar la existencia 
de un paseo o circuito de Euler en grafos no dirigidos, que se trata más adelante.

Además, se tiene que la suma de las valencias de todos los vértices de un grafo no dirigido, G (V, E), es 
igual al doble del número de lados; es decir, el tamaño |E| del grafo, siempre y cuando el grafo no contenga 
lazos. 

De manera formal, se denota como:

∑ ( )=
=

v E2i
i

n

1

En un grafo dirigido, G (V, E), la valencia de entrada de un vértice v es el número de lados incidentes hacia 
este, es decir, la cantidad de flechas que llegan al vértice, y se denota como e (v); mientras que la valencia 
de salida es el número de lados que son incidentes desde este, es decir, la cantidad de flechas que salen de 
dicho vértice, y se denota como s(v).

Es importante resaltar aquí, que en el caso de que un vértice sea adyacente consigo mismo, solo se con-
siderará una vez, ya sea de entrada o de salida, pero no ambas.

Sea G (V, E) el grafo no dirigido de la figura 6.13. Entonces, la valencia de cada 
vértice de G es:

(v1) 4

(v2) 3

(v3) 4

(v4) 4

(v5) 3

En este caso, se tiene que la suma de las valencias de los vértices es: 

4  3  4  4  3 18

que es el doble del tamaño del grafo |E| 9.

E JEMPLO 
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Figura 6.15 Grafo no dirigido G.

Grafo completo
Un grafo G (V, E) recibe el nombre de grafo completo de n vértices, que se denota Kn, si es simple con n 
vértices y además existe un lado entre cada par de vértices distintos.

De la definición anterior, se puede inferir que para que un grafo sea completo, cada vértice de G debe ser 
adyacente con todos los demás vértices del grafo. 
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195  Terminología y caracterización de los grafos

En el ejemplo anterior también se observa que K4 se ha representado de varias formas diferentes, lo mismo 
ocurre con la mayoría de los grafos.

Ahora, sea un grafo completo Kn, este tiene las siguientes propiedades:

El grafo tiene exactamente n vértices.

La cantidad total de lados del grafo es:

( )−
=

n n n1
2 2

.

Cada vértice tiene valencia n 1.

En este caso, se puede comprobar con facilidad que ( )−
=

n n n1
2 2

, ya que: ( )( )

( )

( )
=

− −

−
=

−n n n n

n

n n

2
1 2 !

2 !2!
1

2

En la figura 6.16 se muestran los primeros cinco grafos completos.

K
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K
1

 Figura 6.16 Primeros cinco grafos completos.

E JEMPLO 

Para verificar las propiedades de los grafos completos, se ha elaborado la tabla 6.1, en la cual se observa el cumpli-
miento de las mismas, tomando como base los grafos completos que se observan en la figura 6.16.

Tabla 6.1 Grafos completos y sus propiedades

Grafo completo Vértices Lados Valencia de cada vértice

K1 1 0 0

K2 2 1 1

K3 3 3 2

K4 4 6 3

K5 5 10 4

… … … …

Kn n
( )−n n 1

2
n 1

E JEMPLO 
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196 Capítulo 6 Teoría de grafos

También se puede comprobar que el grafo completo K6 (véase figura 6.17) 
cumple dichas propiedades, ya que tiene 6 vértices, 15 lados y 5 lados que 
son incidentes en cada uno de los vértices del grafo; es decir, cada vértice 
tiene valencia 5.

Grafo regular
Sea G (V, E) un grafo simple. Si todo vértice vi V tiene la misma valen-
cia, entonces se dice que el grafo es regular, pero si la valencia es n, es 
decir (vi) n, entonces el grafo recibe el nombre de n-regular. En la figura 
6.18 se muestran diversos grafos n-regulares.

Grafo 0-regular Grafo 1-regular Grafo 2-regular

Grafo 3-regular Grafo 4-regular Grafo 5-regular

 Figura 6.18 Grafos n-regulares.

Como se observa en la figura anterior, el grafo completo K1 es 0-regular, el K2 es 1-regular, el K3 es 2-regular y 
así sucesivamente, por lo que se puede inferir que todo grafo completo Kn es un grafo (n�1)-regular.

Además, se tiene que en un grafo n-regular el tamaño del grafo es igual al orden por la n (que es la valen-
cia de cualquier vértice) dividido entre dos; es decir:

=
⋅

E
V n

2

Figura 6.17 Grafo completo K6.

Sea el grafo 5-regular de la figura 6.18; entonces, se tiene que su tamaño es:

 
=
⋅

=

E
6 5

2
15

que, en efecto, es el tamaño del grafo.

E JEMPLO 
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197  Terminología y caracterización de los grafos

Grafo bipartita
Sea G (V, E) un grafo simple. Se dice que G es bipartita si el conjunto de vértices V se puede dividir en dos 
conjuntos disjuntos no vacíos de vértices V1 y V2; es decir:

V1 V2 V y V1 V2 �

De tal manera que cada vértice del conjunto V1 sea adyacente en los vértices del conjunto V2.
Del mismo modo, se dice que un grafo bipartita es completo si todos los vértices del conjunto V1 son ad-

yacentes en todos los vértices del conjunto V2. 
Si m |V1| y n |V2|, entonces el grafo bipartita se denota como Km,n.

Los grafos de la figura 6.19 son los grafos bipartitas K4,6 y K2,4 ; aunque no son completos.

Por su parte, los grafos de la figura 6.20 son grafos bipartitas completos K2,3, K3,3 y K2,5.

K
2, 4

K
4, 6

Figura 6.19 Grafos bipartitas.

E JEMPLO 

K
2, 3

K
2, 5

K
3, 3

Figura 6.20 Grafos bipartitas completos.

Determinar si es posible conectar tres casas con los números 1, 2 y 3 a los servicios públicos de luz, agua y drenaje, 
de tal manera que no haya dos líneas de conexión de dichos servicios que se crucen una con otra; es decir, esta-
blecer si es posible resolver este problema modelándolo mediante un grafo aplanable.

E jemplo 

Como se observa en la figura 6.21, el único 
resultado posible para dicho problema es el 
grafo bipartita K3,3. El cual no es un grafo apla-
nable. Más adelante se verá por qué.

Figura 6.21 Grafo K3,3 como solución al problema.

Solución

1 2 3
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198 Capítulo 6 Teoría de grafos

Subgrafos
Sea G (V, E) un grafo (dirigido o no dirigido). Se dice que un grafo G1 (V1, E 1) es un subgrafo de G si E1 E y 
V1 V, tal que los lados de E1 sean incidentes en los vértice de V1.

Por otra parte, si E1 E y V1 V, entonces se dice que G1 es un subgrafo propio de G.
De acuerdo con la definición anterior, se puede intuir que un subgrafo G1 (V1, E1) es un grafo contenido 

dentro de otro más grande G (V, E).
Esto sugiere que para obtener el subgrafo G1, lo que hay que hacer es eliminar algunos de los lados del 

grafo G. Y, en efecto, así es. Pero, siempre hay que tener en cuenta que no hay ningún problema al eliminar 
cualquier lado; aunque no es posible eliminar solo un vértice sin razón alguna, ya que el resultado no sería 
un grafo, sino que también es necesario quitar todos los lados que lo tengan por extremo.

En resumen, para obtener un subgrafo a partir de un grafo, se requiere:

1. Eliminar lados de G.

2. Eliminar vértices de G, en cuyo caso se deben borrar también todos los lados que tengan por extremo 
a estos vértices.

Además, se dice que el complemento de un subgrafo G1 (V1, E1) con respecto a un grafo G (V, E) es 
otro subgrafo G2 (V2, E2), también con respecto a G, donde: E2 E E1 o E E1  E2 y V2 contiene a todos los 
vértices con los cuales E2 son incidentes.

Cuando un subgrafo G1 (V1, E1) contiene a todos los vértices del grafo G (V, E), entonces se dice que G1 
es un subgrafo generador de G, por lo que en este caso V1 V.

Sea el grafo G (V, E) de la figura 6.22i), donde:

V {v1, v2, v3, v4, v5, v6, v7, v8} y

E {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12}

Y sea el grafo G1 (V1, E1) de la figura 6.22ii), donde:

V1 {v2, v3, v4, v5, v6, v7, v8} y

E1 {e4, e5, e7, e8, e11, e12}

Como E1 E y V1 V, tal que los lados de E1 son incidentes en los vértices de V1; por tanto G1 es un subgrafo de G.

Ahora, considérese el grafo G2 (V2, E2) de la figura 6.22iii), donde:

V2 {v1, v2, v3, v4, v6, v8, v9} y

E2 {e1, e2, e3, e6, e9, e10}

En este caso, se tiene que E2 E E1 y V2 contiene a los vértices con los cuales E2 son incidentes, por lo que G2 es el 
complemento del subgrafo de G1 con respecto al grafo G.

Ahora, sea el grafo G1 (V1, E1) de la figura 6.22 iv), donde:

V1 {v1, v2, v3, v4, v5, v6, v7, v8} y

E1 {e1, e3, e5, e7, e8, e9, e11}

Como E1 E y V1 V, tal que los lados de E1 son incidentes en los vértice de V1 ; por tanto G1 es un subgrafo de G.

E JEMPLO 
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199  Paseos y circuitos

6.4 Paseos y circuitos
Para iniciar esta sección, primero se aborda un problema interesante donde intervienen paseos y circuitos, 
y se continúa con una definición más formal de estos conceptos.

Es importante destacar aquí que muchos problemas que surgen de situaciones en la vida cotidiana pue-
den ser modelados mediante el uso de grafos. Uno de los primeros modelos de los que se tiene conocimiento 
fue desarrollado en 1736, cuando Leonhard Euler publicó un artículo que contenía la solución del famoso 
problema de los puentes de Königsberg. A continuación, se aborda en qué consiste dicho problema.

Como V1 contiene todos los vértices de G, entonces G1 es un subgrafo generador de G.
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 Figura 6.22 Grafo, subgrafo, complemento del subgrafo y subgrafo generador.

Continúa

Problema de los puentes de Königsberg
Conocido más específicamente como el problema 

de los siete puentes de Königsberg, consiste en el 

hecho de que dos islas, situadas en el río Pregel, en 

Königsberg (antes Prusia Oriental, en la antigua Ale-

mania, en la actualidad perteneciente a Rusia y se co-

noce como Kaliningrado), están conectadas entre sí y 

con la margen del río a través de siete puentes, como 

se muestra en la figura 6.23.
  Figura 6.23 Distribución de los puentes de Königsberg.

Nota

A

Río

Pregel

B C

D
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200 Capítulo 6 Teoría de grafos

Sea G (V, E) el grafo no dirigido de la figura 6.25.

La sucesión de lados:

{(v1, v2), (v2, v7) , ( v7, v6), (v6, v5)}

se puede abreviar como:

(v1, v2, v7, v6, v5)

Figura 6.25 Grafo no dirigido G.

E JEMPLO 

Ahora es tiempo de definir qué es un camino y un circuito y luego los de Euler.

Caminos y circuitos
Existen muchos problemas en los cuales se pretende determinar si existe un camino o un circuito en un 
grafo determinado o simplemente entre dos vértices cualesquiera.

Pero, antes de definirlos, primero es necesario conocer qué es una sucesión de lados.

Sucesión de lados
Una sucesión de lados es un conjunto de lados consecutivos donde termina un lado y comienza otro.

Con frecuencia, una sucesión de lados:

{(v0, v1), (v1, v2), … , (vn 1, vn)}

se abrevia como:
(v0, v1, v2, … , vn)

El problema radica básicamente en partir desde cualquier lugar de tierra firme (A, B, C o D), seguir 

caminando y pasar por cada uno de los puentes una sola vez y luego volver al punto de partida.

A un recorrido de este tipo se le llama “circuito de Euler” (este se analiza con detalle más adelante) 

y puede representarse mediante un grafo como se ve en la figura 6.24.

La solución o no solución de este tipo de problemas se obtiene fácilmente mediante el uso del 

concepto de valencia de un vértice.

Más adelante se retoma el tema y se demuestra que el problema de los puentes de Königsberg no 

tiene solución.

Como dato interesante se tiene que dos de los siete puentes originales fueron destruidos por el 

bombardeo de Königsberg durante la Segunda Guerra Mundial y otros dos fueron demolidos más 

adelante y reemplazados por carreteras modernas; los tres puentes restantes aún permanecen 

en pie, aunque solo dos de ellos datan de la época de Euler, pues uno fue reconstruido en 1935.

Por tanto, en la actualidad solo existen cinco puentes en Kaliningrado, distribuidos de tal manera 

que ahora es posible obtener un camino euleriano, es decir, un recorrido que comienza en una 

isla y termina en otra; sin embargo, todavía no es posible obtener un circuito euleriano, es decir, un recorrido donde la ruta comience 

y termine en el mismo lugar, lo cual era necesario para cumplir con las condiciones iniciales del problema.

Continúa

A

B C

D

Figura 6.24 Representación 
del problema de los puentes 
de Königsberg mediante un 
grafo.
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201  Paseos y circuitos

Es importante recordar aquí que un lado e también puede escribirse como e (i, j), por lo que dicha suce-
sión de lados también puede escribirse como:

(e1, e2, e3, … , en)

Caminos y circuitos
Sea G (V, E) un grafo no dirigido y sean i y j dos vértices de G.

Una sucesión de lados de i a j puede clasificarse como:

a) Camino de longitud n de i a j, si va de i a j, y tiene n lados distintos entre sí.

b) Camino simple de longitud n de i a j, si es de la forma (v0, v1, v2, … , vn), donde v0 i y vn j y v0, v1, v2, 
… , vn son distintos entre sí.

c) Circuito si es un camino de v a v.

d) Circuito simple si es un circuito de la forma (v0, v1, v2, … , vn), donde v0 vn y v1, v2, … , vn 1 son distintos 
entre sí.

En otras palabras, un camino es una sucesión de lados en la cual todos los lados son distintos. Así, un cami-

no simple es una sucesión de lados en la cual todos los lados y todos los vértices son distintos; un circuito es 
un camino que inicia y termina en el mismo vértice donde todos sus lados son distintos y un circuito simple 
es un circuito en el cual todos los lados y todos los vértices son distintos, a excepción del primero y último 
vértices, que en realidad son el mismo.

Sea G (V, E) el grafo no dirigido de la figura 6.26.

Determinar si las sucesiones de lados de la tabla 6.2 corresponden a un 
camino, camino simple, circuito o circuito simple.

E jemplo 
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Figura 6.26 Grafo no dirigido G.

Tabla 6.2 Sucesiones de lados del grafo de la figura 6.26

Núm. Sucesión de lados

1 (v1, v2, v3, v2, v1)

2 (v6, v5, v2, v4, v3, v2, v1)

3 (v6, v5, v2, v4)

4 (v2, v6, v5, v2, v4, v3, v2)

5 (v5, v6, v2, v5)
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202 Capítulo 6 Teoría de grafos

Como se observa en el ejemplo anterior, la primera sucesión de lados no puede ser un circuito, pues, 
aunque inicia y termina en el mismo vértice, que es una condición necesaria, pero no suficiente para la exis-
tencia de un circuito, y esta no representa ni siquiera un camino, pues no todos los lados son distintos entre 
sí, como ocurre con el lado {v1, v2}.

Asimismo, se observa con claridad que una sucesión de lados no puede ser simultáneamente de los cuatro 
tipos de sucesiones consideradas, pues como máximo puede ser de tres tipos diferentes.

Paseos y circuitos de Euler (eulerianos)
Existen tipos especiales de paseos y circuitos, los cuales implican ciertas restricciones al momento de visitar 
o recorrer los vértices de un grafo dado, estos son los paseos y circuitos denominados de Euler (eulerianos) 
y de Hamilton (hamiltonianos).

En primera instancia, se verán los de Euler.

Paseo de Euler
Un paseo de Euler (o euleriano) es un camino que incluye todos los lados de un grafo dado una y solo una vez.

Circuito de Euler
Un circuito de Euler (o euleriano) es un circuito que incluye todos los lados de un grafo dado una y solo una 
vez.

Al recorrer todos los lados del grafo, también se recorren todos los vértices del grafo; sin embargo, no 
importa la repetición de vértices, mientras no se repitan los lados. 

Condiciones para determinar la existencia  

de un paseo o circuito de Euler en un grafo no dirigido

Es importante destacar que existen algunas condiciones para determinar si un grafo no dirigido tiene un 
paseo o un circuito de Euler, las cuales implican que el grafo debe ser conexo; por esa razón, lo primero es 
definir dicho concepto.

Grafo conexo

Sea G (V, E) un grafo no dirigido; se dice que G es un grafo conexo si, para cualquier par de vértices i y j dis-
tintos entre sí, existe un camino de i a j.

En la tabla 6.3 se muestra a qué corresponde cada una de las sucesiones de lados de la tabla 6.2.

Tabla 6.3 Solución de las sucesiones de lados de la tabla 6.2

Núm. Camino Camino simple Circuito Circuito simple

1 NO NO NO NO

2 SÍ NO NO NO

3 SÍ SÍ NO NO

4 SÍ NO SÍ NO

5 SÍ NO SÍ SÍ

Solución
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203  Paseos y circuitos

De acuerdo con la definición anterior, entonces los grafos no dirigidos de las figuras 6.24, 6.25 y 6.26 se 
consideran conexos.

Si un grafo no es conexo, entonces se dice que es disconexo.

Sea G (V, E) el grafo no dirigido de la figura 6.27. Como 
se puede ver, este grafo es disconexo, ya que no existe un 
camino entre algunos de sus vértices, como de v1 a v4 o de 
v2 a v5, entre otros.

Figura 6.27 Grafo no dirigido G disconexo.

E JEMPLO 

v
1

v
2

v
3

e
1

e
2

v
5

v
4

e
5

e
4

e
3

v
6

G

Si G (V, E) es un grafo dirigido, su grafo no dirigido asociado es el grafo obtenido de G si se omiten las direc-
ciones de los lados. Cuando este grafo asociado es conexo, se considera que G es conexo; pero, si es disco-
nexo, entonces se considera que G es disconexo.

Sea G (V, E) el grafo dirigido de la figura 6.28. Como se puede ver, este grafo es disconexo, ya que su grafo no 
dirigido asociado (véase figura 6.29) es disconexo.

G

v
7

v
6

v
5

v
3

v
2

v
4

v
1

e
5

e
4

e
3

e
2e

1

v
8

e
6

 Figura 6.28 Grafo no dirigido G.

v
7

v
6

v
5

v
3

v
2

v
4

v
1

e
5

e
4

e
3

e
2e

1

v
8

e
6

 Figura 6.29 Grafo no dirigido asociado al grafo dirigido de la figura 6.28.

E JEMPLO 

Cuando un grafo es disconexo, entonces se dice que está formado por componentes, donde la cantidad de 
componentes es la cantidad de grafos individuales conexos que tiene el grafo; se denota como K(G).

Por ejemplo, el grafo dirigido de la figura 6.29 consta de tres componentes; es decir: K(G) 3.
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204 Capítulo 6 Teoría de grafos

También se puede decir que un grafo no dirigido G (V, E) es disconexo si y solo si V puede separarse 
en al menos dos subconjuntos V1 y V2, tales que no haya un lado en E de la forma {i, j}; donde: i V1 y j V2.  
Y que un grafo es conexo si y solo si tiene una componente conexa.

A continuación se muestran las condiciones para determinar la existencia de un paseo o un circuito de 
Euler en un grafo no dirigido G.

1. Un grafo no dirigido G tiene un paseo de Euler si y solo si es conexo y tiene cero o dos vértices de 
valencia impar.

2. Un grafo no dirigido G tiene un circuito de Euler si y solo si es conexo y todo vértice de G tiene valencia 
par.

3. Un grafo no dirigido G tiene un paseo de Euler de i ≠ j si y solo si i y j son los únicos vértices de valencia 
impar. Esta condición indica que el único paseo de Euler posible en el grafo es iniciar en uno de los 
vértices de valencia impar y terminar en el otro o viceversa.

Carl Hierholzer, matemático alemán que estudió matemáticas en la Universidad de Karlsruhe y obtuvo su 
doctorado en la Universidad de Heidelberg, en 1865. En 1870, Hierholzer escribió sobre secciones canóni-
cas, en su obra titulada Ueber Kegelschnitte im Raum (Acerca de las secciones esféricas en el espacio), en 
Karlsruhe, donde después fue profesor.

Hierholzer demostró que un grafo tiene un ciclo euleriano si y solo si es conexo y cada vértice tiene 
valencia par. Este resultado había sido dado, sin demostración, por Leonhard Euler en 1736. Se presume 
que Hierholzer hizo una demostración a un colega justo antes de su prematura muerte en 1871, quien lue-
go organizó el contenido para su publicación póstuma, la cual apareció en 1873, bajo el nombre Über die 
Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren (Sobre la posibilidad de 
evitar una polilínea sin repetición y sin interrupción).Figura 6.30 Carl 

Hierholzer (1840-1871), 
matemático alemán.

Sean los grafos no dirigidos de la figura 6.31.

Determinar cuáles de estos grafos tendrán un paseo o un circuito de Euler.
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 Figura 6.31 Grafos no dirigidos.

E jemplo 
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205  Paseos y circuitos

El grafo G6 del ejemplo anterior corresponde al problema de los puentes de Königsberg; como se observa, 
todos sus vértices tienen valencia impar, por lo que no puede tener paseo ni circuito de Euler, lo que significa, 
por tanto, que dicho problema no tiene solución.

En el mismo ejemplo, el grafo G7 tampoco tiene ni paseo ni circuito de Euler, debido a que es disconexo. En 
realidad, se trata de dos triángulos, uno sobre otro, pero sin conexión alguna entre los vértices de uno al otro.

Paseo y circuito de Euler en grafos dirigidos
Los resultados obtenidos para grafos no dirigidos pueden extenderse de inmediato para grafos dirigidos.

Sin embargo, también existen algunas condiciones para determinar si un grafo dirigido tiene un paseo o 
un circuito de Euler:

1. Un grafo dirigido G tiene un circuito de Euler si y solo si es conexo y la valencia de entrada de cual-
quier vértice es igual a su valencia de salida.

2. Un grafo dirigido G tiene un paseo de Euler si y solo si es conexo y la valencia de entrada de cual- 
quier vértice es igual a la valencia de salida con la posible excepción de solo dos vértices. Para estos 
dos vértices la valencia de entrada de uno de ellos es mayor que su valencia de salida y la valencia de 
entrada del otro es menor que su valencia de salida.

3. Un grafo dirigido G tiene un paseo de Euler de i ≠ j, si y solo si i es el vértice de valencia de salida mayor 
y j es el vértice de valencia de entrada mayor. Esta condición indica que el único paseo de Euler posi-
ble en el grafo es iniciar en el vértice de valencia de salida mayor y terminar en el vértice de valencia 
de entrada mayor.

Dénes König, matemático húngaro judío, trabajó y escribió el primer libro de texto sobre el campo de la 
teoría de grafos en 1936, titulado Theorie und de endlichen unendlichen graphen (Teoría de grafos finitos  
e infinitos). En este libro, uno de los principales resultados obtenidos afirma que un gráfo dirigido D es  
euleriano si y solo si las valencias de entrada y salida de cada vértice de D son iguales. Esto marcó el 
comienzo de la teoría de grafos como su propia rama de las matemáticas. König también trabajó en la 
factorización de grafos bipartitas, en conjunto con Philip Hall. Asimismo, usó grafos para dar una prueba 
más simple de un resultado determinante de Frobenius, lo que parece haber causado cierta hostilidad 
entre los hombres de su época.

Figura 6.32 Dénes König (1884-1944) matemático húngaro.

En la tabla 6.4 se muestran cuáles de los grafos no dirigidos de la figura 6.31 tienen un paseo o un circuito de Euler.

Tabla 6.4 Grafos de la figura 6.31 que tienen paseo o circuito  
de Euler

Grafo Paseo de Euler Circuito de Euler

G1 SÍ NO

G2 SÍ SÍ

G3 SÍ NO

G4 SÍ NO

G5 SÍ SÍ

G6 NO NO

G7 NO NO

Solución
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206 Capítulo 6 Teoría de grafos

Sean los grafos dirigidos de la figura 6.33. Verificar si dichos grafos tienen un paseo o un circuito de Euler. 

G
1

G
2

Figura 6.33 Grafos dirigidos.

E jemplo 

Si consideramos las condiciones antes descritas, el grafo G1 tiene tanto un paseo como un circuito de Euler, ya 
que cualquiera de sus vértices, de manera individual, tiene la misma valencia de entrada que de salida.

En cambio, el grafo G2 únicamente tendrá un paseo de Euler, pero no un circuito de Euler, ya que la valencia  
de entrada de cualquier vértice, de manera individual, es igual a su valencia de salida, con la posible excep- 
ción de solo dos vértices.

Solución

Paseos y circuitos de Hamilton (hamiltonianos)
Un problema similar a la determinación de un paseo o un circuito de Euler, es el de determinar un paseo o 
circuito de Hamilton, los que se definen a continuación:

Paseo de Hamilton
Un paseo de Hamilton (o hamiltoniano) constituye un camino que pasa a través de cada uno de los vértices 
de un grafo dado exactamente una vez.

Circuito de Hamilton
Un circuito de Hamilton (o hamiltoniano) es un circuito que pasa a través de cada uno de los vértices de un 
grafo dado exactamente una vez.

Al recorrer todos los vértices del grafo, no es importante si no se recorren todos los lados del grafo.

Sea el grafo no dirigido G (V, E) que se observa en la figura 6.34.

En dicho grafo, la sucesión de lados:

 (v1, v2, v3, v4, v5, v6, v7) 

es un paseo de Hamilton.

En tanto que la sucesión de lados:

(v1, v7, v2, v3, v4, v5, v6, v1)

es un circuito de Hamilton.

E JEMPLO 

Figura 6.34 Grafo no dirigido G.
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207  Paseos y circuitos

En el grafo no dirigido de la figura 6.35 se muestra un circuito de Hamilton, 
donde se observa que se recorren todos los vértices (cada uno solo una vez), 
pero no se recorren todos los lados.

Pero, en realidad, el grafo de la figura 6.35 corresponde a una solución del juego 
de ingenio denominado el “juego icosiano” (véase figura 6.36) diseñado por 
William Rowan Hamilton en 1859. A continuación, se analiza en qué consiste 
dicho juego.

En ese mismo año, Hamilton presentó en una reunión de la British Associa-
tion, en Dublín, un curioso pasatiempo al que él denominó The Icosian Game  
(El juego icosiano), cuyo objetivo es encontrar un camino sobre un dodecaedro 
que pase una, y solo una vez, por cada uno de sus veinte vértices; no obstante 
sí está permitido pasar por un mismo lado más de una vez, como se observa 
en la figura 6.36.

Un dodecaedro es uno de los cinco poliedros regulares existentes en la na-
turaleza, el cual, como su nombre lo indica, está formado por 12 pentá-
gonos regulares iguales; por tanto, tiene 12 caras, 20 vértices y 30 lados. 
Además, es importante notar que el hecho de que Hamilton designa-
ra a su juego con el nombre de Icosian no se debió a que utilizara un 
icosaedro en su desarrollo (otro de los cinco poliedros regulares de la 
naturaleza, formado por veinte triángulos equiláteros iguales), sino que 
Hamilton tomó el prefijo Ico (que en griego significa veinte) en alusión al 
número de vértices del dodecaedro.

E JEMPLO 

Figura 6.35 Grafo no dirigido con 
circuito de Hamilton.

William Rowan Hamilton realizó importantes contribuciones a la dinámica y la óptica, inventó los 
cuaterniones y comercializó el novedoso juego de ingenio, conocido como Juego Icosiano, que posterior-
mente se convertiría en una especialidad a desarrollar dentro de la teoría de grafos, que había visto la luz 
con Euler y el famoso problema: “Los siete puentes de Königsberg”. A lo largo de su vida, Hamilton se dedicó 
a la investigación de diversas disciplinas. Cabe destacar que en 1859 vendió por 25 libras los derechos del 
Juego icosiano o Juego del viajero que, como se vio antes, consistía en conectar mediante un camino simple 
los vértices de una figura formada por tres pentágonos concéntricos encajados unos dentro de los otros. 
Este juego serviría para desarrollar en mayor medida la teoría de grafos.

Figura 6.37 William Rowan Hamilton (1805-1865).

Problema del caballo

El llamado “problema del caballo” es un antiguo problema matemático relacionado con el ajedrez, el cual consiste 
en encontrar una secuencia de movimientos (válidos) de esta pieza, a fin de que recorra todas las casillas del table-
ro, visitando cada una solo una vez. 

Desde su aparición, muchos matemáticos han buscado solución a este problema, entre ellos Euler; no obstante, 
aún sigue sin conocerse el número exacto de soluciones que existe. Además, el problema ha sido planteado para 
tableros de diferentes tamaños y distintas condiciones iniciales, y sigue siendo tan atractivo como hace 1 200 años.

E JEMPLO 

Figura 6.36 Juego icosiano de Hamilton.
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208 Capítulo 6 Teoría de grafos

Los teoremas siguientes son resultados generales que establecen condiciones suficientes sobre la existencia 
de circuitos de Hamilton en un grafo.

Determinar la existencia de 

un paseo o un circuito de Ha-

milton en un grafo puede ser 

una tarea complicada, sobre 

todo si se trata de un grafo 

grande, ya que no se conoce 

ninguna condición necesaria 

y suficiente para demostrar 

la existencia de un paseo o 

un circuito de Hamilton en un 

grafo.

Nota

Teorema de Dirac

Sea G un grafo no dirigido con n vértices para n 3, tal que todos los vértices de G tienen valencia mayor o igual 
que n

2
. Entonces, G contiene un circuito de Hamilton.

Teorema 

Este teorema fue demostrado en 1952 por A. Dirac, a quien debe su nombre, mediante el uso de la reducción 
al absurdo.

Asimismo, algunas variaciones de este problema han sido estudiadas por los mate-
máticos, como:

 • Buscar soluciones cíclicas (a través de las cuales se debe llegar a la misma casilla 
de la cual se partió).

 • Tableros de diferente número 
de columnas o bien de diferente 
número de filas, como el tablero 
de 5 5 que se muestra en la figura 
6.38.

 • Juegos de dos jugadores basados 
en la misma idea.

 • Problemas usando ligeras varia-
ciones en la forma de mover el 
caballo.

El problema del caballo es una forma 
más general de determinar un paseo o 
circuito de Hamilton.

Continúa

Figura 6.38 Solución a la variación del 
problema del caballo en un tablero de 5 5.

Sea el grafo no dirigido G (V, E) de la figura 6.39, el cual, 
como se observa, tiene cuatro vértices y cuatro lados.

Entonces, se tiene que (vi) 2, i 1, ... , 4 y que n
2

 2.

Al ser:

(vi) 2 n
2

2

Entonces, se cumple el teorema de Dirac y se tiene que G 
debe tener un circuito de Hamilton que podría ser (v1, v2, 
v4, v3, v1).

E JEMPLO 

Figura 6.39 Grafo no dirigido G.
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209  Paseos y circuitos

Teorema de Ore

Sea G un grafo no dirigido con n vértices para n 3, tal que: (i)  (j) n, para cada par de vértices no adyacentes 
i y j de G.

Entonces, G contiene un circuito de Hamilton.

Teorema 

Sea el grafo no dirigido G (V, E) de la figura 6.41, el cual, 
como se observa, tiene cuatro vértices y cinco lados.

Entonces, se tiene que:

(v1) 2,

(v2) 3,

(v3) 2 y

(v4) 3

Dado que (vi)  (vj) n 4, para cualquier par de vérti-
ces no adyacentes, entonces se cumple el teorema de Ore.

Y se tiene que G debe tener un circuito de Hamilton que 
podría ser:

(v1, v2, v3, v4, v1)

E JEMPLO 

Sin embargo, existen circuitos de Hamilton en un grafo que no cumplen con dicho teorema.

Sea el grafo no dirigido G (V, E) de la figura 6.40, 
el cual, como se observa, tiene ocho vértices y ocho 
lados.

Entonces, se tiene que (vi) 2, i 1, ... ,8 y que  
n
2

 4.

Por lo que no se cumple el teorema de Dirac.

Pero, se tiene que G sí tiene un circuito de Hamilton:

(v3, v4, v5, v6, v7, v8, v1, v2, v3)

  Figura 6.40 Grafo no dirigido G.

E JEMPLO 

G

v
6 v

5
v

4

v
3

v
2

v
7

v
1

v
8

Otro resultado general sobre la existencia de paseos de Hamilton en un grafo es el teorema que se cita a 
continuación.

Figura 6.41 Grafo no dirigido G.

El teorema de Ore es una aplicación del teorema de Dirac, el cual fue demostrado por Oystein Ore en 1960, 
también mediante el uso de la reducción al absurdo.
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v
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210 Capítulo 6 Teoría de grafos

Pero, también existen circuitos de Hamilton en un grafo que no cumple con el teorema de Ore, como se ve 
en el siguiente ejemplo.

Los resultados anteriores son condiciones suficientes para la existencia de un paseo o circuito de Hamilton 
en un grafo; sin embargo, no ofrecen condiciones necesarias para su existencia. 

Sea el grafo no dirigido G (V, E) de la figura 6.43. Como se puede observar, 
este grafo contiene un circuito de Hamilton, pero no cumple con ninguna de 
las condiciones descritas antes en los teoremas de Dirac o de Ore, pues la 
suma de las valencias de cualesquiera dos de sus vértices es 4.

Figura 6.43 Grafo con paseo de Hamilton.

E JEMPLO 

Sea el grafo no dirigido G (V, E) de la figura 6.42, el cual, como 
se observa, tiene 16 vértices.

En este caso, al ser (vi)  (vj) � n 16, para cualquier par de 
vértices no adyacentes, no se cumple el teorema de Ore.

Pero, se tiene que G sí tiene un circuito de Hamilton:

(v1, v2, v3, v4, v8, v7, v6, v10 ,v11, v12, v16, v15, v14, v13, v9, v5, v1)

Figura 6.42 Grafo no dirigido G.

E JEMPLO 
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G

6.5 Multígrafos y grafos pesados (grafos ponderados)
Cuando se requiere que no exista duda en la terminología de grafos, suele utilizarse el término multígrafo 
para indicar que un grafo tiene lados paralelos. Por tanto, a continuación, se define de manera formal dicho 
concepto. 

Multígrafo dirigido
Sea G (V, E) un grafo dirigido, donde V es un conjunto de vértices y E es un multiconjunto de pares ordenados 
de V V.

En estos términos, G es llamado multígrafo dirigido o multidígrafo, y en forma geométrica puede repre-
sentarse como un conjunto de vértices V y un conjunto de flechas E entre los vértices, donde no existe res-
tricción en el número de flechas de un vértice a otro.
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211  Multígrafos y grafos pesados (grafos ponderados)

Sea el multiconjunto {a, a, b, b, b, c}. 

Las multiplicidades de los miembros a, b y c son 2, 3 y 1, respectivamente.

E JEMPLO 

Sean los multiconjuntos A {a, b, b}, B {a, a, b} y C {a, b}.

Estos se pueden definir respectivamente como:

A {(a, 1), (b, 2)}, 

B {(a, 2), (b, 1)} y 

C {(a, 1), (b, 1)}

E JEMPLO 

Sea el grafo G (V, E) de la figura 6.44 donde:

V {v1, v2, v3, v4} y

E {(v3, v1), (v3, v1), (v1, v3), (v2, v1), (v4, v2), (v4, v2), (v2, v4),  
(v1, v4), (v4, v1), (v3, v4)}

En este caso, como G tiene un multiconjunto E de pares 
ordenados de V V, entonces se dice que es un multí-
grafo dirigido.

Figura 6.44 Multígrafo dirigido.

E JEMPLO 

G

v
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v
3

v
2

v
1

Con el fin de que el concepto de multígrafo quede más comprensible, cabe aclarar qué es un multiconjunto.

Multiconjunto
En matemáticas, un multiconjunto (también llamado bolsa, o bag en inglés) difiere de un conjunto en que 
cada miembro del multiconjunto tiene asociada una multiplicidad m , que indica cuántas veces este 
elemento es miembro del conjunto.

Más formalmente, un multiconjunto se define como el par (A, m) donde:
A es un conjunto y m: A  es una función de A a .
En este caso, A se conoce como el conjunto subyacente de elementos. Esto es, para cada a A, la multi-

plicidad de a es el número m(a).
Es común escribir la función m como un conjunto de pares ordenados {(a,m(a)) tal que a A}. Siendo esta, 

sin duda, la definición de la función m. 

Utilizando la definición de multiconjunto, se puede decir que el grafo G (V, E) de la figura 6.44 quedaría definido 
como:

V {v1, v2, v3, v4} y

E {((v3, v1), 2), ((v1, v3), 1), ((v2, v1), 1), ((v4, v2), 2), ((v2, v4), 1), ((v1, v4), 1), ((v4, v1), 1), ((v3, v4), 1)}

E JEMPLO 
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212 Capítulo 6 Teoría de grafos

La noción de multígrafo no dirigido puede definirse de manera similar a la de un multígrafo dirigido, como 
se ve a continuación.

Multígrafo no dirigido
Sea G (V, E) un grafo no dirigido, donde V es un conjunto de vértices y E es un multiconjunto de pares no 
ordenados de V V. 

En estos términos, G es llamado un multígrafo no dirigido o simplemente multígrafo, y desde el punto 
de vista geométrico puede representarse como un conjunto de vértices V y un conjunto de lados E entre los 
vértices, donde no existe restricción en el número de lados de un vértice a otro.

Considérese una representación gráfica de un mapa de las carreteras de algún lugar cualquiera, en el que un lado 
entre dos ciudades corresponde a un carril de una autopista entre las dos ciudades. Debido a que, a menudo, hay 
autopistas de varios carriles entre dos ciudades, esta representación origina un multígrafo.

E JEMPLO 

Sea el grafo G (V, E) de la figura 6.45, donde:

V {v1, v2, v3, v4} y

E {{v1, v4}, {v1, v4}, {v1, v4}, {v1, v4}, {v1, v4}, {v2, v3},

{v2, v3}, {v1, v3}, {v2, v4}, {v2, v2}, {v3, v3}}

En este caso, como G tiene un multiconjunto E de pares no ordena-
dos de V V, entonces se trata de un multígrafo no dirigido.

Ahora bien, si se utiliza la definición de multiconjunto, entonces este 
quedaría definido como:

G (V, E)

donde:

V {v1, v2, v3, v4} y

E {({v1, v4}, 5), ({v2, v3}, 2), ({v1, v3}, 1), ({v2, v4}, 1), ({v2, v2}, 1), ({v3, v3}, 1)}

E JEMPLO 

Figura 6.45 Multígrafo no dirigido.

G
v

4

v
3

v
2

v
1

En resumidas cuentas, un multígrafo, ya sea dirigido o no dirigido, es aquel grafo dirigido o no dirigido que 
contiene lados paralelos.

Grafo ponderado
En muchos casos, es preciso atribuir o asignar a cada lado de un grafo un número o valor específico, conocido 
como ponderación, peso, valuación o coste, según el contexto del que se trate, con lo que se obtiene un grafo 
ponderado (también denominado pesado, con peso o valuado).

El valor no negativo w(i, j) que está asociado con el lado (i, j) es la ponderación de dicho lado. 
Además, la ponderación de un grafo es la suma de los pesos de sus lados.

Supóngase un mapa carretero; si en este se interpretan las ciudades como vértices y los caminos entre estas como 
sus lados, al asignarles un valor a los caminos, como la distancia que hay entre las ciudades, que será la ponderación 
de cada lado, entonces resulta un grafo ponderado.

