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CAPITULO 1

La transformada
de Laplace

1.1 Definicion y propiedades basicas

En matemadticas una transformada es un mecanismo que convierte un tipo de problema en otro tipo, presu-
miblemente mds facil de resolver. La estrategia es resolver el problema transformado, después transformar
de regreso para obtener la solucién del problema original. En el caso de la transformada de Laplace, los
problemas con valores iniciales con frecuencia son convertidos en problemas algebraicos, un proceso
ilustrado de la siguiente manera:

problema con valores iniciales

)

problema algebraico

)

solucién del problema algebraico

)

solucién del problema con valores iniciales.

DEFINICION 1.1  Transformada de Laplace

La transformada de Laplace L[f] de fes una funcién definida por

LLfIG) 2/0 e f(0)dt,

para todo s tal que esta integral converja.



CAPITULO 1  La transformada de Laplace

La transformada de Laplace convierte una funcién f'en una nueva funcién llamada £[f]. Con frecuen-
cia t es la variable independiente para f'y s para la variable independiente de L[f ]. Asf, f (¢) es la funcién
fevaluada en t, y ¥[f](s) es la funcién ¥[f] evaluada en s.

Es necesario convenir en usar letras mindsculas para la funcién de la transformada de Laplace, y su
letra mayuscula para la funcién que resulta. En esta notacion,

F=2[f]l, G=Xgl, H=~Xh],

y asi sucesivamente.

EJEMPLO 1.1

Sea f (f) = e, siendo a cualquier nimero real. Entonces

Q[f](s) = F(s) :/ e St gy 2/ e(a—s)t dt
0

0

= lim | “'qt = lim ela=st
a— =S 0

k—o00 Jo k—o00
= lim b ela=9k _ L
k—oo|a—s a—s

1 1

a—=s s —a

siempre que @ — s < 0, 0 s > a. La transformada de Laplace de f () = e es F(s) = 1/(s — a), definida
pors > a. M

EJEMPLO 1.2

Sea g(¢) = sen(r). Entonces

QLel(s) = G(s) = / % o5t sen(r) di
0
k— 00

k
= h’m/ e 'sen(r) dt
0

k— o0

ek cosk 4+ se % senk — 1 B 1
s24+1 o240

G(s) estd definida para todo s > 0. ™

Una transformada de Laplace pocas veces es calculada directamente refiriéndose a la definicion e
integrando. En lugar de ello se utilizan las tablas de transformadas de Laplace de las funciones de uso
frecuente (como la tabla 1.1) o algiin software. También existen métodos ttiles para encontrar la transfor-
mada de Laplace de funciones desplazadas o trasladadas, funciones escalonadas, pulsos y otras funciones
que aparecen en las aplicaciones.

La transformada de Laplace es lineal, saca factores constantes, y la transformada de una suma de
funciones es la suma de las transformadas de esas funciones.



TABLA 1.1

13.

14.

15.

16.

20.
21.
22.
23.

24.

25.

1.1 Definicion y propiedades bdsicas

Tabla de transformadas de Laplace de funciones

f@

""(n=12.3,---)

<=

at

teat

tn elll'

1
a—>b

(eat _ eb’)

1
— b(aeat —bebt)
(c — b)e + (a — c)eP' + (b — a)e!

(a=b)b—o)(c—a)

sen(at)

cos(at)

1 — cos(at)

at — sen(at)
sen(at) — at cos(at)
sen(at) + at cos(at)
t sen(at)

t cos(at)

cos(at) — cos(bt)
b—-a)b+a)

e sen(bt)
e cos(bt)
senh(at)
cosh(at)

sen(at)cosh(at) — cos(at)senh(at)

sen(at)senh(at)

F(s) = L[f ()](s)

1

s
1

52

n!
s+l

o

s—a
1
(s —a)?
n!
(s — a)n+l
1
(s —a)(s —Db)
K
(s —a)(s — b)
1
a
oo
s
oo

a2

s(s2 +a?)
a3
243
2as?
2as
(s> —a?)
s
b
P
s—a
(s —a)2 + b2
a

2

s4 + 4a4
2a%s
st + 44



4 CAPITULO 1  La transformada de Laplace

TABLA 1.1 (continuacion)
f® F(s) = L[f (H]1(s)
243
26. senh(at) — sen(at) A
2425
27. cosh(at) — cos(at) P
28 L a1 4 2an) :
. N G —ay?
1
29. Jo(at) S
0 ot
n
1 (\/ 52 +a2 —S)
30. Jn(at) n
@ Vs? +a?
31. Jo2/at) %f“/s
1 =%
32. ; sen(at) tan (;)
2 (sz +a? )
33. —[1 — cos(at)] In 5
t S
2_ 2
34. 2[1 — cosh(at)] ln<s 2a )
t S
1 2 a 1
35. — —ae®lerfc [ —
N ae® ‘e C(ﬁ) Jsta
1 2 a 5
36 - at rf _
N (ﬁ) s—a?
azt £ 4
37. e“erf(ay/1) NYD)
a’t !
38. e erfe(an/1) NN
i L
39. erfc (2«/7) 5 €
1 2 1
40, T s
Ve Vo
1 1
41. S —=ePerfe(Va:
W) )
42, i sen(2a+/1) erf (%)
43, f (L) aF(as)
a
44. ebt/af (L) aF(as — b)
a
—€s(1 _ ,—€S
45. Se (1) O
e
46. 8(t —a) e
47. L, (t) l(S—l)
S R

(Polinomio de Laguerre)



TABLA 1.1

48.

49.

50.

51.

52.

(continuacion)
@

n!
IO Hop (1)

(Polinomio de Hermite)

—n!

T
mHZrLHU)

(Polinomio de Hermite)

onda triangular

’f(l)
1
1 | 1 !

I 2a 3a 4a

onda cuadrada

|f(t)
1
1 | 1 |

_1|_ 2a 3a 4a

onda serrucho

’f(t)
1
] ]

I 2a

Formulas operacionales

f@

af (t) + bg(t)
1@
@@

t
[ f(r)dr
0

tf (1)
" f (1)

1

;f(l)

e f (1)
ft—a)H(t —a)
f+7)=f@)

(periddica)

1.1 Definicion y propiedades bdsicas

F(s) = L[f ()](s)

a— s
172

1 —=9"
snt3/2

1 1 —e 9 1 tanh (as)
— | —=  |(= — tanh (==
as? |[1+e—as as? 2

1 e*llS

as?  s(1 —e9%)

F(s)

aF(s) + bG(s)
sF(s) — f(0+)
sPE(s) = s"TLFO) — - = D)

1
—F(s)
s

—F/(s)
(=D)"F®(s)

/OOF(U)do

s
F(s —a)
e B F(s)

/T e f(t)dt
0

1 — e—'L'S
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CAPITULO 1  La transformada de Laplace

TEOREMA 1.1 Linealidad de la transformada de Laplace

Suponga que L[f1(s) y L[g](s) estdn definidas para s > a, y « y B son nimeros reales. Entonces
Laf + Bgl(s) = aF(s) + BG(s)
para s > a.

Prueba Por hipotesis, f o esf () dty f o e—s'g(t) dt convergen para s > a. Entonces
dlof + A1) = [ e ar o) + ey dr
= a/ e f(t)dt + ,3/ e gt)ydt = aF(s) + BG(s)
0 0

paras > a. W

Esta conclusion se extiende para cualquier suma finita:

Qlay fi + -+ + oy ful(s) = ar Fi(s) + - - + an Fu(s),

para todo s tal que cada F(s) esté definida.

No toda funcién tiene una transformada de Laplace, ya que f o e~ f (t) dt puede no converger para
cualquier valor real de s. Considere condiciones sobre f para asegurar que f tiene una transformada de
Laplace.

Una condicién necesaria obvia es que f  e=sf (1) dt tiene que estar definida para todo k > 0, ya que
Lf1s) = f o et f(?) dt. Para que esto suceda, es suficiente que f sea continua a pedazos en [0, k] para
todo nimero k positivo. Definiremos este concepto en términos generales ya que también aparece en otros
contextos.

DEFINICION 1.2 Continuidad a pedazos

fes continua a pedazos en [a, b] si hay puntos

a<ti<b<---<t,<b

tal que f'es continua en cada intervalo abierto (a, #1), (tj_y, %) y (tn, b) y todos los limites laterales
siguientes son finitos:

,L‘TJrf(’)’,Eﬂ?_ f(t)’tll)r,?Jrf(’) y [lMm f@).

Esto significa que f'es continua en [a, b] excepto quizad en un nimero finito de puntos, en cada uno de
los cuales ftiene limites laterales finitos en todo el intervalo. Las tnicas discontinuidades que una funcién
continua a pedazos f puede tener en [a, b] son un nimero finito de saltos de discontinuidades (huecos de
anchura finita en la grafica). La figura 1.1 muestra discontinuidades de saltos tipicos en una gréfica.

Por ejemplo, sea

£2 para0 <t <2
2 ent=2
f@) =

para2 <t <3

—1 para3 <t <4
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y(1)
4

y(® 3k
2 -

FIGURA 1.1 Una funcion con FIGURA 1.2
discontinuidades de saltos en t, y t,. £2 §i0< t<?2
£ sit=2
) =
si2<t<3
-1 sid<t<4

Entonces f'es continua [0, 4] excepto en 2 y 3, donde f tiene un salto de discontinuidad. En la figura 1.2 se
muestra la grafica de esta funcion.

Si f'es continua a pedazos en [0, k], entonces e—'f (f) también lo es y f k g—st f (%) dt existe.

La existencia de f" —sif (¢) dt para todo k positivo no asegura la existencia de lim_, f e=stf (1) dt.
Por ejemplo, f(f) = e es continua en todo intervalo [0, k], pero f % e=st ¢2 dt diverge para todo valor real
de s. Asi, para la convergencia de f > e=st f (f) dt, es necesaria otra condicion sobre f. La forma de esta
integral sugiere una condicién que es suficiente. Si, para algunos nimeros M y b, se tiene | f (f)| < Me?",
entonces

eSNF@) < Me®™" paras > b.

Pero

o0
/ M=) gy
0

converge (a M/(s — b)) sib — s < 0, o s > b. Entonces, por comparacion, f e=st| f ()| dt también con-
verge si s > b, de donde f°° —stf(f) df converge si s > b.

Este camino de razonamiento sugiere un conjunto de condiciones que son suficientes para que una
funcién tenga una transformada de Laplace.

= TEOREMA 1.2 Existencia de [ f]

Suponga que f es continua a pedazos en [0, k] para todo k positivo. También que existen nimeros M y b,
tales que |f ()] < Meb! para t > 0. Entonces f o e~ f(t) dt converge para s > b, por tanto L[ f1(s) estd
definida paras > b. W

Muchas funciones satisfacen estas condiciones, incluyendo las polinomiales, sen(at), cos(at), e4 y
otras.

Las condiciones del teorema son suficientes, pero no necesarias para que una funcién tenga una
transformada de Laplace. Por ejemplo, considere f (f) = ¢~1/2 para ¢ > 0. Esta funcién no es continua a
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ped.a.zos en ningtn [0, k] ya que 1im,_, ¢, =12 = co. Sin embargo, | /6 e—stt—1/2 dt existe paratodo ky s > 0
positivos. Mds atn,

Lfls) = / e V2 dr = 2/ e dx (seax = t'/%)

0 0
2 ® >
= ﬁf e % dz (sea z = x4/5)
0

T

s

N

en donde us6 el hecho (encontrado en algunas tablas de integracién usuales) que | o e~?dz = n/2.

Ahora revise el diagrama de flujo que aparece al inicio de este capitulo. El primer paso en la resolu-
cion de este tipo de problemas es tomar la transformada de Laplace de una funcién. El final del diagrama
de flujo sugiere que en algtin punto debe poder regresar por otro camino. Después de encontrar alguna
funcién G(s), necesita obtener una funcién g cuya transformada de Laplace sea G. Este es el proceso de
tomar una transformada de Laplace inversa.

DEFINICION 1.3 Funcién G

Dada una funcién G, una funcién g tal que ¥[g] = G se llama una transformada inversa de Laplace
de G.
En este caso

g=2[Gl.

Por ejemplo,

8‘1[ ! j|(t):e‘”

S —a

! |:S2 :_ 1i| (1) = sen(t).

El proceso inverso es ambiguo ya que, dada G, puede haber muchas funciones cuya transformada
de Laplace sea G. Por ejemplo, sabe que la transformada de Laplace de e—* es 1/(s+1) para s > —1. Sin
embargo, si cambia f (¢) sélo en un punto, haciendo

—t
h(t) = e parat # 3
0 parat =3,

entonces |’ o e tf(dt = f o e~ h(t) dt y h tienen la misma transformada de Laplace que f. En tal caso,
(cudl es la transformada inversa de Laplace de 1/(s + 1)?

Una respuesta la da el teorema de Lerch, el cual establece que dos funciones continuas que tienen la
misma transformada de Laplace deben ser iguales.

TEOREMA 1.3 Lerch

Sean fy g continuas en [0, 00) y suponga que &[f] = ¥[g]. Entonces f=g. W
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En vista de esto, resuelva parcialmente la ambigiiedad al tomar la transformada inversa de Laplace
aceptando que, dada F(s), busca una f continua cuya transformada de Laplace sea F. Si no hay una funcién

transformada inversa continua, entonces debe tomar ciertos acuerdos para decidir a cudl de las candidatas
posibles llamara $~![F]. Ya en aplicaciones el contexto hace frecuentemente esta eleccion obvia.
Debido a la linealidad de la transformada de Laplace, su inversa también es lineal.

— TEOREMA 1.4

Si &-1[F] =fy &-1[G] = g, y a y B son nimeros reales, entonces

LlaF + Gl =af+ pg. W

Si usa la tabla 1.1 para encontrar £[f ], busque f en la columna izquierda y lea [f ] de la columna
derecha. Para ¢~![F], busque F en la columna derecha y relaciénela con fen la izquierda.

SECCION 1.1 PROBLEMAS

En cada uno de los problemas del 1 al 10, use la linealidad de la
transformada de Laplace y la tabla 1.1 para encontrar la trans-
formada de Laplace de la funcién.

-

. 2senh(r) — 4

. cos(t) — sen(t)
. 4t sen(21)

L2 =3t+5

. t — cos(51)
212e3t — 4t + 1
L (t+4)2

. 3e—t + sen(61)

- R B Y I N R )

. 13— 3t + cos(41)
10. —3 cos(2t) + 5 sen(4t)

En cada uno de los problemas del 11 al 18, use la linealidad de la
transformada inversa de Laplace y la tabla 1.1 para encontrar
la transformada inversa de Laplace (continua) de la funcién.

-2
s+ 16
4s
52— 14

25 —5
s2+16
3s + 17
s2 -7

3 1
=12

11.

12.

13.

14.

15.

5
(s +7)2

1 6
s—4 o2

211 3 4
8. - |-— =5+ —

o [S ) + 36]
Suponga que f (¢) estd definida para todo ¢ > 0. Entonces f es
periddica con periodo T si f(t + T ) = f (¢) para todo ¢ > 0.

Por ejemplo, sen(?) tiene periodo 2. En los problemas 19-22,
suponga que f tiene periodo 7 .

16.

17.

19. Pruebe que
0 (DT
Gnw=3 [ o
n—0 nT
20. Pruebe que

(n+1)T T
f eSS Fydt = e T / e S F() dt.
nT 0

21. Para los problems 19 y 20, pruebe que

o]

T
L) = [Ze—"”} /0 ey dr.

n=0
22. Use la serie geométrica ) >°_ " = 1/(1 — r) para |r] < 1,
junto al resultado del problema 21, para probar que

) 1 T
S0 = ;g [ ar
1—e 0

En cada uno de los problemas del 23 al 30, se da una funcién
periddica, algunas veces con una gréfica. Encuentre ¥[f], usan-
do el resultado del problema 22.
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5 paraO<t<3

23. fti iodo 6y f(1) =
ftiene periodo 6 y f (1) 0 para3<t<6

24. f (1) = |E sen(w?)|, con E y  constantes positivas. (Aqui
[tiene periodo m/w).
25. ftiene la gréifica de la figura 1.3.

f@®
5}

| | || ;
ol 510 30 35 55 60
FIGURA 1.3

26. f tiene la grafica de la figura 1.4.
J(@

2# | | |

0l 6 12

FIGURA 1.4

27. ftiene la grafica de la figura 1.5.

28. f'tiene la grafica de la figura 1.6.

f@®

A

ol 2 8 10 16 18
FIGURA 1.6

29. f'tiene la grafica de la figura 1.7.

S
h
| | | | | | |
| a 2a 3a 4a 5a 6a Ta
FIGURA 1.7

30. f'tiene la grafica de la figura 1.8.

f(@0)

£(0) hﬁ
N N N Vi p
E'~ /Esen(a)t)\ | a 2a 3a 4a 5a 6a
| '" Z'W 3'" ! FIGURA 1.8
FIGURA 1.5
1.2 Solucion de problemas con valores iniciales usando

la transformada de Laplace

La transformada de Laplace es una herramienta poderosa para resolver cierto tipo de problemas con
valores iniciales. La técnica depende del siguiente hecho acerca de la transformada de Laplace de una

derivada.

= TEOREMA 1.5 Transformada de Laplace de una derivada

Sea f continua en [0, 00) y suponga que f es continua a pedazos en [0, k] para todo k positivo. Suponga

también que limy_, o, e=3kf (k) = 0 si s > 0. Entonces

LLf1(s) = sF(s) — £(0).

Esto es, la transformada de Laplace de la derivada de f'es s veces la transformada de Laplace de fen

S, menos f en cero.
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Prueba Empiece con una integracion por partes, con u = e~s'y dv = f/(f) dt . Para k > 0,
k k
/ ety dt = [e F(D)1E — / —se™ f(t)dt
0 0
k
== fO) 45 [ e Fwan,
0

Tome el limite conforme k — oo y use la suposicién que e—s¥f (k) — 0 para obtener

k

LLFs) = Jim [e‘”‘f(k)—f(O)Jrs /0 e‘“f(r)dz]

= —f(O)—i—s/ e f(t)dt = —f(0) +sF(s). m
0

Si ftiene una discontinuidad de salto en O (por ejemplo, como ocurre, si f es una fuerza electromotriz
que es encendida en el tiempo cero), entonces esta conclusién puede corregirse para obtener
L) = sF(s) — f(O+),
donde
fO+) = lim f(r)
t—0+

es el limite lateral por la derecha de f(¢) en O.

Para problemas que involucran ecuaciones diferenciales de segundo orden o mayor, necesita una
version del teorema para derivadas superiores. ') denota la j-ésima derivada de f.
Denotamos f© = f.

TEOREMA 1.6 Transformada de Laplace de una derivada superior

Suponga que f, ', - - -, fn=! son continuas en [0, 1), y f ™ es continua a pedazos en [0, k] para todo k posi-
tivo. También que limy_, o, e (k) =0 paras > Oy paraj=1,2,...,n — 1. Entonces
ASPUs) = 5"F(5) =" f0) =" 2 f1(0) =+ =sf "2 (0) = f*7D(0). m (1.2)

El caso de la segunda derivada (n = 2) aparece con tanta frecuencia que conviene ponerla por sepa-
rado. Bajo las condiciones del teorema,

QL") = 52 F(s) = £ (0) = f'(0). (1.3)
Abhora estd listo para usar la transformada de Laplace para resolver ciertos problemas con valores
iniciales.
EJEMPLO 1.3

Resolver y’ — 4y = 1; y(0) = 1.

Ya sabe cémo resolver este problema, pero use la transformada de Laplace para ilustrar la técnica.
Escriba ¥[y](s) = Y(s). Tomamos la transformada de Laplace de la ecuacién diferencial, usando la linea-
lidad de ¥ y la ecuacién (1.1), con y(7) en lugar de f (¢):

LUy = 4y1(s) = Qly'I(s) — 4gLy1(s)

1
= (sY(s) — y(0)) —4Y(s) = L[1l(s) = T
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Aqui use el hecho (de la tabla 1.1) que ¥[1](s) = 1/s para s > 0. Como y (0) = 1, ahora tiene

1 1
(s —DHY(E) =y0)+-=1+-.
S S

En este punto debe resolver un problema algebraico para Y(s), obteniendo

1
(s —4) +s(s—4)

Y(s) =

(observe el diagrama de flujo del inicio de este capitulo). La solucién del problema con valores ini-
ciales es

y=g =g [L} +s—1[ ! ]
s—4 s(s —4)

De la entrada 5 de latabla 1.1, con a = 4,

1
53,_1 = 4t.
)

Y delaentrada 8,cona=0y b =4,

-1 ! b o an L a
Q |:S(s_4)]_—(et—el)—z(et 1).

La solucién del problema con valores iniciales es

1
y(t) = e + Z(e‘” )

5
oL
4 4

Una caracteristica de esta técnica de la transformada de Laplace es que el valor inicial dado en el
problema es incorporado naturalmente en el proceso de solucién a través de la ecuacion (1.1). No necesita
encontrar la solucién general primero, y después resolver para que la constante satisfaga la condicién
inicial.

EJEMPLO 1.4

Resolver
y' +4y 43y =e¢'; y(0) =0, y'(0) = 2.

Aplique ¥ a la ecuacién diferencial para obtener L[y”] + 4¥[y] + 3¥[y] = ¥[e].
Ahora

LUy = s2Y = sy(0) — y'(0) = s2Y —2

Y 1=sY — y(0) =sY.
Por tanto,

1
s2Y—2+4sY+3Y=—1.
S_
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Resuelva para Y obteniendo
2s — 1
(s —D(s2+4s+3)

Y(s)=

La solucién es la transformada inversa de Laplace de esta funcién. Algunos software pueden encontrar
esta inversa. Si quiere usar la tabla 1.1, debe aplicar una descomposicién en fracciones parciales para
escribir Y(s) como una suma de funciones mas simples. Escriba

Y(s) = 2s — 1
Y D2 +4s +3)
25 — 1 A B c

T Dot De+d) s—1 541 553

Esta ecuacidn se satisface solo si, para todo s,
A+ D +3)+Bs—DE+3)+Cs—D(s+1)=2s — 1.

Ahora elija valores de s para simplificar la tarea de determinar A, By C. Sea s = 1 para obtener 84 = 1,

asi A = %. Sea s = —1 para obtener —4B = —3, de manera que B = %. Elija s = —3 para obtener
8C=—-7,asi C= —%. Entonces
Y(s) = 11 n 3 1 7 1
VTR —1 T 4s+1 8543

Ahora lea de la tabla 1.1 que

1 3 7
y(t) = gel + Ze_’ — §€_3t. |

De nuevo, la transformada de Laplace ha convertido un problema con valores iniciales en un proble-
ma algebraico, incorporando las condiciones iniciales en las manipulaciones algebraicas. Una vez que
obtiene Y(s), el problema se convierte en uno de invertir la funcién transformada para obtener y().

La ecuacion (1.1) tiene una consecuencia interesante que serd util mas adelante. Bajo las condiciones
del teorema, sabe que

LU= sLUf1 = f(0).
Suponga que f (¢) esta definida por una integral, a saber
'
f@) = /0 g(v)dr.

Ahora f(0) = 0y, suponiendo la continuidad de g, f'() = g(¢). Entonces

t
LU f = Lgl = ¥ [ f g(r)dr] :
0

Esto significa que

t
¢ [/ g(f)df} = %Q[g], (1.4)
0

permite aplicar la transformada de Laplace de una funcién definida por una integral. Use esta ecuacién
mas adelante al trabajar con circuitos que tienen fuerzas electromotrices discontinuas.

Hasta aqui se ha ilustrado una técnica de la transformada de Laplace para resolver problemas con
valores iniciales con coeficientes constantes. Sin embargo, es posible solucionar los problemas de estos
ejemplos por otros medios. En las siguientes tres secciones aparece la herramienta necesaria para aplicar
la transformada de Laplace a problemas que desafian los métodos anteriores.
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SECCION 1.2 PROBLEMAS

En cada uno de los problemas del 1 al 10, use la transformada 11. Suponga que f satisface las hipétesis del teorema 1.5,

de Laplace para resolver el problema con valores iniciales. excepto para la discontinuidad de salto en 0. Pruebe que
Lf')(s) = sF(s) — f (04), donde f (0+) = 1im,—. o+ f (1).

Loy +dy=1y0=-3 12. Suponga que f satisface las hipétesis del teorema 1.5 para

2. yvV—=9=1;y(0)=5 la discontinuidad de salto en un niimero ¢ positivo. Pruebe

3.y + 4y = cos(t); y(0) = 0 que

4 y+2y=e'iy0)=1 L[f'1(s) = sF(s) = f(0) — e~ [f (c+) — f(c)],

5 Y -y=1-10=4 donde f(c—) = lim, .. ().

6. y'+y=10=6y0)=0 13. Suponga que g es continua a pedazos en [0, k] para todo

7. y'— 4y + 4y =cos(®); y(0) = 1,y(0) = —1 k > 0, y que existen ndmeros, M, b y a tales que |g(?)|
< bt > ¢ =

8. ¥+ 9y = y(0) = y(0) = 0 < Meb' para t > a. Sea &[G] = g. Pruebe que

% _ . — _9 v(0) — i 4 1 1 [

9. )16y =1+1:30)= 2 y(0)= 1 ¢ [/ s(w) dw](s) =266 -1 ["swraw,

10. 3" — 5y’ + 6y = e~ ; y(0) = 0, y'(0) =2 0 0

1.3 Teoremas de corrimiento y la funcion de Heaviside

Una motivacion para desarrollar la transformada de Laplace es extender la clase de problemas que pue-
de resolver. Los métodos de los capitulos 1 y 2 apuntan principalmente a problemas que conciernen a
funciones continuas. Pero muchos modelos matemdticos tratan con procesos discontinuos (por ejemplo,
prender y apagar un circuito). Para esto la transformada de Laplace es efectiva, pero debe aprender mas
acerca de la representacion de funciones discontinuas y aplicarles tanto la transformada de Laplace como

su inversa.

1.3.1 El primer teorema de corrimiento

La transformada de Laplace de e f () es s6lo la transformada de Laplace de f (¢), recorrida a unidades
a la derecha. Esto se logra reemplazando s por s — a en F(s) para obtener F(s — a).

TEOREMA 1.7 Primer teorema de corrimiento, o corrimiento en la variable s

Sea ¥[f1(s) = F(s) para s > b > 0. Sea a cualquier nimero. Entonces

Llewt f(0)](s) = F(s — a) paras >a+b

Prueba Calcule

Le" FD1(s) = /oo ee f(s)ds
0

paras —a>b,o0s>a-+b. W

= / e ST £ (1) dt = F(s — a)
0
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EJEMPLO 1.5

Sabe por la tabla 1.1 que ¥[cos(br)] = s/(s2 + b?). Para la transformada de Laplace de e cos(bt), reem-
place s con s — a para obtener

—da

1 ,at = 55
Ye cos(bt)](s) = (s — Cl)2 4 [k

EJEMPLO 1.6

Como ¥[3] = 6/s4, entonces

143,71 _
PN = g

El primer teorema de corrimiento sugiere una férmula correspondiente para la transformada inversa
de Laplace: si &[f] = F, entonces

LAF(s — a)l = e f(1).
Algunas veces es conveniente escribir este resultado como

L-1[F(s — a)] = e@®-1[F(s)]. (1.5)

EJEMPLO 1.7

Suponga que quiere calcular

Q! oy
s24+4s4+20]|°

Manipule el cociente a una forma en la cual sea aplicable al teorema del corrimiento. Complete el cuadra-
do en el denominador para escribir

4 4
2445420 (s+2)24+16

Piense en el cociente de la derecha como una funcién de s + 2:

4
F )= ———.
G+ = 6
Esto significa que debe elegir
F(s) = !
RARCNETS

Ahora el teorema del corrimiento dice que

=2t _ _(_ _ -
Qle " sen(4t)] = F(s — (=2) =F(s+2) = +272+16
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y por tanto,
5—1 4 —2t
Q [m] =e sen(4t). ™
EJEMPLO 1.8
Calcule

3s — 1
-l
v |:s2—6s+2i|'

De nuevo, empiece con una manipulacién para escribir la expresion como una funcién de s — a para

algin a:
3s—1  3s-—1
—6s+2 (s—3)2-7
3(s —3) 8
= =G —-3)+K(s—3
G327 T~ O I HKGE=I)
si elige
8
G(s) = 77 y K(s)= a7
Abhora aplique la ecuacién (1.5) (en la segunda linea) para escribir
¢ | 2l =66 - 314 K G - 3)
— 65 +2

=G+ K (9)]
3t 3s 3t 8
< [s -7 L s2 —
__ 2, 3tq—1 3t Q- 1
= 3e7'Y [S _7i|+8€ [Sz 7]

=3¢ cosh(\/_t) + —e " senh (ﬁt)

1.3.2 La funcién de Heaviside y los pulsos

Ahora conviene establecer los cimientos para resolver ciertos problemas con valores iniciales que tengan
funciones de fuerza con discontinuidades. Para hacer esto utilice la funcién de Heaviside.

Recuerde que ftiene una discontinuidad de salto en a si lim,_,,_ f (¢) y lim,_,,_ f (f) ambos existen y
son finitos, pero distintos. La figura 1.9 muestra un salto de discontinuidad tipico. La magnitud del salto
de discontinuidad es el “ancho del hueco” en la grafica en a. Este ancho es

Jlim 10 = lin )

Las funciones con saltos de discontinuidades pueden tratarse eficientemente utilizando la funcién esca-
lonada unitaria o funcién de Heaviside.
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Tamafio de la discontinuidad
de salto en a.

FIGURA 1.9

DEFINICION 1.4 Funcién de Heaviside

La funcién de Heaviside H esta definida por

0 sit <O
1 sit>0.

H(t) = {

Oliver Heaviside (1850-1925) fue un ingeniero electricista inglés que hizo mucho por introducir la
transformada de Laplace en la practica ingenieril. En la figura 1.10 aparece la gréifica de H. Tiene un salto
de discontinuidad de magnitud 1 en 0.

Es posible pensar en la funcién de Heaviside como una funcién de interruptor, “prendida” cuando ¢ >
0, donde H(r) = 1, y “apagada” cuando ¢ < 0, donde H(¢) = 0. Es util para lograr una variedad de efectos,
incluyendo funciones de interruptor prendido y apagado en tiempos distintos, funciones de corrimientos
alo largo del eje y funciones combinadas con pulsos.

Para empezar este programa, si a es cualquier nimero, entonces H(t — a) es la funcién de Heaviside
corrida a unidades a la derecha, como se muestra en la figura 1.11, como

H(t_a)z{o sit <a

1 sit>a.

H(t — a) modela una sefal plana de magnitud 1, prendida hasta el tiempo ¢ = a y después apagada.
Puede usar H(t — a) para lograr el efecto de mantener una funcién g apagada hasta el tiempo ¢ = a,
en dicho tiempo prenderla. En particular,

0 sit<a
H(t — a)g(1) =! .

g(t) sit>a.

y H(t — a)
1 " 0, 1) "
' t
| * ! a
FIGURA 1.10 La funcion de FIGURA 1.11 Una funcion Heaviside

Heaviside H(t). recorrida.
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y y
y = cos(t) y = H(t — m)cos(t)
1.0
05/
T T
| | | | | | | ¢ | | | | | P
-2/ 0 2 4, 6 8 10/ 12 47 6 8 10/ 12
=05
—-1.0

FIGURA1.12 Comparacion de y = cos(t) y y = H(t — ) cos(?).

es cero hasta el tiempo ¢ = a, en dicho tiempo es encendida g(f). Para ver un caso especifico, sea
g(#) = cos(¢) para todo ¢. Entonces

0 sit<m

H(t —m)g(t) = H(t —m)cos(t) = {cos(t) S > o

En la figura 1.12 se muestran las gréficas de cos(f) y H(t — m)cos(f) por comparacion.
La funcién de Heaviside también sirve para describir un pulso.

DEFINICION 1.5 Pulso

Un pulso es una funcion de la forma
k[H(t —a) — H(t — b)],

en donde a < by k es un niimero real distinto de cero.

En la figura 1.13 aparece la grafica de esta funcién pulso. Tiene valor 0 si r < a (donde H(t — a)
=H(t — b)=0), valor 1 sia <t < b (donde H(t — a) = 1y H(t — b) = 0) y valor O si > b (donde
H(t—a)=H(t—b)=1).

Multiplicar una funcién g por este pulso tiene el efecto de dejar apagada g(7) hasta el tiempo a. Enton-
ces la funcidn es encendida hasta el tiempo b, cuando es nuevamente apagada. Por ejemplo, sea g(r) = e'.

Entonces
0 sir<l1
[Ht—1)—H@t -2 =1 sil<r<?2
0 sitr>2.

La figura 1.14 muestra la grafica de esta funcion.

Ahora considere las funciones de corrimiento de la forma H(t — a)g(t — a). Sit < a, la g(t — @)
H(t —a)=0yaque H(t — a) =0. Sit > a, entonces H(t —a) = 1y H(t — a)g(t — a) = g(t — a), que es
g(#) con un corrimiento de @ unidades a la derecha. Asi la grafica de H(r — a)g(t — a) es cero a lo largo del
eje horizontal hasta t = a, y para t > a es la gréfica de g(¢) para t > 0, con un corrimiento de a unidades a
la derecha empezando en a en lugar de 0.
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f(@)
8 L
7
6 —
5 L
4 -
3
1# 2r
1+
| | ¢ | | | | | | ¢
| a b 0 05 1.0 15 20 25 3.0
FIGURA 1.13  Funcion pulso H(t — a) — H(t — b). FIGURA 1.14 Grdfica de

F@=1[H@E—1) — H(@t — 2)]e.

EJEMPLO 1.9

Considere g(f) =12y a = 2. La figura 1.15 compara la grafica de g con la grafica de H(t—2) g(t — 2). La
gréfica de g es una pardbola familiar. La grafica de H(t — 2)g(t — 2) es cero hasta el tiempo 2, entonces
tiene la forma de la grafica de 2 para ¢ > 0, pero con un corrimiento de 2 unidades a la derecha empezando
ent=2. W

Es importante entender la diferencia entre g(¢), H(t — a)g(t) y H(t — a)g(t — a). La figura 1.16 mues-
tra las gréficas de estas tres funciones para g(f) =12y a = 3.

1.3.3 El segundo teorema de corrimiento

Algunas veces a H(t — a)g(t — a) se le conoce como una funcién de corrimiento, a pesar de ser mas que
eso ya que su grafica también es cero para ¢ < a. El segundo teorema de corrimiento trata con la transfor-
mada de Laplace de tal funcién.

t ' !
)

FIGURA 1.15 Comparacion de
y=1t2yy=(©—2)2H({ - 2).

t ' ' ' !
| 3 I

FIGURA 1.16 Comparaciondey =t2,y =t2H(t — 3),yy = (t — 3)2H(t — 3).
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= TEOREMA 1.8 Segundo teorema de corrimiento o corrimiento en la variable t
Sea ¥[f1(s) = F(s) para s > b. Entonces
L[H(t — a)f (t — a)](s) = e=*F(s)
para s > b.

Esto es, obtiene la transformada de Laplace de H(t — a)f (t — a) multiplicando la transformada de
Laplace de f () por e—a.

Prueba Proceda a partir de la definicidn,

QIH(t —a) f(t —a)l(s) = / e "H@t —a)f(t —a)dt
0

= /Ooe_”f(t —a)dt

a
yaque H(t —a) =0parat <a,y H(t —a) = 1 parat > a. Ahora w =t — a en la dltima integral para
obtener

QIH(t —a) f(t — a)l(s) = f h e @) £ (w) dw
0

=e ¥ fm e f(w)dw =e Y F(s). m
0

EJEMPLO 1.10

Suponga que quiere la transformada de Laplace de H(t — a). Escriba esto como H(t — a) f(t — a), conf(f) = 1
para todo r. Como F(s) = 1/s (de la tabla 1.1 o por célculo directo a partir de la definicién), entonces

LH(t — a)](s) = e~sL[1](s) = %e_as. [ |

EJEMPLO 1.11

Calcule ¥[g], donde g(r) =0 para0 <t <2y g(f) =12+ 1 parat > 2.
Como g(7) es cero hasta el tiempo t = 2, y entonces es 72 + 1, debe escribir g(r) = H(r — 2)(t2 4 1).
Para aplicar el segundo teorema de corrimiento, debe escribir g(f) como una funcién, o quizd una
suma de funciones, de la forma f'(t — 2)H(t — 2). Es necesario escribir #2 4+ 1 como una suma de funciones
de r — 2. Una manera de hacer esto es desarrollar 2 4 1 en una serie de Taylor alrededor de 2. En este caso
logra el mismo resultado por manipulacion algebraica:

124+ 1=0t—-24+224+1=0C—-2)2+4(—-2)+5.
Entonces

gt) =2+ DH( - 2)
= (t — 22H(t — 2) + 4(t — 2)H(t — 2) + 5H(t — 2).
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Ahora aplique el segundo teorema de corrimiento:
Qlgl = LUt —2*H(t — )]+ 420t — 2 H(t — 2)] + 5SLAH(t — 2)]
= e ML + e L] + Se 1]

2 4 5
— =25 | = s b
¢ I:s3+s2+s:|

Como es usual, cualquier férmula para la transformada de Laplace de una clase de funciones también
puede leerse como una férmula para una transformada inversa de Laplace. La version inversa del segundo
teorema de corrimiento es:

L-1[e~asF(s)](1) = H(t — a)f (t — a). (1.6)

Esto permite calcular la transformada inversa de Laplace de una funcién transformada conocida mul-
tiplicada por una exponencial e—4s.

EJEMPLO 1.12

Calcule

5&71 r se73s .
[ s2+4]°

La presencia del factor exponencial sugiere el uso de la ecuacién (1.6). Concéntrese en encontrar

N

Ol
pU Ervil

Se puede leer esta inversa directamente en la tabla 1.1 y es f(f) = cos(2f). Por tanto,

[ se7¥
?_ t) = H(t —3)cos(2(t — 3)). ®
e L2+4]<) (t —3) cos(2(t — 3))
Ahora estd preparado para resolver ciertos problemas con valores iniciales en los que aparecen fun-
ciones de fuerza discontinuas.

EJEMPLO 1.13

Resolver el problema con valor inicial

Y4y = f@); y(0) = y'(0) =0,

en donde

f(t)z{o parat <3

t parat >3

Debido a la discontinuidad en f; no se pueden aplicar los métodos normales de solucién de ecuaciones
de segundo orden.
Primero reconozca que

f(t) = H(t — 3)t.
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Aplique la transformada de Laplace a la ecuacién diferencial para obtener

LUy + Ayl = s2Y (s) — sy(0) — y'(0) +4Y ()
= (s + DY (s) = Q[H(t — 3)1],

en la cual ha insertado las condiciones iniciales y(0) = y’(0) = 0.
Para utilizar el segundo teorema del corrimiento para calcular [H(¢z — 3)t ], escriba

QUH@ —=3)t] =LHE —3)t —3+3)]
=QH(t —3)(t —3)]+3LH(I —3)]
= e 3]+ 37 [1] = %6735' + §e’3s.
S S
Ahora tiene

1 C3 5
(s> 4+4)Y = —zef33 + e,
s s

La transformada de la solucién es

3s4+1 5
YO =g ne

s2(s=+4)
La solucién estd al alcance. Debe aplicar la transformada inversa de Laplace de Y(s). Para hacer esto,
primero use una descomposicion en fracciones parciales para escribir

35 +1 e—3s — Ele—3s _ § S 6—35 + 116—33 _ l 1 €_3S.
s2(s2 4+ 4) 45 452 +4 4 52 452 +4

Cada término es una exponencial por una funcién cuya transformada de Laplace es conocida, aplique la
ecuacion (1.6) para escribir

y(t) = zH(r —3)— ZH(t —3)cos(2(t — 3))

+ %H(t —3)(t—-3) — %H(t - 3)% sen(2(t — 3)).

Debido al factor H(t — 3) en cada término, esta solucién es cero hasta el tiempo t = 3 y debe escribir

0 parat <3
={3 3 1 1
Y © = Z0osQ( = 3) + 71— 3) — csen@(r—3)  parar =3,

0, combinando términos,

0 parat <3
y) =41
§[2t — 6cos(2(t — 3)) —sen(2(t — 3))] parat > 3.

En la figura 1.17 se muestra la grafica de esta solucién. M

En este ejemplo es interesante observar que la solucién es diferenciable donde quiera, a pesar de que
la funcién f que aparece en la ecuacion diferencial tiene una discontinuidad de salto en 3. Este comporta-
miento es tipico de los problemas con valores iniciales que tienen una funcién de fuerza discontinua. Si
la ecuacidn diferencial tiene orden n y ¢ es una solucion, entonces ¢ y sus primeras n — 1 derivadas serdn
continuas, mientras que la n-ésima derivada tendrd discontinuidades de salto donde las tenga f, y estas dis-
continuidades de salto coincidirdn en magnitud con las discontinuidades de salto de f correspondientes.
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2.5
2.0
1.5
1.0
0.5

| | | | ;
0 2 4 6 8

FIGURA 1.17  Solucion de

0 si0§t<3.

"
+4y =
Y Y t sit<3

(0) =y'(0) = 0).

Con frecuencia necesitard escribir una funcién que tiene varias discontinuidades de salto en términos
de las funciones de Heaviside para usar los teoremas de corrimiento. Aqui hay un ejemplo.

EJEMPLO 1.14

Sea
0 sit <2
f)y=3r—1 si2<t<3
—4 sit > 3.

En la figura 1.18 se muestra una gréfica de f. Hay discontinuidades de saltos de magnitud l ent =2y
magnitud 6 en t = 3.

Piense que f(¢) estd formada por dos partes distintas de cero, la parte que es r — 1 en [2, 3) y la parte
que es —4 en [3, 00). Quiere prender  — 1 en el tiempo 2 y apagarla en el tiempo 3, después prenderla —4
en el tiempo 3 y dejarla prendida.

El primer efecto se consigue multiplicando la funcién pulso H(t —2)—H(t —3) por t — 1. El segundo
multiplicando H(¢ — 3) por 4. Por tanto,

f@O=[Ht—-2)—H@t—-3)(t—1)—4H( - 3).

Como verificacién, esto da f (f) = 0 si t < 2 ya que todas las funciones de Heaviside de corrimiento son
ceroparat < 2.Para2 < <3, H(t — 2) = 1 pero H(t — 3) = 0 de maneraque f(f) =t — 1. Y parat > 3,
Ht—2)=Ht—-3)=1l,asif()=—4. W

1.3.4 Analisis de circuitos eléctricos

La funcién de Heaviside es importante en muchos tipos de problemas, incluyendo el anélisis de circuitos
eléctricos, donde habra interruptores que pueden prender y apagar. Aqui hay dos ejemplos.

EJEMPLO 1.15

Suponga que el condensador en el circuito de la figura 1.19 tiene inicialmente una carga de cero y que no
hay corriente inicial. En el tiempo 7 = 2 segundos, el interruptor pasa de la posicién B a A, se mantiene ah{
por 1 segundo y regresa a B. Quiere el voltaje de salida Ej,;4, en el condensador.
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2 -
1 —
L1 1 1 t 250000 Q)
L Lo23as
-2 A B 1076F Esalida
-3 10V J
_4 [
FIGURA 1.18  Solucidén de FIGURA 1.19

0 sit<?2
f@)y=q31t-1 si2<tr<3.
—4 si t>3

Del circuito del diagrama, la funcién de fuerza es cero hasta t = 2, después tiene valor de 10 volts
hasta t = 3, y después es cero nuevamente. Asi E es la funcion pulso

E(t) = 10[H(t —2) — H(t — 3)].

Por la ley de voltaje de Kirchhoff,

Ri(r) + éQ(t) = E(1),

2500004(f) + 10% (1) = E(5).