E JEMPLO 
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213  Representaciones matriciales

Matriz de pesos en un grafo ponderado
Sea G (V, E) un grafo ponderado finito tal que V {v1, … , vn}. Se denomina matriz de peso del grafo G a la 
siguiente matriz de orden n n:

=
∈

∞ ∈






W

w s v v E

s v v E

ij i i j

i i j

( , )

( , )

En la figura 6.46 se muestra un grafo ponderado, el cual es simplemente un grafo con datos o valores que le han 
sido asignados a sus lados.
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 Figura 6.46 Grafo ponderado.

E JEMPLO 

La matriz de pesos del grafo de la figura 6.46 es:

7
7 2 2

2
2

6
5
1 4
7 4

5 1 7
4

6 4

3
2
4

2 4

∞ ∞ ∞
∞

∞ ∞ ∞
∞ ∞ ∞

∞ ∞ ∞
∞ ∞ ∞

∞ ∞
∞ ∞

∞
∞ ∞ ∞

∞ ∞
∞ ∞ ∞ ∞

∞ ∞ ∞
∞ ∞ ∞
∞ ∞ ∞
∞ ∞





























E JEMPLO 

En un grafo ponderado, se denomina camino más corto o camino liviano entre dos vértices al camino 
de pesos mínimo entre dichos vértices, así como camino más largo o camino crítico entre dos vértices al  
camino de peso máximo entre dichos vértices.

6.6 Representaciones matriciales
Hasta ahora, se ha visto cómo representar un grafo a través de su representación geométrica o su represen-
tación algebraica.
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214 Capítulo 6 Teoría de grafos

Ahora bien, cuando se desea analizar un grafo en una computadora, se requiere de una presentación 
más formal, la cual se realiza principalmente a través de una matriz de adyacencia o de incidencia, cuya 
construcción se trata a continuación.

Matriz de adyacencia
Para obtener la matriz de adyacencia de un grafo G (V, E), la cual se representa como AG [aij], primero se 
selecciona un orden arbitrario de vértices. A continuación, se le asigna a las filas y a las columnas de una 
matriz el mismo orden dado a los vértices.

El elemento de la matriz aij es 1, si los vértices correspondientes a la fila (renglón) y a la columna de dicho 
elemento están unidos por un lado, es decir, si estos son adyacentes, y 0 si no lo son. Otra forma de expresar 
lo anterior es:

 
aij �

 1 si (v1, vj) son adyacentes
  0 en caso contrario

E jemplo 

En el caso de que un vértice de G sea adyacente consigo mismo, se considera su valencia como 1.

Sea el grafo no dirigido G (V, E) de la figura 6.48.

Obtener su matriz de adyacencia.

La matriz de adyacencia del grafo es:

Solución

Figura 6.48 Grafo no dirigido G.

Gv
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v
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v
2

v
1

v
5

Sea el grafo no dirigido G (V, E) de la figura 6.47.

Obtener su matriz de adyacencia.

E jemplo 

La matriz de adyacencia de dicho grafo es:

Solución

Figura 6.47 Grafo no dirigido G.

Gv
4

v
3

v
2

v
1

v
5

  v1 v2 v3 v4 v5

 v1 0 1 0 1 0

 v2 1 0 1 0 1

AG� v3 0 1 0 1 1

 v4 1 0 1 0 0

 v5 0 1 1 0 0

  v1 v2 v3 v4 v5

 v1 0 1 0 0 0

 v2 1 0 1 0 1

AG� v3 0 1 1 0 1

 v4 0 0 0 0 1

 v5 1 1 1 1 0
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215  Representaciones matriciales

Es importante destacar aquí que en la matriz de adyacencia no es posible representar lados paralelos.
Con base en los dos ejemplos anteriores, entonces se puede decir que las características de la matriz de 

adyacencia son:

1. No es posible representar lados paralelos.

2. Un 1 en la diagonal principal representa un lazo.

3. Todas las matrices de adyacencia son cuadradas.

4. Como todas las matrices de adyacencia son simétricas con respecto a la diagonal principal, la infor-
mación, a excepción de la contenida en la diagonal, aparece dos veces.

5. La valencia de un vértice v se obtiene mediante la suma de la fila o la columna correspondiente.

De manera similar, los grafos dirigidos se pueden representar mediante una matriz de adyacencia, la 
cual quizá no sea simétrica.

Como se observa en el ejemplo anterior, la matriz de adyacencia del grafo en cuestión no es simétrica; sin 
embargo, se contempla una nueva propiedad:

6. La valencia de salida de un vértice v se obtiene mediante la suma de la fila correspondiente y la va-
lencia de entrada mediante la suma de la columna correspondiente.

En general, la matriz de adyacencia no es una manera muy eficaz de representar un grafo. 

Matriz de incidencia
Otra representación útil de un grafo es la matriz de incidencia.

Para obtener la matriz de incidencia de un grafo, representada como IG [bij], primero se selecciona un 
orden arbitrario de vértices y lados, y luego se asigna a las filas las marcas correspondientes a los vértices y 
a las columnas las correspondientes a los lados. 

El elemento que corresponde a la fila y a la columna e es 1, si es incidente en algún vértice v, y 0 en cual-
quier otro caso. Esto es:

 aij �
 1 si e son adyacentes v1

  0 en caso contrario

Sea el grafo dirigido G (V, E) de la figura 6.49.

Obtener su matriz de adyacencia.

E jemplo 

La matriz de adyacencia de dicho grafo es:

Solución

G

v
4

v
3

v
2

v
1

Figura 6.49 Grafo dirigido G.

  v1 v2 v3 v4 

 v1 0 1 0 1 

 v2 0 0 0 1 

AG� v3 0 1 0 0 

 v4 0 0 1 0 
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216 Capítulo 6 Teoría de grafos

Con base en el ejemplo anterior, se puede decir que la matriz de incidencia tiene las siguientes caracterís-
ticas:

1. Permite representar lados paralelos y lazos de manera simultánea.

2. Un grafo sin lazos en cada columna tiene dos cifras 1. 

3. La suma de cada fila da como resultado la valencia del vértice correspondiente.

4. Una columna en la cual se tiene un único 1, representa un lazo.

5. Dos columnas iguales, no necesariamente juntas, representan lados paralelos.

6.7 Isomorfismo de grafos
De manera coloquial, se dice que dos grafos son isomorfos si tienen la misma figura o se pueden modificar 
para obtener la misma figura, excepto por los nombres de los vértices. 

Ahora bien, de manera más formal se dice que dos grafos, G1 (V1, E1) y G2 (V2, E2), son isomorfos si 
existe una función biunívoca f entre los vértices de G1 y G2, y una función biunívoca g, entre lados de G1 y G2, 
tales que un lado e es incidente a i y j en G1 si y solo si el lado g(e) es incidente a los vértices f(i) y f(j) en G2. A 
las funciones f y g se les denomina isomorfismo de G1 en G2.

Una vez definido el isomorfismo de G1 en G2 se procede a etiquetar los grafos de tal manera que se con-
serve la adyacencia de los vértices y la incidencia de los lados.

Sea el grafo no dirigido G (V, E) de la figura 
6.50.

E jemplo 

Obtener su matriz de incidencia.

La matriz de incidencia de dicho grafo es:

Solución
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Figura 6.50 Grafo no dirigido G.

Sean los grafos no dirigidos G1 (V1, E1) y G2 (V2, E2) 
de la figura 6.51.

Determinar un isomorfismo para dichos grafos.

E jemplo 

G
1

G
2

Figura 6.51 Grafos no dirigidos G1 y G2.

  e1 e2 e3 e4 e5 e6 e7

 v1 1 1 1 0 0 0 0 

 v2 0 0 1 1 1 0 1

lG� v3 0 0 0 0 0 1 0

 v4 1 1 0 1 0 0 0

 v5 0 0 0 0 1 1 0
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217  Isomorfismo de grafos

Un isomorfismo para los grafos G1 y G2 está definido por:

f(vi) Vi, i 1, ... , 5

Es decir:

f(v1) V1

f(v2) V2

f(v3) V3

f(v4) V4

f(v5) V5

Y:

g(ei) Ei, i 1, ... , 5

Es decir:

g(e1) E1

g(e2) E2

g(e3) E3

g(e4) E4

g(e5) E5

Ahora, se etiquetan los grafos de acuerdo con el 
isomorfismo definido, conservando la adyacen-
cia y la incidencia, como se muestra en la figura 
6.52.

Solución
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Figura 6.52 Isomorfismo de G1 en G2.

Otra forma de demostrar que dos grafos son isomorfos es la que se cita a continuación.
Dos grafos G1 y G2 son isomorfos si y solo si para alguna ordenación de vértices y lados sus matrices de 

incidencia son iguales.

Para verificar si dos grafos dirigidos, G1 y G2, son isomorfos, primero se omite la dirección de los lados 
y luego se obtienen sus matrices de incidencia. Si dichas matrices de incidencia son iguales, se considera 
que esta es una condición necesaria, pero no suficiente, para verificar si son isomorfos. El siguiente paso es 
verificar si se conserva la incidencia de lados, respetando el sentido de los lados. Si esto ocurre, entonces los 
grafos dirigidos G1 y G2 son isomorfos.

Sean las matrices de incidencia de la figura 6.52, las que corresponden a los grafos G1 y G2, respectivamente, de la 
figura 6.51.

       

Como estas matrices son iguales, entonces se dice que los grafos G1 y G2 son isomorfos.

E JEMPLO 

  e1 e2 e3 e4 e5

 v1 1 1 0 0 0
 v2 0 1 1 0 0
lG1

� v3 0 0 1 1 0
 v4 0 0 0 1 1
 v5 1 0 0 0 1

  e1 e2 e3 e4 e5

 v1 1 1 0 0 0
 v2 0 1 1 0 0
lG2

� v3 0 0 1 1 0
 v4 0 0 0 1 1
 v5 1 0 0 0 1
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218 Capítulo 6 Teoría de grafos

6.8 Grafos aplanables
Este tipo de grafos, además de ser muy frecuentes, 
también cuentan con muchas propiedades intere-
santes. A continuación se analizan algunas de las 
más importantes.

Grafo aplanable
Se dice que un grafo G (V, E) es aplanable si este 
puede dibujarse sobre un plano de tal manera que 
ningún lado se cruce con otro, excepto, desde luego, 
en los vértices comunes.

Por ejemplo, el grafo G (V, E) de la figura 6.53 es 
aplanable.

G

Figura 6.53 Grafo G aplanable.

En apariencia, el grafo G1 de la figura 6.54 no es 
aplanable, ya que sus lados se cortan en un punto 
distinto de sus cuatro vértices; sin embargo, este 
también puede representarse como se muestra en 
el grafo G2 de la misma figura. Por tanto, se dice 
que G1 sí es aplanable.

E JEMPLO 

G
1

G
2

Figura 6.54 El G1 es aplanable ya que puede representarse como G2.

Entonces, si un grafo, en apariencia, es no aplanable, pero se puede representar o redibujar como un grafo 
aplanable, se considera que el grafo original es aplanable. Aunque, en realidad, dichos grafos tienen que ser 
isomorfos.

Un grafo aplanable divide al plano en diversas áreas, y cada una se denomina región de un grafo aplana-
ble, la cual se define a continuación.

Región de un grafo aplanable
Una región (o cara) R de un grafo aplanable es un área del plano que está acotada por los lados y no puede 
continuar dividiéndose en subáreas.

Además, se dice que una región R es infinita si su área es infinita y finita si su área también lo es.
En un grafo aplanable se tiene exactamente una región infinita.

Sea el grafo no dirigido aplanable G (V, E) de la figura 6.55. Obtener la can-
tidad de regiones que tiene el mismo.

Figura 6.55 Grafo no dirigido aplanable G.

E jemplo 

G
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219  Grafos aplanables

Fórmula de Euler para grafos aplanables
En ocasiones, resulta complicado identificar las regiones de un grafo aplanable. No obstante, Euler demostró 
que todas las representaciones aplanables de un mismo grafo dividen al plano en igual número de regiones, 
lo que logró hallando una relación entre el número de regiones, el tamaño y el orden de un grafo aplanable. 
Dicha relación se conoce como fórmula de Euler para grafos aplanables, la cual se representa de la siguien-
te manera:

|V| |E|  R 2

donde |V|, |E| y R son el orden, el tamaño y la cantidad de regiones, respectivamente. 
Sin excepción alguna, todos los grafos aplanables conexos siempre deben satisfacer la fórmula de Euler. 

Sea el grafo no dirigido G (V, E) de la figura 6.57. Obtener la cantidad de regio-
nes que tiene el mismo.

E jemplo 

Dado que |V| 5 y |E| 7, si se utiliza la fórmula de Euler para grafos aplanables 
y se despeja R, se tiene que:

R |E|  |V|  2

7  5  2 4

Esto es, el grafo tiene cuatro regiones.

Para comprobar que esta es la cantidad correcta de regiones, se tiene que 
buscar una representación aplanable de dicho grafo; es decir, un grafo iso-
morfo aplanable.

Así, un grafo isomorfo aplanable al de la figura 6.57 es el que se observa en la 
figura 6.58, donde se puede ver que, en efecto, este tiene las mismas cuatro 
regiones obtenidas por la fórmula de Euler para grafos aplanables.

Figura 6.58 Grafo isomorfo aplanable al grafo de la figura 6.57.

Solución

Como se puede observar, el grafo en 
cuestión tiene cuatro regiones; las 
primeras tres se muestran en la figu-
ra 6.56i), las cuales son finitas, mien-
tras que la cuarta región es infinita y 
se muestra en la figura 6.56 ii).

Solución

1

3

i )

2

4

ii )

Figura 6.56 Regiones del grafo G. i) Tres finitas y ii) una infinita.

G

Figura 6.57 Grafo no dirigido G.
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220 Capítulo 6 Teoría de grafos

Una relación que se obtiene de la fórmula de Euler para grafos aplanables es la siguiente:
En cualquier grafo aplanable conexo que no tenga lazos ni lados paralelos y que tenga dos o más lados, 

se cumple la desigualdad:

|E| 3 |V| 6

Debido a que el grafo no tiene lazos ni lados paralelos, cada región es acotada por tres o más lados, por tanto 
el número es mayor o igual que 3R. En la frontera, a lo largo de dos regiones, el número total es igual o menor 
a 2|E|, así se tiene que:

2|E| 3R

o:

2
3
 |E| R

Así, de acuerdo con la fórmula de Euler, se tiene que:

|V|  |E|  2 |E|
3

 2

o:

3|V|  6 |E| 

La figura 6.54 en realidad constituye el grafo completo K4, que, como ya se vio antes, es aplanable; por tanto, se 
debe cumplir:

3|V|  6 |E|

En este caso, primero se tiene que:

|V| 4, |E| 6

Luego, se sustituyen dichos valores en la desigualdad:

(3) (4)  6 6

6 6

con lo que se cumple la desigualdad.

E JEMPLO 

Sea el grafo completo K5; entonces, se tiene que:

|V| 5, |E| 10

Si se sustituyen estos valores en la desigualdad mencionada, se tiene:

3 5  6 10

9 /≥ 10

Como no se cumple la desigualdad, se puede inferir que K5 no es grafo aplanable. Más adelante se ratifica esta 
afirmación.

E JEMPLO 

Homeomorfismo de grafos
Es evidente que el hecho de que un grafo no dirigido G (V, E) sea aplanable no se ve afectado porque un 
lado sea dividido en dos lados por la inserción de un vértice de valencia 2, como se observa en la figura  
6.59 i) o si dos lados se combinan en un solo lado, al eliminar un vértice de este tipo, como se ve en la figu- 
ra 6.59 ii).
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221  Grafos aplanables

Dos grafos no dirigidos G1 (V1, E1) y G2 (V2, E2), am-
bos sin lazos, son homeomorfos (o grafos isomorfos bajo 
vértices de valencia 2) si:

Son isomorfos.

Pueden transformarse en grafos isomorfos me-
diante repeticiones de inserciones y/o elimina-
ciones de vértices de valencia 2.

i ) ii )

Figura 6.59 Inserción y eliminación de vértices de valencia 2 
en un lado de un grafo.

Sean los grafos no dirigidos G1 (V1, E1) y G2 (V2, E2) de la figura 6.60.

Determinar si estos grafos son homeomorfos.

G
1

G
2

  Figura 6.60 Grafos no dirigidos.

E jemplo 

Como G1 y G2 son grafos isomorfos mediante repeticiones de inserciones y eliminaciones de vértices de valen-
cia 2, como se muestra en la figura 6.61; entonces, se considera que son homeomorfos.

G
1

G
2

  Figura 6.61 Grafos homeomorfos.

Solución

En su época, el matemático polaco Kazimiers Kuratowski (1896-1980) demostró que un grafo es aplanable 
mediante el uso del concepto de homeomorfismo de grafos y formuló el teorema de Kuratowski, que se cita 
a continuación.
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222 Capítulo 6 Teoría de grafos

Los grafos de Kuratowski se observan con de-
talle en la figura 6.62. Dichos grafos son K5 y 
K3,3, respectivamente.

Figura 6.62 Grafos de Kuratowski.

Teorema de Kuratowski

Un grafo es aplanable si, y solo si, no contiene ningún subgrafo que sea homeomorfo a alguno de los llamados 
grafos de Kuratowski.

Teorema 

K
5

K
3, 3

Sea el grafo G (V, E) completo K6, que se muestra en la figura 6.63. Deter-
minar si este grafo es aplanable.

Figura 6.63 Grafo completo K6.

E jemplo 

En este caso, primero se rota a K6, como se muestra en la figura 6.64i). Si se eliminan los lados horizontales 
internos, se obtiene el subgrafo que se observa en la figura 6.64ii). Después, si se eliminan los lados inclinados 
externos, tanto superiores como inferiores, se obtiene el subgrafo de la figura 6.64iii), el cual es K3,3. Por último, 
alargando o reduciendo la distancia de los lados verticales, se obtiene el subgrafo de la figura 6.64iv), el cual 
efectivamente ratifica que es K3,3. Por tanto, se dice que K6 tiene un subgrafo homeomorfo a K3,3, por lo que 
dicho grafo no es aplanable. 

 Otra opción es rotar nuevamen-
te a K6, como se muestra en la figura 
6.64v). Luego, se elige un vértice y se 
eliminan todos los lados que surjan 
de este, como en la figura 6.64vi), el 
cual se observa que es K5. Por último, 
alargando o reduciendo la distancia 
entre los lados de la parte inferior, 
se obtiene el subgrafo de la figura 
6.64vii), que ratifica que es K5. Por 
tanto, K6 tiene un subgrafo homeo-
morfo a K5, con lo cual se comprue-
ba, nuevamente, que dicho grafo no 
es aplanable.

Solución

Figura 6.64 Procesos para verificar que K6 no es aplanable.

i )

vii )vi )v )

iv )iii )ii )
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223  Algoritmos para grafos

Del ejemplo anterior se deduce que todo grafo completo Kn, n 5, no es aplanable, ya que siempre contendrá 
un subgrafo homeomorfo a K5 o a K3,3.

6.9 Algoritmos para grafos
Para el tratamiento de esta sección, antes que nada se debe conocer lo que es un algoritmo, para luego apli-
car este concepto en los grafos.

Algoritmo
El término algoritmo proviene del árabe al-Khowârizmî, sobrenombre del célebre matemático árabe Mohá-
med ben Musa. 

Por algoritmo, comúnmente se entiende a la descripción de cómo resolver un problema. El conjunto de 
instrucciones que especifican la secuencia de operaciones a realizar, en orden, para resolver un sistema 
específico o clase de problemas, también se denomina algoritmo. En otras palabras, un algoritmo es una 
“especie de fórmula” para la resolución de un problema.

Existen diversos algoritmos para grafos, los cuales se utilizan para resolver problemas específicos; dos de 
los más importantes son el algoritmo de Fleury y el algoritmo de Dijkstra.

Algoritmo de Fleury
El algoritmo de Fleury se utiliza para determinar si un grafo tiene un circuito de Euler.

Los pasos de dicho algoritmo son:

1. Comprobar que el grafo sea conexo y que todos los vértices tengan valencia par.

2. Elegir un vértice inicial de forma arbitraria.

3. En cada paso, recorrer cualquier lado disponible siempre y cuando el grafo siga siendo conexo.

4. Después de recorrer el lado, borrarlo y recorrer otro lado disponible. 

5. Cuando ya no se pueda seguir el recorrido, se debe terminar; entonces, se dice que se ha encontrado 
un circuito de Euler.

Sea el grafo G (V, E) que se observa en la figura 6.65.

Utilizando el algoritmo de Fleury, encontrar un circuito de Euler en dicho grafo.

E jemplo 

De acuerdo con el algoritmo de Fleury, primero se debe verificar que el grafo sea conexo y que todos los vér-
tices tengan valencia par; en este caso, el grafo cumple las condiciones necesarias. Luego, se elige en forma 
arbitraria un vértice, sea v6 dicho vértice.

Solución

v
1

v
2

v
5

v
6

v
3

v
4

Figura 6.65 Grafo no dirigido.
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224 Capítulo 6 Teoría de grafos

Algoritmo de Dijkstra
El algoritmo de Dijkstra debe su nombre al matemático Edsger Dijkstra, quien lo descubrió en 1959. Este 
algoritmo se utiliza para determinar el camino más corto entre dos vértices en un grafo ponderado.

Existen muchas versiones para encontrar el camino más corto entre dos vértices, pero la versión de Dijk-
stra se aplica a grafos ponderados no dirigidos conexos que no tengan lados con pesos negativos.

Enseguida, siguiendo el algoritmo, se recorren 
los lados disponibles, de tal forma que el gra-
fo siga siendo conexo. Todo lado recorrido se 
borra y se recorre otro lado disponible.

Por último, el algoritmo concluye cuando ya 
no es posible seguir recorriendo lados.

Todo el proceso se muestra en la figura 6.66.

El circuito de Euler obtenido mediante el uso 
del algoritmo de Fleury es el siguiente:

{v6, v3, v4, v1, v3, v5, v1, v2, v4, v6}

Continúa
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Figura 6.66 Proceso para obtener un circuito de Euler mediante el 
algoritmo de Fleury.
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225  Algoritmos para grafos

Sea el grafo G (V, E) de la figura 
6.67.

Utilizando el algoritmo de Di-
jkstra, encontrar el camino más 
corto del vértice v1 al v8 en dicho 
grafo.

Figura 6.67 Grafo no dirigido.

E jemplo 

v
8

v
6

v
3

v
7

v
2

v
4

v
1

4 3

6

15

8

v
5

4
7

12

2

5 5

16

10 16

10

Para la solución de este problema, a continuación se muestra y se describe cada uno de los pasos del proceso 
para obtener el camino más corto del vértice v1 al v8.

Vértices y lados candidatos

Vértices y lados de la solución temporal

Nomenclatura:

Solución

Uno de los aspectos principales del algoritmo de Dijkstra es que todos los vértices del grafo se tienen que 
etiquetar; sea L(i) la etiqueta del vértice i. 

Además, en este se considera el hecho de que habrá vértices que tendrán etiquetas temporales y otros 
que tendrán etiquetas permanentes.

Es importante aclarar que antes de iniciar con el algoritmo, primero se debe seleccionar un vértice inicial.
Sean un grafo no dirigido ponderado conexo de N vértices, x el vértice inicial, D un vector de tamaño N 

que guardará, al final del algoritmo, las distancias desde x al resto de los vértices.
Los pasos de dicho algoritmo son:

1. Inicializar todas las distancias en D con un valor infinito relativo, ya que estas son desconocidas al 
principio, exceptuando la de x, que se debe colocar en 0, debido a que la distancia de x a x sería 0.

2. Sea a x; es decir, se toma el vértice a como el actual.

3. Se recorren todos los nodos adyacentes de a, excepto los nodos marcados (a estos se les llama vi).

4. Si la distancia desde x hasta vi guardada en D es mayor que la distancia desde x hasta a, sumada a la 
distancia desde a hasta vi; esta se sustituye con la segunda nombrada, esto es:

  Si (Di > Da  d(a, vi)), entonces Di Da  d(a, vi)

5. Se marca como completo el nodo a.

6. Se toma como próximo nodo actual el de menor valor en D (los valores pueden haberse almacenado 
en una cola de prioridad) y se vuelve al paso 3, siempre y cuando haya nodos no marcados.

Una vez terminado el algoritmo, D estará completamente lleno.
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226 Capítulo 6 Teoría de grafos

Paso 1

En este paso hay tres candida-
tos: los vértices v2, v3 y v4. En este 
caso, se toma el camino del vér-
tice v1 al v4, ya que es el camino 
más corto de los tres (véase figu-
ra 6.68).

Solución temporal:

Camino: v1, v4

Distancia: 5 

Paso 2

Ahora, se añade un nuevo candi-
dato, el vértice v5, y el vértice v3, 
pero esta vez a través del vértice 
v4. No obstante, el camino míni-
mo surge al añadir el vértice v3 
(véase figura 6.69).

Solución temporal:

Camino: v1, v4, v3

Distancia: 9

 

Paso 3

En este paso no se añade ningún 
candidato más, ya que el último 
vértice es el mismo que en el 
paso anterior. En este caso, el ca-
mino mínimo (véase figura 6.70) 
hallado es:

Solución temporal:

Camino: v1, v4, v3, v2

Distancia: 11 

Continúa
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Figura 6.68 Paso 1.
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Figura 6.69 Paso 2.
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Figura 6.70 Paso 3.
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227  Algoritmos para grafos

Paso 4

En este paso se añaden dos can-
didatos nuevos, los vértices v6 
y v7, ambos a través del vértice 
v2. El camino mínimo hallado en 
todo el grafo hasta ahora (véase 
figura 6.71) es:

Solución temporal:

Camino: v1, v4, v3, v2, v6

Distancia: 15 

Paso 5

En este paso se añaden tres vérti-
ces candidatos: los vértices v7, v8 
y v5, aunque este último ya esta-
ba, pero en este paso aparece a 
través del vértice v6. En este caso, 
el camino mínimo (véase figura 
6.72), que cambia un poco con 
respecto al anterior, es:

Solución temporal:

Camino: v1, v4, v3, v2, v7

Distancia: 17

Paso 6

En este paso vuelve a aparecer 
otro candidato: el vértice v8, pero 
esta vez a través del vértice v7. De 
todas formas, el camino mínimo 
(véase figura 6.73), aunque vuelve 
a cambiar para retomar el cami-
no que venía siguiendo en los pa-
sos anteriores, es:

Solución temporal:

Camino: v1, v4, v3, v2, v6, v5

Distancia: 18
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Figura 6.71 Paso 4.
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Figura 6.72 Paso 5.
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Figura 6.73 Paso 6.
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228 Capítulo 6 Teoría de grafos

6.10 Coloreado de grafos
El coloreado de un grafo no dirigido conexo G (V, E) ocurre cuando se asignan colores a los vértices de G, de 
modo que si vi y vj son adyacentes, entonces vi y vj tendrán colores distintos asignados. El número mínimo 
de colores necesarios para el coloreado propio de un grafo es lo que se conoce como número cromático del 
grafo.

Paso 7

En este paso solo se añade un 
candidato: el vértice v8, a través 
del vértice v5. El camino mínimo 
(véase figura 6.74) y final obteni-
do es:

Solución final:

Camino: v1, v4, v3, v2, v6, v5, v8

Distancia: 23
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Figura 6.74 Paso 7.

Sea el grafo no dirigido G (V, E) que se observa en la figura 6.75. 
Obtener el número cromático de dicho grafo.

E jemplo 

Se desea colorear los vértices de G, de modo que no haya 
dos vértices conectados del mismo color y utilizando la mí-
nima cantidad de colores posible.

En este grafo, el número cromático es 4 (1 rojo, 2 azul, 
3 verde y 4 amarillo), ya que es el número mínimo de 
colores para el coloreado (véase figura 6.76).

Solución

G

1

1

1

2

2

4

4

4

3

3

Figura 6.76 Grafo no dirigido G coloreado.

G

Figura 6.75 Grafo no dirigido.
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Es importante destacar que no hay ningún algoritmo eficiente para colorear un grafo. No obstante, a 
continuación se muestra uno simple que consiste en comenzar coloreando los vértices de mayor valencia; 
sin embargo, este algoritmo no siempre produce el mejor coloreado.

Algoritmo para colorear vértices
Los pasos para este algoritmo son:

1. Hacer lista de vértices según el orden de su valencia, de mayor a menor:

(v1) (v2) … (vn)

 Se elige una ordenación cuando dos vértices tienen igual valencia.

2. Asignar a v1 el color 1, así como a todos los vértices de la lista, en orden, que no sean adyacentes a 
uno coloreado con el color 1.

3. Asignar el color 2 al primer vértice de la lista que no haya sido coloreado con el color 1. Seguir colo-
reando con el color 2 los vértices de la lista no coloreados que no sean adyacentes a vértices con el 
color 2.

4. Continuar el coloreado hasta que se hayan agotado todos los vértices.

Sea el grafo no dirigido G (V, E) que se muestra en la figu-
ra 6.77. Utilizando el algoritmo para coloreado de vértices, 
colorear dicho grafo.

E jemplo 

De acuerdo con el algoritmo para el coloreado de vértices, los pasos para colorear el grafo son:

Paso 1

Obtener las valencias de cada vértice:

(v1) 2, (v2) 4, (v3) 4, (v4) 3, (v5) 6,

(v6) 4, (v7) 2, (v8) 3, (v9) 4, (v10) 2

Luego, los vértices se ordenan de mayor a menor, de acuerdo con su valencia, quedando:

v5, v2, v4, v6, v9, v4, v8, v1, v7, v10

Solución

v
3

v
2

v
7

v
9

v
6

v
5

v
4

v
10

v
1

v
8

Figura 6.77 Grafo no dirigido G coloreado.
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230 Capítulo 6 Teoría de grafos

Paso 2

Sean los colores rojo 1, azul 2, verde 3 y amarillo 
4. De este modo, al vértice v5 se le asigna el color 1, 

que es el rojo, así como a todos los vértices de la lis-
ta, en orden, que no sean adyacentes a uno coloreado 
con el color rojo (véase figura 6.78).

Paso 3

A continuación se asigna el color 2 (azul) al primer 
vértice de la lista que no haya sido coloreado con el 
color rojo, en este caso v2 y se sigue coloreando con 
el color azul los vértices de la lista no coloreados que 
no sean adyacentes a vértices con el color azul (véase 
figura 6.79).

Paso 4

Como en este paso aún hay vértices sin colorear, se 
repite el procedimiento del paso anterior, y se asigna 
el color 3 (verde) al primer vértice de la lista que no 
haya sido coloreado con el color azul, en este caso v9. 
Colorear con el color verde todos los vértices de la 
lista no coloreados que no sean adyacentes a vértices 
con el color azul (véase figura 6.80).

Como después de este punto ya no quedan vértices sin colorear, se termina el algoritmo y se concluye que como 
solo se utilizaron tres colores para colorear el grafo, entonces su número cromático es precisamente tres.

Continúa

v
3

v
2

v
7

v
9

v
6

v
5

v
4

v
10

v
1

v
8

G

1
1

1

Figura 6.78 Paso 2 en el coloreado del grafo.

v
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v
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v
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v
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G

2

1

2

12 1

2

Figura 6.79 Paso 3 en el coloreado del grafo.
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2

1 3
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Figura 6.80 Paso 4 en el coloreado del grafo.
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231  Coloreado de grafos

Teorema de los cuatro colores
Francis Guthrie, estudiante de Augustus de Morgan, se dio 
cuenta de que solo bastaban cuatro colores para colorear un 
mapa completo de los condados de Inglaterra (véase figura 
6.81, donde solo se muestran los condados sin aplicar el teo-
rema).

Aquí nació la conjetura. Augustus de Morgan hizo publi-
cidad del problema entre los matemáticos. Hasta la fecha se 
han dado varias pruebas incorrectas del teorema de los cuatro 
colores, la más famosa es la del abogado inglés Alfred Kempe, 
quien la publicó en 1879 y fue aceptada como correcta por los 
matemáticos hasta 1890, cuando Pearcy Heawood encontró 
un error en su demostración.

Al final, este teorema fue demostrado por Kenneth Appel y 
Wolfgang Haken(Estados Unidos de América) en 1976, quienes 
para su demostración utilizaron una supercomputadora para 
examinar 2 000 configuraciones diferentes de mapas, a las que 
habían reducido el problema. Para la demostración se necesi-
taron 1 000 horas de proceso.

Sin embargo, esta demostración no es aceptada por todos los matemáticos, dado que sería impractica-
ble por su gran cantidad de detalles, de manera que una persona se vería imposibilitada para verificarlo en 
forma manual.

Solo queda aceptar la exactitud del programa, el compilador y la computadora donde se ejecutó la prue-
ba. Otro aspecto de la demostración, el cual puede ser considerado negativo, es su falta de elegancia.
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232 Capítulo 6 Teoría de grafos

Determinación del número cromático utilizando álgebra lineal
Una manera de determinar el número cromático de un grafo simple no dirigido conexo G (V, E) es median-
te el análisis de los autovalores asociados a su matriz de adyacencia AG.

La matriz de adyacencia depende de la ordenación de los vértices; como se recordará, siempre será una 
matriz simétrica con diagonal principal.

El procedimiento para calcular los autovalores o eigenvalores es relativamente sencillo; no obstante, se 
debe mantener el orden y evitar confusiones. El procedimiento es el siguiente:

1. Se crea el polinomio característico, que es de la siguiente forma:

p( ) determinante(AG  I)

Esto se hace armando la matriz AG y restando en cada uno de los componentes de la diagonal. Se 
debe tener en cuenta que I es la matriz identidad, es decir la matriz que tiene todos 1 en la diagonal 
y todos 0 en las otras posiciones de la matriz.

2. Se encuentran las raíces igualando el polinomio característico a cero. De esta forma, se encuentran 
todos los autovalores para esta matriz.

Si se considera el grafo de la figura 6.84:

Figura 6.84 Grafo no dirigido sin lazos ni lados paralelos.

Este tiene como matriz de adyacencia:

A
0 1
1 0

Aunque este grafo es mucho más complejo que el de la figura 6.75, 
en este también es posible observar que el número cromático es 
4 (rojo, azul, verde y amarillo), pues (de nueva cuenta) es la mínima 
cantidad de colores para el coloreado (véase figura 6.83).

1. Rojo

2. Azul

3. Verde

4. Amarillo

Solución

G

1
1

1

1
1

11

1
1

1

2

22

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

4

4

4

4

4 4

4

4

4

4

4

1

1

1

Figura 6.83 Coloreado de la representación de 
los condados de Inglaterra.
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233Resumen

Y como I:

Ι =
0 1
1 0

Entonces:

− Ι =
−

−
=AG

1
1

0

Del determinante se obtiene el polinomio característico:

( )( )− = − + =1 1 1 02

Entonces, 1  1 y 1  1, son los autovalores.

Como la matriz de adyacencia es simétrica, los autovalores asociados a la misma son siempre nú-
meros reales. Por tanto, estos pueden ser ordenados de menor a mayor. Además, el grafo debe ser 
conexo.

Sea 1 el autovalor más grande y n el autovalor más pequeño. Si x es el número cromático de un grafo 
simple, entonces se cumple:

− ≤ ≤ +x1 1
n

1
1

En este caso: 1  1 y 1  1. Aplicando la desigualdad se tiene que:

−
−
≤ ≤ +

+ ≤ ≤ +

≤ ≤

x

x

x

1
1
1

1 1,

1 1 1 1,

2 2

Por tanto, el número cromático es 2. 

El coloreado se muestra en la figura 6.85, utilizando los dos colores de acuerdo con el número cro-
mático obtenido.

Figura 6.85 Grafo coloreado.

Es importante destacar que un problema es determinar el número cromático de un grafo y otro muy 
distinto es el de colorear el mismo.

Resumen
En este capítulo se estudian las propiedades y características de los grafos, las cuales, a fin de cuentas, son 
solo abstracciones matemáticas. Además, también se trata la utilidad de los grafos en la práctica, pues estos 
ayudan a resolver numerosos problemas importantes de la vida cotidiana. 

Además, también se muestran diferentes alternativas para la representación de los mismos, ya sea de 
manera gráfica, algebraica o formal mediante matrices y su posterior manipulación en una computadora.

Asimismo, se estudia la clasificación de los grafos y se muestran los diversos recorridos en los mismos 
(caminos, caminos simples, circuitos y circuitos simples), además de casos especiales, como: paseos y cir-
cuitos de Euler y Hamilton.

Por último, se tratan aspectos formales de la teoría de grafos, como algunos algoritmos para grafos y el 
coloreado de grafos.
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234 Capítulo 6 Teoría de grafos

 6.1 Determinar el número de lados que tiene el grafo 
K9.

 6.2 Determinar qué valencia tiene cada vértice de un 
grafo K6.

 6.3 Establecer qué valencia tiene cada vértice de un 
grafo Kn.

 6.4 Determinar cómo se denomina un grafo en el que 
hay datos asociados a sus lados.

 6.5 Establecer qué tipo es cada uno de los grafos que 
se muestran en las figuras siguientes.

G
1

i ) Grafo conexo

G
2

G
3

ii ) Grafo simple iii ) Grafo completo

Figura 6.86

Nota:

Un grafo puede ser de más de un tipo. 

 6.6 Determinar cuál de los siguientes grafos repre-
senta un subgrafo generador para K4.

A) D)C)B)

Figura 6.87

 6.7 Establecer cuál de los siguientes subgrafos es el 
complemento del subgrafo con respecto a K4.

A)

D )C )

B )

        Figura 6.88

6.8  Es un grafo en el que no existen lazos ni lados 
paralelos.

6.9  Todos los siguientes subgrafos son generadores 
de K4 , excepto:

A)

D )C )

B )

Figura 6.89

 6.10 Se dice que un G1 es un subgrafo generador de G 
si contiene  .

 6.11 El grafo G2 es con respecto al grafo G1:

G
1

G
2

Figura 6.90

a)  Isomorfo con G1 b) Complemento de G1

c)  Subgrafo generador de G1 d) Homeomorfo con G1

 6.12 ¿Qué tipo es cada uno de los siguientes grafos?

G
1

G
2

G
3

G
4

G
5

G
6

2

3

4

62 8

Figura 6.91

Problemas propuestos
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235Problemas propuestos

Nota:

Un grafo puede ser de más de un tipo. 

a) Grafo ponderado d) Dígrafo

b) Grafo no simple e) Grafo disconexo

c) Grafo completo f) Multígrafo

 6.13 ¿Cuáles de los siguientes grafos contienen un 
circuito de Euler?

a) K4 b) K9 c) K6 d) K3

e) K11 f) K2 g) K4 h) K7

  Con base en el grafo siguiente, responder lo que 
se pide en los problemas 6.14 a 6.17.