Quiere encontrar g sujeta a la condicidn inicial g(0) = 0. Aplique la transformada de Laplace a la ecuacién
diferencial, incorporando la condicién inicial, para escribir

250000[s Q(r) — g(0)] + 10°Q (1) = 2500005 Q + 10°Q = L[E®)].

Ahora
LLE()](s) = 10Q[H (t — 2)](s) — 10Q[H (1 — 3)](s)
— 96—23 _ 98—33‘.
s s
Abhora, la siguiente ecuacién para Q:
1 1
2.5(10°)s0(s) + 10°Q(s) = —Oe*ZS — ?06_38
S

PPrPer N B A B S ¥
Q) =4(107) e 4010

Use una descomposicion en fracciones parciales para escribir

1 1 1 1
10—5 —2s —2s 10—5 —3s —3s .
0(s) = |:—S€ 3 4e - —Se T 4e

Por el segundo teorema de corrimiento,

¢! Ee—ﬂ (t)=H(t —2)
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E(0) Esatiaa (1)
10— 10 -
8 L
6 L
4 —
2+ 2+
- | | | |
t 1
0 2 3 0 2 4 6 8
FIGURA 1.20 Voltaje de entrada FIGURA 1.21  Voltaje de salida
para el circuito de la figura 1.19. para el circuito de la figura 1.19.

! [ ! 6_2{| =H(@—2)f(t—2)
s+4 ’
donde f () = L-1[1/(s + 4)] = e—% . Asi

! [ j_4ezs:| = H(t —2)e 42,
S

Los otros dos términos en Q(s) son tratados similarmente, y obtiene

q(t) = 1075[H(l —2)—H(t — 2)6‘74(172)] _ 1075[[‘1(1‘ 3y —H( — 3)674(173)]
= 10_5H(l —2)[1 — 6—4(1—2)] _ IO_SH(t —3)[1 — 6_4(t_3)].
Por dltimo, como el voltaje de salida es Egyq,(f) = 100¢(1),
Eqiig(t) = 10H (1 = 2)[1 = e "] — 10H (1 = 3)[1 — e 7).

En las figuras 1.20 y 1.21 estan graficados los voltajes de entrada y salida. ™

EJEMPLO 1.16

25

El circuito de la figura 1.22 tiene intercambiados la resistencia y el condensador del circuito del ejemplo

anterior. Quiere saber el voltaje de salida i(#)R en cualquier tiempo.

La ecuacion diferencial del ejemplo anterior se aplica a este circuito, pero ahora estd interesado en la

corriente. Como i = ¢/, entonces

(2.5)(10%)i (t) + 10%¢ (1) = E(¢); i(0) =q(0) =0.

107°F I

A B Esalida

25X 10°Q
10V

FIGURA 1.22
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E(t) Esalida
10 — 10 —
5 —

2 - -5k

1C I I T t

0 23 —10 —
FIGURA 1.23  Voltaje de entrada FIGURA 1.24 Voltaje de salida
para el circuito de la figura 1.22. para el circuito de la figura 1.22.

La estrategia de eliminar ¢ diferenciando y usando i = ¢’ no se puede aplicar aqui, ya que E(f) no es
diferenciable. Para eliminar ¢(f) en este caso, escriba

t t
q(t) = / i(t)dt +q(0) = / i(r)dr.
0 0
Ahora tiene que resolver el siguiente problema para la corriente:
t
(2.5)(10%)i (¢) + 106/ i(t)dt = E(1); i(0)=0.
0

Esta no es una ecuacion diferencial. Sin embargo, ya tiene los medios para resolverla. Tome la transfor-
mada de Laplace de la ecuacién, usando la ecuacion (1.4), para obtener

1
(2.5)(10°)1 (s) + 106;1(s) = Q[E](s)

1 1
=10-e" % —10-¢~.
s s

Aqui I = {[i]. Resuelva para I (s) para obtener

! e —4(1077) L3

1(s) = 41073
(5) =4(107) —— —

Tome la transformada inversa de Laplace para obtener
i(t) =4(107)H(t — 2)e =2 —4(107)H (t — 3)e =),

En las figuras 1.23 y 1.24 aparecen las graficas de los voltajes de entrada y salida. ™

SECCION 1.3 PROBLEMAS

En cada uno de los problemas del 1 al 15, encuentre la transfor- 1 para0<r<7

mada de Laplace de la funcién. 3 fo= cos(t) parat >7

1. (B—3t+2)e 2
2. e (t—2) 4. e4’[t —cos(1)]



_ t para0<r<3
> f(t)_{1—3t parat >3

_J2t —sen(r) para0 <t <m
6. f(t)_{ 0 parat>m

7. ¢ '[1 — 12 + sen(t)]

2
_ t© para0 <t <2
8. f1) = 1—1—32 parat >2
cos(t ara0 <t < 2m
9. () = (t) para0 <

2 —sen(tr) parat > 2w

—4 para0<r <1
10. f(r) = 0 paral <t <3
e™! parat >3

11. te™2 cos(31)

12. ¢'[1 — cosh(1)]

_Jt—2 para0 <t <16
13. f@) = { —1 parat > 16

_ J1—cos(2t) para0 <t <37
14. f(t)_{ 0 parat > 37

15. e 3@ + 212 + 1)

En cada uno de los problemas del 16 al 25, encuentre la trans-
formada inversa de Laplace de la funcién.

1

s2 +4s 412
1

52— 4545

16.
17.

1 —5s
18. —36

19.

20, 0,

21, ——
s24+6s+7

s—4
52 —8s+10
s+2
s24+6s+1
24, %e—f
(s —5)3
1

25‘ —6—213
s(s2 + 16)

22.

23.
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26. Determine L[e=2 [{ e2» cos(3w) dw]. Sugerencia: Use el
primer teorema de corrimiento.

En cada uno de los problemas del 27 al 32, resuelva el problema
con valores iniciales usando la transformada de Laplace.

27. y' +4y = f(t); y(0) = 1,y'(0) = 0, con f(t) =
0 para0 <t <4
3 parat >4

28. y/ — 2y —3y = f(@t);y(0) = 1,y'(0) = 0, con
] 0 para0<r<4
f(t)_{IZ parat > 4

29. y® — 8y = g(1); y(0) = y'(0) = y"(0) = 0, con
0 para0<t <6
gn=1 "
2 parat > 6
30. y/ +5y +6y = f(1):;y0) = y'(0) = 0, con

_J-2 para0<t<3
f(t)_{ 0 parat >3

3.y —y" 44y — 4y = f(1);y(0) = y'(0) = 0,

1 0<r<5
y'(0) = 1,con f(ry={_ PHT=T=
2 parat =5

32. y/ =4y +4y = f(1); y(0) = =2,y'(0) = 1, con
_ t para0<t <3
f(t)_{t+2 parat > 3

33. Calcule y grafique el voltaje de salida en el circuito de la
figura 1.19, suponiendo que en el tiempo cero el condensa-
dor estd cargado con un potencial de 5 volts y el apagador
se abre en 0 y se cierra 5 segundos después.

34. Calcule y grafique el voltaje de salida en el circuito RL de
la figura 1.25 si la corriente inicialmente es cero y

0 para0 <t <5

E() =
® 2 parat > 5.
R
E(1) L
FIGURA 1.25

35. Resuelva para la corriente en el circuito RL del problema
34 si la corriente inicialmente es cero y E(f) =

k para0 <t <5
0 parar > 5.
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36. Encuentre la corriente en el circuito RL del problema 34 si
la corriente es cero inicialmente y E(f) =

0 para0 <t <4
Ae™! parat > 4.

37. Escriba la funcién graficada en la figura 1.26 en términos
de la funcién de Heaviside y encuentre su transformada de
Laplace.

f)

K

|| ;
a b

FIGURA 1.26

38. Escriba la funcién graficada en la figura 1.27 en términos
de la funcién de Heaviside y encuentre su transformada de
Laplace.

f()

M
L~ | ;

L a b c
N

FIGURA 1.27

39. Escriba la funcién graficada en la figura 1.28 en términos
de la funcién de Heaviside y encuentre su transformada de
Laplace.

1.4 Convolucion

J®

| | | ¢
a b c

FIGURA 1.28

40. Resuelva para la corriente en el circuito RL de la figura 1.29
si la corriente es cero inicialmente, E(7) tiene periodo 4 y

|10 para0 <t <2
E(t)_{O para2 <t < 4
L
E(t) R

FIGURA 1.29

Sugerencia: Vea el problema 22 de la seccién 1.1 para la
transformada de Laplace de una funcién periddica. Debe
encontrar que 7 (s) = F(s)/(1 4+ e~2) para alguna F(s). Use
una serie geométrica para escribir

1 . n ,—2ns
Tre = 20
n=0
para escribir / (s) como una serie infinita, después tome la
transformada inversa término a término usando el teorema
del corrimiento.
Grafique la corriente para 0 < ¢ < 8.

En general la transformada de Laplace del producto de dos funciones no es el producto de sus transfor-
madas. Sin embargo, hay un tipo especial de producto, denotado por f * g, llamado la convolucion de f
con g. La convolucidn tiene la caracteristica de que la transformada de f* g es el producto de las transfor-
madas de f'y g. Este hecho se llama el teorema de convolucion.

DEFINICION 1.6 Convolucién

Sify g estan definidas en [0, 0o), entonces la convolucién f * g de f'con g es la funcién definida por

t
(f *g)() =/0 [t —o)g(r)dr

parat > 0.
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TEOREMA 1.9 Teorema de convolucion
Si f* g estd definida, entonces
QLf * gl =2 f1Xg]

Prueba Sean F = [f]y G = {[g]. Entonces
o o0
F()G(s) = F(s)/ e Tg()dt = / F(s)e*"g(r)dr,
0 0
en la cual cambia la variable de integracién a Ty pone F(s) dentro de la integral. Ahora recuerde que
e *TF(s) =QUH @ — 1) f(t — D)I(s).
Sustituya esto en la integral para F(s)G(s) para obtener
o
FOGE) = [ 8lHE =0 f @~ D60 d. (17)
0
Pero, de la definicién de la transformada de Laplace,
o0
QH(t — 1) f(t —1)] = / e STH( — 1) f(t —1)dt.
0

Sustituya esto en la ecuacién (1.7) para obtener

F(5)G(s) = /Oo [/OO eH( — 1) f(t — 1) dt} g(v)dt
0 0

9] 9]
=/ / e lg(H(t — 1) f(t — T)dt dr.
0o Jo
Recuerde ahora que H(t — 7) = 0si 0 < ¢ < 7, mientras H(t — 7) = 1 sit > 7. Por tanto,
o0 oo
F(s)G(s) = / / e e(r) f(t — ) dtdr.
0 T

La figura 1.30 muestra el plano #t. La tltima integracidn es sobre la regiéon sombreada, que consiste
de los puntos (z, 7 ) que satisfacen 0 < 7 < oo. Invierta el orden de integracion para escribir

oo 1
F(s)G(s) = / / e Mle(r)f(t —T)dr
o Jo

oo t
= / e ! |:/ g ft—r1) dr:| dt
0 0

_ /0 e (f % g)() dt = LLf * g1(s).
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2
~

Il
2

FIGURA 1.30

Por tanto,
F(s)G(s) = LLf * gl(s),

como querfa probar. M

La version inversa del teorema de convolucién es ttil cuando quiere encontrar la transformada inversa
de una funcién que es un producto, y conoce la transformada inversa de cada factor.

Sean &-1[F] = fy £-![G] = g. Entonces

CUFGl=fxg. m

EJEMPLO 1.17

Calcule

s
s(s =42 ]

Puede hacer esto de distintas maneras (una tabla, un programa, una descomposicion en fracciones parcia-
les). Pero también si escribe

¢! [—1 ]=21 [1 : }=8][F(S)G(S)]
(s — 4)2 s (s — 42 '

Ahora

! E] =1l=f@t y ! [ ] =t = g(1).

(s —4)2

Por tanto,

! [;} = f(1)xg(t) =1xre¥
s(s =42 ] s =

! 1 1 1
= / e dr = —te* — —eM + —. |
0 4

La operacién de convolucién es conmutativa.
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TEOREMA 1.11

Sif * g estd definida, entonces también loestigx f yf x g =g *f.

Prueba Seaz =1t — ten laintegral que define la convolucién para obtener

t
(f *g)() =/0 ft—og(r)dr

0 t
=/ f(z)g(t—z)(—l)dz=/O f@gt —2)dz=(g* f)(t). m
t

La conmutatividad puede tener una importancia prictica, ya que, en casos especificos, la integral que
define a g * f puede ser més facil de evaluar que la integral que define a f'* g.

Algunas veces la convolucién permite escribir soluciones de problemas que estdn formulados en
términos muy generales.

EJEMPLO 1.18

Resuelva el problema

Y'=2y'=8y=f@®:  y0)=1y(0)=0.
Aplique la transformada de Laplace, inserte los valores iniciales, para obtener

Q" — 2y — 8yl(s) = (s7Y(s) — 5) — 2(sY(s) — 1) — 8Y (s) = QLf1(s) = F(s).

Entonces
(s =25 —8)Y(s) —s +2 = F(s),
asf
Y(s) = Z;F(s) TR .
§2—25—8 §2— 25— 8

Use una descomposicién en fracciones parciales

Y(s) 1 1 Fis) 1 1 F()+1 1 +2 1
§)=—-———F()— -———F(s _— -
6s—4 6s+2 3s—4 3542

Entonces

1 1 1 2
y(t) = ge‘” * f(t) — 6[2, * f(0) + 364’ + gﬂ.

Esta es la solucion, para cualquier funcidn f que tiene una convolucién con e#' y e=2. M

También se usa la convolucién para resolver cierto tipo de ecuaciones integrales, en donde la funcién
a ser determinada aparece en una integral. Vio un caso de éstos en el ejemplo 1.16 al resolverlo para la
corriente.
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EJEMPLO 1.19

Determine ftal que

f@) =22+ ft f(t—1)e " dr.
0

Reconocemos la integral de la derecha como la convolucién de f con e~ . Entonces la ecuacion tiene la
forma

F@) =22+ (fxe ).

Tomando la transformada de Laplace de esta ecuacién llegamos a

F(s) = & 4+ F(s)—
S_s3 Ss+1.

Entonces

F(s) = = +
)= —= + —,
s3 st

y a partir de esto facilmente invertimos para obtener

2
f() =21+ §t3. m

SECCION 1.4 PROBLEMAS

En cada uno de los problemas del 1 al 8, use el teorema de 2

convolucién para calcular la transformada inversa de Laplace 8. $3(s2+5)

de la funcién (aun si funciona otro método). Siempre, a y b son

constantes positivas. En cada uno de los problemas del 9 al 16, use el teorema de
convolucién para escribir una férmula para la solucién del pro-

1 1 blema con valores iniciales en términos de f (7).
(s2+4)(s2—4)
2 LI 9.y =5y 4+ 6y =f(1); y(0) =y (0) =0
t 2
s*+16 . 10. y' + 10y + 24y = £(1); y(0) = 1, y/(0) = 0
3. A A A .~ " /
(2 +a?)(s2 + b?) 11, y" — 8y 4+ 12y = f(1): y(0) = =3, y/(0) = 2
4 2 12. y" — 4y = 5y =f(1); y(0) = 2,y'(0) = 1
T (s =32 +5
" 1)(s o 13. "+ 9y =f(; y(0)=—1,y(0) =1
> 21 a2 14y — K2y = £(1); ¥(0) = 2, y/(0) = —4
6 ——— 15, 30 — v — 4y’ + 4y = [ (0 90) = V() = 1,y (0) =0
T st (s —5)
1 16. y» — 11y + 18y = f(1; y(0) = y'(0) = y"(0) =
7. ———e® y3(0) =0

e
s(s +2)
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En cada uno de los problemas del 17 al 23, resuelva la ecuacién 24. Use el teorema de convolucién para obtener la férmula

integral. Q[f{) f(w) dw](s) = (1/s)F (s). {Qué hipdtesis se necesitan
para f (1)?

17.f( = =1+ J§ f(t = e da 25. Pruebe, por ejemplo, que en general f* 1 # f, donde 1

18. f(1) = —t + [ f(t — @) sen(e) da denota la funcién que es idénticamente 1 para todo 7. Suge-

19.fO=e'+ [} f(t — @) da

rencia: Considere f (f) = cos(?).

26. Use el terorema de convolucién para determinar la transfor-

20. f(H=—1+1—2 [} f(t — ) sen(a) do mada de Laplace de e=2 [} e2v cos(3w) dw.
21 f() =3 + J!) f(@) cos[2(t — a)] da 27. Use el teorema de convolucién para probar que
22. f(t) = cos(t) + e~ f(’) f(a)e? da 1 t rw

! |:—2F(s):|(z) - / / f(e) da dw.
23. f(r)y=e3 et — 3 f(’) f(@)e3 da] s 0 Jo

1.5

Impulsos unitarios y la funcion delta de Dirac

Algunas veces encontrard el concepto de impulso, el cual debe ser entendido intuitivamente como una
fuerza de magnitud grande aplicada sobre un instante de tiempo. Enseguida se modela un impulso. Para
cualquier nimero positivo €, considere el pulso 8. definido por

1
8e(t) = E[H(t) —H@ -9l

Como se muestra en la figura 1.31, éste es un pulso de magnitud 1/€ y duracion €. Haciendo que se aproxi-
me a cero, obtiene pulsos de magnitud cada vez mayor en intervalos de tiempo cada vez més cortos.

La funcién delta de Dirac se interpreta como un pulso de “magnitud infinito” sobre una duracién
“infinitamente corta” y se define como

8(t) = lim 8.(1).
e—>0+

Esta no es en realidad una funcién en el sentido convencional, sino un objeto més general llamado distri-
bucidén. No obstante, por razones histdricas se continda refiriéndose a ella como la funcién delta. Se llama
asi en honor del premio Nobel de fisica P.A.M. Dirac. La funcién delta con corrimiento §(f — a) es cero
excepto para t = a, donde tiene su pico infinito.

Es posible definir la transformada de Laplace de la funcién delta de la siguiente manera. Empie-
ce con

Se(t —a) = é[H(t —a)—H({t —a—e)l.

' !
0 | €

FIGURA 1.31  Grdfica de
8.t — a).
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TEOREMA 1.12  Propiedad de filtrado

Entonces

i = 1L Lrn] L0
6 €L § €S

Esto sugiere que es necesario definir

—as(] — €S
Qwa—anzlmli—L—ﬁ—lzeﬂﬁ
e—0+ ()

En particular, eligiendo a = 0

Q0] = 1.

Asi, la funcién delta tiene la transformada de Laplace igual a 1.

El siguiente resultado se llama la propiedad de filtrado de la funcién delta. Si en el tiempo a, una
sefial (funcién) es golpeada por un impulso, multiplicindola por §(f — a), y la sefal resultante es sumada
sobre todos los tiempos positivos integrandola de cero a infinito, entonces obtiene exactamente el valor
de la sefial f (a).

Sea a > 0y fintegrable en [0, c0) y continua en a. Entonces
o
/0 F@®)s(t —a)dt = f(a).
Prueba Primero calcule
o o 1
/ [t —a)dt = / —-[H(t —a) — H(t —a—¢€)]f()dt
0 0o €

1 a-+e
= —/ f()dt.
€ Ja

Por el teorema del valor medio para integrales, existe algtn 7. entre a y a + € tal que
a—+te
/ f@)dt =ef(te).
a
Entonces
o0
/ f@)de(t —a)dt = f(te).
0
Como € — 0+, a + € — a, asi t. — a y, por la continuidad, f (¢.) — f (a). Entonces

Iim /Oo f(@)se(t —a)dt = /oo f(@) lim §.(t —a)dt
=0+ Jo 0 e—>0+
-/ T F 08 —aydt = lim f(e) = f(a),
0 e—>0+

como queria probar. M
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Si aplica la propiedad de filtrado para f (f) = e, obtiene
o
/ eS8t —a)dt = e,
0

que es consistente con la definicién de la transformada de Laplace de la funcién delta. Mds atn, si cambia
la notacién en la propiedad de filtrado y la escribe como

/0 f(@)d(x —ndr = (),

entonces reconocerd la convolucién de fcon § y leerd la dltima ecuacién como

f*xd=f
Por tanto, la funcién delta actia como una identidad para el “producto” definido por la convolucién de

dos funciones.
Aqui hay un ejemplo de un problema con valor en la frontera que involucra la funcién delta.

EJEMPLO 1.20

Resolver

Y2y +2y =81 =-3);  y(0)=)(0)=0.
Aplique la transformada de Laplace a la ecuacién diferencial para obtener
s2Y(s) +2sY (s) +2Y(s) = e,

entonces

—3s

Y = =
() s242s+2

Para encontrar la transformada inversa de la funcién de la derecha, primero escriba

Y(s) = 1
(s+1D2+1 '

Ahora use ambos teoremas de corrimiento.Ya que &~1[1/(s2 +1)] = sen(f), un corrimiento en la variable
s da

1 1 _

L ———— | = ¢ "sen(r).

(s+D24+1

Ahora, un corrimiento en la variable ¢ para obtener

y(t) = H(t —3)e "V sen(r — 3).

En la figura 1.32 se muestra la grafica de esta solucion. La solucién es diferenciable para ¢ > 0, excep-

to que y'(¢) tiene un salto de discontinuidad de magnitud 1 en ¢ = 3. La magnitud del salto es el coeficiente
de 6(t — 3) en la ecuacidn diferencial. ™
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y(1)

0.30
0.25 -
0.20 -
0.15 -
0.10
0.05 —

0 2 4 6 8 10

FIGURA 1.32 Grdfica de
0 si0<tr<3

MOES
eI gen(r — 3) sit>3

La funcién delta puede usarse para estudiar el comportamiento de un circuito que ha sido sometido a
transitorios. Estos son generados durante el prendido y apagado, y los voltajes altos de entrada asociados
con ellos crean una corriente excesiva en los componentes, dafiando el circuito. Los transitorios también
pueden ser dafiinos ya que contienen un espectro de frecuencias amplio. La introduccién de un transitorio
en un circuito puede tener el efecto de forzar al circuito con un rango de frecuencias. Si hay una de éstas
cerca de la frecuencia natural del sistema, habra resonancia, por lo que se producen oscilaciones suficien-
temente grandes para dafiar el sistema.

Por esta razén, antes de construir un circuito, algunas veces los ingenieros usan la funcion delta para
modelar un transitorio y estudiar sus efectos en el circuito.

EJEMPLO 1.21

Suponga que, en el circuito de la figura 1.33, la corriente y la carga en el condensador son cero en el tiem-
po cero. Quiere determinar la respuesta del voltaje de salida a un transitorio modelado por §(¢).
El voltaje de salida es ¢(#)/C, de esta manera determinara g(#). Por la ley de voltaje de Kirchhoff,

Li"+ Ri + %q =i"+10i + 100g = §(t).
Comoi = ¢,
q" +10g" + 100 = 8(1).
Las condiciones iniciales son g(0) = ¢’(0) = 0.
Aplique la transformada de Laplace a la ecuacién diferencial y use las condiciones iniciales para

obtener

s20(s) + 10s O(s) + 1000(s) = 1.

1H 10 Q
FEenrada (1) = 8(1) 001F

FIGURA 1.33
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Q(s) =
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1

s2 4+ 10s + 100"

Para invertir esto usando el teorema del corrimiento, complete el cuadrado

Como

271

entonces

gty =g [

El voltaje de salida es

0(s) =

1

(s+52+75

|

1

1}2

(s2+75)

1
573 sen(S\/gt),

(s+352+75

%q(r) = 100g(1) =

} = 51 e sen(5+/31).

V3

j—%e‘S’ sen(5v/31).

En la figura 1.34 se muestra una grafica de esta salida. La salida del circuito muestra oscilaciones amorti-
guadas a su frecuencia natural, aunque no fue forzada explicitamente por oscilaciones de esta frecuencia.
Si lo desea, puede obtener la corriente por i(f) = ¢/(¢).

Esalida (t )

5

4
3
2
1

0.5
| |

SECCION 1.5 PROBLEMAS

En cada uno de los problemas del 1 al 5, resuelva el problema 3.

con valores iniciales y grafique la solucién.

1.0 15 20 25 30

FIGURA 1.34

Salida del

circuito de la figura 1.32.

1.y + 5y + 6y = 38(t — 2) — 48(t — 5); y(0) = y(0) = 0

2.y — 4y + 13y = 48(t — 3); y(0) = y(0) = 0

Y& + 4y + 5y + 2y = 68(1); y(0) = y/(0) = y"(0) =0
v+ 16y = 128(t — 57/8); y(0) = 3, y/(0) = 0.

¥+ 5y’ 4+ 6y = B&(1); y(0) = 3, y/(0) = 0. Llame a la
solucién ¢. ;Qué son ¢(0) y ¢’(0)? Usando esta informa-
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10.

11.

12.

1.6
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cién, ;qué fendmeno fisico modela la funcién delta de
Dirac?

Suponga que f no es continua en a, pero lim,, ., f (1) =
f(a+) es finita. Probar que fgof(t)é(t —a)dt =f(a+).

Evalde [ (sen(r)/n)8(t — m/6)dt .

Evalte [} 28t — 3)dt .

Evalde [°f (5(t — 2)dt , donde
t para0 <t <2

[y =1
5 parat =2.

parat > 2

Algunas veces es conveniente considerar a §(f) como la
derivada de la funcion de Heaviside H(f). Use las definicio-
nes de la derivada, de la funcién de Heaviside, y de la fun-
cién delta (como el limite de §.) para dar una justificacién
heuristica para esto.

Use la idea H'(f) = () del problema 10 para determinar el
voltaje de salida del circuito del ejemplo 1.16 derivando la
ecuacion pertinente para obtener una ecuacion en i en lugar
de escribir el cambio como una integral.

Si H'(t) = (1), entonces [H'()](s) = 1. Pruebe que no
todas las reglas operacionales para la transformada de
Laplace son compatibles con esta expresion. Sugerencia:

13.
14.

15.

16.

Verifique para ver si [H'(1)](s) = s¥[H(0)](s) — H(O+).
Evalde §(r — a) * f (1).

Un objeto de masa m es atado al extremo inferior de un
resorte de médulo k. Suponga que no existe oscilacion.
Obtenga y resuelva una ecuacidén de movimiento para la
posicion del objeto en el tiempo ¢ > 0, suponiendo que, en
el tiempo cero el objeto es empujado hacia abajo desde la
posicion de equilibrio con una velocidad inicial vy. {En qué
momento deja el objeto la posicién de equilibrio?

Suponga que un objeto de masa m estd atado al extremo
inferior de un resorte de médulo k. Suponga que no exis-
te oscilacién. Resuelva la ecuacién de movimiento para
la posicién del objeto en cualquier tiempo ¢ > O si, en el
tiempo cero, el peso es empujado hacia abajo con una fuer-
za mvy. {Como es la posicién del objeto del problema 14
comparada con la del objeto en este problema para cual-
quier tiempo positivo?

Un peso de 2 libras es atado al extremo inferior de un resor-
te, estirdndolo % pulgadas. Se deja que el peso alcance su
posicion de equilibrio. En algin tiempo posterior, que se
Ilama tiempo cero, el peso se empuja hacia abajo con una
fuerza de % de libra (un impulso). Suponga que no hay
amortiguamiento en el sistema. Determine la velocidad con
la cual el peso deja la posicién de equilibrio asi como la
frecuencia y la magnitud de las oscilaciones resultantes.

Solucion de la transformada de Laplace de sistemas

La transformada de Laplace puede usarse para resolver sistemas de ecuaciones que involucren derivadas

e integrales.

EJEMPLO 1.22

Consideremos el sistema de ecuaciones diferenciales y condiciones iniciales para las funciones x y y:

x" =2x" 43y +2y =4,
2y —x'+3y =0,
x(0) = x"(0) = y(0) = 0.

Empiece por aplicar la transformada de Laplace de las ecuaciones diferenciales, incorporando las

condiciones iniciales. Obtiene

§2X — 25X +3sY +2Y =
2sY —sX +3Y =

’

4
N
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Resuelva estas ecuaciones para X(s) y Y(s) y obtendra

¥ . ds + 6 Yis) = 2
=260 'Y= G oe o)

Una descomposicién en fracciones parciales produce

RS BN R S B LR
VETa s2 6s5s+2 3s5s—1

RS B U B I
Ve T3 12 T3 -1

Aplicando la transformada inversa, obtiene la solucién

(t) T gy Lo Dy
x(t)=—= — —e —e
2 6 3

1 2
y(t) =—1+ 56_2’ + §e’. |

El andlisis de sistemas mecdnicos y eléctricos que tienen varios componentes pueden encauzarse a
sistemas de ecuaciones diferenciales, las cuales pueden resolverse usando la transformada de Laplace.

EJEMPLO 1.23

Consideramos el sistema masa/resorte de la figura 1.35. Sea x; = x, = 0 en la posicion de equilibrio, don-
de los pesos estdn en reposo. Elija la direccion de la derecha como positiva y suponga que los pesos estan
en las posiciones x(f) y x,(¢) en el tiempo ¢.

Aplicando dos veces la ley de Hooke, la fuerza recuperada en m; es

—kix1 + ka(x2 — x1)
y en m; es
—ka(x2 — x1) — k3x3.

Por la segunda ley del movimiento de Newton,

mix{ = —(ki + ka)x1 + koxa + f1(2)

ky " k, M2 ks

FIGURA 1.35
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maxy = koxi — (ko + k3)xz + fo(1).

Estas ecuaciones aceptan que el amortiguamiento es despreciable, pero permiten que las funciones de
fuerza actiien en cada masa.

Como un ejemplo especifico, suponga m; = m, = 1y k; = k3 = 4 mientras k, = % Suponga que
f>(t) = 0, de manera que ninguna fuerza de impulso externa actie en la segunda masa, mientras que una
fuerza de magnitud f(r) = 2[1 — H(t — 3)] actia en la primera. Esta pega a la primera masa con
una fuerza de magnitud constante 2 durante los primeros 3 segundos, después se apaga. Ahora el sistema
de ecuaciones para las funciones de desplazamiento es

13 5
¥ =—Txi+ o0+ 201 - Hi = 3),

Si las masas estdn inicialmente en reposo en la posicidn de equilibrio, entonces
x1(0) = x2(0) = x}(0) = x}(0) = 0.

Aplique la transformada de Laplace a cada ecuacién del sistema para obtener

) 13 5 2(1 —e™)
X1 =——X1+-Xo+ — 2,
2 2 s
X, = 2x, - Bx
2—2 1 ) 2.

Resuelva esto para obtener

Xols) — 2 2, BYL s
W EraeEa U5

Xa(s) = ———— Lo
W= 2 ity ¢

Como preparacion para aplicar la transformada inversa de Laplace, use una descomposicién en fracciones
parciales para escribir

i 2 B 1 s 1 s 131 5 1 s 5 1 s
= —— = — —_— —_——_—— —_— — e
) = 36y 4244 95249 365 A2+ 4 95249
y
511 1 51 1 1
Xo(s) = N $ e T . . I

365 45214 95219 365 452 14° 95249
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Ahora es rutina aplicar la transformada inversa de Laplace para obtener la solucién

13 1 1
x1(t) =— — - cos(2t) — 5 cos(3t)

36 4
[ 13 1 1 1
+ 36 + I cos(2(t — 3)) — 5 cos(3(t — 3))_ H(t —3),
5 1 5 I 3
x2(1) =3 "1 cos(2t) + 5 cos(3r)
) 1 1 i
+ 36 + 7 cos(2(t —3)) — ) cos(3(r — 3))_ H(it—-3). W

EJEMPLO 1.24

En el circuito de la figura 1.36, suponga que el interruptor estd cerrado en el tiempo cero. Desea conocer
la corriente en cada vuelta. Suponga que las corrientes en ambos ciclos y las cargas en los condensadores
inicialmente son cero. Aplique las leyes de Kirchhoff a cada ciclo para obtener

40i1 + 120(q1 — g2) = 10
60iy + 120g2 = 120(q1 — q2).

Como i = ¢/, escriba g(t) = f é i(wwt)dt + q(0). Aplique las dos ecuaciones de circuitos y obtendrd
t
40i; + 120/ [i1(r) —i2(r)]dt + 120[q1(0) — g2(0)] = 10
0
t t
60iy + 120/ ir(t)dt 4+ 12042 (0) = 120f [i1(T) —i2(r)]d7 4+ 120[q1(0) — q2(0)].
0 0

Ponga ¢1(0) = ¢,(0) = 0 en este sistema para obtener

t
40i; + 120/ [i1(r) —i2(r)]dt =10
0

t t
60ir + 120f ir(t)dt = 120[ [i1(r) —ix(v)]dr.
0 0

40 Q 60 Q

10V

FIGURA 1.36
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Aplique la transformada de Laplace a cada ecuacién para obtener

120 120 10
40H+ —LH ——DhL=—
s s s
120 120 120
60l + — L =—1 — —1.
s s s
Después de algunos rearreglos, tendra
1
s+3) —-3L = 1

21 — (s + 4, = 0.

Resuelva esto para obtener

s+4 3 1 1 1
Ii(s) = =— + =
4(s + 1)(s +6) 20s +1 10s+6
y
1 1 1 1 1
L(s) =

25+ D +6) 10s+1 10s+6

Ahora use la transformada inversa de Laplace para encontrar la solucién

3 1
() = —e '+ —6_6[,

20 10

SECCION 1.6 PROBLEMAS

En cada uno de los problemas del 1 al 10, use la transformada
de Laplace para resolver el problema con valores iniciales para
el sistema.

Lx-2y=1x4y—-x=0;x0)=y0)=0

2.2X =3y+y =0,x+y =1;x(0)=y0)=0
3X+2y—y=1,2¢4+y=0;x(0)=y0)=0

4. X' +y —x=cos(2t),x' + 2y = 0; x(0) = y(0) =0

5.3 —y=26,x+y —y=0;x0) =y(0) =0

6. X +4—y=0,x+2y=e4x0)=y0)=0

T.xX+2x—y =0, x+y+x=2;x0)=y0)=0

8. X +4x—y=0,x+y =1;x(00=y0)=0

9. ¥ +y+x—y=0,x+2y +x=1;x(0)=y0) =0

10. X' + 2y —x=0,4x" 4+ 3y + y=—6;x0) =y0) =0

(1) = Lot
i _1Oe

1
e m
10

11. Use la transformada de Laplace para resolver el sistema
¥ =2y, 4+3y1 =0
yi —4yy + 3y =1,

y1 =2y +3y5 = =1 y,(0) = y,(0) = y;(0) = 0.

12. Encuentre las corrientes en el circuito de la figura 1.37,
suponiendo que las corrientes y las cargas son cero inicial-
mente y que E(t) = 2H(t — 4) — H(t — 5).

2Q 1Q

30

FIGURA 1.37



13. Encuentre las corrientes en el circuito de la figura 1.37 si las
corrientes y las cargas inicialmente son cero y E(f) = 1 —
H(t — 4) sen(2(t — 4)).

14. Encuentre las funciones de desplazamiento de las masas

en el sistema de la figura 1.38. Desprecie el amortigua-

miento y suponga que los desplazamientos y las velocida-
des son cero inicialmente, y que las fuerzas externas son

S =2y fo(r) =0.

Encuentre las funciones de desplazamiento en el sistema

de la figura 1.38 si fi(¥) = 1 — H(t — 2) y f>(t) = 0. Supon-

ga que los desplazamientos y las velocidades iniciales son

15.

cero.

FIGURA 1.38

16. Considere el sistema de la figura 1.39. Sea M sometida a

una fuerza de impulso periddica f (f) = Asen(wt). Las masas
estdn inicialmente en reposo en la posicién de equilibrio.
(a) Obtenga y resuelva el problema con valores iniciales
para las fuerzas de desplazamiento.
(b) Pruebe que, si m y k, son elegidos de manera que
w = /ky/m, entonces la masa m cancela las vibraciones
forzadas de M. En este caso m es una vibracién absor-
bente.

FIGURA 1.39

17. Dos objetos de masas m; y m, estdn atados en los extremos
opuestos de un resorte teniendo una constante de resorte k
(figura 1.40). Se coloca todo el aparato sobre una mesa muy

1.6  Solucion de la transformada de Laplace de sistemas 43

barnizada. Pruebe que, si se estira y suelta desde el reposo,
las masas oscilan una con respecto a la otra con periodo

[ mymy
27 [ —.
k(my +mp)

my

FIGURA 1.40

18. Resuelva para las corrientes en el circuito de la figura 1.41
si E(t) = 5SH(t — 2) y las corrientes iniciales son cero.

20H 30 H
0 /TN i\ 00
100

FIGURA 1.41

19. Resuelva para las corrientes en el circuito de la figura 1.41
si E(f) = 58(t — 1).

20. Como se muestra en la figura 1.42, dos tanques estdn conec-
tados por una serie de tuberias. El tanque 1 contiene inicial-
mente 60 galones de salmuera en el cual disuelven 11 libras
de sal. El tanque 2 contiene inicialmente 7 libras de sal
disuelta en 18 galones de salmuera. Empezando en el tiem-
po cero, la mezcla contiene % de libra de sal para cada galén
de agua que es bombeado en el tanque 1 a una razén de 2
galones por minuto, mientras las soluciones de agua salada
se intercambian entre los dos tanques y también salen del
tanque 2 en las razones que se muestran en el diagrama.
Cuatro minutos después del tiempo cero, se vierte sal en el
tanque 2 a razén de 11 libras por minuto por un periodo de
2 minutos. Determine la cantidad de sal en cada tanque para
cualquier tiempo ¢ > 0.

2 gal/min 3 gal/min
— Poa— 7
i
11b/gal
1 2
e R
5 gal/min 2 gal/min
FIGURA 1.42
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21. Dos tanques estdn conectados por una serie de tuberfas
como se muestra en la figura 1.43. El tanque 1 contiene 3 gal/min 3 gal/min
inicialmente 200 galones de salmuera en donde se disuel- — -~

ven 10 libras de sal. El tanque 2 contiene inicialmente 5

libras de sal disueltas en 100 galones de agua. Empezando

en el tiempo cero, se bombea agua pura en el tanque 1 a 1

razén de 3 galones por minuto, mientras las soluciones de

salmuera se intercambian entre los tanques en las razones

que se muestran en el diagrama. Tres minutos después del -~ —
tiempo cero, 5 libras de sal son descargadas en el tanque 2. 2 gal/min 4 gal/min
Determine la cantidad de sal en cada tanque para cualquier
tiempo > 0. FIGURA 1.43

1.7 Ecuaciones diferenciales con coeficientes polinomiales

TEOREMA 1.13

COROLARIO 1.1

(OMEL

R

1 gal/min

Algunas veces la transformada de Laplace puede ser usada para resolver ecuaciones diferenciales lineales
que tienen polinomios como coeficientes. Para esto es necesario que la transformada de Laplace de #f (¢)

sea el negativo de la derivada de la transformada de Laplace de f ().

Sea ¥[f](s) = F(s) para s > by suponga que F es derivable. Entonces
Lf (D) = —F'(s)
paras > b.

Prueba Derive bajo el signo de la integral para calcular

d [® 0 g
F'(s) = d—S/O e*”f(t)dt=/o g(e*”f(t))dt

=/ —tef”f(t)dt:/ e S—tf ()] dt
0 0
= Q[-1f(D](s),

y esto es equivalente a la conclusion del teorema. M

Aplicando este resultado n veces, se llega al siguiente.

Sea {[f](s) = F(s) para s > b y sea n un entero positivo. Suponga que F es derivable n veces. Entonces,

paras > b,

dl’l
~ F(s). W

L fO16s) = (=" I
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EJEMPLO 1.25

Considere el problema
"+ @4t —2)y —4y =0; y(0) = 1.
Si escribe esta ecuacion diferencial en la forma y” 4+ p(#)y’ + ¢(¢)y = 0, entonces debe elegir p(f) =
(4t —2)/t, 1a cual no estd definida en ¢ = 0, donde estd dada la condicién inicial. Este problema no es del
tipo para los que hay teorema de existencia/unicidad. Mds adn, s6lo hay una condicién inicial. Sin embar-

go, busque funciones que satisfagan el problema como fue formulado.
Aplique la transformada de Laplace a la ecuacién diferencial y obtiene

Lty"T+ 4L[ty"] — 22[y'] — 48[y] = 0.
Calcule los primeros tres términos como sigue. Primero,

i} d d
Uy = - Uy = - [s2Y — sy(0) — y'(0)]
= —25Y—s2Y’+1

ya que y(0) = 1y y’(0), aunque desconocido, es constante y tiene derivada cero. Después,
Mwﬂz—iﬂﬂ
ds
d /
=——1[sY —y0)]=-Y —sY".

ds

Por dltimo,
Lyl =sY —y(0) =sY — 1.
Por tanto, la transformada de una ecuacién diferencial es
—25Y' — 7Y + 1 —4Y —4sY’ —2sY +2—4Y =0.

Entonces

s(s+4)" T s(s+4)°

L A H8 3

Esta es una ecuacién diferencial lineal de primer orden, y encontrard un factor de integracién. Primero
calcule

4s +8 _ 5 5
/—s(s+4) ds = In[s“(s + 4)“].

Entonces

LNlG7 6+ s2(s + 4)2
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es un factor de integracién. Si multiplica la ecuacién diferencial por este factor obtiene

sz(s ~|—4)2Y’ + (4s + 8)s(s +4)Y = 3s(s + 4),

[s%(s +4)°Y] = 3s(s + 4).
Integre para obtener
s2(s + %Y = 5> + 652+ C.

Entonces

s n 6 n C
(s+42  (s+4?  s2(s+4)?

Y(s) =

Aplique la transformada inversa de Laplace, para obtener

—4t —4t

C
y(t) =e " +2te” + ﬁ[_1 F 214 e 426,

Esta funcién satisface la ecuacién diferencial y la condicién y(0) = 1 para cualquier nimero real C. Este
problema no tiene una solucién dnica. M

Cuando aplica la transformada de Laplace a una ecuacién diferencial con coeficiente constante
y" + Ay’ + By = f (1), obtiene una expresion algebraica para Y. En este ejemplo, donde aparecen poli-
nomios como coeficientes, obtiene una ecuacién diferencial para Y ya que el proceso de calcular la
transformada de r*y(¢) involucra derivar Y(s).

En el ejemplo siguiente, necesitard el siguiente hecho.

— TEOREMA 1.14

Sea f continua a pedazos en [0, k] para todo nimero k positivo, y suponga que existen nimeros My b tales
que |f ()| < Mebt para t > 0. Sea L[f ] = F. Entonces

lim F(s) = 0.
S—>00

Prueba Escriba

[F(s)

o0 o0
‘ / e f()dt| < / e ST MeP dt
0 0

M

o0

) M

= e~ = -0
b — S 0 S — b

conforme s — oco. M

Este resultado permitird resolver el siguiente problema con valores iniciales.
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EJEMPLO 1.26

Suponga que quiere resolver
Y2y —dy=1;  y(0)=y'(0)=0.
A diferencia del ejemplo anterior, este problema satisface las hipétesis del teorema de existencia/uni-

cidad.
Aplique la transformada de Laplace a la ecuacién diferencial para obtener

1
s2Y (s) — sy(0) — y'(0) +22[ry](s) — 4Y (s) = -

Ahora y(0) =y (0) =0y

d
Lry'1(s) = 7 [LY'1()]

d
== 5Y(s) =yl = —Y(s) — sY'(s).
s

Por tanto, tenemos que

s2Y(s) —2Y(s) —2sY'(s) —4Y(s) = 1,
s

Y/+3 Sy = 1
s 2 o262

Esta es una ecuacion diferencial lineal de primer orden para Y. Para encontrar un factor de integracion,

primero calcule
3 1
/ 22 ds:31n(s)——s2.
s 2 4

La exponencial de esta funcién, o
2
S3e—s /4’
es un factor de integracién. Multiplique la ecuacién diferencial por esta funcidn para obtener
(S3e—s2/4y)/ _ _lse—sz/4_
2
Entonces
2 _2
53673 /4Y:e N /4+C

asi

1 C 2
Y(s) = — + =/,
(s) 3T 3¢
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No tiene ninguna otra condicién inicial para determinar C. Sin embargo, para tener lim;_, o, ¥ (s) =0, debe
elegir C = 0. Entonces Y (s) = 1/s3 as{

12
t)y=—-t". |
y(©) 2

SECCION 1.7 PROBLEMAS

(= DYy =0:3(0) = 0
.Y+ 2ty — 4y =6;y(0) =0, y'(0) =0

Use la transformada de Laplace para resolver cada uno de los 5
6

1.2y —2y=2 7.3+ 81y =05 3(0) = 4, y(0) = 0
8
9

problemas del 1 al 10.