 6.14 ¿Cuál de las siguientes sucesiones de lados es un 
camino?

 a) (v1, v2, v3, v2, v1, v4) b) (v1, v2, v3, v4, v1, v2) 

 c) (v1, v2, v3, v4, v5, v3)  d) (v1, v2, v1, v3, v1, v4) 

 6.15 ¿Cuál de las siguientes sucesiones de lados es un 
camino simple?

 a) (v1, v2, v3, v5, v4, v1)  b) (v1, v2, v3, v4, v5, v3)  

 c) (v1, v2, v3, v1, v4)  d) (v1, v2, v3, v5, v4)

 6.16 ¿Cuál de las siguientes sucesiones de lados es un 
circuito?

 a) (v1, v3, v4, v1, v2, v1)  b) (v1, v2, v3, v5, v4, v3, v1)

 c) (v1, v2, v3, v4, v3, v1)  d) (v1, v2, v1, v3, v1) 

 6.17 ¿Cuál de las siguientes sucesiones de lados es un 
circuito simple? 

 a) (v1, v2, v3, v5, v4, v1)  b) (v1, v2, v3, v4, v3, v1) 

 c) (v1, v3, v5, v4, v3, v1)  d) (v1, v2, v3, v5, v4, v3, v1)

  Con base en el grafo siguiente, responder lo que 
se pide en los problemas 6.18 a 6.21.

v
3

v
2

v
5

v
4

v
1

Figura 6.93

 6.18 ¿Cuál de las siguientes sucesiones de lados es un 
camino?

 a) (v1, v2, v3, v2, v1, v5)  b) (v1, v2, v3, v4, v5, v3)

 c) (v1, v2, v3, v4, v1, v2)  d) (v1, v2, v1, v5, v1, v2) 

 6.19 ¿Cuál de las siguientes sucesiones de lados es un 
camino simple?

 a) (v1, v2, v3, v4, v5)   b) (v1, v2, v3, v4, v5, v3) 

 c) (v1, v2, v3, v1, v4)  d) (v1, v2, v3, v4, v5, v1) 

 6.20 ¿Cuál de las siguientes sucesiones de lados es un 
circuito?

 a) (v1, v5, v3, v4, v3, v1)  b) (v1, v3, v4, v1, v2, v1)  

 c) (v1, v2, v3, v5, v4, v1)  d) (v1, v4, v5, v4, v3, v1) 

 6.21 ¿Cuál de las siguientes sucesiones de lados es un 
circuito simple?  

 a) (v1, v2, v3, v5, v4, v3, v1)  b) (v1, v2, v3, v4, v5, v1)  

 c) (v1, v2, v3, v4, v3, v1)  d) (v1, v5, v4, v1, v3, v2, v1)

 6.22 Determinar cuál de los siguientes grafos tiene en 
forma simultánea un circuito de Euler y un circui-
to de Hamilton.

G
1

G
2

G
3

G
4

Figura 6.94

v
3

v
2

v
5

v
4

v
1

Figura 6.92
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236 Capítulo 6 Teoría de grafos

 6.23 En el siguiente grafo, todas las sucesiones de lados 
representan un circuito de Hamilton, excepto:

v
3

v
2

v
5

v
4

v
1

v
6

Figura 6.95

 a) (v2, v3, v4, v5, v6, v3, v2) b) (v1, v2, v3, v4, v5, v6, v1)

 c) (v2, v3, v4, v5, v6, v1, v2) d) (v3, v6, v1, v5, v4, v2, v3)

  Con base en el grafo siguiente, responder lo que 
se pide en los problemas 6.24 a 6.27.

G
1

G
2

G
3

G
4

Figura 6.96

 6.24 ¿Cuáles grafos tienen en forma simultánea un pa-
seo y un circuito de Euler?

 6.25 ¿Cuáles grafos no tienen un circuito de Euler? 

 6.26 ¿Cuál grafo tiene un paseo pero no un circuito de 
Euler? 

6.27 Todos los grafos tienen un paseo de Euler, excep-
to .

 6.28 El siguiente grafo tiene un paseo de Euler porque 
.

a) Un número impar de vértices tiene grado par.

b) Hay dos vértices de grado impar.

c) Hay al menos dos vértices de grado impar.

d) Algunos vértices tienen grado par.

 6.29 ¿Cuáles de los siguientes grafos tienen un paseo 
de Euler, un circuito de Euler o ambos?

G
2

G
3

G
1

Figura 6.98

 6.30 Para cuáles valores de n, el grafo completo Kn no 
contiene un circuito de Euler.

 a) Para todo n par   b) Para cualquier n 5 

 c) Para todo n primo  d) Para todo n impar

  Con base en el grafo siguiente, responder lo que 
se pide en los problemas 6.31 a 6.34, considerando 
que cada una de las sucesiones de lados es un:

 a) Camino

 b) Camino y camino simple

 c) Camino y circuito 

 d) Camino, circuito y circuito simple

v
2

v
5

v
4

v
3

v
1

Figura 6.99

 6.31 (v3, v5, v1, v4, v5, v3)

6.32 (v3, v4, v5, v1, v3) 

6.33 (v1,v2, v3, v4, v5, v3)

6.34 (v1, v2, v3, v4, v5)

Figura 6.97
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237Problemas propuestos

6.35 ¿Cuáles de los siguientes grafos tienen un circuito 
de Euler?

G
2

G
3

G
1

G
4

Figura 6.100

 6.36 Obtener la matriz de adyacencia que representa 
el siguiente grafo.

v
2

v
5

v
4

v
3

v
1

Figura 6.101

 6.37 Obtener la matriz de adyacencia que representa 
el grafo completo K3.

 6.38 La matriz de adyacencia que representa un grafo 
G con todos sus vértices aislados entre sí es:

A A

A A

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 0 1 0
0 1 1 1
1 0 0 1
0 1 0 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1 2

3 4

6.39 ¿Cuál de las siguientes matrices de incidencia 
representa un grafo simple?

I I

I I

1 0 1 1 1
0 1 0 1 0
0 0 1 0 0
1 1 0 0 1

1 0 1 1 1
0 1 0 1 0
0 1 1 0 0
1 0 0 0 1

1 1 1 0 0
0 0 0 1 1
1 1 1 0 0
0 0 0 1 1

1 0 1 1 0
0 1 0 1 1
0 1 1 0 0
1 0 0 0 1

1 2

3 4

6.40 Obtener la matriz de incidencia que representa el 
grafo completo K3.

6.41 La matriz de incidencia que representa un grafo G 
con exactamente un vértice aislado es:

I I

I I

1 0 1 1 1
0 1 0 1 0
0 0 0 0 0
1 1 0 0 1

0 0 1 0 0
0 1 0 1 0
0 1 1 0 0
1 0 0 0 1

1 1 0 1 0
0 0 1 1 1
1 0 1 0 0
0 1 0 0 1

1 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1

1 2

3 4

6.42 Todas las siguientes matrices de incidencia repre-
sentan grafos que contienen un paseo de Euler, 
excepto:

I I

1 0 1 0 1
1 1 0 1 0
0 1 0 0 1
0 0 1 1 0

1 0 1 1 0
0 1 1 0 1
1 1 0 0 0
0 0 0 1 1

1 2
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238 Capítulo 6 Teoría de grafos

I I

0 1 1 1 0
0 0 0 1 0
1 1 0 0 0
1 0 1 0 1

1 1 1 0 0
1 0 0 1 1
0 0 0 1 1
0 1 1 0 0

3 4

6.43 ¿Cuál de las siguientes matrices de incidencia 
representa un grafo que contienen un circuito de 
Euler?

I I

I I

0 0 1 1 1
0 1 1 0 0
1 1 0 0 1
1 0 0 1 0

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

1 1 1 0
0 1 0 1
0 0 1 0
1 0 0 1

0 1 1 0 0
1 0 1 0 1
0 1 0 1 1
1 0 0 1 0

1 2

3 4

6.44 Las siguientes matrices de incidencia representan 
un grafo completo K3, excepto:

I

1 0 1
1 1 0
0 1 1

1 I

1 1 0
0 1 1
1 0 1

2 I

1 0 1
0 1 0
1 1 1

3 I

1 0 1
0 1 1
1 1 0

4

6.45 Determinar el grafo no dirigido que corresponde 
a la matriz de adyacencia:

  

  

0 1 0 0 0
1 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0

  Utilizando el acomodo de vértices que se mues-
tra a continuación:

v
2

v
4

v
5

v
3

v
1

         Figura 6.102

6.46 Obtener la matriz de adyacencia que representa 
el siguiente grafo.

v
2

v
4

v
5

v
3

v
1

e
5

e
4

e
3

e
2

e
6

e
1

e
8

e
7

Figura 103

6.47 Comprobar si las siguientes parejas de grafos son 
homeomorfas.

ii )

i )

iii )

v )

iv )

vi )
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239Problemas propuestos

vii )

viii )

Figura 6.104

6.48 Determinar el número de regiones del siguiente 
grafo y obtener un grafo isomorfo aplanable a di-
cho grafo para comprobar el resultado obtenido.

 

 

 

                 Figura 6.105

  Con base en los siguientes grafos, contestar lo  
que se pide en los problemas 6.49 a 6.53.

G
1

G
2

G
3

G
4

Figura 6.106

6.49 ¿Cuáles grafos no son aplanables?

6.50 ¿Cuáles grafos tienen un circuito de Hamilton?

6.51 ¿Cuáles grafos son aplanables?

6.52 ¿Cuáles grafos tienen un circuito de Euler?

6.53 ¿Cuáles grafos son isomorfos?

6.54 Si G (V, E) es un grafo aplanable, determinar 
cuándo un subgrafo G1 de G será aplanable.

 a) Nunca b) A veces

 c) No siempre d) Siempre

6.55 Determinar el número de regiones del siguiente 
grafo y obtener un grafo isomorfo aplanable a di-
cho grafo para comprobar el resultado obtenido.

                 Figura 6.107

6.56 Obtener el número cromático de los siguientes 
grafos, así como el grafo coloreado respectivo.

 Figura 6.108

6.57  

   Figura 6.109

6.58 

               Figura 6.110
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240 Capítulo 6 Teoría de grafos

6.59

                           Figura 6.111

6.60

               Figura 6.112

6.61 

   Figura 6.113

6.62 

           Figura 6.114

6.63

 
 
 

     Figura 6.115

6.64 

        Figura 6.116

Con base en el siguiente grafo, contestar los siguientes 
10 problemas

v
4

v
8

v
7

v
5

v
3

v
9

v
6

v
2

v
1

v
13

v
14

v
12

v
15

v
11

v
10

     Figura 6.117

 1. Determinar si el grafo es conexo.

 2. Determinar si el grafo es simple.

 3. Determinar el número cromático y dibujar el gra-
fo coloreado.

 4. Obtener la matriz de adyacencia.

 5. Determinar si existe un circuito de Euler.

 6. Determinar si existe un paseo de Euler.

 7. Determinar si existe un paseo de Hamilton; en 
caso afirmativo, representarlo en forma gráfica.

 8. Determinar si existe un circuito de Hamilton.

 9. Determinar qué sucede al eliminar el lado (v1, v5), 
¿habrá paseos y circuitos de Euler?

 10. Utilizar el algoritmo de Fleury y comprobar si 
existe o no un circuito de Euler.

Problemas reto
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Objetivos

 Distinguir los distintos tipos de árboles. 

 Conocer los conceptos básicos de los árboles.

 Evaluar expresiones algebraicas mediante el uso de árboles binarios.

 Construir árboles de búsqueda binaria.

Árboles

7
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7.1 Introducción
Hay un tipo especial de grafos que se presentan en múltiples aplicaciones que reciben el nombre de árboles, 
los cuales son útiles en especial en ciencias de la computación. Pues, por ejemplo, casi todos los sistemas 
operativos almacenan sus archivos en una estructura de árbol. A continuación, se listan algunas otras apli-
caciones de árboles en informática: 1. organización de información, con el fin de que sea posible efectuar 
con eficacia operaciones que conciernan a esa información; 2. construcción de algoritmos eficientes para 
localizar artículos en una lista; 3. construcción de códigos eficientes para almacenar y transmitir datos;  
4. modelación de procedimientos que son llevados a cabo al utilizar una secuencia de decisiones.

Toda vez que los árboles solo son un caso especial de grafos que se utilizan de manera particular en com-
putación, es precisamente un especialista en cómputo a quien se considera el principal representante de 
esta clase de grafos: Robert W. Floyd. A continuación, se presenta una pequeña biografía de este importante 
científico estadounidense.

Robert W. (Bob) Floyd nació el 8 de junio de 1936, en Nueva York, y murió el 25 de septiembre de 2001, en 
Stanford, California; fue un eminente científico en computación. Sus contribuciones incluyen el diseño 
del algoritmo de Floyd-Warshall (independientemente de Stephen Warshall), que se encuentra de manera 
eficiente en todos los caminos más cortos en un gráfico, el ciclo del hallazgo de Floyd, algoritmo para la 
detección de los ciclos en una secuencia, y su trabajo en el análisis. En un artículo independiente, Floyd 
introdujo el concepto importante de difusión de error, también llamado tramado Floyd-Steinberg (aunque 
también distingue el tramado de difusión). Fue pionero en el campo de la verificación de programas con 
afirmaciones lógicas; esto es, asignar significados a los programas. Esta fue una importante contribución 
a lo que más tarde se convirtió en la lógica de Hoare. En 1978, Floyd recibió el Premio Turing  “por tener 
una clara influencia sobre las metodologías para la creación de software eficiente y fiable, y por ayudar a 
encontrar los siguientes subcampos importantes de la ciencia de la computación: la teoría del análisis, las 
semánticas de los lenguajes de programación, el manual del programa, la verificación automática, la síntesis 
de programas y el análisis de algoritmos”.

Figura 7.1 Robert  
W. (Bob) Floyd  
(1936-2001), científico 
estadounidense en 
computación.

7.2 Árboles
En esta sección se abordan los conceptos generales de los árboles, como definición, componentes, carac-
terísticas distintivas, entre otros aspectos. Por supuesto, en secciones posteriores, el texto se centra en los 
árboles que tienen mayor aplicación en el campo de la computación: los árboles binarios.

Con base en los conceptos vistos en el capítulo 6, es fácil definir el concepto central del presente capítulo. 
Entonces, se puede definir que un árbol es cualquier grafo no dirigido, conexo y que no contiene circuitos. A 
continuación se presentan algunos ejemplos.

Considérense los grafos i) y ii) de la figura 7.2. Ambos son grafos no dirigidos (es decir, sus lados no contienen direc-
ción alguna), son conexos (esto es, entre cada par de vértices existe un camino que los conecta).

Además, ninguno de los dos tiene circuitos (es decir, no existe forma de dar un paseo partiendo de un vértice y 
regresar a este sin pasar dos veces por el mismo lado); por tanto, se dice que son árboles.

E JEMPLO 
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Árboles 243

Con frecuencia, es necesario considerar una colección de árboles disjuntos, a dicha colección se le denomi-
na bosque.

Tómense en cuenta los grafos i) y ii) de la figura 7.3.

f
bcd

e

a

j

h

i

g

i) ii)

Figura 7.3 Grafos que no son árboles.

En este caso, ninguno de estos grafos es árbol. El grafo 7.3 i) no puede considerarse árbol porque contiene circuitos; 
por ejemplo, la sucesión de lados (b, e, c, b) es un circuito; el grafo 7.3 ii) tampoco es árbol, ya que es disconexo, pues 
contiene un vértice aislado (vértice g).

E JEMPLO 

Considérense los grafos i) y ii) de la figura 7.2;  como se vio antes, estos son árboles y como ambos son disjuntos, 
entonces forman un bosque.

E JEMPLO 

f

e

a
b d

f
c

h

g

ih

g

f

a

b

d

c
e

i) ii)

Figura 7.2 Grafos que son árboles.

En los árboles se utilizan nombres especiales para identificar sus vértices; a saber, un vértice de valencia 1 
en un árbol se le llama nodo hoja (o simplemente hoja) o nodo terminal y un vértice de valencia mayor que 
1 recibe el nombre de nodo rama (o simplemente rama) o nodo interno.
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A continuación, se detallan algunas de las propiedades que distinguen a los árboles.
Existe un único paseo entre dos vértices cualesquiera.

El número de vértices es mayor que el número de lados.

Un árbol con dos o más vértices tiene al menos una hoja.

Además de su definición, es posible identificar si un grafo dado es un árbol a partir de las siguientes carac-
terísticas:

Un grafo G = (V, E) en el cual existe un único paseo entre cada par de vértices es un árbol.

Un grafo conexo G = (V, E) con |E| = |V|  1 es un árbol, donde |E| y |V| son el tamaño y orden del grafo, 
respectivamente.

Un grafo G = (V, E) con |E| = |V|  1 que no tiene circuitos es un árbol.

Estas propiedades y los resultados pueden verificarse con mucha facilidad a partir de la definición de árbol.

7.3 Árboles enraizados
Al contrario de los árboles que existen en la naturaleza, cuyas raíces se localizan en la parte inferior del 
mismo, arraigadas en la tierra, en la teoría de árboles, los árboles enraizados pueden verse con la raíz en la 
parte superior, como se trata en esta sección.

Árbol dirigido
Un grafo dirigido es un árbol dirigido, si se convierte en un árbol cuando se ignoran las direcciones de sus 
lados.

Considérese el grafo i) de la figura 7.2; entonces, se tiene que los vértices b, c, d, f, g, i son nodos hoja, mientras que 
los vértices a, e, h, son nodos rama.

E JEMPLO 

El grafo dirigido de la figura 7.4i) constituye un árbol dirigido, pues al omitir la dirección de los lados cumple con las 
características de un árbol, como se observa en la figura 7.4ii).

i) ii)

Figura 7.4 Grafo dirigido que es un árbol dirigido.

E JEMPLO 

Árbol enraizado
Un árbol dirigido es un árbol enraizado si existe exactamente un vértice cuya valencia de entrada sea 0 y las 
valencias de entrada de los otros vértices sean 1.

El vértice con valencia de entrada 0 es llamado raíz del árbol enraizado.
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Árboles enraizados 245

En un árbol enraizado, un vértice cuya valencia de salida es cero se denomina hoja o nodo terminal; en tanto, 
un vértice cuya valencia de salida es diferente de cero se denomina rama o nodo rama o nodo interno.

El grafo de la figura 7.5 es un árbol enraizado.

E JEMPLO 

Considérese el árbol dirigido de la figura 7.6.

Entonces, se tiene que los vértices a, b, c, f, h son nodos rama, en 
tanto que los vértices d, e, g, i, j, k, l son nodos hoja.

E JEMPLO 

Relaciones entre los vértices de un árbol enraizado
También existen las relaciones entre los vértices de un árbol enraizado, las cuales se identifican con nom-
bres especiales. Veamos cuáles son.

Sea a un nodo rama en un árbol enraizado T. Se dice que un vértice b es un hijo de a si existe un lado 
dirigido del vértice a al vértice b. Además, se dice que el vértice a es el padre del vértice b. Por su parte, dos 

raíz

Figura 7.5 Árbol enraizado.

a

g

c

h

kj

f
e

i

d

b

l

Figura 7.6 Árbol enraizado con raíz en a.
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vértices son hermanos si son hijos del mismo vértice. En tanto, se dice que un vértice c es un descendiente 
del vértice a si existe un paseo dirigido del vértice a al vértice c. Además, se dice que el vértice a es un ances-
tro del vértice c.

Considérese el árbol dirigido de la figura 7.6.

Entonces, se tienen las siguientes relaciones entre sus vértices:

b y c son hijos de a

d, e y f son hijos de b

g y h son hijos de c

i, j y k son hijos de f

l es hijo de h 

 

a es padre de b y c

b es padre de d, e y f

c es padre de g y h

f es padre de i, j y k

h es padre de l 

 

b y c son hermanos

d, e y f son hermanos

g y h son hermanos

i, j y k son hermanos

l no tiene hermanos 

Además, se tiene que:

b, c, d, e, f, g, h, i, j, k y l son descendientes de a

d, e, f, i, j y k son descendientes de b

i, j y k son descendientes de f

g, h y l son descendientes de c

l es descendiente de h 

 

a es ancestro de b, c, d, e, f, g, h, i, j, k, l

b es ancestro de d, e, f, i y j

f es ancestro de i, j y k

c es ancestro de g, h y l

h es ancestro de l

E JEMPLO 
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Subárbol
Sea a un nodo rama en un árbol enraizado T = (V, E). Por el subárbol con raíz a se entiende el subgrafo  
T' = (V', E') de T, tal que V' contiene a a y a todos sus descendientes y E' contiene los lados de todos los paseos 
dirigidos que surjan de a. Por un subárbol de a, se entiende un subárbol que tiene a a como raíz.

Considérese el árbol dirigido i) de la figura 7.7. Los árboles de ii), iii), iv) y v) son todos subárboles de i). 

i)

ii) iii) iv) v)

a

g

c

h

kj

f
e

i

d

b

l

g

c

h

kj

f
e

i

d

b

l

h

kj

f

i l

 Figura 7.7 ii), iii), iv) y v) subárboles del árbol i).

E JEMPLO 

Del ejemplo anterior, es fácil ver que los árboles ii), iii), iv) y v) de la figura 7.7 son subárboles de i) con raíces 
a, b, f, c y h, respectivamente. 

Es importante aclarar que para un árbol dado existen tantos subárboles como nodos rama tenga el árbol.

Cuando se traza un árbol enraizado, es posible omitir las di-

recciones de los lados siguiendo la convención de colocar 

los hijos de un nodo rama debajo de este, ya que con dicho 

acuerdo se entiende que las direcciones de todos los lados 

son hacia abajo.

Nota
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A pesar de que los árboles enraizados i) y ii) de la fi-
gura 7.9 son isomorfos (si se consideran como grafos), 
en ciertas aplicaciones estos pueden representar dos situaciones por completo diferentes.

Esto motiva a la definición de un árbol ordenado, lo cual permitirá referirse sin ambigüedades a cada uno 
de los subárboles de un nodo rama. 

Árbol ordenado
Un árbol ordenado es un árbol enraizado con lados etiquetados con los enteros 1, 2, … , i… . Por tanto, los 
subárboles de un nodo rama pueden ser referidos como el primero, el segundo, ... , y el i-ésimo subárbol 
del nodo rama, los cuales corresponden a los lados incidentes desde el nodo, y que pueden ser enteros no 
consecutivos.

Ahora, supóngase que los árboles de la figura 7.9 se etiquetan como se observa en la figura 7.10.

Árboles isomorfos
Se dice que dos árboles ordenados son isomorfos si existe un isomorfismo de grafos entre estos, de tal suerte 
que las etiquetas de los lados correspondientes coincidan.

Si se considera el árbol enraizado  de la figura 7.7 y se 
toma en cuenta el acuerdo de la nota anterior, el resul-
tado es el árbol que se muestra en la figura 7.8.

Figura 7.8 Árbol enraizado de la figura 7.7 omitiendo la 
dirección de sus lados.

E JEMPLO 

321

21

321

21

i) ii)

Figura 7.10 Árboles ordenados.

Los árboles ordenados i) y ii) de la figura 7.10 no son isomorfos; en cam-
bio, los de la figura 7.11 sí lo son.

Figura 7.11 Árboles isomorfos.

E JEMPLO 

i) ii)

Figura 7.9 Árboles isomorfos (solo si se consideran como grafos).

ii)

321

21

321

21

i)
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Árbol m-ario
Un árbol ordenado en el que cada nodo rama tiene a lo más m hijos se conoce con el nombre de árbol  
m ario. Se dice que un árbol m-ario es regular si cada uno de sus nodos ramas tiene exactamente m hijos.

Una clase importante de árboles m-arios son los llamados árboles binarios. En los árboles binarios, en 
lugar de referirse al primero o al segundo subárbol de un nodo rama, a menudo se hace referencia a estos 
como subárbol izquierdo o subárbol derecho del nodo.

Considérense los ár-
boles T1 y T2 de la figu-
ra 7.12. En este caso, el 
árbol T1 es ternario, ya 
que cada nodo rama 
tiene a lo más tres 
hijos, pero además es 
ternario regular, pues 
cada nodo rama tie-
ne exactamente tres 
hijos. En cambio, el 
árbol T2 es únicamente ternario.

E JEMPLO 

7.4 Longitud de paseo en árboles enraizados
Cuando se representa un problema mediante un árbol, en muchas 
ocasiones es necesario determinar la cantidad de lados que existen 
desde la raíz de árbol enraizado hasta determinado vértice.

La longitud de un paseo para un vértice en un árbol enraizado es 
el número de lados en el paseo desde la raíz hasta el vértice.

Altura de un árbol
La altura h de un árbol T es el máximo de las longitudes de los paseos en un árbol, y se denota como: h(T ).

T
1

T
2

Figura 7.12  T1 es un árbol ternario regular y T2 es un árbol ternario.

Considérese el árbol enraizado T, que se observa en la figura 7.13. En este, 
como la raíz de T es a, entonces la longitud de paseo del vértice k es 4, 
mientras que la del vértice j es 3; por su parte, la longitud de paseo para 
el vértice a (que es la raíz) es cero, pues no hay aristas que recorrer.

E JEMPLO 

b

g

dc

m

i

l

a

e

k

h
f

j

Figura 7.13 Árbol enraizado T.

La altura del árbol enraizado T de la figura 7.13 es 4; de acuerdo con la definición anterior, entonces también puede 
escribirse como: h (T ) = 4, y es el máximo de las longitudes de todos los paseos posibles en T.

E JEMPLO 
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7.5 Código de prefijos (prefijos codificados)
A continuación se analiza cómo codificar las diferentes longitudes de paseos en las hojas de los árboles bi-
narios regulares; de este modo, entonces cada nodo hoja del árbol debe tener exactamente dos hijos.

Código de prefijos
Se dice que un conjunto de sucesiones es un código de prefijos, si no existe una sucesión del conjunto que 
sea un prefijo de otra sucesión del conjunto. Por ejemplo, el conjunto {000, 001, 01, 10, 11} es un código de 
prefijos, ya que ninguna sucesión es un prefijo de otra sucesión en el mismo conjunto. En tanto, el conjunto 
{1, 00, 01, 000, 0001} no es un código de prefijos, ya que, en este caso, la sucesión 00 es un prefijo de la suce-
sión 000.

Cabe mencionar que es posible obtener un código de prefijos a partir de un árbol binario, mediante el 
etiquetado de sus lados de una manera adecuada, con ceros y unos: los lados que corresponden al subárbol 
izquierdo se etiquetan con 0 y los que corresponden al subárbol derecho con 1.

Considérese el código de prefijos {001, 000, 01, 1} con el que se obtiene el árbol binario de altura 3, que se observa 
en la figura 7.15.

0

0

0 1

01

1

001000

1

1

Figura 7.15 Árbol binario obtenido a partir de un código de prefijos.

E JEMPLO 

Considérese el árbol binario de la figura 7.14 i). 
En este, es fácil ver que el conjunto de suce-
siones asignadas a sus hojas es un código de 
prefijos, como se observa en la figura 7.13ii). 
El código de prefijos obtenido es: {000, 001, 

01, 10, 11}

Figura 7.14 Árbol binario y código de prefijos 
obtenido en dicho árbol.

E JEMPLO 

Respecto al ejemplo anterior, es fácil ver en este que la correspondencia entre un árbol binario y un código 
de prefijos es biunívoca; por tanto, dado un código de prefijos, también es posible reconstruir el árbol binario 
correspondiente.

1

1

0

0

1

1

0

0

001000

01 1110

i ) ii )
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Ejemplo práctico

Al almacenar o transmitir grandes cantidades de texto, con frecuencia conviene buscar la forma de comprimirlo 
en el menor número posible de bits. Pues, el tiempo necesario para transmitir cierto mensaje es proporcional a su 
número de bits; por tanto, al comprimir los datos a enviar, puede reducirse el tiempo de transmisión. Además, los 
datos comprimidos necesitan menos bits para su almacenamiento o transmisión.

Una manera común de hacerlo es mediante la eliminación de la restricción de que todos los códigos de caracteres 
deben tener la misma longitud. Si en un idioma, los códigos de letras comunes como e y t fueran más cortos que 
los códigos de los menos comunes como x y z, disminuiría el número de bits totales necesarios para almacenar o 
transmitir el texto. Dicho esquema de codificación se conoce con el nombre de código dependiente de frecuen-

cia o código Huffman, y se basa precisamente en códigos de prefijos. Al utilizar este método de codificación para 
cualquier aplicación particular, primero han de conocerse las frecuencias de aparición a priori a cada carácter.

El primer paso para construir el código 
Huffman es escribir la probabilidad de 
cada carácter debajo de este. El orden 
en que se acomodan los caracteres no 
importa y pueden combinarse durante 
la construcción, para mayor legibilidad. 
Después, se buscan las dos probabilida-
des más pequeñas y se añade una nueva 
probabilidad igual a la suma de aquellas. 
Las dos probabilidades se marcan para 
no ser utilizadas de nuevo y se trazan dos 
lados que unan a la nueva probabilidad 
con las que le dieron origen. Este proce-
so se repite una y otra vez, hasta que solo 
quede una probabilidad sin marcar, que 
será igual a 1.00.

A continuación se construye el código 
Huffman para una supuesta transmisión 
de datos que solo consta de dígitos 0, . . .  , 9, 
basándose en las frecuencias de aparición 
de cada dígito mostradas en la tabla 7.1.

Tabla 7.2

Dígito 0 1 2 3 4 5 6 7 8 9

Frecuencia 0.20 0.25 0.15 0.08 0.07 0.06 0.05 0.05 0.05 0.04

El árbol resultante es el que se muestra en la figura 7.16.

Así, el código Huffman resultante para cada dígito es mostrado en la tabla 7.2.

Tabla 7.2 Código Huffman resultante

Dígito 0  1 2 3 4 5 6 7 8 9

Código 11 01 001 0001 1 011 1 010 1 001 1 000 00001 00000

E JEMPLO 

1.00

*0.17

*0.57

*0.32

*0.09

*0.43

0

*0.13*0.10

*0.23

1

0 1

1

0

0

0

10

1

1

1

1

0

0 1 0

6
0.05
*

8
0.05
*

3
0.08
*

2
0.15
*

1
0.25
*

0
0.20
*

5
0.06
*

7
0.05
*

9
0.04
*

4
0.07
*

Figura 7.16 Árbol binario para obtener código Huffman.
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7.6 Árboles de búsqueda binaria
Supóngase que se dispone de una cantidad determinada de objetos sobre los cuales existe un ordenamiento 
lineal . Para fines prácticos, el ordenamiento puede ser numérico, alfabético, alfanumérico, etcétera. 

Por ejemplo, sean K1, K2, …, Kn los n objetos de una lista ordenada, los cuales son conocidos como las cla-
ves; considérese que el orden lineal es de la forma K1  K2  …  Kn. Entonces, dado un objeto x el problema 
consiste en buscar las claves y determinar si x es igual a alguna de estas.

Un procedimiento de búsqueda consiste en una serie de comparaciones entre x y las claves, donde cada 
comparación de x con una clave indica si x es igual, menor que o mayor que dicha clave.

Un árbol de búsqueda binaria para las claves K1, K2, …, Kn es un árbol binario, en el cual los nodos están 
etiquetados con los elementos de una lista ordenada, esto es:

K1  K2  …  Kn

En dicho árbol, todos los elementos de cualquier subárbol izquierdo con raíz x son menores que x y todos 
los elementos de su subárbol derecho con raíz x son mayores de x. En este caso, las claves pueden ser numé-
ricas, alfabéticas o alfanuméricas.

Sean las claves {6, 8, 10, 12, 14, 15, 
18} y sean los árboles T1 y T2 de la 
figura 7.17. En este caso, el árbol 
T1 es un árbol de búsqueda bi-
naria para dichas claves, mien-
tras que el árbol binario T2 no 
es de búsqueda binaria, ya que 
si se considera el elemento 10, 
todos los elementos del sub- 
árbol izquierdo son menores; 
sin embargo, no todos los ele-
mentos del subárbol derecho 
son mayores, ya que en este, 
el elemento 6 es menor que 10 
y debería ir en el subárbol iz-
quierdo.

E JEMPLO 

T
1

T
2

6 14

10

128

15

18 8

6 14

12

10 18

15

Figura 7.17 El árbol T1 es un árbol de búsqueda binaria y T2 es solo un árbol binario.

Operaciones en árboles de búsqueda binaria
Las operaciones que se pueden realizar en árboles de búsqueda binaria son:

Búsqueda de un nodo

Inserción y eliminación de un nodo

Recorrido

Es importante dejar en claro que en esta sección solo se aborda la búsqueda, inserción y eliminación de no-
dos, ya que para el recorrido se dedica una sección completa más adelante (véase sección 7.9).

Búsqueda de un nodo
Como lo dice su nombre, un árbol de búsqueda corresponde a un procedimiento de búsqueda; en este, se 
comienza con la raíz del árbol de búsqueda binaria y luego se compara un objeto dado x con la etiqueta de 
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la raíz Ki. Si x es igual a Ki, se dice que la búsqueda ha terminado, pero si x es menor que Ki, entonces x se 
compara con el hijo izquierdo, y si x es mayor que Ki se compara con el hijo derecho de la raíz.

Esta comparación se continúa para los nodos rama sucesivamente, hasta que x concuerde con una clave 
o se alcance una hoja; es este caso, x no se encuentra en el árbol de búsqueda.

Además, se puede realizar la búsqueda para claves con valores numéricos, alfabéticos, alfanuméricos, 
entre otros.

Sean {AB, CF, EG, PP} las claves K1, K2, K3, K4 en un árbol de búsqueda binaria, 
como se muestra en la figura 7.18. Dado el objeto x = BB, los pasos de bús-
queda son: 

1. Comparar  BB con EG.

2. Como BB es menor que EG, se compara BB con AB.

3. Como BB es mayor que AB, se compara BB con CF, que es una hoja.

Así, se concluye que el objeto BB no se encuentra en el árbol de búsqueda 
binaria.

E JEMPLO 

PPAB

CF

EG

T

Figura 7.18 Proceso de búsqueda en 
un árbol de búsqueda binaria T.

Inserción de un nodo
Los algoritmos para insertar nodos utilizan la ubicación de un elemento, de tal forma que si se encuentra 
el elemento buscado, no es necesario hacer nada; en otro caso, se realiza la inserción del nuevo elemento 
exactamente en el lugar donde finalizó la búsqueda.

Considérese el caso de agregar el nodo 6 al árbol de la figura 7.19. En este caso, el recorrido debe comenzar en el 
nodo raíz 24; por tanto, la inserción debe estar en el subárbol izquierdo de 24 (6  24). Por su parte, en el nodo 8, la 
posición de 6 debe ubicarse en el subárbol izquierdo de 8, que es vacío. Por último, el nodo 6 se inserta como hijo 
izquierdo de 8 y se obtiene el árbol que se observa en la figura 7.20.

E JEMPLO 

24

6013

8 44

33

Figura 7.19 Árbol binario antes de insertar 
el nodo 6. 

8

60

44

33

24

136

Figura 7.20 Árbol binario después de insertar el 
nodo 6.
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Considérese el árbol de la figura 7.21. Eliminar el elemento 33 de 
este árbol.

Figura 7.21 Árbol binario antes de eliminar el nodo 33.

E jemplo 

Eliminación de un nodo
De manera equivalente a la inserción de nodos, la eliminación de nodos debe preservar la propiedad que 
establece que el árbol resultante sea, nuevamente, un árbol de búsqueda. Los pasos que deben seguirse para 
lograr la eliminación son:

1. Lo primero es buscar en el árbol hasta encontrar la posición del nodo que se ha de eliminar.

2. Si el nodo a eliminar tiene menos de dos hijos, es necesario reajustar los lados de sus antecesores.

7.7 Árboles generadores y conjuntos de corte
La situación que se describe a continuación constituye un ejemplo de un problema práctico donde surge la 
necesidad del concepto de árboles generadores. Sea G un grafo conexo donde los vértices representan edi-
ficios y los lados túneles de conexión entre los edificios. Se requiere determinar un subconjunto de túneles 
que deben mantenerse, a fin de poder llegar a un edifico desde otro a través de estos túneles. Además, se 
desea determinar los subconjuntos de túneles que al ser obstruidos separarían a algunos edificios de otros 
(subconjunto de lados de conexión y subconjunto de lados de no conexión de un grafo).

Árbol y árbol generador de un grafo
El árbol de un grafo es un subgrafo del grafo que es, en sí mismo, un árbol. En tanto, un árbol generador de 
un grafo conexo constituye un subgrafo generador que es un árbol.

32

701

7 44

33

Dado que el subárbol donde se encuentra el nodo 33 es una 
hoja, en este caso solo es necesario reajustar los lados del 
nodo precedente en el camino de búsqueda. Entonces, el árbol 
que se obtiene después de realizar los ajustes mencionados es 
el que se muestra en la figura 7.22.

Figura 7.22 Árbol binario después de eliminar el nodo 33.

Solución

32

701

7 44
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255Árboles generadores y conjuntos de corte

Considérese el grafo G de la figura 7.23. En la misma figura, 
G' es un árbol del grafo G, ya que es un subgrafo de G, que 
es un árbol. Por último, en esta figura, G'' es un árbol gene-
rador del grafo G, ya que es un subgrafo generador de G, 
que es un árbol.

Figura 7.23 Grafo G; G’ árbol de G y G” árbol generador de G.

E JEMPLO 

Cuerda
Una cuerda o enlace de un árbol es un lado del grafo que no está en el árbol. El conjunto de cuerdas de un 
árbol se conoce como el complemento del árbol.

Considérese el grafo G de la figura 7.23; entonces, el subgrafo de la figura 7.24 es el complemen-
to del árbol de la figura G”, con respecto a G.

Figura 7.24 Complemento del árbol G” de la figura 7.23.

E JEMPLO 

Un grafo conexo siempre contiene un árbol generador. Por tanto, si un grafo es conexo y no contiene circui-
tos, entonces es un árbol. Por su parte, si el grafo contiene uno o más circuitos, se puede eliminar un lado de 
los circuitos y aun así tener un subgrafo conexo.

Conjunto de corte
Un conjunto de corte es un conjunto (mínimo) de lados en un grafo, tal que la eliminación del conjunto 
incrementa el número de componentes conexas en el subgrafo restante, en tanto que la eliminación de 
cualquier subconjunto propio de este no lo haría.

De esto se tiene que en un grafo conexo, la eliminación de un conjunto de corte divide el grafo en dos 
partes; es decir, crea un grafo disconexo con dos componentes, esto es K(G) = 2.

Sea G el grafo conexo de la figura 7.25, para este grafo los conjuntos de lados 
siguientes:

{e1, e4, e5, e6, e7} y {e2, e4, e5, e8}

Constituyen conjuntos de corte, ya que su eliminación dejará subgrafos disco-
nexos con dos componentes conexas, como las de la figura 7.27.

Figura 7.25 Grafo conexo G.

E JEMPLO 
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Por su parte, el grafo de la figura 7.26 es isomorfo al grafo de la figura 7.25; donde es posible ver con más claridad la 
división de los vértices para obtener un subgrafo disconexo con dos componentes, como el que se muestra en la 
figura 7.27.

v
2

e
2

v
1

v
5

e
6

v
3

e
5

e
8

e
7

e
1

v
4

e
3

e
4

Figura 7.26 Grafo isomorfo al grafo de la figura 7.25.

7.8 Árboles generadores mínimos
Una interpretación física de este problema consiste en considerar los vértices de un grafo como ciudades y 
los pesos de los lados como las distancias entre estas ciudades. Supóngase que se quiere construir una red 
de comunicaciones que conecte a todas las ciudades del grafo a un costo mínimo. Entonces, el problema 
consiste en determinar un árbol generador mínimo. El peso de un árbol generador es la suma de los pesos de 
los lados del árbol. Por tanto, un árbol generador mínimo es aquel con peso mínimo.

Un procedimiento para resolver este problema se basa en observar que, entre todos los lados en un cir-
cuito, el lado con mayor peso no está en el árbol generador mínimo.

Enseguida, se construye un subgrafo del grafo pesado, paso por paso, al tiempo que se examina cada lado 
en orden creciente de pesos. Luego, se agrega un lado al subgrafo parcialmente construido, si esta no origina 
un circuito, y se descarta en caso contrario. La construcción termina cuando todos los lados han sido exami-
nados. Es claro que esta construcción da origen a un subgrafo que no contiene un circuito, el cual también 
es conexo. Así, el subgrafo construido es un árbol, que además es generador mínimo.
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Figura 7.27 Subgrafos disconexos con dos componentes.

Considérese el grafo pesado de figura 7.28 i). 
De acuerdo con el proceso descrito antes, pri-
mero se construye el grafo de la figura 7.28 ii), 
que es un árbol generador mínimo.

E JEMPLO 
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Figura 7.28 Grafo pesado y su árbol generador mínimo.
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7.9 Recorridos en un árbol
Como se mencionó al inicio de este capítulo, la principal utilidad de los árboles es su aplicación en el área de 
la computación y la informática. Por esa razón, y con el fin de lograr su correcta utilización en una compu-
tadora, en esta sección se describe la estructura de un árbol binario y, sobre todo, cómo recorrerlo de modo 
eficiente. Dado que la intención del presente texto no es utilizar un lenguaje en particular, por tanto solo 
se aborda el tema en forma genérica (con algunos usos en lenguaje C), aunque sin pretender ser un texto 
especializado en codificación de árboles.