Y'+any' — 4y =0,y(0)=0,y(0) = -7 -y — 41y + 4y = 0; y(0) = 0, y'(0) = 10
y' =16ty + 32y = 14; y(0) = y'(0) = 0 .y — 81y + 16y = 3; y(0) = 0, y'(0) = 0
'+ 8ty — 8y =0, 5(0) = 0,y(0) = —4 10. (1 — 0y +1y' — y=0,y(0) =3,y'(0) = —1

El B
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CAPIiTULO 2

Series de Fourier

Por qué las series de Fourier?

Una serie de Fourier es la representacién de una funcién como una serie de constantes multiplicadas por
funciones seno y/o coseno de diferentes frecuencias. Para mostrar el interés que tienen esas series, se le
presenta un problema del tipo que llevé a Fourier a considerarlas.

Considere una barra delgada de longitud 7, de seccién transversal de densidad constante y uniforme.
Sea u (x, t) la temperatura en el tiempo ¢ en la seccién transversal de la barra en x, para 0 < x < 7. La
ecuacion en derivadas parciales que satisface u es:

9 9
8_1;=k8_z para0 <x <m, t > 0, (2.1)
X

en donde k es una constante que depende del material de la barra. Suponga que los extremos izquierdo y
derecho de la barra se mantienen a temperatura cero

u(0,t) =u(m,t) =0 parat > 0, 2.2)
y que la temperatura a lo largo de la barra en el tiempo 7 = 0 esta especificada por
ux, 0) =f(x) =x(m —x). 2.3)

Intuitivamente, la ecuacién de calor junto con la distribucién de la temperatura inicial a lo largo de la
barra y la informacién de que los extremos se mantienen a cero grados durante todo el tiempo, son suficien-
tes para determinar la distribucién de la temperatura u(x, f) a lo largo de la barra en cualquier tiempo.

Mediante un proceso que ahora lleva su nombre y que desarrollard cuando estudie las ecuaciones
en derivadas parciales, Fourier encontr6 que las funciones que satisfacen la ecuacién de calor (2.1) y las
condiciones en los extremos de la barra, las ecuaciones (2.2), tienen la forma

Un(x, 1) = by sen(nx)e ~K1t, (2.4)

en donde n puede ser cualquier entero positivo y b, cualquier nimero real. Debe usar estas funciones para en-
contrar una que también satisfaga la condicion (2.3).
49
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Los fenomenos periodicos han fascinado por mucho tiempo a la humanidad. Nuestros ancestros conocian
la recurrencia de las fases de la Luna y de ciertos planetas, las mareas de los lagos y los océanos y los
ciclos del agua. El cdlculo y la ley de gravitacion de Isaac Newton permitieron explicar la periodicidad
de las mareas, pero fue Joseph Fouriery sus sucesores quienes desarrollaron el andlisis de Fourier que
ha tenido aplicaciones mds profundas en el estudio de los fenomenos naturales y en el andlisis de seiiales
y datos.

Una simple eleccidn del entero positivo r y la constante b,,0 no funciona. Si u(x, t) = b,,o sen(nyx)e—kny,
entonces necesita

u(x,0)=x(mr —x) = b,,o sen(npx) para0 <x <m,

una imposibilidad. Un polinomio no puede ser igual a una constante multiplicada por una funcién seno en
[0, 7] (o en cualquier intervalo no trivial).
Lo siguiente es intentar una suma finita de funciones de la forma (2.4),

N
u(x.1) =Y bysen(nx)e ", 2.5)

n=1

Tal funcién seguira satisfaciendo la ecuacion de calor y las condiciones (2.2). Para satisfacer la condicién
(2.3), debe elegir Ny b,,s de manera que:

N
u(x,0) =x(mr —x) = Zb,, sen(nx) para0 <x <.

n=1

Pero esto también es imposible. Una suma finita de miltiplos constantes de las funciones seno no puede
ser igual a un polinomio en [0, 7].
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En este punto Fourier tuvo una inspiracién brillante. Como ninguna suma finita de funciones (2.4)
puede ser una solucién, entonces intenté con una serie infinita:

u(, 1) =Y bysen(nx)e ", (2.6)

n=1

Esta funcion satisfara la ecuacion de calor asi como las condiciones u(x, 0) = u(sr, 0) = 0. Para satisfacer
la condicién (2.3) debe escoger las b;s de manera que:

o0
u(x,0) =x(r —x) =Y bysen(nx) para0<x <. 2.7)

n=1

Esto es muy diferente que intentar representar el polinomio x(r — x) por la suma trigonométrica finita
(2.5). Fourier afirmaba que la ecuacion (2.7) es vélida para 0 < x < 7 si los coeficientes se eligen como:

2 (7 41— (=1
b, = —/ x(m — x)sen(nx)dx = —#.
T Jo T

n3

Sustituyendo estos coeficientes en la solucién propuesta (2.6), Fourier afirmaba que la solucién a este
problema de conduccidn de calor con la temperatura inicial dada es

4 1 —(=1)"
u(x,t) = —~ Z % sen(nx)e_knzt.

n=1

La afirmacién que

e¢]

41— (="
Z——3 sen(nx) =x(r —x) para0 <x <wm
= n

fue demasiado radical para que la aceptaran los contemporaneos de Fourier; las matemadticas de ese tiem-
po no eran adecuadas para probar este tipo de aseveraciones. Esta fue la falta de rigor que motivé a la Aca-
demia a rechazar la publicacidn del articulo, pero las implicaciones no fueron olvidadas por los colegas de
Fourier. No hay nada particular en x(7r — x) como una distribucién de temperatura inicial y pueden usarse
diferentes funciones. Lo que realmente afirmaba Fourier era que para una extensa clase de funciones f, los
coeficientes b, pueden elegirse de manera que f(x) = fo:] b, sen(nx) en [0, 7].

Con el tiempo, esta afirmacion y otras atin mds generales sobre estas series propuestas por Fourier
fueron probadas. Ahora sigue un andlisis de las ideas de Fourier y algunas de sus ramificaciones.

SECCION 2.1 PROBLEMAS

. En el mismo conjunto de ejes, haga una grifica de x (7 — x)
y Zi=1(4/rr)([1 — (—=1)"]/n3) sen(nx) para 0 < x < 7. Repi-
ta esto para las sumas parciales Zl,,():l(4/n)([l — (—=1)"/n3)
sen(nx) y 222 (4/7)([1 — (—1)n)/n3) sen(nx). Esto permiti-
rd ver la exactitud de la intuicién de Fourier al afirmar que
x(r — x) puede representarse correctamente por Z?f:l(4/n)
([1 — (=1)")/n3) sen(nx) en este intervalo.

. Pruebe que un polinomio no puede ser un multiplo constante

de sen(nx) en [0, 7] para cualquier entero positivo n. Suge-
rencia: una manera es aplicar la induccién sobre el grado del
polinomio.

. Pruebe que un polinomio no puede ser igual a una suma de

la forma Z}’:O ¢j sen(jx) para 0 < x < 7, donde las c]/- son
nimeros reales.
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CAPITULO 2  Series de Fourier

La serie de Fourier de una funcion

Sea f (x) definida para —L < x < L. Por el momento, suponga sé6lo que f L f (x) dx existe. Quiere explorar
la posibilidad de elegir nimeros ay, ai, . . ., by, b, . . . tales que

f(x) = —ao—i—Zan cos (m;x> + b, sen (WZX) (2.8)

para —L < x < L. Algunas veces esto es pedir demasiado, pero se puede lograr bajo ciertas condiciones
sobre f. Sin embargo, para empezar, acepte el mejor de los mundos y suponga por el momento que la ecua-
cion (2.8) es cierta. ;Qué dice esto acerca de la eleccion de los coeficientes? Hay un mecanismo ingenioso
para contestar esta pregunta, que era conocido por Fourier y otros de su época. Necesita el siguiente lema
elemental.

Sea n y m enteros no negativos. Entonces
1.

3. Sin # 0, entonces

L L
/ cos? <nrr_x) dx = / sen’ (nn_x) dx =L W
L L L L

El lema se prueba integrando directamente.
Ahora, para encontrar a, integre la serie (2.8) término a término (suponiendo por ahora que puede

hacerlo):
L 1 L
/ f(x)dx = —a()/ dx
—L 2 —L

+Zan/_ cos dx —}—bn/LL sen (?) dx.

Todas las integrales de la derecha valen cero, excepto, posiblemente, la primera, y esta ecuacion se
reduce a:

L
/ f(x)dx = Lay.
-L

Por tanto,

1 L
= Z/_Lf(x)dx.
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Ahora, determine a; para cualquier entero positivo k. Multiplique la ecuacién (2.8) por cos(kmx/L) e
integre cada término de la serie resultante para obtener

/L £00) kmx d 1 /L kmx d
cos | — = - cos | —
R L )" T2, L )
0 L L
k k
+ Zan /_L cos (_mix) cos (_zx) dx + by, /_L sen (_nyzx) cos (_zx) dx.

n=1

Por el lema, todas las integrales de la derecha son cero excepto la | L cos(kmx/L) cos(kmx/L)dx, que
aparece cuando n = k, y esta integral es igual a L. El lado derecho de esta ecuacién se reduce a un solo
término y la ecuacion se convierte en:

L kmx
/ f(x)cos (—) dx = aiL,
L L

L
ar = %/_L f(x)cos (ka—x) dx.

Para encontrar by, regrese a la ecuacién (2.8). Esta vez multiplique la ecuacion por sen(kmx/L) e integre
cada término para obtener

L L
k 1 k
f f(x)sen X dx:—aof sen X dx
_L L 2 L L
+ i /L cos (nnx>sen k- dx + b /L sen (nnx)sen kx d
a —_— — | dx —_— — | dx.
Pt " L L " L L

P < L
Nuevamente, por el lema, todos los términos de la derecha son cero a excepcién de la [~ sen(nmx/L)
sen(kmx/L)dx cuando n = k, y esta ecuacion se reduce a

L
/ F(x) sen <k”—x> dx = by L.
. L

de donde

Por tanto,

1 [E kmx
bk = Z /_L f(x) sen <T> dx.

Ha “encontrado” los coeficientes en el desarrollo en la serie trigonométrica (2.8). Por supuesto, este
andlisis es débil debido al intercambio de las series y las integrales, lo que no siempre esta justificado. Sin
embargo, este argumento sefiala como pueden elegirse las constantes, al menos bajo ciertas condiciones,
y sugiere la siguiente definicion.

DEFINICION 2.1  Serie y coeficientes de Fourier

Sea funa funcién Riemann integrable en [—L, L].

1. Los nimeros

1 (L nwx
a, = — f(x)cos(—)dx, paran =0,1,2,...
L J_ | L
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1 L
bnzz/;Lf(x)sen(me>dx paran=1,2,3,...

son los coeficientes de Fourier de fen [—L, L].

2. La serie

1 o
zao + Zlan cos (%) + b, sen (?)
n=

es la serie de Fourier de fen [—L, L] cuando las constantes son los coeficientes de Fourier de f
en[—L, L].

EJEMPLO 2.1

Sea f(x) = x para —w < x < 7. Escriba la serie de Fourier de fen [—, 7r]. Los coeficientes son

1 b
ayg = — xdx =0,
T J-xn

T
a, = — x cos(nx)dx
—TT

1 b
= [2— cos(nx) + - sen(nx):| =0,
n2w n a

1 b
b, = —/ x sen(nx)dx
b4

-7

1 X 4
=| 5= sen(nx) — — cos(nx)
nemw nw _7,

2 2
= —Zcos(nm) = =(—1)"t1,
n n

ya que cos(nmr) = (—1)" si n es un entero. La serie de Fourier de x en [—, 7] es

oo

2 il 2 1 2
Z ;(—1) sen(nx) = 2sen(x) — sen(2x) + 3 sen(3x) — 3 sen(4x) + 3 sen(S5x) — - - - .

n=1

En este ejemplo, el término constante y los coeficientes de los cosenos son todos cero y la serie de Fourier
tiene s6lo t€rminos en senos. M

EJEMPLO 2.2

Sea

0 para =3 <x <0
fx) =

X para 0 <x <3
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Aqui L = 3 y los coeficientes de Fourier son

13 13 3
= — d = — d = -,
ap 3/_3]‘(}6))( 3[0xx 5
1f3f() (nnx)d
== cos | —
a 3/, X 3 X
1 3
:5/0 xcos(me)dx

3 (nnx) n X (nrrx)
= ——cos|— —sen | —
n?m? 3 niw 3

b, = %/_Zf(x)sen(%)dx:%/O3xsen<me>dx
3

niwx X nrx\ 1’
= —_5sen (—) — — oS (—)
nem 3 nm 3

— i(—l)n+l
ni

0

La serie de Fourier de fen [—3, 3] es

3. v 3 n nmwx 3 n nmwx
1 + nX:; (m[(—l) — I]cos (T) + E(_l) +1gan (T)) =

Aunque f (x) sea bastante sencilla, f L,L f(x) cos(nmx/L) dx 'y f L,L f(x) sen(nmx/L) dx pueden requerir de
mucho trabajo si se calculan a mano. Se recomienda ampliamente el uso de un paquete de software para
evaluar integrales definidas.

En estos ejemplos, escriba la serie de Fourier de f, pero no le pida que sea igual a f (x). Para la mayoria
de las x no es obvio cudl es la suma de la serie de Fourier. Sin embargo, en algunos casos es evidente que
la serie no es igual a f (x). Considere nuevamente f (x) = x en [—, 7] en el ejemplo 2.1. En x = 7 y en
x = —m, cada término de la serie de Fourier es cero, aunque f () = 7 y f (—m) = —m. Asi que, incluso para
funciones muy sencillas, puede haber puntos donde la serie de Fourier no converja a f (x). Mds adelante
determine la suma de la serie de Fourier de una funcién; mientras no lo haga, no sabr4 la relacion entre la
serie de Fourier y la funcién misma.

2.2.1 Funciones pares e impares

Algunas veces ahorrard trabajo en el célculo de los coeficientes de Fourier, si observa las propiedades
especiales de f (x).
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DEFINICION 2.2

Funcion par:
fes una funcién par en [—L, L] si f(—x) =f(x) para —L <x < L.
Funcion impar:

fes una funcién impar en [—L, L] si f(—x) = —f (x) para —L < x < L.

Por ejemplo, x2, x4, cos(nmx/L), y e~ son funciones pares en cualquier intervalo [—L, L]. En la figura
2.1 se muestran las graficas de y = x2 y y = cos(57x/3). La grafica de tales funciones para —L < x <0 es
la reflexion a lo largo del eje y de la grafica para 0 < x < L (figura 2.2).

Las funciones x, x3, x5 y sen(nmx/L) son funciones impares en cualquier intervalo [—L, L]. En la figu-
ra 2.3 se muestran las graficas de y = x, y = x3 y y = sen(5xx/2). La gréfica de una funcién impar para
—L < x < 0es lareflexion a lo largo del eje vertical y después a lo largo del eje horizontal de la grafica
para 0 < x < L (figura 2.4). Si f es impar, entonces f (0) = 0, ya que

F(=0) = f(0) = —f(0).

Por supuesto, la mayoria de las funciones no son ni par ni impar. Por ejemplo f (x) = ¢* no es ni par
ni impar en ningtn intervalo [—L, L].

y y
8 i
6 [ I X
3 1/0-\1 /2\ 3
4 A
2 8 [
372 1 12 —
FIGURA 2.1  Grdficas de las FIGURA 2.2 Grdfica de una funcion
funciones pares'y = x2y par tipica, simétrica respecto al eje y.
y = cos(5mx/3).
y
y
8 —
4 —
| | ' L,y
2 1 » 2
61— 8
FIGURA 2.3  Grdficas de las FIGURA 2.4  Grdfica de una funcion
funciones imparesy =x,y=x>y impar tipica, simétrica respecto al origen.

y = sen (57x/2).
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Las funciones pares e impares se comportan igual que los enteros pares e impares bajo la multipli-
cacion:

par - par = par,
impar - impar = par,

par - impar = impar.

Por ejemplo, xZ cos(nmx/L) es una funcién par (producto de dos funciones pares); x2 sen(nmx/L) es impar
(producto de una funcién par con una funcién impar); y x3 sen(nmx/L) es par (producto de dos funciones
impares).

Ahora recuerde del célculo que

L
/ f(x)dx =0 si fesimparen[—L, L]
L

L L
f fx)dx = 2[ f(x)dx sifesparen[—L,L].
—L 0

Estas integrales se sugieren en las figuras 2.2 y 2.4. En la figura 2.4, fes impar en [—L, L], y el area acotada
por la grafica y el eje horizontal para —L < x < 0 es exactamente el negativo de la acotada por la grafica y
el eje horizontal para 0 < x < L. Esto hace que f£; f(x)dx = 0. En la figura 2.2, donde f es par, €l drea a
la izquierda del eje vertical, para —L < x < 0, es igual a la de la derecha, para 0 < x < L, asi f£; f(x)dx=
216 (x)dx.

Una ramificacion de estas ideas para los coeficientes de Fourier es que si fes una funcién par o impar,
entonces se puede ver inmediatamente que algunos coeficientes de Fourier son cero y no necesita efectuar
explicitamente la integracién. Esto aparece en el ejemplo 2.1 con f (x) = x, que es una funcién impar en
[—m, 7]. Aqui todos los coeficientes del coseno son cero, ya que x cos(nx) es una funcién impar.

EJEMPLO 2.3

Encontrara la serie de Fourier de f (x) = x* en [—1, 1]. Como fes una funcién par, x* sen(nsx) es impar y
sabe de inmediato que los coeficientes del seno b, son cero. Para los otros coeficientes, calcule

1 1 2
a():/ x4dx:2/ xtdx ==

1
a, =/ x4cos(nnx)dx
-1

27.[2

1
=2/ X cos(nnx)dx_S ( D"
0

La serie de Fourier de x* en [—1, 1] es

-+Zs” Kiate ® 1) cos(urx). m
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Para considerar nuevamente el problema de la convergencia, observe que en este ejemplo, f (0) = 0,

pero la serie de Fourier en x = 0 es

No esté claro que la suma de esta serie sea 0.

EJEMPLO 2.4

Sea f(x) = x3 para —4 < x < 4. Como fes impar en [—4, 4], los coeficientes de Fourier de los cosenos son
todos cero. Los coeficientes de Fourier de los senos son

La serie de Fourier de x3 en [—4, 4] es

nmwx

n°mc —6
E(—l)"+1128 o sen(
n=1

Mis adelante usard estos argumentos. Por ahora éste es un resumen de las conclusiones:

4

2.2
—6
)dx = (=1t 2

n373

).

par en [—L, L], entonces su serie de Fourier en este intervalo es

1 e nmwx
a0+ X}an cos (T) :
n=

en donde

2 L
aHZZA f(x)cos(nnTx)dx paran =0,1,2,....

Si fes impar en [—L, L], entonces su serie de Fourier en este intervalo es

o0
0
n=1

donde

(nnx)
sen (— ),
L

TX

b, = —/L fx) <—) X 1,2
= sen d aran=1,2,....

SECCION 2.2 PROBLEMAS

En los problemas del 1 al 12, encuentre la serie de Fourier de la
funcidn en el intervalo.

1. f(x) =4,-3<x<3
2. f)=—x,—1<x<1

3. f(x) =cosh(mx), -1 <x<1
4. f(x)=1—],-2<x<2

5. f=

—4
4

para —7 <x <0

para0<x<m

Sifes

(2.9)

(2.10)

@2.11)

2.12)
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6. f(x)=sen(2x), — Tt <x<wmw L 1—x para—1 <x <0

7. fx)=x2—x+3,-2<x<2 )= 0 para0<x <1
—X para —5 <x<0 13. Suponga que fy g son integrables en [—L, L] y que f (x) = g(x)

8. fn)= 1+x2 para0<x<5 excepto para x = xo, un punto dado en el intervalo. ;Cémo

o estan relacionadas las series de Fourier de /'y g? (Qué sugie-

1 para —7 <x<0 - s .

9. f(x) = re esto acerca de la relacion entre una funcién y su serie de
2 para0 <x <7 Fourier en un intervalo?

10. f(x) = cos(x/2) — sen(x), —T <X <7 14. Pruebe que L, f (x)dx = 0 si fes impar en [—L, L].

11. f(x) = cos(x), =3 < x <3 15. Pruebe que [ f (x)dx = 2} f (x)dx si fes par en [—L, L].

2.3

Convergencia de series de Fourier

Poder escribir los coeficientes de Fourier de una funcién fen un intervalo [—L, L] es una cosa. Esto requie-
re s6lo de la existencia de f fL f(x) cos(nmx/L) dx 'y f fL f(x) sen(nmx/L) dx. Es completamente otro asunto
determinar si la serie de Fourier resultante converge a f (x), o incluso, si siquiera converge. Las sutilezas
de esta pregunta fueron dramatizadas en 1873 cuando el matemdtico francés Paul Du Bois-Reymond dio
un ejemplo de una funcién continua en (—, ), pero cuya serie de Fourier no convergia en ningtin punto
de este intervalo.

Sin embargo, la utilidad obvia de las series de Fourier para resolver ecuaciones diferenciales parciales
produjo en el siglo XIX un esfuerzo intensivo para determinar sus propiedades de convergencia. Alrededor
de 1829, Peter Gustav Lejeune-Dirichlet dio condiciones suficientes sobre la funcién f para la convergen-
cia de la serie de Fourier de f. De hecho, el teorema de Dirichlet dio la suma de la serie de Fourier en cada
punto, tanto si la suma era f (x) como si no lo era.

Esta seccidn estd dedicada a las condiciones sobre una funcién que permite determinar la suma de su
serie de Fourier en un intervalo. Estas condiciones se centran en el concepto de continuidad a pedazos.

DEFINICION 2.3  Funcién continua a pedazos

Sea f (x) definida en [a, b], excepto quizd en un nimero finito de puntos. Entonces f es continua a
pedazos en [a, b] si

fes continua en [a, b] excepto quizd en un nimero finito de puntos.

Ambos lim,_,,+ f(x) y lim,_,_ f(x) existen y son finitos.

Si xq estd en (a, b) y fno es continua en xy, entonces lim,_ o+ f (x) y lim,_,,o- f (x) existen
y son finitos.

Las figuras 2.5 y 2.6 muestran graficas de funciones continuas a pedazos tipicas. En los puntos de
discontinuidad (suponga un nimero finito), la funcién debe tener limites laterales finitos. Esto significa
que en el peor de los casos, la grafica tiene a lo mds un salto en una discontinuidad. Los puntos donde esto
sucede se llaman discontinuidades de salto de la funcidn.

Ahora un ejemplo de una funcién simple que no es continua a pedazos. Sea

0 parax =0
fx) =

1/x para0 < x <1
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T v
X
‘ x
FIGURA 2.5 Una funcion continua FIGURA 2.6 Grdfica de una funcion
a pedazos. continua a pedazos tipica.

Entonces f es continua en (0, 1] y discontinua en 0. Sin embargo, 1im,_,o+ f (x) = %, de manera que la
discontinuidad no es un salto finito y fno es continua a pedazos en [0, 1].

EJEMPLO 2.5
Sea
5 parax = —m
X para —m7 <x < 1
fx) = 5
I —x paral <x <2
4 para2 <x <m

En la figura 2.7 se muestra la grafica de f. Esta funcién es discontinua en —r, y

x_l)lI_I]lH_ fx)=—m.

ftambién es discontinua en 1, en el interior de [—m, 7], y

Iim f(x)=1 y 1lim f(x)=0.
x—1— x—14

FIGURA 2.7  Grdfica de la funcion
del ejemplo 2.5.

Finalmente, f'es discontinua en 2, y
Ii = -3 If =4.
. 1r51_ f(x) y N 1r£1+ f(x)

En cada punto de discontinuidad en el interior del intervalo, la funcién tiene limites laterales finitos de
ambos lados. En el punto de discontinuidad del extremo —z, la funcién tiene limite finito desde dentro
del intervalo. En este ejemplo, el otro extremo no es tema de discusién ya que ahi f es continua por la
izquierda. Por tanto, f es continua a pedazos en [—m, w]. M

Use la siguiente notacién para los limites por la izquierda y por la derecha de una funcién en un
punto:

fOot)= lim f(x) y flxo—)= lm_ f(x).
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En el ejemplo 2.5,

fd=-=1 vy fd+)=0

f2-)=-3 y  fQ+)=4

En los extremos de un intervalo puede seguir usando esta notacién excepto en el extremo izquierdo,
donde sélo debe considerar el limite derecho (desde dentro del intervalo) y en el extremo derecho use sélo
el limite izquierdo (nuevamente tome el limite desde dentro del intervalo) De nuevo, haciendo referencia
al ejemplo 2.5,

flent)=—m y fr-)=4

DEFINICION 2.4  Funcidn suave a pedazos

fes suave a pedazos en [a, b] si fy f' son continuas a pedazos en [a, b].

Una funcién suave a pedazos es, por tanto, una que es continua, excepto quiza para un nimero finito de
discontinuidades de salto y tiene derivada continua en todos lados, excepto en un nimero finito de puntos
donde la derivada puede no existir, pero debe tener limites laterales finitos.

EJEMPLO 2.6
Sea
1 para —4 <x < 1
flx) =4 —2x paral <x <2
9e¢™* para2 <x <3

La figura 2.8 muestra la gréafica de f. La funcién es continua, excepto para un nimero finito de discontinui-
dades de salto en 1 y 2. Por tanto, f'es continua a pedazos en [—4, 3]. La derivada de fes:

0 para —4 <x < 1
ffx)y=1-2 paral <x <2
—9e¢™ para2 < x <3

La derivada es continua en [—4, 3] excepto en los puntos de discontinuidad 1 y 2 de f, donde f '(x) no
existe. Sin embargo, en estos puntos f'(x) tiene limites laterales finitos. Asi /' es continua a pedazos en
[—4, 3], de manera que fes suave a pedazos. M

Como lo sugiere la figura 2.8, una funcién suave a pedazos es aquella que tiene tangente continua en todos
lados, excepto en un niimero finito de puntos.
Ahora aparece el primer teorema de convergencia.
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y

1_
I I I I X
—4 -3 -2 —1 1 2 3 4

71_

72_

73_

74_
FIGURA 2.8 Grdfica de

1 para —4 <x <1
fx)={—-2x paral <x <2

9e™* para2 <x <3

TEOREMA 2.1 Convergencia de series de Fourier

Sea f suave a pedazos en [—L, L]. Entonces, para —L < x < L, la serie de Fourier de fen [—L, L]
converge a

e+ fx-). m

Esto significa que en cada punto entre —L y L, la funcién converge al promedio de sus limites iz-
quierdo y derecho. Si fes continua en x, entonces, estos limites izquierdo y derecho son iguales a f (x),
entonces, la serie de Fourier converge al valor de la funcién en x. Si f tiene una discontinuidad de salto
en x; entonces, la serie de Fourier no puede converger a f (x), pero convergird al punto medio entre los
extremos del hueco en la grafica en x (figura 2.9).

—L ') f-- L

FIGURA 2.9 Convergencia de una serie
de Fourier en una discontinuidad de salto.

EJEMPLO 2.7

Sea

5sen(x) para —2m <x < —m/2
4 parax = —m/2
fx)= x> para —m/2 <x <2

8 cos(x) para2 <x <m

4x paraw <x <2mw
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25

20 =

[ I R N B

-6 —4 -2 4 6

FIGURA 2.10 Grdfica de

5sen(x)

4

[ = x?
8 cos(x)

4x

para =27 <x < —m/2
parax = —m /2

para —mw/2 <x <2
para2 <x <m

paraw <x <2m
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En la figura 2.10 se da la grafica de f. Como fes suave a pedazos en [—2m, 2], puede determinar la suma
de su serie de Fourier en este intervalo. Aplicando el teorema, no tiene que calcular esta serie de Fourier.
Podria hacerlo, pero no es necesario para determinar la suma de la serie de Fourier.
Para —27 < x < —n/2, fes continua y la serie de Fourier converge a f (x) = 5 sen(x).
En x = —n/2, f tiene una discontinuidad de salto y la serie de Fourier convergird al promedio de los
limites izquierdo y derecho de f'(x) en —m/2. Calcule

f(—m/2—) = lim/z_ fx) = 1{m/2_5 sen(x) = Ssen(—m/2) = =5

y
2
f(=n/29) = lim  fGx)= lim x>=2.
x—>—7/2+ x——m/2+ 4
Asi, en x = —m/2, la serie de Fourier de f converge a
1 (n?
- —-5).
2\ 4
En (—7/2, 2) 1a funcidn es continua, entonces la serie de Fourier converge a x2 para —n/2 < x < 2.
En x = 2 la funcién tiene otra discontinuidad de salto. Calcule
f2=)= lim x> =4
x—>2—
y

f2+) = ll’HzlJr 8 cos(x) = 8cos(2).
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En x = 2 la serie de Fourier converge a

% (4 4+ 8cos(2)).

En (2, m), fes continua. En cada x con 2 < x < 7, la serie de Fourier converge a f (x) = 8 cos(x).
En x = 7, ftiene una discontinuidad de salto. Calcule

f(r—) = 11'm78cos(x) = 8cos(m) = -8

f(x+) = lim 4x =4mx.
X—>n+
En x = 7 la serie de Fourier de f converge a
! 4 8
2 4mr —38).

Finalmente, en (7, 277), f es continua y la serie de Fourier converge a f (x) = 4x.
Estas conclusiones pueden resumirse:

5sen(x) para —2m <x < —%
1 (n? 5 T
- — - ara X = ——
2\ paray =775
x? para —g <x<2

La serie de Fourier converge a 1
5(4 + 8cos(2)) para x =2

8 cos(x) para2 <x <m

1
5(471 —8) parax =

4x param < x < 2w

La figura 2.11 muestra la grafica de la suma de esta serie de Fourier, que difiere de la funcién misma en
(—2m, 27) en las discontinuidades de salto, donde la serie converge al promedio de los limites izquierdo
y derecho. W

25 —
20 =

15—

FIGURA 2.11  Grdfica de la serie de
Fourier de la funcion de la figura 2.10.
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Si f es suave a pedazos en [—L, L] y continua en [—L, L]; entonces, la serie de Fourier converge a
f(x) para—L <x < L.

EJEMPLO 2.8

Sea

x para —2 <x <1

fx) =

2 —x2 paral <x <2

Entonces f'es continua en [—2, 2] (figura 2.12). fes diferenciable excepto en x = 1, donde f" (x) tiene 1imi-
tes izquierdo y derecho finitos, de manera que fes suave a pedazos. Para —2 < x < 2, la serie de Fourier
de f converge a f (x). En este ejemplo, la serie de Fourier es una representacion exacta de la funcién en
(=2,2). m

FIGURA 2.12  Grdfica de

X para —2 <x <1
fx) =

2 —x2 paral <x <2

2.3.1 Convergencia en los extremos

El teorema 2.1 no hace referencia a la convergencia de una serie de Fourier en los extremos del intervalo.
Aqui hay una sutileza que conviene discutir ahora.

El problema estd en que aunque la funcién f que interesa puede estar definida sélo en [—L, L], su
serie de Fourier

o0
%ao + ;an cos (%) + b, sen (me> (2.13)

estd definida para todo real x para los cuales la serie converge. Mds aun, la serie de Fourier es periddica,
de periodo 2L. El valor de la serie no cambia si reemplaza x por x + 2L. ;Cémo reconciliar la representa-
cién de una funcion que estd definida sélo en un intervalo con una funcién que es periddica y puede estar
definida en toda la recta real?

La reconciliacién se da en una extension periddica de f sobre la recta real. Tome la grafica de
f(x)en [—L, L) y reprodizcala en intervalos sucesivos de longitud 2L. Esto define una nueva fun-
cion, f,, que coincide con f(x) para —L < x < Ly tiene periodo 2L. En la figura 2.13 se ilustra este
procedimiento para la funcidn f (x) = x2 para —2 < x < 2. Esta grafica se repite para 2 < x < 6,
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L
2 4 6 810

y
4
3
2

0

FIGURA 2.13  Parte de la extension
periddica, de periodo 4, de f (x) = x2
para —2 <x < 2.

6<x<10,...,—6 <x< —-2,—-10 <x < —6, y asi sucesivamente. La razén por la que se usa el
intervalo semiabierto [—L, L) en esta extension es que si f, debe tener periodo 2L, entonces

fp(x +2L) = fp(x)

para todo x. Pero esto requiere que f (—L) = f (—L + 2L) = f (L), de manera que una vez definida f,(—L),
Jp(L) debe tener este mismo valor.

Si hace esta extension, entonces el teorema de convergencia se aplica a f,(x) en todo x. En particular
en —L, la serie converge a

1
5 Fp (L) + fp(=L4),
que es
1
z(f(L—) + f(—=L+)).
Andlogamente, en L, la serie de Fourier converge a

1

E(fp(L—) + fp(L+)),
que es

1

§(f(L—) + f(—L+)).

La serie de Fourier converge al mismo valor en L y en —L. Esto se puede ver directamente en la serie
(2.13). Si x = L, todos los términos en senos son sen(nm), que desaparecen, y los términos en cosenos son
cos(nm). Asi la serie en x = L es

1
an + E a, cos(ni).

n=l1
En x = —L, nuevamente todos los términos en senos desaparecen, y como cos(—nm) = cos(nm), la serie
en x = —L también es

1
an + Zan cos(nm).

n=1
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2.3.2 Un segundo teorema de convergencia

Un segundo teorema de convergencia puede enunciarse en términos de las derivadas laterales.

DEFINICION 2.5 Derivada derecha

Suponga que f (x) estd definida al menos para ¢ < x < ¢ + r para algiin nimero positivo . Suponga
que f (c+) es finito; entonces, la derivada derecha de fen c es

fle+h) — flct)
; ;

!/ /
w(c) = 1
o= 15,

si este limite existe y es finito. M

DEFINICION 2.6  Derivada izquierda

Suponga que f (x) estd definida al menos para ¢ — r < x < ¢ para alglin niimero positivo r. Suponga
que f (c—) es finito; entonces, la derivada izquierda de fen c es

fle+h) — fleo)

!/ /
2 = 1
e = iy T

si este limite existe y es finito.

Si f'(c) existe, entonces f es continua en ¢, de manera que f (c—) = f(c+) = f(c), y en este caso la
derivada izquierda y derecha son iguales a f '(c). Sin embargo, la figura 2.14 muestra la importancia de
las derivadas izquierda y derecha cuando ftiene una discontinuidad de salto en c. La derivada izquierda es la
pendiente de la grafica en x = c si tapa la parte de la grafica a la derecha de c y se queda s6lo con la izquierda.
La derivada derecha es la pendiente en c si tapa la parte izquierda y se queda sélo con la derecha.

y ,/ Pendiente = f(x,)

-

Xo o\ . ’
%\ Pendiente = fi(xy)

FIGURA 2.14  Derivadas laterales
como pendientes por la derecha y por
la izquierda.
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FIGURA 2.15 Grdfica de

EJEMPLO 2.9

TEOREMA 2.2

1+x para —m <x <1
fo =1,
X paral <x <m
Sea
1+x para —m <x <1
fo =1,
X paral <x <m

Entonces f'es continua en (—, ) excepto en 1, donde hay una discontinuidad de salto (figura 2.15). Mds
aun, fes diferenciable excepto en este punto de discontinuidad. Ciertamente,

f/(x):{

A partir de la gréfica y las pendientes de los pedazos izquierdo y derecho en x = 1, esperaria que la derivada
izquierda en x = 1 fuera 1 y la derivada derecha fuera 2. Verifique esto a partir de la definicién. Primero,
fa+n—fd-)
h
. 1+d+h) =2 . h
= lim —— = lim — =1,
h—0— h h—0— h

1 para —m <x < 1

2x paral <x <m

(0) = i
fe0) = lim

fA+h)— f14)
h
o (1+h?-1
= hm —_—
h—0+ h

/ _ ’
frlo) = hLH&

= lim Q+h) =2.m
h—0+

Usando las derivadas laterales enuncie el siguiente teorema de convergencia.

Sea f continua a pedazos en [—L, L]. Entonces,

1. Si —L < x < Ly ftiene derivada izquierda y derecha en x, entonces la serie de Fourier de fen [—L, L]
converge en x a

1
E(f(x+)+f(x—))~



2.3 Convergencia de series de Fourier 69

2. Sifx (—L)y fr (L) existen, entonces en ambos L y —L, la serie de Fourier de fen [—L, L] converge
a

1
E(f(—L+) +f(L=-)). m

Como con el primer teorema de convergencia, no necesita calcular la serie de Fourier para determinar su
suma.

EJEMPLO 2.10

Sea
e para —2 <x < 1
fx) = {—2x? paral <x <2
4 para x =2

Quiere determinar la suma de la serie de Fourier de fen [—2, 2]. En la figura 2.16 se muestra la grafica
def.

fes continua a pedazos, siendo continua excepto para las discontinuidades de saltoen 1 y 2.

Para —2 < x < 1, fes continua, y la serie de Fourier converge a f (x) = e—*.

Para 1 < x < 2, ftambién es continua y la serie de Fourier converge a f (x) = —2x2.

En la discontinuidad de salto x = 1, existen las derivadas izquierda y derecha (—e—!y —4, respectiva-
mente). Determine esto a partir de los limites en las definiciones, pero estas derivadas son claras si observa
la gréfica de fa la derecha y a la izquierda del 1. Por tanto, la serie de Fourier convergeenx =1 a

1
E(f(l—)+f(1~l—)),

que es

y
8 —
6 —
4 —
2 —

L1 | N

-2 -1 1 2
72 —
74 —
76 —
78 —
FIGURA 2.16 Grdfica de
e * para —2 <x < 1
fx) = —2x2 paral <x <2

4 parax =2
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Esto incluye todos los puntos en (—2, 2). Ahora considere los extremos. La derivada izquierda de fen 2 es
—8 y la derivada derecha en —2 es —e2. Por tanto, en ambos 2 y en —2, la serie de Fourier converge a

1 1 2
S(f@) + [(=24) = 5(—8 te ) .

La figura 2.17 muestra la grafica de la serie de Fourier en [—2, 2], y puede compararse con la gra-
fica de f. Las dos graficas coinciden excepto en los puntos extremos y en la discontinuidad de salto. El
hecho de que f(2) = 9 no afecta la convergencia de la serie de Fourier de f (x) en x = 2. M

(SRS
I

78_

FIGURA 2.17  Grdfica de la serie
de Fourier de la funcion de la
figura 2.16.

Se pide precaucidn al aplicar el segundo teorema de convergencia. Las derivadas izquierda y de-
recha de una funcién en un punto son importantes sélo para verificar que las hipdtesis del teorema se
satisfacen en una discontinuidad de salto de la funcién. Sin embargo, estas derivadas no afectan el valor
al que converge la serie de Fourier en un punto. Ese valor involucra los limites izquierdo y derecho de
la funcién.

2.3.3 Sumas parciales de la serie de Fourier

Las afirmaciones de Fourier sobre sus series eran contrarias a la intuicién en el sentido de que funciones
tales como polinomios y exponenciales no parecieran ser candidatos para ser representados por series de
senos y cosenos. Es ilustrativo ver graficas de sumas parciales de algunas series de Fourier que convergen
a la gréfica de la funcidn.

EJEMPLO 2.11

Sea f(x) = x para —w < x < 7. En el ejemplo 2.1 vio que la serie de Fourier es

Z %(—1)"+1 sen(nx).
n

n=1
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y y

3+ 3+

2 b 2

1 1=

L1 I L _1| RN N
31 -2 1 2 3 -3 -2 71__1 2 3
73 —
FIGURA 2.18(a) Cuarta suma FIGURA 2.18(b) Décima suma
parcial de la serie de Fourier parcial de la serie de Fourier de
n+1

Sq(x) = ;‘:1 % sen(nx) de f(x)=xen|[—m, 7]

f(x)=xen—m <x <m.

FIGURA 2.18(c) Vigésima suma
parcial de la serie de Fourier de
fx)y=xen|[—m, 7]

Puede aplicar cualquier teorema de convergencia para probar que esta serie converge a
X para —m <X <7

0 parax =m y parax = —7

Las figuras 2.18(a), (b) y (c) muestran, respectivamente, la cuarta, décima y vigésima sumas parciales de
esta serie y sugieren cémo se aproximan cada vez mas a f (x) = x en (—z, ) conforme se incluyen mas
términos. M

EJEMPLO 2.12

Sea f(x) = e*para —1 < x < 1. La serie de Fourier de fen [—1, 1] es

1 _ N =D (="
> (e —e 1) + (e —e 1) Z <m cos(nmx) — nnm sen(nnx)) .

n=1

Esta serie converge a

1

e’ para —1 <x < 1
E(e—i—e_l) parax =1 yparax = —1.

Las figuras 2.19(a) y (b) muestran la décima y trigésima sumas parciales de esta serie, comparadas con la
graficade f. W
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y
25+
20—
1.5 —
1.0
[P
| | | |
—-1.0 —0.5 0.5 1.0

FIGURA 2.19(a) Décima suma
parcial de la serie de Fourier de

fx)=een[—1,1].

y
2.5+
20—
1.5+
1.0
sl
| | | |
—-1.0 =05 0.5 1.0

FIGURA 2.19(b) Trigésima suma
parcial de la serie de Fourier de

fx)=een[—1,1].

X

EJEMPLO 2.13

Sea f(x) = sen(x) para —1 < x < 1. La serie de Fourier de fen [—1, 1] es

sen(nmwx).

o _1\yn+1
Zznn sen(1)(—1)
n=1

n?r? —1

Esta serie converge a

para —1 <x <1

{sen (x)

0 parax =1 y parax = —1

Las figuras 2.20 (a) y (b) muestran sumas parciales de esta serie comparadas con la grifica de f. |

2.3.4 El fenomeno de Gibbs

En 1881 el experimento de Michelson-Morley revoluciond la fisica y ayud6 a allanar el camino para la
teorfa general de la relatividad de Einstein. En un experimento brillante usando su propia adaptacién del
interferémetro, Michelson y Morley probaron por mediciones cuidadosas que el postulado “éter” que los
fisicos de ese tiempo creian que llenaba todo el espacio, no tenia efecto sobre la velocidad de la luz vista
desde distintas direcciones.

0.8
0.6

-08 —04 021
I R R I R R

—06 —02 002 04 0.6 08 1.0
—0.2
—04—

—0.6 —
—-0.8—

—1.0

FIGURA 2.20(a) Cuarta suma
parcial de la serie de Fourier de
f(x) =sen(x) para —1 <x < 1.
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0.8
0.6

-0.8 —04 02
L 1 [ R N I

—-1.0 —06 —02 002 04 06 08 1.0

202
—0.4

—0.6
—0.8

FIGURA 2.20(b) Décima suma parcial de
la funcion f (x) = sen(x) para —1 <x < 1.

Algunos afos después, Michelson prob6 un aparato mecénico que habia inventado para calcular los
coeficientes de Fourier y para construir una funcién a partir de sus coeficientes de Fourier. En una prueba
us6 80 coeficientes de Fourier para la funcion f (x) = x para —7 < x < &. La mquina respondi6 con una
gréfica que tenia saltos inesperados en los extremos 7 y —m. Al principio Michelson supuso que habia
algtin problema con su maquina. Sin embargo, con el tiempo, se encontré que este comportamiento es
caracteristico de la serie de Fourier en las discontinuidades de salto de la funcién. Este se conoce como
el fenémeno de Gibbs, debido al matematico de Yale, Josiah Willard Gibbs, quien fue el primero que lo
defini6 y explico satisfactoriamente. El fendmeno fue advertido por el matematico inglés Wilbraham unos
60 afos antes, quien sin embargo no pudo analizarlo.

Para ilustrar el fendmeno, considere la funcién definida por

—m/4 para —7 <x <0
fx)=10 parax =0
/4 para0 <x <m

La figura 2.21 muestra la grafica de esta funcién, cuya serie de Fourier es

oo

> 2n1_ - sen((2n — 1)x).

n=1

Por cualquiera de los teoremas de convergencia, esta serie converge a f (x) para —m < x < 7. Hay una
discontinuidad de salto en 0, pero

(5+5)=0-s0.

N =

1
SO+ F0-) =

FIGURA 2.21  Funcion que ilustra el
fenomeno de Gibbs.
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La N-ésima suma parcial de esta serie de Fourier es

N

1
Sy(x) = Z S sen((2n — D),

n=1

y la figura 2.22 muestra las graficas de S5(x), S14(x) y S22(x). Cada una de estas sumas parciales muestra un
pico cerca del cero. Intuitivamente, como la suma parcial se acerca a f (x) conforme N — 0o, puede esperar
que estos picos se achaten y se hagan pequefios conforme N crece. Pero no es asi. En cambio, los picos
mantienen la misma altura, pero se mueven mas cerca del eje y conforme N crece. Las sumas parciales si
tienen como limite a la funcién, pero no exactamente como los matematicos esperaban.

Como otro ejemplo, considere

para —2 <x <0

fx) =
2—x para0 < x < 2.

y //’ Szz(x)
R 6

0.8

\\\
0.6 |- ~81,(x0)

04 |
0.2 |~
| | | | | | N
0 0.5 1.0 15 20 25 30
FIGURA 2.22  Las sumas parciales
(para 0 < x < n/4) muestran el
fenomeno de Gibbs para la funcion de
la figura 2.21.
y e -S,5(x)
20 5 S
e S4()C)
1.5 —
1.0 -
0.5/
| | | | X
-2 -1 0 1 2

FIGURA 2.23  Cuarta, décima y vigésimoquinta
sumas parciales de la serie de Fourier de

0 para =2 <x <0

fx) =

2—x para0 < x < 2.
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Esta funcioén tiene una discontinuidad de salto en 0, y serie de Fourier

o0

% + Z (#(1 — (=D"™)) cos (me) + % sen (WT)C)) .

n=1

La figura 2.23 muestra la cuarta, décima y vigésimoquinta sumas parciales de esta serie. Nuevamente el
fenémeno de Gibbs aparece en la discontinuidad de salto. Gibbs mostré que este comportamiento sucede
en la serie de Fourier de una funcién en todo punto donde tiene una discontinuidad de salto.

SECCION 2.3 PROBLEMAS

En cada uno de los problemas del 1 al 10 use un teorema de cos(x) para —2<x <0
convergencia para determinar la suma de la serie de Fourier de la 6. f(x)= 0<x<2
funcién en el intervalo. Verifique que las hipétesis del teorema sen(x) parati=x =
utilizado se satisfacen, suponga los hechos familiares del calcu- -1 para —4 <x <0
lo acerca de las funciones continuas y diferenciables. No es ne- 7. fx) = | para 0 < x < 4
cesario escribir la serie para hacer esto. -
Después, encuentre la serie de Fourier de la funcién y 0
. o P para —1 <x < —
la grifica de f para N = 5, 10, 15, 25, dibuje la gréfica de la 2
N-ésima suma parcial de la serie junto con la funcién en el in- 1 3
tervalo. Indique cualquier lugar, en esta grafica, donde aparezca 8 fx)=11 para 5 <x= 1
el fenomeno de Gibbs.
3
para —3 <x < =2 2 paraZ<x§1
1 f(x)= para =2 <x <1 9. f(x)=e Pl para—7 <x<nx
paral <x <3 -2 para —4 <x < -2
2. f(x):xzpara—2§x§2 10. f(x) = 1+x2 para —2 <x <2
3. f(x):xze_xpara—3§x§3 0 para2 < x <4
4. Flx) = para —w <x <1 11. Sea f(x) = x2/2 para — < x < x. Encuentre la se-
paral <x <m rie de Fourier de f(x) y evaliela en un valor apropiado
de x para encontrar la suma de la serie ) 00 | 1 /n?
para —m <x <0
5 f(x) = 12. Use la serie de Fourier del problema 11 para sumar la
para0 <x <7 serie fozl(—l)”/nz.

24

Series de Fourier en senos y cosenos

Si f(x) estd definida en [—L, L], puede escribir su serie de Fourier. Los coeficientes de esta serie estan
completamente determinados por la funcién y el intervalo.

Ahora probard que si f (x) estd definida en el semiintervalo [0, L], entonces, tiene una eleccién y puede
escribir una serie que tenga s6lo cosenos o s6lo senos para representar a f (x) en este semiintervalo.
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2.4.1 La serie de Fourier en cosenos de una funcion

Sea fintegrable en [0, L]. Quiere desarrollar a f (x) en una serie de funciones cosenos.
Ya tiene los medios para hacerlo. La figura 2.24 muestra una gréafica de una f tipica. Doble esta grafica
a lo largo del eje y para obtener una funcion f, definida para —L < x < L:

f(x) para0 <x <L

fe(x) =
f(=x) para —L <x <0

f. es una funcién par,
fe(=x) = f(x),

y coincide con fen [0, L],

fe(x) = f(x) para0 <x <L.

Llame a f, la extensién par de f para [—L, L].

EJEMPLO 2.14

Sea f(x) = e* para 0 < x < 2. Entonces

er para0 <x <2

—X

Je(x) = {

e para —2 <x <0

Aqui pone f,(—x) =f(x) = e~*para 0 < x < 2, lo que significa f,(x) = e~ para —2 < x < 0. En la figura
2.25 se dala graficade f,. ™
Debido a que f, es una funcién par en [—L, L], su serie de Fourier en [—L, L] es

1 e nmwx
an + ,; ay cos <_L ) , (2.14)
en donde
2 (L nmwx 2 (L nwx
=3 [ oo (5 ac=2 [ e ()

como f,(x) =f(x) para 0 < x < L. Llame a la serie (2.14) la serie de Fourier en cosenos de f en [0, L]. Los
coeficientes (2.15) son los coeficientes de Fourier en cosenos de f en [0, L].

Se introdujo la extension par f, s6lo para poder utilizar el trabajo previo para obtener una serie que
contenga sélo cosenos. Para encontrar la serie de Fourier en cosenos, sélo use la ecuacién (2.14) para
calcular los coeficientes sin definir f,.

y . y .
y=e y=¢
I f —2<x=0 0<x<?2
| | x | |
| L -2 | 2 !
FIGURA 2.24 Extension par de FIGURA 2.25

fpara [—L, L].
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Otra razén para tener f, es que puede usar los teoremas de convergencia de Fourier para escribir un teore-
ma de convergencia para la serie en cosenos.

TEOREMA 2.3  Convergencia de la serie de Fourier en cosenos

Sea f continua a pedazos en [0, L]. Entonces,

1. Si0 < x < L, y f tiene derivadas izquierda y derecha en x, entonces en x la serie de Fourier en
cosenos para f (x) en [0, L] converge a

1
z(f(x—) + fx+).
2. Si f'tiene derivada derecha en 0, entonces la serie de Fourier en cosenos para f (x) en [0, L] con-
verge a f (0+).

3. Si ftiene derivada izquierda en L, entonces la serie de Fourier en cosenos para f (x) en [0, L] con-
verge af(L—). W

Las conclusiones (2) y (3) se siguen del teorema 2.2, aplicado a f,. Considere primero x = 0. La serie
de Fourier de f, converge en 0 a

1
E(fe (0—) + fe(0+)).
Pero

Je(0+) = f(0+)

Je(0—) = f(O+),
entonces en 0 la serie converge a
1
E(f(0+) + f(04+)) = f(0+).

Un argumento similar prueba la conclusién (3).

EJEMPLO 2.15

Sea f(x) = e>* para 0 < x < 1. Escriba la serie de Fourier en cosenos de f . Calcule

1
a0=2/ eXdx = —1
0

1
ap = 2/ e** cos(nmx) dx
0

_4e2(—1)" -1
4+ nPn?

El desarrollo en cosenos de f'es

1, S (=" —1
E(e —1)+’§4WCOS(VHTX).
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Esta serie converge a

e para0 < x < 1
1 parax =0
e? parax =1

Asf esta serie en cosenos converge a e2* para 0 < x < 1. Las figuras 2.26 (a) y (b) muestran la grafica de f
comparada con la quinta y décima sumas parciales del desarrollo en cosenos, respectivamente. M

y y
7L
’7 —
6 6
5H e
4= 4 +—
3 =
2+ -
1= 1=
' ' ' ' X | | | | X
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
FIGURA 2.26(a) Quinta suma parcial del desarrollo FIGURA 2.26(b) Décima suma parcial del desarrollo
en cosenos de e2< en [0, 1]. en cosenos de e2< en [0, 1].

2.4.2 La serie de Fourier en senos de una funcion

Duplique la estrategia que acaba de usar para escribir una serie en cosenos, excepto que ahora extienda f
a una funcién impar f,, sobre [—L, L], puede escribir una serie de Fourier en senos para f (x) en [0, L]. En
particular, si f (x) estd definida en [0, L], sea

J(x) para0 <x <L

Jo(x) Z{
—f(—x) para —L <x <0

Entonces f, es una funcién impar, y f,(x) = f (x) para 0 < x < L. Esta es la extension impar de f en
[—L, L]. Por ejemplo, si f(x) = e2*para0 < x < 1, sea

e para0 <x <1

Jo(x) = { oy

—e para —1 <x <0

Esto corresponde a doblar la grafica de f sobre el eje vertical y después sobre el eje horizontal (figura
2.27).

Ahora escriba la serie de Fourier de f,(x) en [—L, L]. Por la ecuacién (2.11) y (2.12), la serie de
Fourier de f, es

o0
3 by sen (””Tx) (2.16)
n=1
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FIGURA 2.27  Extension impar de f en [—L, L].

con coeficientes

b—2L nnxd_ZL nnxd
= [ sosen (M) ax =7 [ reosen (M) ax. @17

Llame a la serie (2.16) la serie de Fourier en senos de fen [0, L]. Los coeficientes dados por la ecua-
cion (2.17) son los coeficientes de Fourier en senos de fen [0, L]. Como con la serie en cosenos, no nece-
sita hacer la extension explicita a f, para escribir la serie de Fourier en senos para fen [0, L].

Nuevamente, como con el desarrollo en cosenos, escriba un teorema de convergencia para la serie en
senos usando el teorema de convergencia para la serie de Fourier.

TEOREMA 2.4  Convergencia de la serie de Fourier en senos

Sea f continua a pedazos en [0, L]. Entonces,

1. Si0 < x < L, y ftiene derivadas izquierda y derecha en x, entonces la serie de Fourier en senos
para f(x) en [0, L] converge en x

1
E(f(x—) + f(x+)).
2. En Oy en L, la serie de Fourier en senos para f (x) en [0, L] converge a 0. ®

La conclusion (2) es directa, ya que cada término de la serie en senos (2.16) es cero para x = 0 y para
x=L.

EJEMPLO 2.16

Sea f (x) = e2x para 0 < x < 1. Escriba la serie de Fourier en senos de fen [0, 1]. Los coeficientes
son

1
by =2 / > sen(nmx) dx
0

nr(l — (=1)"e?)
=2 - -
4 + n272

La serie en senos es

R sen(nmwx).

x 1\ ,2
ZZmT(l (—1)"e%)
n=1

Esta serie converge a e2 para0 < x < 1, y acero parax = 0y para x = 1. Las figuras 2.28 (a) y (b) mues-
tran las graficas de la décima y la cuadragésima sumas parciales de esta serie. M
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| |

Series de Fourier

| X

0 02 04

FIGURA 2.28(a)
en senos de e?* en [0, 1].

0.6

SECCION 2.4 PROBLEMAS

0.8

1.0

Décima suma parcial del desarrollo

En cada problema del 1 al 10, escriba la serie de Fourier en co-
senos y la serie de Fourier en senos de la funcién en el intervalo.
Determine la suma de cada serie.

1.

fx)=40<x<3

1 para0 <x <1
fx) =

-1 paral <x <2

0 para0 <x <m
flx) =

cos(x) paraw <x <2m
f(x)=2xpara0 <x <1

5. f(x) =xZpara0 <x <2

6. f(x) =e Fparal<x <1

2.5

para0 <x <2

2—x para2 <x <3

X
f(x)={

! | L s x

0 0.2

FIGURA 2.28(b)

|
04 0.6 0.8 1.0

Cuadragésima suma parcial del

desarrollo en senos de e?* en [0, 1].

1 para0 <x < 1

8. f(x)=10

9. flx) =

paral <x <3
para3 <x <5

para0 <x <1

1 paral <x <4

10.

11.

f(x):l—x3para0§x§2

Sea f (x) definida en [—L, L]. Pruebe que f puede escribir-

se como la suma de una funcién par y una impar en este

intervalo.
12.

Encuentre todas las funciones definidas en [—L, L] que son

al mismo tiempo par e impar.

13.

Encuentre la suma de la serie ) 5—;(—1)"/(4n% —1). Suge-

rencia: Desarrolle sen(x) en una serie en cosenos en [0, 7]
y elija un valor apropiado de x.

Integracion y diferenciacion de series de Fourier

En esta seccién se abordan mds de cerca los coeficientes de Fourier y se considera la diferenciacién e
integracion de series de Fourier término a término.

Generalmente la diferenciacion de series de Fourier término a término lleva a resultados absurdos aun
para funciones que tengan un comportamiento extremadamente bueno. Considere por ejemplo, f(x) = x para
—m < x < 7. La serie de Fourier es

o0

2

n=1

2
—(=D
n

"+ sen(nx),
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que converge a x para —7 < x < 7. Por supuesto, f/(x) = 1 para —w < x < 7, de manera que f es suave a
pedazos. Sin embargo, si diferencia la serie de Fourier término a término, tiene

Z 2(—=1)"*! cos(nx),

n=1

la cual ni siquiera converge en (—, ). La derivada término a término de esta serie de Fourier no estd
relacionada con la derivada de f (x).
La integracion de la serie de Fourier tiene mejores expectativas.

= TEOREMA 2.5 |Integracién de series de Fourier

Sea f continua a pedazos en [—L, L], con serie de Fourier

_ao+2ancos( )+bnsen( ]Zx)

Entonces, para cualquier x con —L < x < L,
x 1 L1 nmwx nmwx
/_Lf(t)dt = an(x—i-L)—i- ;;; [ansen(—L ) — by (cos( 2 ) (=" )]

En esta ecuacion, la expresion de la derecha es exactamente lo que obtiene integrando la serie de
Fourier término a término, de —L a x. Esto significa que para cualquier funcién continua a pedazos,
puede integrar f de —L a x integrando su serie de Fourier término a término. Esto se satisface aunque la
serie de Fourier no converja a f (x) en esta x en particular (por ejemplo, f puede tener una discontinuidad
de salto en x).

Prueba Defina
* 1
F(x) = / f@t)dt — —apx
L 2
para —L < x < L. Entonces F es continua en [—L, L] y F(L) = F(—L) = Lay/2. Mas atin, F'(x) = f (x) —

%ao en todo punto de [—L, L] donde f'es continua. Asi F' es continua a pedazos en [—L, L]. Por tanto, la
serie de Fourier de F(x) converge a F(x) en [—L, L]:

Flx) = %Ao—i—ZA cos( Z )+B sen (mzx) (2.18)

n=1

use letras mayusculas para los coeficientes de Fourier de F'y letras minusculas para los de f. Ahora calcule
lasA’,y B',paran = 1,2, ... integrando por partes. Primero,

o ()
An = — F(l) Ccos dt
L), L
! |:F(t)—s n(”’”ﬂ ——/ ( )F(z)dt
L Lnn
1 L . 1 nmt dt
“nr ) (f “—5“0) (T)

1 [t t 1 L t
- f(t)sen nrt dt + —ao/ sen nrt dt
nw J_p L 2nm L L
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en donde b, es el coeficiente del seno en la serie de Fourier de fen [—L, L]. Andlogamente,

1k <n7‘rt>
B, = —/ F(t)sen| — ) d
L), L
1 [ ( L (nnt)):r 1L, L nmt
| F@) (== cos [ 222 ——f F'(1) <——)cos<—>dl
L nmw L . LJ-p nm L
1 [t 1 nmt
(50 S0 cos (")
1 nmt 1 L nmt
ey f(f)COS<L)dt—%aO/_Lcos<T>dt

L
= —ay,.
nmw

Por tanto, la serie de Fourier de F es

o0

Fior= s £ 50 (s () e (2)

n=1

para —L < x < L. Ahora debe determinar A. Pero

o0

L 1 L 1
F(L)=Say= 340 - — ; (;) by cos(n7r)
L /1 .
a3 () nrr
n=1
Esto da
2L h /1 ;
Ao = Lag+ — "Z;(;) bu(—1)".

Sustituyendo estas expresiones para Ay, A, y B, en la serie (2.18), obtiene la conclusién del teorema. M

EJEMPLO 2.17

Sea f(x) = x para —7 < x < 7. Esta funcién es continua en [—, 7], y su serie de Fourier es

Z 3(—1)”+1 sen(nx).
n

n=1

Ha visto que si diferencia esta serie término a término, obtiene algo sin sentido. Sin embargo, puede inte-
grarla término a término y obtener para cualquier x en [—, 7],

fx tdt—1(2 2
—2x T

-7

9]

[\

(—1)"*! /X sen(nt) dt

S |
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2 i1 [ 1 1 }
= Z —(=D ——cos(nx) + — cos(nm)
n n n

n=1

o 2 ; n
= Zn—z(—l) [cos(nx) — (=1)"].
n=1

Con condiciones mds fuertes sobre f, puede obtener un resultado diferenciando término a término
para la serie de Fourier.

TEOREMA 2.6 Diferenciacioén de la serie de Fourier

Sea f continua en [—L, L] y suponga que f (L) = f (—L). Sea f’ continua a pedazos en [—L, L]. Entonces
f(x) esigual a su serie de Fourier para —L <x <L,

fx)= %ao + ian cos (n:th) + b, sen (me> ,

n=1
y, en cada punto en (—L, L) donde f"(x) existe,
> nm X nmwx
£(x) =;T< nansen( 7 )—i—b cos( 7 )) [ |

Queda la prueba de este resultado al alumno. La idea es escribir la serie de Fourier de f'(x), observan-
do que esta serie de Fourier converge a f'(x) siempre que f"(x) exista. Use integracion por partes, como en
la prueba del teorema 2.5, para relacionar los coeficientes de Fourier de f'(x) con aquellos de f (x).

EJEMPLO 2.18

Sea f (x) = x2 para —2 < x < 2. Se satisfacen las hipdtesis del teorema 2.6. La serie de Fourier de f en
[—2,2] es

fx) =

U-’I-lk

LS e (),

con la igualdad entre f (x) y su serie de Fourier. Como f'(x) = 2x es continua, y existe f"(x) = 2 en todo
el intervalo, entonces para —2 < x < 2,

) 8 00 (_1)n+l
fla=2w=—3" — sen(’”;x).

n=l1

Por ejemplo, poniendo x = 1, obtenemos

8 o (—1)nt! niw
—Z—sen(—) =2,
T n 2

n=1

n=1

Algunas veces se pueden manipular las series de Fourier para calcular sumas de series como ésta. M



84 CAPITULO 2  Series de Fourier

Estas son las condiciones bajo las cuales puede diferenciar o integrar una serie de Fourier término a
término. Ahora considere condiciones suficientes para que una serie de Fourier converja uniformemente.

Primero, obtenga un conjunto de desigualdades importantes para los coeficientes de Fourier, llamadas
desigualdades de Bessel.

= TEOREMA 2.7 Desigualdades de Bessel

Sea fintegrable en [0, L]. Entonces

1. Los coeficientes de la serie de Fourier en senos de fen [0, L] satisfacen
L 2
an <= / f(x)?dx.
—L
2. Los coeficientes de la serie de Fourier en cosenos de fen [0, L] satisfacen
12+§§2<:2fo(ﬁd
—a a — x)“dx.
2 0 n — L 0
n=1
3. Si fes integrable en [—L, L], entonces los coeficientes de Fourier de fen [—L, L] satisfacen
1
—ao + Z(a +b2) < / f(x)?dx. m

En particular, la suma de los cuadrados de los coeficientes (senos, cosenos o serie de Fourier) de

f converge. Ahora se prueba (1), que es notablemente mas sencilla que las otras dos desigualdades pero
contiene la idea del argumento.

Prueba Como | f) f (x)dx existe, puede calcular los coeficientes de la serie de Fourier en senos y escribir
la serie

o0
nwx
Z b,, sen (—) ,
L

n=1

donde

b 2 L nrxy
n—z\/o f(X)SCII(T) X

La N-ésima suma parcial de esta serie es

N
nwx
Sy(x) = an sen <T) .
n=1
Ahora considere

L
05/<ﬂm—Made
0

= /OL F(x)dx —2[0L F(xX)Sy(x)dx +/OL Sy (x)?dx
:/OLf(x)2dx—2[0 ) (Zb sen( 72 )) dx
/ (ansen( )) <Zb sen( ))dx
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L N L
:/0 f(x)de—ZnXZ;bn/O f(x)sen(?)dx

N N L
+ Z Z b, by, /0 sen (MTX) sen (mTM) dx

n=1m=1
L N N L
= fo FO?dx =3 ba(Lby) + Y bubn
n=1 n=1
en la que ha usado el hecho que
0 sin #m

/(;L sen (WT)C) sen (mzx>dx= {L/Z Gn

Por tanto,

L N LN
0< Zdx — LY b2+ = b3,

n=1

N 2 L
Zzﬁ <= / f(x)dx.
L Jo
n=1
Como el lado derecho es independiente de N, puede hacer N — o para obtener

Shi=g [ rorax
n=1 0

resultando la conclusion (1). Las conclusiones (2) y (3) tienen pruebas semejantes. M

EJEMPLO 2.19

Use la desigualdad de Bessel para obtener una cota superior para una serie infinita. Sea f (x) = x2 para
—m < x < m. La serie de Fourier de f converge a f (x) para todo x en [—, 7]:

2 _ 2
X = gn —I—ng_l4 5

cos(nx).
n

Aqui ay = 272/3, a, = 4(—1)"/n? y b, = 0 (x2 es una funcién par). Por la desigualdad de Bessel (3) del

teorema 2.7,
1272\ /A=D1 T, 2
Y i < — dx = =7
2(3>+Z( ) ) —n/_,,x =5
n=1
Entonces
00 4
1 2 2 8
16 —<(Z=-Z)r*= =
Zn4—<5 9)” 45
n=1
asi

lo que aproximadamente es 1.0823232. M
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Usando la desigualdad de Bessel para los coeficientes en el desarrollo de Fourier en [—L, L], puede
probar un resultado acerca de la convergencia uniforme de la serie de Fourier.

= TEOREMA 2.8 Convergencia uniforme y absoluta de la serie de Fourier

Sea fcontinua en [—L, L] y sea f’ continua a pedazos. Suponga que f (—L) = f(L). Entonces, la serie de
Fourier de f'en [—L, L] converge absoluta y uniformemente a f (x) en [—L, L].™

Prueba Denote los coeficientes de Fourier de f con letras mindsculas y aquellos de f' con mayusculas.
Entonces

1 L
w=1 [ r©de= - Lo

Para enteros positivos n, integre por partes, como en la prueba del teorema 2.5, que

ni niw
An = Tbn y Bn = —Ta,,.

Ahora
N, 2
0= (14s]— =) = A2 = Z|A +
n n n
y andlogamente,

) 1
0= B} = Bl + .

Entonces
! ! AT
;|An| + ;|Bn| =< E (An + Bn) + n—2
Por tanto,
T T b 1 A2 5 1 .
z|an|+z| n|§§< n—l—Bn)—i-E,
de donde

lanl + 1ba] = 5 (An +Bn> -

Ahora >%_(1/n2) converge, y >%_(A2, + B2,) converge, debido a la aplicacién de la desigualdad de Bes-
sel a los coeficientes de Fourier de f'. Asi, por comparacion, > %_; (|a,| + |b,|) también converge.
Pero, para —L <x <L,

nwx nwx
ap cos (T) + b, sen (T>‘ <lau|+ 1by|.

Por un teorema de Weierstrass, éste implica que la serie de Fourier de f'converge uniformemente en [—L, L].
Mais atn, la convergencia es absoluta, ya que la serie de los valores absolutos de los términos de la serie,
converge. Finalmente, por el teorema de convergencia de Fourier, la serie de Fourier de f converge a f (x)
en [—L, L]. Esto completa la prueba. ™
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EJEMPLO 2.20

Sea f(x) = e~M para —1 < x < 1. Entonces

er para —1 <x <0
fx) =
e~ para0 <x <1
fescontinuaen [—1, 1],y
) —e ¥ para0 <x <1
)=
e* para —1 <x <0

Jfno tiene derivada en x = 0, ya que es un pico de la grafica (figura 2.29). Asi f' es continua a pedazos en
[—1, 1]. Finalmente, f (1) = f (—1) = e~!. Por tanto, la serie de Fourier de f converge uniforme y absolu-
tamente a f (x) en [—1, 1]:

o 1 — e 1(—=1)"

fy=1-e"+2%" ~—— cos(nmx)
= I +m=n

para—1 <x < 1.
Puede integrar esta serie término a término. Por ejemplo,

o]

/x f(t)dt—/x(l— _l)dt+2ZLl(_l)n/x (nt) dt
» = ' e = 1 n n2n2 » cos(nit

o0 —
=(l-eHx+D+ 22 1—elely 1 sen(nmx).
o 14+ 7202 nm

Esta es una ecuacién correcta, pero no es una serie de Fourier (el lado derecho del término polinomial
en x). Algunas veces integrard una serie de Fourier término a término, y el resultado puede ser una
serie convergente, pero no necesariamente una serie de Fourier.

0.6 —

L1 I
-1.0 —0.5 0 0.5 1.0

FIGURA 2.29 Grdfica de

X

e
Jo =4 _
e

para —1 <x <0

X para0 <x <1



88 CAPITULO 2  Series de Fourier

También puede diferenciar la serie de Fourier para f (x) término a término en cualquier puntoen (—1, 1)
en donde existe f"(x). Asi puede diferenciar término a término para —1 < x < Q0 y para 0 < x < 1. Para
tales x,

1—e (=1
fl(x) = —ZZ ] i (2 2) nm sen(nmwx). W

Esta seccion concluye con el teorema de Parseval. Recuerde que la desigualdad de Bessel para
los coeficientes de Fourier en [—L, L] requiere sélo del calculo de dichos coeficientes. Si ademas impone
condiciones de continuidad en la funcién, como en el teorema 2.8, entonces la desigualdad de Bessel
se convierte en igualdad.

— TEOREMA 2.9 Parseval

Sea fcontinuaen [—L, L] y seaf' continua a pedazos. Suponga que f (—L) = f(L). Entonces los coeficien-
tes de Fourier de fen [—L, L] satisfacen

2 242 2
an ~|—n2_1(an +b;) = 7 /_L f(x) dx. m
Prueba La serie de Fourier de fen [—L, L] converge a f (x) en cada punto de este intervalo:

fx)= —a0+2ancos< )—i—b sen(nzx>.

Entonces

f(x)2_—aof(x)-l—Zanf(x)cos( )—i—b f(x)sen( Lx)'

n=1

Puede integrar término a término esta serie de Fourier, y la multiplicacién de la serie por la funcién con-
tinua f (x) no cambia esto. Por tanto,

L 1 L
f f(x)?dx = ~ag f f(x)dx
—L 2 —L

o0 L L
nwx nTX
+ E an/ f(x)cos (—) dx +bn/ f(x)sen (—) dx.
n=1 -L L -L L
Recordando las férmulas integrales para los coeficientes de Fourier, esta ecuacién puede escribirse como

/ F)dx = zaoLao + Z(a,,Lan + by Lby),

n=1

y esto es equivalente a la conclusion del teorema. M

EJEMPLO 2.21

El teorema de Parseval tiene varias aplicaciones en la deduccién de otras propiedades de la serie de
Fourier. Mas tarde se enfrentard con ellas cuando estudie la completez de conjuntos de funciones propias.
Sin embargo, una aplicacion inmediata es la obtencion de sumas de ciertas series infinitas. Para ilustrar,
los coeficientes de Fourier de cos(x/2) en [—, 7] son

1/” X 4
ayg = — cos(—)dx: —
b4 2 b4

—TT
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T

ap = l cos (%) cos(nx)dx = ——

T Jn

Por el teorema de Parseval,

1/4\* /4 (-1
5(5) +Z<;—4nz_1

Entonces,

S
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4 (="
T4n? —1"

SECCION 2.5 PROBLEMAS

. Pruebe el teorema 2.6. Puede formularse un argumento
usando la discusién que sigue al enunciado del teorema.

. Seaf(x) =|x para—1 <x<1.
(a) Escriba la serie de Fourier para f (x) en [—1, 1].
(b) Pruebe que esta serie puede diferenciarse término a

término para llegar al desarrollo de Fourier de f'(x) en
[—1,1].

(c) Determine f'(x) y escriba su serie de Fourier en [—1, 1].
Compare esta serie con la obtenida en (b).

0 para —7 <x <0
. Sea f(x) =
X para0 < x <.

(a) Escriba la serie de Fourier de f (x) en [—m, 7] y pruebe
que esta serie converge a f (x) en (—m, 7).

(b) Pruebe que esta serie se puede integrar término a tér-
mino.

(c) Use los resultados de (a) y (b) para obtener un desarrollo
en serie trigonométrica para [* . f (f)dt en [—m, 7].

. Seaf(x) =x2para —3 <x <3.

(a) Escriba la serie de Fourier para f (x) en [—3, 3].

(b) Pruebe que esta serie se puede diferenciar término a
término y utilice este hecho para obtener el desarrollo de
Fourier de 2x en [—3, 3].

(c) Escriba Ia serie de Fourier de 2x en [—3, 3] calculando los
coeficientes de Fourier y compare el resultado con el de (b).

. Sea f(x) = xsen(x) para —r < x < 7.

(a) Escriba la serie de Fourier para f (x) en [—m, 7].

(b) Pruebe que esta serie se puede diferenciar término a
término y utilice este hecho para obtener el desarrollo de
Fourier de sen(x) + x cos(x) en [—, 7].

(c) Escriba la serie de Fourier de sen(x) + x cos(x) en [—, 7]
calculando los coeficientes de Fourier y compare el resultado
con el de (b).

La forma de angulo fase de la serie de Fourier

Una funcioén es periodica con periodo p si f (x + p) = f (x) para todo x real. Si una funcién tiene un perio-
do, dicha funcién tiene muchos periodos. Por ejemplo, cos(x) tiene periodos 2m, 47w, 67,—2m,—4m, y de
hecho, 2nm para cualquier entero n. El periodo positivo minimo de una funcién se llama periodo funda-
mental. El periodo fundamental de sen(x) y cos(x) es 2.

Si f tiene periodo p, entonces para cualquier x, y cualquier entero 7,

fx+np) = fx).
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Por ejemplo,

cos(%) =cos<%+2n> :cos<%+4n) =cos(%+6n) =

La grafica de f (x) periddica se repite sobre todo intervalo de longitud p (figura 2.30). Esto significa
que s6lo necesita especificar f (x) en un intervalo de longitud p, en [—p/2, p/2), para determinar f (x) para
todo x. Estas especificaciones de los valores de la funcién pueden hacerse en cualquier intervalo [o, @ + p) de
longitud p. Como f (¢ + p) =f (), la funcién debe tener el mismo valor en los extremos de este intervalo.
Esta es la razén por la cual especifica los valores en el intervalo semiabierto [«, & + p), ya que f (@ + p)

estd determinada una vez que f («) estd definida.

EJEMPLO 2.22

Sea g(x) = 2x para —1 < x < 1, y suponga que g tiene periodo 2. Entonces, la grifica de g en [—1, 1) se
repite para cubrir toda la recta real, como en la figura 2.31. Basta conocer el periodo y los valores de la

funcion en [—1, 1), para determinar la funcién para todo x.
Como un ejemplo especifico, suponga que quiere conocer g(%). Como g tiene periodo 2, g(x + 2n) =

g(x) para cualquier x y cualquier entero n. Entonces

(@)= (D

Andlogamente,

2(48.3) = (0.3 +2(24)) = £(0.3) = 0.6. m

Si ftiene periodo p y es integrable, entonces calcule sus coeficientes de Fourier en [—p/2, p/2] y es-
criba la serie de Fourier

1 > 2nmwx 2nmwx
—ao—l—Z(ancos( )+b,,sen< ))
2 n=1 p p

Aqui L = p/2, entonces nmx/L = 2nmx/p en la discusion anterior de la serie de Fourier en [—L, L]. Los
coeficientes de Fourier son

2 [p/2

a, = — f(x)cos(
P J—pn

y
4 4 zr
2 ‘ 2 | |
I\ 7\ X —1 Ll
T ¥ I
| | 2

FIGURA 2.30 Grdfica de una funcion FIGURA 2.31
periodica con periodo fundamental p.

2nmwx

)dx paran =0,1,2,...
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y
2 (P2 2
b,,:—/ f(x)sen( nnx)dx paran=1,2,....
P J-pr p
De hecho, debido a la periodicidad, podria escoger cualquier nimero conveniente « y escribir
2 [otp 2nmx
a, = — f(x)cos dx paran=0,1,2,... (2.19)
a p
y
2 a+p 2
b,,:—/ f(x)sen( ””)dx paran=1,2,.... (2.20)
o p

Una vez calculados los coeficientes, puede usar un teorema de convergencia para determinar en dénde
esta serie representa f (x).

EJEMPLO 2.23

La funcién f que se muestra en la figura 2.32 tiene periodo fundamental 6, y

0 para —3 <x <0

f@)={

1 para0 <x <3

Esta funcidn se llama onda cuadrada. Su serie de Fourier en [—3, 3] es
1 1 nmwx
§ n
§+n_1 n_”(l _(_1) )sen <T)

Esta serie converge a O para —3 <x < 0,alpara0 <x <3,ya % en x = 0y x = +3. Debido a la perio-
dicidad, esta serie también converge a f (x) en (—6,—3) y a (3, 6), en (—6,—9) y a (6, 9), y asi sucesiva-

mente. M
A veces
2
wy) = —.
p
Ahora la serie de Fourier de fen [—p/2, p/2] es
[e¢)
1
sao+ Y (ay cos(nwox) + by sen(wox)) . (2.21)
2 n=1
y
| | | T | ! | X
9 6 -3 | 3 6 9

0 para —3 <x <0

FIGURA 2.32 Onda cuadrada: f(x) =
1 para0 <x <3

y f tiene periodo.
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donde
2 rp/2
a, = — f(x)cos(nwox)dx paran=0,1,2,...
P J-pp
y
2 [p/2
b, = — f(x)sen(nwox)dx paran=1,2,....
P J—pr

Algunas veces es conveniente escribir la serie de Fourier (2.21) de una forma diferente. Busque ni-
meros ¢, y 9, tales que

a, cos(nwox) + b, sen(nwox) = ¢, cos(nwox + &,).
Para resolver estas constantes, escriba la dltima ecuacion como
a, cos(nwox) + b, sen(nwox) = ¢, cos(nwox) cos(s,) — ¢, sen(nwpx) sen(s,).

Una manera de satisfacer esta ecuacion es tener

cp cos(8y) = ay

cpsen(d,) = —by,.

Resuelva ésta para ¢, y §,. Primero eleve al cuadrado ambas ecuaciones y las suma para obtener

cZ = a,% + bﬁ,
entonces
cn = Jak + b2. (2.22)
Ahora, escriba
¢, sen(sy) — tan(5,) = _@’
¢, cos(6y,) an

_b
S = tan~! ( —"),
an

suponiendo que a, # 0. Los nimeros ¢, y 8, permiten escribir la forma de dngulo fase de la serie de
Fourier (2.21).

DEFINICION 2.7  Forma de dngulo fase

Sea f con periodo fundamental p. Entonces la forma de angulo fase de la serie de Fourier (2.21) de fes

1

o0
an + Z ¢, cos(nwox + 8;),

n=1

en donde wy = 27/ p, ¢, = /a2 + b2,y 8, = tan~ ! (—b, /a,) paran = 1,2, ...
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La forma de dngulo fase de la serie de Fourier también es llamada forma armonica. Esta expresion
exhibe la composicién de una funcién periddica (que satisface ciertas condiciones de continuidad) como
una superposicién de ondas coseno. El término cos(nwyx + dn) es la n-ésima armonica de f, c, es la
n-ésima amplitud armonica, y 8, es el n-ésimo dngulo fase de f.

EJEMPLO 2.24

Suponga que f'tiene periodo fundamental p = 3,y

f(x) = x? para0 < x < 3.

Como ftiene periodo fundamental 3, definiendo f (x) en cualquier intervalo [a, b) de longitud 3 determina
f (x) para todo x. Por ejemplo,

fED =f(=143) = f2) =4,
fG)=f2+3)=f2)=2"=4,
(observe que f(S) =f (=1 +6)=f(—1+ 2 -3)=f(-1)=4),y

f)=7r0+6)=f(1) =1

En la figura 2.33 se muestra la grafica de f.
Hay que tener cuidado si quiere escrgibi3r una expresion algebraica para f(x) en un intervalo diferente.
Por ejemplo, en el intervalo simétrico [ 5, 5) alrededor del origen,

x2 para0§x<%

f(X)={

(x +3)2 para '%§x<0

Para encontrar los coeficientes de Fourier de f, es conveniente usar las ecuaciones (2.19) y (2.20) con
o = 0, como festd dada explicitamente en [0, 3). Calcule

LI

630 3 6 9 12

FIGURA 2.33 Grdficade f(x) = x2para 0 <x < 3,
con f(x + 3) = f(x) para todo x.
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La serie de Fourier de fes

3+ii icos 2nmwx ~en 2nmwx 593
nw \nmw 3 3 ' (2.23)

n=1

. . . . .. 33 .
Puede pensar en ésta como la serie de Fourier de f en el intervalo simétrico [ 5, 5] alrededor del origen.
Por el teorema de convergencia de Fourier, esta serie converge a

1(9 ,9y_9 _*3
;(3+37)=7 paax=73
9

153 parax =0
(x +3)2 para —% <x<0
x? para0<x<%

Para la forma de dngulo fase o forma arménica de esta serie de Fourier, calcule

9
cn = Jal + b2 33 1 +n2n2 paran=1,2,...

8p = tan”! _—9/nn —tanfl(nrr)
" 9/n272) ’

Como wy = 27/3, la forma de dngulo fase de la serie (2.23) es

o
9 2
34+ Z ——5V1+ n2m2 cos ( nry + tan_l(nn)) .l
n’m
n=1

3

El espectro de amplitud de una funcién periddica f es una grafica de los valores de nw en el eje hori-
zontal versus c,/2 en el eje vertical, paran = 1, 2, . .. Asi el espectro de amplitud consiste en los puntos
(nwg, c,/2) paran =1, 2, . . . También es usual incluir el punto (0, |ag|) en el eje vertical. La figura 2.34
muestra el espectro de amplitud para la funcién del ejemplo 2.24, consiste en los puntos (0, 3) y, para
n=12,...,

2
H—N,L\/1+n27r2 :
3 ' 2n2n?

Esta gréfica permite visualizar la magnitud de las armoénicas de las cuales estd compuesta la funcién perié-
dica y esclarecer cudles armonicas dominan en la funcién. Esto es ttil en el andlisis de sefiales, en donde
la funcidn es la senal.

SIES

30

1.5

0.7

035205

T T

nw

0.28 w, 20)0 3010 4w0 Swo

FIGURA 2.34 Espectro de amplitud para la funcion
de la figura 2.33.



SECCION 2.6 PROBLEMAS

1. Sean f'y g con periodo p. Pruebe que af + Bg tiene periodo
p para cualquier constante « 'y B.

2. Seafcon periodo p y sean « y 8 constantes positivas. Pruebe
que g(1) = f (at) tiene periodo p/a 'y que h(t) = f (/) tiene
periodo Bp.

3. Sea f(x) diferenciable y con periodo p. Pruebe que f'(x) tie-
ne periodo p.

4. Suponga que f tiene periodo p. Pruebe que, para cualquier
ndimero real «,

atp 14 p/2
/ fx)dx =/ fx)dx =/ f(x)dx.
o 0 —p/2

En cada problema del 5 al 9, encuentre la forma del dngulo fase
de la serie de Fourier de la funcién. Trace algunos puntos del
espectro de amplitud de la funcién.

5. f(x) =xparal <x <2y f(x +2) = f(x) para
todo x.
1 para0 <x < 1
6. f(x)=10
fx+2)

7. f(x) =3x%para0 < x < 4y f(x +4) = f(x)
para todo x.

paral <x <2

para todo x.

1 +x para0 <x <3
8. f(x)y=12
flx+4

para3 <x <4

para todo x.
9. f(x) =cos(mx) para0 <x < 1y f(x)=f(x + 1) para todo x.

En cada problema del 10 al 14, encuentre la forma del dngulo
fase de la serie de Fourier de la funcién, se da una parte de su
gréfica en el diagrama indicado. Trace algunos puntos del es-
pectro de amplitud de la funcién.

10. Figura 2.35

FIGURA 2.35

2.6 La forma de dngulo fase de la serie de Fourier

11. Figura 2.36

-2 -1
—1
FIGURA 2.36

v /.
L

12. Figura 2.37

y
f@®
k
| ! ! | Ly
2 -1 | 1 2 3
FIGURA 2.37
13. Figura 2.38
y
2
1
! | ! ! ! [
-5 3 -1 11 3 5
FIGURA 2.38
14. Figura 2.39
y
] %
| | | | | | | | x
—4-3-2-1 | 1 2 3 4
FIGURA 2.39
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15. Determine la representacion en serie de Fourier de la co- 16. Determine la representacién en serie de Fourier de la co-
rriente en estado estacionario en el circuito de la figura rriente en estado estacionario en el circuito que se muestra
2.40 si en la figura 2.41 si E(¢) = |10 sen(8007t)|. Sugerencia: pri-

mero muestre que

100t(712 — t2) para —mw <t <7m
E@) = i — [1 . Z cos(l600n7tt)i|
E(t+2m) para todo ¢
100 Q
500
E(t j
E(1) N 10 2F () i SH
0.2 uF
10H
FIGURA 2.40 FIGURA 2.41
2.7 Serie de Fourier compleja y el espectro de frecuencia

Muchas veces es conveniente trabajar en términos de los nimeros complejos, aunque las cantidades de
interés sean reales. Por ejemplo, los ingenieros eléctricos con frecuencia usan ecuaciones que tienen can-
tidades complejas para calcular corrientes, teniendo presente al final que la corriente es la parte real de
una cierta expresién compleja.

Estudie la serie de Fourier en este escenario. M4s tarde, la serie de Fourier compleja y sus coeficientes
daran un punto de partida natural para el desarrollo de la transformada de Fourier discreta.

2.7.1 Revision de los nimeros complejos

Dado un nimero complejo a + bi, su conjugado es g + bi = a — bi. Si identifica a + bi con el punto
(a, b) en el plano, entonces a — bi es (a,—b), la reflexién de (a, b) a lo largo del eje horizontal (real)
(figura 2.42).