Estructura de árboles binarios
La estructura de un árbol binario se realiza a partir de nodos, cada uno de los cuales debe contener el campo 
dato (datos a almacenar) y dos campos de tipo puntero: uno al subárbol izquierdo y otro al subárbol derecho. 
Para indicar un árbol o un subárbol vacío se utiliza el valor NULL. En lenguaje C, para representar un nodo 
se utiliza “struct”, en donde se agrupan todos los campos que lo conforman. Cada nodo contiene los campos 
dato: “izdo” (nodo rama izquierda) y “dcho” (nodo rama derecha). Pero, el tipo de dato de los elementos se 
generaliza como “tipoElemento”.

Es posible acceder a los demás nodos de un árbol a partir de la raíz; por tanto, el puntero que permite 
acceder al árbol es el que hace referencia a la raíz. Considerando, además, que las ramas izquierda y dere-
cha son, a su vez, árboles binarios con su propia raíz, se procede en forma recursiva hasta que se llega a las 
hojas del árbol.

Para lograr la formación de un árbol se construye cada uno de los nodos y el enlace con el correspondien-
te nodo padre. Además, es necesario reservar memoria para cada nodo, asignar el dato al campo correspon-
diente e inicializar los punteros izdo, dcho a NULL.

En este ejemplo se utiliza un esquema secuencial y una estructura auxiliar de tipo Pila para generar un árbol binario 
de cadenas de caracteres en C, mismo que se observa en la figura 7.29.

Árbol Binario raíz, ar1, ar2;

Pila pila1;

nuevoArbol (&ar1, NULL, “Alicia”, NULL);

nuevoArbol (&ar2, NULL, “Francisco”, NULL);

nuevoArbol (&raiz, ar1, “Martha”, ar2);

insertar(&pila1, raiz); 

nuevoArbol (&ar1, NULL, “Alma”, NULL);

nuevoArbol (&ar2, NULL, “Martín”, NULL);

nuevoArbol (&raiz, ar1, “Andrea”, ar2);

insertar(&pila1, raiz); 

ar2=quitar(&pila1);

ar1=quitar(&pila1);

nuevoArbol(&raíz, ar1,”Erika”,ar2);

E JEMPLO 

Erika

Alicia

AndreaMartha

AlmaFrancisco Martín

Figura 7.29 Árbol binario de cadenas de caracteres 
generado en lenguaje C.
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Recorridos en árboles binarios
Para acceder a los datos almacenados en un árbol, primero es necesario recorrer el árbol o visitar los nodos 
de este. Para lograr el recorrido de un árbol existen diferentes métodos, pues en la mayoría de las aplicacio-
nes resulta muy importante el orden en que son visitados los nodos.

Se dice que se logra un recorrido de un árbol binario siempre que cada nodo del árbol sea visitado una 
y solo una vez. Básicamente hay dos formas principales de llevar a cabo el recorrido de un árbol, las cuales 
se describen a continuación:

1. Recorrido en profundidad. En  este tipo de recorrido se sigue un camino, comenzando desde la raíz, 
a través de un hijo, siguiendo al descendiente más cercano del primer hijo antes de continuar con 
el segundo hijo. En resumen, en el recorrido de profundidad se recorren todos los descendientes del 
primer hijo, después se recorren todos los descendientes del segundo hijo, y así sucesivamente.

2. Recorrido en anchura. En este tipo de recorrido se sigue un camino “horizontal”, que empieza en la 
raíz, a través de todos sus hijos, luego se recorren los hijos de sus hijos y así sucesivamente, hasta que 
se recorren todos los nodos. En resumen, en el recorrido de anchura se recorre por completo cada 
nivel, antes de comenzar con el siguiente nivel.

En este texto solo se analiza el recorrido en profundidad, el cual puede llevarse a cabo en tres formas en 
esencia distintas: recorrido en “preorden”, recorrido “enorden” y recorrido “postorden”.

Recorrido en preorden
El recorrido en preorden (nodo izquierdo derecho o NID) se resume en tres pasos principales:

1. Visitar el nodo raíz (N)

2. Recorrer el árbol izquierdo (I) en preorden (NID)

3. Recorrer el subárbol derecho (D) en preorden (NID)

Por tanto, en el recorrido en preorden, en primer lugar se visita la raíz del árbol y luego el subárbol izquier-
do (que es a su vez un árbol), utilizando el orden nodo izquierdo derecho. Una vez recorrido el subárbol 
izquierdo se continúa con el derecho utilizando el orden NID.

Considérese el árbol de la figura 7.30. En este caso, para este árbol 
se realiza el recorrido en preorden de acuerdo con los dos pasos si-
guientes: 1. se visita la raíz (nodo r); 2. se recorre el subárbol izquier-
do de r, el cual se compone de los nodos a, c y d. Considerando 
que el subárbol es, a su vez, un árbol, primero se recorre el nodo a, 
después el c (izquierdo) y por último el d (derecho). Acto seguido, 
se continúa con el recorrido del subárbol derecho de r, que es un 
árbol con nodos b, e y f. Otra vez se sigue el orden NID, recorriendo 
en primer lugar el nodo b, luego el nodo e (I) y al final el nodo f (D). 
Por tanto, el recorrido en preorden para el árbol de la figura 7.30 es:

r a c d b e f

E JEMPLO 

a

d

b

c e f

r

Figura 7.30 Árbol binario recorrido en preorden.
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Recorrido en enorden
El recorrido en enorden (izquierdo nodo derecho o IND) puede resumirse en tres pasos principales:

Recorrer el subárbol izquierdo (I) en enorden (IND)

Visitar el nodo raíz (N)

Recorrer el subárbol derecho (D) en enorden

Entonces, de acuerdo con lo expuesto antes, en este tipo de recorrido de un árbol binario, primero se recorre 
el subárbol izquierdo, después la raíz y por último el subárbol derecho.

Considérese el árbol de la figura 7.31. En este caso, para este árbol se 
realiza el recorrido en preorden de acuerdo con los pasos siguien-
tes: 1. se visita la raíz (nodo r); 2. se recorre el subárbol izquierdo de 
r, que se compone de los nodos a, c y el subárbol con raíz d y nodos 
g, h. Por tanto, primero se recorre el nodo a, después el c (izquierdo) 
y finalmente el d; considerado como subárbol, este se recorre en 
preorden (NID), es decir se visita d, luego g y por último h. Luego, 
se continúa recorriendo el subárbol derecho de r, que es un árbol 
con nodos b, e y f. Otra vez se sigue el orden NID, recorriendo en 
primer lugar el nodo b, luego el nodo e (I) y finalmente el nodo f (D). 
Por tanto, el recorrido en preorden para el árbol de la figura 7.31 es:

r a c d g h b e f

E JEMPLO 

hg

a

d

b

c e f

r

Figura 7.31 Árbol binario recorrido en preorden.

Considérese el árbol de la figura 7.32. En este caso, para este árbol 
se realiza el recorrido enorden de acuerdo con los pasos siguientes: 
1. se visita el subárbol izquierdo del nodo raíz, el cual contiene los 
nodos a, c y d, y es, en sí mismo, otro árbol con raíz a; para recorrer-
lo se sigue el orden IND, es decir, se recorre en primer lugar el nodo 
c (nodo izquierdo), a continuación el nodo a (raíz) y finalmente el 
nodo d (nodo derecho); 2. una vez recorrido el subárbol izquierdo, 
se visita la raíz r y 3. por último se visita el subárbol derecho, que 
consta de los nodos b, d y e. Siguiendo el orden IND en el subár-
bol derecho, se visita primero el nodo e (nodo izquierdo), luego el 
nodo b (raíz) y finalmente el nodo e (nodo derecho). Por tanto, el 
recorrido en enorden para el árbol de la figura 7.32 es:

c a d r e b f

E JEMPLO 

a

d

b

c e f

r

Figura 7.32 Árbol binario recorrido en enorden.
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Recorrido en postorden
El recorrido en postorden (izquierdo derecho nodo o IDN) se resume en tres pasos principales:

1. Recorrer el subárbol izquierdo (I) en postorden (IDN)

2. Recorrer el subárbol derecho (D) en postorden (IDN)

3. Visitar el nodo raíz (N)

Entonces, en este tipo de recorrido de un árbol binario, primero se recorre el subárbol izquierdo, después el 
subárbol derecho y por último el nodo raíz.

Considérese el árbol de la figura 7.33. En este caso, para este árbol 
se realiza el recorrido enorden conforme los pasos siguientes: 1. se 
visita el subárbol izquierdo del nodo raíz, el cual contiene los no-
dos a, c y d, y es, en sí mismo, otro árbol con raíz a; para recorrerlo 
se sigue el orden IND, es decir, se recorre en primer lugar el nodo c 
(nodo izquierdo), a continuación el nodo a (raíz) y al final el subárbol 
con raíz d; al recorrerse este enorden, entonces se visitan los nodos 
en el orden g, d, h (IND); 2. una vez recorrido el subárbol izquierdo 
se visita la raíz r y 3. por último el subárbol derecho, que consta de 
los nodos b, d y e. Siguiendo el orden IND en el subárbol derecho, 
se visita primero el nodo e (nodo izquierdo), luego el nodo b (raíz) y 
por último el nodo e (nodo derecho). Por tanto, el recorrido enor-
den para el árbol de la figura 7.33 es:

c a g d h r e b f

E JEMPLO 

Considérese el árbol de la figura 7.34. En este caso, se realiza el re-
corrido postorden de acuerdo con los siguientes pasos: 1. se visita 
el subárbol izquierdo del nodo raíz, el cual contiene los nodos a, c 
y d, y es, en sí mismo, otro árbol con raíz a; para recorrerlo se sigue 
el orden IDN, es decir, se recorre en primer lugar el nodo c (nodo iz-
quierdo), a continuación el nodo d (nodo derecho) y al final el nodo 
a (nodo raíz); 2. una vez recorrido el subárbol izquierdo se recorre el 
subárbol derecho de r, que consta de los nodos b, d y e; siguiendo 
el orden IDN en el subárbol derecho, se visita primero el nodo e 
(nodo izquierdo), luego el nodo f (nodo derecho) y enseguida el 
nodo b (nodo raíz). 3. Por ultimo, se visita el nodo raíz r. Por tanto, el 
recorrido en postorden para el árbol de la figura 7.34 es:

c d a e f b r

E JEMPLO 

hg

a

d

b

c e f

r

Figura 7.33 Árbol binario recorrido en enorden.

a

d

b

c e f

r

Figura 7.34 Árbol binario recorrido en postorden.
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7.10 Árboles de expresión
Una de las más importantes aplicaciones de los árboles binarios son los árboles de expresión. En este con-
texto, una expresión se define de manera formal como una secuencia de tokens (componentes de algún 
léxico que guardan ciertas reglas establecidas). Cada token puede ser un operando o un operador.

En términos formales, un árbol de expresión constituye un árbol binario que cumple con las tres propie-
dades siguientes:

1. Cada hoja es un operando

2. Tanto el nodo raíz como los nodos rama son operadores

3. Los subárboles son subexpresiones con la característica de que su nodo raíz es un operador

Considérese el árbol de la figura 7.35. En este caso, se realiza el re-
corrido postorden conforme los pasos siguientes: 1. se visita el su-
bárbol izquierdo del nodo raíz, el cual contiene los nodos a, c y el 
subárbol con raíz d; para recorrerlo se sigue el orden IDN, es decir, 
se recorre en primer lugar el nodo c (nodo izquierdo), a continua-
ción el subárbol derecho con raíz d, en orden IND, esto es g, h, d, y 
por último el nodo a (nodo raíz). 2. se recorre el subárbol derecho 
de r, que consta de los nodos b, d y e; siguiendo el orden IDN en el 
subárbol derecho, se visita primero el nodo e (nodo izquierdo), lue-
go el nodo f (nodo derecho) y enseguida el nodo b (nodo raíz). 3. Por 
último, se visita el nodo raíz r. Por tanto, el recorrido en postorden 
para el árbol de la figura 7.35 es:

c g h d a e f b r

E JEMPLO 

Considérese la expresión 

a  (b  c)  d  (e  f  ) 

la cual se representa en la figura 7.36 mediante un árbol binario de 
expresión.

Figura 7.36 Árbol binario de expresión.

E JEMPLO 

hg

a

d

b

c e f

r

Figura 7.35 Árbol binario recorrido en postorden.

Una observación importante aquí es que los paréntesis no se almacenan en el árbol, sino que se representan 
de manera implícita en la forma que tiene el árbol en sí mismo. Tomando en cuenta que los operadores con-
templados son binarios (cada operador contempla dos operandos), un árbol de expresión se puede construir 
considerando la raíz como un operador y a los subárboles izquierdo y derecho como los operandos izquierdo 
y derecho, respectivamente. Cada uno de los subárboles puede ser una literal (a, b, x,  etc.) o una subexpre-
sión representada como un subárbol.

++

+

**

a

c

d

b e f
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Dibujar el árbol binario que representa la expresión:

(x  y)  (z  w)

E jemplo 

En este caso, el operador * constituye el operador que se con-
sidera en la raíz, pues en el subárbol izquierdo se considera la 
operación  (x  y) y en el derecho la operación (z  w), cuyos 
resultados son operadas entre sí con el operador *.

En la figura 7.37 se observa el árbol resultante de la expresión 
(x  y)  (z  w).

Figura 7.37 Árbol de expresión para la expresión (x  y)  (z  w).

Solución

Obtener la expresión dada por el árbol de expresión binario de la 
figura 7.39.

E jemplo 

La expresión que resulta es:

a
b

c d
+
−

Figura 7.39 Árbol de expresión binario.

Solución

Dibujar el árbol binario que representa la expresión:

a  (b  c)  (a  b)

E jemplo 

En este caso, el operador  es el operador que se considera en 
la raíz, pues en el subárbol izquierdo se considera la operación a 

 (b  c) y en el derecho la operación (a  b), cuyos resultados 
son operadas entre sí con el operador 

En la figura 7.38 se observa el árbol resultante de la expresión  
a  (b  c)  (a  b).

Figura 7.38 Árbol binario para la expresión a  (b  c)  (a  b).

Solución

+

–

*

a

c

a

b

b

–

–

y

+

x z w

*

–

/

+

a

b

c d
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Obtener la expresión dada por el árbol de expresión binario de la figura 7.40.

E jemplo 

La expresión resultante es:

a
b

c b( )
−
− +

Solución

–

/

–

a

b

c d

+

Figura 7.40 Árbol de expresión binario.

Obtener el árbol binario correspondiente a cada una de las siguientes expresiones:

 1. 
a b

c d e( )

∗

− ∗
 2.  

a b c

d

( )∗ +

E jemplo 

El árbol de expresión correspondiente se muestra en la figura 7.41.

El árbol de expresión correspondiente se muestra en la figura 7.42.

–

*

e

d

a

c

b

/

*

Figura 7.41 Árbol binario para la expresión 
a  b / (c  d)  e.

Solución

+

* d

a

cb

/

Figura 7.42 Árbol binario para la expresión 
a  (b  c) / d.
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Algoritmo para construir árboles de expresión
De manera primordial, los árboles de expresión se utilizan para evaluar expresiones en programación. Por 
tanto, es importante establecer el algoritmo básico para la construcción de un árbol de expresión, el cual se 
puede resumir en cinco pasos:

1. Al encontrar el primer paréntesis izquierdo se genera un nodo y se hace en el nodo raíz. Este nodo se 
considera como nodo actual y su puntero se coloca en una pila.

2. Cada que se encuentra un nuevo paréntesis izquierdo, se crea un nuevo nodo. De este modo, si el 
nodo actual no tiene hijo izquierdo, el nodo recién creado se establece como hijo izquierdo, en caso 
contrario se establece como hijo derecho y el nuevo nodo se establece como el nodo actual.

3. Al encontrar un operando, se crea un nodo nuevo y se asigna el operando al correspondiente campo 
de datos. Si el nodo actual no tiene hijo izquierdo, el nodo recién creado se establece como hijo iz-
quierdo, en caso contrario se establece como hijo derecho.

4. Al encontrar un operador, se debe sacar un puntero de la pila y colocar el operador en campo de datos 
del nodo del puntero.

5. Se deben ignorar los paréntesis derechos y espacios en blanco.

7.11 Árboles balanceados o árboles AVL
Se dice que un árbol es o está balanceado (equilibrado), si y solo si en cada nodo las alturas de sus dos  
subárboles difieren cuando más en 1. Los árboles balanceados son útiles sobre todo en el manejo adecuado 
de datos organizados en forma jerárquica. Los árboles balanceados también se conocen como árboles AVL, 
en honor a los matemáticos rusos G. M. Adelson-Velsitii y E. M. Landis. Entonces, un árbol AVL es un árbol 
binario de búsqueda con una condición de equilibrio, la cual asegura que la complejidad de la búsqueda es 
logarítmica: O(log(n)).

La idea más simple de equilibrio con-
siste en exigir que los subárboles izquierdo 
y derecho tengan la misma altura, sin soli-
citar que el árbol sea poco profundo. Por lo 
anterior, esta idea de equilibrio es poco efi-
ciente, como se muestra en la figura 7.43.

Otra condición de equilibrio exige que 
todo nodo debe tener subárboles izquier-
do y derecho a la misma altura. Si la altura 
de un árbol vacío se define como 1, solo 
los árboles perfectamente equilibrados 
de 2k 1 nodos satisfacen este criterio. No 
obstante, aunque esto garantiza árboles 
de profundidad pequeña, la condición de 
equilibrio es demasiado rígida para ser útil, 
ya que es necesario que esta sea moderada.

Un árbol AVL es idéntico a un árbol bi-
nario de búsqueda, excepto porque en un 
árbol AVL la altura de todos sus subárbo-
les, izquierdo y derecho, pueden diferir a 
lo más en 1. La altura de un árbol vacío se 
define como 1.

Figura 7.43 Un mal árbol binario, pues la condición en la raíz no es suficiente 
(esto significa que no es AVL).
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Árboles balanceados o árboles AVL 265

En la figura 7.44i) se observa un árbol de búsqueda, mientras que en la figura 7.43ii) se distingue un árbol AVL.

E JEMPLO 

7

2

1 3

2

5

6

6

1 3 44

5

i ) ii )

Figura 7.44 i) Árbol AVL. ii) Árbol de búsqueda.

En la figura 7.45 se muestran cinco árboles, todos son ejemplos de árboles AVL.

Figura 7.45 Árboles AVL.

E JEMPLO 

Para determinar la altura de un árbol AVL, por lo común se acostumbra utilizar la altura máxima, pues 
calcular la altura promedio puede llegar a ser complicado. El objetivo de calcular la altura es que el número 
resultante representa el número de iteraciones que se realizan para bajar desde la raíz hasta el nivel más 
profundo. Por tanto, la eficacia de los algoritmos utilizados en árboles depende de su altura.

El árbol AVL, de n nodos, menos denso tiene como altura:

h  1.44log(n)

Donde n es el número de nodos, en el peor de los casos, de un árbol AVL de altura h y; por tanto, se puede 
afirmar que la complejidad de una búsqueda es: O(log(n)).

Ahora bien, cuando se hace una inserción es necesario actualizar toda la información de equilibrio para 
los nodos en el camino a la raíz; la razón de que la inserción sea potencialmente difícil se debe a que insertar 
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un nodo puede violar la propiedad de ser AVL. Si este 
es el caso, es necesario restaurar la propiedad antes 
de considerar terminado el paso de inserción. Esto se 
puede hacer modificando siempre en forma sencilla el 
árbol; dicho paso se conoce como rotación.

Rotación simple o sencilla
Considérense los árboles de búsqueda binaria de la fi-
gura 7.46, los cuales tienen los mismos elementos.

Como se puede ver en la figura, en primer lugar es-
tos dos árboles son k1  k2. En segundo lugar, todos los 
elementos del subárbol  son menores que k1, en ambos 
árboles. En tercer lugar, todos los elementos del subár-
bol son mayores que k2. Por último, todos los elementos del subárbol z están entre k1 y k2. El proceso de 
transformación de uno de los árboles a otro es a lo que se denomina rotación. En una rotación solo inter-
vienen unos cuantos cambios de apuntadores y cambia a estructura del árbol que preserva la propiedad de 
búsqueda. 

No es preciso que la rotación se realice en la raíz del árbol, esta también se puede hacer en cualquier 
nodo del árbol, ya que cualquier nodo es la raíz de algún subárbol, y puede transformar cualquier árbol en 
otro. Este se considera un método sencillo para arreglar un árbol AVL. Si la inserción causa que algún nodo 
pierda la condición de equilibrio, entonces se hace una rotación en ese nodo. El algoritmo básico de la rota-
ción consiste en iniciar en el nodo insertado y subir en el árbol, actualizando la información de equilibrio 
en cada nodo del camino. De este modo, si se llega a la raíz sin encontrar ningún nodo desequilibrado, el 
proceso termina. En caso contrario, se aplica una rotación al primer nodo incorrecto que se encuentre.

En el árbol de la figura 7.47 i) se observa la inserción del nodo 6.5, el cual genera desequilibrio en el árbol AVL, mien-
tras que la rotación que se observa en el árbol 7.47 ii) corrige dicho desequilibrio.

6

2

6.541

41

2

8

7

6

8

7

6.5

ii)i)

Figura 7.47 i) Árbol con propiedad AVL destruida con la inserción del nodo 6.5. ii) Árbol i) con propiedad AVL restablecida después 
de una rotación.

E JEMPLO 

k
2

zk
1

yx y z

x k
2

k
1

Figura 7.46 Rotación simple o sencilla.
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Construir un árbol AVL de 7 vértices.

E jemplo 

Se comienza con un árbol vacío y se insertan las llaves del 
1 al 7, en forma secuencial. El primer problema surge al 
momento de insertar la llave 3, porque la propiedad AVL 
se viola en la raíz. Dicho problema se resuelve, como se 
vio antes, a través de una rotación (véase figura 7.48).

Una vez hecha la rotación, se inserta el nodo 4, lo que 
no ocasiona problemas con la propiedad AVL. Sin embar-
go, al colocar el nodo 5, se produce una violación en el 
nodo 3, por tanto se vuelve a aplicar una rotación para 
corregir el problema generado (véase figura 7.49).

Después, se inserta el nodo 6, lo que ocasiona un problema de equilibrio en la raíz, ya que el subárbol derecho 
tendrá altura 2 y el izquierdo altura 0. Ante esto, se lleva a cabo una rotación simple entre 2 y 4 (véase figura 
7.50).

Por último, se inserta el nodo 7, lo que origina otra violación en el nodo 6; por tanto, se vuelve a efectuar una 
rotación simple (véase figura 7.51).

Solución
2

31

1

2

3

Figura 7.48 Rotación simple para preservar la propiedad 
AVL.

5

1

3 5

4

4

1 3

2 2

Figura 7.49 Rotación simple para preservar la propiedad AVL.

2

6

1 63

5

42

53

1 4

Figura 7.50 Rotación simple para preservar la propiedad AVL.

4

7

1 3

2

6

5

4

71 3

2

5

6

Figura 7.51 Rotación simple para preservar la propiedad AVL.
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Rotación doble
Existe un caso en el que una rotación simple no es suficiente para restablecer la propiedad AVL. Por ejemplo, 
si en el último árbol obtenido (véase figura 7.51), se insertan los nodos del 1 al 15 en orden inverso; la inser-
ción del 15 es fácil, ya que no destruye la propiedad AVL, pero al insertar el 14 se ocasiona un desequilibrio de 
altura en el nodo 7; por tanto, como se muestra en la figura 7.52, una rotación simple no corrige el problema.

4

15

1 3 5

2

7

6

14

4

151 3

2

5

6

7

14

Figura 7.52 La rotación simple no recupera la propiedad AVL.

Como se puede ver en la figura 7.52, la rotación simple no corrige el desequilibrio de altura. El problema es 
que el desequilibrio fue ocasionado por un nodo insertado en el árbol que contiene los elementos medios, 
al tiempo que los otros árboles tienen altura idéntica. La solución se conoce como rotación doble, que es se-
mejante a la rotación simple, solo que esta abarca cuatro subárboles en lugar de solo tres (véase figura 7.53).

A

k
2

k
3

k
1

D

C

k
1

k
3

k
2

B

A DCB

Figura 7.53 Rotación doble, derecha-izquierda.
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De manera similar, es posible realizar la rotación doble izquierda-derecha (véase figura 7.54).

A

k
2

k
1

k
3

D

C

k
1

k
3

k
2

B

A DCB

Figura 7.54 Rotación doble, izquierda derecha.

Considérese el árbol de la figura 7.52. Realizar una rotación doble para lograr la propiedad AVL en dicho árbol y 
continuar con la inserción de los nodos 13, 12 y 11.

E jemplo 

En este caso, primero se lleva a cabo una rotación doble, derecha-izquierda (véase figura 7.55).

4

15

1 3 5

2

7

6

14

4

141 3

2

5

6

147

Figura 7.55 Rotación doble, se recupera la propiedad AVL.

Solución
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Una vez recuperada la propiedad AVL, se inserta el siguiente nodo: 13. Es importante hacer notar que esta inser-
ción también requiere una rotación doble para recuperar el estatus AVL del árbol (véase figura 7.56).

15

31

72

157

14531

62

4

13

5

4

146

13

Figura 7.56 Rotación doble, mediante la cual se recupera la propiedad AVL.

Si ahora se inserta el nodo 12, entonces aparece un desequilibrio con la raíz, pero una rotación simple basta aquí 
para lograr recuperar la propiedad AVL (véase figura 7.57).

1513

14

12

7

151362

144

121 53

631

72

5

4

Figura 7.57 Rotación simple mediante la cual se recupera la propiedad AVL.
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Luego, se inserta el nodo 11; esta inserción también requiere una rotación simple para obtener un árbol AVL 
(véase figura 7.58).

3 11

15

1

7

151362

144

121 53

1362

144

12

7

11

5

Figura 7.58 Rotación simple mediante la cual se recupera la propiedad AVL.

Por último, se inserta el nodo 10, y de nuevo es necesaria una rotación simple, pues dicha inserción viola la 
propiedad AVL. Lo mismo sucede para el caso del vértice 9, no así para el 8, que no requiere rotación. Al final, 
después de realizar las dos rotaciones mencionadas, se obtiene el árbol AVL de la figura 7.59.

15

62

124

531

8

9

7

1410

13

Figura 7.59 Árbol AVL de 15 vértices.
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Resumen
En este capítulo se introduce el concepto de árbol y su estructura formal, que se utiliza en una gran variedad 
de aplicaciones de programación. El tipo de estructura de árbol que más se utiliza es el árbol binario. Se dice 
que un árbol es binario si cada uno de los vértices que lo componen tiene a lo más dos hijos. La altura de 
un árbol se define como la longitud máxima de todos los caminos que existen en el árbol desde la raíz. Los 
tipos de árboles binarios más utilizados en aplicaciones son los árboles de búsqueda, los de expresión y los 
balanceados o AVL. 

Los árboles de búsqueda son estructuras que permiten la localización de una clave de búsqueda con 
una complejidad logarítmica. No obstante, para árboles degenerados, la eficiencia en la búsqueda deja de 
ser adecuada.

Los árboles balanceados o AVL son árboles de búsqueda en los que las longitudes de sus subárboles 
izquierdo y derecho difieren a lo más en 1. Esta característica hace que los árboles AVL optimicen el proceso 
de búsqueda. No obstante, las operaciones de inserción y eliminación en estos árboles son más costosas que 
en los árboles no equilibrados.

 7.13 Un vértice de un árbol enraizado con valencia de 
salida 0 se conoce como nodo .

 7.14 Un vértice de un árbol enraizado con valencia 
de salida diferente de 0 se conoce como nodo 

.

 7.15 Un vértice de un árbol enraizado con valencia de 
entrada 0 se conoce como nodo .

 7.16 Un árbol donde cada nodo rama tiene exacta-
mente m hijos se denomina .

 7.17 Un árbol donde cada nodo rama tiene a lo más m 
hijos se denomina .

En los problemas 7.18 a 7.25 determinar si el conjunto 
dado es un código de prefijos.

 7.18 {1, 001, 01, 010}

 7.19 {1, 011, 010, 001, 000}

 7.20 {1, 00, 01, 000, 0001}

 7.21 {1, 01, 10, 000, 001}

 7.22 {1, 01, 001, 000}

 7.23 {1, 01, 10, 000, 001}

 7.24 {11, 10, 01, 000, 001}

 7.25 {1, 011, 010, 001, 000}

En los problemas 7.1 a 7.8 conteste V, si el enunciado se 
refiere a un árbol, o F en caso contrario.

 7.1 Contiene exactamente un circuito.  [   ]

 7.2 Es un grafo no conexo.  [   ]

 7.3 Un árbol de cinco vértices es isomorfo a K5.  [   ]

 7.4 Un árbol con dos o más vértices tiene una hoja.  [   ]

 7.5 Es un grafo en que el número de lados es mayor 
que el número de vértices.   [   ]

 7.6 Es un grafo con |E|  |V|  1 que no contiene cir-
cuitos.  [   ]

 7.7 Es un grafo en el que hay un único paseo entre 
cada par de vértices.    [   ]

 7.8 Es un grafo que es conexo.  [   ]

En los problemas 7.9 a 7.17 complete el enunciado.

 7.9 Un grafo dirigido es un árbol dirigido si se convier-
te en un árbol cuando se ignora .

 7.10 Un vértice de un árbol con valencia igual a 1 se 
conoce como nodo .

 7.11 Para que un grafo con  vértices sea un árbol debe 
tener .

 7.12 Para que un grafo con nueve lados sea un árbol 
tiene que tener .

Problemas propuestos

www.full-ebook.com
Descargado por Lcdo. German A. Salas Ojeda (gsalaso@ecci.edu.co)

lOMoARcPSD|5154029

https://www.studocu.com/co?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=matematicas-discretas


273Problemas propuestos

7.28 

Figura 7.62

7.29 

Figura 7.63

Para los problemas 7.30 a 7.33 considerar los siguientes árboles.

T1 T2 T3 T4

Figura 7.64

En los problemas 7.26 a 7.29 determinar si el grafo co-
rrespondiente es un árbol.

7.26  

Figura 7.60

7.27

Figura 7.61
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7.30 Todos son árboles  m-arios regulares, excepto:

7.31 Es un árbol ternario de altura 4.

7.32 Es un árbol binario.

7.33 Son conexos.

Dados los siguientes árboles, contestar lo que se pide en los problemas 7.34 a 7.37.

T
1

T
2

T
3

14

12

10

15

18

8

6 15

15

14

14

1818 12

12

6

8

10

6

10

8

Figura 7.65

7.34 Es un árbol de búsqueda binaria.

7.35 Es un árbol binario.

7.36 Es un árbol binario regular.

7.37 Es un árbol enraizado.

Dado el siguiente grafo, contestar los problemas 7.38 a 7.41.

b e
3

e
2

e
1

e
4

e
7 e

6

e
5

e
8

e
11

e
10e

9

h

c d f

g

a

e

Figura 7.66

7.38 Dar un ejemplo de un árbol generador del grafo.

7.39 Dar un ejemplo de un conjunto de corte.

7.40 Dar un ejemplo de un árbol del grafo.

7.41 Si {e1, e2, e3, e4, e5, e7, e9} es un árbol de dicho grafo, encontrar su complemento.
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Objetivos

 Conocer los conceptos básicos de las estructuras algebraicas: grupos, anillos y campos.

 Manejar de modo eficiente las estructuras algebraicas básicas para comprender sus aplicaciones en 
informática, física, química y otras ciencias básicas.

 Conocer las aplicaciones de las estructuras algebraicas finitas en encriptación de información.

Sistemas 
algebraicos

8
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Capítulo 8  Sistemas algebraicos276

8.1 Introducción
El álgebra abstracta (o álgebra moderna) es la rama de las matemáticas que estudia las estructuras algebrai-
cas conocidas como grupos, anillos, campos (también conocidos como cuerpos) y los espacios vectoriales. 
En la actualidad, todas estas estructuras son vistas como conjuntos dotados de operaciones que satisfacen 
ciertos axiomas, que juegan un papel fundamental en diversas aplicaciones de interés. A continuación se 
mencionan algunos ejemplos de las citadas aplicaciones:

1. Sistemas físicos, como los cristales y el átomo de hidrógeno, pueden ser modelados por grupos de 
simetría. De este modo, se puede decir que la teoría de grupos está en estrecha relación con diversas 
aplicaciones en la física y la química.

2. En la actualidad, los campos finitos de orden 2n (campos binarios) han logrado especial importancia 
debido a sus múltiples aplicaciones en seguridad informática, como en la banca electrónica, las tar-
jetas inteligentes, la votación electrónica, etcétera.

Évariste Galois (Bourg-la-Reine 1811-París, 1832) matemático francés. Proveniente  de una familia de políti-
cos y juristas, Galois fue educado por sus padres hasta los 12 años, edad en que ingresó al College Royal de 
Louis-le-Grand, donde enseguida mostró extraordinarias aptitudes para las matemáticas.

A la edad de 16 años, interesado en hallar las condiciones necesarias para definir si una ecuación 
algebraica era susceptible de ser resuelta por el método de los radicales, empezó a esbozar lo que más 
adelante se conocería con el nombre de teoría de Galois, mediante el análisis de todas las permutaciones 
posibles de las raíces de una ecuación que cumplieran condiciones determinadas.

Mediante dicho proceso, que en terminología actual equivale al de hallar el grupo de automorfismos 
de un cuerpo, sentó las bases de la moderna teoría de grupos, una de las ramas más importantes del 
álgebra. Galois intuyó que la solubilidad mediante radicales estaba sujeta a la solubilidad del grupo de 
automorfismos relacionado.

A pesar de sus revolucionarios descubrimientos, o tal vez por esa misma causa, todas las memorias que 
publicó con sus resultados fueron rechazadas por la Academia de las Ciencias, algunas por matemáticos 

tan eminentes como Cauchy, Fourier o Poisson. Los fallidos intentos por ingresar a la Escuela Politécnica estuvieron acompañados de 
importantes fracasos, lo que le provocó una profunda crisis personal, agravada en 1829 por el suicidio de su padre.

Miembro activo de la oposición antimonárquica, se vio implicado en un duelo cuyos motivos aún hoy son confusos. Previendo su 
inminente muerte en el lance, trabajó con ahínco y dedicación en una especie de testamento científico que dirigió a su amigo Auguste 
Chevalier. A los pocos días tuvo lugar el duelo y el matemático, herido en el vientre, murió unas horas después, apenas cumplidos 21 años.

Figura 8.1 Évariste Galois 
(1811-1832), matemático 
francés.

8.2 Grupos
La primera estructura algebraica que se analiza aquí se conoce como grupo. Un grupo consta de un con-
junto G de objetos y una operación binaria * (que opera elementos por parejas) que satisface las siguientes 
cuatro condiciones (denominadas axiomas de grupo):

1. Para todo g1, g2  G se cumple g1 * g2  G. A este axioma se le conoce como cerradura e implica, en 
términos generales, que el resultado de operar dos elementos del conjunto con la operación  debe ser 
igual a otro elemento del mismo conjunto.

2. Para todo g1, g2, g3  G se cumple (g1 * g2) * g3  g1 * (g2 * g3).  A este axioma se le conoce como asociativi-

dad e implica, en términos generales, que, dado que la operación es binaria (se realiza por parejas), al 
tener tres elementos operándose, existen dos opciones de operar por parejas, pero sin importar cual 
pareja se tome primero, el resultado es igual.

3. Existe un elemento en G que se denota por e, que satisface g * e  g para todo g  G. A este axioma 
se le conoce como existencia del neutro y tiene la característica peculiar de que cualquier elemento del 
conjunto que sea operado con este permanece invariante.
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4. Para todo g  G existe otro elemento g' también en  G que satisface g * g'  g' * g  e. A este axioma 
se le conoce como existencia de los inversos e implica, en términos generales, que cada elemento en el 
grupo contiene su inverso, es decir, un elemento que operado con g produce el elemento identidad e.

La forma correcta de referirse a un grupo es mediante la idea de conjunto y a la operación binaria definida 
en este. Esto se debe a que en un mismo conjunto se pueden definir diferentes operaciones binarias que sa-
tisfacen los axiomas de grupo, aunque es evidente que estos representan grupos diferentes. Para denotarlo 
se utiliza la notación <G, >.

Neils Henrik Abel (Finnöy, 1802-Cristiania, hoy Oslo, 1829), matemático norego. Hijo de un pastor pro-
testante, creció en un ambiente familiar de gran tensión a causa del alcoholismo que padecía sus padres. 
Enviado junto con su hermano a una escuela de la capital, sus precoces aptitudes para las matemáticas 
fueron muy apreciadas por uno de sus profesores, Holmboe, quien tras la muerte de su padre le financió 
sus primeros años en la universidad. 

La propuesta de Holmboe, C. Hansteen y otros profesores, Abel recibió por decreto real una beca 
de viaje. Así, entre 1000 825,827, conoció a los demás eminentes matemáticos de Alemania y Francia, y 
al mismo tiempo recibió la mayor parte de sus trabajos, los cuales se publicaron una revista alemana en 
matemáticasCrelles Journal. Entre los matemáticos de su tiempo, el profesor Degen, de Copenhague, y el 
consejero Crelle, de Berlín, fueron quienes de inmediato comprendieron la gran la grandeza de Abel. Crelle 
se encargó de Abel tuviera una plaza de profesor en Berlín, pero la tuberculosis pulmonar acabo con su vida 
antes de poder ejercer dicho cargo; y 1829, a la temprana edad de 27 años, moría este genial matemático.

Teniendo en cuenta su corta vida, la mente de Neils Henrik Abel fue sumamente por prolífica, y son nu-
merosas sus aportaciones a las matemáticas. Vemos lo que las ecuaciones álgebra ica generales no pueden 

resolverse algebraica mente cuando son de grado superior al cuatro; estudio las funciones algebraica, las elípticas, las trascendentes de 
orden superior y las integrales definidas; estableció la doble periodicidad de las funciones elípticas y descubrió su teorema día adición; 
finalmente, descubre una nueva clase de ecuaciones, las llamadas ecuaciones abelianas.

Figura 8.2 Niels 
Henrik Abel (Finnöy, 
1802-Cristianía, 1829), 
matemático noruego.

Considérese el conjunto de los números enteros . Como es conocido, la operación adición satisface ciertas pro-
piedades en dicho conjunto, aunque en particular satisface los axiomas de grupo:

1.  Cerradura. Si  n, m, se cumple que n  m . Es decir, la suma (resultado de la adición) de dos enteros 
siempre es otro entero.

2.  Asociatividad. Si n, m, k  se cumple que  (n  m)  k  n  (m  k).

3  Existencia del neutro. Existe un elemento, que se denota por 0, que satisface + = + =n n n0 0  para todo 
entero n. 

4.  Existencia de inversos. Para cada entero  existe otro entero n, que satisface la relación + − = − + =n n n n( ) ( ) 0.

Por tanto, el conjunto de los enteros con la operación adición es un grupo y se denota por , .

E JEMPLO 

Está claro que el conjunto de los enteros satisface una condición extra a los axiomas de grupo: la conmuta-

tividad. En general, si <G, > es un grupo que satisface la condición de que g1 * g2 � g2 * g1 (conmutatividad) 
para todo par de elementos g1, g2  G recibe el nombre de grupo abeliano, en honor al matemático Niels H. 
Abel, cuyo trabajo fue fundamental en la unificación de la teoría de grupos.

Además de los números enteros, es fácil verificar que los siguientes pares forman grupos abelianos con la adición:

1.  ,  Números racionales. 2. ,  Números reales. 3. ,  Números complejos.