El conjugado de un producto es el producto de los conjugados:

w=zw

para cualesquiera nimeros complejos z y w.
La magnitud, o médulo, de a + bi es |a + bi| = /a? + b2, la distancia del origen a (a, b). Es util
observar que

(a + bi)(a + bi) = a®> + b*> = |a + bi|*.
Si denota al nimero complejo como z, esta ecuacion es
Z=1z.
Introduzca las coordenadas polares x = r cos(6), y = r sen(0) para escribir
z=x-+1iy=r[cos(@) +isen(d)] = re'?,

por la férmula de Euler. Entonces r = |z y 0 es llamado un argumento de z. Es €l dangulo entre la parte
positiva del eje x y el punto (x, y), o x + iy, en el plano (figura 2.43). El argumento estd determinado den-
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y y y
(a, b) a+ib = reit 24+2i=8emH
X
(a,—b)
X
FIGURA 2.42 Conjugado FIGURA 2.43  Forma polar de un FIGURA 2.44 Forma polar de
complejo como una reflexion a lo niimero complejo. 2+ 2i.

largo del eje horizontal.

tro de mailtiplos enteros de 27. Por ejemplo, |2 + 2i| = +/8 y los argumentos de 2 + 2i son los angulos
n/4 + 2n7, con n cualquier entero (figura 2.44). Asi, escriba

2+ 2i = /84,

Esta es la forma polar de 2 + 2i. De hecho puede escribir 2 + 2i = /8 ei(@/4+2mm)_ pero no contribuye
en nada a la forma polar de 2 + 2i, ya que

ei(n/4+2mr) — em’/4e2nm‘

y
e?" = cos(2n) + i sen(2nm) = 1.
Si usa dos veces la féormula de Euler, escriba
e = cos(x) + i sen(x)
y

e~ = cos(x) — i sen(x).

Resuelva estas ecuaciones para sen(x) y cos(x) para escribir

cos(x) = % (eix + e_[x) y  sen(x) = % (ei" - e_i") . (2.24)

Finalmente, use el hecho de que si x es un ndmero real, entonces e'¥ = e~ . Esto es cierto porque

eit = cos(x) +isen(x) = cos(x) — i sen(x) = e ¥,

2.7.2 Serie de Fourier compleja

Use estas ideas para formular la serie de Fourier de una funcién en términos complejos. Sea f una funcién
de variable real, periddica con periodo fundamental p. Suponga que fes integrable en [—p/2, p/2]. Como
hizo con la forma del dngulo fase de una serie de Fourier, escriba la serie de Fourier de f (x) en este inter-
valo como

Lo+ lan cos(nns) + by sen(ron)]
50 a, cos(nwox , sen(nwopx)],

n=1
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con wy = 27/p. Use las ecuaciones (2.24) para escribir esta serie como

1 S » 1. »
an_’_l;[anE(emwox +e mwox>_’_bnz(emw0x —e ma)ox)]

| o | (2.25)
= 5a0 + ,; [E(an — iby)e"™ M + = (an + ibn)e_‘”wox] :
En la serie (2.25), sea
d 1
= —a
0 ) 0
y para cada entero positivo n,
1 .
dy = z(an —iby).
Entonces la serie (2.25) llega a ser
o0 oo o0
do + Z [d, e ®0x 4 Eeﬂnwox] =do + Z d, e x4 Z Eeﬂnwox' (2.26)
n=1 n=1 n=1
Ahora considere los coeficientes. Primero,
1 1 [r?
do = —ag = — f(@)dt.
2 PJ-pp

Y,paran=1,2,...,
1 .
dy, = E(an —iby)

12 [r? i2 [P?
= / f () cos(nwot) dt — 5;/ f () sen(nwot) dt

2pJpp ~p/2
1 [p/2

= — f(@®)[cos(nwot) — i sen(nwpt)] dt
P J-pr
1 rr/2 .

=_ f()e "0l gt
P J—ppn

Entonces

1 [p2 - 1 rr/? .
dp = —/ ft)em ot di = _f F@)e" ™ dt =d_,.
P J—pp P J—ppn

Ponga estos resultados en la serie (2.26) para obtener

00 00
do + Zdneinwox + Zaeﬂ'nwox
n=1

n=1

00 00
dO + Z dneinwox + Z d_nefinwox

n=1 n=1

00 00
=dy+ Z dnemwox — Z dnemwox'

n=—00,n#0 n=—00
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Ha encontrado esta expresion rearreglando los t€rminos en la serie de Fourier de una funcién
periddica f. Esto sugiere la siguiente definicion.

DEFINICION 2.8  Serie de Fourier compleja

Sea f con periodo fundamental p. Sea wy = 27/p. Entonces la serie de Fourier compleja de f'es

0
inwpx
E dpe'"

n=—o00
donde
1 [p/2 .
dp = — f@)e "™ di
P J—pn
paran =0, =1, £2, . . . Los nimeros d, son los coeficientes de Fourier complejos de f.

En la férmula para d,, la integracion se puede llevar a cabo sobre cualquier intervalo de longitud p,
debido a la periodicidad de f. Asi, para cualquier niimero real «,

1 [fotp .
d, = —/ f)e "ot gy,
P Ja

Como la serie de Fourier compleja es s6lo otra forma de escribir la serie de Fourier, los teoremas de
convergencia (2.1) y (2.2) se aplican sin necesidad de ninguna adaptacion.

TEOREMA 2.10
Sea f periddica con periodo fundamental p. Sea f suave a pedazos en [—p/2, p/2]. Entonces, en cada x la
serie de Fourier compleja converge a % fx+)+f(x—)). m

El espectro de amplitud de la serie de Fourier compleja de una funcién periddica es la grafica de los
puntos (nwo, |d,|), en donde |d,| es la magnitud del coeficiente complejo d,,. Algunas veces este espectro de
amplitud es llamado también espectro de frecuencia.

EJEMPLO 2.25

Calcule la serie de Fourier compleja de la rectificaciéon de onda completa de E sen(Af), en donde E'y A son
constantes positivas. Observe que aqui la variable es 7 y no x.

Esto significa que quiere la serie de Fourier compleja de |E sen(A1)|, cuya grafica se muestra en la
figura 2.45. Esta funcién tiene periodo fundamental /A (aunque E sen()f) tiene periodo 2m/)). En este
ejemplo, wy = 27/(;t/1) = 2. Los coeficientes de Fourier complejos son

)\‘ J'[/)\ .
d, = —/ |E sen(At)| e 2" dt
7 Jo

Ex ™/ .
- / sen(Ar)e Mt gy,
T Jo
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y
E

t
- 0 ~ 2m 37
A A A A

FIGURA 2.45 Grdfica de
|E sen(A7)).

Cuandon =0,
Ex [7/* 2FE
dy = — sen(At)dt = —.
T Jo T

Cuando n # 0, la integracién se simplifica poniendo el término seno en forma exponencial:

d = Ex =/A l (e,\n . e—m) o2kt gy
" T Jo 2i
_Er /"”e(l_w, P2 /”“e_amw, o
2im 0 2im 0
A A
_ Ex 1 p(1-2mit / +ﬂ 1 o~ (+2m)iir /
2im | (1 —2n)Ai 0 2im | (14 2n)Ai 0
B E [ o(0-2m7i 1 N e~ (1420 1
T 2n| 1—-2n 1—-2n 1+2n 1+2n|°
Ahora
e =27 — cos((1 — 2n)m) + i sen((1 — 2n)7)
— (_1)1—2n ——
y
e~ UF2Ti — cos((1 4 2n)7) — i sen((1 + 2n)7)
= (D = 1.
Por tanto,

J E[ —1 1 N -1 N -1
"T o 2x|1=2n 1-2n 1+4+2n 1+42n
_2E 1

7T 4n? -1

Cuando n = 0, esto también da un valor correcto para dj. La serie de Fourier compleja de |E sen(Af)| es

E & 1 .
_2_ 2n)ult.
. nz m2—1°

=—0Q

El espectro de amplitud es un trazo de los puntos

<2nk,

En la figura 2.46 se muestra una parte de este trazo. M

2E
@n? - Hrx

)



2.7 Serie de Fourier compleja y el espectro de frecuencia

101

Id,|

n

2E

37

2E |
157

—6A —4A —2A

nw,

20 41 6A 0

FIGURA 2.46 Espectro de
amplitud de |E sen(A1)|.

SECCION 2.7 PROBLEMAS

En cada problema del 1 al 7 escriba la serie de Fourier compleja
de f, determine a qué converge esta serie y trace algunos puntos
del espectro de frecuencia. Tenga en mente que para especificar
una funcién de periodo p, es suficiente definir f (P) en cualquier
intervalo de longitud p.

1. ftiene periodo 3y f(x) =2xpara0 <x <3

2. ftiene periodo 2y f(x) = x2para0 <x <2

o . 0 para0 <x < 1
3. f tiene periodo 4y f(x) =
1 paral <x <4
4. f tiene periodo6y f(x) =1—xpara0 <x <6
. . -1 para0 <x <2
5. ftieneperiodo4y f(x) =
2 para2 <x <4
6. f tieneperiodo5y f(x) =e * para0 <x <35
para0 <x < 1

X
7. ftieneperiodo2y f(x) =
2—x paral <x <2

8. Sea fla funcién periddica, parte de cuya grafica se muestra
en la figura 2.47. Encuentre la serie de Fourier compleja de f
y trace algunos puntos de su espectro de amplitud.
y

8

X
-8 —4 | 4 8 12

FIGURA 2.47

El siguiente problema involucra el espectro de fase de f, que
es un trazo de los puntos (¢, nwy) paran =0, 1, 2, . . . Aqui
¢, = tan—!1(—b,/a,) es el n-ésimo angulo fase de f.

9. Las gréficas de las figuras 2.48 y 2.49 definen dos funcio-
nes periddicas f'y g, respectivamente. Calcule la serie de
Fourier compleja de cada funcién. Determine una relacién
entre los espectros de amplitud de estas funciones y tam-
bién entre sus espectros de fase.

f®
e —
] Lo
- T t
—2 12 10 14
FIGURA 2.48
g(0)
5 | f |
| b
| Lo
‘ L t
[ 4 12 16
FIGURA 2.49
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CAPITULO 3

La integral de Fourier
y las transformadas
de Fourier

La integral de Fourier

Si f(x) estd definida en un intervalo [—L, L], puede representarla, al menos en la “mayoria” de los puntos
en este intervalo por una serie de Fourier. Si f'es periddica, entonces puede representarla por su serie de
Fourier en intervalos a lo largo de toda la recta real.

Ahora suponga que f (x) estd definida para todo x pero no es peridédica. Entonces, no es posible repre-
sentar a f (x) por una serie de Fourier sobre toda la recta. Sin embargo, si puede escribir una representacion
en términos de senos y cosenos usando una integral en lugar de una sumatoria. Para ver cémo se hace esto,
suponga que f es absolutamente integrable, lo que significa que [ e | f (x)| dx converge y que f es suave
a pedazos en todo intervalo [—L, L]. Escriba la serie de Fourier de f en un intervalo arbitrario [—L, L],
incluyendo las férmulas integrales de los coeficientes:

%/_LL f&)d§ +g [(% /_LL f(&)cos <$> dg) cos (%)
(3] s (125 ) sn ()]

Quiere hacer que L — oo para obtener una representacion de f (x) sobre toda la recta. Para ver a qué limite
tiende esta serie de Fourier, si lo hay, sea

niw
on =T
y
b4
Wy — W] = I = Aw.

103
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Entonces la serie de Fourier en [—L, L] puede escribirse como
1 L 1 & 1 [E
- ( / f(é)d$> Ao+—)" [ (— / (&) cos(@,§) ds) cos(w,.x)
2 —L T — L)

L
+ (% /Lf(é)sen(wné)d€> Sen(wnX)} Aw. G.D)

Ahora L — 00, lo que implica que Aw — 0. En la dltima expresion,
1 L
—(/ f(é)d$>Aw—>0
2 —L

debido a que, por hipétesis, | L ;. J (§)d§ converge. Los otros términos en la expresion (3.1) se parecen a
una suma de Riemann para una integral definida, y asegura que cuando L — co y Aw — 0, esta expresion

tiende al limite
- foo [(/OO f(E)COS(wé)dE) cos(wx)
T Jo —00
+ </Oo f (&) sen(wf) dé) Sen(a)x)] do.

Esta es la integral de Fourier de f en la recta real. Bajo las hipdtesis hechas acerca de f, esta integral
converge a

1
3 (f(x=) + fx+)

en cada x. En particular, si f'es continua en x, entonces esta integral converge a f (x).
Frecuentemente esta integral de Fourier se escribe

/oo[Aw cos(wx) + B, sen(wx)]dw, 3.2)
0

en donde los coeficientes de la integral de Fourier de f son

1 o0
Ay = ;/ f (&) cos(wé) d&

1 o0
By= f (&) sen(wk) dE.

Esta representacion en integral de Fourier de f (x) es enteramente andloga a la serie de Fourier en
un intervalo reemplazando con [ o -+~ dwa>™ sise tienen coeficientes con formulas integrales. Estos
coeficientes son funciones de w, que es la variable de integracién en la integral de Fourier (3.2).



3.1 Laintegral de Fourier

EJEMPLO 3.1
Sea
1 para —1 <x <1
f&x) =

0 para |x| > 1
y
i

1 |1
FIGURA 3.1

1 para —1 <x <1

0 para |x| > 1

f(x):{

105

La figura 3.1 es la grafica de f. Por supuesto f'es suave a pedazos y f O_OOO | ()| dx converge. Los coeficien-

tes de Fourier de f'son

2 sen(w)

1
A, = l/ cos(wé) dé =
T J1

1 1
B, = —/ sen(w&)dé = 0.
T J-1
La integral de Fourier de fes

2
/ M cos(wx)dw.
0 Tw

Debido a que f es suave a pedazos, €sta converge a % (f (x+) + f (x—)) para todo x. Mds explicita-

mente,

para —1 <x <1

N = =

cos(wx)dw = parax = £1

/OO 2 sen(w)
0 Tw
0 para |x| > 1

Hay otra expresion para la integral de Fourier de una funcién que algunas veces resulta mas conve-

niente. Escriba

/OO [Ay, cos(wx) + By, sen(wx)] do = /‘00 [(% /OO f (&) cos(wé) dé) cos(wx)
0 0 —00

+ <% foo f(&)sen(wé) da?) sen(a)x)i| dw

1 o0 o0
—/ f f&)cos(w(é —x))dé dow.
T Jo —o0

%/OO /-oo f(&)[cos(w&) cos(wx) 4 sen(wé) sen(wx)] dé dw
0 —00

(3.3)

Por supuesto, esta integral tiene las mismas propiedades de convergencia que la expresion integral (3.2),

ya que sélo es un rearreglo de esa integral.
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SECCION 3.1 PROBLEMAS

En cada problema del 1 al 10, desarrolle la funcién en una inte-

6. 1) [x] para —m <x < 2w
. . . .  f(x) =
gral de Fourier y determine a qué converge esta integral. 0 parax < —7  yparax > 27
X para —w <x <m
1. f(x)= sen(x) para —3m <x <mw
0 para |x| > & 7. f(x)=
0 parax < —3w yparax > 71
2 f0) k para —10 <x <10 1
. flx) =
0 para |x| > 10 3 para —5<x <1
—1 para —m <x <0 8. Sl = 1 paral <x <5
3. f(x) = 1 para0 <x <m 0 para |x| > 5
0 para |x| > 7 9. f(x) = ol
sen(x) para —4 <x <0 10. F(x) = xe—14l
4. J@x) = qeos(x) para( < x =<4 11. Pruebe que la integral de Fourier de f puede escribirse
0 para |x| > 4 como
5. ) x? para —100 < x < 100 lim _/ £ sen(w(t sen(@(t —x)) .
f) = .
’ para |x| > 100 oz n r=x
3.2 Integrales de Fourier en cosenos y senos

Si fes suave a pedazos en la semirecta [0, c0) y f o | f (&)| d& converge, entonces puede escribir la inte-
gral de Fourier en cosenos o en senos para f que es completamente andloga a los desarrollos en senos y
cosenos de una funcién en un intervalo [0, L].

Para escribir una integral en cosenos, extienda f a una funcién par f, definida en toda la recta real
haciendo

f(x) parax >0
fe(x) =
f(—x) parax <0

Esto refleja la grafica para x > 0 en el eje vertical. Debido a que f, es una funcién par, su integral de
Fourier sélo tiene términos en cosenos. Como f,(x) = f (x) para x > 0, se puede definir esta integral
en cosenos como la integral de Fourier en cosenos de fen [0, 00).

El coeficiente de f, en su desarrollo integral de Fourier es

l oo
[ rercosws as
T J 00

y esto es

2 o0
—/ f (&) cos(wé) d&.
T Jo

Esto sugiere la siguiente definicion.
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DEFINICION 3.1 Integral de Fourier en cosenos

Sea f'definida en [0, co0) y f go |f (£)| d& convergente. La integral de Fourier en cosenos de fes

o0
/ A, cos(wx) dw,
0

en donde

2 o0
Ap== f F(€) cos(wE) dE.
T Jo

Al aplicar el teorema de convergencia del desarrollo integral de f,, encuentre que si f es continua a pedazos
en cada intervalo [0, L], entonces su desarrollo integral en cosenos converge a % (f (x+) + f (x—)) para
cada x>0y af(0) parax = 0. En particular, en cualquier x positiva, en el cual f es continua, la integral
en cosenos converge a f (x).

Al extender f a una funcién impar f,, de manera semejante a como lo hizo con las series, obtiene una
integral de Fourier para f, la cual s6lo tiene términos en senos. Debido a que f,(x) = f (x) para x > 0, esto
da una integral en senos para fen [0, 00).

DEFINICION 3.2  Integral de Fourier en senos

Sea f definida en [0, c0) y fg" | £ (&)| d& convergente. La integral de Fourier en senos de fes

o0
/ A, sen(wx) dw,
0

en donde,

2 o0
Ap=2 / (&) sen(wk) dE.
T Jo

Si f'es suave a pedazos en todo intervalo [0, L], entonces esta integral converge a % F&x+) +f(x—))
en (0, 00). Asi como con la serie de Fourier en senos en un intervalo acotado, esta integral de Fourier en
senos converge a 0 en x = 0.

EJEMPLO 3.2 Integrales de Laplace

Sea f (x) = e~* para x > 0, con k una constante positiva. Entonces f es continuamente diferenciable en
cualquier intervalo [0, L], y
o 1
/ e M dx = -,
0 k

Para la integral de Fourier en cosenos, calcule los coeficientes

A 2/00 H cos(wE) df = =
=— cos =——.
Ty ¢ @ T k? + w?
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La representacion de la integral de Fourier en cosenos de f converge a e—** para x > 0:

2k [ 1
ek = —/ ——— cos(wx) dw.
7 Jo k? 4+ w?

Para la integral en senos, calcule

b= / T e sen(ke) de = > 2
= — n = ——F.
“T )y ¢ e 7 k% 4+ w?

La integral en senos converge a e—* para x > 0 y a 0 para x = O:

ke 2 /OO w (0x)d 0
e =2 ———sen(wx)dw parax > 0.
7 Jo k24 w? P

A estas representaciones en integrales se les llama las integrales de Laplace ya que A, es 2/m veces
la transformada de Laplace de sen(kx), mientras B, es 2/mw veces la transformada de Laplace de
cos(kx). ™

SECCION 3.2 PROBLEMAS

En cada problema del 1 al 10, encuentre las representaciones en
integral de Fourier en senos y en integral de Fourier en cosenos
de la funcién. Determine a qué converge cada integral.

X para0 <x <1

6. f(x)=3x+1 paral <x <2

ara x > 2
i 2 para0 <x <10 0 P
1. f(x)= B
parax > 10 7. f(x) =e *cos(x) parax >0
sen(x) para0 < x < 2w
2. f(x) = 8. f(x)=xe ¥ parax > 0
0 parax > 2w
1 para0 <x <1 para0 <x <c¢
3. fx)y=42 paral <x <4 % flx)= 0 para x > ¢
0 parax > 4 .
en donde k es constante y ¢ es una constante positiva.
cosh(x) para0 <x <5
4 1@O=1, parax > 5 10. f(x) = e~2 cos(x) parax >0
2x +1 para0 <x <7 11. Use las integrales de Laplace para calcular la integral
5. fo) =12 paraw < x <37 de Fourier en cosenos de f (x) = 1/(1 4+ x2) y la integral de
i — 2
0 parax > 37 Fourier en senos de g(x) = x/(1 + x2).

3.3

La integral de Fourier compleja y la transformada de Fourier

Algunas veces es conveniente tener una forma compleja de la integral de Fourier. Esta situacion
compleja proveerd una plataforma natural a partir de la cual se desarrollard la transformada de
Fourier.
. o0
Supopga que fes suave a pedazos en cada intervalo [—L, L], y que f . | f (x)| dx converge. Entonces,
en cualquier x,

1 1 o oo
SFEH) + fx=) = ;/o /_ f(&)cos(w(§ —x))dé do,
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por la expresién (3.3). Introduzca la forma exponencial compleja de la funcién coseno en esta expresion
para escribir

- ) = — Z (i E—x) —iw(E—x)
S+ fa=) = — fo /_OO F@5 (6 +e ) dé do

lfoo /oo F(€)e?E gg dw+L/w /OO F(E)e @E de do.
T Jo —00 27 Jo —00

En la primera integral de la dltima linea, reemplace w = —w para obtener

1
E(f(H) + f(x—)

0 00 00 o0
L / / F(E)e ET de du + L f / fE)e ¢ dt dw.
27 J oo oo 2 Jo Jooo

Ahora escriba nuevamente la variable de integracién en la tdltima integral como @ y combine estas dos
integrales para escribir

—<f<x+>+f(x )= f / fE)e ™ dt dw. (3.4)

Esta es la representacion en integral de Fourier compleja de f en la recta real. Si hace C, = [ e
f(He—iet dt, entonces esta integral es

o0

l(f(x+) + f(x—)) = L/ Cpe'® dw.
2 2

—00

Llame C,, al coeficiente de la integral de Fourier compleja de f .

EJEMPLO 3.3

Sea f (x) = e—ak para todo real x, con a una constante positiva. Calcule la representacion en integral de
Fourier compleja de f. Primero, tiene
e parax >0
fx) =
parax <0

Mais aun,

Il
—
fe=)
3
Y
=
+
S~
3
[N
>
Y
=
I
|

/ f(x)dx e

Ahora calcule

o .
altle—zwt dt

—00

0 0o
/ at 7iwt dt +/ efatefiwl dt
00 0

0 [e's]
(a i)t dt+f e—(a+iw)t dt
0

—00

0 1 ) 0
[ (a 1w)t:| + |: : e—(a+tw)ti|
—iw —oo atiw 0

B 2a
a—i—tw a—iw _a2~|—w2'
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La representacion en integral de Fourier compleja de fes

o0
e~ — a4 ;eiwx do. B
T J_o a? + @?

La expresion de la derecha de la ecuacién (3.4) conduce de forma natural a la transformada
de Fourier. Para enfatizar cierto término, escriba la ecuacion (3.4) como

1 1 o0 0 . .
E(f(x‘l‘) + f(x—)) = 2—[ </ f(%-)e—lwf dé) Y do.
T Joo \Uioo

El término dentro del paréntesis es la transformada de Fourier de f.

DEFINICION 3.3  Transformada de Fourier

(3.5)

Suponga que f°_°oo | £ (x)| dx converge. Entonces la transformada de Fourier de f se define como la

funcién

3f1) = / FHe= dr.

Asf la transformada de Fourier de f es el coeficiente C, en la representacion en integral de Fourier

complejade f.

& convierte una funcion f en una nueva funcién llamada §¥[f ]. Debido a que la transformada se usa
en el andlisis de sefiales, se usa f (para denotar el tiempo) como la variable de f, y w como la variable de la
funcién transformada [f]. El valor de la funcién §[f] en w es F[f ](w), y este nimero se calcula para una
o dada, evaluando la integral | > J (e~ dt. Si quiere mantener la atencién sobre la variable #, algunas

veces escribird %[f] como F[f (1)].

Los ingenieros se refieren a la variable w en la funcién transformada como la frecuencia de la sefial f.
Mas adelante se discute cémo se usan la transformada de Fourier y la versién truncada llamada la trans-
formada de Fourier ventaneada, para determinar la informacién del contenido de la frecuencia de una

sefal.

Como puede ser incémodo usar el simbolo F[f ()] en los célculos, algunas veces se escribe la trans-

formada de Fourier de f como f. En esta notacion,

A

S @) = f(w).

EJEMPLO 3.4

Sea a una constante positiva. Entonces

2a
a? + w?’

§le @) =

Esto se sigue inmediatamente del ejemplo 3.3, donde calcul6 el coeficiente integral de Fourier C,, de e—dl.

Este coeficiente es la transformada de Fourier de f. M
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EJEMPLO 3.5

Sean a y k ndmeros positivos, y sea

k para —a <t <a

f(t)={

0 parat < —a yparat>a
Esta funcién pulso puede escribirse en términos de la funcién de Heaviside como
f@)=klH({ +a) — H@ —a)],

y en la figura 3.2 aparece su gréifica. La transformada de Fourier de fes

Flw) = / ¥ Fe i ar

a . N
— / ke—lwt dt — _e—lwt
—a |:ia) :|_a

k —iwa iwa 2k
= —— [e —e ] = — sen(aw).
iw w
S

Funcién pulso:
L f@) =k[H(t+a)- H(t - a)]

| |
t
2a [ a

FIGURA 3.2

De nuevo también puede escribir

2k
SLf (@) = — sen(aw),

w

2k
SLf(O)(w) = — sen(aw). W

w

Debido a la ecuacién (3.5), la representacion en integral de Fourier de fes

1 © .
—/ fw)e do.
27 )
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Si fes continua, y f ' es continua a pedazos en todo el intervalo [—L, L], entonces la integral de Fourier

de frepresenta a f:

£ = — / h f@)e® dw.
27 J_ oo

(3.6)

Por tanto, puede usar la ecuacién (3.6) como una transformada inversa de Fourier, recuperando a f a partir
de f. Esto es importante porque, en las aplicaciones, se usa la transformada de Fourier para cambiar un
problema que involucra a f de una forma a otra supuestamente mds facil, que se resuelve para f (). Debe
tener alguna manera de recuperar la f(7) que quiere, y la ecuacién (3.6) es el vehiculo que se usa frecuen-

temente. Escriba §-1[ 1= fsi §[f] = f.
Como es de esperarse de cualquier transformada integral, i es lineal:

Slaf + Bgl = oSl f1+ BSlgl.
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Se dice que la integral que define la transformada y la integral (3.6) que da su inversa, constituyen un par
de transformadas para la transformada de Fourier. Bajo ciertas condiciones de f,

F * i 1 L .
f(w) 2/ f(t)g—laﬂd[ y f@) = E/ f(w)elwt dt.

EJEMPLO 3.6

Sea

1—|t] para —1<t<1
f@) =
parat > 1 yparat < —1

Entonces f'es continua y absolutamente integrable y f’ es continua a pedazos. Calcule

flw) = / - f@e " dr

—00

2(1 — cos(w))
- 2

1
- / (1= the ' dt =
-1

w

Este es el coeficiente de Fourier C, en el desarrollo de Fourier complejo de f (7).
Si quiere regresar, entonces por la ecuacién (3.6),

F) = — /  F@e do
27 J_ o

= e dw.

l /‘OO (1 — cos(w))

T ) w?

Puede verificar esto integrando explicitamente. Use un paquete de software para obtener

1 [ - ;
— / ( C(;S(a))) ela)t da)
T J—_0co w

= mtsigno (r + 1) + 7 signo (r + 1) + w¢ signo (t — 1)

—m signo (r — 1) — 2 signo (¢),

en donde
1 paraw > 0
signo(w) = 0 paraw =0
—1 paraw < 0

Esta expresion es igual a 1 — |t para —1 <t <1y O parat> 1y parat < —1 verificando el resul-
tado. M

En el contexto de la transformada de Fourier, el espectro de amplitud frecuentemente se interpreta
como la gréfica de | f(w)|. Esto es en la misma forma en la que se usé este término en relacién con la serie
de Fourier.
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EJEMPLO 3.7

Si f (f) = H(t)e—a entonces f (w) = 1/(a + iw), de donde

1

rol=

La figura 3.3 muestra la gréfica de | f (w)|. Esta grafica es el espectro de amplitud de f. ™

. |
|f(@)|
,é f(a)) :|2k sz? (aw)
f w [ @
FIGURA 3.3 Grdfica de FIGURA 3.4

| f ()| = Jﬁ con
f@©) = H@t)e o,

EJEMPLO 3.8

El espectro de amplitud de la funcién f del ejemplo 3.5 es la grafica de

sen(aw)

| /(@] =2k

’

w

que se muestra en la figura 3.4. M

113

Ahora algunas de las propiedades importantes y reglas computacionales para la transformada de
Fourier. Para cada regla también se establece la versidén para la transformada inversa. En lo que sigue,
suponga que [ e | £ (1)| dt converge y para la versién de la inversa, que fes continua y f' continua a peda-

zos en cada [—L, L].

TEOREMA 3.1 Corrimiento del tiempo

Si ty es un nimero real entonces

St —1))(@) = e " f(w). M

Esto es, si corre el tiempo hacia atrds 7, unidades y reemplaza f (7) por f (t — 1), entonces la transfor-
mada de Fourier de esta funcidn recorrida es la transformada de Fourier de f, multiplicada por el factor

exponencial e—ief,

Prueba

g[f(t — o) (w) = / f(l _ to)efia)t dt

oo
— g iwN / f@— to)e—ta)(t—to) dt.
—00
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Sea u =t — ty para escribir

SLf(t — t0)l(w) = e~ / Fe ™ du = e f(w).

EJEMPLO 3.9

Suponga que quiere la transformada de Fourier del pulso de amplitud 6 que se enciende en el tiempo 3 y
se apaga en el tiempo 7. Esta es la funcién
0 parat <3 yparat >"7
gt) =
6 para3 <t <7

que se muestra en la figura 3.5. Por supuesto, puede calcular g(w) integrando. Pero también observe que
el punto medio del pulso (esto es, de la parte distinta de cero) ocurre cuando ¢ = 5. Corra la gréfica 5 uni-
dades a la izquierda para centrar el pulso en cero (figura 3.6). Si llama f a este pulso recorrido, entonces
f(#) = g(t+ 5). Corriendo f cinco unidades a la derecha regresa a g:

g) = f@t=5).

La clave de esto, es que por el ejemplo 3.5 ya conocia que la transformada de Fourier de f:

sen(2w)

SLF(O)(w) =12

PR
Por el teorema del corrimiento del tiempo,

3@ = B — () = 1250 0C)

w

La version inversa del teorema del corrimiento del tiempo es

e OF()](t) = f(t — 19). (3.7)

EJEMPLO 3.10

Suponga que quiere

g
y
1.0
8@ 6
6 0.6
0.2
¢ t T N S t
37 2 | 2 -2 -1 o
FIGURA 3.5 FIGURA 3.6 La funcion FIGURA 3.7 Grdfica de
6 para3 <t <7 de la figura 3.5 corre cinco H(t + 2)e—50+2),

) 0 3 unidades a la izquierda.
glx) = parat <

yparat >7



3.3 Laintegral de Fourier compleja y la transformada de Fourier 115

La presencia del factor exponencial sugiere la version inversa del teorema del corrimiento del tiempo. En
la ecuacidn (3.7), ponga ty = —2 para escribir

2iw
5! [51 I.w] = ft—(=2) = f(t +2).

donde

fo=3" [ } = H()e ™.

S5Hiw

Por tanto,

2iw
3"1 |:53+ - ] =f(t+2)=H(t +2)e_5(’+2)_
W

En la figura 3.7 se muestra la grafica de la funcién. M

El siguiente resultado recuerda al teorema del primer corrimiento para la transformada de Laplace.

TEOREMA 3.2 Corrimiento de frecuencia

Si wy es cualquier ndmero real, entonces

Sl ()] = fw—wp). m
Prueba

Sf[elw‘lf(t)](a)) — / €iw0tf(t)e_iwt dt

—0o0

= / Fe @70 gt = f(w — wp).

La version inversa del teorema del corrimiento de frecuencia es

3 f (@ — o)1) = € f(1).

TEOREMA 3.3 Escala

Si a es un numero real distinto de cero, entonces

Flr@@l =7 (2).

lal” \a

Esto se puede probar calculando directamente a partir de la definicién. La version para la transforma-
da inversa de este resultado es

57 7(2)] @ =lal fan.

Esta conclusién se conoce como el teorema de escala debido a que no queremos la transformada de
f(9), si no de f (at), en donde a puede pensarse como un factor de escala. El teorema dice que podemos
calcular la transformada de la funcién escalada reemplazando @ por w/a en la transformada de la funcién
original, y dividiendo entre la magnitud del factor de escala.
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EJEMPLO 3.11

Sabe del ejemplo 3.6 que si

1— ¢ para —1 <7 <1
f@) =
0 parat > 1 yparat < —1
entonces
N 1 — cos(w)
flwy =22,
w
Sea
1 1
1— 1|7t —— <<=
|7t para FEt=3
gt)=f(1 = |
0 t> = t< -
parat > 7 y parat < 7
Entonces

1.

§@) =310 == F ()
B %1 —cos(w/7) B 141 —cos(w/7) -
7 (/D w? '

= TEOREMA 3.4 Inversién del tiempo

A

SLf(=D](w) = f(-w).

Este resultado es llamado inversion del tiempo porque reemplaza ¢ por —¢ en f (¢) para obtener f (—1).
La transformada de esta nueva funcién se obtiene simplemente reemplazando @ por —w en la transforma-
da de f (¢). Esta conclusion se sigue inmediatamente del teorema de escala, poniendo a = —1. La versién
inversa de la inversion del tiempo es

5 UF (o)) = f(—0).

— TEOREMA 3.5 Simetria

S (O)(w) = 27 f (—w).

Para entender esta conclusion empiece con f(7) y tome su transformada de Fourier f (w). Reemplace w
por ¢ y tome la transformada de la funcién f (7). La propiedad de simetria de la transformada de Fourier
establece que la transformada de f(f) es sélo la funcién original f () con —w en lugar de 7, y después esta
nueva funcién multiplicada por 2.

EJEMPLO 3.12

Sea

4 — 2 para —2 <t <2
f@ =
0 parat > 2 yparat < —2
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f@
4

L1 1 | I I —
-4 -3-2-1 0 1 2 3 4

X

FIGURA 3.8
442 para —2 <t <2
fx) =
0 para [t| > 2

En la figura 3.8 se muestra la grafica de f. La transformada de Fourier de fes

00 2
flw) = / f®)e " dw = / 4 — e i dr
oo .

sen(2w) — 2w cosLw)
=4 3 .

w

En este ejemplo, f (—f) = f (¢), asi que intercambiando —® por w no habrd ninguna diferencia en f (w),y
puede ver que éste es el caso. M

TEOREMA 3.6 Modulacion

Si wy es un ndmero real, entonces

SLf (1) cos(won) (@) = = [ f(@ + wo) + f (@ — wp)]

N =

| N N
SLf (@) sen(wor) (@) = Ei [/ (@4 wp) = f(@—awp)]. W

Prueba Ponga cos(wt) = % (eioot + e~iwg’) y use la linealidad de &% y el teorema del corrimiento de fre-
cuencia para obtener

1. | -
SLf (@) cos(won) (@) = § [Ee"""’f(t) + Ee"“’“’f(t)] (@)
1_ . 1 .
= Eg[elwotf(t)](w) + 53[€*’w°tf(t)](w)

1, 1.
=§f(a)—wo)+§f(w+wo).

De manera semejante se obtiene la segunda conclusion, usando sen(wgt) = (1/2i)(ei®ot — e~iwot). M
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SECCION 3.3 PROBLEMAS

En cada problema del 1 al 8, encuentre la integral de Fourier y
compleja de la funcién y determine a qué converge esta inte- 1 T _alol
F|—=——= | (w) = —e~4I®l,
gral. a2 412 a
" 1 para0 <r <1
— —|X
L f(x)=xe 9. f)=1-1 para —1 <t <0
2. f(x)= b para —l=x =<1 0 para |t] > 1
1
0 para |x| > i sen(t) para —k <t <k
sen(rx) para —5<x <5 10. f(t) = X
3 fx)= para |t]| > k,
0 para |x| > 5
11. f(r)=5[H(t — 3) — H(t — 11)]
| x| para —2 <x <2
4. f(x) = 12. £ (1) = Se=3t-52
0 para |x| > 2
= — kel
s . para —1 <x < 1 13. f(t) = H(t — k)e"
- S = e~ Ixl para |x| > 1 14. (1) = H(t — k)r2
1 para0 <x <k 15. f(0) = 1/(1 + 2)
6. f(x)=1-1 para —k <x <0 16. f (1) =3H(t — 2)e=3
0 para |x| > k,

17. £ (1) = 3e—4+2|
= — -2t
en donde & es una constante positiva. 18. f() = Ht = e
En cada problema del 19 al 24, encuentre la transformada inver-

cos(x) para0 < x < sa de Fourier de la funcién.

SN

- 19. 9e—(w+4?/32
7. f(x) = {sen(x) para -5 <x<0

e(20—4w)i
b4 20. 3-06—-w)i
0 para |x| > —
2 o2w—6)i
8. /(1) =2 e

En cada problema del 9 al 18, encuentre la transformada de 22. M
Fourier de la funcién y dibuje el espectro de amplitud. Siempre w+m
que aparezca k es una constante positiva. Para algunos de los 23 l+io
problemas se usardn uno o mds de los teoremas de esta seccion T 6—w?+5iw

junto con las siguientes transformadas, que puede aceptar: . . . .
Sugerencia: Factorice el denominador y use fracciones par-

ciales.
2a 2 b4 2 .
Flem M) = 55—, Fle " @) = \/ie—” 4, 10¢4 +iw)
actow “ 24. 9—w?+8iw
34 Propiedades adicionales y aplicaciones de la transformada de Fourier

3.4.1 La transformada de Fourier de una derivada

Para usar la transformada de Fourier en la solucién de ecuaciones diferenciales, es necesaria una expre-
sion que nos relacione la transformada de /'’ con la de f. El siguiente teorema proporciona dicha relacién
para derivadas de cualquier orden y se llama la regla operacional para la transformada de Fourier. Algo
similar surge para cualquier transformada integral cuando se piensa usar en conexion con ecuaciones
diferenciales.
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Recuerde que la k-ésima derivada de f se denota como f ®. Como una conveniencia use k = 0 en este
simbolo, bajo el entendido que (@ =f.

TEOREMA 3.7 Diferenciacion respecto a la variable tiempo

Sea n un entero positivo. Suponga que f (*—1) es continua y f ) es continua a pedazos en cada intervalo
[—L, L]. Considere que [ Y | f =D(¢) dt converge. Asuma

Jim fO@) = lim fO@) =0
parak=0,1,...,n — 1. Entonces
JFOl@) = (o) f@). W
Prueba Empiece con la primera derivada. Integrando por partes, tiene

3L 1) = / Fl0ei di

- [f(;)e—iw']io—/oo F(O(—iw)e™ " dt.

Ahora e~ = cos(wt) — i sen(wt) tiene magnitud 1, y por hipétesis,
lim f(r)= lim f()=0.
—00 t——00
Por tanto,
0 . A
S Olw) = iw/ f@e " dt = iwf(w).
—0o0
La conclusién para derivadas de orden superior se obtiene por induccion sobre n y el hecho de que
d
'‘ty=—f""D@). m
N O) 7 VA0

La hipoétesis de que f sea continua en la regla operacional puede relajarse para permitir un ndimero
finito de saltos de discontinuidad, si afiade términos apropiados en la conclusion. Enseguida se enuncia
este resultado para la transformada de f'.

TEOREMA 3.8

Suponga que fes continua en la recta real, excepto para las discontinuidades de saltoen 7y, . . ., fy;. Seaf”’
continua a pedazos en todo [—L, L]. Asuma que f ‘iooo | f ()| dt converge, y que

Jim 0= im0 =0.

Entonces
M

B 1@) =i f@) = 3116+ = f@=)e . m

j=1
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FIGURA 3.9 La funcion f
tiene una discontinuidad de
salto en t;.

Cada término f (#j+) — f (#j—) es la diferencia entre los limites laterales de f (¢) en la discontinuidad de
salto #;. En la figura 3.9 se muestra el tamafio del salto entre los limites de la gréfica y este punto.

Prueba Primero suponga que f tiene una sola discontinuidad de salto en #,. En el caso de mas disconti-
nuidades, el argumento sigue la misma linea pero incluye mas célculos de los que aparecen enseguida.
Integrando por partes:

3L() = / Flei dr

t o0
=/1 f’(t)e_iwtdt+/ (e i dt

—00 1
. 11 ! .
- [f(t)e—lw’]_oo — / F(O)(—iw)e @ di

o0

+[fme ] — (—iw) / f)e ' dt
1

= (=)™ = f(n+H)e” " + iw/oo F0e i di
= ia)f(a)) —[ft+) — f(tl—)]e_”lw_

Aqui hay un ejemplo del uso de la regla operacional en la resolucién de una ecuacién diferencial.

EJEMPLO 3.13

Resolver

y —dy = H(e ™,

en donde H es la funcion de Heaviside. Asi, la ecuacion diferencial es

) e parat > 0
y —4y=
0 parat <0

Aplique la transformada de Fourier a la ecuacién diferencial para obtener

3y (@) — 49(w) = FLH(1)e ().
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L I
-4 -2 L/ 2 4

—0.04

—0.08 [~

—0.12
FIGURA 3.10

v = —ge

—4r]

Use el teorema 3.7 y que F[H(fH)e—#](w) = para escribir esta ecuaciéon como

1
4+iw

iwy(w) —4y(w) = itio

Resuelva para y(w) para obtener

La solucién es

—1 1
— 1 — =4t
1) = — ) =—= ,
Vi) =3 [16”2}() 5
cuya gréfica aparece en la figura 3.10.

La transformada inversa que acaba de obtener puede deducirse de varias maneras. Puede usar una
tabla de transformadas de Fourier o un paquete de software que contenga esta transformada. También se
sigue del ejemplo 3.4 que

2a
fam] _
§le @ =57
yelijaa=4. B

En esta solucién no hay constante arbitraria debido a que la transformada de Fourier regresé la tinica
solucién que es continua y acotada para todo ¢ real. El acotamiento se supuso cuando usamos la transfor-
mada debido al requerimiento de convergencia de f “ [y(2)| dt.

3.4.2 Diferenciacion respecto a la variable de frecuencia

La variable w usada para la transformada de Fourier es la frecuencia de f (), ya que aparece en la expo-
nencial compleja ei!, que es cos(wt)+i sen(wt). En este contexto, la diferenciacion de f (w) respecto a
w es llamada diferenciacion respecto a la variable de frecuencia. Ahora se relacionan las derivadas de

f@) yf@.

= TEOREMA 3.9 Diferenciacion respecto a la variable de frecuencia

Sea n un entero positivo. Sea f continua a pedazos en [—L, L] para todo nimero positivo L, y suponga que
I, l"f (9)] dr converge. Entonces

n
A

d
S f (Ol w) =i" f(@).

dow"
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En particular, bajo las condiciones del teorema,

2

d ds
Slef ) (w) = id— f) y 2 fOlw) = —— (o).
w dw

Prueba Pruebe el teorema para n = 1. El argumento para n mayor es similar. Aplique la regla de Leibniz
para la diferenciacién bajo la integral para escribir

i £ — i > —iwt — * i —iwt
do’ 9= 10 /_OO fe " di = /_oo Y0 [f(t)e ] di

= /OO f(l)(—l't)e*iwf dt = —i /‘00 [tf(t)]eiiwt dt
= —iS[tf (O ](@).