E JEMPLO 
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Es importante destacar que los grupos no se limitan a conjuntos de números; aunque hasta ahora solo se 
han abordado estos por constituir los ejemplos más comunes, hay una diversidad de ejemplos importantes 
de grupos en geometría, análisis, etcétera. A continuación se presenta un ejemplo de estos casos.

Del ejemplo anterior es fácil ver que los números racionales y los números complejos no forman un grupo con la 
multiplicación; no obstante, debido a que lo único que falla es la no existencia del inverso multiplicativo para el 0, 
es evidente que los siguientes conjuntos sí forman grupos abelianos con la multiplicación:

*,  Números racionales sin el cero.

*,  Números reales sin el cero.

*,  Números complejos sin el cero.

E JEMPLO 

Considérese un triángulo equilá-
tero en el plano y sea G el con-
junto de todas las rotaciones 
del triángulo en el plano que lo 
dejan sin cambio. Es fácil ver que 
el conjunto G consta de tres ro-
taciones: 120°, 240° y 360° (véase 
figura 8.3).

La rotación de 360° deja al trián-
gulo en su posición original; por 
tanto, esta rotación es el elemento identidad (I). La rotación de 240° (I) equivale a rotar 2 veces 120° R1. La opera-
ción definida en G se denota por el símbolo ° y se denomina composición de rotaciones. Como se puede observar,  
R1 ° R2   R2 ° R1  I pues R1 ° R2 consiste en rotar el triángulo en 240° y luego en 120° y R2 ° R1 equivale a rotar el 
triángulo en 120° y luego en 240°. Es fácil ver aquí que los cuatro axiomas de grupo se satisfacen para  en G, por 
lo que G, °  es un grupo.

E JEMPLO 

En la siguiente lista de teoremas se destacan algunas de las propiedades más importantes en un grupo.

Teorema 8.1

Sea G,  un grupo y sean g g g G, ,1 2 3 . Entonces:
1. Si ∗ = ∗g g g g1 2 1 3, se tiene que g g2 3 (Ley de cancelación por la izquierda).

2. Si ∗ = ∗g g g g2 1 3 1, se tiene que g g2 3 (Ley de cancelación por la derecha).

I R
2

R
1

BA C

B ACB AC

Figura 8.3 Rotaciones que dejan invariante a un triángulo equilátero.

En el ejemplo anterior se especifica que el conjunto de los números reales forma, a su vez, un grupo con la opera-
ción adición. No obstante, el mismo conjunto no forma un grupo con la multiplicación. Para comprobarlo, basta 
con ver que los primeros tres axiomas de grupo se satisfacen para todo número real, donde destaca el 1, que es el 
neutro, pues ⋅ = ⋅ =a a a1 1  para todo número real a. Sin embargo, para el 0 no existe inverso multiplicativo, pues 
no existe ningún número real que multiplicado por 0 sea igual a 1; es decir, la ecuación ⋅ =x0 1 no tiene solución 
en los números reales. Por tanto, debido a que no se satisface el axioma 4 para todos los números reales con la 
multiplicación se concluye que dicho par no forma un grupo.

E JEMPLO 

El siguiente ejemplo permite aclarar por qué es tan importante hacer alusión al conjunto y a la operación 
para denotar un grupo.
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Teorema 8.2

Sea G,  un grupo. Entonces, el elemento neutro es único.

En primer lugar, supóngase que se cumple la igualdad:

∗ = ∗g g g g1 2 1 3  R1 ° R2

Como G,  es un grupo, por el axioma 4 existe g1
1 y aplicando en ambos lados de la igualdad se tiene:

( )( )∗ ∗ = ∗ ∗− −g g g g g g1
1

1 2 1
1

1 3

Ahora, al aplicar la ley asociativa se tiene:

( ) ( )∗ ∗ = ∗ ∗

∗ = ∗

=

− −g g g g g g

e g e g

g g

1
1

1 2 1
1

1 3

2 3

2 3

La demostración para el caso 2 es equivalente; por lo que se deja como ejercicio para el lector.

DEMOSTRACIÓN 

Supóngase que existen dos elementos e e G,1 2  que satisfacen:

∗ = ∗ =

∗ = ∗ =

e g g e g

e g g e g

1 1

2 2

Para todo g en G. Entonces, se tiene que:

= ∗ =e e e e1 1 2 2

de donde se concluye que e1  e2; luego entonces, el elemento neutro es único.

DEMOSTRACIÓN 

Supóngase que existen dos elementos ∈− −g g G, '1 1  que satisfacen:

∗ = ∗ =

∗ = ∗ =

− −

− −

g g g g e

g g g g e' '

1 1

1 1

Entonces, se tiene que:

∗ = ∗ =− −g g g g e'1 1

y al aplicar la ley de cancelación por la izquierda se tiene:

=− −g g'1 1

Esto es, el inverso de cualquier elemento g en un grupo G,  es único.

DEMOSTRACIÓN 

Teorema 8.3

Sea G,  un grupo y g G. Entonces, existe un único inverso para g.

Cuando el conjunto en cuestión es finito, existe la posibilidad de representar la operación binaria definida 
en este mediante una tabla. Para la construcción de dicha tabla, primero se acomodan los elementos del 
grupo en un cierto orden, tanto en el lado izquierdo como en la parte superior de la tabla. Mientras que en la 
intersección del renglón i-ésimo con la columna j-ésima se coloca el resultado de:

(elemento i-ésimo  elemento j-ésimo)
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Del ejemplo anterior, por intuición se deduce que, a excepción del acomodo y el nombre de los elementos, 
solo existe una forma de construir la tabla de un grupo de cardinalidad 2. La observación anterior da lugar a 
un importante concepto en álgebra que se denomina: “isomorfismo de grupos”. Este concepto es tan impor-
tante que se ha decidido dedicar la sección 8.3 a su estudio.

El grupo finito más simple es el que consta de un solo elemento, el cual debe ser el elemento neutro (grupo trivial). 
Por su parte, el primer caso no trivial es el grupo de dos elementos G e g,{ }= , donde se asume que e es el elemen-
to neutro necesario en cualquier grupo. En este caso, para construir la tabla de grupo se elige algún orden para los 
elementos de, por ejemplo, e, g, y se acomodan en la tabla en dicho orden (véase tabla 8.1).

Tabla 8.1 Orden para los 
elementos de G.

* e g

e

g

Como se puede observar, en la primera fila y la primera columna de esta tabla los elementos se repiten, ya que  es 
el neutro y, por tanto, se debe cumplir:

e e e

e g g e g

∗ =

∗ = ∗ =

Es decir:
Tabla 8.2 Acomodo 

parcial de la tabla para los 
elementos G.

* e g

e e g

g g e

Por último, g debe tener su elemento inverso en G, es decir debe existir un elemento que operado con g dé como 
resultado el neutro. Para este caso es evidente que la única opción es que g sea su propio inverso (pues e no fun-
ciona); esto es, que  g g e∗ = . Por tanto, la tabla de grupo se muestra en la tabla 8.3.

Tabla 8.3 Tabla de grupo

* e g

e e g

g g e

Por construcción, la tabla anterior en automático satisface los axiomas de grupo 1, 3 y 4. Por tanto, se deja al lector 
verificar que la tabla construida así, también satisface el axioma 2 de grupos (asociatividad).

E JEMPLO 

Con base en la misma idea tratada en el ejemplo anterior, en este ejemplo se busca construir un grupo de tres ele-
mentos. Así, por el axioma 3 de grupo, uno de los elementos de G debe ser el neutro; por tanto, G se denota en la 
forma:

, ,1 2G e g g{ }=

E JEMPLO 
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Una observación importante acerca de las dos tablas de grupo construidas en ambos ejemplos es que cada 
elemento (sin tomar en cuenta los encabezados, primera fila y primera columna) aparece exactamente una 
vez por fila y por columna. Lo anterior no es casualidad, es una consecuencia de que, en un grupo, las ecua-
ciones siguientes tienen exactamente una y solo una solución.

g x g

y g e
1 2∗ =

∗ =

Este resultado es fácil de probar, considérese x g g1
1

2= ∗− ; sustituyendo en g x g1 2∗ =  se obtiene;

g g g g g g e g g1 11
1

2 1
1

2 2 2( ) ( )∗ ∗ = ∗ ∗ = ∗ =− −

De donde se concluye que  g g1
1

2∗
−  es una solución, que además es única, debido a que los inversos en un 

grupo son únicos (teorema 8.3).

Grupos de congruencias
Una clase especial de grupos finitos, debido a sus múltiples aplicaciones en electrónica, informática, cripto-
grafía, entre otras disciplinas, son los grupos de congruencias módulo. Recuérdese que un número entero X  

El orden en que aparecen los elementos en G se muestra en la tabla 8.4.

Tabla 8.4 Orden para los 
elementos de G.

* e g1 g2

e

g1

g2

Considerando que e es el neutro, la primera fila y la primera columna deben ser idénticas.

Tabla 8.5 Acomodo 
parcial de la tabla para los 

elementos G.

* e g1 g2

e e g1 g2

g1 g1

g2 g2

Pero, para llenar los cuatro lugares restantes y que se satisfagan los axiomas de grupo, la única opción es la que se 
observa en la tabla 8.6.

Tabla 8.6  Tabla de grupo.

* e g1 g2

e e g1 g2

g1 g1 g2 e

g2 g2 e g1

Se deja como ejercicio para el lector probar que la tabla así construida satisface los axiomas de grupo. 
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se dice congruente con un entero  módulo n, lo que se denota por x y nmod( )≡  si la diferencia x  y es un 
múltiplo de n; en símbolos:

x y n x y nk kmod si y solo si , con( )≡ − = ∈

La relación de congruencias módulo n es una relación de equivalencia y por tanto genera una partición del 
conjunto  en clases de equivalencia. Las clases de equivalencia se denotan por:

nn 0 , 1 , 2 , , 1ℤ …{ }[ ] [ ] [ ] [ ]= −

donde la clase [x] es el conjunto de todos los números enteros “y” tal que x  y es múltiplo de n, es decir:

1. [0]  {0, n, n, 2n, 2n, …}, ya que las diferencias  0  n, 0  2n, 0  ( 2n),…, son múltiplos de n.

2. [1]  {1, n  1, n  1, 2n  1, 2n  1, …}, ya que las diferencias  1 ( 2n 1),…, son múltiplos de n.

Para el caso de  las cuatro clases de equivalencia son:

0 0, 4, 4, 8, 8, ,

1 1, 5, 3, 9, 7, ,

2 2, 6, 2, 10, 6, ,

3 3, 7, 1, 11, 5, .

{ }

{ }

{ }

{ }

[ ]

[ ]

[ ]

[ ]

= − −

= − −

= − −

= − −

E JEMPLO 

Considérese el conjunto 0 , 1 , 2 , 34 { }[ ] [ ] [ ] [ ]= . De acuerdo con el teorema 8.4, este conjunto forma un grupo con la 
adición de clases. En la tabla 8.7 se muestra la tabla de grupo.

Tabla 8.7 Tabla de grupo con 
la adición

[0] [1] [2] [3]

[0] [0] [1] [2] [3]

[1] [1] [2] [3] [0]

[2] [2] [3] [0] [1]

[3] [3] [0] [1] [2]

E JEMPLO 

De la forma de las clases de equivalencia del ejemplo anterior, se puede observar que la unión de estas es 
todo el conjunto de números enteros y que son disjuntas entre sí.

Con las clases de congruencias módulo n es posible definir dos operaciones importantes: adición de clases 
y multiplicación de clases, de la siguiente forma:

x y x y y x y xy[ ] [ ] [ ] [ ][ ] [ ]+ = + ⋅ =

A continuación, se enuncian dos teoremas (se omite la demostración) del conjunto de clases de con-
gruencias módulo n con las dos operaciones definidas para las clases.

Teorema 8.4

El conjunto { }[ ] [ ] [ ]= −ℤ … nn 0 , 1 , , 1  es un grupo abeliano con la adición de clases, donde el neutro aditivo es [0]

Teorema 8.5 
Si p es un número primo, entonces el conjunto pp 1 , , 1*ℤ …{ }[ ] [ ]= −  es un grupo abeliano con la multiplicación 
de clases, donde el neutro multiplicativo es [1].
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Grupos cíclicos
Otra clase especial de grupos es el que está constituido por aquellos grupos que pueden ser generados com-
pletamente por un solo elemento; a tales grupos se les denomina grupos cíclicos. De manera formal, si G,   
es un grupo en el cual existe un elemento x  G, tal que:

G x t q nn{ }= ⋅ ⋅ ∈

donde xn representa a x operado consigo mismo n veces.

Considérese el conjunto { }[ ] [ ] [ ] [ ] [ ]= 0 , 1 , 2 , 3 , 45 . De acuerdo con el teorema 8.5, este conjunto forma un grupo 
con la multiplicación de clases. En la tabla 8.8 se muestra la tabla de grupo.

Tabla 8.8 Tabla de grupo con 
la multiplicación

[1] [2] [3] [4]

[0] [1] [2] [3] [4]

[1] [2] [2] [1] [3]

[2] [3] [1] [0] [2]

[3] [4] [3] [2] [1]

E JEMPLO 

Considérese el conjunto 0 , 1 , 2 , 34 { }[ ] [ ] [ ] [ ]= . En la sección anterior se afirma que ,4  es un grupo de congruen-
cias, pero además es un grupo cíclico, pues el [1] genera todo 4; a saber:

[ ]

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

+ =

+ + =

+ + + =

1

1 1 2 ,

1 1 1 3 ,

1 1 1 1 0

E JEMPLO 

El grupo  ,5
*  es además un grupo cíclico, pues el [2] genera todo 5

* ,; a saber:

2

2 2 4

2 2 2 3

2 2 2 2 1

[ ]

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

+ =

+ + =

+ + + =

E JEMPLO 

Teorema 8.6

Cualquier grupo G,  cíclico es abeliano.

Sea ,G  cíclico. Entonces, como ,G  es cíclico existe al menos un elemento en x en G que lo genera; es decir:

G x t q nn{ }= ⋅ ⋅ ∈

DEMOSTRACIÓN 
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Sea ,G  cíclico y sea H un subgrupo de G. Entonces, como ,G  es cíclico existe al menos un elemento en x en G 
que lo genera. Si H consta solo del elemento identidad, entonces H es cíclico. 

En otro caso, si H consta de más de un elemento, es necesario encontrar un generador para H. Como H es subgrupo 
de G sus elementos son de la forma xn. Sea m el entero positivo más pequeño tal que xm  H; entonces, este ele-
mento debe ser el generador buscado. Es decir, cualquier otro elemento y  xn de H debe ser una potencia de xm. 
Para demostrar esta última afirmación se puede utilizar el algoritmo de la división para escribir n:

n  mq  r

donde el residuo r satisface 0 r m; entonces:

( )= =+x x x xn mq r m q r

Y al despejar xr se tiene:

( )=
−

x x xr m q n

Como y yx H x H Hn m  es un subgrupo, necesariamente:

( ) = ∈
−

x x x Hm q n r

Por último, como m se eligió como el menor entero positivo, tal que y 0∈ ≤ ≤x H r mm , la única opción es que r  
0; por tanto:

( )=x xn m q

DEMOSTRACIÓN 

Teorema 8.7

Todo subgrupo (véase sección 8.3) de un grupo cíclico es cíclico.

Para probar que ,G  es abeliano se debe demostrar que para cualquier par de elementos ,1 2g g G se cumple que 

1 2 2 1g g g g∗ = ∗ . En efecto, como x genera todo G se tiene que:

1 2
1 2g x y g xn n

de donde:

1 2 2 1
1 2 1 2 1 2 2 1∗ = ∗ = = = ∗ = ∗+ +g g x x x x x x g gn n n n n n n n

Grupos de permutaciones
En matemáticas de la simetría existe otra clase importante de grupos denominados grupos de permutacio-

nes. Con el fin de dar una introducción al concepto estructura algebraica de permutaciones, supóngase que 
hay un conjunto de seis objetos acomodados en un cierto orden inicial, los cuales pueden ser etiquetados 
con los enteros 1, 2, 3, 4, 5 y 6. Este arreglo inicial, que se denota por l (permutación identidad), se representa 
de la siguiente manera:

123456
123456

I ( )=

Para representar una permutación de elementos se usa la letra f, considerando que cada permutación puede 
verse como una función de un conjunto al conjunto mismo. Los cambios se representan en el renglón infe-
rior, con lo cual se deja invariante el renglón de arriba; es decir, el renglón de arriba representa el dominio de 
f, mientras que el renglón de abajo representa la imagen. Por ejemplo, si se considera:

( ) ( ) ( ) ( ) ( ) ( )= = = = = =f f f f f f1 2, 2 5, 3 1, 4 3, 5 4, 6 6
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Se representa mediante:
123456
251346

f ( )=

Ahora, es posible llevar a cabo una sucesión de permutaciones, lo que se puede expresar como una composición 

de funciones o, más específico, como una composición de permutaciones.

Para llevar a cabo la composición de permutaciones f o g, con:

123456
251346 , 123456

214365( ) ( )=f g

se lleva a cabo como una composición de funciones estándar, es decir:

( )( ) ( )=f g x f g x

De modo explícito, al recorrer los seis valores se obtiene:

1 2 5

2 1 2

3 4 3

4 3 1

5 6 6

6 5 4

( )

( )

( )

( )

( )

( )

() ( )

( ) ()

( ) ( )

( ) ( )

( ) ( )

( ) ( )

= =

= =

= =

= =

= =

= =

f g f

f g f

f g f

f g f

f g f

f g f

Por último, se representa por:

123456
523164( )=f g

E JEMPLO 

Es muy simple obtener la permutación inversa de una permutación dada mediante la representación que 
se ha utilizado. A continuación, se ilustra esto mediante un ejemplo.

Encontrar f 1, con:
12345
25134( )=f

E jemplo 

Para construir la función inversa de f, se busca una permutación que anule el efecto de f ; es decir, 1 =−f f I:
1 1( )( ) ( )= =− −f f x f f x x

De modo explícito, al recorrer los cinco valores se obtiene:

1 2 1

2 5 2

3 1 3

4 3 4

5 4 5

1 1

1 1

1 1

1 1

1 1

( )

( )

( )

( )

( )

() ( )

( ) ( )

( ) ()

( ) ( )

( ) ( )

= =

= =

= =

= =

= =

− −

− −

− −

− −

− −

f f f

f f f

f f f

f f f

f f f

Por último, se representa por:
12345
31452

1 ( )=−f

Solución
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Resulta importante destacar que existe una notación extra 
para representar permutaciones, que se conoce como notación 

cíclica. Para explicar esta notación, considérese que se cuenta 
con un tablero de ajedrez en el cual se ubican un alfil en la po-
sición 1, una torre en la posición 2 y un caballo en la posición 
3. Supóngase, además, que se lleva a cabo la siguiente permu-
tación: se mueve el alfil de la posición 1 a la posición 2, la torre 
de la posición 2 a la posición 3 y el caballo de la posición 3 a la 
posición 1 (véase figura 8.4)

La notación para representar esta permutación es (1, 2, 3),  
que se lee: el objeto ubicado en la posición 1 se permuta a la posi-
ción 2; el objeto ubicado en la posición 2 se permuta a la posición 
3; el objeto ubicado en la posición 3 se permuta a la posición 1.

En general, un ciclo de longitud n de la forma (x1, x2, …, xn) es 
un ciclo correspondiente a la permutación:

x x x x
x x x x

n1 2 3

2 3 4 1

Cualquier permutación con un conjunto finito de elementos siempre se puede escribir como un producto 
de ciclos disjuntos. Mediante la notación cíclica, es posible construir una tabla de grupo para resumir las 
operaciones. Por ejemplo, el conjunto de todas las permutaciones de tres objetos se denomina grupo simé-
trico S3. El elemento identidad que en notación cíclica se representa simplemente como (1) y el resto de las 
permutaciones son: (1, 2, 3), (1, 3, 2), (1, 2), (1, 3) y (2, 3).

El grupo de permutaciones de tres objetos es el que describe todas las permutaciones posibles entre las 
tres piezas (el alfil, la torre y el caballo) de la figura 8.4.

La tabla de grupo para S ,3  se observa en la tabla 8.9.

Verifique que la permutación:

12345
31452

1 ( )=−f

es la inversa de la permutación:
12345
25134( )=f

Es suficiente con mostrar que la composición de permutaciones produce la permutación identidad; es decir,  
1 =−f f I

De modo explícito, al recorrer los cinco valores se obtiene:

1 2 1

2 5 2

3 1 3

4 3 4

5 4 5

1 1

1 1

1 1

1 1

1 1

( )

( )

( )

( )

( )

() ( )

( ) ( )

( ) ()

( ) ( )

( ) ( )

= =

= =

= =

= =

= =

− −

− −

− −

− −

− −

f f f

f f f

f f f

f f f

f f f

Entonces:

12345
12345

1 ( )= =−f I

E JEMPLO 

1 2 3

1 2 3

Figura 8.4 Ilustración que representa la notación 
cíclica.
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Obsérvese la parte sombreada en color gris oscuro de la tabla; esta sección se resaltó porque por sí sola 
forma un grupo; es decir, es un subgrupo del grupo S ,3  (véase sección 8.3). Este es un subgrupo conocido 
como el grupo A3 y se denomina grupo alternante de tres elementos. Los grupos alternantes son aquellos 
que consisten únicamente de todas las permutaciones que reciben el nombre de pares, que es el tema de 
estudio de la siguiente sección.

Tabla 8.9 Tabla de grupo para (S3, o)

° (1) (123) (132) (12) (13) (23)

(1) (1) (123) (132) (12) (13) (23)

(123) (123) (132) (1) (23) (12) (13)

(132) (132) (1) (123) (13) (23) (12)

(12) (12) (13) (23) (1) (123) (132)

(13) (13) (23) (12) (132) (1) (123)

(23) (23) (12) (13) (123) (132) (1)

8.3 Subgrupos
Toda vez que se consideran varios ejemplos de grupos, es común encontrar el caso en que algunos de estos 
están dentro de otros. Esta importante observación da lugar al siguiente concepto matemático: si G,  y 
H,  son dos grupos con la misma operación binaria  y H G se dice que H es subgrupo de G y se denota 
por H  G. Cabe aclarar que no es suficiente con que un conjunto contenga al otro, es necesario que formen 
grupo con la misma operación. Entonces, un subconjunto H de un grupo G,  se dice que es subgrupo de  si  
forma por si solo un grupo con la misma operación .

Para un grupo G,  se tiene que G  G y que { }≤e G. Es decir, cada grupo es subgrupo de sí mismo y el ele-
mento neutro también forma un subgrupo de G. A estos dos subgrupos se les conoce como subgrupo impropio 
y subgrupo trivial, respectivamente.

En la sección anterior se destacan varios ejemplos de grupos, entre los cuales aparecen , , , , ,ℤ ℚ ℝ  y 
,ℂ . De acuerdo con la definición de subgrupo es fácil notar que se cumple:

, , , ,+ ≤ + ≤ + ≤ +ℤ ℚ ℝ ℂ

E JEMPLO 

Considere los grupos ℚ ℝ⋅ +*, y , . Es claro que ; no obstante, ℚ ⋅*,  no es un subgrupo de ℝ +,  pues 
son grupos con operaciones distintas.

E JEMPLO 

Considérese el conjunto de todas las matrices invertibles de números reales de tamaño 2  2. Este conjunto, a su vez, 
forma un grupo con la multiplicación matricial, al que se conoce como grupo general lineal y se denota por ,2 ( ) ⋅GL .  
El conjunto de todas las matrices de números reales de tamaño 2  2 con determinante igual a 1 es un subgrupo de 

,2 ( ) ⋅GL . El subgrupo en cuestión se conoce como grupo especial lineal y se denota por ( ) ⋅,2SL .

E JEMPLO 
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8.4 Isomorfismo de grupos
En la sección 8.2 se construyen tablas para grupos de orden 2 y orden 3. En dicho proceso y buscando que se 
cumplieran los axiomas de grupo, resultó ser única la forma de construir la tabla. Si se toma en cuenta que 
se manejan conjuntos y operaciones arbitrarias, se puede pensar en que solo existe, en esencia, un único 
grupo de orden 2 y un único grupo de orden 3. En efecto, cualquier grupo de orden 2 (o de orden 3) es estruc-
turalmente único. En esta sección se establece de manera formal cuando dos grupos son estructuralmente 
idénticos (isomorfos).

Se dice que dos grupos ,G  y G',  son isomorfos, si existe una función biyectiva f de G a G' que satisface 
la condición:

f g g f g f g1 2 1 2( ) ( ) ( )∗ =

A la función f se le conoce como isomorfismo entre G y G'. 
La condición de biyectividad garantiza que cada elemento del grupo G puede ser apareado con un elemen-

to del grupo G'; de manera burda, esto significa que G tiene tantos elementos como G'. Por otro lado, la condi-
ción f g g f g f g1 2 1 2( ) ( ) ( )∗ =  garantiza que la estructura dada por la operación ° en G es idéntica a la estructura 
dada por la operación ° en G' (a excepción del “nombre” de los elementos y del “nombre” de la operación).

Sean los grupos ℝ +,  (números reales con la adición) y , ⋅+  (números reales positivos con la multiplicación). 
Además, considérese la función f : , ,+ → ⋅+ : definida por f x ex( )= . A continuación, se demuestra que f de-
fine un isomorfismo de grupos:

 1. f x f y( )( )= , si y solo si ex  ey si y solo si x  y por tanto, f es inyectiva.

 2. Si y  � , entonces f y e y yyln , donde lnln( )( ) ( )= = ∈( ) ; por tanto, f es sobreyectiva.

 3. Sean x, y  �, entonces f x y e e e f x f yx y x y( ) ( )( )+ = = = ⋅+

De los puntos 1, 2 y 3 se concluye que f es un isomorfismo; por tanto, los grupos ℝ +,  y , ⋅+  son estructuralmente 
idénticos (isomorfos).

E JEMPLO 

La primera imagen que por lo general se tiene al comenzar con isomorfismo de grupos es que si son estruc-
turalmente idénticos, entonces son de igual tamaño. No obstante, en grupos isomorfos infinitos, la frase de 

igual tamaño se debe cambiar por tiene tantos elementos como el otro. El ejemplo anterior ilustra esta situación: 
y, ,+ ⋅+  son matemáticamente idénticos, no obstante  es un subconjunto propio de .

Considérese el grupo ,12 . Entonces el conjunto 0 , 3 , 6 , 9{ }[ ] [ ] [ ] [ ]  es un subgrupo de 12 y su tabla de grupo se 
muestra en la tabla 8.10.

Tabla 8.10 Tabla de 
grupo para 12, .

[0] [3] [6] [9]

[0] [0] [3] [6] [9]

[3] [3] [6] [9] [0]

[6] [6] [9] [0] [3]

[9] [9] [0] [3] [6]

E JEMPLO 
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Sean los grupos ,  (números enteros con la adición) y 3 ,  (múltiplos enteros de 3 con la adición). Además, 
considérese la función f : , 3 ,+ → + : definida por f n n3( )= . A continuación, se demuestra que f define un 
isomorfismo de grupos:

 1. ( ) ( )=f n f m  si y solo si 3n  3m si y solo si n  m; por tanto, f es inyectiva.

 2. Si m 3 , entonces m es un múltiplo entero de 3; es decir, es de la forma m k k3 , con= ∈ ; por tanto, como 
k∈  se tiene que f k k m3( )= =  luego, f es sobreyectiva.

 3. Sean m n, , entonces f m n m n m n f m f n3 3 3( ) ( ) ( ) ( )+ = + = + = + .

De los puntos 1, 2 y 3 se concluye que f es un isomorfismo; por tanto, los grupos , y 3 ,  son isomorfos.

E JEMPLO 

Considérense los grupos , y ,ℤ ℚ . Entonces, estos grupos no son isomorfos, pues mientras ,ℤ  es un 
grupo cíclico (con generador 1) ,ℚ  no lo es.

E JEMPLO 

Cuando dos grupos son isomorfos, estos deben tener las mismas propiedades estructurales; es decir, si uno 
es abeliano el otro debe serlo, y si uno es cíclico el otro debe serlo, etcétera.

En la sección 8.1 se construyen los grupos de 1, 2 y 3 elementos. En ese punto se señala que su construcción 
es única, ahora se puede decir que son únicos salvo isomorfismos. Para el caso de cuatro elementos, existen 
dos grupos (salvo isomorfismos) que son estructuralmente diferentes. Uno de estos corresponde al grupo de 
congruencias 4,  y el otro es el llamado grupo de Klein. A continuación, se muestran las tablas de grupo 
de ambos grupos.

1. Grupo 4,  (véase tabla 8.11)

Tabla 8.11 Tabla de 
grupo para 4, .

[0] [1] [2] [3]

[0] [0] [1] [2] [3]
[1] [1] [2] [3] [0]
[2] [2] [3] [0] [1]
[3] [3] [0] [1] [2]

2. Grupo de Klein (véase tabla 8.12)

Tabla 8.12 Tabla de 
grupo de Klein.

[0] [1] [2] [3]

[0] [0] [1] [2] [3]
[1] [1] [0] [3] [2]
[2] [2] [3] [0] [1]
[3] [3] [2] [1] [0]

Luego de observar las tablas de grupo resulta evidente que no son isomorfos, pues en el grupo de Klein cada 
elemento es su propio inverso, mientras que el grupo 4,  no.

8.5 Grupos cociente
Es posible estudiar un grupo ,G  a partir de sus subgrupos propios, lo cual resulta conveniente debido a que 
estos subgrupos tienen orden inferior al orden de G. Con este propósito, se define la siguiente relación de 
equivalencia. Si H es un subgrupo propio de G se define la relación:

x y H x y Hsi y solo si 1( )( )≡ ∗ ∈−

El conjunto de clases de equivalencia que se obtiene a partir de esta relación se denota por G/H y se conoce 
como conjunto cociente. Para que el conjunto cociente pueda tener estructura de grupo es necesario, además 
de definir la operación de clases, que H sea un subgrupo normal; esto es, se dice que un subgrupo H,  de 
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un grupo ,G  es normal, y se denota por H  G, si x H y H x y H( ) ( )( )∗ ∗ ∗ = ∗ ∗ . Aquí, x H significa operar x con 
todos los elementos de H, es decir:

t qx H x h h H{ }∗ = ∗ ⋅ ⋅ ∈

El ejemplo anterior es un caso particular del siguiente resultado. Si ,G  es un grupo abeliano y H G, ,∗ ≤ ∗  
entonces H G; es decir, cualquier subgrupo de un grupo abeliano es normal. Además, si ,G  es un grupo 
finito y H,  es un subgrupo normal de G el orden del grupo cociente G/H está dado por:

G H
G

H

Para el grupo de los enteros con la adición ,  se toma el subgrupo 5 ,  (conjunto de enteros múltiplos de 
5). A continuación, se demuestra que 5 , ,ℤ ⊲ ℤ .

Si x, y son enteros, entonces:

{ } { }+ = + ⋅ ⋅ ∈ + = + ⋅ ⋅ ∈5 5 t q y 5 5 t qx x k k y y k k

De lo anterior queda claro que:

{ }

{ }

{ }

( ) ( )

( )

( )

( )

( ) ( )

( )

+ + + = + + + ⋅ ⋅ ∈

= + + + ⋅ ⋅ ∈

= + + ⋅ ⋅ ∈

= + +

5 5 5 5 t q ,

5 t q ,

5 t q

5
1 1

x y x k y m k m

x y k m k m

x y k k

x y

Por tanto:

x y x y5 5 5( ) ( )( )+ + + = + +

Y así:

5 , ,ℤ ⊲ ℤ

E JEMPLO 

Considérese el grupo 12,  y sea H el subgrupo de 12, dado por:

H [0], [3], [6], [9]{ }=

Entonces, como 12 es abeliano, H es normal y G H forma un grupo con 12 4 3 elementos diferentes, que son:

H

H

H

0 0 , 3 , 6 , 9

1 1 , 4 , 7 , 10

2 2 , 5 , 8 , 11

{ }

{ }

{ }

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

+ =

+ =

+ =

E JEMPLO 

8.6 Anillos
Antes, cuando se definió el concepto de grupo, se estableció que esta estructura matemática consta de un 
conjunto y una operación definida en este, la cual satisface cuatro axiomas. No obstante, por la experiencia 
que se tiene desde la educación básica, en los conjuntos de números se define más de una operación. La 
generalización de esta idea da lugar a la estructura algebraica denominada anillo.

Formalmente, un anillo es un conjunto con dos operaciones binarias definidas en este, que  se denota por 
R, , y que satisface los siguientes axiomas:
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Entre los diversos ejemplos de grupos abelianos que se han abordado en esta unidad, quizá los más comunes son:            
, , , , , y ,ℤ ℚ ℝ ℂ  Pues, en dichos grupos abelianos, el lector ha manejado la multiplicación estándar 

y, como es bien sabido, esta operación es asociativa y se cumplen las leyes distributivas en los cuatro conjuntos. 
Por lo anterior, las cuatro tripletas , , , , , , , , y , ,ℤ ℚ ℝ ℂ+ ⋅ + ⋅ + ⋅ + ⋅  son anillos.

E JEMPLO 

Cuando el anillo cuenta con neutro multiplicativo, recibe el nombre de anillo con unidad. Pero, si además es 
conmutativo con la multiplicación, el anillo recibe el nombre de anillo conmutativo.

1. R, , forma un grupo abeliano.

2. La operación multiplicación es asociativa.

3. Para todo x, y, z  R se cumplen las leyes distributivas:

 x y z x y x z

x y z x z y z

( )

( )

⋅ + = ⋅ + ⋅

+ ⋅ = ⋅ + ⋅

Cabe aclarar que la notación R, ,  es la que más se utiliza para representar un anillo; sin embargo, los sím-
bolos  y  no necesariamente constituyen la adición y la multiplicación estándares, sino que esto depende del 
tipo de objetos que conforman a R. Luego de esta aclaración, y con cierto abuso del lenguaje, en lo sucesivo 
se hace referencia a las operaciones  y  como adición y multiplicación.

Al igual que los grupos, también existen anillos que contienen a otros anillos, lo cual da lugar al concepto 
de subanillo. Un subconjunto S de un anillo R se denomina subanillo de R si S satisface la cerradura con  y 
con , y además S forma un anillo bajo esas operaciones.

Los anillos , , , , , , , , y , ,ℤ ℚ ℝ ℂ+ ⋅ + ⋅ + ⋅ + ⋅  considerados en el ejemplo anterior, son anillos conmutativos 
con unidad.

E JEMPLO 

El anillo , ,ℤ + ⋅  es un subanillo de , , , , , y , ,ℚ ℝ ℂ+ ⋅ + ⋅ + ⋅ . De manera similar, se tiene que , ,ℚ + ⋅  es un 
subanillo de , , y , ,ℝ ℂ+ ⋅ + ⋅ , y que , ,ℝ + ⋅  es un subanillo de , ,ℂ + ⋅ .

E JEMPLO 

Sea , ,ℝ + ⋅  cualquier anillo, entonces el conjunto:

⋯ ℕ{ }[ ]= + + + ⋅ ⋅ ∈ ∈t q ,0 1R x a a x a x a R nn

n

i

Y sean

∑ ∑( ) ( )= =
= =

y
1 1

P x a x Q x ba xi i

i

n

i

i

i

m

dos polinomios cualesquiera de R[x]. Entonces, el conjunto R[x] forma un anillo con las operaciones  y · (se supo-
ne, sin perder generalidad, que n m):

P x Q x a b x a xi i

i

i

n

i

i

i m

n

0 1
∑ ∑( )( ) ( )+ = + +
= = +

E JEMPLO 
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Un elemento x  0 (donde 0 representa al neutro aditivo) de un anillo R, , se dice que es un divisor de 
cero si existe un elemento y  0, que satisface:

x y y x0 o bien 0⋅ = ⋅ =

Considérese el anillo , ,6 + ⋅ ; entonces el conjunto:

x a a x a x a nn

n

it. q. ,6 0 1 6ℤ ⋯ ℤ ℕ{ }[ ] [ ] [ ] [ ][ ]= + + + ∈ ∈

es un anillo de polinomios.

Sean:

P x x x Q x x x3 1 2 y 1 12 3( ) [ ] [ ] [ ] ( ) [ ] [ ]= + + = −

Entonces, la suma de P x Q xcon( ) ( ) es:

P x Q x x x3 23 2( ) ( ) [ ] [ ]+ = + +

Por otro lado, para el producto se puede reescribir Q x( ) en la forma Q x x x1 53( ) [ ] [ ]= + , ya que el inverso aditivo de 
[1] es [5], en 6. Por tanto, se obtiene:

( )( )( ) ( ) [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

= + + +

= + + + +

3 1 2 1 5

3 1 5 5 4

2 3

5 4 3 2

P x Q x x x x x

x x x x x

E JEMPLO 

Considérese el anillo , ,+ ⋅ , entonces el conjunto: 

ℤ ⋯ ℤ ℕ{ }[ ]= + + + ⋅ ⋅ ∈ ∈t q ,0 1x a a x a x a nn

n

i

es un anillo de polinomios.

Sean:

P x x x Q x x x3 2 y2 3( ) ( )= + + = −

Entonces, la suma de P x Q xcon( ) ( ) es:

P x Q x x x3 23 2( ) ( )+ = + +

Por otro lado, su producto es:

P x Q x x x x x x x x x x3 2 3 22 3 5 4 3 2( )( )( ) ( )= + + − = + − − −

E JEMPLO 

Con el fin de aclarar cómo llevar a cabo las operaciones del ejemplo anterior, a continuación se proponen 
dos ejemplos de anillos de polinomios específicos.

y

P x Q x c xi

i

i

n m

0
∑( ) ( )=
=

+

donde:

∑= −
=

≤ − ≤
0

,

c a bi j i j

j
j n i j m

i
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Isomorfismo de anillos 293

En , ,6 + ⋅ , [2] y [3] son divisores de cero, ya que:

2 3 0[ ] [ ] [ ]⋅ =

E JEMPLO 

En  no existen divisores de cero, ya que:

x ·  y  0

Esto implica que x  0 y/o  que  y  0

Considérese el anillo de todas las matrices de tamaño 2  2 con entradas reales, que se denota por M2( ), , . En 
este anillo sí existen divisores de cero, ya que, por ejemplo, las siguientes matrices son distintas de la matriz cero y 
no obstante su producto es la matriz cero:

1 1
0 0

,
1 0
1 0

0 0
0 0−

≠

Pero:

⋅
−

=
1 1
0 0

1 0
1 0

0 0
0 0

E JEMPLO 

En un anillo R,  que no tiene divisores de cero, se satisfacen las leyes de cancelación por la izquierda y 
por la derecha; es decir, si:

x y x z y z

y z z x z y

se tiene que

se tiene que

⋅ = ⋅ =

⋅ = ⋅ =

para todo x, y, z R

A los anillos que no tienen divisores de cero, se les denomina dominio integral o dominio de integridad.

8.7 Isomorfismo de anillos
Del mismo modo en que dos grupos pueden ser estructuralmente idénticos, es posible que dos anillos sean 
matemáticamente iguales. Dados dos anillos R,  y R',  se dice que son isomorfos si existe una fun-
ción biyectiva:

f R R: , , ', ,+ ⋅ → + ⋅

Tal que todo par de elementos x, y  R, se satisfacen:

f x y f x f y f x y f x f yy( ) ( ) ( ) ( )( ) ( )+ = + ⋅ = ⋅

Considérense los anillos ℝ ℂ+ ⋅ + ⋅, , y , ,2 , donde el producto en  se 2 define por 

x y z w xz yw xw yz, , ,( ) ( ) ( )⋅ = − + .

E JEMPLO 
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Considérense los anillos M, , y , ,+ ⋅ + ⋅ , donde:

=
−

⋅ ⋅ ∈t q ,M
x y

y x
x y

con la adición y multiplicación estándar de matrices. La función:

f M: , , , ,+ ⋅ → + ⋅

definida por:

( )+ =
−

f x iy
x y

y x

es un isomorfismo entre + ⋅ + ⋅, , y , ,M , ya que f es, por definición, biyectiva, y además:

( )( ) ( )( )

( )

( )

( ) ( )

( )

+ + + = + + +

=
+ − +

+ +

=
−
+
−

= + + +

f x iy z iw f x z y w i

x z y w

y w x z

x y

y x

z w

w z

f x iy f z iw

E JEMPLO 

La función:

ℝ ℂ+ ⋅ → + ⋅: , , , ,2f

definida por

f x y x iy,( )( ) = +

es un isomorfismo entre ℝ ℂ+ ⋅ + ⋅, , y , ,2 , ya que, f es, por definición, biyectiva y además:

f x y z w f x z y w

x z y w i

x iy z iw

f x y f z w

, , ,

, ,

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( )

( )

( )

( )

+ = + +

= + + +

= + + +

= +

Y:

f x y z w f xz yw xw yz

xz yw xw yz i

x iy z iw

f x y f z w

, , ,

, ,

( ) ( )( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

⋅ = − +

= − + +

= + + +

=
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8.8 Campos
En sentido algebraico, un campo es un sistema aritmético con adición y multiplicación, tal que las operacio-
nes son conmutativas, asociativas, distributivas e invertibles (excepto que no existe inverso multiplicativo 
para el cero). En otras palabras, un campo es un dominio integral conmutativo, con unidad, con inversos 
multiplicativos para cada elemento distinto de cero.

Y:

( )( ) ( ) ( )( )

( )

( )

( )

( )

+ ⋅ + = − + +

=
− − +

+ −

=
−
+
−

= + + +

f x iy z iw f xz yw xw yz i

xz yw xw yz

xw yz xz yw

x y

y x

z w

w z

f x iy f z iw

Los anillos , , , , , y , ,ℚ ℝ ℂ+ ⋅ + ⋅ + ⋅  son todos ejemplos de anillos conmutativos, con unidad, con inversos mul-
tiplicativos para cada elemento distinto de cero y sin divisores de cero; es decir, todos estos son campos.

E JEMPLO 

El anillo , ,ℤ + ⋅  es un anillo conmutativo con unidad y sin divisores de cero; sin embargo, no es un campo, ya que 
en  no existen los inversos multiplicativos para enteros diferentes de 1 y 1.

E JEMPLO 

Campos finitos
Los campos finitos son de gran importancia en la informática, la electrónica, la criptografía, entre otras mu-
chas áreas de interés actuales. Para el estudio adecuado de estos campos, primero se muestran sus propie-
dades fundamentales. Como la intención del presente texto no es ser “rigurosamente matemático”, algunas 
de las demostraciones se omitirán.

Teorema 8.8

El orden de cualquier grupo finito es una potencia de un número primo. Dada cualquier potencia de un nú-
mero primo pn existe, salvo isomorfismos, un único campo de dimensión pn.

Así, en primer lugar se consideran los campos de orden primo p. De acuerdo con el teorema 8.8, existe, 
salvo isomorfismos, un único campo de dimensión p. Entonces, como los conjuntos de congruencias p for-
man un grupo abeliano con la adición y (excepto el cero) forman un grupo abeliano con la multiplicación, 

p, ,  es el único campo de dimensión p que existe.
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Debido a que en esencia existe un único campo con exactamente pn elementos (p nprimo y ) —dos re-
presentaciones cualesquiera son isomorfas— y que, como ya se discutió antes, los campos de orden primo p 
son precisamente los campos p, , , solo falta analizar los campos de dimensión pn con n  1. Los campos 
finitos, en general, reciben el nombre de campos de Galois y se representan como GF(pn )

Si n  1, GF(pn ) no posee la aritmética modular, pero puede ser construido a partir del campo primo p; 
entonces, se dice que GF(pn ) es una extensión de p.

Para ilustrar el proceso de extensión, primero se genera el campo GF(2n )., para lo cual primero se encuen-
tra un polinomio de grado 2, con coeficientes en 2; sin embargo, este no puede ser factorizado en 2 (para 
generar GF(2n ). debe usarse un polinomio de grado n). En este caso, el único polinomio con tales característi-
cas es x x1 1 12[ ] [ ] [ ]+ + , lo que significa que no existe solución en 2 para la ecuación:

x x1 1 1 02[ ] [ ] [ ] [ ]+ + =

Entonces, la extensión es creada mediante la introducción de un nuevo elemento , que es definido como 
solución de la ecuación anterior, justo como cuando son creados los números complejos a partir de los nú-
meros reales, se define el elemento imaginario i para resolver la ecuación x2  1  0. Además de o, también 
se debe agregar el elemento 1[ ]+ , para satisfacer la cerradura con la adición.
Así, se tiene: 

GF n2 0 , 1 , , 1( ) { }[ ] [ ] [ ]= +

Con aritmética determinada unívocamente por el hecho de que o satisface la ecuación cuadrática 
x x1 1 1 02[ ] [ ] [ ] [ ]+ + = . Por ejemplo, se puede calcular el cuadrado de o de la siguiente manera:

1 0 12 2[ ] [ ] [ ]+ + = = +

Considérese el campo de orden 5; su álgebra completa puede analizarse con sus respectivas tablas de grupo (véan-
se tablas 8.13 y 8.14).

Tabla 8.13 Tabla de grupo 
para la adición.

[0] [1] [2] [3] [4]

[0] [0] [1] [2] [3] [4]

[1] [1] [2] [3] [4] [0]

[2] [2] [3] [4] [0] [1]

[3] [3] [4] [0] [1] [2]

[4] [4] [0] [1] [2] [3]

E JEMPLO 

Considérese el anillo de congruencias 4, ,  de orden cuatro. De su tabla de multiplicación se puede ver que no 
forma un grupo con esta operación; por tanto, no es un campo (véase tabla 8.15).

Tabla 8.15 Tabla para el anillo 
de congruencias 4, , , la cual 
muestra que no es un grupo con 

esta operación.

[1] [2] [3]

[1] [1] [2] [3]

[2] [2] [0] [2]

[3] [3] [2] [1]

E JEMPLO 

Tabla 8.14 Tabla 
de grupo para 
multiplicación.

[1] [2] [3] [4]

[1] [1] [2] [3] [4]

[2] [2] [4] [1] [3]

[3] [3] [1] [4] [2]

[4] [4] [3] [2] [1]
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Donde se hizo uso del hecho de que [1] es su propio inverso aditivo mod(2). De manera similar, se tiene:

1 1 1 12 2( )[ ] [ ] [ ] [ ]+ = + = + + =

Las tablas de adición y multiplicación completas para GF(22) se muestran a continuación.

Adición en el campo: GF(22)

Tabla 8.16 Tabla de 
adición para GF(22).

1 2

0 1 2

1 0 2

2 0 1

2 0 1

Multiplicación en el campo: 

Tabla 8.17 Tabla de 
multiplicación para  

GF(22)  {0}.

1 2

1 1 2

2 1

2 2 1

En resumen, los elementos de GF(22) son generados por potencias de un elemento primitivo , el cual es una 
raíz de un polinomio de grado n que es irreducible en 2.

    Por otro lado, el campo GF(22) puede considerarse como un espacio lineal de dimensión n, así que cual-
quier GF 22( )∈  es una combinación lineal de los elementos de una base n, , ,1 2{ }:

a ai i i
i

n

, 2
1
∑α θ= ∈
=

El análogo de una base ortogonal es la llamada base autodual (la cual existe siempre para GF(22)), que satis-
face la condición tr i j ijθ θ δ( )= ; así que a tri iαθ( )= , donde la operación traza tr GF n: 2 2( )→  está definida por:

tr
n2 2 22 1

( )= + + + +
−

Por ejemplo, { , 2} es una base autodual para GF(22), ya que cualquier elemento del campo puede escribirse 
como combinación lineal de estos; a saber:

1 , 12 2( )= + + =

Construir el campo finito GF(23).

E jemplo 
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De acuerdo con lo que se discute en páginas previas, para construir el campo finito primero se hace una 
extensión del campo 2 tomando un polinomio cúbico irreducible en 2. Es fácil verificar que el polinomio 

x x1 1 13[ ] [ ] [ ]+ +  es irreducible en 2, pues para la ecuación:

x x1 1 1 03[ ] [ ] [ ]+ + =

ninguno de los dos elementos de 0 , 12 { }[ ] [ ]=  son solución. Sea  una solución de la ecuación anterior en el 
campo extendido, entonces de la ecuación 1 1 1 03[ ] [ ] [ ]+ + =  se obtiene:

13 [ ]= +

Si se multiplica sucesivamente por o se obtiene:

1

1

1

4 2

5 3 2 2

6 2

7

[ ]

[ ]

[ ]

= +

= + = + +

= +

=

Entonces, el campo finito de dimensión 8 se puede representar con los elementos:

( ) { }[ ] [ ] [ ] [ ] [ ]= + + + + +2 0 , 1 , , , 1 , , 1 , 13 2 2 2 2GF

Solución

Escribir las tablas del campo finito GF(23).

E jemplo 

Del ejemplo anterior se sabe que los elementos de campo son:

GF 2 0 , 1 , , , 1 , , 1 , 13 2 3 4 2 5 2 6 2( ) { }[ ] [ ] [ ] [ ] [ ]= = + = + = + + = +

y que  satisface la ecuación:

1 1 1 03[ ] [ ] [ ]+ + =

Con esta información es fácil escribir las tablas de adición y multiplicación. Primero, se muestra la tabla de 
adición, luego se muestra la tabla de multiplicación.

Tabla 8.18 Tabla de adición para el campo 
finito GF(23).

[0] [1] 2 3 4 5 6

[0] [0] [1] 2 3 4 5 6

[1] [1] [0] 3 6 5 4 2

3 [0] 4 [1] 2 6 5

2 2 6 4 [0] 5 3 [1]

3 3 [1] 5 [0] 6 2 4

4 4 5 2 6 [0] [1] 3

5 5 4 6 3 2 [1] [0]

6 6 2 5 [1] 4 3 [0]

Solución

Tabla 8.19 Tabla de multiplicación 
para el campo finito GF(23).

[1] 2 3 4 5 6

[1] [1] 2 3 4 5 6

2 3 4 5 6 [1]

2 2 3 4 5 6 [1]

3 3 4 5 6 [1] 2

4 4 5 6 [1] 2 3

5 5 6 [1] 2 3 4

6 6 [1] 2 3 4 5
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8.9 Aplicaciones a criptografía de llave pública
La disciplina de la criptografía constituye el conjunto de procedimientos que se utilizan para transformar 
información, de tal manera que esta sea “invisible” para observadores sin autorización.

Desde que se tiene registro de la humanidad, siempre ha habido la necesidad de ocultar información a 
personas no deseadas. Por ejemplo, existe evidencia que indica que ya en la época del imperio egipcio se 
usaban métodos para encriptar información.

En la época moderna, la criptografía comenzó a tomar un gran auge con la aparición de nuevos medios 
de comunicación, como el telégrafo. Así que la tendencia fue buscar métodos cada vez mejores para la en-
criptación de datos. En este sentido, la Segunda Guerra Mundial es quizá el mejor ejemplo de la importancia 
de la encriptación de datos, pues como es bien sabido, muchas batallas fueron posibles gracias a la intercep-
tación y descifrado de información entre los distintos rivales.

El tipo de criptografía utilizada durante la Segunda Guerra Mundial es aquella que se conoce como crip-

tografía de llave privada, la cual consiste en que toda la protección de la información depende de la capa-
cidad del método y de la capacidad de cada uno de los usuarios de mantener su clave privada en secreto. La 
principal desventaja de este método es que para descifrar la información es suficiente con tener dicha llave, 
lo cual hace que el sistema completo sea en extremo vulnerable.

Con el fin de corregir el problema de vulnerabilidad total del sistema, surgió una nueva técnica para 
encriptar datos: la criptografía de llave pública. En este tipo de criptografía, cada uno de los usuarios tiene 
dos llaves, una llave pública y una llave privada, pero solo una de estas es necesaria para descifrar la infor-
mación que se cifra con la otra. Así, la seguridad del sistema se ve incrementada.

De este modo, si se combinan los dos tipos de criptografía (llave pública y llave privada), es posible lograr 
los siguientes puntos, mismos que son clave en la encriptación de datos:

a. Garantizar la autenticidad del origen de la información.
b. Garantizar la autenticidad del contenido e integridad del mismo.
c. Incorporar protocolos que dificulten ataques de espías.
d. Verificar la identidad de los comunicantes.

Hoy día, todavía continúa la tendencia a utilizar la criptografía de llave pública como complemento de la de 
llave privada, con lo que se logra incrementar la seguridad de los métodos criptográficos utilizados y elimi-
nar las lagunas que existen en la aplicación de la criptografía de llave privada.

A continuación, se presenta una pequeña lista de algunos conceptos matemáticos necesarios para el 
desarrollo de la criptografía:

Números coprimos o primos entre sí. Se dice que dos números enteros positivos son coprimos (o 
números primos entre sí) si su máximo común divisor es 1. Es decir, dados dos números m, n,  �, se 
dice que son coprimos si y solo si:

 m c d m n. . . , 1( )=

Función de Euler. La función de Euler, para un entero positivo N se define como la cantidad de copri-
mos que existen menores que N. Es decir, considerando la descomposición de N en sus factores primos:

 N p p pk k
n
kn

1
1

2
2

La función de Euler se calcula como:
 11

1

N p pi
k

i
i

n
i∏ ( )( )Φ = −−

=

Números primos fuertes: Se dice que dos números primos, P y Q, son números primos fuertes si son 
números grandes (se considera “grande” a partir del orden de 200 dígitos) y de la forma: 

 P p

Q q

2 1

2 1

= +

= +

 Donde p y q son números primos grandes. 
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Algoritmo de Diffie-Hellman. En los algoritmos de llave secreta es necesario conservar la llave pri-
vada para evitar que toda comunicación posterior sea vulnerable con facilidad. Esta condición pro-
voca que sea muy complicado el intercambio de las llaves, lo cual se debe hacer mediante el uso de 
protocolos jerárquicos rígidos.

En 1976, W. Diffie y M. E. Hellman inventaron un método de intercambio de llaves secretas a través de un 
canal abierto. Con lo que nació la criptografía de llave pública. Este algoritmo es muy simple de describirse:

Considérese un número primo grande p y un número entero cualquiera g. Para este caso, los valores de p 
y g son públicos. Ahora bien, sean KA y KB las llaves privadas que dos comunicantes, A y B, desean intercam-
biar. Para lograrlo, A genera un valor entero aleatorio xA, donde 1  xA  p  1; de manera similar, B genera 
un valor aleatorio xB con 1  xB  p  1. Acto seguido, A envía a B el valor público:

(mod )y g pa
xa

Y de manera análoga, B envía a A el valor (también público): 

(mod )y g pb
xb

Así, B calcula el valor secreto: 

(mod )z y g pab
xb
a

x xa b

Y de la misma forma, A calcula: 

(mod )z y g pba
x
b

x xa b a

Por último, se deduce, zab zba, que puede ser utilizado como llave secreta compartida por ambos comuni-
cantes.

Ataques al Diffie-Hellman. Los ataques al método de Diffie Hellman pueden catalogarse en dos 
partes: ataques pasivos y ataques activos. 

Un ataque pasivo es aquel en el que el “espía” trata de descifrar algo a partir de información ci-
frada interceptada. Por su parte, un ataque activo es aquel en el que el atacante desea no solo espiar 
información interceptada, sino también poder manipularla a su conveniencia.

Por ejemplo, intentar obtener la llave secreta zab, a partir de p, g, ya, yb, constituye un ataque pasi-
vo. Pero un intento de este tipo es muy difícil que pueda lograrse, pues se necesitaría obtener xa o xb, 
y para ello debería resolverse alguna de las siguientes operaciones:

xa  log g   ya(mod p)
xb log g yb(mod p)

Lo cual es inviable para números grandes, pues solo bastaría elegir p y g lo suficientemente grandes 
para evitar este ataque.

Para que exista un ataque activo, es posible que el atacante (que puede ser identificado por C) 
intervenga de forma activa en el intercambio. Así, por ejemplo, si C genera un entero aleatorio xC con 
1  xC  p  1 cuando A envíe a B ya, C interceptará la comunicación y enviará a B yc  gxc(mod p). Ense-
guida, B recibirá yc  con la creencia de que procede de A, y este responderá enviando yb. Nuevamente, 
C interceptará la comunicación y enseguida enviará yc a A.

Así, A calcula:
(mod )z y g pca

x
c

x xa c a

y B calcula:
(mod )z y g pcb

x
c

x xb c b

No obstante, ambas llaves también pueden ser calculadas por el atacante. Así, cuando A envíe una 
información cifrada con zca a B, el atacante la interceptará, la decodificará, la manipulará a su antojo, 
la encriptará con zcb y la enviará a B. Y lo mismo sucederá cuando B envíe información cifrada a A.

Este ataque es difícil de evitar y de descubrir, pero requiere la intervención continua del atacante 
para no ser descubierto. 
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Algoritmo RSA. En 1977, R. L. Rivest, A. Shamir y L. Adleman propusieron un algoritmo de cifrado 
asimétrico de llave pública, que bautizaron como RSA, y que más tarde fue patentado por el MIT 
(Massachussets Institute of Technology).

Los algoritmos de cifrado asimétrico son aquellos en los que cada comunicante tiene dos llaves 
diferentes, una pública y una privada, siendo públicos el o los algoritmos de cifrado. Además, deben 
cumplir: 

 – Ambos comunicantes calculan sus llaves en tiempo polinómico. 

 – El emisor A puede, si conoce la llave pública de B, enviarle en tiempo polinómico un mensaje ci-
frado con la llave pública de B. 

 – El receptor B debe poder descifrar el mensaje cifrado de A en tiempo polinómico con su llave 
secreta. 

 – Un atacante deberá enfrentarse a costos cuya complejidad computacional los haga inviables 
cuando trate de calcular, bien las llaves secretas, bien los mensajes en claro a partir de los men-
sajes cifrados. 

Algoritmo RSA. Sean p y q dos números primos grandes, y sea N  pq su producto común  (N) (p 1)
(q 1). 

Sea e, 1  e  N un número aleatorio relativamente primo con  (N), y d un entero que verifica que 
ed 1 (mod  (N)). Así dispuesto, se verifica que para un cierto mensaje M, resulta que Med  M(mod N), 
y por tanto, si C Me(mod N), resulta que M Cd(mod N). 

El algoritmo RSA utiliza estas propiedades para establecer un sistema criptográfico de cifrado 
asimétrico, en el que N, e corresponderían a la llave pública y d a la llave privada. 
Ataques al RSA. Nótese que en un sistema RSA existirá un conjunto de mensajes que no pueden ser 
cifrados. Se dice que un mensaje M no puede ser cifrado si Me  M(mod N). Esto se puede reescribir 
de tal forma que M no podrá ser cifrado si:

Me  M(mod p)
Me  M(mod q)

Así, se puede calcular que el número de mensajes no cifrables de un sistema RSA está definido 
por la expresión: 

N [1  m.c.d.(e 1, p 1)][1  m.c.d.(e 1, q 1)]

Mientras que los mensajes no cifrables serán de la forma: 

M  {q[q 1(mod p)]Mp p[p 1(mod q)]Mq} (mod N)

Donde:
Mp [ Me M(mod p)]
Mq [ Me M(mod q)]

Se han propuesto multitud de ataques al algoritmo RSA, aunque hasta la fecha ninguno ha de-
mostrado ser efectivo: 
El ataque por factorización de la llave pública. La forma más evidente de romper la seguridad de un 
sistema RSA pasa por factorizar su llave. Ello no obstante constituye la forma más difícil de lograrlo, 
ya que si los factores primos p y q son números lo suficientemente grandes, la complejidad compu-
tacional de los algoritmos de factorización hace inviable la factorización de N en un tiempo finito. 

El ataque cíclico. El ataque cíclico se basa en la idea de que los sistemas RSA son grupos multipli-
cativos con un número finito de elementos. Así, para descifrar C Me(mod N) no sería necesario 
conocer la llave privada d, sino que bastaría con realizar cifrados sucesivos con la llave pública e, 
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hasta obtener el mensaje cifrado C (recordemos que RSA se basa en la aritmética modular). Si Ci es 
el i ésimo cifrado realizado con la llave pública e, y Ci C(mod N), entonces resulta obvio que Ci 1 
debe corresponder a M. 

Este ataque puede evitarse si los valores primos p y q que forman la factorización de N son nú-
meros primos fuertes, ya que entonces la complejidad computacional aumenta hasta convertir el 
problema en irresoluble. 
Ataque de Merkle-Hellman. Este ataque, propuesto por R. Merkle y M. Hellman, en 1981, se basa en 
la idea de que se puede romper el cifrado de un sistema conociendo un mensaje cifrado y su corres-
pondiente texto en claro (algo que en el RSA es a todas luces, posible). 

La justificación matemática del ataque es muy compleja, pero su modo de funcionamiento es 
relativamente simple de describir. Este se basa en realizar pruebas de encriptación con un mensaje 
M, hasta obtener una coincidencia que permita obtener la llave privada pareja de la llave pública 
(conocida) e. Se puede demostrar que este método de criptoanálisis es mejor que los métodos de 
fuerza bruta. 

No obstante, también se demuestra que la probabilidad de hallar una llave válida disminuye 
cuando los factores p y q son números primos fuertes. Si los números p y q están bien elegidos, en-
tonces este ataque se vuelve impracticable. 
Ataque por control de tiempos. Este ataque se basa en la idea de medir el tiempo invertido por el 
dispositivo cifrante en realizar el cifrado de los mensajes, y a partir de estos tiempos medidos tratar 
de extraer información acerca de la llave usada. No obstante, es complicado y hay ciertas sencillas 
técnicas algorítmicas que permiten evitar este ataque. 

Ataque por introducción de faltas. La idea de este ataque se refiere a la introducción de alteraciones 
en el mensaje que se va a cifrar con la clave privada, para observar después la diferencia entre el 
mensaje cifrado con los valores erróneos y el mensaje que se hubiera cifrado de no haber introducido 
errores. Tiene el evidente inconveniente de que resulta necesario que el atacante tenga cierto control 
sobre el dispositivo a atacar. 

Como se puede observar, resulta bastante evidente que, a pesar de la multitud de ataques pro-
puestos contra el algoritmo RSA, no hay ninguno de estos que tenga la suficiente efectividad como 
para comprometer seriamente la credibilidad de dicho algoritmo.

Otros algoritmos de cifrado de llave pública
Cabe aclarar que RSA no es el único algoritmo de cifrado de llave pública que existe, aunque seguramente sí 
es el más popular; no obstante, en la literatura es posible hallar algunos otros ejemplos interesantes.

Cifrado de Rabin. Este método de cifrado fue descrito en 1979. Se basa en la existencia de dos núme-
ros primos grandes, p y q, tal que  p q 3(mod 4), siendo N pq la llave pública, y el par (p,q) la llave 
privada. Así, el cifrado de un cierto mensaje M se obtendría: 

C M2(mod N)

Así, para descifrar el mensaje C sería necesario calcular su raíz cuadrada (mod N), lo cual solo es 
posible si se conocen los factores primos p y q, ya que en otro caso la complejidad de los algoritmos 
lo hace inviable. Aún así, existe el problema de que hay cuatro posibles soluciones para dicha raíz 
cuadrada, y de ahí el problema de elegir una, ya que si el mensaje M debe tener sentido en alguna 
lengua humana, entonces un operador humano podrá decidir, pero si el mensaje M es aleatorio o no 
tiene sentido para un operador humano, o no puede establecerse una relación con un diccionario, 
entonces este método de cifrado resulta inviable. 

Existe una modificación a este método de cifrado introducida por H. C. Williams en el año 1980, 
orientada a eliminar el inconveniente de la multiplicidad de las raíces cuadradas (mod N). 
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Cifrado de El Gamal. Este sistema de cifrado fue propuesto por T. El Gamal en 1985. Se basa en la 
dificultad del cálculo de los logaritmos discretos con números enteros grandes. 

Sean p un número primo grande y g un número entero (grande). Ambos valores son públicos. Sea 
x tal que 1 x p 1 un valor aleatorio secreto, con una llave pública asociada y, definida por:

y gx (mod p).

Así, el cifrado de un cierto mensaje M se realizará eligiendo un valor aleatorio k/1 k p 1, siendo 
k relativamente primo con (p 1). Por tanto, el mensaje cifrado estará dado por la pareja de valores: 

r gk (mod p)
s Myk (mod p)

La recuperación del mensaje en claro a partir del cifrado se calcula como:

M (s/rx)(mod p)
Ya que:

M (s/rx)(mod p) > M (Myk/yk)(mod p) M(mod p).

Este método de cifrado tiene la particularidad de que dado un mismo mensaje en claro puede 
tener varios cifrados diferentes. No obstante, tiene el problema de que el cifrado tiene una longitud 
doble del mensaje original, lo que puede dar como resultado problemas de espacio y de manejo de 
cifrado. 

Aplicaciones de la criptografía de llave pública
Después de examinar los algoritmos de llave pública y comprobar su efectividad, cabe preguntarse por sus 
aplicaciones. Ya se ha explicado cómo es que estos algoritmos cumplen con su principal aplicación, que es 
la de cifrar (ocultar) la información. Así pues, a continuación se intenta dar una visión somera de las otras 
aplicaciones que tiene la criptografía de llave pública.

Recuérdese que al principio se planteaban las siguientes necesidades:

Garantizar la autenticidad del origen de la información.

Garantizar la autenticidad del contenido e integridad del mismo.

Incorporación de protocolos que dificulten los ataques de espías.

Verificar la identidad de los comunicantes. 

La autenticación pretende, pues, obtener constancia de que la información que se recibe procede de un 
emisor esperado y no de un atacante. En la criptografía de llave pública la solución a este punto es trivial, 
ya que resulta evidente que cualquier información que se descifre con la llave pública del emisor tiene por 
fuerza haber sido cifrada con su llave privada. No obstante, la criptografía de llave pública suele presentar 
el inconveniente de que resulta más lenta en el cifrado y descifrado que la de llave privada. 

Por lo expuesto antes, una posible solución puede ser la utilización de una llave de sesión para cifrar la 
información mediante un algoritmo de llave privada (p. ej. El DES), que permita ocultar de modo convenien-
te la información, y a continuación la encriptación de la llave de sesión mediante la llave privada de cada 
persona. El posterior descifrado del mensaje se realiza mediante el descifrado de la llave de sesión, que al 
ser de menor longitud que el mensaje, resulta más rápida. 

Al respecto de la identificación de los comunicantes, existen protocolos establecidos para permitir la 
identificación electrónica, el más conocido y extendido de los cuales es la utilización de certificados. En este 
protocolo, una autoridad certificadora se encarga de dar constancia de que la llave pública contenida en el 
certificado procede del comunicante que realiza la afirmación, y no de otro individuo. Con esta medida, se 
prevé que toda comunicación contará con las garantías propias de la criptografía de llave pública. 
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Sobre la garantía de integridad del contenido se ha establecido un protocolo de firma digital que solucio-
na los problemas de integridad como parte de los problemas de autenticación de la fuente y de los ataques 
de espías. Este protocolo se basa en la existencia de funciones resumen (hash), tales que, dada una informa-
ción, el resultado de la función resumen es único y cualquier modificación introducida en la información 
producirá un resultado distinto de la función resumen (la probabilidad de que exista una información si-
milar a la original con un resumen de igual valor es ínfima). Así, se realizaría un resumen del texto a firmar, 
y el resultado se cifraría con la clave privada y se colocaría anexo al texto original. Cualquier alteración de 
la información sería detectada de inmediato solo con desencriptar el resumen, y además el hecho de estar 
encriptado este con la llave privada del firmante, permite autenticar la identidad del mismo. 

Resumen
Existen diferentes estructuras algebraicas que pueden utilizarse en aplicaciones de informática, criptogra-
fía, física, química, entre otras disciplinas. Las principales estructuras algebraicas de interés son los grupos, 
los anillos y los campos. 

Un grupo es un conjunto junto con una operación binaria que satisface las propiedades de cerradura, 
asociatividad, existencia de un elemento neutro y existencia de elementos inversos. Cuando un grupo H está 
dentro de otro grupo G se dice que H es un subgrupo de G. Un grupo en el cual existe un elemento que genera 
todos los demás elementos (operando dicho elemento consigo mismo) recibe el nombre de grupo cíclico. Se 
dice que dos grupos ,G  y G',  son isomorfos, si existe una función biyectiva f entre G y G' que satisface 
f g g f g f g1 2 1 2( ) ( ) ( )∗ =  para todo g1, g2 G.

Un anillo es un conjunto junto con dos operaciones binarias, R, , tal que, R,  es un grupo y se sa-
tisfacen las leyes distributivas:

x y z xy xz

x y z xz yz

( )

( )

+ = +

+ = +

para todo  x, y, z R.
Se dice que dos anillos R,  y R',  son isomorfos, si existe una función biyectiva f entre R y R' que sa-
tisface las siguientes propiedades:

f x y f x f y

f x y f x f y

( ) ( )

( ) ( )

( )

( )

+ = +

⋅ = ⋅

 x, y R.
Por último, un campo es un anillo que forma también un grupo con la multiplicación.

 8.5 * con la multiplicación estándar.

 8.6  con la multiplicación estándar.

 8.7 S =   {1, 1} definida por x y xy xy∗ = −

 8.8 S =   {1, 1} con la multiplicación estándar.

 8.9 S =   {1, 1} con la adición estándar.

 8.10 El conjunto de todas las matrices de la forma:

⋅ ⋅ ∈
1 0

1
t q

x
x

En los problemas 8.1 a 8.10 explicar si el conjunto dado, 
junto con la operación definida en este, forman un 
grupo. En caso de que no formen un grupo, especificar 
al menos un axioma de grupo que no se satisface.

 8.1  con la operación – (resta).

 8.2  con la multiplicación estándar.

 8.3  con la operación – (resta).

 8.4  con la multiplicación estándar.

Problemas propuestos
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 8.11 Considérese la siguiente tabla:

Tabla 8.20

e x y z

e e x y z

x x x e e

y y e y e

z z e e z

  Proporcionar al menos dos razones por las cuales 
no representa un grupo.

 8.12 Examínese la operación  definida sobre el con-
junto {Verdadero, Falso}. ¿Cuáles de los axiomas 
de grupo se satisfacen? 

 8.13 Demostrar que si ,G  es un grupo y g  G en-
tonces:

1 1
g g( ) =− −

8.14 Demostrar que el conjunto de matrices inverti-
bles de tamaño 2  2 forma un grupo con la mul-
tiplicación matricial.

8.15 Demostrar que si ,G  es un grupo y g, h  G 
entonces:

1 1 1g h h g( )∗ = ∗
− − −

 8.16 Demostrar que un grupo ,G  es abeliano si y 
solo si:

 g h g h
1 1 1( )∗ = ∗
− − −

 8.17 Sea ,G  un grupo. Definir una nueva operación 
 en G, mediante:

g h h g= ∗

  Demostrar que: G, 

  En los ejercicios 8.18 a 8.30 indicar si los grupos 
dados son o no isomorfos. En caso negativo, pro-
porcionar al menos una propiedad estructural 
que tiene uno de estos y el otro no.

 8.18 , y ,10 11
*+ ⋅

8.19 ,  y 5 , 

8.20 ,  y , 

8.21 3 ,  y 5 , 

8.22 *, ·  y , 

8.23 *, ·  y , 

 8.24 6,  y S3, ° (donde S3 es el grupo de todas las 
permutaciones de 3 objetos).

8.25 , y ,11 11
*+ ⋅

8.26 5 ,  y 5, 

8.27 2,  y S2, °

8.28 3, y cualquier grupo ,G  de tres elemen-
tos.

8.29 G G i i i, y , donde , 1, , 1 , 14 { }⋅ ⋅ = − − = −

8.30 ,  y , 

En los ejercicios 8.31 a 8.40 indicar si H es subgrupo del 
grupo G dado.

8.31 H G, , y , ,ℤ ℝ∗ = + ∗ = +

8.32 H G, 3 , y , ,ℤ ℝ∗ = + ∗ = +

8.33 ∗ = + ∗ = +, 3 , y , ,H G

8.34 H G, , y , ,ℝ ℂ∗ = + ∗ = ⋅

8.35 H G, , y , ,∗ = + ∗ = ⋅

8.36 H G, , y , ,ℚ ℝ∗ = + ∗ = ⋅

8.37 H G, , y , ,11 11∗ = + ∗ = +

8.38 H G, , y , ,11 20∗ = + ∗ = +

8.39 H G, , y , ,11 11∗ = + ∗ = ⋅

8.40 H S G S, , y , ,3 4∗ = + ∗ = +

En los ejercicios 8.41 a 8.46 indicar si R, , ·  es un 
anillo.

8.41 11, 

8.42 , ,+ ⋅

8.43 , , ·
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8.44 11, , 

8.45 , ,+ ⋅

8.46 3 , , 

En los ejercicios 8.47 a 8.50 indicar si , , es un 
campo.

8.47 11, , 

8.48 , , 

8.49 , , 

8.50 7, , 
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Objetivos

 Reconocer los principios algebraicos que sustentan el álgebra de Boole.

 Describir la relación entre el álgebra de Boole y las compuertas lógicas que constituyen los componentes 
básicos de los circuitos lógicos.

 Aplicar el álgebra de Boole a la resolución de problemas de operaciones automatizadas.

 Simplificar expresiones booleanas optimizando y aplicando sus propiedades.

Álgebra  
de Boole

9
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9.1 Introducción
Por definición, el álgebra de Boole o álgebra booleana es un concepto del álgebra que permite abstraer las 
principales operaciones algebraicas en un sistema binario. Esta debe su nombre al matemático inglés Geor-
ge Boole, quien la creó y desarrolló a mediados del siglo xix. Sin embargo, fue hasta mediados del siglo xx 
que el álgebra booleana adquiere auge y una gran importancia práctica, que se ha incrementado de ma-
nera considerable a últimas fechas, en especial en el terreno del manejo de información digital (en lo que 
se conoce como lógica digital). Gracias a esta, Claude Elwood Shannon (1949) pudo formular su teoría de la 
codificación y John von Neumann pudo enunciar el modelo de arquitectura que define la estructura interna 
de las computadoras desde la primera generación.

Por tanto, los principales campos de aplicación del álgebra booleana son la informática, la electrónica 
digital y la computación, en virtud del hecho de que la lógica de la computadora se basa en el sistema bina-
rio; esto es, en los circuitos electrónicos de una computadora la información se trata en esencia como una 
secuencia de ceros y unos.

Claude Elwood Shannon dedicó gran parte de su trabajo al problema de la eficiencia de los diferentes 
métodos de transmisión de la información que hay, tanto mediante el flujo, a través de hilos o cables, 
como de tipo aéreo, por medio de corrientes eléctricas fluctuantes o bien moduladas por la radiación 
electromagnética. Orientó sus esfuerzos hacia la comprensión fundamental del problema, lo que le per-
mitió desarrollar en 1948 un método para expresar la información de forma cualitativa. Sus publicaciones 
demostraron cómo se podía analizar dicha cuantificación (expresada en una magnitud a la que denominó 
bit) mediante métodos estrictamente matemáticos.

La rama de las matemáticas inaugurada por Shannon se denomina teoría de la información y 
resultó ser en extremo útil, no solo en el diseño de circuitos de computadoras y la tecnología de comuni-
caciones, sino que también ha hallado aplicaciones fecundas en campos tan diversos como la biología, la 
psicología, la fonética e, incluso, la semántica y la literatura.

Figura 9.1 Claude Elwood 
Shannon (1916-2001).

George Boole a mediados del siglo XIX, Boole en sus libros The Mathematical Analysis of Logic  (Un análisis 
matemático de las lógica), escrito en 1847, y An Investigation of the Laws of Thought (Una investigación de 
las leyes del pensamiento), publicado en 1854, la idea de que las proposiciones lógicas podían ser tratadas 
mediante herramientas matemáticas. 

Las proposiciones lógicas (frases o predicados de la lógica clásica) son aquellas que solo pueden tomar 
valores de verdadero/falso o preguntas cuyas únicas respuestas posibles son sí/no. 

Según Boole, estas proposiciones solo pueden ser representadas mediante símbolos; por tanto, desa-
rrolló una teoría que permite trabajar con estos símbolos, sus entradas (variables) y sus salidas (respuestas), 
a la que denominó lógica simbólica, misma que cuenta con operaciones lógicas que siguen el com-
portamiento de las reglas algebraicas. De este modo, al conjunto de reglas de la lógica simbólica se le 
denomina álgebra de Boole.

Figura 9.2 George Boole 
(1815-1864).

Es importante destacar que todas las variables y constantes del álgebra booleana admiten solo uno de dos 
valores en sus entradas y salidas: sí/no, 1/0, encendido/apagado, con voltaje/sin voltaje o verdadero/falso. 
Estos valores bivalentes y opuestos pueden ser representados por números binarios de un dígito (bits); por 
tanto, el álgebra booleana se puede entender cómo el álgebra del sistema binario.

Al igual que en el álgebra tradicional, en el álgebra booleana también se utilizan letras del alfabeto para 
denominar a las variables y formar ecuaciones, con el objetivo de obtener el resultado de ciertas operaciones 
mediante una ecuación o expresión booleana; es evidente que los resultados de las operaciones correspon-
dientes también serán binarios.
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9.2 Álgebra de Boole (álgebra booleana)
El álgebra booleana constituye un sistema matemático deductivo centrado en los valores 1 y 0, que propor-
ciona operaciones y reglas para trabajar con dichos valores.

Las operaciones booleanas básicas son: suma booleana, producto booleano y complemento booleano, las 
cuales se definen a continuación.

Suma booleana
La suma booleana de dos elementos del conjunto binario, que se denota por el símbolo , es una operación 
con las reglas siguientes:

1  1  1
0  1  1
1  0  1
0  0  0

La suma booleana equivale a la operación lógica disyunción inclusiva , solo que en esta V y F cambian por 
1 y 0.

Producto booleano
El producto booleano de dos elementos del conjunto binario, denotada por el símbolo , es una operación 
con las reglas siguientes:

1  1  1
0  1  0
1  0  0
0  0  0

Esta equivale a la operación lógica conjunción , donde también solo cambia V y F por 1 y 0.

Complemento booleano
El complemento booleano de un elemento del conjunto binario es una operación con las reglas siguientes:

1’  0
0’  1

El complemento booleano equivale a la operación lógica negación , donde también solo cambia V y F por 
1 y 0.

Un conjunto B se considera álgebra booleana si y solo si además de contener las dos operaciones binarias 
de suma booleana ( ) y producto booleano ( ), así como la operación unaria de complemento booleano (’), se 
verifican las siguientes propiedades básicas sobre cualquier a, b, y c B: 

B1.  Identidad 
a) a  0  a
b) a  1  a
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B2.  Propiedad conmutativa 
a) a  b  b  a

b) a  b  b  a

B3.  Propiedad distributiva 

a) a  (b  c)  (a  b)  (a  c)
b) a  (b  c)  (a  b)  (a  c)

B4.  Propiedad asociativa

a) (a  b)  c  a  (b  c)
b) (a  b)  c  a  (b  c)

B5.  Propiedad de complementos

a) a  a’  1
b) a  a’  0

El elemento 0 se denomina neutro respecto a la suma, en tanto que el elemento 1 se denomina elemento 
neutro respecto al producto.

Es importante destacar que por convención es posible eliminar el símbolo del producto booleano .

En álgebra booleana, 0 y 1 son nombres sim-

bólicos que en general no tienen nada que 

ver los números 0 y 1. De igual manera, los 

símbolos  y  son solo operadores binarios 

que no tienen relación con las operaciones de 

adición y multiplicación comunes.