EJEMPLO 3.14

Suponga que quiere calcular ¥[2e—5Il]. Del ejemplo 3.4 recuerde que

10
=51117( ) —
Sle () B
Por el teorema de diferenciacion respecto a la variable de frecuencia,
d? 10 25 — 3w?
2 -5l _ 2 _
t =1"— = .
Slee @) =7 5 [25 n wZ] 25 + w?)?

3.4.3 La transformada de Fourier de una integral

Lo siguiente permite aplicar la transformada a una funcién definida mediante una integral.

— TEOREMA 3.10

Sea f continua a pedazos en todo intervalo [—L, L]. Suponga que | e [f (1) dt converge. Admita que

Py

f(0) = 0. Entonces
t 1 n
§ [/ f(f)df} ()= —f(w). W
—00 iw

Prueba Sea g(t) = [L. f(7)d7. Entonces g'(¢) = f (r) para cualquier  en donde f es continua, y g(¢) —
0 conforme t ——o0. Mas aun,

Jlim (1) = f f(@)dt = f(0)=0.
Por tanto, aplique el teorema 3.7 a g para obtener
f@) =FLF D)) = Flg' D))

t
=iwflg®)](w) =iwyF [/ f(r)dr} (w).

Esto es equivalente a la conclusién a probar.
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3.4.4 Convolucion

Hay muchas transformadas definidas por integrales y es comun tener una operacién de convolucién
para tal transformacién. Enseguida se analiza la convolucién para la transformada de Fourier.

DEFINICION 3.4 Convolucién

Sean f'y g funciones definidas en la recta real. Entonces f tiene una convolucién con g si

1. [P f(dty [” g(t) dt existen para todo intervalo [a, b].
2. Para todo nimero ¢ real,

/ lf —1)g(m)l dr

converge. En este caso, la convolucion f x g de fcon g es la funcién dada por

(f*2)@) =f ft—1)g(r)dr.

En esta definicidn, se escribi6 (f % g)(f) para enfatizar. Sin embargo, la convolucién es una funcién
denotada como f * g, de manera que puede escribir f * g(f) para indicar f * g evaluada en .

TEOREMA 3.11

Suponga que ftiene una convolucién con g. Entonces,

1. Conmutatividad de la convolucion. g tiene una convolucion con f,y fx g =g *x f.
2. Linealidad. Si f'y g tienen convoluciones con 4, y o y # son nimeros reales, entonces af + B¢
también tiene una convolucion con A, y

(af +Bg) xh=oa(f*h)+ B(g*h).
Prueba Para (1),seaz=1— 1Yy se escribe

fxg@) =/ f—1g)dr

—00

= f(Z)g(l—Z)(—l)dZ=f gt —2) f(2)dz =g * f(1).

00 —

La conclusién (2) se sigue de las propiedades elementales de las integrales, debido a que las integrales
involucradas convergen. M

Ahora estd listo para los resultados principales en convolucion.

TEOREMA 3.12

Suponga que fy g son acotadas y continuas en la recta real y que [* |f®)|dty f e |g(#)| dt convergen.
Entonces,
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/oo f*g(t)dtzfoo f(t)dt/Oo g(t)dt.

2. Convolucion en el tiempo
F g = f(@)3g ).
3. Convolucion en la frecuencia
fO80 @) = 5-(F % @)

La primera conclusién es que la integral, sobre la recta real, de la convolucién de f con g, es igual al
producto de las integrales de f y de g sobre la recta.

La convolucién en el tiempo establece que la transformada de Fourier de una convolucién es el pro-
ducto de las transformadas de las funciones. Se puede expresar esta férmula como

SLf * gl@) = f(w)é(w).

Esto es, la transformada de Fourier de la convolucién en el tiempo de f con g, es igual al producto de la
transformada de f por la transformada de g. Esto tiene la version inversa importante

S [f@g@] @) = f*g@.

La transformada inversa de Fourier del producto de dos funciones transformadas es igual a la convolucién
de estas funciones. Algunas veces esto es util para evaluar una transformada inversa de Fourier. Si quiere
%~![h(w)] y puede factorizar h(w) en f(w) g(w), un producto de transformadas de dos funciones conoci-
das, entonces la transformada inversa de /4 es la convolucidn de estas funciones conocidas.

Se puede expresar la convolucién en la frecuencia como

| N
SIFNgM](w) = —(f * 8)(w).

La transformada de Fourier del producto de dos funciones es igual a (%) veces la convolucion de la
transformada de estas funciones.
La version inversa de la convolucién en la frecuencia es

37U (@) * §(@))@) =27 f (1)g(1).

Prueba Para (1), escriba

/oof*g(t)dt:/oQ (/OO f(t—t)g(-c)dr)dt
:/OO (/OO f(t—t)g(f)dt)drzfoo (/OO f(t—r)dt>g(f)dn

suponiendo que es vilido el intercambio en el orden de integracién. Ahora

/oo f(t—r)dt:/Oo f(@®)dt
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para cualquier nimero t real. Por tanto,

/oo f*g(t)dt:fOo (/Oo f(t)dt>g(f)df

=/OO f(t)dt/C>o g(r)dr:/Oo f(t)a’t/OO g()dr.

Para (2), empiece haciendo F(r) = e~ f(t) y G(t) = e~i»!g(t) para t real y w. Entonces,

o0

f@w=ffmw%w

—00

— /OO (/00 f@t— r)g(r)dr) e dy
/OO (/00 e (1 — t)g(r)dr) dt
/00 (/OO e (1 — 1) T g(1) d‘l,') dt.

Ahora, identifique a la integral dentro del paréntesis grande de la dltima linea como la convolucién de F
con G. Entonces, por (1) de este teorema aplicado a F'y G,

f/Eg(w)zfooF*G(t)dr:/w F(t)dt/oo G@t)dt
=fmfmfmm/mgMKWM=fmmmy

Queda la conclusién (3) al alumno. M

EJEMPLO 3.15

Suponga que quiere calcular

5! ;
@G+ +wd) ]
Identifique el problema como el cdlculo de la transformada inversa de un producto de funciones cuya
transformada individual conoce:

LRy () ST W _1 o
4+w2_3<4e = f(w) conf(t)_4e ,
y
LI (lem) — 5(w) cong(r) = Lo
9t w? 6 6

La version inversa de la conclusién (2) dice que

1 r A~
31[@133@:;5%”=%luwmwmnzf*gg
- le_2|l| * 16_3‘” = i /OO e_z‘t_f|e_3|r‘ drt.
4 6 2% )
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Debe tener cuidado al evaluar esta integral debido al valor absoluto en los exponentes. Primero, si t > 0,
entonces

0 t
24[ f % g(1)] =/ e—zlf—fle—3'f'dr+/ e—2lf—f'e—3'f'dr+/oo e 2Tl 3Tl gr

—00 0 t

0 t [ee)
:/ o 20=1) 3t dT~|—f o 20=1) =37 dr+/ o201 =37 4o
—00 0 t
6 4
— _6721 _ _6731_
5 5
Sit < 0, entonces
t 0 00
24[f *g(t)] :/ 672|tftlef3\r|dr +'/ 672\t7f|673|‘[|d.r +/ ef2ltfr\ef3\r|dl.

—00 t 0
t 0 oo

— f e—2(t—r)e3r dt +/ ez(l—f)e3f dt +/ eZ(t—r)e—3r dt
—00 t 0

4 6
— _§e3t + 582['

Finalmente, calcule

24 f % g1(0) = / e Atle 3t g = %

—00

Por tanto,

-1 ; — i 9 =2t _f =3t
§ |:(4+a)2)(9+a)2):|(t)_24 (56 5¢

1 —2t| 1 —3t]
o o2l 3
20° 30°

3.4.5 Filtrado y la funcién delta de Dirac
La funcién delta de Dirac es un pulso de magnitud infinita que tiene duracién infinitamente corta. Una
manera de describir matematicamente tal objeto es formar un pulso corto

i[H(t +a)— H(t —a)l,
2a

como se muestra en la figura 3.11, y tomar el limite conforme el ancho del pulso tiende a cero:
o1
8(t) = lim —[H(t +a)— H(t —a)].
a—02a

En el sentido estandar, ésta no es una funcidn, sino que es un objeto llamado distribucién. Las distribucio-
nes son generalizaciones del concepto de funcién. Por esta razén, muchos teoremas no pueden aplicarse
a 8(z).

(1)

N
2a

—d
FIGURA 3.11
y=2[H(t+a)— H( —a)l.
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Sin embargo, hay algunas manipulaciones formales que producen resultados ttiles. Primero, si calcula la
transformada de Fourier del pulso, obtiene

—a i

SIH(t+a)— H({t —a)] = /a o0 gy — _.Leiwtjl
@ —a

1 : . sen(aw)
— (etaw_e zaa)) =2

lw w
Intercambiando el limite con la transformada, resulta

o1
S (w) =F§ [hm —[H(t +a)— H( — a)]] (@)
a—0 2a

= lim LS[H(t +a)— H(t —a)l(w)
a—02a

sen(aw) _

a—0 aw

Esto lo lleva a considerar que la transformada de Fourier de la funcién delta es la funcién que es idénti-
camente 1.
Mais atin, poniendo 8(f) formalmente en una convolucidn, resulta

Sl8 * f1=SI8I5Lf1=5L/f]

SLf 8] = L1561 = SLf1,
lo que siguiere que
Sxf=fx6=f

La funcién delta se comporta como la identidad bajo la convolucién.
La siguiente propiedad de filtrado permite recuperar el valor de una funcién “sumando” sus valores
cuando le pega con una funcién delta trasladada.

— TEOREMA 3.13 Filtrado

Si f tiene una transformada de Fourier y es continua en #,, entonces
(0.0]
/ f(@)8(t —1to)dt = f(10).
—00

Este resultado puede ser modificado para permitir un salto de discontinuidad de f'en #,. En este caso
tiene

00 1
f f@®§( —to)dt = 5(f(to+) + f(to—)).

3.4.6 La transformada de Fourier ventaneada

Suponga que fes una sefal. Esto significa que f es una funcién definida sobre la recta real y tiene energia
finita [*°_| f(n)]? dt.
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Al analizar f (f), algunas veces querrd localizar su contenido de frecuencia respecto a la variable
tiempo. Ya se ha mencionado que f (w) contiene informacién acerca de las frecuencias de la sefial. Sin
embargo, f(w) no particulariza la informacién para intervalos de tiempo especificos, ya que

Fl) = / " fe it ay

y esta integracion es sobre todo tiempo. Asf, la imagen obtenida no contiene informacién sobre tiempos
especificos, sino que s6lo permite calcular el espectro de amplitud total | f (w)| . Si piensa en f () como
una pieza de musica tocada en cierto tiempo, tendrd que esperar hasta que toda la pieza sea interpretada
antes de calcular este espectro de amplitud. Sin embargo, puede obtener una imagen del contenido de
frecuencia de f (f) dentro de intervalos de tiempo dados ventaneando la funcién antes de aplicar la trans-
formada de Fourier.

Para hacer esto, primero necesita una funcion ventana g, que es una funcién que toma valores dis-
tintos de cero sélo en algun intervalo cerrado, usualmente en [0, 7] o en [-T, T]. Las figuras 3.12 y
3.13 muestran gréficas tipicas de tales funciones, una en [0, 7] y la otra en [-7, T]. El intervalo se
llama el soporte de g, y en este caso en el que estamos trabajando con intervalos cerrados, decimos que g
tiene soporte compacto. La funcién g vale cero fuera de este intervalo soporte.Ventaneamos una funcién
fcon g haciendo el producto g(t)f (¢), el cual vale cero fuera de [-T, T7].

g0 g(0)

| t | | t

T -T T
FIGURA3.12 Funcion FIGURA 3.13  Funcion ventana
ventana tipica con soporte tipica con soporte compacto [-T, T].

compacto [0, T].

EJEMPLO 3.16

Considere la funcidn ventana

1 para —4 <t <4
g =

0 para |t| > 4
con soporte compacto [—4, 4]. En la figura 3.14(a) aparece la grafica de esta funcion, incluyendo los seg-
mentos verticales en t = 4 para resaltar este intervalo. En la figura 3.14(b) se muestra f () = ¢ sen(?). Para
ventanear f con g, forme el producto g(¢) f (), que se muestra en la figura 3.14(c). Esta funciéon ventaneada
vale cero fuera del soporte de g. Para esta eleccion de g, 1a ventana tiene el efecto de prender la sefal f(7)
en el tiempo —4 y apagarlaenr=4. W

La transformada de Fourier ventaneada (respecto a la eleccion de g) es
— o0 )
Suenl F1(@) = foen (@) = f FOg@e™" dr
—00

T
- / fgt)e ' dt.
-T
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8

1
| Lo[ I
| 0.8 | 10—~
|
| | | 50
I 0.6 | 10 \=5
B | IR Ll ;
: 0.4 : 5 10
} 02 | =5
| | | | | t —10 |~
-6 —4 -2 0 2 4 6
FIGURA 3.14(a) Funcion ventana FIGURA 3.14(b) f (1) =t sen(?).
1 para |t| < 4
g@) =
0 para [t| > 4.
g(0) f(0)
1
—4
[ LAy 1,
-6 |2 214 6
| -1 |
| |
| B !
L

FIGURA 3.14(c) fventana con g.

EJEMPLO 3.17

Sea f () = 6e-ll. Entonces,

R o0 : 12
flw) = / 6e =i gt = .
oo 1 4 w?

Usar la funcidn ventana
1 para —2 <t <2
g(t) =
0 para |t]| > 2.

La figura 3.15 muestra la grafica de la funcién ventaneada g(7) f (f). La transformada de Fourier ventanea-
da de fes

on(@) = /OO 6e Mgy ar

—00
2 .
= / 6eltle=iot gy
-2

—2¢2 cosz(a)) +e24+e 20 sen(2w) + 1

=12
1 4+ w?
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g f (1)
1.0 -
0.8
0/6 -
0.4 -

02

| i i Ly .
-4 2 0 2 4

FIGURA 3.15 f (1) = 6e-l!l ventana con

1 para |t| <2
g1 =
0 para |t| > 2.

Esto da el contenido de frecuencia de la sefal fen el intervalo de tiempo —2 =t <2. W

Con frecuencia usamos una funcién ventana recorrida. Suponga que el soporte de g es [-T, T]. Si
to > 0, entonces la grafica de g(t — 1) es la grafica de g(¢) recorrida a la derecha 7y unidades. Ahora

f®gt —1) paratg —T <t <to+ T
fHgt —1) =

parat <to—T yparat>ty+T

Las figuras 3.16(a) hasta (d) ilustran este proceso. En este caso, tome la transformada de Fourier de la
sefial ventaneada recorrida

Foenio (@) = FLf (gt — 10)]()

to+7T

- / 08t —tg)e™ " dr.
1

-T

Esto da el contenido de frecuencia de la sefal en el intervalo de tiempo [ty — T, to + T].
Algunas veces, los ingenieros se refieren al proceso de ventanear como la localizacion de tiempo-
frecuencia. Si g es la funcién ventana, el centro de g se define como el punto

[ g dt

tc = N
Joo lg]” dt
g
I 1 I 1
I I I I
I I I I
1 L t 1 L
-T ‘ T tv—T 1o+ T
FIGURA 3.16(a) Una funcion FIGURA 3.16(b) Funcion ventana

ventana g en [—T, T]. recorrida g(t — ty).
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8 |
1
1

f i i : 1

1 1 1 1

1 ' 1 1

l L t l L [
to—T to+T to—T to+T
FIGURA 3.16(c)  Seiial tipica f (f). FIGURA 3.16(d) g(f — to)f (¢).

El ndmero

Y e e 19 IO 2
T 0P ar

es el radio de la funcion ventana. El ancho de la funcién ventana es 21z y se conoce como la duracion RMS
de la ventana. En esta terminologia se supone que todas las integrales involucradas convergen.

Cuando trabaja con la transformada de Fourier de la funcién ventana, entonces se aplica la termino-
logia similar:

[S @lg(@) do

centrode § = we = -
J2 g @) do

® o — e 18P deo\ 2
radio de § = wg = (f—oo( )" 1g(w)| .

[, 18(@)]? do

El ancho de g es 2wg, un niimero conocido como el ancho de banda RMS de la funcién ventana.

3.4.7 El teorema de muestreo de Shannon

La enunciacién del teorema de muestreo de Shannon afirma que una sefial de banda limitada puede recons-
truirse a partir de ciertos valores muestrales. .

Una sefial fes de banda limitada si su transformada de Fourier f tiene soporte compacto (tiene valo-
res distintos de cero s6lo en un intervalo cerrado de longitud finita). Esto significa que, para algin L,

f(a)) =0 si|w|l>L.

Usualmente se elige L de manera que sea el menor nimero que cumple con esta condiciéon. En este
caso, L es el ancho de banda de la seiial. El contenido total de frecuencia de dicha sefial f estd en la
banda [—L, L].

Ahora hay que probar que se puede reconstruir una sefial de banda limitada a partir de valores mues-
trales tomados en tiempos apropiados. Empiece con la integral para la transformada inversa de Fourier,
suponiendo que recupera f (f) para todo ¢ real a partir de su transformada:

fy = - f ” f@é do.
2 J
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Debido a que f'es de banda limitada,

| .
fo) = —/ fl@)e dw. (3.8)
2 —L
Por el momento deje esto en espera y escriba la serie de Fourier compleja para f (w)en [—L, L]:

flw) = Z cpeTie/L (3.9)

n=—0oo

donde

1ot .
= Z/;L f@)ye ™l do.

Comparando ¢, con f () en la ecuacién (3.8), concluye que

Cn = %f (—Tl’lﬂ) .

Sustituya en la ecuacién (3.9) para obtener

for= Y Tp (<) emion,

Como n toma todos los valores enteros en esta sumatoria, puede reemplazar n con —n para escribir
T o— ni
f(Cl)) — E f(_) e*}’lﬂlw/L'
L L
n=-—o00

Ahora sustituya esta serie por f (w) en la ecuacidn (3.8) para obtener

(1) = __/ Z f n7r> —nmwiw/L lwtdw

Intercambie la sumatoria y la integral para obtener

f@t) = — Z f (””)/ piot-nt/L) 4.

[~ 1 L
- Z f (H) - [eiw(tﬂln/L)]
2L &~ " \'L) i —nn/L) )

- nmw 1 ; .
= — e T (Lt—nm) __ 71(Lt7nn))
2L :Z_: f(L)i(t—nn/L)<e ¢

1 1

— Z f(nn) _( i(Lt—nm) _ —t(Lt nn))
“ Lt —nm 2i

n=

Lt —nm

nm\ sen(Lt — ni)
— n;oof (T) sem\Lt —nA) (3.10)

Esto significa que se conoce f () para todo tiempo ¢ si sélo los valores de la funcién f (nrr/L) estan deter-
minados para todo valor entero de n. Un ingeniero puede reconstruir una sefial f (f) mediante el muestreo
en los tiempos 0, +=7/L, £27/L, . . . Una vez conocidos los valores de f(f) para esos tiempos, entonces la
ecuacion (3.10) reconstruye toda la sefial. Esta es la manera en la que los ingenieros convierten sefiales
digitales en sefiales analégicas, con aplicaciones en la tecnologia tales como la utilizada en los discos
compactos.
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La ecuacion (3.10) se conoce como el teorema de muestreo de Shannon. Lo volvera a encontrar cuan-
do estudie onduletas. En el caso L = r, el teorema de muestreo tiene la forma simple

sen(mw(t —n))

A1
w(t —n) G110

foy= > f

n=—oQ

3.4.8 Filtros de paso bajo y ancho de banda

Considere una sefial f, no necesariamente de banda limitada. Sin embargo, suponga que la sefial tiene
energia limitada, as{

/ FOP dr

es finita. Tales funciones son llamadas cuadrados integrables, y también las encontrard mds adelante con
los desarrollos en onduletas.
El espectro de f'estd dado por su transformada de Fourier

flw) = / ” f@)e " dr.

Si fno es de banda limitada, reemplace f con una sefial de banda limitada f,,, con ancho de banda que no
exceda un nimero positivo w, aplicando un filtro de paso bajo que elimina de f (w) las frecuencias fuera
del rango [-w,, wy]. Esto es, sea

— f(a)) para —wp < w < W
Fon (@) = { ’ ’

0 para |w| > wo

Esto define la transformada de la funcion f,, a partir de la cual se recupera f,,, mediante la transformada
inversa de Fourier:

1 iwt 1 @0 iwt
1) = — dow = — d
fwo( ) ) /; fwo(w)e w = ' o fa)o (w)e w.

El proceso de aplicar un filtro de paso bajo se traduce matematicamente al multiplicar por una funcién
apropiada (esencialmente del tipo ventana). Defina la funcién caracteristica x; de un intervalo / por

1 sitestden ]
x () = _ . )
0 si ¢ es un numero real que no estd en /

Ahora observe que
Jon (@) = Xi-an.an)(@) f (@), (3.12)
0, mas brevemente,
ﬁ,; = X[—wo,wo]ﬁ
En este contexto, X|—,. v, €S llamada la funcion de transferencia. Se muestra su grafica en la figura 3.17.
La transformada inversa de Fourier de la funcién de transferencia es
F el = 5 [ = SR,

cuya grafica aparece en la figura 3.18. En el caso en que w = 7, esta es la funcion, que evaluadaen t — n
en lugar de en ¢, aparece en la férmula de muestreo de Shannon (3.11) que reconstruye f () a partir de los
valores de muestreo f (n) en los enteros. Por esta razén sen(wyt)/ t es llamada la funcion de muestreo de
Shannon.
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para wy=12.7.
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Ahora recuerde el teorema 3.12 (2) y (3) de la seccion 3.4.4, el filtrado analégico en la variable de
tiempo ¢ se hace por convolucién. Si ¢(#) es la funcién filtro, entonces el efecto de filtrar una funcién f por
@ es una nueva funcién g definida por

o]

@) f(t —§)dE.

ﬂﬂ=@*ﬁ®=/
Aplicando la transformada de Fourier de esta ecuacion, tiene
2(®) = ¢(o) f ().

Por tanto, filtra en la variable de frecuencia tomando el producto de la transformada de Fourier de la fun-
cion filtro con la transformada de la funcion filtrada.
Ahora formule la ecuacién (3.12) como

m¢n=<fﬁﬂ9*fm).
Tt

Esto da el filtrado de paso bajo de f como la convolucién de la funcién de muestreo de Shannon
con f.

En el filtrado de paso bajo, produce, a partir de la sefial f, una nueva sefial f,,;, que es de banda limi-
tada. Esto es, filtre las frecuencias de la sefial fuera de [—wy, wo]. En una clase de filtrado semejante, lla-
mado filtrado en paso de banda, se busca filtrar los efectos de la sefial fuera de un ancho de banda dado.
Una sefal de banda limitada f puede descomponerse en una suma de sefiales, cada una de las cuales lleva
el contenido de informacion de f dentro de cierta banda de frecuencia dada. Para ver cémo se hace esto,
sea f una sefial de banda limitada con ancho de banda 2. Considere una sucesion finita de frecuencias
crecientes

O<wi<w <---<wy = .

Paraj=1, ..., N, defina una funcién filtro de ancho de banda B; por medio de su funcién de transferen-
cia:

~

Bi = Xi—wj,—0;11 T Xiw;-1.0)1-

La gréfica de esta funcién de transferencia, que es una suma de funciones caracteristicas de intervalos de
frecuencia, se muestra en la figura 3.19. La funcién filtro de ancho de banda Bj(t), que filtra el contenido
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de frecuencia de f () fuera del rango de frecuencia [w;_;, w;], se obtiene aplicando la transformada de
Fourier inversa de Bj (w). Obtenga

sen(w;t) — sen(w;—1t)

Bj) = ,

Tt

cuya gréfica se muestra en la figura 3.20.

Ahora defina las funciones
sen(wot)
o) = (— * f) ()
Tt

y,paraj=1,2,...,N,
i) = (Bj = fH@)

Entonces, paraj =1, 2, ..., N, cada f; (¢) lleva el contenido de la sefial f () en el rango de frecuencia
wj_1 < o < w;, mientras fy(?) lleva el contenido en [0, wy], que es el rango de baja frecuencia de f (f). Mds
adn,

f@ = fo®)+ A+ L@+ -+ fn@), (3.13)

dando la descomposicién de la sefial en componentes que llevan la informacidn de la sefial para intervalos
de frecuencia especificos.

SECCION 3.4 PROBLEMAS

En cada problema del 1 al 8, determine la transformada de 503it

Fourier de la funcion.
t
9412

—9s2

1.

2. 3te
3. 26H(t)te™ 2!
4, H(t —3)(t —3)e ¥

d =3t
S. E[H(t)e 1

6. t[H(t+1)— H(t — 1]

7
12— 4t +13
8. H(t —3)e

En cada uno de los problemas 9, 10 y 11, use la convolucién para
encontrar la transformada inversa de Fourier de la funcion.

1
9, —
(1+iw)?

1

10, ———F8r——
(I+io)2+iw)



136 CAPITULO 3  La integral de Fourier y las transformadas de Fourier

sen(3w) En cada uno de los problemas del 19 al 24, calcule la trans-
" wQ+tiw) formada de Fourier ventaneada de la funcién dada f, usando
la funcién ventana g. También calcule el centro y el ancho de

En cad. del bl 12,13y 14, tre la transfor- L
n cada uno de los problemas y 14, encuentre la transfor banda RMS de la funcién ventana.

mada inversa de Fourier de la funcién.

12. —664;wje;§2“’) 19. (1) =12 g(1) = {(1) Ez: |:|5>§51 =
13. e 3ot cos2w + 8) 20. f(t) = cos(at),

14. ¢=*/9 sen(8w) o) — {1 para —4m <1t <47

15. Pruebe la siguiente forma del teorema de Parseval: 0 para |t| > 47

21, f(t) =e",

1 para0 <r <4
g(r) =
0 parat <0 yparat >4

) 5 1 I 2
f o dr=2—/ f @) do.
oo T J—00

16. El contenido de potencia de una sefial f{(f) esta definido

como [ | f (1) dt, suponiendo que esta integral converge. para —1 <t <1

Determine el contenido de potencia de H(f)e-2'.

1
22. f(t) = e’ sen(mt), g(t) = {
0 para [t > 1

17. Determine el contenido de potencia de (1/7) sen(3r). Suge- ) para —2 <t <2
i 23. fO)=(@+2)",80) =
rencia: use el resultado del problema 15. 0 para |t| > 2
18. Use la transformada de Fourier para resolver 24. f(t)=H(t —m),

vy + 6y +5y =6 —3).

1 para3mr <t <5m
g() =
0 parat <3m yparat > 5w

3.5 Transformadas de Fourier en cosenos y senos
En la seccidn 3.3 apareci6 la manera en que la representacion en integral de Fourier de una funcién sugiere
su transformada de Fourier. Ahora se probara cémo las integrales de Fourier en cosenos y senos de una
funcién sugieren las transformadas en cosenos y en senos.

Suponga que f () es suave a pedazos en cada intervalo [0, L] y f 80 | f (#)| dt converge. Entonces para
cada  en donde f'es continua,

o0
f@ = / ay cos(wt) dw,
0
donde

A, = % /OO f(t) cos(wt) dt.
T Jo

Con base en estas dos ecuaciones, se genera la siguiente.

DEFINICION 3.5 Transformada de Fourier en cosenos

La transformada de Fourier en cosenos de f estd definida por

Sl f1@) = /0 () cos(t) dt. (3.14)

Con frecuencia denotara %.[f [(w) = fc(a)).
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Observe que
A _ T
fC(a)) = an
y que
2 [ L
fo =2 /0 fe(@) cos(t) do. (3.15)

Las integrales en las expresiones (3.14) y (3.15) forman el par de transformadas para la transformada de
Fourier en cosenos. La tltima permite recuperar, bajo ciertas circunstancias, f (¢) a partir de f¢ ().

EJEMPLO 3.18

Sea K un nimero positivo y sea

1 para0 <t <K

1) =
1® {O parat > K

La transformada de Fourier de fes

fe(o) = /00 £ (t) cos(wt) dt
0

K
=/ cos(wt) dt = M. [ |
0

La transformada de Fourier en senos se define de manera andloga.

DEFINICION 3.6  Transformada de Fourier en senos

La transformada de Fourier en senos de f esta definida por

Selflw) = /0 f(t)sen(wt) dt.

También denote esto como fg(w).
Si f'es continua para ¢ > 0, entonces la representacion en integral de Fourier en senos es

f@) = /OO by sen(wt) dw,
0

donde
2 o0
by = —/ f(t)sen(wt) dt.
7 Jo
Como
A T
Sfs(w) = Eba)
entonces

f) = 2 / h fs(w) sen(wt) do,
T Jo

y ésta es la manera en la que recupera f (¢) a partir de fS (w).
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EJEMPLO 3.19

Con la funcién f del ejemplo 3.18,

fs(w) = / h f(t) sen(wt) dt
0

K
= / sen(wt) dt = l[1 —cos(Kw)]. m
0 w

Ambas transformadas son lineales:

Sclof + Bgl =aSclf1+ BScls]

Sslaf + Bgl = aSslf1+ BFslgl.

siempre que todas estas transformadas estén definidas.
Las siguientes reglas operacionales juegan un papel clave cuando se usan estas transformadas para
resolver ecuaciones diferenciales.

= TEOREMA 3.14 Reglas operacionales

Sean f y f' continuas en todo [0, L], y sea fgo | £ (1) dt convergente. Suponga f () — 0y f'(t) — 0 cuando
t — 0o. Asuma que f” es continua a pedazos en cualquier intervalo [0, L]. Entonces,

1. Self"HO)(w) = —w? fe(w) — £/(0)

Fslf (D)) = - fs(w) + wf (0).

El teorema se prueba integrando por partes dos veces para cada regla y los detalles se dejan al estu-
diante.

La férmula operacional determinard qué transformada usar para resolver un problema dado. Si bus-
ca una funcioén f(f), para 0 <t < 00, y se especifica f(0), entonces puede considerar la transformada de
Fourier en senos. Si la informacién dada es acerca de f '(0), entonces la transformada en cosenos es la
apropiada. Cuando resuelva ecuaciones diferenciales parciales, encontrard ejemplos donde estd involu-
crada esta estrategia.

SECCION 3.5 PROBLEMAS

En cada uno de los problemas del 1 al 6, determine la transfor- 1 para0 <t < K
mada de Fourier en cosenos y la transformada de Fourier en 4 f)=1-1 para K <1 < 2K
senos de la funcion.

0 parat > 2K

1. f(t) =¢"!

2. f(t) =te™ 9, con a cualquier nimero positivo 5. f(t) =e " cos(t)
cos(t) para0 <t <K

3. f = senh(r) para K <t < 2K
0 parat > K 6. f(t) =

. . - para0 <t < K yparat > 2K
con K cualquier nimero positivo
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7. Pruebe que bajo condiciones apropiadas de f'y sus derivadas, 8. Pruebe que bajo condiciones apropiadas de f'y sus deri-
vadas,
Fslf OD)(@) = o* fi(@) — @3 f(0) + @f" (0). .
Sl fODNw) = o fo(®) + @ f'(0) — fO(0).
Sugerencia: Considere condiciones que permitan la aplica-
cién de la férmula operacional de ( f"(7))".

3.6 Las transformadas finitas de Fourier en senos y cosenos

La transformada de Fourier, la transformada en cosenos y la transformada en senos, estdn motivadas por
las representaciones integrales respectivas de una funcién. Si emplea la misma estrategia de razonamien-
to, pero usando las series de Fourier en cosenos y en senos en lugar de integrales, obtiene las llamadas
transformadas finitas.

Suponga que f es suave a pedazos en [0, r].

DEFINICION 3.7  Transformada finita de Fourier en cosenos

La transformada finita de Fourier en cosenos de f estd definida por
W
L1 = Je) = [ F(costux) da
0

paran=0,1,2,....

Si f'es continua en x en [0, 7], entonces f (x) tiene la representacion en serie de Fourier en cosenos

fx) = %ao + Zan cos(nx),

n=1

donde

2 (7 2 ~
a, = —/ f(x)cos(nx)dx = — fc(n).
0 T

T

Entonces

fx)

%fc(()) + %; Fe(n) cos(nx),

una expresion de tipo inversion con la cual puede recuperar f(x) a partir de la transformada finita de
Fourier en cosenos de f.
De manera semejante, defina una transformada finita en senos.

DEFINICION 3.8  Transformada finita de Fourier en senos

La transformada de Fourier finita en senos de f'estd definida por
T
SLf1) = i = [ £ sentu) d

paran=1,2,....
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Para 0 < x < 7, si fes continua en x, entonces la representacion en serie de Fourier en senos es

fx) = ;; fs(n) sen(nx),

una férmula de inversién para la transformada finita en senos.

EJEMPLO 3.20

Sea f(x) = x2 para 0 < x < 7. Para la transformada finita en cosenos, calcule
~ m 1
fe0) = / x2dx = -n3
0 3
y,paran=1,2,...,

fc(n) = /n x2 cos(nx)dx = 2w (_12)n'
0 n

Para la transformada finita en senos, calcule

(=D"[2 = n?721-2

|
n3

fs(n) = /ﬂ xZsen(nx) dx =
0

Aqui estdn las reglas operacionales fundamentales para estas transformadas.

= TEOREMA 3.15 Reglas operacionales

Sean fy f' continuas en [0, 7] y sea f” continua a pedazos. Entonces,

1. CLf" ) = —n? fe(n) — £/(0) + (=) f'(7),
paran=1,2,...,y
2. SLf"(n) = —n? fs(n) +nf (0) — n(—=1)" f ()
paran=1,2,.... H

Las aplicaciones de estas transformadas finitas aparecerdn cuando se discutan las ecuaciones diferen-
ciales parciales.

SECCION 3.6 PROBLEMAS

En los problemas del 1 al 7, encuentre la transformada finita de 6. cos(ax)
Fourier en senos de la funcioén.
7. e~x
1. K (cualquier constante)
2 En cada problema del 8 al 14, encuentre la transformada finita
de Fourier en cosenos de la funcion.
3. a2
1 ara0 < x < &
40 8. f(x)= e
5. sen(ax) -1 paray <x <m



9. x

10. x2

11. 3
12. cosh(ax)
13. sen(ax)
14. e
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16. Sean f continua y ' continua a pedazos en [0, ]. Pruebe
que

(Ne (1) = nfsn) — £O) + (=1)" f ()
paran=20,1,2,....

15. Suponga que f'es continua en [0, 7] y f es continua a peda-
zos. Pruebe que

(fNs(n) = —nfcmn)

paran=1,2,....

3.7

La transformada discreta de Fourier

Si f'tiene periodo p, su serie de Fourier compleja es
o
Z dkeika)()t
k=—o00

Aqui wy = 27t/p y los coeficientes de Fourier complejos estdn dados por
1 a+p .
dp = — / Ft)e ol gy,
P Ja

en donde, debido a la periodicidad de f, o puede ser cualquier nimero. Si sustituye el valor de wy, la serie
de Fourier compleja de fes

00
Z dkEkat/p_

k=—00

Bajo ciertas condiciones de f, esta serie converge a % (f(t+) + f (t—)) en cualquier nimero ¢.
Escoja o = 0 en la féormula para los coeficientes, asi

1 [ .
dk:_/ F()e FKIP gt parak =0, £1, £2,....
P Jo

Para motivar la definicién de la transformada de Fourier discreta, suponga que quiere aproximar d;. Una
manera de hacerlo es subdividir [0, p] en N subintervalos de longitud igual p/N 'y elegir un punto #; en cada
[jp/N, (j + Dp/N] paraj =0, 1,..., N — 1. Ahora aproxime d; con la suma de Riemann:

N—-1
1 ikt P
dr ~ — ¢ 2miktj/p £
k p?:():f(J)e N

(3.16)
N7

) o= 2mikj/N
0

z| -~

j=

La transformada de Fourier de N puntos es una regla que actiia en una sucesion dada de N nimeros
complejos y produce una sucesion infinita de niimeros complejos, uno para cada entero k (aunque con
repeticiones periddicas, como verd mds adelante). La transformada es definida de manera que, excepto
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por el factor 1/N , la suma de aproximacién (3.16) es exactamente la transformada de Fourier discreta de
N puntos de los niimeros f (ty), f (t1), - - - ,.f (tv—1)-

DEFINICION 3.9  Transformada discreta de Fourier de N puntos

Sea N un entero positivo. Sea u = {uj}IJY;O1 una sucesion de N numeros complejos. Entonces la N
transformada discreta de Fourier de N puntos de u es la sucesion D[u] definida por
N-1
Dlu]k) = Z uje—Znijk/N
Jj=0

parak =0, £1,£2,....

Para simplificar la notacion, se usa una convencién utilizada con la transformada de Laplace y se
denota la transformada discreta de Fourier de N puntos de una sucesién u por U (con minudscula para la
sucesion dada de N nimeros y mayuscula de la misma letra para su transformada discreta de Fourier de N
puntos). En esta notacion, si u = {uj}’j\.’:_o1 , entonces

N—1
U = Z uje_z’”fk/N.
j=0

También se abrevia la frase “transformada discreta de Fourier ““ por TDF.

EJEMPLO 3.21

Considere la sucesion constante u = {C}I;{;Ol , en donde ¢ es un nimero complejo. La TDF de N puntos
estd dada por

N-1 N-1 i
Up = Z ce~2TIk/IN _ . Z (e—2mk/N) .
Jj=0 Jj=0

Ahora recuerde que la suma de una serie geométrica es

N—1 ; l—l‘N
Zr = ) (3.17)
j=0 -

Aplicando esto a Uy, tiene

| — (e—2nik/N)N

Uk =c—— o —27ik/N
1_6—2711'](
=7y =0 parak =0, 1,42, ...

debido a que, para cualquier entero k,

e 7K = cos(2mk) — i sen(2mk) = 1.

Para cualquier entero positivo &, la TDF de N puntos de una sucesién constante de N nimeros es una
sucesion infinita de ceros. De una manera mas simple, la TDF de N puntos de una sucesién constante es
cero. W
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EJEMPLO 3.22

Sean a un nimero complejo y N un entero positivo. Para evitar trivialidades suponga que a no es un entero
multiplo de 7. Encuentre la TDF de N puntos de la sucesién u = {sen(ja)}l}’:_()]. Denotando esta transfor-
mada por la letra mayuscula, tiene

N-1
U = Z sen(ja)e_zmjk/N.
j=0

Usando el hecho de que
1 .. .
sen(ja) = — (e'-’a - e_”“)
2i

para escribir

| N | V=l
Uy = 2_l Z eljaefzﬂl]k/N _ Z Z efzjaefknjk/N
Jj=0 Jj=0
| Nt N .
_ L (eia—Znik/N>] 4 Z (e—ia—Zm‘k/N>j
2i 4 2i 4
Jj=0 j=0

Usando la ecuacion (3.17) en cada suma
11— (eia72nik/N)N 11— (efia72nik/N)N

2i 1 — eia—2mik/N 2i 1 — e—ia—2mik/N

Ui =
11— eiaNe—2m'k 11— e—iaNe—Zﬂik
T i 1 — ela=2mik/N ~ ;| _ g—ia—2mik/N

_ l 1 — eiaN B l 1 — e*iaN (3.18)
2i 1 — eia—2mik/N 2i 1 — e—ia—2mik/N’

ya que e27mik =1,
Para hacer el ejemplo més explicito, supongaque N=5ya = V2. Entonces la sucesién dada u es

uo=0, wu;= sen(ﬁ), Uy = sen (2&), u3 = sen (3\/5), U4 = sen (4\/5)

El k-ésimo término de la TDF de 5 puntos U es
1 1—e8iV2 1 1—eV2
N i pivaamik/s  2i | — gmin22mik/5’

Por ejemplo,

11-e5V2 11— V2

Vo= o 2 i
__sen (4\/§>+ sen (ﬁ) — sen (5ﬁ>
B 2 —2cos (ﬁ) ’
11— 5iV2 1 ] —e5iV2
U =

T 20| — oiNZ21i/5 20 ] _ p—in2-27i/5
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1 1—V2 1 1—e5V2

V2= 2i | — oivV2—4mi/5 20 | _ g—iv2—4mi/5 =

Enseguida se desarrollan algunas propiedades de esta transformada.

3.7.1 Linealidad y periodicidad

. _ AGN—1 _ N—1 . P . ., .
Siu= {uj}j=0 yu= {v_,}j=0 son sucesiones de niimeros complejos y @ y b son nimeros complejos,
entonces

N=1

au + bv = {auj +bvj}j=0 .

La linealidad de la TDF de N puntos es la propiedad:
Dlau + bv](k) = aU; + bVy.

Esto se sigue inmediatamente de la definicion de la transformada, ya que
N—1
Dlau + bv](k) = Z (auj + bvj)efzmjk/N
j=0
N-1 N—1
=a Z uje_zmjk/N +b Z vje_zmjk/N =aU; + bVg.
j=0 j=0
Ahora se probara que la TDF de N puntos es periédica de periodo N. Esto significa que si la sucesién dada
esu = {u_,-}lj\.:ol, entonces para cualquier entero k,

Uk+n = Uk.

Esto se puede ver en la TDF calculada en el ejemplo 3.22. En la ecuacién (3.18), reemplace k por k + N.
En este ejemplo, este cambio aparece s6lo en el t€rmino ei«—27k/N en el denominador. Pero, si k es reem-
plazada por k + N en esta exponencial, no hay cambios, ya que

eia—Zn’i(k+N)/N _ eiae—2nike—2n’i — eiae—ZnikZ eia—Znik.

El argumento en general procede como sigue:

N-1
Uy = Z u jo 2 Gk N/N
=0
N-—1 N—1
_ Z u je~ikIN g=2mijk Z uje 2T IRIN —
Jj=0 Jj=0

ya que e~ 2mifk =1,

3.7.2 La TDF inversa de N puntos

Suponga que tiene una TDF de N puntos
N-1
Uy = Z uje—Znijk/N
j=0

de una sucesién {“j}]]\',:_ol de N nimeros. Afirme que
=
uj=NZUke2”lf’</N paraj=0,1,...,N — 1. (3.19)
k=0
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Porque esta expresion recupera la sucesion de N puntos original a partir de su transformada discreta, la
ecuacion (3.19) es llamada la transformada discreta de Fourier inversa de N puntos.
Para verificar la ecuacion (3.19), es conveniente poner W = e-27/N_Entonces

WN :1 y W71 — 6‘2”[/]\/.

Ahora escriba
N—1

1 . 1 .
- UkeZJ'tzjk/N — UkW—]k
N g N k=0
1 N—-1 /N-1 ) ) 1 N—-1N-1 )
_ ﬁ (Z ure—Zmrk/N) W—]k _ N u,erW_Jk
k=0 \r=0 k=0 r=0
1 N—1 N—1
=— u Y whkwik (3.20)
N r=0 k=0

En la dltima sumatoria, observe que
Wrkw—ik — g=2mirk/N 2xijk/N _ ,~2xG—j)k/N _ yyo—ik

Para j dada, si r # j, entonces por la ecuacion (3.17) para la suma finita de una serie geométrica,

N—1 N—1 N-1 | — (Wr—i)N
rkyy—ik _ (r=pk _ [t A A
%W 14 _I;W =) W= —— =0

debido a que (WUD)N = e=2mi=) = | y Wr-J = ¢=2mi0=)/IN = ], Pero si r = j , entonces

ZwrkW jk _ ZW/kW jk _ Zl_

Por tanto, en la dltima suma doble de la ecuacion (3.20), hay que retener sélo el término cuando r = j en
la sumatoria respecto ar, obteniendo
1 = 1
k ik k ik
N X T W = S WA =
y verificando la ecuacién (3. 19).