Nota

Con el uso de la convención anterior, la propiedad distributiva puede es-
cribirse como:

a  bc  (a  b)(a  c)

a(b  c)  ab  ac

E JEMPLO 

A lo largo de este capítulo puede utilizarse o no, de manera indistinta, el símbolo del producto booleano.
Asimismo, por convención se establece que el complemento booleano tiene mayor prioridad que el pro-

ducto booleano, el cual, a su vez, tiene mayor prioridad que la suma booleana; no obstante, los paréntesis ( )  
pueden cambiar el orden de la prioridad.

Mediante el uso de la convención anterior, se tiene que:

a  b  c 

Esto significa:

a  (b  c)

En vez de:

(a  b)  c

Y que:

a  b’

E JEMPLO 
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Propiedades adicionales del álgebra booleana
En álgebra booleana existen propiedades adicionales que se pueden demostrar utilizando las propiedades 
básicas vistas antes. 

Ley del doble complemento o ley de la involución
(a’)’  a 

 a B.

 a’  (a’)’  1 por B5

   a  a’  por B5

   a’  a por B2

 (a’)’  a eliminando a’ en ambos lados

O bien:

  a’  (a’)’  0 por B5

   a  a’  por B5

   a’  a por B2

 (a’)’  a eliminando a’ en ambos lados 

DEMOSTRACIÓN 

a)  (a  1)  (a  1)  1 por B1

  (a  1)  (a  a’) por B5

  a  (1  a’) por B3

  a  a’ por B1

  1 por B5

b)   (a  1)  (a  1)  0 por B1

  (a  1)  (a  a’) por B5

  a  (1  a’) por B3

  a  a’ por B1

  0 por B5 

DEMOSTRACIÓN 

Esto significa:

a  (b’)

En lugar de:

(a  b)’

Ley de la dominación
a) a  1  1

a  0  0
 a B.

Ley de la idempotencia
a  a  a
a  a  a

 a B.
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Ley de la absorción
a) a  (a  b)  a
b) a  (a  b)  a

 a y b B.

a) (a  a)  (a  a)  1 por B1

  (a  a)  (a  a’) por B5

  a  (a  a’) por B3

  a  0 por B5

  a por B1

b)   (a  a)  (a  a)  0 por B1

  (a  a)  (a  a’) por B5

  a  (a  a’) por B3

  a  1 por B5

  a por B1 

DEMOSTRACIÓN 

a)   a  (a  b)  (a  1)  (a  b) por B1

  a  (1  b) por B3

  a  (b  1) por B2

  a  1 Ley de la dominación

  a por B1

b)   a  (a  b)  (a  0)  (a  b) por B1

  a  (0  b) por B3

  a  (b  0) por B2

  a  0 Ley de la dominación

  a por B1 

DEMOSTRACIÓN 

La Ley de De Morgan solo se comprueba si se satisface B5; es decir, se debe demostrar que si y es el complemento 
de x, entonces:

x  y  1

x  y  0

a) (a  b)  a’  b’  {(a  b)  a’}  {(a  b)  b’} por B3

   {(b  a)  a’}  {(a  b)  b’} por B2

   {b  (a  a’)}  {a  (b  b’)} por B4

   b  1  a  1 por B5

   1  1 Ley de la dominación 

   1 por B1

DEMOSTRACIÓN 

Ley de De Morgan
a) (a  b)’  a’  b’
b) (a  b)’  a’  b’

 a y b B.
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Leyes de De Morgan generalizadas
Las leyes de De Morgan pueden generalizarse para cualquier cantidad de elementos de B, como se muestra 
a continuación:

a) (a1  a2   …  an)’  a’1  a’2  …  a’n

Es decir, el complemento de la suma lógica de dos o más elementos de B equivale al producto lógico de los 
complementos de cada uno de estos elementos:

b) (a1  a2  …  an)’  a’1  a’2  …  a’n

Esto es, el complemento del producto lógico de dos o más elementos de B equivale a la suma lógica de los 
complementos de cada uno de dichos elementos.

 (a  b)  a’  b’  {a  a’  b’}  {b  a’  b’} por B3

   {a  a’  b’}  {b  b’  a’} por B2

   {(a  a’) b’}  {(b  b’) a’} por B4

   0  b’  0  a’ por B5

   0  0 Ley de la dominación 

   0 por B1

b) (a  b)  a’  b’  {(a  b)  a’}  {(a  b)  b’} por B3

   {(b  a)  a’}  {(a  b)  b’} por B2

   {b  (a  a’)}  {a  (b  b’)} por B4

   b  0  a  0 por B5

   0  0 Ley de la dominación 

   0 por B1 

 (a  b)  a’  b’  {a  a’  b’}  {b  a’  b’} por B3

   {a  a’  b’}  {b  b’  a’} por B2

   {(a  a’) b’}  {(b  b’) a’} por B4

   1  b’  1  a’ por B5

   1  1 Ley de la dominación 

   1 por B1 
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Asimismo, en estas páginas se establecen y desarrollan  algunos teoremas importantes.

Teorema de la simplificación
a) a  (a’  b)  a  b
b) a  (a’  b)  a  b

 a, b, y c B.

Teorema del complemento único
Para  a B, su complemento a’ es único.

Augustus De Morgan nacido en Madura (India), contribuyó de manera considerable al avance de la lógica 
en el siglo XIX.

A los 16 años ingresó al Trinity College de Cambrigde. Al concluir sus estudios universitarios fue nom-
brado profesor del University College, en Londres. Además, escribió diferentes libros sobre diversos temas, 
como aritmética, álgebra, análisis y lógica; es precisamente esta última disciplina el campo en el que más 
sobresalió.

De todas sus obras, Trigonometry and double algebra (Trigonometría y álgebra doble) es aquella en la 
que mejor expone una interpretación geométrica de los números complejos.   Por su parte, Formal Logic 
(Lógica formal) constituye su obra más notable, ya que en esta es donde expone un buen sistema de nota-
ción para la lógica simbólica e incluye el concepto de cuantificación de predicados, con el cual era posible 
resolver algunas cuestiones que no tenían respuesta dentro de la lógica aristotélica; una de sus más grandes 

aportaciones. No obstante, es más reconocido por las leyes que llevan su nombre.

Figura 9.3 Augustus De 
Morgan (1806-1871), lógico 
y matemático británico.

a) a  a’  1 por B5

 (a  a’)  b  b por B1

 (a  b)  (a’  b)  b por B3

 a  (a  b)  (a’  b)  a  b Sumando a

 a  (a’  b)  a  b Ley de la absorción

b) a  a’  0 por B5

 (a  a’)  b  b por B1

 (a  b)  (a’  b)  b por B3

 a  (a  b)  (a’  b)  a  b Sumando a

 a  (a’  b)  a  b Ley de la absorción 

DEMOSTRACIÓN 

Supóngase que se tienen dos complementos para a. Sean  y  dichos complementos.

Como  y  son complementos de a se debe cumplir que:

 a) a  a'1  1; a  a'2  1    por B5

 b) a  a'1  0; a  a'2  0    por B5

DEMOSTRACIÓN 
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Para demostrar el incíso a) se tiene que:

 a'2   a'1  1 por B1

  a'1  (a  a'2 ) por B5

  a'1  a  a'1  a'2  por B3

  0  a'1   a'2 por B5

  a  a'2   a'1  a'2 por B5

  (a  a'1 )  a'2  por B3

  1 a'2  por B5

  a'2 por B1

Ahora, para demostrar el incíso b) se tiene que:

 a'2   a'1   0 por B1

  a'1   (a  a'2 ) por B5

  a'1  a  a'1  a'2 por B3

  1  a'2  a'1 por B5

  a  a'2  a'1  a'2 por B5

  (a  a'1 )  a'2 por B3

  0  a'2 por B5

  a'2 por B1

Por tanto, el complemento de cualquier elemento de B siempre es único.

Principio de dualidad
El álgebra booleana B satisface el principio de dualidad, que a la letra 
dice:
Por tanto, basta demostrar uno de los enunciados, para luego deducir 
el otro por dualidad.
Con base en esta definición del principio de dualidad, puede observarse 
que en la definición de álgebra de Boole las propiedades básicas en sus 
incisos b) son duales de los incisos a) y viceversa. 

Todo enunciado deducible de las 

propiedades del álgebra booleana  es 

válido si se intercambian los símbolos 

 y , y los elementos 0 y 1, entre sí.

Nota

Obtener el dual del enunciado:

(1  a)  (b  0)  b

E jemplo 

El dual del enunciado anterior es:

(0  a)  (b  1)  b

Solución

Además, se tiene que el dual de cualquier teorema en el álgebra booleana también es un teorema.
Así, en el ejemplo anterior solo sería suficiente demostrar el primer enunciado para que quede demostra-

do por dualidad el segundo o viceversa, aunque también es posible demostrarlo de manera independiente.
Como se puede observar, en las propiedades adicionales del álgebra booleana y en el teorema de sim-

plificación se han demostrado tanto el inciso a) como el b), pero bastaría con haber utilizado el principio de 
dualidad para demostrar el inciso b) en cada caso.

9.3 Funciones booleanas o funciones lógicas
En el capítulo 1 de este libro se presenta el concepto de función, mismo que será aplicado en álgebra boo-
leana.
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Antes de continuar, es necesario definir algunos conceptos que se utilizan en forma amplia a lo largo de 
este tema.

Constante lógica o booleana
Una constante lógica es cualquier elemento del conjunto B, es decir 0 o 1.

Variable lógica o booleana
Una variable x que solo puede tomar valores de 0 o 1 se denomina variable lógica o variable booleana y repre-
senta ya sea un elemento de B o una expresión booleana completa.

Sea la expresión: 

x  (a  b)’  c’

En esta expresión, la variable x es una variable lógica, ya que solo puede tomar el valor de 0 o 1. Lo mismo ocurre 
con a, b y c que también son variables lógicas.

E JEMPLO 

Sea la expresión lógica:

a’  b  c  a  d  b’  1

Donde:

a, b, c y d son variables.

a, b, c, d, a’ y b’ son literales.

1 es una constante.

E JEMPLO 

Sea la expresión booleana:

F(a, b, c)  a  b  a’  c  a  b’

Esta es una función booleana.

E JEMPLO 

Literal
Es toda ocurrencia de una variable, ya sea complementada o sin complementar, en una expresión de lógica.

Funciones booleanas
Se llama función booleana o función lógica F a todo conjunto de variables lógicas relacionadas entre sí por 
una expresión que representa la combinación de un conjunto finito de símbolos, mediante la representación de cons-

tantes o variables unidos por las operaciones producto lógico, suma lógica o sus complementos.
Las funciones booleanas se describen con una expresión del álgebra booleana.
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Tipos de términos de una función booleana
Hay diferentes tipos de términos en una función booleana, entre los principales se tienen los siguientes:

Término producto: es una expresión lógica que consiste en un conjunto de variables (o sus comple-
mentos) unidas por productos lógicos. Por ejemplo:

F(a, b, c)  a  b

Término suma: es una expresión lógica que consiste en un conjunto de variables (o sus complemen-
tos) unidas por las sumas lógicas. Por ejemplo:

F(a, b, c)  a  b’

Término mínimo o MINTERM : es una expresión lógica que consiste en un conjunto de TODAS las 
variables (o sus complementos) unidas por productos lógicos. Por ejemplo:

F(a, b, c)  a’  b  c

Término máximo o MAXTERM : es una expresión lógica que consiste en un conjunto de TODAS las 
variables (o sus complementos) unidas por sumas lógicas. Por ejemplo:

F(a, b, c)  a’  b’  c

Cuando una función booleana se expresa en forma de suma de MINTERM, se denomina suma de expansión 

de productos o forma normal disyuntiva (FND).
Ahora bien, cuando una función booleana se expresa en forma de producto de MAXTERM, se denomina 

producto de expansión de sumas o forma normal conjuntiva (FNC).
Además, con n variables lógicas se pueden formar 2n MINTERM y 2n MAXTERM; un ejemplo de esta situa-

ción se presenta en la tabla 9.2.

Representación de las funciones 
booleanas
Las funciones booleanas pueden representarse de dos formas diferentes: mediante una tabla de verdad o en 
forma canónica.

Tablas de verdad
La manera más fácil de representar una función booleana es mediante una tabla de verdad, ya que en este 
tipo de tabla se muestran los valores lógicos de salida para cada combinación de las variables lógicas de 
entrada.

Las tablas de verdad de funciones booleanas son similares a las que se tratan en el capítulo 2, a excepción 
de que en este caso se sustituye la V por 1 y la F por 0.

Dada la función lógica:

F(a, b, c)  a  (b  c’)

Obtener su tabla de verdad.

E jemplo 
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Formas canónicas de una función
Cuando una función booleana se halla expresada en forma normal disyuntiva o en forma normal conjunti-
va se dice que está en forma canónica. Esto significa que toda función booleana puede expresarse en alguna 
de estas dos formas canónicas. 

Estas formas de una función booleana pueden simplificarse mediante la aplicación directa de las leyes 
del álgebra booleana, o bien de manera sistemática a través de métodos de reducción, los cuales se analizan 
más adelante.

Forma canónica disyuntiva
Es aquella forma canónica constituida de manera exclusiva por MINTERMS sumados que aparecen una sola 
vez.

En la tabla 9.1 se muestra la tabla de verdad de la función lógica a  (b  c’).

Tabla 9.1 Tabla de verdad de la función lógica a  (b  c’).

a b c F(a, b, c)

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Solución

Sea la función booleana:

F(a, b, c)  a’b’c  ab’c’  ab’c  abc’  abc

Esta función booleana está en forma canónica disyuntiva.

E JEMPLO 

Al MINTERM a’b’c, le corresponde la combinación:

a  0, b  0, c  1

Como se puede observar, esta combinación representa el número binario 001, cuyo valor decimal es 1. Por tanto, a 
este MINTERM se le identifica como m1.

E JEMPLO 

Para simplificar la escritura en forma de suma canónica de productos se utiliza una notación especial. Esto 
es, a cada MINTERM, denotado como mi, se le asocia un número binario de n bits resultantes de considerar 
como 0 las variables complementadas y como 1 las variables sin complementar.
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De esta forma, la función lógica:
F(a, b, c)  a’b’c  ab’c’  ab’c  abc’  abc

Se puede expresar como: 

F a b c, , 1, 4, 5, 6, 7m∑( ) ( )=

Esto significa que es la sumatoria de los MINTERM 1, 4, 5, 6, 7.

Forma canónica conjuntiva
Es aquella constituida exclusivamente por MAXTERM multiplicados que aparecen una sola vez.

Sea la función booleana:

F(a, b, c)  (a  b  c)(a  b’  c)(a  b’  c’)

Esta función booleana está en forma canónica conjuntiva.

E JEMPLO 

Al MAXTERM a’  b  c le corresponde la combinación:

a  1, b  0, c  0

Como se puede observar, esta combinación representa el número binario 100, cuyo valor decimal es 4. Por tanto,  a 
este MAXTERM se le identifica como M4.

E JEMPLO 

De manera análoga al caso anterior, la expresión de la función booleana se puede simplificar indicando los 
MAXTERM; sin embargo, en este caso se hace al contrario del presentado antes.

Esto es, a cada MAXTERM, denotado como Mi, se le asocia un número binario de n bits resultantes de con-
siderar como 1 las variables complementadas y como 0 las variables sin complementar. 

De esta forma, la función lógica: 
F(a, b, c)  (a  b  c)(a  b’  c)(a  b’  c’)

se puede expresar como: 

F a b c, , 0, 2, 3M∏( ) ( )=

Esto significa que es el producto de los MAXTERM 0, 2, 3.
Además, a cada MINTERM se le asocia con la combinación de entrada, para la que la función produciría 

un 1, y a cada MAXTERM con la combinación de salida, para la que produciría un 0.

Sea la función lógica:

F(a, b, c)  a  (b  c)

Obtener los MINTERM y los MAXTERM asociados.

E jemplo 
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De acuerdo con la tabla 9.2, para determinar el término producto o suma, para los MINTERMS cada variable 
sin complementar se asocia con un 1 y cada variable complementada se asocia con 0, mientras que para los 
MAXTERM la regla es la inversa.

En la tabla 9.2 se muestran los MINTERM y los MAXTERM asociados con cada combinación en una tabla de 
verdad de tres variables lógicas, con 23  8 MINTERM y MAXTERM. 

Tabla 9.2 MINTERM y MAXTERM de la función booleana a (b  c).

Valor decimal a b c F(a, b, c) MINTERM MAXTERM

0 0 0 0 0 m0  a’b’c’ M0  a b c

1 0 0 1 0 m1  a’b’c M1  a b c’

2 0 1 0 0 m2  a’bc’ M2  a b’ c

3 0 1 1 0 m3  a’bc M3  a b’ c’

4 1 0 0 0 m4  ab’c’ M4  a’ b c

5 1 0 1 1 m5  ab’c M5  a’b c’

6 1 1 0 1 m6  abc’ M6  a’ b’ c

7 1 1 1 1 m7  abc M7  a’ b’ c’ 

Solución

Expresar como una suma de MINTERM la función booleana:

F(a, b, c)  a  b’  c

E jemplo 

Primero, se obtiene la tabla de verdad de la expresión y luego se toman los MINTERM (véase tabla 9.3).

Enseguida, se evalúa la función para todas las combinaciones y se toman los MINTERM de la tabla para los 
cuales la función vale 1.

Tabla 9.3 Tabla de verdad de la función lógica a  b’ c con MINTERM.

Valor decimal a b c F(a, b, c) MINTERM

0 0 0 0 0

1 0 0 1 1 m1  a’b’c

2 0 1 0 0

3 0 1 1 0

4 1 0 0 1 m4  ab’c’

5 1 0 1 1 m5  ab’c

6 1 1 0 1 m6  abc’

7 1 1 1 1 m7  abc

Solución
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Teoremas de expansión canónica
Otra forma de obtener una expresión booleana como una suma de MINTERM o como producto de MAXTERM 
es a través de la aplicación de los teoremas de expansión canónica para las variables faltantes, los cuales se 
describen a continuación.

Teorema 1

Para obtener la forma canónica de una función suma de productos se multiplica por un término de la forma 

(x  x’) 

donde falte un literal, para que el término sea canónico.

Teorema 2

Para obtener la forma canónica de una función producto de sumas se suma un término de la forma 

(x  x’) 

donde falte un literal, para que el término sea canónico.

Expresar la siguiente función booleana como una suma de MINTERM mediante el uso de los teoremas de expan-
sión canónica:

F(a, b, c)  a  b’  c

E jemplo 

a  b’c

a(b  b’)(c  c’)  b’c(a  a’)

(ab  ab’)(c  c’)  b’ca  b’c a’

abc  abc’  ab’c  ab’c’  ab’c  a’b’c

a’b’c  ab’c’  ab’c  abc’  abc

Entonces:

F(a, b, c)  a’b’c  ab’c’  ab’c  abc’  abc

Como se observa, este es el mismo resultado obtenido en el ejemplo anterior.

Solución

Entonces, la respuesta es:

F(a, b, c)  a’b’c  ab’c’  ab’c  abc’  abc

Otra notación que se puede utilizar es:

∑( ) ( )=F a b c, , 1, 4, 5, 6, 7m

Que significa que es la sumatoria de los MINTERM 1, 4, 5, 6, 7.
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Expresar la siguiente función booleana como un producto de MAXTERM:

F(a, b, c)  a b’ c

E jemplo 

Hay dos formas de resolver este problema: 1) construyendo una tabla de verdad o 2) con manipulación algebrai-
ca mediante el uso de los teoremas de expansión canónica.

Forma 1

Primero, se obtiene la tabla de verdad de la función y luego se toman los MAXTERM desde dicha tabla de ver-
dad (véase tabla 9.4).

Enseguida, se evalúa la función para todas las combinaciones y se toman los MAXTERM de la tabla para los 
cuales la función lógica vale 0.

Tabla 9.4 Tabla de verdad de la función lógica a  b’ c con MAXTERM.

Valor decimal a b c F(a, b, c) MAXTERM

0 0 0 0 0 M0  a b c

1 0 0 1 1

2 0 1 0 0 M2  ab’c

3 0 1 1 0 M3  ab’c’

4 1 0 0 1

5 1 0 1 1

6 1 1 0 1

7 1 1 1 1

Entonces, la respuesta es:

F(a, b, c)  (a  b  c)(a  b’  c)(a  b’  c’)

Que puede expresarse como: 

∏( ) ( )=F a b c, , 0, 2, 3M

Esto significa que es el producto de los MAXTERM 0, 2, 3.

Forma 2

Mediante manipulación algebraica, utilizando los teoremas de expansión canónica, se tiene que:

a  b’c 

(a  b’)(a  c)

(a  b’  cc’)(a  c  bb’)

(a  b’  c)(a  b’  c’) (a  c  b)(a  c  b’)

Solución
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De acuerdo con lo visto antes, es muy importante observar  la simetría que existe entre la suma de produc-
tos y el producto de sumas de una expresión. Así pues, si mi es el MINTERM para la combinación i y Mi es el 
MAXTERM, se tiene que:

M m

m M

'

'
i i

i i

(a  b’  c)(a  b’  c’) (a  b  c)(a  b’  c)

(a  b’  c)(a  b’  c’)(a  b  c)

(a  b  c)(a  b’  c)(a  b’  c’)

Entonces:

F(a, b, c)  (a  b  c)(a  b’  c)(a  b’  c’)

Como se observa, este es el mismo resultado que el obtenido en la primera forma.

Sea el MAXTERM:

M1  a  b  c’

Si:

m1  a’b’c

Entonces, se tiene que:

m'1  a  b  c’

E JEMPLO 

Sea el MINTERM:

m4  ab’c’

Si:

M4  a’  b  c

Entonces, se tiene que:

M'4  ab’c’

E JEMPLO 

La transformación de una fórmula de MINTERM en otra de MAXTERM se basa en la del doble complemento, 
esto es:

(F’)’  F

Además, para convertir de una forma canónica a otra se intercambian los signos  y , y se reemplazan los 
números correspondientes a las combinaciones no incluidas en la forma original.
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9.4 Circuitos lógicos
Al interior de la electrónica digital, se suscitan, con mucha regularidad, un gran número de problemas por 
resolver. Por ejemplo, es muy común que al diseñar un circuito electrónico se necesite tener el valor opues-
to al de un punto determinado, o que cuando un cierto número de pulsadores estén activados, una salida 
permanezca apagada.

Todas estas situaciones pueden expresarse mediante ceros y unos, y tratarse a través de circuitos lógicos 
(o circuitos digitales).

Un circuito lógico es un 
dispositivo que tiene una o 
más entradas y exactamente 
una salida. En cada instante, 
cada entrada tiene un valor, 0 
o 1; estos datos son procesa-
dos por el circuito para dar un 
valor en su salida, 0 o 1.

 Los valores 0 y 1 pue-
den representar ciertas situa-
ciones físicas, como presencia 
y/o ausencia de voltaje en un conductor (véase figura 9.4).

Los circuitos lógicos se construyen a partir de ciertos circuitos elementales, denominados compuertas 
lógicas. Desde un punto de vista práctico, se puede considerar a cada compuerta como una caja negra, en la 
que se introducen valores digitales en sus entradas, mientras que el valor del resultado aparece en la salida.

 En un circuito lógico, cada compuerta tiene asociada una tabla de verdad, la cual expresa, en forma 
de lista, para cada combinación posible de estados en la entrada, el estado de su salida.

Compuertas lógicas básicas
Existen tres tipos básicos de compuertas lógicas: OR, AND y NOT, cada una de las cuales realiza una deter-
minada operación y se indica mediante símbolos especiales.

1. Compuerta lógica OR

Esta compuerta puede recibir dos o más entradas booleanas (unos y/o ceros) y produce una salida 
igual a la suma booleana  de los valores de las variables lógicas de entrada. Donde:

Sea la forma canónica de la suma de productos:

∑ ( )0, 1, 3, 5, 7m

Convertir esta en forma canónica de productos de sumas.

E jemplo 

La forma canónica equivalente en productos de sumas es:

 ∏ ( )2, 4, 6M

Por tanto:

∑ ∏( ) ( )=0, 1, 3, 5, 7 2, 4, 6m M

Solución

t

v

0

1

0

1

00

1 1

Figura 9.4 Presencia y ausencia de voltaje en un conductor.
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x y
x y1 si 1 o 1

0 en cualquier otro caso
+

= =

 
El símbolo con dos entradas de esta compuerta se observa en la figura 9.5.
En el caso de esta compuerta, se utiliza como operador el mismo de la suma booleana, aunque tam-
bién se puede utilizar el operador . 
Por su parte, el símbolo de esta compuerta con varias entradas se observa en la figura 9.6.

x

y

x + y

Figura 9.5 Símbolos de la compuerta lógica 
OR con dos entradas.

Su tabla de verdad se muestra en la tabla 9.5.

Tabla 9.5 Tabla de verdad de la compuerta lógica OR.

x y x  y

1 1 1

1 0 1

0 1 1

0 0 0 

2. Compuerta lógica AND

Esta compuerta puede recibir dos o más entradas booleanas (unos y/o ceros) y produce una salida 
igual al producto booleano  de los valores de las variables lógicas de entrada. Donde:

x y
x y1 si 1 o 1

0 en cualquier otro caso
⋅

= =

El símbolo con dos entradas de esta compuerta lógica se observa en la figura 9.7.
En el caso de esta compuerta, se utiliza como operador el mismo del producto booleano; además, 
también se puede utilizar el operador  o eliminarlo al igual que en el producto booleano.
Por otra parte, el símbolo con varias entradas de esta compuerta se ve en la figura 9.8.

x

y

x  y

Figura 9.7 Símbolo de la compuerta lógica AND 
con dos entradas.

x
1

x
1
 +  x

2
 +  . . . +  x

n

x
n

x
2

...

Figura 9.6 Símbolo de la compuerta lógica OR con 
más de dos entradas.

x
1

x
1
   x

2
   . . .   x

n

x
n

x
2

...

Figura 9.8 Símbolo de la compuerta lógica AND con más 
de dos entradas.
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La tabla de verdad de esta compuerta lógica se muestra en la tabla 9.6.

Tabla 9.6 Tabla de verdad de la 
compuerta lógica AND.

x y x y

1 1 1

1 0 0

0 1 0

0 0 0

3. Compuerta NOT

Este tipo de compuertas solo acepta una entrada booleana (uno o cero) y produce el complemento 
de este valor como salida. Donde:

 x’ �
 1 si x � 0

  0 si x � 1

El símbolo de esta compuerta se muestra en la figura 9.9. Su operador es ’, aunque también se pueden 
utilizar los operadores  o ~.
La tabla de verdad de esta compuerta se observa en la tabla 9.7.

Tabla 9.7 Tabla de verdad de la 
compuerta lógica NOT.

x x’

1 0

0 1

Compuertas lógicas derivadas
Es importante destacar aquí que existen otras compuertas lógicas, las cuales, aunque no son básicas, son 
muy útiles al momento de combinarse en diferentes expresiones lógicas.

1. Compuerta lógica NOR 

Esta compuerta puede recibir dos o más entradas booleanas (unos y/o ceros) y produce una salida 
igual al complemento de la suma booleana de los valores de las variables lógicas de entrada. Donde:

 (x � y) �
 0 si x � 1 o y � 1

  1 en caso contrario

El símbolo con dos entradas de esta compuerta se representa en la figura 9.10.
Esta compuerta equivale a una compuerta OR seguida de una compuerta NOT (véase figura 9.11).

x

y

(x + y)′

Figura 9.10 Símbolo de la compuerta lógica 
NOR con dos entradas.

x
x ′

Figura 9.9 Símbolo de la compuerta lógica NOT.

x

y

x + y (x + y)′

Figura 9.11 Equivalencia de la compuerta lógica NOR con dos entradas.
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La tabla de verdad de la compuerta NOR se muestra en la tabla 9.8.

Tabla 9.8 Tabla de verdad de la 
compuerta lógica NOR.

x y (x y)’

1 1 0

1 0 0

0 1 0

0 0 1 

2. Compuerta lógica NAND

Esta compuerta puede recibir dos o más entradas booleanas (unos y/o ceros) y produce una salida igual 
al complemento del producto booleano de los valores de las variables lógicas de entrada. Donde:

 (x � y)’ �
 0 si x � 1 o y � 1

  1 en cualquier otro caso

El símbolo con dos entradas de esta compuerta lógica se observa con detalle en la figura 9.12.
Esta compuerta equivale a una compuerta AND seguida de una compuerta NOT (véase figura 9.13).

x

y

(x  y)′

Figura 9.12 Compuerta lógica NAND con dos entradas.

La tabla de verdad de esta compuerta lógica se muestra en la tabla 9.9.

Tabla 9.9 Tabla de verdad de la 
compuerta lógica NAND.

x y (x y)’

1 1 0

1 0 1

0 1 1

0 0 1 

3. Compuerta lógica XOR

Esta compuerta puede recibir dos o más entradas booleanas (unos y/o ceros) y produce una salida 
igual a cero si las variables de entrada son iguales y uno si son diferentes. Esta compuerta equivale a 
la OR, exclusiva del cálculo proposicional; donde:

 (x � y) �
 0 si x � y

  1 en cualquier otro caso
 
El símbolo con dos entradas de esta compuerta se muestra en la figura 9.14.
La tabla de verdad de la compuerta lógica XOR se muestra en la tabla 9.10.

x

y

x  y (x  y)′

Figura 9.13 Equivalencia de la compuerta lógica NAND con dos entradas.
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(x  y)

x

y

Figura 9.14 Compuerta lógica XOR con dos 

entradas.

Esta compuerta equivale a la expresión lógica:

x’  y  x  y’

que se representa en la figura 9.15. Para comprobar esta equivalencia basta con obtener la tabla de 
verdad de dicha expresión (tabla 9.11) y compararla con la de la XOR y verificar que son idénticas.

Circuitos lógicos
Las compuertas lógicas descritas antes pueden 
combinarse entre sí para formar circuitos lógicos y 
simbolizar diferentes expresiones lógicas.

Sea la expresión lógica:

X  (x  y)’ z’

Representar el circuito lógico correspon-
diente mediante el uso de las compuertas 
lógicas.

 
Figura 9.16 Circuito lógico utilizando compuertas lógicas básicas.

E jemplo 

El circuito lógico correspondiente a la expresión 
lógica anterior puede representarse utilizando 
exclusivamente compuertas lógicas básicas (véa-
se figura 9.16) o utilizando compuertas lógicas de-
rivadas (véase figura 9.17).

Figura 9.17 Circuito lógico utilizando compuertas 
lógicas derivadas.

Solución

x

(x  y)

y

x

y

Figura 9.15 Equivalencia de la compuerta lógica XOR con dos 
entradas.

x

y

z′
z

x

(x + y)′

x

y

x + y

z′
z

x

(x + y)′

Tabla 9.10 Tabla de verdad de la 
compuerta lógica XOR.

x y (x · y)

1 1 0

1 0 1

0 1 1

0 0 0 

Tabla 9.11 Tabla de verdad de la 
expresión x’  y  x  y’.

x y x’ y’ x’  y x  y’ x’  y  x  y’

1 1 0 0 0 0 0

1 0 1 1 0 1 1

0 1 1 0 1 0 1

0 0 1 1 0 0 0 
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Es fácil observar que las tablas de verdad correspondientes a las compuertas lógicas OR, AND y NOT son, 
respectivamente, idénticas a las tablas de verdad de la disyunción , la conjunción  y la negación ~, en el 
cálculo proposicional visto en el capítulo 2, solo que en estas se cambia V y F por 1 y 0, respectivamente. 

Por tanto, cualquier expresión lógica tiene su equivalencia en el cálculo proposicional.

Sea la expresión lógica:

X  (x1 x2 x3)’

Mediante el uso de compuertas lógicas representar el circuito lógico correspondiente y obtener su equivalencia 
en el cálculo proposicional.

E jemplo 

El circuito lógico correspondiente 
a la expresión lógica anterior se re-
presenta en la figura 9.18.

La expresión lógica equivalente en el cálculo proposicional es:

((p  q)  r)

Solución

x

x
1

x
2

x
3

Figura 9.18 Circuito lógico de la expresión lógica X  (x1 x2 x3)’.

Además, también es posible representar expresiones lógicas más complejas y obtener su equivalencia en el 
cálculo proposicional.

Sea la expresión lógica:

X  (((x1 x2 x3)’ x4 x5) x4 x5 (x5)’)’

Utilizando las compuertas lógicas re-
presentar el circuito lógico correspon-
diente y obtener su equivalencia en el 
cálculo proposicional. 

E jemplo 

El circuito lógico correspondien-
te a la expresión lógica anterior se 
muestra en la figura 9.19.

La expresión lógica equivalente en el cálculo proposicional es:

(( (p  q  r) (s  t))  s  t  t)

Solución

x
1

x
2

x
3

x
4

x
5

x

Figura 9.19 Circuito lógico de la expresión lógica  
X  (((x1 x2 x3)’ x4 x5) x4 x5 (x5)’)’. 
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9.5 Propiedades de los circuitos lógicos
Luego de estudiar las compuertas lógicas OR, AND y NOT (véase sección 9.4), resulta pertinente resaltar 
que al combinarse estas pueden implementarse como circuitos lógicos, además de que se puede obtener la 
equivalencia de los circuitos lógicos en el cálculo proposicional.

Ahora, se analizan algunas de las propiedades de los circuitos lógicos utilizando las compuertas lógicas. 
Dichas propiedades pueden demostrarse mediante el uso de los valores de las variables lógicas de las tablas 
de verdad de cada una de las compuertas.

Si  y  son los operadores binarios de las compuertas lógicas OR y AND, respectivamente, y’ es el opera-
dor unario de la compuerta lógica NOT, entonces se deben cumplir las siguientes propiedades sobre cual-
quier x1, x2, y x3 {1, 0}.

1. Identidad

 a) x1  0  x1

 b) x1  1  x1

Si se supone que en la figura 
9.20i) x2  0 y x3  0; es decir, x2 

 x3  0, entonces, sin impor-
tar el valor lógico de x1, la salida 
correspondiente siempre será 
igual a x1. Con lo que se com-
prueba el inciso a).

Ahora, si se supone que en la 
figura 9.20ii) x2  1 y x3  1; es 
decir, x2  x3  1, entonces, sin 
importar el valor lógico de x1, la 
salida correspondiente siempre 
será igual a x1. Con lo que queda 
comprobado el inciso b).

DEMOSTRACIÓN 

En este caso, tanto en la figura 9.21i) 
como en la figura 9.21ii), basta con 
observar las tablas 9.5 y 9.6, corres-
pondientes a las tablas de verdad 
de las compuertas OR y AND, res-
pectivamente, para verificar que se 
cumple dicha propiedad tanto en el 
inciso a) como en el b).

DEMOSTRACIÓN 

x 
1

0

x 
1

x 
1

1

x
1

x
1

x
2

x
3

0

0

x
1

x
2

x
3

1

1

ii )

i )

=

=

Figura 9.20 Circuitos lógicos para la propiedad identidad.

x 
1

x 
2

x
2 

+ x 
1

x 
1

x 
2

x
2 

 x
1

x
1

x
2

x
1

x
2

ii )

i )

=

=

x 
1
+ x 

2

x
1 

 x
2

Figura 9.21 Circuitos lógicos para la propiedad conmutativa.

2. Propiedad conmutativa

  a) x1  x2  x2  x1

  b) x1  x2  x2  x1
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3. Propiedad distributiva 

  a) x1  (x2  x3)  (x1  x2)  (x1  x3)
  b) x1  (x2  x3)  (x1  x2)  (x1  x3)

Para demostrar esta propiedad, la 
figura 9.22 i) nos permite obtener 
las tablas de verdad para ambos 
lados de la igualdad (véanse tablas 
9.12 y 9.13), además de que en esta 
se observa que tienen los mismos 
valores de verdad de salida, con lo 
que se demuestra el inciso a). 

Enseguida, se obtienen las tablas 
de verdad para ii) de la figura 9.22 
(véanse tablas 9.14 y 9.15), donde se 
observa que se tienen los mismos 
valores de verdad de salida, con lo 
que también se comprueba el in-
ciso b).

DEMOSTRACIÓN 

x
1

x
2

x
3

x
1

x
2

x
3

ii )

i )

=

=

x
2

x
1

x
3

x
1

x
2

x
1

x
3

x
1

Figura 9.22 Circuitos lógicos para la propiedad distributiva.

Tabla 9.13 Tabla de verdad de la operación 
lógica (x1  x2) (x1 x3).

x1 x2 x3 x1 x2 x1 x3 (x1  x2) (x1  x3)

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 1 0 0

0 1 1 1 1 1

1 0 0 1 1 1

1 0 1 1 1 1

1 1 0 1 1 1

1 1 1 1 1 1

Tabla 9.15 Tabla de verdad de la operación 
lógica (x1  x2) (x1 x3).

x1 x2 x3 x1 x2 x1 x3 (x1  x2) (x1  x3)

0 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 1 1 0 0 0

1 0 0 0 0 0

1 0 1 0 1 1

1 1 0 1 0 1

1 1 1 1 1 1

Tabla 9.12 Tabla de verdad de la operación 
lógica x1 (x2 x3).

x1 x2 x3 x2 x3 x1 (x2 x3)

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 1

1 0 0 0 1

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Tabla 9.14 Tabla de verdad de la operación 
lógica x1 (x2 x3).

x1 x2 x3 x2 x3 x1 (x2 x3)

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 1 0

1 0 0 0 0

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1
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4. Propiedad asociativa

  a) (x1  x2)  x3  x1  (x2  x3)
  b) (x1  x2)  x3  x1  (x2  x3)

Para la demostración de esta 
propiedad, al igual que para la 
propiedad distributiva, primero 
deben obtenerse las tablas de 
verdad (véanse tablas 9.16 y 9.17) 
para ambos lados de la igual-
dad de la figura 9.23 i), donde se 
observa que ambos tienen los 
mismos valores de verdad de 
salida, con lo que se demuestra 
el inciso a).

Enseguida, también se obtienen 
las tablas de verdad para ambos 
lados de la figura 9.23 ii) (véanse tablas 9.18 y 9.19), donde de nuevo se observa que ambos tienen los mismos valores 
de verdad de salida, con lo que también se comprueba el inciso b).

DEMOSTRACIÓN 

Tabla 9.17 Tabla de verdad de la operación 
lógica x1 (x2 x3).

x1 x2 x3 x2 x3 x1 (x2  x3)

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 1 1

1 0 0 0 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

Tabla 9.18 Tabla de verdad de la operación 
lógica (x1 x2) x3.

x1 x2 x3 x1 x2 x1 (x2 x3)

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 0 0

1 0 0 0 0

1 0 1 0 0

1 1 0 1 0

1 1 1 1 1

Tabla 9.18 Tabla de verdad de la operación 
lógica (x1 x2) x3.

x1 x2 x3 x2 x3 x1 (x2 x3)

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 1 0

1 0 0 0 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Tabla 9.16 Tabla de verdad de la operación 
lógica (x1 x2) x3.

x1 x2 x3 x1 x2 (x1 x2) x3

0 0 0 0 0

0 0 1 0 1

0 1 0 1 1

0 1 1 1 1

1 0 0 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

x
1

x
2

x
3

x
1

x
2

x
3

ii )

i )

=

=

x
1

x
2

x
3

x
1

x
2

x
3

Figura 9.23 Circuitos lógicos para la propiedad asociativa.
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5. Propiedad de complementos

  x1    1
  x1    0

Para demostrar esta propiedad, tanto en la figura 9.24 i) como en la figura 9.24 ii), hay que observar las tablas 9.5 y 
9.6, las cuales corresponden a las tablas de verdad de las compuertas OR y AND. Sin importar el valor lógico de x1, 
se cumple tanto el inciso a) como el b).

x
1

x′

x
1

x′

x
1

x′

x
1

x′

=

=

0

1

1

1

1

1

 Figura 9.24 Circuitos lógicos para la propiedad de complementos.