3.7.3 TDF aproximacion de los coeficientes de Fourier

Esta seccién empieza definiendo la TDF de N puntos de manera que las sumas de Riemann, que aproxi-
man los coeficientes de Fourier de una funcién periddica, fueran 1/N veces la TDF de N puntos de la suce-
sion de los valores de la funcién en los puntos de particion del intervalo. Ahora observard mas de cerca la
idea de aproximar los coeficientes de Fourier mediante una transformada de Fourier discreta con la idea
de muestrar sumas parciales de la serie de Fourier. Esta aproximacién también permite la utilizacién de
software de TDF para la aproximacién de los coeficientes de Fourier.

Considere un ejemplo especifico, f (f) = sen(?) para 0 < ¢ < 4, entendiendo que f se extiende sobre
toda la recta real con periodo 4. En la figura 3.21 se muestra una parte de la grafica de f. Con p = 4, los
coeficientes de Fourier son

14 . 14 :
di = —f sen(&)e 2K/ gg = -/ sen(£)e k2 gg
4 Jo 4 Jo
cos(4) —1 1 mksen(4)
= —1 .
w2k —4 2 m2k2—4
parak =0, =1, £2,....

(3.21)




146 CAPITULO 3  La integral de Fourier y las transformadas de Fourier
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FIGURA 3.21 f(¢) = sen(?) para
0 <t < 4, extendida periodicamente
sobre la recta real.

Sea ahora N un entero positivo y subdivida [0, 4] en N subintervalos de igual longitud 4/N. Estos
subintervalos son [4j/N, 4(j + 1)/N] paraj =0, 1,..., N — 1. Construya N nimeros evaluando f (¢) en el
extremo izquierdo de cada subintervalo. Estos puntos son 4;j/N, asi obtiene la sucesién de N puntos

(L

Forme la TDF de N puntos de esta sucesion:
N-1 4j N-1 4
_ I\ —2mijk/4 _ I\ —wijk/2
Uk_Zsen(N)e _Zsen<N>e .
j=0 j=0
Entonces

1 -1

lUk = — sen 4—J e Tiik/2
N N & N

es una suma de Riemann para la integral que define d;. La pregunta es: ;Hasta qué punto (1/N)U, aproxi-
ma a d;? En este ejemplo, hay una expresion explicita (3.21) para d,. Se evaluara explicitamente (1/N)Uj,
usando a = 4/N en la TDF de {sen( ja)}l;{;ol determinada en el ejemplo 3.22. Esto nos da

1 171 1—e* 1 1—e 4
N N '

k=N |21 T = #i/N—2kxi/N ~ 2; 1 = ¢—4i/N—2kxi/N

Ahora calcule el término exponencial en el denominador usando la aproximacién

e ~1+x

para |x| << 1. Entonces

111 1—e¥ 1 1—e ¥
2i 1 —[1+ (4i/N —2kmi/N]  2i 1 —[1+ (—4i/N — 2kmi/N]

U~ —
N TN
R R
T4 —24kn 2+ km
11

=—ioe [4 —k(eM — o4y — (et 4 e—‘“)]
7T [—
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1 1
=-1Tm g [4 — 27ki sen(4) — 4 cos(4)]
cos(4)—1 1 mksen(4)
A2 —4 2 p%kr—4

La aproximacién e* = 1 4 x ha conducido a una expresion aproximada para (1/N)U; que es exactamente
igual a d;. Sin embargo, esta aproximacién no puede ser valida para todo k. Primero, la aproximacién usada
para e* supone que |x| < 1,y segundo, la TDF de N puntos es periédica de periodo N, asi Uy, = Uy, mientras
no existe tal periodicidad en las d.

En general, es muy dificil obtener una estimacion en tamafios relativos de |k| y N para que (1/N)U;
aproxime a d dentro de cierta tolerancia y que valga para una clase razonable de funciones. Sin embargo,
para muchas aplicaciones cientificas y de ingenierfa, la regla empirica |k| < N/8 ha resultado efectiva.

SECCION 3.7 PROBLEMAS

En cada problema del 1 al 6, calcule D[u](k) parak=0, 1, ..., 8. Uy=ikN=5

44 para la sucesion dada u.

1. {cos(j )}JS-=0

2. {ei}5m
3. {1/(,'+1)}j.:0
4.

5. 02,

6. {cos(j)—sen(j )};LO

9. U=eik, N=17

10. Uy=k2,N=5

11. Uy=cos(k), N=5
12. Uy=In(k+ 1), N=6

{1/G + 1)} j’:() En cada problema del 13 al 16, calcule los primeros siete coefi-

cientes de Fourier complejos dy, d+1, d+r y d+; de f (véase la
seccion 2.7). Después use la TDF para aproximar estos coefi-
cientes con N = 128.

13. f(¢) = cos(f) para 0 < ¢ < 2, f tiene periodo 2

En cada problema del 7 al 12, se da una sucesion {Uk}V—o.

Determine la transformada inversa de Fourier discreta de N pun- 14. f(t) = e'para0 <1 < 3, f tiene periodo 3
tos de esta sucesion. 15. f(ty=r2 para0 < 1 < 1, f tiene periodo 1
7. Uy=(1+0),N=6 16. f(r) = te> para 0 < t < 4, f tiene periodo 4

3.8

Series de Fourier muestrales

En la subseccién anterior, se discutié la aproximacion de los coeficientes de Fourier de una funcién
periddica f. Esto se hizo aproximando los términos de una transformada discreta de Fourier de N puntos
formada por el muestreo de f () en N puntos de [0, p]. Ahora se discute el uso de una TDF inversa para
aproximar las sumas parciales muestreadas de la serie de Fourier de una funcidn periddica (esto es, sumas
parciales evaluadas en los puntos elegidos).

Considere la suma parcial

M
Su(t) =Y de?™ kP,
k=—M

Subdivida [0, p] en N subintervalos y elija los puntos muestreados t; = jp/N paraj=0,1,...,N - 1.
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N-1'y aproxime

Forme la sucesién de N puntos u = {f (jp/N }j=0

1
dy = — Uk,
ke~ Yk

donde
&= . [ipr
Un — JP\ —omijk/N
k zf(N)

Para tener k| < N/8, como se menciond al final de la subseccién anterior, requiere que M < N/8. Asi,

M
1 .
Su()~ Y L Uke?T T,
k=—M

En particular, si muestrea la suma parcial en los puntos de la particién jp/N, entonces

M

jpY\ _ 1 2ijk/N
o (57) 25, e

Probara que la suma de la derecha es una TDF inversa de N puntos para una sucesion particular de N puntos,
que ahora serdn determinados. Explore la periodicidad de la TDF de N puntos, esto es, Uy = Uy para todo
entero k. Escriba

. 1 M
jp 1 2ijk/N | ] 2ijk/N

Su ()~ = 3 U™V 4 =3 g

M<N) N ‘ Nz ‘

&

1 1 A
M Z U_pe 2mikIN . Z Uye2mik/N
k=1

k=0
1 1<
— N Z U7k+N62ﬂ[‘/(_k+N)/N + N Z UkeZJHJk/N
k=1 k=0
| N-1 1 M
— N Z Uk62ﬂl]k/N + NZUkezj”jk/N' (3.22)
k=N—-M k=0

En esta sumatoria, use los 2M + 1 numeros
Uv-m,....,Un-1,Up,...,Upy.

Como M < N/8, debe llenar con otros valores para obtener una sucesion de N puntos. Una manera de hacer
esto es llenar los otros lugares con ceros. As{

Uy parak=0,1,.... M
Vi=130 parak=M+1,.... N—-—M—1
Ui parak=N-M,...,N —1

Entonces la M-ésima suma parcial de la serie de Fourier de f, muestreada en jp/N, estd aproximada por

. N—1
VAR 2mijk/N
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EJEMPLO 3.23

Seaf(f) =tpara0 <t < 2,y extienda f sobre toda la recta real con periodo 2. En la figura 3.22 se muestra
una parte de la grafica de f.
Los coeficientes de Fourier de f son

;
2 — k#0

di = %/ e 2mik2 qp = | Tk para k7
0 1 parak =0

y la serie de Fourier compleja es

o0

i ikt

k=—00,k0

Esto converge a ten 0 < ¢t < 2 y en las extensiones periddicas de este intervalo. La M-ésima suma
parcial es

M .
i ,
Su@) =1 > e
m(t) + ¢
k=—M k0

Para ser especificos, se elije N =27 = 128 y M = 10, de manera que M < N/8. Muestreando suma parcial
en los puntos jp/N = j/64 paraj =0, 1, ..., 127. Entonces

ip\ V! iz
U e T
{ N/)jizo 164]) 5
La TDF de 128 puntos de u tiene k-ésimo término
127

NS nijk/ea
Uy = Z 646 .
=0

Defina
Uy parak =0,1,...,10
Vi =10 parak =11,...,117
Uy parak =118, ..., 127

FIGURA3.22 f(f)=tpara0<t<?2,
extendida periodicamente sobre la recta
real.
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Entonces

. . 10 .

Jp J L wijk/64
S — =S5 — =1 —e
10(N> 10<64> + Z nke

k=—10,k#0 (3.23)
|l

~ Ny k64
128 ,;) ke

Para entender esta discusion de la aproximacién de sumas parciales muestreadas de una serie de
Fourier, vale la pena ver los nimeros que se obtienen en un ejemplo. Haga los cdlculos Slo(%), y después
la aproximacién (3.23) con j = 32.

Primero,

10 .
1 .
Sw(5)=1+ > et —045847.
2 Tk
k=—10,k=£0

Abhora debe calcular las V. Para esto, necesita los nimeros

127 . 127

J J—wijjea :
Uy = — =127, U= — JI%% = —1.0 4 40.735i,
0 ]2_(:) 64 T el * ’

127 .
U, = X; 6’—4e—”"//32 = —1.0420.355i, U; = —1.0+ 13.557i,
]:

Us = —1.0410.153i, Us = —1.048.1078i, Us = —1.0 4 6.7415i,

U7 = —1.045.7631i, Ug = —1.045.0273i, Ug = —1.0 + 4.4532i,
Uyp=—-1.04+3.9922i, Ujig =—-1.0-3.9922i, Ujj9=—1.0—4.4532i,
Uiao = —1.0-5.0273i, Ujp; = —1.0-5.7631i, Ui = —1.0 —6.7415i,
Uiz = —1.0-8.1078i, U4 =—1.0—-10.153i, U5 =—1.0—13.557i,
Uiz = —1.0 —20.355i, Ujz7 = —1.0 —40.735i.

Ahora calcule

127
> Vie™ R =127 4 (1.0 + 40.735i)e™ /% + (—1.0 + 20.355i) ™
k=0

+ (=1.0 4 13.557i) &>/ + (= 1.0 + 10.153i) 2™ + (—1.0 + 8.1078i) e>7'/2
+ (1.0 + 6.7415i) &3 + (1.0 + 5.7631i) ¢7"1/? + (—1.0 + 5.0273i) **
+ (—1.0+4.4532i) *7'/2 4 (—1.0 + 3.9922i) >
+ (—1.0 — 3.9922i) ! 1871/ 4 (—1.0 — 4.4532i) 1971/
+ (1.0 = 5.0273i) €!2071/2 4 (—1.0 — 5.7631i) 2171/
+ (—1.0 — 6.7415i) !2271/2 + (—1.0 — 8.1078i) ¢! 2371/
+ (—1.0 — 10.153i) !2471/2 4 (=1.0 — 13.557i) ! 2571/
+ (—1.0 — 20.355i) €!27i/2 4 (—1.0 — 40.735i) £'2771/2
= 61.04832.
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Entonces

127 N
Z Ve Uk — (. 4764
k=0

1
128

Esto da la aproximacién 0.47694 de la TDF de 128 puntos de la suma parcial muestreada Slo(%), cuyo
valor calculado es 0.45847. La diferencia es 0.0185. La suma de la serie de Fourier compleja en t = % es
£(3) = 0.50000.

En la préctica, obtendrd mayor exactitud usando N muy grandes (haciendo M mayor) y una rutina de
software para hacer los cdlculos. ™

3.8.1 Aproximacion de una transformada de Fourier por una TDF de N puntos

Aqui aprendera cémo puede usar la transformada discreta de Fourier para aproximar la transformada de
Fourier de una funcién, bajo ciertas condiciones. Suponga, para empezar, que f (w) puede ser aproximada
con una tolerancia aceptable por una integral en un intervalo finito:

00 ) 2 L )
ﬂw=f ﬂmﬂ“ﬁwﬁ FE)ei de.

Aqui aparece la longitud del intervalo como 27L por una razén que se revelara por si misma muy pronto.
Subdivida [0, 2L] en N subintervalos de longitud 277L/N y elija los puntos de la particién & = 27jL/N
paraj =0, 1, ..., N. Entonces, puede aproximar la integral de la derecha por una suma de Riemann,
obteniendo

N-1 :
Y 28JL\ onijro/N [(27L
f(w)~Zf< N )e N
j=0
N

-1
2L 270JLN _oniiLw/N
:_Zf(_)e rijLo/N.
N N

La suma de la derecha estd muy cercana a la forma de una TDF. Si pone w = k/L, con k cualquier entero,
entonces tiene

N-1 .

~k  2mnL 2mjLY\ _oniik

Fr~= > f <—N e HTIKIN, (3.24)
j=0

Esto da f (k/L), la transformada de Fourier de f muestreada en los puntos k/L, aproximados por 27L/N
veces la TDF de N puntos de la sucesion

UCSIN

Como observo antes, la TDF es periddica de periodo N, mientras que f (k/L) no lo es, asi que nuevamente
aplique la restriccién de que k| < N/S.
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EJEMPLO 3.24

Se probard la aproximacién (3.24) para un caso sencillo. Sea

e! parat > 0

f(t)Z{
0 parat <0

Entonces ftiene transformada de Fourier
A~ S .
= [ rereias
—00

z/ooe*i:efiwédg — l—ia).
0 1+ w?

ElijaL =1, N =27 = 128 y k = 3 (teniendo en cuenta que quiere |k| < N/8). Ahora k/L =3y

127

flk/L) = f3) ~ lzzgze—ﬂj/64e—6nij/128

Jj=0

127

- g—4 e TII64, =3[0 _ () 12451 — 0.29884i.
j=0

Por comparacion,

1 —3i
10

f3) = =0.1 —0.3i.

Suponga que intenta con N grande, algo asi como N = 2% = 512. Ahora

511
f(3) ~ 2_77 o2 /512 ,=6ij/512
512
j=0
511
Ze_”//ZSG —37ij/256 = (.10595 — 0.2994i,

]—

~ 256

una mejor aproximacion que la obtenida con N = 128. H

EJEMPLO 3.25

Continte con el ejemplo anterior. Ahf el €nfasis era detallar la idea de la aproximacion de un valor de
J (w). Ahora use la misma funcidn, pero llevando a cabo la aproximacion en suficientes puntos para esbo-
zar las graficas aproximadas de Re[ f (w)], Im[ f (@)]y] f (w)|. Usando L = 4 y N = 28 = 256, obtiene la
aproximacion

255

f (’j) ~ Ze—nj/?:Ze—nijk/lZS.
4 32 i
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Tendr4 |k| < N/8 = 32, aunque s6lo calcule valores aproximados de f (k/4) parak =1, ..., 13. Como
en este ejemplo puede calcular exactamente f (w), estos valores estdn incluidos en la tabla para permitir

comparaciones.

k=1 fD)
k=2 f(})
k=3) f(3)
(k=4) f(1)
k=5 f3)
k=6 f(3)
k=7 f3
k=38) f(2)
k=9 f(

(k=10) £(3)
w=m{%)
(k=12) f(3)
(k=13) f(})

aprox. TDF de f (w) f (w)
0.99107 — 0.23509i 0.94118 — 0.23529i
0.84989 —  0.3996i 0.8 — 0.4i
0.68989 —  0.4794i 0.64 — 0.48i
0.54989 — 0.4992; 0.5—- 0.5
0.44013 — 0.4868i 0.39024 — 0.4878i
0.35758 —  0.46033i 0.3077 — 0.4615i
0.29605 — 0.42936i 0.24615 — 0.43077i
0.24989 —  0.39839i 02— 0.4i
0.21484 — 0.36933i 0.16495 — 0.37113i
0.18782 — 0.34282i 0.13793 — 0.34483i
0.16668 — 0.31896i 0.11679 — 0.32117i
0.14989 — 0.29759i 0.1 — 0.3i
0.13638 — 0.27847i 0.086486 — 0.28108i

La parte real de f(w) estd, en este esquema, aproximada consistentemente con un error de alrededor
de 0.05, mientras que la parte imaginaria estd aproximada en muchos casos con un error de alrededor de

0.002. Se puede mejorar la exactitud eligiendo N mas grande.

En las figuras 3.23, 3.24 y 3.25, los valores aproximados de Re[ f (w)], Im[ f ()] y]| f (w)|, respectiva-
mente, son comparados con los valores obtenidos de la expresion exacta para f (w). Los puntos redondos
representan los valores aproximados, y los cuadrados sombreados son los valores reales. En la figura 3.24
la aproximacién estd suficientemente cercana de manera que los puntos son indistinguibles (dentro de la

resolucién del diagrama). ™

1.2
1.0
0.8
0.6
0.4
0.2
0 |

' k

1

2 3 4 5 6 7

FIGURA 3.23

& 9 10 11 12 13

Comparacion de la

aproximacion de la TDF de Re[ f (w)]
con valores reales para

—t parat >0

fo= 0 parat <0 .
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—0.1 —

—02

—0.4 —

—-0.5—

ol L
1 23 456 7 8 910111213

FIGURA 3.24 Comparacion de la
aproximacion de la TDF de ITm[ f (w)]
con valores reales para

—t parat >0

e
f(t)={

0 parat<0.

Hasta aqui la dlscusmn se ha centrado en funciones f para las cuales f (w) puede ser aproximada
por una mtegral f f (&)e—it d&. Puede extender esta idea al caso que f (w) sea aproximada por una

integral [™ _ﬂL f(&)e—it dE sobre un intervalo simétrico de longitud 2sL:
L

flw) ~ fE)e 8 dt.

—nL

Entonces,

7L
f (—) ~ fE)e /L g

—nL
0

7L
[ et 1 /0 FE)e I g

—nL

1.0 =

0.6 —
04—

ob—L— 1 11 11 1 |
1 2 3 4 5 6 7 8 9 10 11 12 13

FIGURA 3.25 Comparacion de la
aproximacion de la TDF de | f(w)| con
valores reales para

- parat > 0

1) = .
o 0 parat <0
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Haciendo { = & + 2nL en la primera integral de la dltima linea, tiene

~k 2w L ) L '
f (z) ~~ /L f(¢ — 2JTL)e—lk(C—2HL)/L dc _}_/(; f(E)e_’kg/L dt

2n L ) L )
= [ s —amneteitag v [ pepe et ag,
L 0
como e~2mik =1 si k es un entero. Se escribe & para { como la variable de integracién, obteniendo

~k 2n L ) L .
f <Z> = / f& —2nL)e "/t ag +/ f@&e et g,
7 0

L
Abhora se define
S para0 <t <L
1
g(t) = 7 (f@L)+ f(—xmL)) parat=mL (3.25)
f@t—2nL) paranL <t <
Entonces

~(k 2 L )
f (—) ~ / g@®)e™/t dg
0

L
= / g@rt)e 2 KILQrydr  (sea & = 2mt)
0

L
=2n/ g(2mt)e2miki/L
0

Finalmente, aproximando la dltima integral por una suma de Riemann, subdividiendo [0, L] en N subin-
tervalos y eligiendo #; = jL/N paraj =0, 1,..., N — 1. Entonces

N—1 .
~(k ~2nL 2L —2ijk/N
f — |~ g e .
L N 0 N

j=

Como antes, suponga al usar esta aproximacion que |k| < N/8. Esto aproxima f (k/L) con un multiplo
constante de la TDF de N puntos de la sucesion

()]

en donde los puntos de la sucesion son obtenidos a partir de la funcién g manufacturada a partir de f de
acuerdo con la ecuacion (3.25).

3.8.2 Filtrado

Una sefial periddica f (¢), de periodo 2L, usualmente es filtrada con el propdsito de cancelar o disminuir
ciertos efectos no deseados o quiza para enfatizar ciertos efectos que uno quiere estudiar. Suponga que
f (1) tiene una serie de Fourier compleja

00
it/L
Z dnenm/ ,

n=—0oo

donde

I :
d, = — t _nnlt/Ldt.
n =57 /;Lf( )e
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Considere la N-ésima suma parcial

N
Snt)y= Y dje" it
j=—N

Una suma parcial filtrada de la serie de Fourier de fes una suma de la forma

N

3 z<ﬁ>dﬂm”“, (3.26)

j=—N

en donde la funcién filtro Z es una funcién par continua en [—1, 1]. En aplicaciones particulares el objetivo
es elegir Z para que sirva para propdsitos especificos. A manera de introduccion, se ilustra el filtrado para
un filtro que es la base del estudio de todo el tema de la convergencia de las series de Fourier.

En el siglo XIX, hubo un esfuerzo intenso por entender las sutilezas de la convergencia de la serie
de Fourier. Un ejemplo desarrollado por Du Bois Reymond probé que es posible que la serie de Fourier de
una funcién continua diverja en todo punto. En el curso del estudio de la convergencia, se observé que
en muchos casos la sucesién de los promedios de las sumas parciales de una serie de Fourier se comporta
mejor que la misma sucesion de sumas parciales. Esto lleva a la consideracién de los promedios de las
sumas parciales:

1= 1
on(D) == Y S0 =+ [So®) + S+ + Sy @]
k=0

La cantidad oy(f) es llamada la N-ésima suma de Cesaro de f, en honor del matemadtico italiano que
estudio sus propiedades. Se encontr6 que si las sumas parciales de la serie de Fourier se aproximan a un
limite particular en 7, entonces oy(f) debe aproximarse al mismo limite conforme N — co, pero no inver-
samente. Es posible que las sumas de Cesaro tengan un limite para algtin ¢, pero que la serie de Fourier
diverja ahi. Fue Fejér, el prodigio de 19 afios, quien probé que si f es periddica de periodo 27, y [ 25’ f()dt
existe, entonces oy (f) — f(f) donde f'sea continua. Este es un resultado mds fuerte que vale para las sumas
parciales de la serie de Fourier.
Con esto como antecedente, escriba

1 N—1 k
UN([):NZ Z djemﬂ/L
k=0 \j=—k

Queda como ejercicio para el estudiante probar que los términos en esta suma doble pueden rearreglarse
para escribir

N
oy(t) = Z (1 _ ‘%anenint/L'

n=—N

Esta es de la forma de la ecuacion (3.26) con la funcion filtro de Cesaro

Z({)=1—1t] para —1<1t<1.
La sucesion
n N n N
Z(h_ == 150
N n=—N Nl p=—nN

es llamada la sucesion de factores filtrantes del filtro de Cesaro.
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f(0
1]
I I I I I t
=37 —2m - T 27
-1
-1 para —7 <t <0
FIGURA3.26 f(1) = Y
1 para0 <t <m

f(t +2m) = f(t) para todo treal.

Un efecto del filtro de Cesaro es amortiguar el fendmeno de Gibbs, que se ve en la convergencia de la serie
de Fourier de una funcién en el punto de discontinuidad. Un ejemplo que exhibe el fendmeno de Gibbs
muy claramente es el siguiente, considere

-1 para —mw <t <0

f(t)=: .

1 para0 <t <m

con extension periddica a la recta real. La figura 3.26 muestra la gréafica de esta extension periddica. Sus
coeficientes de Fourier complejos son

10 1 [
do=g _ﬂ_ldt+§/() dt =0
y
dn=% i —e—"”dr+%/0”e—"”dt=;;_l+w

La N-ésima suma parcial de esta serie es

N
i —1 D" .
Sy(t) = Z L&em’_
n=—N,n#0 n

Si N es impar, entonces
4 1 1 1
Sny(t) = — (sen(t) + = sen(3r) + —sen(5¢) + - - - + — sen(Nt) | .
b4 3 5 N

La N-ésima suma de Cesaro (con L = ) es

o= 3 (=[5 e

n=—N

Esto puede escribirse como

N n
oy(t) = Z (1 — %) (_72) (%) sen(nt).

n=1

La figura 3.27 muestra las graficas de S1o(f) y o0(f), y la figura 3.28 muestra las graficas de Syy(¢) y
050(7). En las sumas parciales Sy(?), el fenémeno de Gibbs se puede apreciar claramente cerca de r = 0,
donde f tiene una discontinuidad de salto. Aunque Sy(f) = f (f) para0 < t < wy para —7w < t < 0, las
graficas de Sy(7) tienen picos relativamente altos cerca de cero, que permanecen a una altura casi constan-
te aunque N crezca (si bien estos picos se mueven hacia el eje vertical conforme N crece). Sin embargo,
este fendmeno no se ve en las graficas de oy(7), que acelera y “suaviza” la convergencia de la serie de
Fourier.
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1.0 = 1.0 =
0.5 0.5
- -3
[ I B L1 I |
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=0.5 0.5/~
=1.0 =1.0

FIGURA 3.27  S,o(t) y 010(?) para la
funcion de la figura 3.26.

FIGURA 3.28  Sy(?) y 020(?) para la
funcion de la figura 3.26.

El filtro de Cesaro también amortigua los efectos de los términos de frecuencias altas en la serie de
Fourier, ya que el factor filtrante de Cesaro 1 — |n/N]| tiende a cero conforme 7 se incrementa hacia N. Este
efecto también se ve en las graficas de las sumas de Cesaro.

En el andlisis de sefiales se utilizan muchos filtros. Dos de los mds comunes son los filtros de Ham-
ming y de Gauss. El filtro de Hamming, llamado asi en honor de Richard Hamming, que fue por muchos
afios el cientifico e investigador en jefe de los Laboratorios Bell, estd dado por

Z(t) = 0.54 4 0.46cos(rt).

La N-ésima suma parcial filtrada de la serie de Fourier compleja de f, usando el filtro de Hamming es

i (0.54 + 0.46 cos (%")) dye

n=—N

Otro filtro que se usa frecuentemente para el ruido de fondo en una sefial es el filtro de Gauss, llamado asi
en honor del matematico y cientifico del siglo XIX, Carl Friedrich Gauss, estd dado por

2.2
Z(l) — e—(lT[ t ,
en donde a es una constante positiva. La suma parcial filtrada con Gauss de la serie de Fourier compleja
de fes

N
2.2 /A2 :
—an“n”/N mnit/L
/ dye /L

e
n=—N

También se aplica el filtrado en las transformadas de Fourier. La transformada de Fourier filtrada de
f, usando la funcion filtro Z(r), es

f Z() f(E)e% dk.

Si esta integral es aproximada mediante una integral sobre un intervalo finito,

0o L
| zor@ctas~ [ 26 ree e

00 L
entonces es una practica usual, aproximar la integral de la derecha usando la TDF. Los filtros de Cesaro,
Hamming y Gauss para esta integral son, respectivamente,

Z@) =1- H (Cesaro)

wt

Z(t) = 0.54 + 0.46 cos ( 2 ) (Hamming)
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Z(t) = e~/ (Gauss).

SECCION 3.8 PROBLEMAS

En cada problema del 1 al 6, se da una funcién que tiene periodo
p. Calcule la serie de Fourier compleja de la funcién y después
la décima suma parcial de esta serie en el punto indicado f.
Después, usando N = 128, calcule la aproximacién de la TDF
de esta suma parcial en el punto. Aproxime la diferencia entre
Jio(to) y la aproximacién de la TDF.

1. fO)=1+1
2. f(t) =12

3. f(t) = cos(r)
4. f(t)y=e"!
5
6

paral0 <t <2, p=2,1=

ool—  Bl— Bl— o= Nl— ool—

para0 <t <1l,p=1,1
para0 <t <2, p=2,1=
para0 <t <4, p=4,10=
. f) =13 para0<r<1,p=11=
. f(t)=tsen(t) paraO <t <4, p=41=

En cada problema del 7 al 10, haga la aproximacién de la TDF
de la transformada de Fourier de f en el punto dado, usando
N =512y el valor dado de L.

—4t

e parat > 0
7. fO)=
0 parat <0
L=3f#
cos(2t) parat >0
8. f(=
0 parat <0
L=6,fQ2)
0 te™ parat >0
1) =
% 0 parat <0
L=3,f(12)
2
t“cos(t) parat >0
10. f(0) =
0 parat <O
L=4f@

En cada problema del 11 al 14, use la TDF para aproximar
las gréficas de Re[f' ()], Im[f' (0)]y |f(a))| para 0 < w < 3,
usando N = 256. Para estas funciones, f (w) puede ser calcu-
lado exactamente. Dibuje la gréfica de cada aproximacién de
Re| f(w)], Im][ f(a))] y |f(a))| en el mismo conjunto de ejes
junto con la funcién misma.

11. £ () =t [H(t - 1) — H(t - 2)]
12. £ (1) = 24l

13. f() =H(@t) - H({t-1)
14. f(f) = e' [H(t) — H(t - 2)]

En cada problema del 15 al 19, dibuje la grafica de la funcion,
la quinta suma parcial de su serie de Fourier en el intervalo
y la quinta suma de Cesaro, usando el mismo conjunto de
ejes. Repita este proceso para la décima y la vigésimoquinta
sumas parciales. Observe en particular las gréaficas de los pun-
tos de discontinuidad de la funcién, donde aparece el fendmeno
de Gibbs en la suma parcial de la serie de Fourier pero es filtra-
do a partir de la suma de Cesaro.

£ 1 para0 <t <2
1) =
IS. —1 para =2 <t <0
12 para —2 <t <1
16. f(1) =
2+t paral <t <2
—1 para —1§t<:2l
17. f@O) = 0 para —%§l<%
1 para%§t<1

para —3 <t <1

.
18. f(t) =

cos(t) paral <t <3

2+t para —1 <t <0
19. f(r) =

7 para0 <t < 1

para0 <t <2

-1 para —2 <t <0

20. Sea f(t) = {

Dibuje la quinta suma parcial de la serie de Fourier para
f(»en[-2,2], junto con la quinta suma de Cesaro, la quinta
suma parcial filtrada con Hamming y la quinta suma parcial
filtrada con Gauss en el mismo conjunto de ejes. Repita esto
para la décima suma y la vigésimoquinta suma.

t para —2 <t <0

21. Sea f(t) =
F {2+t para0 <r <2

Dibujar la quinta suma parcial de la serie de Fourier para
f () en [-m, ], junto con la quinta suma de Cesaro, la quin-
ta suma parcial filtrada con Hamming y la quinta suma par-
cial filtrada con Gauss en el mismo conjunto de ejes. Repita
esto para la décima y la vigésimoquinta sumas.
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La transformada rapida de Fourier

La transformada de Fourier discreta es una herramienta poderosa para aproximar coeficientes de Fourier,
sumas parciales de la serie de Fourier y transformadas de Fourier. Sin embargo, tal herramienta solamente
es util si hay técnicas de calculo eficientes para llevar a cabo el gran niimero de célculos involucrados en
las aplicaciones tipicas. Aqui es donde aparece la transformada rdpida de Fourier o TRF. La TRF no es
en si una transformacién, es mas bien un procedimiento eficiente para calcular las transformadas de
Fourier discretas. Su impacto, en ingenieria y en ciencias, ha sido profundo en los ultimos 35 afios ya que
convierte a la TDF en una herramienta practica.

En 1965, apareci6 por primera vez formalmente la TRF en un articulo de cinco paginas, “An Algo-
rithm for the Machine Calculation of Complex Fourier Coefficients”, por James W. Cooley de la IBM y
John W. Tukey de la Universidad de Princeton. El catalizador detrds de la preparacién y la publicacién
del articulo fue Richard Garwin, un fisico que fue consultado por las agencias federales en asuntos que
involucraban armas y politicas de defensa. Garwin sabia que Tukey habia desarrollado un algoritmo para
calcular las transformadas de Fourier, una herramienta que Garwin necesitaba para su propio trabajo.
Cuando Garwin llev6 las ideas de Tukey al centro de cémputo de investigacion de la IBM en Yorktown
Heights, con el propésito de que fueran programados, James Cooley fue asignado para ayudarle. Debido
a la importancia de un método eficiente para calcular las transformadas de Fourier, rdpidamente se difun-
dié la noticia sobre el programa de Cooley, y fue tan grande la demanda que motivé la escritura del
articulo Cooley-Tukey.

Después de la publicacién del articulo se encontr6 que algunos de los conceptos fundamentales del
método, o similares a €l, ya habian aparecido en otros contextos. El mismo Tukey ha contado que Phillip
Rudnick, del Instituto Oceanografico Scripps, habia reportado la programacién de un caso especial del
algoritmo, usando las ideas del articulo de G. D. Danielson y Cornelius Lanczos. Lanczos, un fisico-mate-
madtico hingaro, cuya carrera abarcé muchas dreas, habia desarrollado las ideas esenciales alrededor de
1938 y los afios subsecuentes, cuando estaba trabajando en problemas de métodos numéricos y el andlisis
de Fourier. Mucho antes, Gauss habia descubierto esencialmente el anélisis de Fourier discreto calculando
la 6rbita de Pallas, pero por supuesto no habia computadoras en la era napolednica.

En la actualidad la TRF se ha convertido en una parte estandar de cierto software de instrumentacién.
Por ejemplo, FT-NMR, que son las siglas para Transformada de Fourier-Resonancia magnética nuclear
(Fourier Transform-Nuclear Magnetic Resonance, usa la TRF como parte de su sistema de andlisis de
datos.

La razon para este uso extendido es la eficiencia de la TRF, que se puede ilustrar mediante un ejem-
plo simple. Se puede demostrar que, si N es una potencia entera positiva de 2, entonces f(k/L) dada por
la ecuacion (3.24), se puede calcular con no mads de 4N log,(N) operaciones aritméticas. Si se calculan
simplemente todas las sumas y productos que intervienen en el calculo de f{k/L), se deben realizar N — 1
sumas y N + 1 multiplicaciones, cada una duplicada N veces para obtener las aproximaciones en N pun-
tos. Esto es un total de

N(N — 1) + N(N + 1) = 2N?

operaciones. Suponga, para ser especificos, N = 220 = 1048 576. Ahora, 2N2 = 2.1990(10!2). Si la
computadora que se utiliza realiza un millén de operaciones por segundo, este cdlculo requerird alrede-
dor de 2199023 segundos, o casi 25.45 dias de tiempo de computadora. Puesto que un proyecto dado
podria requerir el célculo de la transformada de Fourier de muchas funciones, esto es intolerable en
términos de tiempo y dinero.

En contraste, si N = 27, entonces

4N logy(N) = 2142 logy(21) = n2n+2,

Con n = 20, resultan 83886080 operaciones. A un millén de operaciones por segundo, esto tomard un
poco menos de 84 segundos, una mejora muy sustancial sobre los 25.45 dias.
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El desarrollo es valido sélo en [—1, 1], pero es instructivo ver cémo las sumas parciales del desarrollo de
Fourier-Legendre no tienen relacién en general fuera de este intervalo.

3.9.1 Uso dela TRF en el analisis de densidades de potencia espectral de sefales

La TRF se utiliza rutinariamente para mostrar graficas de densidades de potencia espectral de sefiales. Por
ejemplo, considere la sefial relativamente simple

f () = sen(2r(50)7) + 2 sen(2(120)¢) + sen(2w(175)¢) + sen(2w(210)1).

f(?) estd escrita de esta manera para identificar facilmente las frecuencias de los componentes. Escribiendo
sen(10077) como sen(27(50)7), aparece de inmediato que esta funcién tiene una frecuencia igual a 50. La
figura 3.29 muestra una grafica de la densidad de potencia espectral versus la frecuencia en Hz.
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FIGURA 3.29 Grdfica TRF de la densidad de potencia
espectral de y = sen(1007t) + 2 sen(2407t) 4+ sen(3507t)
+ sen(4201).

(En donde estd 1a TRF aqui? Estd en el software que produjo la grifica. Para este ejemplo, la grifica se
dibuj6 usando MATLAB y una TRF con N = 210 = 1024. Usando el mismo programa y la eleccion de N,
la figura 3.30 muestra la grafica de la densidad de potencia espectral de

g(t) = cos(2m(25)t) + cos(2(80)r) + cos(2w(125)f) + cos(2w(240)t) + cos(2m(315)1).

En ambas graficas los picos aparecen en las frecuencias primarias de la funcion.
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FIGURA 3.30 Grdfica TRF de la densidad de potencia
espectral de y = cos(507t) + cos(1607t) + cos(2507t)
+ cos(480mt) 4+ cos(630mt).
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3.9.2 Filtrando ruido de una senal

Algunas veces se usa la TRF para filtrar ruidos de una sefial. Ya se ha discutido el filtrado, pero la TRF es
la herramienta que lo lleva a cabo. Para ilustrar, considere la sefial

f (@) = sen(2m(25)t) + sen(27(80)¢) 4 sen(2w(125)¢) + sen(2w(240)¢f) + sen(27w(315)1).

Esta es una sefial sencilla. Sin embargo, la sefial mostrada en la figura 3.31 estd mas cercana a la realidad
y se obtuvo de la grafica de f (f) introduciendo un ruido aleatorio de media cero. Si no conoce la sefal
original f (), serd muy dificil identificar a partir de la figura 3.31 los componentes principales de la fre-
cuencia de f (#) debido al efecto del ruido. Sin embargo, la transformada de Fourier ordena las frecuencias.
La densidad de potencia espectral de la sefial ruidosa de la figura 3.31 se muestra en la figura 3.32, donde
las cinco frecuencias principales pueden ser identificadas facilmente. Esta grafica en particular no da las
amplitudes correctamente, pero las frecuencias se mantienen muy bien. La figura 3.32 se hizo usando la
TRF via MATLAB, con N = 29 = 512.

-6 | | | | | | | | | |
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FIGURA 3.31  Una porcion de la sefial y = sen(50rt)
+ sen(1607t) 4+ sen(2507¢) + sen(480st) + sen(6307t)
corrompida por un ruido aleatorio de media cero.
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FIGURA 3.32 Cdlculo TRF de la densidad de potencia
espectral de la sefial de la figura 3.31.




3.9 La transformada rdpida de Fourier 163

3.9.3 Analisis de las mareas en la bahia del Morro

Se usard la TDF y la TRF para analizar un conjunto de datos de la marea, investigando las correlaciones
entre las mareas altas y bajas y las posiciones relativas del Sol, la Tierra y la Luna.

Las fuerzas que causan las mareas eran de gran interés para Isaac Newton, puesto que €l luchaba por
entender el mundo que lo rodeaba y dedicé un espacio considerable en el Principia a este tépico. En un
punto, Newton requirié de tablas nuevas de las posiciones lunares del astrénomo real Flamsteed, quien,
debido a una agenda ocupada junto con una enemistad personal con Newton, no divulgaba. Newton
respondid ejerciendo presion tanto profesional como politica sobre Flamsteed, a través de sus contac-
tos en la corte, finalmente forzaron a Flamsteed a publicar a sus expensas. Afios mas tarde, Flamsteed
recuperd las copias sobrantes de su libro y estd reportado que dejandose llevar por la ira contra Newton
quemo todas las copias.

Fue un triunfo de la teorfa de la gravitacion de Newton, aplicada al sistema compuesto por la Tierra,
la Luna y el Sol lo que permitié a Newton explicar dos de las mareas principales que ocurren cada dia.
También fue capaz de explicar por qué las mareas tienen dos veces al mes maximo y minimo y por qué los
extremos son mayores cuando la Luna estd mas lejos del plano ecuatorial de la Tierra. La 6rbita eliptica
de la Luna respecto a la Tierra también contribuye para la variacién mensual en las mareas altas como
resultado del cambio en la distancia entre la Tierra y la Luna durante el mes.

La Bahia de Morro esta cerca de San Luis Obispo en California. Se ha acumulado una gran cantidad
de datos de como el océano Pacifico entra y sale de la bahia y las mareas bafian la costa. La figura 3.33
muestra una curva dibujada con estos datos dando las alturas de la marea hora a hora en mayo de 1993.
Se analizaran estos datos para determinar las fuerzas primarias que causan estas variaciones en la marea.
Antes de llevar a cabo este andlisis son necesarios algunos prerrequisitos.

La duracién de un dia solar es de 24 horas. Este es el tiempo que tarda la Tierra en dar una vuelta
alrededor del Sol. El dia lunar es 50 minutos mas largo que éste. La Tierra tarda aproximadamente 24.8
horas en girar una vez en relacién con la Luna debido a que la Luna viaja en la direccién de la rotacién
de la Tierra (figura 3.34).

El Sol ejerce sus fuerzas de marea primarias sobre un punto de la Tierra dos veces durante el dia, y
la Luna dos veces cada periodo de 24 horas y 50 minutos. Es mds o menos claro por qué la marea deberia
tener un maximo local en un determinado lugar cuando, ya sea el Sol o la Luna, estd casi arriba de ese
punto. Sin embargo, no es tan obvio que la marea también se eleva en un punto cuando alguno de estos
cuerpos estan en el lado opuesto de la Tierra, como puede observarse. Newton fue capaz de mostrar que
cuando el sistema Tierra/Luna viaja alrededor de su centro de masa (que siempre estd en el interior de la
Tierra), la Luna ejerce una fuerza hacia afuera en el lado opuesto de la Tierra. Lo mismo es cierto para el
sistema Tierra/Sol. Por lo que, tanto el Sol como la Luna causan dos mareas diariamente.
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Altura (0.1 pies por unidad)

210

FIGURA 3.33  Perfil de la marea en la Bahia del
Morro hora a hora en mayo de 1993.
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t = 24 hr 50 min

AN T=~4 t= 24hr
Sol ~
Lunz\l\ Tierra
Ur=0
FIGURA 3.34

Las fuerzas de marea son proporcionales al producto de las masas de los cuerpos involucrados e
inversamente proporcionales al cubo de la distancia entre ellos. Esto nos permite determinar las fuerzas
de marea relativas de la Luna y del Sol sobre la Tierra y sus aguas. Como el Sol tiene una masa aproxima-
damente de 27(10°) veces la de la Luna y estd 390 veces mas lejos de la Tierra de lo que la Luna estd de la
Tierra, la influencia del Sol en las mareas de la Tierra es tinicamente 0.46 veces la influencia de la Luna.

Las mareas semidiarias (dos veces al dia) causadas por el Sol y la Luna no varfan tinicamente entre
los mismos médximos y minimos diarios. Otras fuerzas cambian las amplitudes de estos maximos y mini-
mos. Estas fuerzas son periddicas y son responsables de los pulsos que parecen estar presentes en la figura
3.33. Autoridades en mareas afirman que en realidad hay aproximadamente 390 mareas significativamen-
te medibles. Dependiendo de la aplicacién de los datos, usualmente tinicamente de siete a 12 de éstas se
utilizan para calcular las tablas de marea alta y baja. El resto de esta discusion se centrard en tres de las
fuerzas mas contribuyentes.

Primero, conforme la Luna orbita a la Tierra, la distancia entre ellas cambia de aproximadamente
222000 millas en el perigeo a 253 000 millas en el apogeo. Con la ley de la proporcién inversa del cubo
de las distancias, las diferencias de estas fuerzas es significativa. El tiempo entre el perigeo y el apogeo es
aproximadamente de 27.55 dias.

Ademads, como la Luna le gana al Sol aproximadamente 50 minutos cada dfa, si los tres cuerpos estan
en conjuncién en algiin momento, entonces estardn en cuadratura aproximadamente siete dias después.
Las mareas semidiarias tendran amplitudes maximas cuando todo esté alineado y minimas cuando el
angulo Tierra/Luna/Sol sea de 90 grados. El cambio entre estas mareas maxima y minima nuevamente es
periddica, con un periodo de 14.76 dias, la mitad del tiempo que tarda la Luna en dar la vuelta alrededor
de la Tierra.