DEMOSTRACIÓN 

Para demostrar esta propie-
dad, primero se obtiene la 
tabla de verdad para ambos 
lados de la igualdad en la fi-
gura 9.25 i) (véase tabla 9.20), 
donde se puede observar que 
se tienen los mismos valores 
de verdad de salida, con lo 
que se demuestra el inciso a).

Enseguida, se obtiene la ta-
bla de verdad para la figura 
9.25 ii) (véase tabla 9.21), don-
de se observa que tienen los 
mismos valores de verdad de 
salida, con lo que también se 
comprueba el inciso b).

DEMOSTRACIÓN 

6. Leyes de De Morgan

a) (x1  x2)’    
b) (x1  x2)’    

x
1

x
2

x
1

x
2

ii )

i )

(x 
1
+ x 

2
)′

=

=

(x
1 

 x
2
)′

x
1

x
2

x
1

x
2

Figura 9.25 Circuitos lógicos para las Leyes de De Morgan.
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Como se deduce de la sección anterior, las propiedades de los circuitos lógicos son idénticas a las propieda-
des del álgebra booleana, ya que todas las operaciones de los circuitos lógicos son operaciones booleanas 
además de que, en ambos casos, producen salidas idénticas. Lo único que puede variar es la representación 
de los operadores y de las variables lógicas.

Circuitos lógicos equivalentes
Se dice que dos circuitos lógicos son equivalentes si cada uno tiene entradas x1, x2, … , xn y una sola salida; 
los circuitos con las mismas entradas siempre producen las mismas salidas.

Tabla 9.20 Tabla de verdad para el inciso a) 
de las Leyes de De Morgan.

x1 x2 x1 x2 (x1 x2)’ x'1 x'2 x'1  x'2

0 0 0 1 1 1 1

0 1 1 0 1 0 0

1 0 1 0 0 1 0

1 1 1 0 0 0 0

Comprobar si los circuitos lógicos de las figuras 9.26 i) y 9.26 ii) son equivalentes.

E jemplo 

Primero, se elaboran las tablas de verdad; en 
este caso, la tabla de la izquierda de la tabla 
9.22 corresponde al circuito lógico de la figura 
9.26 i), mientras que la de la derecha correspon-
de a la figura 9.26 ii).

Como se puede observar, las tablas de verdad 
tienen las mismas salidas, por lo que se dice 
que son circuitos lógicos equivalentes.

Solución

x
2

x

x
1

x
2

x

x
1

ii )

i )

Figura 9.26 Circuitos lógicos equivalentes.

Tabla 9.21 Tabla de verdad para el inciso b) de 
las Leyes de De Morgan.

x1 x2 x1 x2 (x1 x2)’ x'1 x'2 x'1   x'2

0 0 0 1 1 1 1

0 1 0 1 1 0 1

1 0 0 1 0 1 1

1 1 1 0 0 0 0 

Tabla 9.22 Tablas de verdad para los circuitos lógicos  
i) y ii) de la figura 9.26.

x1 x2 x1 x2 (x1 x2)’ x1 x2 x'1 x'2 x'1  x'2

0 0 0 1 0 0 1 1 1

0 1 1 0 0 1 1 0 0

1 0 1 0 1 0 0 1 0

1 1 1 0 1 1 0 0 0
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9.6 Simplificación de circuitos
El proceso de la simplificación consiste en aplicar las propiedades y leyes del álgebra booleana para llegar a 
la expresión más simple de una expresión booleana, la cual, por lo general, se presenta en su forma de suma 
de productos mínima.

Simplificar la expresión booleana:

F(a, b, c)  ab’(c  a  cb’)

E jemplo 

 F(a, b, c)  ab’(c  a  cb’)

 ab’c  ab’a  ab’cb’ B3

 ab’c  ab’  ab’c Ley de idempotencia

 ab’c  ab’ Ley de idempotencia

 ab’ Ley de la absorción

Solución

Simplificar la expresión booleana:

F(a, b, c)  a’bc’  a’bc  ab’c’  ab’c  abc

E jemplo 

 F(a, b, c)  a’bc’  a’bc  ab’c’  ab’c  abc

 a’b(c’  c)  ab’(c’  c)  abc B3

 (c’  c)(a’b   ab’)  abc B3

 1(a’b   ab’)  abc B5

 a’b   ab’  abc  B1

 a’b  a(b’  bc) B3

 a’b  a((b’  b)(b’  c)) B3

 a’b  a(1(b’  c)) B5

 a’b  a(b’  c) B1

 a’b  ab’  ac B3

Aunque de manera más estricta, todavía se tendría que:

 a  b  ac Definición 

No obstante que este resultado es correcto no está expresado en sumas de productos, por lo que la simplifi-
cación es:

F(a, b, c)  a’b  ab’  ac

Solución
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Expresiones booleanas minimales
Considérese una expresión booleana E. Dado que E puede representar un circuito lógico, es posible que se 
pretenda obtener una expresión F que, siendo equivalente a la expresión original, sea en algún sentido mí-
nima; de esta forma, se lograría minimizar la cantidad de compuertas lógicas utilizadas para implementar 
la operación buscada, con la consecuente economía de recursos.

En este apartado se estudia la forma minimal de las expresiones booleanas que están en forma de suma 
de productos. 

De este modo, si E es una expresión booleana en forma de suma de productos, EL denota el número de 
literales en E (contados con sus repeticiones) y ES denota el número de sumandos en E.

Si E es la expresión booleana:

E(a, b, c)  abc’  a’b’d  ab’c’d  a’bcd

Entonces:

EL 14 y ES 4.

E JEMPLO 

Sea F una expresión booleana de suma de productos equivalente 
a E. Entonces, se dice que E es más simple que F si se cumple que:

EL ≤ FL     y     ES ≤ FS

Y por lo menos una de las relaciones es una desigualdad estricta.

Diagramas de subconjuntos
Los diagramas de subconjuntos ofrecen una manera sencilla de 
visualizar las relaciones que puede haber entre diversas variables 
lógicas. Es probable que los diagramas más sencillos de todos sean 
los que representan al 1 lógico, el cual puede representarse como 
un cuadro completamente lleno, y al 0 lógico, el cual puede repre-
sentarse como un cuadro vacío por completo, como se observa en 
la figura 9.27.

En este tipo de diagramas no solo se pueden representar el 1 y 
el 0, también es posible representar variables lógicas. El diagrama 
más sencillo de todos es el que se utiliza para representar una sola 
variable, mismo que está dividido en dos partes: una parte “llena”, 
que es la parte en la cual la variable x toma el valor de 1 (la parte 
en color gris de la figura 9.28) y la parte “vacía”, que es la parte en 
la cual la variable x toma el valor de 0 (la parte sin pantalla de la 
figura 9.28)

Con estos diagramas no solo se puede representar una variable 
lógica, también es posible representar el complemento o inverso ló-
gico de la variable, que se observa como se muestra en la figura 9.29.

Del mismo modo, también es posible representar una segunda 
variable y, además del complemento de la misma, como se muestra 
en la figura 9.30.

En la figura 9.31 se muestran las regiones en las que ambas va-
riables lógicas se superponen en el mismo diagrama.

01

Figura 9.27 Representación del 1 y 0 lógicos 
utilizando diagramas de subconjuntos.

x

Figura 9.28 Representación de una variable 
lógica utilizando diagramas de subconjuntos.

x′

Figura 9.29 Representación del complemen-
to de una variable lógica utilizando diagramas 
de subconjuntos.
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xy′xy x′ y

z

z′

x′ y′

Figura 9.33 Diagrama de subconjuntos para 
tres variables.

x + y x′  +  y′ xy′  + x′ y

Figura 9.32 Regiones que representan las sumas booleanas x  y, 
x’  y’ y la OR exclusiva.

y′y

Figura 9.30 Representación de una segunda 
variable lógica y su complemento con el uso 
de diagramas de subconjuntos.

xy x′ y xy′ x′ y′

Figura 9.31 Regiones donde se intersecan las dos variables lógicas.

xy′xy x′ y

z

z′

x′ y′ xy′xy x′ y

z

z′

x′ y′ xy′xy x′ y

z

z′

x′ y′

xy′xy x′ y

z

z′

x′ y′ xy′xy x′ y

z

z′

x′ y′ xy′xy x′ y

z

z′

x′ y′

xy′xy x′ y

z

z′

x′ y′ xy′xy x′ y

z

z′

x′ y′

xyz

x′ yz

x′ y′ z′

xy′ z

xyz′

x′ yz′

x′ y′ z

xy′ z

Figura 9.34 Regiones donde se intersecan las tres variables lógicas.
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xy′xy x′y

z

z′

x′y′ xy′xy x′y

z

z′

x′y′ xy′xy x′y

z

z′

x′y′

xy′xy x′y

z

z′

x′y′ xy′xy x′y

z

z′

x′y′ xy′xy x′y

z

z′

x′y′

xy

x′y

xy′

xz

x′y

y′ z

xy′xy x′y

z

z′

x′y′ xy′xy x′y

z

z′

x′y′ xy′xy x′y

z

z′

x′y′

xy′xy x′y

z

z′

x′y′ xy′xy x′y

z

z′

x′y′ xy′xy x′y

z

z′

x′y′

x′ z

x′ z′

xz′

yz′

y′ z′

yz

Figura 9.35 Regiones donde se intersecan dos de las tres variables lógicas.

La región en la cual las variables lógicas x y y se unen, en vez de intersecarse, es la parte del diagrama en 
donde pueden estar ya sea en x o en y; es decir, la región que representaría la suma booleana x  y de dichas 
variables. Lo mismo ocurre con la suma lógica de sus complementos. Asimismo, se puede representar la 
expresión booleana xy’  x’y, que representa la OR exclusiva. Estas sumas booleanas se representan como 
se observa en la figura 9.32.

Si se quiere representar una tercera variable z, se puede hacer en un arreglo como el que se muestra en 
la figura 9.33.

Al superponer las tres variables lógicas en el mismo diagrama, las regiones donde se intersecan se mues-
tran en la figura 9.34.

Al superponer las tres variables lógicas en el mismo diagrama, las regiones donde se intersecan dos de 
las tres variables se muestran en la figura 9.35.

Por último, las regiones que representan una sola variable lógica se muestran en la figura 9.36.
La región en la cual las variables lógicas x, y, z se unen, en vez de intersecarse, es la parte del diagrama 

en donde pueden estar ya sea en x, o en y, o en z; es decir, la región que representaría la suma booleana x  
y  z de dichas variables. Lo mismo ocurre con la suma lógica de sus complementos, tal como se muestra 
en la figura 9.37.
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z

z′

z

z′

xy′xy x′y

z

z′

x′y′ xy′xy x′y

z

z′

x′y′

x + y + z x′ + y′ + z′

Figura 9.37. Regiones que representan las sumas booleanas x  y  z y x’  y’  z’.

Además, se pueden representar diversas sumas booleanas considerando las regiones de las interseccio-
nes de las variables consideradas.

xy′xy x′y

z

z′

x′y′ xy′xy x′y

z

z′

x′y′ xy′xy x′y

z

z′

x′y′

xy′xy x′y

z

z′

x′y′ xy′xy x′y

z

z′

x′y′ xy′xy x′y

z

z′

x′y′

x y z

x′ y′ z′

Figura 9.36 Regiones que representan una sola variable lógica.

Sean las siguientes sumas booleanas:

a)  x’z  x’y’

b)  x’y’  y’z’  

c)  xz  xy’  y’z’  

d)  x  z’

e)  x’z’  xyz

f )  xy  yz’  x’y’z 

Obtener el diagrama de subconjuntos correspondiente.

E jemplo 
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Mapas de Karnaugh
El método de los mapas de Karnaugh constituye un método gráfico para encontrar las formas minimales de 
sumas de productos para expresiones booleanas que involucran un máximo de seis variables. No obstante, 
en esta sección solo se tratan los casos de dos, tres y cuatro variables lógicas.

En cada caso basta con unir cada una de las regiones correspondientes de las intersecciones de las variables con-
sideradas en cada uno de los términos de las sumas booleanas de cada inciso, como se observa en la figura 9.38.

xy′xy x′y

z

z′

x′y′ xy′xy x′y

z

z′

x′y′

xy′xy x′y

z

z′

x′y′ xy′xy x′y

z

z′

x′y′

a)  x′z + x′y′ b)  x′y′ + y′z′

xy′xy x′y

z

z′

x′y′ xy′xy x′y

z

z′

x′y′

e)  x′z′ + xyz f)  xy + yz′ + x′y′z

c)  xz + xy′ + y′z′ d)  x + z′

Figura 9.38 Diagramas de sumas booleanas.

Solución

Maurice Karnaugh graduado en la Universidad de Yale, en 1952. Trabajó como físico y matemático de los 
laboratorios Bell. Aunque es muy conocido por crear, en 1950, el método tabular o mapa de Karnaugh 
(también conocido como tabla de Karnaugh o diagrama de Veitch, abreviado como K-Mapa o KV-Mapa), 
un diagrama utilizado para la minimización de funciones algebraicas booleanas. Estos mapas o diagramas 
aprovechan la capacidad del cerebro humano de trabajar mejor con patrones que con ecuaciones y otras 
formas de expresión analítica.

Un mapa de Karnaugh consiste en una serie de cuadrados, cada uno de los cuales representa una línea 
de la tabla de verdad. Puesto que la tabla de verdad de una función de N variables posee 2N filas, el mapa K 
correspondiente también debe poseer 2N cuadrados. Cada cuadrado alberga un 0 o un 1, dependiendo del 
valor que toma la función en cada fila.

Figura 9.39 Maurice Karnaugh (n. 1924), ingeniero estadounidense en telecomunicaciones.
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Producto fundamental
Un producto fundamental es un término producto de dos o más variables lógicas donde ninguna tiene la 
misma variable complementada o sin complementar.

Los términos producto:

xy’z , x’y’, zx’t

son productos fundamentales, mientras que los términos producto:

x’x, y’, zx’yx

no son productos fundamentales.

E JEMPLO 

Sea el conjunto de variables lógicas {x, y, z, w}

Los productos fundamentales x’yz, xyz’, xyw no son adyacentes, ya que tales productos no contienen todas las 
variables.

• Los pares de productos fundamentales:

a) x’yzw, xyzw’ 

b) xyzw, x’yzw’ 

c) xy’zw, xyz’w 

 No son adyacentes porque difieren en más de una literal.

• Los pares de productos fundamentales:

a) x’yzw, xyzw

b) xyzw, xy’zw 

c) xy’zw, xy’z’w 

Son adyacentes porque difieren exactamente en una literal, que es una variable complementada en uno de los 
productos y sin complementar en el otro o viceversa.

E JEMPLO 

Sea un conjunto de variables lógicas {x1, x2, … , xn}, con estas se pueden formar los productos fundamentales 
Pi que contienen todas las variables, ya sea en su forma complementada o en su forma sin complementar. 

Productos fundamentales adyacentes
Dados dos productos fundamentales, se dice que P1 y P2 son adyacentes si difieren exactamente en una li-
teral, la cual tiene que ser una variable complementada en uno de los productos y sin complementar en el 
otro.

En un mapa de Karnaugh, cada uno de los productos fundamentales Pi que contienen todas las variables 
lógicas es representado en forma gráfica por un cuadrado, y la relación de adyacencia entre tales productos 
es representada por la adyacencia geométrica. Los cuadrados adyacentes son aquellos que representan 
MINTERM y que difieren solo en una variable lógica.
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Mapas de Karnaugh de dos variables
Sean las variables lógicas x y y; con estas pueden formarse cuatro productos fundamentales Pi que contie-
nen todas las variables:

xy              x’y
xy’              x’y’

Cada uno de estos productos fundamentales se representa por un cuadrado en la figura 9.40, respetando la 
relación de adyacencia de los MINTERM.

Los MINTERM que representan las celdas se escriben dentro de estas mismas, como se aprecia en la figura 
9.41, la cual constituye la representación más utilizada; no obstante, también pueden representarse como 
se observa en la figura 9.42.

x′x

y

y′

Figura 9.40 Representación para mapas 
de Karnaugh de dos variables lógicas.

x′x

x′yy

y′ x′y′xy′

xy

Figura 9.41 Representación más usada de 
MINTERM.

01

x′y1

0 x′y′xy′

xy

x
y

Figura 9.42 Segunda forma representa-
ción de MINTERM.

Mapas de Karnaugh de tres variables
Sean las variables lógicas x, y, z. Con estas pueden formarse ocho productos fundamentales Pi que contienen 
todas las variables:

 xyz              xy’z              x’y’z              x’yz

 xy’z’              xy’z’              x’y’z’              x’yz’

Cada uno de estos productos fundamentales se representa por un cuadrado (véase figura 9.43), respetan-
do la relación de adyacencia de los MINTERM.

Los MINTERM que representan las celdas se escriben dentro de estas, como se observa en las figuras 9.44 
y 9.45.

xy′xy x′y

z

z′

x′y′

Figura 9.43 Representación para mapas de 
Karnaugh de tres variables lógicas.

xy′xy x′y

z

z′

x′y′

xy′z′xy′z′

x′yzx′y′z

x′yz′x′y′z′

xy′zxyz

Figura 9.44 Representación de 
MINTERM.

xy′xy x′y

z

z′

x′y′

xy′z′xy′z′

x′yzx′y′z

x′yz′x′y′z′

xy′zxyz

Figura 9.45 Segunda forma de 
representación de MINTERM.
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Mapas de Karnaugh de cuatro variables
Sean las variables lógicas x, y, z, w. Con estas pueden formarse 16 productos fundamentales Pi que contienen 
todas las variables: 

xyzw               xy’zw               x’y’zw               x’yzw

xyzw’               xy’zw’               x’y’zw’               x’yzw’
xyz’w’               xy’z’w’               x’y’z’w’               x’yz’w’
xyz’w               xy’z’w               x’y’z’w               x’yz’w

Cada uno de estos productos fundamentales se representa por un cuadrado (véase figura 9.46), respetan-
do la relación de adyacencia de los MINTERM.

Cada uno de estos productos fundamentales se representa por un cuadrado (véanse figuras 9.47 y 9.48), 
respetando la relación de adyacencia de los MINTERM.

xy′xy x′y

zw

zw′

x′y′

z′w

z′w′ x′y′z′w′

x′yz′w

xyzw x′y′zw

x′y′zw′

x′y′z′w′xy′z′w

x′yzw′

x′yzw

x′yz′w′

xyz′w

xyz′w′

xyzw′

xy′zw

xy′zw′

xy′z′w′

Figura 9.47 Representación de MINTERM.

xy′xy x′y

zw

zw′

x′y′

z′w

z′w′

Figura 9.46 Representación para mapas de Karnaugh de cuatro 
variables lógicas.

xy
zw

1011 01

11

10

00

01

00 x′y′z′w′

x′yz′w

xyzw x′y′zw

x′y′zw′

x′y′z′w′xy′z′w

x′yzw′

x′yzw

x′yz′w′

xyz′w

xyz′w′

xyzw′

xy′zw

xy′zw′

xy′z′w′

Figura 9.48 Segunda forma de representación de MINTERM.

x′x

y

y′

x′x

y

y′

x′x

y

y′

1 1

1

1

x′x

y

y′ 1 1

x′x

y

y′ 1

1

Figura 9.49 Celdas adyacentes de los productos 
fundamentales de dos variables lógicas.

Patrones básicos
Dado que las expresiones booleanas se minimizan mediante este método, también es conveniente estar fa-
miliarizado con los patrones de las posibles celdas adyacentes de los productos fundamentales y los grupos 
de unos, los cuales se encerrarán mediante óvalos.

Los patrones básicos para los productos fundamentales adyacentes de dos variables lógicas se observan 
con claridad en la figura 9.49.
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Para los patrones básicos de los productos fundamentales adyacentes de 
tres variables lógicas, los cuadrados de los extremos izquierdo y derecho tam-
bién se consideran adyacentes entre sí, como si los cuadrados fueran un cilin-
dro unido por ambos extremos, como se muestra en la figura 9.50.

1 1

1

1

1 1

1

1

xy′xy x′y

z

z′

x′y′

xy′xy x′y

z

z′

x′y′

xy′xy x′y

z

z′

x′y′

xy′xy x′y

z

z′

x′y′

xy′xy x′y

z

z′

x′y′

xy′xy x′y

z

z′

x′y′

xy′xy x′y

z

z′

x′y′

xy′xy x′y

z

z′

x′y′

xy′xy x′y

z

z′

x′y′

xy′xy x′y

z

z′

x′y′

xy′xy x′y

z

z′

x′y′

xy′xy x′y

z

z′

x′y′

1 1

1

1

1 1

1

1

1 1

1 1

11

11

Figura 9.51 Celdas adyacentes de los productos fundamentales de dos celdas para tres 
variables lógicas.

xy′ x′y′

xy′xy

Figura 9.50 Extremos 
considerados como celdas 
adyacentes de los productos 
fundamentales.

Los patrones básicos para los 
productos fundamentales adya-
centes de dos celdas para tres va-
riables lógicas se muestran en la 
figura 9.51.

Los patrones básicos para los 
productos fundamentales adya-
centes de cuatro celdas para tres 
variables lógicas se muestran en 
la figura 9.52.

De forma análoga al caso de 
tres variables, en este caso los cua-
drados de los extremos izquierdo 
y derecho también se consideran 
adyacentes entre sí, lo mismo que 
los cuadrados de los extremos su-
perior e inferior, que también se 
consideran adyacentes entre sí.

Dada la gran cantidad de pro-
ductos fundamentales, solo se 
muestran aquí algunos casos. Así,  
en las figuras 9.53, 9.54 y 9.55 se 
observan algunos de los produc-
tos fundamentales que se repre-
sentan mediante grupos de 2n (21, 
22 y 23) cuadrados adyacentes.

Los patrones básicos para los 
productos fundamentales adya-
centes de dos celdas para cuatro 
variables lógicas se observan en 
la figura 9.53 y los de cuatro cel-
das para cuatro variables lógicas 
en la figura 9.54; por su parte, los 
de ocho celdas para cuatro varia-
bles lógicas se distinguen en la 
figura 9.55.
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xy′xy x′y

z

z′

x′y′

xy′xy x′y

z

z′

x′y′

xy′xy x′y

z

z′

x′y′

xy′xy x′y

z

z′

x′y′

xy′xy x′y

z

z′

x′y′

xy′xy x′y

z

z′

x′y′

11 11

1

1

1

1

1 1

1 1

1

1

1

1

1

1

1

1

1111

Figura 9.52 Celdas adyacentes de los productos fundamentales de cuatro celdas para 
tres variables lógicas.

1 1

xy′xy x′y

zw

zw′

x′y′

z′w

z′w′

xy′xy x′y

zw

zw′

x′y′

z′w

z′w′

xy′xy x′y

zw

zw′

x′y′

z′w

z′w′

xy′xy x′y

zw

zw′

x′y′

z′w

z′w′

1

11

1

1

1

Figura 9.53 Celdas adyacentes de los productos fundamentales de dos celdas para cuatro variables 
lógicas.
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xy′xy x′y

zw

zw′

x′y′

z′w

z′w′

xy′xy x′y

zw

zw′

x′y′

z′w

z′w′

xy′xy x′y

zw

zw′

x′y′

z′w

z′w′

xy′xy x′y

zw

zw′

x′y′

z′w

z′w′

xy′xy x′y

zw

zw′

x′y′

z′w

z′w′

xy′xy x′y

zw

zw′

x′y′

z′w

z′w′

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

11 11

1

Figura 9.54 Celdas adyacentes de los productos fundamentales de cuatro celdas 
para cuatro variables lógicas.

xy′xy x′y

zw

zw′

x′y′

z′w

z′w′

xy′xy

zw

zw′

x′y′

z′w

z′w′

xy′xy x′y

zw

zw′

x′y′

z′w

z′w′

xy′xy x′y

zw

zw′

x′y′

z′w

z′w′

1

1

1

1 1

1 1

1
1 1 11

1 1 11

1 1 11

1 1 11

1

1

1

1

1

1

1

1

Figura 9.55 Celdas adyacentes de los productos fundamentales de ocho celdas 
para cuatro variables lógicas.
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Minimización de circuitos mediante mapas de Karnaugh
Considérese una expresión booleana E en forma de suma de productos; a fin de encontrar la expresión boo-
leana F equivalente a E en forma minimal de suma de productos, se deben seguir los siguientes pasos:

1. Se construye el mapa de Karnaugh, de acuerdo con el número de variables de E.

2. En el mapa de Karnaugh, todos los productos fundamentales de E se representan mediante cruces.

3. Todas las cruces se encierran con óvalos que contengan 2n cruces adyacentes.

4. Cada óvalo debe encerrar la mayor cantidad posible de cruces.

5. Se escribe la expresión F como suma de los productos fundamentales representados por los óvalos 
resultantes.

Sea la siguiente expresión booleana 

E(x, y)  xy  xy’  y’

Encontrar su forma minimal de suma de productos F resultante utilizando el mapa de Karnaugh y dibujar el circui-
to lógico correspondiente.

E jemplo 

El mapa de Karnaugh resultante de esta expresión booleana se muestra en la figura 
9.56.

En la representación de las sumas de los términos representados en los óvalos, la 
forma minimal de E es:

F(x, y)  x  y’

Mientras que el circuito lógico correspondiente es como el que se observa en la 
figura 9.57.

x

y

F

Figura 9.57 Circuito resultante.

Solución

x′x

y

y′

x′x

y

y′ 1 1

1

Figura 9.56 Mapa de 
Karnaugh.

Ahora, para comprobar que la simplificación es correcta, esta se hace de manera algebraica:

 E(x, y)  xy  xy’  y’
  xy  y’ Ley de la absorción
  x  y’ Teorema de simplificación
Por tanto: 

F(x, y)  x  y’

Como se observa, este es el mismo resultado obtenido utilizando un mapa de Karnaugh.
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En diversas ocasiones, escribir la expresión F como suma de los productos fundamentales representados 
por los óvalos resultantes es una tarea complicada, pues, algunas veces, la interpretación de los mismos no 
es tan obvia.

Por lo general, para una mejor comprensión acerca de cómo interpretar los mapas de Karnaugh, es nece-
sario hacer una analogía con los diagramas de subconjuntos.

Sea la siguiente expresión booleana:

E(x, y, z)  xy’z  x’y’z  x’yz  x’y’z’

Encontrar su forma minimal de suma de productos F resultante utilizando un mapa de Karnaugh.

E jemplo 

Primero, se realiza el mapa de Karnaugh resultante, que en este caso 
es como el que se observa en la figura 9.58.

Como se puede observar, este mapa tiene mucha similitud con los 
diagramas de subconjuntos vistos en la sección anterior, pues en 
este diagrama se tienen tres óvalos, cada uno de los cuales corres-
ponde a cada una de las regiones que representan las intersecciones 
de las variables lógicas consideradas, donde el óvalo con líneas re-
presenta:

y’z

x’z

x’y’

Por tanto, la forma minimal de E es:

F(x, y, z)  x’y’  x’z  y’z

Solución

Sea la siguiente expresión booleana:

E(x, y, z)  xyz  xy’z  x’y’z  xyz’  xy’z’  x’yz

Encontrar su forma minimal de suma de productos F resultante utilizando un mapa de Karnaugh.

E jemplo 

Primero, se realiza el mapa de Karnaugh resultante, que en este caso 
es como el que se observa en la figura 9.59.

Si se compara este mapa con los diagramas de subconjuntos, se ob-
tienen las regiones representadas en cada óvalo:

x

y

Por tanto, la forma minimal de E es:

F(x, y, z)  x  y

Solución

xy′xy x′y

z

z′

x′y′

1 1 1

1

Figura 9.58 Mapa de Karnaugh.

xy′xy x′y

z

z′

x′y′

1

1

1

1

1

1

Figura 9.59 Mapa de Karnaugh.
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Resumen 349

Resumen
En este capítulo se estudia el álgebra de Boole o álgebra booleana, que no es más que una estructura mate-
mática, la cual, como tal, abarca un sinnúmero de situaciones; además de que está centrada en los valores 
binarios 1 y 0, y proporciona operaciones y reglas para trabajar con dichos valores.

La aplicación más importante del álgebra booleana es en la informática, la computación y los circuitos 
lógicos, debido a que la lógica y el tratamiento de la información en estas áreas se basan precisamente en 
valores binarios.

Asimismo, en este capítulo se estudian las propiedades que deben cumplirse para que un conjunto, a 
la par con las operaciones de suma, producto y complemento booleano, sea considerado álgebra booleana. 
También se estudia qué son las funciones booleanas y cómo simplificarlas.

Aquí también se tratan aspectos fundamentales de los circuitos lógicos, los cuales están constituidos 
por circuitos más elementales llamados compuertas lógicas, las cuales, a su vez, tienen asociadas tablas de 
verdad y símbolos para representar los posibles estados binarios de entrada y la única salida binaria posible.

Por último, se estudia cómo dichos circuitos lógicos pueden ser simplificados, ya sea de forma algebraica 
o mediante el método de los mapas de Karnaugh.

 9.2 Sea la siguiente expresión booleana:

(a’  (b’  (c  d)))

  Representarla mediante compuertas lógicas.

 9.3 Sea la función booleana:

F(a, b, c)  a’  b  c

  Expresar sus formas canónicas disyuntiva y con-
juntiva. 

 9.4 Sea la siguiente la tabla de verdad de una función 
booleana.

  

  

Tabla 9.23

A b c F(a, b, c)

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1 

  Expresarla en sus formas canónicas disyuntiva y 
conjuntiva.

 9.1 Sea la siguiente igualdad booleana:

a b  a’ c   (a b)  (b c)  (a’ c)

  Escribir los pasos para demostrar que esta igual-
dad es verdadera.

a b  a’ c  a b  a’ c  

 (a b  a b c)  (a’ c  a’ c b)   
  

 a b  a’ c  a b c  a’ c b       
  

 a b  a’ c  a b c  a’ b c       
  

 a b  a’ c  (a a’) b c

   
 a b  a’ c  (1) b c     

  
 a b  a’ c  b c     

  
 a b  b c  a’ c     

  

  Justificar cada paso utilizando las propiedades y 
los teoremas del álgebra booleana.

Problemas propuestos
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 9.13 Sea la siguiente la tabla de verdad de una expre-
sión booleana:

Tabla 9.25

X y z E(x, y, z)

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1 

  Encontrar su forma minimal de suma de produc-
tos F resultante utilizando un mapa de Karnaugh.

 9.14 Sea la siguiente expresión booleana:

E(x, y, z)  x’y’z  x’y’z’  x’yz’  xy’z’  xyz’

  Encontrar su forma minimal de suma de produc-
tos F resultante utilizando un mapa de Karnaugh.

  En los problemas 9.15 a 9.19 obtener la expresión 
booleana que representa cada uno de los diver-
sos circuitos lógicos que se muestran en la figura 
correspondiente.

 9.15 

  

a

b

c

 Figura 9.60

9.16 

  

a

b

c

 Figura 9.61

9.17  

  

a

b

c

a

d

 Figura 9.62

 9.5 Simplificar la siguiente función booleana utili-
zando las propiedades y los teoremas del álgebra 
booleana:

F(a, b, c)  a  a’b  abc’  ac  ac’

 9.6 Simplificar la siguiente función booleana utili-
zando las propiedades y teoremas del álgebra 
booleana:

F(a, b, c)  (a  b) (a  b’) (a’  b)

 9.7 Simplificar la siguiente función booleana utili-
zando las propiedades y teoremas del álgebra 
booleana:

F(a, b, c, d)  (d  da’  bc)’

 9.8 Simplificar la siguiente función booleana utili-
zando las propiedades y teoremas del álgebra 
booleana:

F(a, b, c, d)  ad  ab’  bc  ac’

 9.9 Sea la siguiente expresión booleana:

E(x, y, z)  x’yz  xy’z  xyz’  xyz

  Encontrar su forma minimal de suma de produc-
tos F resultante utilizando un mapa de Karnaugh.

 9.10 Sea la siguiente la tabla de verdad de una expre-
sión booleana:

Tabla 9.24

x y z E(x, y, z)

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0 

  Encontrar su forma minimal de suma de produc-
tos F resultante utilizando un mapa de Karnaugh.

 9.11 Simplificar la siguiente función booleana utili-
zando las propiedades y los teoremas del álgebra 
booleana:

F(a, b, c)  {[(a’b’)’  c]  (a  c)}’

 9.12 Simplificar la siguiente función booleana utili-
zando las propiedades y teoremas del álgebra 
booleana:

F(a, b, c)  a’b  (abc)’  c(b’  a)
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  Obtener las formas canónicas disyuntiva y con-
juntiva.

 9.26 El complemento de una función booleana se pue-
de obtener a partir de su función, reemplazando 
cada variable de esta última por su complemen-
to. Obtener el complemento de la siguiente fun-
ción booleana:

F(a, b, c, d)  (a b’ c) (d c) (a’ b)

 9.27 Sea la siguiente igualdad booleana:

(x’ y)’ z  x z’  (y  z)’  x  y’

  Escribir los pasos para demostrar que es verdade-
ra dicha igualdad.

(x’ y)’ z  x z’  (y  z)’  (x’ y)’ z  x z’   
(y  z)’  

 (x’ y)’ z  x z’  y’ z’

  

 (x’ y) z  (x  y’) z’

  

 (x  y’) z  (x  y’) z’

  

 (x  y’) (z  z’)

  

 (x  y’) 1 

 x  y’ 

  Justificar cada paso utilizando las propiedades y 
los teoremas del álgebra booleana.

  Con base en la siguiente tabla de verdad contes-
tar los problemas 9.28 a 9.31.

Tabla 9.27

x y z F(x, y, z)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1 

9.18 

  

a

b

c

d

e

 Figura 9.63

9.19 

  

a

b

c

b

 Figura 9.64 

  Con base en la siguiente expresión booleana, re-
solver los problemas 9.20 a 9.23.

F(x, y, z)  [(x  y) (x  z)]’

 9.20 Escribir su tabla de verdad.

 9.21 Representar esta mediante compuertas lógicas.

 9.22 Escribir los MINTERM y los MAXTERM asociados 
a cada combinación de variables.

 9.23 Obtener las formas canónicas disyuntiva y con-
juntiva.

 9.24 Utilizando tablas de verdad, verificar la siguiente 
igualdad:

[(x  y)  z]’  (x  y)’  z’

 9.25 Sea la siguiente la tabla de verdad de una expre-
sión booleana:

Tabla 9.26

x y z w F(x, y, z, w)

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0 
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  Existe una compuerta lógica derivada denomina 
XNOR, la cual es el complemento de la compuer-
ta lógica XOR; es decir (x · y)’, cuyo símbolo es:

  Figura 9.65

 9.37 Obtener la tabla de verdad de la compuerta lógi-
ca derivada.

 9.38 Representar la compuerta lógica XNOR exclusi-
vamente con compuertas lógicas básicas.

 9.39 Teniendo en cuenta la equivalencia lógica de la 
compuerta XOR (x’ y  x y’), obtener la expre-
sión lógica equivalente a la compuerta XNOR.

  Con base en la siguiente igualdad, resolver los 
problemas 9.40 y 9.41.

x’ y’ (z  w)  (x’ (y’ (z w)))

 9.40 Utilizando tablas de verdad, verificar que se cum-
ple la igualdad.

 9.41 Utilizando compuertas lógicas, representar cada 
uno de los lados de la igualdad.

 9.42 Sea la función booleana:

F(a, b, c)  a  bc’  abc

  Expresar esta en sus formas canónicas disyuntiva 
y conjuntiva, utilizando los teoremas de expan-
sión canónica.

 9.43 Sea la función booleana:

F(a, b, c)  (a  b)(b  c’)

  Expresar esta en sus formas canónicas disyuntiva 
y conjuntiva, utilizando los teoremas de expan-
sión canónica.

 9.44 Simplificar la siguiente función booleana utili-
zando las propiedades y los teoremas del álgebra 
booleana:

F(x, y)  (x  y)  [(x  y’)y]

 9.28 Escribir una expresión booleana que la represen-
te como suma de productos.

 9.29 Representar esta expresión booleana mediante 
compuertas lógicas.

 9.30 Encontrar su forma minimal de suma de produc-
tos F resultante utilizando un mapa de Karnaugh.

 9.31 Representar F mediante compuertas lógicas, uti-
lizando a lo sumo una compuerta AND, una com-
puerta OR y una compuerta NOT.

  Con base en las siguientes formas canónicas 
disyuntiva y conjuntiva, resolver los problemas 
9.32 a 9.34.

  Forma canónica disyuntiva

F (x, y, z)  m (2, 3, 4, 5, 6, 7)

  Forma canónica conjuntiva 

F(x, y, z)  m (0, 1)

 9.32 Escribir la tabla de verdad de la expresión boo-
leana que representa. 

 9.33 Escribir la función booleana que se representa 
como producto de sumas.

 9.34 Encontrar su forma minimal de suma de produc-
tos F resultante utilizando un mapa de Karnaugh.

 9.35 Obtener la expresión booleana x  y utilizando 
exclusivamente compuertas lógicas NAND.

  Sugerencia

  Se recomienda utilizar la ley de la idempotencia.

 9.36 Obtener la expresión booleana x y utilizando 
exclusivamente compuertas lógicas NOR.

  Sugerencia

  Se recomienda utilizar la ley de la idempotencia.

  Con base en el siguiente enunciado, resolver los 
problemas 9.37 a 9.39.
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 9.45 Simplificar la siguiente función booleana utili-
zando las propiedades y los teoremas del álgebra 
booleana:

F (x, y, z, w)  x  xyz  x’yz  xw  xw’  x’y

 9.46 Sea la función booleana:

F (x, y, z)  x  y’z

  Expresarla en sus formas canónicas disyuntiva y 
conjuntiva utilizando los teoremas de expansión 
canónica.

  Con base en el siguiente enunciado resolver los 
problemas 9.47 a 9.50. Toda compuerta lógica 
básica AND, OR y NOT puede ser sustituida uti-
lizando exclusivamente compuertas lógicas deri-
vadas NAND y NOR. 

 9.47 Obtener el circuito lógico equivalente a la com-
puerta lógica AND utilizando exclusivamente 
compuertas lógicas derivadas NAND.

 9.48 Comprobar algebraicamente la equivalencia ló-
gica del circuito obtenido utilizando las propie-
dades y los teoremas del álgebra booleana. Es de-
cir, la salida del circuito obtenido debe ser igual a 
la salida de la compuerta lógica AND.

 9.49 Obtener el circuito lógico equivalente a la com-
puerta lógica OR utilizando exclusivamente 
compuertas lógicas derivadas NOR.

 9.50 Comprobar algebraicamente la equivalencia ló-
gica del circuito obtenido utilizando las propie-
dades y los teoremas del álgebra booleana. Es de-
cir, la salida del circuito obtenido debe ser igual a 
la salida de la compuerta lógica OR.

Se desea construir un circuito lógico que se utilizará 
en un dispositivo electrónico para el registro de las 
votaciones en el Consejo del Instituto Estatal Elec-
toral, el cual está conformado por un presidente, un 
vicepresidente y dos consejeros.

Las decisiones son tomadas por mayoría, pero el pre-
sidente tiene voto de calidad; es decir, en caso de em-
pate su voto es el decisivo.

•  Hallar la tabla de verdad que representa la situa-
ción antes mencionada.

•  Simplificar al máximo la función booleana que se 
obtiene.

•  Diseñar el circuito lógico para el dispositivo elec-
trónico.

Sugerencia

Ante una determinada proposición, cada uno de los 
miembros del consejo puede votar a favor (1) o en 
contra (0); es decir, la decisión de cada integrante del 
Consejo del Instituto Estatal Electoral es una variable 
booleana binaria.

Problemas reto
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