La dltima fuerza de mareas es la resultante del hecho de que la 6rbita de la Luna estd inclinada aproxi-
madamente 5 grados respecto al plano que contiene la 6rbita de la Tierra alrededor del Sol. El resultado de
esta desviacion puede notarse observando la posicién de la Luna en el cielo durante un periodo de un mes.
Conforme la Luna gira sobre su 6rbita, estard arriba del hemisferio norte durante un tiempo, ayudando a
crear mareas altas en esa region, después se movera hacia el sur, y mientras estd en el hemisferio sur, hay
poca variacion en las mareas del norte. La Luna tarda 13.66 dias en moverse de su punto mds al norte a
su punto més al sur.

Los periodos principales resultantes de estas fuerzas son el periodo semidiario del Sol de 12 horas; el
periodo semidiario de la Luna de 12 horas, 50 minutos, 14 segundos; un periodo diario lunar-solar de 23
horas, 56 minutos, 4 segundos; y un periodo diario lunar de 25 horas, 49 minutos, 10 segundos.

Ahora considere los datos reales utilizados para generar la grafica de la figura 3.33. Aplique la TRF
para calcular la TDF de este conjunto de 720 puntos de datos, tome sus valores absolutos y dibuje los
puntos resultantes. Este resultado es el espectro de amplitud de la figura 3.35. Las unidades a lo largo del
eje horizontal (frecuencia) son ciclos por 720 horas.

Empezando por el lado derecho del espectro de amplitud en la figura 3.35 y moviéndose hacia la
izquierda. El primer lugar en el que ve un punto alto es aproximadamente en 60, lo que indica un término
en los datos a una frecuencia de 60/720, o 1/12 ciclos por hora. Equivalentemente, este punto denota la
presencia de una fuerza que se siente aproximadamente cada 12 horas. Esta es la fuerza solar semidiaria.

El siguiente punto alto en el espectro de amplitud ocurre inmediatamente a la izquierda del primero,
en 58. La altura de este dato indica que este es el mayor contribuyente a las mareas. Ocurre cada 720/58,
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FIGURA 3.35 Espectro de la marea de la Bahia del Morro.

0 12.4 horas. Esta es la marea lunar semidiaria. También, hay otra actividad de amplitud pequefia cerca de
este punto que se comentara en un momento.

Continuando hacia la izquierda en la figura 3.35, hay una gran contribucién aproximadamente en 30,
indicando una fuerza con una frecuencia de 30/720, o 1/24, es decir, un periodo de aproximadamente 24
horas. Este es el periodo diario lunar-solar.

El dnico otro término significativo estd en 28, indicando una frecuencia de 28/720. Esto se traduce en
un periodo de 25.7 horas e indica el periodo diario lunar.

Asi que se han tomado en cuenta todos los periodos dominantes y no hay ninguna otra informacién
significativa en el espectro de amplitud, excepto por el que se not6 previamente en la regién alrededor de
58. Como el dia lunar no es un mdltiplo exacto de una hora y las muestras de datos se tomaron cada hora,
algunos de los datos asociados con las fuerzas de marea de la Luna se movieron hacia puntos adyacentes.
Esto también deforma las amplitudes, afectando nuestra habilidad para determinar con precisién la razén
Sol/Luna de las fuerzas. El mismo argumento puede aplicarse para algunos de los datos cerca de 28.

No hay otra informacién discernible en el espectro de amplitud, porque todas las otras fuerzas tienen
periodos mayores que un mes, y esto es mayor que el tiempo en que se tomaron los datos de las mareas.

Es interesante especular en lo que Newton podria haber pensado de esta verificacion grafica de su
teoria. Dada su personalidad, es posible que no se hubiera impresionado, habiendo resuelto todo esto por
s{ mismo con su calculo.

SECCION 3.9 PROBLEMAS

En cada uno de los problemas del 1 al 4, utilice un paquete de
software con la TRF para hacer la gréfica del espectro de poten-
cia de la funcién. Use N = 210,

1. y(¢) = 4 sen(80xt) — sen(207t)
2. y(t) = 2 cos(40mt) + sen(907r)
3. y() = 3 cos(90rxz) — sen(3077)

4. y(t) = cos(220st) + cos(70st)

En cada uno de los problemas del 5 al 8, corrompa la sefial con
un ruido aleatorio de media cero y utilice la TRF para dibujar el
espectro de densidad de potencia para identificar las frecuencias
componentes de la sefial original.

5. y(¢) = cos(30mt) + cos(707t) + cos(140mt)

6. y(t) = sen(6077) + 4 sen(13077) + sen(240571)
7. y(t) = cos(20mt) + sen(140mt) + cos(2407t)
8

y(#) = sen(30m7) + 3 sen(407t) + sen(13077)+ sen(1967t) +
sen(2207t)
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CAPIiTULO 4

Funciones especiales,
desarrollos ortogonales
y onduletas

Una funcién es llamada especial cuando tiene alguna caracteristica distintiva por lo cual vale la pena
determinar y recordar sus propiedades y su comportamiento. Quiza los ejemplos mas familiares de fun-
ciones especiales son sen(kx) y cos(kx), que son soluciones de una ecuacién diferencial importante, y” +
k%y = 0y también aparecen en muchos otros contextos.

La motivacién primordial para estudiar ciertas funciones especiales es que aparecen en la resolucién de
ecuaciones diferenciales ordinarias y parciales que modelan muchos fendmenos fisicos, y son las series
de Fourier elementos necesarios en el equipo de herramientas de cualquiera que desee entender y trabajar
con tales modelos.

El andlisis inicia con los polinomios de Legendre y las funciones de Bessel. Estas son importantes
por si mismas, pero también forman un modelo de cémo aproximar funciones especiales y los tipos de
propiedades a buscar. Siguiendo éstas, se desarrolla parte de la teoria de Sturm-Liouville, la cual propor-
cionard un patrén para estudiar ciertos aspectos de las funciones especiales en general, por ejemplo, los
desarrollos con las funciones caracteristicas, de las cuales las series de Fourier son un caso especial. El
capitulo termina con una breve introduccién a las onduletas, como desarrollos ortogonales.

Polinomios de Legendre

Hay muchos acercamientos distintos a los polinomios de Legendre. Aqui se inicia con la ecuacién dife-
rencial de Legendre

(1—x2)y" =2xy 41y =0 4.1
endonde —1 < x < 1y A es un nimero real. Esta ecuacion tiene la forma equivalente
[(1—x%)yT + 21y =0,

la cual se aplica en la solucién de la distribucidn de temperatura en estado estacionario sobre una esfera
solida.

167
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Busque valores de A para los cuales la ecuacion de Legendre tenga soluciones no triviales. Escriba la

ecuacion de Legendre como

2x
1 /
y 1—x2y +

A
1_x2y=0,

concluya que 0 es un punto ordinario. Por tanto, existen soluciones en series de potencias

oo
Y =) anx".
n=0

Sustituya esta serie en la ecuacidn diferencial para obtener

e¢]

o0 o0 o
Zann(n — Dayx" 2 — Zn(n — Dayx" — ZZnanx" + Z)Lanx” =0.
n=2 n=1 n=0

n=2

En la primera sumatoria, recorra los indices para escribir la dltima ecuacién como

e o]

o0 o0 o
Z(n +2)(n + Dapox" — Zn(n — Dayx" — ZZnanx” + Zkanx” =0.
n=1 n=0

n=0 n=2

Ahora combine los términos para n > 2 bajo una sumatoria, escribiendo separadamente los términos n = 0

yn=1:

o0
2ap + 6azx — 2a1x + Aag + Aayx + Z[(n +2)(n + Daps+r — (n2 +n— Naylx" =0.

n=2

El coeficiente de cada potencia de x debe ser cero, asi
2ar + hag = 0,
6az —2a; + ra; =0,
y,paran=2,3,...,
(n+1D(n+2apys — [n(n+1) — rla, =0

para los cuales la relacion recursiva es

nn+1)— A

TR R

A partir de la ecuacion (4.2)

a) = ——ay
A partir de la ecuacion (4.4),
C6—A A6 —x  —M6—1)
BZ= BT Ty T Ty
20 — A —A(6—21)(20 — 1)
ag = a4 = ao,
°= 56 ! 6! 0

" paran =2,3,....

4.2)
(4.3)

4.4)

y asi sucesivamente. Cada coeficiente de indice par a, es un miltiplo de ay que involucraany a L. Aqui
se ha usado la notacion factorial, en donde n! es el producto de los enteros de 1 a n, si n es un entero posi-

tivo. Por ejemplo, 6! = 720. Por convencién, 0! = 1.
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De la ecuacién (4.3),

Entonces, por la relacién recursiva (4.4),

S 2-a 2-n12-2)

BEYS BT T
30-%  @2=n012=1)E0—2)

ar = as = at,
6-7 7

y asi sucesivamente. Cada coeficiente de indice impar a,,+; es un multiplo de a;, donde también estin
involucrados n y A.
De esta manera, escriba la solucién

o0
" A A6 — 1) A6 —21)(20 — 1)
y(x)zngoanx ZGO(I—E.XZ— a0 x4— ol x6+...>

2—A 2—-2012 -2 2—-012—-A — A
3!ﬁ+< g! ) s, 2= ﬂxm >ﬂ+m)

+ ap (x—lr

Las dos series en los paréntesis grandes son linealmente independientes, una contiene s6lo potencias pares
de x, y la otra s6lo potencias impares. Escriba

A A6 — A A6 —21)(20 — A

ho ME=R) 4 M6-MQ0-H) ¢

2 4! 6!

Ye(x) =1—

ko, @=M12-3) 5 @-M(12-1)B0—2) -
T 51 e 7! oA

La solucién general de la ecuacion diferencial de Legendre es

Yo(x) =x +

y(x) = agye(x) + aryo(x),
en donde ay y a; son constantes arbitrarias. Algunas soluciones particulares son:

cont=0ya =0,
y(x) = ap.
cont=2yay=0,
y(x) =ajx.
conr=6ya =0,
() = ap(l = 3x%).
cont=12yay=0,
y(x) =a1(x — %x3).
conr=20ya =0,
y(x) = ap (1—10x2+%5x4),

y asi sucesivamente.
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Py(x)

Py(x) P

P, (x)
\ Py (x)

FIGURA 4.1  Los primeros cinco
polinomios de Legendre.

Los valores de A para los cuales las soluciones son polinomios (series finitas) son A = n(n + 1) para

n=0,1,2,3,...Estono debe sorprenderle ya que la relacién recursiva (4.4) contiene n(n + 1) — A en
su numerador. Si para algin entero no negativo N elige A = N(N + 1), entonces a y + » = 0; asi también
ayys=ayie="""=0,yunode y,(x) o y,(x) contendra sélo un nimero finito de términos distintos de

cero, asi que es un polinomio.

Estas soluciones polinomiales de la ecuacién diferencial de Legendre tienen muchas aplicaciones,
por ejemplo, en astronomia, andlisis de conduccién de calor y en aproximaciones de las soluciones de las
ecuaciones f (x) = 0. Para estandarizar y tabular estas soluciones polinomiales, para cada A = n(n + 1) se
eligen ay o a; de manera que la solucién polinomial tenga el valor 1 en x = 1. Los polinomios resultantes
son llamados los polinomios de Legendre y se denotan usualmente por P,(x). Los primeros seis polino-
mios de Legendre son

P =1, Pi(x)=x, Pyx) = %(3x2 _1), P = %<5x3 3,
1 1
Pi(x) = §(35x4 —30x2+3), Psx)= g(63x5 — 70x3 + 15x).

En la figura 4.1 se dan algunas de las graficas de estos polinomios. P,(x) es de grado n, y s6lo contie-
ne potencias pares de x si n es par, y s6lo potencias impares si n es impar. Aunque estos polinomios
estdn definidos para todo x real, el intervalo importante para la ecuacién diferencial de Legendre es
—l<x<l1.

También sera dtil, tener en mente que si g(x) es cualquier solucién polinomial de la ecuacién de
Legendre con A = n(n + 1), entonces ¢(x) debe ser un multiplo constante de P,(x).

4.1.1 Una funcién generadora para los polinomios de Legendre

Muchas propiedades de los polinomios de Legendre se pueden deducir usando una funcion generadora,
concepto que se desarrolla ahora. Sea

1
VT —2xt + 12

L(x,t) =

Si L(x, t) es desarrollada en una serie de potencias en potencias de ¢, entonces el coeficiente de * es exac-
tamente el n-ésimo polinomio de Legendre.
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TEOREMA 4.1  Funcion generadora para los polinomios de Legendre

L(x,t) = ZPn(x)t”.

n=0

Enseguida un argumento que sugiere por qué esto es cierto. Escriba la serie de Maclaurin de
(1 —w)-z

1 1 3, 15 5 105 , 945
=l+-w+-w+—w+_—uw+_—

w5+. .
T—w 2778 Tag" T 384" T 3840

para —1 < w < 1. Ponga w = 2xt — 2 para obtener

1 1 3 15
=14+t =)+ =t =)+ —=(2xt —1?)?
ST +p 2 )+ i )

105 945
—(2xt =) ———2xt —1*)° .
METT A ryT G i

Ahora desarrolle cada una de estas potencias de 2xt — 12 y agrupe el coeficiente de cada potencia de ¢ en
la expresion resultante:

1 1, 3 3.3, 5 15
L o qax——palep 23 2pa 285 10 2
N A R LR e I LRI S i
15 o 5, 35,, 35, 105,, 35 .
—xt®— = Sttt - — x4 —-=
T T Ty TR T T
35, 63 . 315, 315 .. 315, 315 , 63
=P = ot e - o - — 0
Tt T TR 2T s Tset T

L4 (2 22) e (=2t 20) s
= X —=+=x —=X+ x|
22 272

315, 35 4\, 15 35 5 63 S\ 5
- —— —x* )t —x—— —x |t
+<8 4x+8x> + 8x 4x+8x

= Py(x) + P1(0)t + Po(0)t> + P3(x)t* + Py(0)t* + Ps(x)t® +- - .

La funcién generadora provee una manera eficiente de obtener muchas propiedades de los polinomios
de Legendre. Empiece a usarla para probar que

(=1 y P(=D=(=D"

paran=0, 1,2, ... Primero, haciendo x = 1
1 1 1 ad
L(l,t) = - = = Pu()1".
Vi-2+2 Ja-n? 1-t =

Pero, para —1 <t < 1,
1 o0
— =) 1"
1_[ Z
n=0

Como 1/(1 — ¢) tiene s6lo un desarrollo de Maclaurin, los coeficientes de estas dos series deben coincidir,
asi cada P,(1) = 1.
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Andlogamente,

oo

L(—1,t) = ! - ! _ ! = > Pu(=D1".
Vit +2 A+ 1+ =

Pero, para —1 <t < 1,

1 00
— D",
ERPIS

asi Py(—1) = (— ).

4.1.2 Una relacion recursiva para los polinomios de Legendre

Use la funcién generadora para obtener una relacién recursiva para los polinomios de Legendre.

TEOREMA 4.2  Relacion recursiva para los polinomios de Legendre
Para cualquier entero positivo 7,
(n+1DPpyi1(x) = 2n+ DxPy(x) + nPy—1(x) =0. 4.5)

Prueba Empiece diferenciando la funcién generadora respecto a t:

dL(x, 1)
at

x—1
(1 =2xt +12)3/%

1
= —5 (= 2xi + ) (—2x +21) =

Ahora observe que
dL(x,1)
ot

Al sustituir L(x, £) = > * 0 P,(x) en la dltima ecuacién obtiene
n=l

(1 =2xt +1%)

—(x —1t)L(x,t) =0.

(1 —2xt +12) ann O —(x —1) Z P,(x)t" = 0.

n=l1 n=0

Lleve a cabo las multiplicaciones para escribir
oo o oo o o
D nPy )" =3 2nx Py ()" 4 Y nPy ()" =3 "k Pyt + Y Pyt = 0.
n=1 n=1 n=1 n=0 n=0
Rearregle estas series para tener potencias iguales de 7 en cada sumatoria:

S A DP (0" =) 2nx Py ()" 4+ (n = 1) Py ()"
n=1

n=0 n=2

00 00
~ S xP" + Y Pt (0" = 0.
n=0 n=1

Combinando las sumatorias desde n = 2, escribiendo los términos para n = 0 y n = 1 separadamente:

Pi(x) +2Py(x)t — 2x Py (x)t — x Py(x) — x P1(x)t + Po(x)t

+ ) [+ D Pyp1(x) = 2nx Py (x) + (2 — 1) Py 1 (x) = X Py (x) + Pyi ()] 1" = 0.

n=2
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Para que esta serie de potencias en 7 sea cero para todo ¢ en algun intervalo alrededor del 0, el coeficiente
de ¢ debe ser cero paran =0, 1, 2, . . . Entonces

Pi(x) —xPy(x) =0,
2P(x) —2x Py(x) — x P1(x) + Py(x) =0,

y,paran=2,3,...,

(n+ DPrp1(x) =2nx Py (x) + (n — D Pri(x) — x Py (x) + Pr—1(x) = 0.

Esto da
Pi(x) =xPy(x),

Pr(x) = 3(3xP1(x) — Py(x))

y,paran=2,3,...,
(n+ D Py1(x) — 2n+ DxPy(x) +nPp_i(x) =0.

Como esta ecuacién también es valida para n = 1, establece la relacién recursiva para todos los enteros
positivos. M

Después, necesitara conocer el coeficiente de x" en P,(x). Se usard la relacion recursiva para deducir
una férmula para este nimero.

— TEOREMA 4.3

Paran=1,2,...,seaA, el coeficiente de x* en P,(x). Entonces

Por ejemplo,

1-3 3 1-3-5 5
1 s A2 21 2’ y 3 31 2’

como lo puede verificar de las expresiones explicitas obtenidas con anterioridad para P(x), P>(x) y
P3(x).

Prueba En larelacion recursiva (4.5), la mayor potencia de x que aparece es x+1, y este término aparece
en P, (x) y en xP,(x). Asi el coeficiente de x"*+1 en la relacion recursiva es

(n+ DA — Cn+ DA,

Esto debe ser igual a cero (porque el otro lado de la ecuacion recursiva es cero). Por tanto,

2n + 1
n+1

An—H =

ns
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y esto se satisface paran =0, 1, 2, . . . Ahora puede trabajar hacia atras:
4 _2n+1 _2n+12n—-1+1
T T L =D+
_2n+12n—1
T n41 n -l
_ 2n+12n—12n—-2)+1
T+l n =241 "2
2n+12n—12n -3 2n+12n—12n -3 3
= Apn == .- ZAp.
n+1 n n—1 n+1 n n—1 2
Pero Ay = 1 como Py(x) = 1, entonces
1-3:5----2n—1)Q2n+1)
A = .
n+1 EERNY (4.6)
paran =0, 1,2, ... La conclusién del teorema simplemente establece esta conclusién en términos de A,
enlugarde A, ;. @
4.1.3 Ortogonalidad de los polinomios de Legendre
Probaremos lo siguiente.
TEOREMA 4.4  Ortogonalidad de los polinomios de Legendre en [—1, 1]
Sin y m son enteros no negativos, entonces
1
/ P,(x)Pu(x)dx =0 sin #m. 4.7
-1

Esta relacion con la integral se llama la ortogonalidad de los polinomios de Legendre en [—1, 1]. Esta
clase de comportamiento apareci con las funciones

1, cos(x), cos(2x), . . ., sen(x), sen(2x), . . .

en el intervalo [—m, 7]. La integral, de —m a 7, del producto de dos de estas funciones (distintas) es cero.
Debido a esta propiedad, es posible encontrar los coeficientes de Fourier de una funcién (recuerde el argu-
mento dado en la seccidn 2.2). Perseguird una idea semejante para los polinomios de Legendre después
de establecer la ecuacion (4.7).

Prueba Empiece con el hecho de que P,(x) es una solucién de la ecuacién de Legendre (4.1) para A =
n(n + 1). En particular, si n 'y m son enteros no negativos distintos, entonces

[(1 = x*)Py(x)] +n(n + 1)Py(x) =0

[(1 = x*) Py, ()] + m(m + 1) Py (x) = 0.

Multiplique la primera ecuacion por P,,(x) y la segunda por P,(x) y reste las ecuaciones resultantes para
obtener

[(1 = x%) Py ()] P (x) = [(1 = x%) Py, ()] Py (x) + [ + 1) = m(m + D] P, (x) Py (x) = 0.
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Integre esta ecuacion:

1 1
/ [(1 — x%) P} (x)] P (x) dx — / [(1 — xH) P} (x)] Py(x) dx
—1 —1

1
=mm+1)—nn+ 1)]/ P,(x)Py(x)dx.
-1

Como n # m, la ecuacion (4.7) serd probada al demostrar que el lado izquierdo de la dltima ecuacién es
cero. Pero, integrando por partes el lado izquierdo,

1
1

1
f [(1 = x2) P! ()] P () dx — / [(1 = ¥ P! (O] Pa(x) dx
- -1
1 1
- [(1 —xz)P,;(x)Pm(x)] 1 —/ (1 - xz)P,;(x)P,;(x) dx
- -1

1
11 = )P P + / (1 — x?)PL(x) Pl (x) dx = 0,
—1

y la ortogonalidad de los polinomios de Legendre en [—1, 1] estd probada. M

4.1.4 Series Fourier-Legendre

Suponga que f(x) esta definida para —1 < x < 1. Explore la posibilidad de desarrollar f(x) en una serie de
polinomios de Legendre:

fO) =) cnPu(x). 4.8)
n=0

Una situacién semejante aparecié en la seccion 2.2, excepto que ahf se queria desarrollar una funcién defi-
nida en [—7, 7] en una serie de senos y cosenos. Aplique el mismo razonamiento que entonces condujo al
éxito. Elija un entero no negativo m y multiplique el desarrollo propuesto por P,(x), y después integre la
ecuacion resultante, intercambie la serie y la integral:

1 o 1
/ FEPu(x)dx =) ey / Py (x) Py (x) dx.
-1 n=0 -1

Debido a la ecuacidén (4.7), todos los términos en la sumatoria de la derecha son cero, excepto cuando
n = m. La ecuacién anterior se reduce a

1 1
/ F @) Pu(x) dx = e f P2(x) dx.
—1 _

Entonces

1
0 = f_l f(x)Pm(x)dx. (4.9)
I P2(x)dx

Tomando como guia la serie de Fourier, el desarrollo de > ZOZO ¢, P,(x) serd la serie de Fourier-Legen-
dre, o desarrollo de f(x), cuando los coeficientes son elegidos de acuerdo con la ecuacién (4.9). Los ¢,
seran los coeficientes de Fourier-Legendre de f.

Como con la serie de Fourier, debe plantear la pregunta de la convergencia de la serie de Fourier-
Legendre de una funcién. Esto se hace en el siguiente teorema, que es semejante en forma al teorema
de convergencia de Fourier. Como verd mas adelante, esto no es una coincidencia.
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— TEOREMA 4.5

Sea f'suave a pedazos en [—1, 1]. Entonces, para —1 <x < 1,
. |
D oenPale) =5 (fa) + f(x-)),
n=0

si los ¢}, son los coeficientes de Fourier-Legendre de f. ™

Esto significa que bajo las condiciones en f, el desarrollo de Fourier-Legendre de f(x) converge al
promedio de los limites laterales de f(x) en x, para —1 < x < 1. Esto es a mitad del camino entre el hueco
en los extremos de la grafica en x si f(x) tiene una discontinuidad de salto ahi (figura 4.2). Este compor-
tamiento lo vio antes con la convergencia de la serie (trigonométrica) de Fourier. Si f es continua en x,
entonces f (x+) = f (x—) = f (x) y la serie de Fourier-Legendre converge a f(x).

Como un caso especial de los desarrollos de Fourier-Legendre generales, cualquier polinomio g(x) es
una combinacién lineal de polinomios de Legendre. En el caso de un polinomio, esta combinacién lineal
se puede obtener resolviendo para x* en términos de P,(x) y escribiendo cada potencia de x en g(x) en
términos de los polinomios de Legendre.

Por ejemplo, sea

q(x) = —4 + 2x + 9x°.

Empiece con

x = P(x)
y después resuelva para x2 en Py(x):
Pty =252 = L
2
as{
x? = %Pz(X) + % = %Pz(x) - %Po(x).
Entonces

—4 4 2x +9x2 = —4Py(x) + 2Py (x) +9 (%sz + %Po(x»
= —Py(x) + 2P (x) + 6P5(x).

Ahora puede probar el resultado, quiza sorprendente, que todo polinomio de Legendre es ortogonal
a todo polinomio de grado menor.

L (foegh) + fxg)

' X
| Xo
FIGURA 4.2 Convergencia de un

desarrollo de Fourier-Legendre en una
discontinuidad de salto de la funcion.
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— TEOREMA 4.6

Sea g(x) un polinomio de grado m, y sea n > m. Entonces

1
/ qgx)Py(x)dx =0. m
-1

Prueba Escriba
q(x) = coPo(x) +c1P1(x) + -+ =+ o P (x).

Entonces
1 m 1
/1q<x>Pn<x>dx =Y o [ Pwrwdx=o.
- k=0 “-1

comopara0 <k <m <n, f_ll P (X)P,(x)dx=0. m

Este resultado sera de utilidad muy pronto para obtener informacién acerca de los ceros de los poli-
nomios de Legendre.

4.1.5 Calculo de los coeficientes de Fourier-Legendre

La ecuacion (4.9) para los coeficientes de Fourier-Legendre de f tiene f_ll Pi (x) dx en el denominador. Se
deducird una expresion sencilla para esta integral.

= TEOREMA 4.7

Si n es un entero no negativo, entonces

1
2
P2(x)dx = .
/_1 n(dx =7 .

Prueba Como antes, denote el coeficiente de x* en P,(x) como A,. También denote

1
DPn =/ Pnz(x)dx.
-1

El término de mayor grado en P,(x) es A,x", mientras el término de mayor grado en P,_;(x) es A,_jx"—1.
Esto significa que todos los términos involucrados x" se cancelan en el polinomio

An

q(x) = Pp(x) — xPy_1,
An—1
y asi g(x) tiene grado al menos n — 1. Escriba
Po(x) = q(x) + -=—x Py (x).

n—1

Entonces

1 1
Pn :/ P, (x) Py (x) dx =/ Py (x) <Q(x) + AA" xPn—l(x)) dx
_ -1

1 n—1

An

1
= A f X Py (x)Py—1(x) dx,
n—1 J-1
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ya que fjl q(x)P,(x) dx = 0. Ahora segtn la relacién recursiva (4.5) escriba

n—+1 n
XPy(x) = —— Py 1(X) + —— P 1(x).

2n+1 2n +1
Entonces
P Pat (1) = 2L P (0P (0) + e P2 ()
X (X n_lx_2n+l n+1X) p—1(X 1 n—1),
asi
A, (!
Pn = X Py (x) Py—1(x) dx
An—1 /1
A | nt] /d Prst (¥) Py () dx + — /l P2 (x)d
= xX)P,_1(x)dx x)dx | .
Ay |2n 1 ) et m1) !
Como fj | Pur1(0)P,_1(x) dx = 0, queda
A, n 1 5 Ay, n
= P dx = —Dn_1.
P A,,_12n+1/_1 = P!
Usando el valor antes obtenido para A,,
_1:3.5.---2n—=3)-2n—1) (n—1)! n _2n—1
Pn = nl 3.5 - Qn—3)m+ 11 = 5 Pt

Ahora trabaje hacia atras:

37073 .
332 2 5 2 72
P2—5P1 53 5 P3—7P2—7, P4—9P3—9,
y asi sucesivamente. Por induccidn,
2
Pn = 2n+1’
lo que prueba el teorema. M
Esto significa que el coeficiente de Fourier-Legendre de fes
1
S f@Pdx 2n+1 !
o= PEE I [ for .
[, P2(x)dx 2 Ja

EJEMPLO 4.1

Sea f (x) = cos(mx/2) para —1 < x < 1. Entonces f'y f’ son continuas en [—1, 1], asi el desarrollo de
Fourier-Legendre de f converge a cos(mx/2) para —1 < x < 1. Los coeficientes son

2n+1 (! TX
= > /_1 cos <7> P,(x)dx.
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Debido a que cos(x/2) es una funcién par, cos(zx/2)P,(x) es una funcién impar para n impar. Esto significa
que ¢, = 0 si n es impar. S6lo necesita calcular los coeficientes de indice par. Algunos de éstos son

5/1 (rrx> 1(3 2 hd 10712—12
= = cos|— )= — =
=3/, 2 )2 * 3
9 ! xy 1 4 5 7 +1680 — 18072
64—5/;1005(7)§(35x —~30x2+3) dx =18 = .

Entonces, para —1 <x < 1,

Tx 2 72— 12 7% 4+ 1680 — 18072
coS (—) — + 10

5 — Pa(0) + 18 — Py(x) + - -

2 mr-12 .,
== +5———0x" -+
T T

9 74 + 1680 — 18072
4

. (35x4—30x2+3)+~--.
T

Aunque en este ejemplo, f(x) es lo suficientemente simple para calcular exactamente algunos coeficientes de
Fourier-Legendre, en una aplicacién tipica usaria un paquete de software para calcular los coeficientes. Los
términos calculados dan la aproximacién

cos(mx/2) & 0.63662 — 0.34355(3x2 — 1) 4 0.0064724 (35x* — 30x? +3) + - --
= 0.99959 — 1.2248x2 + 0.22653x* + - - .

FIGURA 4.3 Comparacion de cos(rtx/2)
con una suma parcial de una serie en el
desarrollo en polinomios de Legendre.

La figura 4.3 muestra la grafica de cos(mrx/2) y los tres primeros términos distintos de cero de su desarrollo
de Fourier-Legendre. Esta serie concuerda muy bien con cos(wx/2) para —1 < x < 1, pero las dos diver-
gen una de la otra fuera de este intervalo. Esto enfatiza el hecho de que el desarrollo Fourier-Legendre es
s6lopara —1 <x<1. ®

4.1.6 Los ceros de los polinomios de Legendre

Po(x) = 1 y no tiene ceros, mientras que P;(x) = x tiene exactamente un cero, a saber x = 0. Py(x) = %
. ~ . z
(3x2 — 1) tiene dos ceros reales, +1/,/3. P3(x) tiene tres ceros reales, a saber 0 y +/3/5. Después de n = 3,



180 CAPITULO 4  Funciones especiales, desarrollos ortogonales y onduletas

encontrar los ceros de los polinomios de Legendre rapidamente se vuelve complicado. Por ejemplo, P4(x)
tiene cuatro ceros reales, y son

j:% (525 + 70@) y =+ % (525 - 70«/@).

Estos son aproximadamente +0.8611 y +0.3400.

Cada P,(x) recién examinado tiene n raices reales, todas estan en el intervalo (—1, 1). Se probara que
esto es cierto para todos los polinomios de Legendre. Esto incluye Py(x), que por supuesto no tiene raices.
La prueba de esta aseveracion se basa en la ortogonalidad de los polinomios de Legendre.

= TEOREMA 4.8 Los ceros de P,(x)
Sea n un entero positivo. Entonces P,(x) tiene n raices reales y distintas, todas en (—1, 1). M

Prueba Primero probara que si P,(x) tiene una raiz real xo en (—1, 1), entonces esta raiz debe ser simple
(es decir, no repetida). Suponga que xo es una raiz repetida. Entonces P,(xo) = P, (xo) = 0. Entonces P,(x)
es una solucién del problema con valor inicial

(A =xHY) +nm+1)y=0;  y@o) =y (x) =0.

Pero este problema tiene una solucién unica, y la funcién trivial y(x) = 0 es una solucién. Esto implica
que P,(x) es la funcidn cero en un intervalo que contiene a xy, y esto es falso. Asi P,(x) no puede tener una
raiz repetida en (—1, 1).

Ahora suponga que 7 es un entero positivo. Entonces P,(x) y Py(x) son ortogonales en [—1, 1], asi

1 1
/ P,(x)Py(x)dx = / P,(x)dx =0.
-1 —1

Por tanto, P,(x) no puede ser estrictamente positivo o estrictamente negativo en (—1, 1), ya que debe cam-
biar de signo en este intervalo. Como P,(x) es continuo, debe existir algin x; en (—1, 1) con P,(x;) = 0.
Hasta aqui, esto da un cero real en este intervalo.

Sean xy, . . ., x,, todos los ceros de P,(x) en (—1, 1), con —1 <x; < *** <x, < 1. Entonces 1 <m
< n. Suponga que m < n. Entonces el polinomio

g(x) = (x —x)(x —x2) - (x — xp)

tiene grado menor que 7, y es ortogonal a P,(x):

1
/ q(x)P,(x)dx = 0.
-1

Pero ¢g(x) y P,(x) cambian de signo exactamente en los mismos puntos en (—1, 1), a saber en x, . . .,
X, Por tanto, g(x) y P,(x) son ambos del mismo signo en cada intervalo (—1, xy), (x1, x2), . . ., (X, 1) 0
de signo opuesto en cada uno de estos intervalos. Esto significa que g(x)P,(x) es estrictamente positiva
o estrictamente negativa en (—1, 1) excepto en un nimero finito de puntos x, . . ., x,, donde este producto
vale cero. Pero entonces la fjl q(x)P,(x) dx debe ser o positiva o negativa, lo cual es una contradiccion.

Se concluye que m = n, de donde P,(x) tiene n ceros simples en (—1, 1). M

Si se remite a las graficas de Py(x) hasta P4(x) en la figura 4.1, vera que cada uno de estos polinomios
de Legendre cruza el eje x exactamente n veces entre —1 y 1.
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4.1.7 Formulas de la derivada y la integral para P,(x)

Se deducirdn dos férmulas adicionales para P,(x) que algunas veces son utilizadas para analizar mas
ampliamente los polinomios de Legendre. La primera da el n-ésimo polinomio de Legendre en términos
de la n-ésima derivada de (x2 — 1)~

TEOREMA 4.9 Foérmula de Rodrigues

Paran=0,1,2,...,

1 d"
2p! dx"

Py(x) = ((x* =",

En este enunciado, se entiende que la derivada de orden cero de una funcién es la misma funcién. Ast,
cuando n = 0, la férmula propuesta da

1 do 2 0 2 0
zo—mm((x —D)=G"-D"=1=Pyx).
paran=1da
1 d , 1
2(1!)dx(x ) 2(X) x = P1(x),
yparan =2,da
1 a

1 3 1
2 2 2 2
4 —DH = (2x2—4) = Zx2 — 2 = Py(x).
20 d? ((x )7 8( X ) X T3 2 (x)
Prueba Sea w = (x2 — 1)". Entonces
w =n(x*— 1" 12x).
Entonces

(x* — Dw' — 2nxw = 0.

Si se deriva esta ecuacion k + 1 veces, es un ejercicio rutinario verificar que obtiene

5 dk+2 k+lw
d*w
—[2n+(2n—2)+~--+(2n—2(k—l))+2n—2k)]d—k:O.
X
Haciendo k = n, obtiene
) d" 2y d"lw
CaY dxn+2 +2x dxn+1
d"w
—R2n+2n—-2)+---4+2n—-2(n—1)) + 2n — 2n)] T =0.
X

La cantidad entre corchetes en esta ecuacion es
2n+Q2n—2)+---+2,
que es la misma que

21424 +n).
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Pero esta cantidad es igual a n(n + 1). (Recuerde que Zil j= %n(n + 1)). Por tanto,

dn+2w dn—i—lw d"w

2 —
x“—=1) FRET) + 2x P —nn+1) T = 0.

Multiplicando esta ecuacién por —1,

dn+2w dn+1 w d"w

2 _
(1 —x7%) T —2x P +nn+1) FrT =0.

Pero esto significa que d"w/dx" es una solucién de la ecuacién de Legendre con A = n(n + 1). Mds atn,
la derivacién repetida del polinomio (x2 — 1) produce un polinomio. Por tanto, la solucién polinomial
dmwldx" debe ser una constante multiplo de P,(x):

d"w
dxn

— cPy(x). (4.10)

Ahora, el término de mayor grado en (x2 — 1) es x22, y la n-ésima derivada de x2" es
2n(2n —1)---(n + 1)x".
Por tanto, el coeficiente de la mayor potencia de x en dw/dx" es 2n(2n — 1) + + + (n + 1). El término de

mayor orden en cP,(x) es cA,, donde A, es el coeficiente de x" en P,(x). Sabe que A,, de donde la ecuacién
(4.10) da

1-3.5-.2n—1)

2n2n—1)---(n+1)=cA, =c¢ '
n!

Entonces

1-3-5..... Qn—1) 1-3:5---Q2n—1)

Pero ahora la ecuacion (4.10) se convierte en

d}’l
dx"

2= 1" =2"n!P,(x),

que es equivalente a la formula de Rodrigues. M
Ahora deducird una férmula para la integral de P,(x).

Paran=0,1,2,...,
1 (" n
P,,(x):—/ (x+ x2—1cos(9)) de.
T Jo

Por ejemplo, con n = 0 obtiene

v

1 s
/ do =1 = Py(x).
0
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Con n = 1 obtiene

1 s

—/ (x+ Va2 = Teos®) do = x = Py (),
T Jo

y con n = 2 obtiene

1cos(9)) d6

1= w1m
o\ac\

(e
(x + 2xv/x2 1005(6) + (x 1) COSZ(G)) do

D] Ww oy
[ ]

=
I

= P (x).

| =

Prueba Sea
17 .
Qn(x)z—/ (x+ x2—1cos(0)) de.
T Jo

La estrategia detrds de la prueba es determinar que Q, satisface la misma relacién recursiva que los
polinomios de Legendre. Como Qy = Py y O, = Py, esto implicard que Q, = P, para todo entero no
negativo n. Prosiga:

(n+1DQnt1(x) = 2n+ DxQn(x) +nQp—1(x)

1 T n+1
_nt / (x +vVx2 - lcos(e)) do
T 0

2 1 [T n
o / X (x +Vx2 — 1cos(9)) do
T 0

n 7~ n—1
+ = f (x+ Va2 = Teos®)  ap.
T Jo
Después de un célculo directo pero largo, encuentre que
(n+1D0np1(x) = 2n+ DxQn(x) +nQp—1(x)

_" /ﬂ (x +Vx2 - 1005(0))’171 (1 — x2) sen(9) dO
0

v

| [ 0
+ —/ (x +Vx2 - 1cos(9)) Vx2 — 1cos(6) db.
T Jo

n —_—
Integre la segunda integral por partes, con u = (x +Vx? — lcos(B)) y dv = x2 — 1 cos(#) dO para
obtener

(n+1D0np1(x) = 2n+ DxQn(x) +nQp—1(x)

_n" fﬂ (x +v/x2 - 1005(9)>n7] (1 — x2) sen(0) d
0

T

+ [% (x +vx2— 1cos(9)>n V2 — lsen(G)]

0
_ % /n Vx2 — Isen(®)n (x +Vx2 -1 cos(@))n_1 Vx? —1(—sen(0)) do
0
=0,

completando la prueba. M
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gl

SECCION 4.1 PROBLEMAS

Paran =0, 1, 3, 4, 5, verifique por sustitucién que P,(x) es
una solucién de la ecuacién de Legendre correspondiente a
A=n(n+1).

Use la relacion recursiva (teorema 4.2) y la lista de Py(x),
..., Ps(x) dada con anterioridad para determinar Pg(x) hasta
Pyo(x). Dibuje las gréficas de estas funciones y observe la
localizacion de sus ceros en [—1, 1].

Use la férmula de Rodrigues para obtener P;(x) hasta
P S(X).

Use el teorema 4.10 para obtener P3(x), P4(x) y Ps(x).
Puede probarse que

[n/2]
Pa(x) = Y (—=DF
k=0

2n — 2k)!
2kl (n — k)!(n — 2Kk)!

n—2k

Use esta féormula para generar Py(x) hasta Ps(x). El simbolo
[n/2] denota el médximo entero menor que n/2.
Pruebe que

n n! dk n—k

n d n
P"(x):gom Tl D [ = D",

Sugerencia: Escribax2 — 1 = (x — 1)(x + 1) en la férmula
de Rodrigues.

Sea n un entero no negativo. Use la reduccién de orden y
el hecho de que P,(x) es una solucién de la ecuacién de
Legendre con A = n(n + 1) para obtener una segunda solu-
cién linealmente independiente:

1
On(x) =P (X)[—dx
! T PP - 22)
Use el resultado del problema 7 para probar que

1 1
00(x) =—51n< ”),

1—x

X 1 +x
Q1(X)=1—51r1<1 )

— X

Or(x) = Z(3x — l)ln(] —x) — Ex

para—1 <x < 1.

El potencial gravitacional en un punto P: (x, y, z) debido a
una unidad de masa en (x, Yo, zo) €S

1
Vo =302+ 0 -y + 2 —20?

ox,y,2) =

Para algunos propdsitos (tales como en astronomia) esto es
conveniente para desarrollar ¢(x, y, z) en potencias de r o

Funciones especiales, desarrollos ortogonales y onduletas

1/r, donde r = x2 + y2 + z2. Para hacer esto, introduzca el
angulo mostrado en la figura 4.4. Sead = \f’x% +yi+z3y
R=(x —x0)%>+ (y — y0)> + (z — 20)>.

P:(x,y,2)

0,000 4 (20

FIGURA 4.4

(a) Use la ley de los cosenos para escribir

1
dy/T=2(r/d) cos(0) + (r/d)2

p(x,y,2) =

(b) A partir de la discusion de la funcion generadora para los
polinomios de Legendre, recuerde que, si 1/ J1 = 2at + 2
es desarrollado en serie alrededor de 0, converge para |7| < 1,
entonces el coeficiente de 1 es P,(a).

(c) Sir < d, sean a = cos() y t = r/d para obtener

o]

1
o) = Z yEs Py (cos(@)r".
n=0

(d) Si r > d, pruebe que

1 = n —n
o(r) = ;nX:(:)d P, (cos(0))r™".

> 1 1 1
10. Pruebe que P (ﬁ) P, <§> = ﬁ

11. Sea n un entero no negativo. Pruebe que

N (2n)!
Pr1(0) =0y Pyu(0) =(=1) P2
12. Desarrolle cada uno de los siguientes polinomios en una

serie de polinomios de Legendre:

(@A) 1+2x—x2

(b) 2x + x2 — 5x3

()2 — x2 4+ 4x4

En cada problema del 13 al 18, encuentre los primeros cinco
coeficientes del desarrollo de Fourier-Legendre de la funcién.
Dibuje la grafica de la funcién y la suma de los primeros cinco
términos de este desarrollo en el mismo conjunto de ejes, para
-3 <x<3.
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El desarrollo es valido sélo en [—1, 1], pero es instructivo ver 16. f(x) = cos(x) — sen(x)

como las sumas parciales del desarrollo de Fourier-Legendre no

tienen relacion en general fuera de este intervalo. —1 para —1<x <0
17. f(x) =

13. f(x) = sen(7x/2) 1 para0 <x <1

14. f(x) =e >

15. f(x) = sen?(x) 18. f(x) = (x + 1) cos(x)

4.2 Funciones de Bessel

TEOREMA 4.11 Propiedad factorial de la funcion gamma

Ahora se desarrollard la segunda clase de funcién especial usada para introducir el tépico general de fun-
ciones especiales.
La ecuacién diferencial de segundo orden

4

2 / 2_ 2
X7y taxy + (@ =)y =0
es llamada la ecuacién de Bessel de orden v. Asi el término orden aqui se usa en dos sentidos, la ecuacion
diferencial es de segundo orden, pero por tradicién se dice que la ecuacidn tiene orden v para referirse al
parametro v que aparece en el coeficiente de y.
Mediante el método de Frobenius se puede encontrar una solucién en serie

- (="
NOEXDS X
n=0

221011 +v)R +v) -+ - (n+v)

en donde ¢, es una constante distinta de cero y v > 0. Esta solucién es valida en algtn intervalo (0, R),
que depende de v.
Serad util escribir esta solucién en términos de la funcién gamma que se desarrolla ahora.

4.2.1 La funcién gamma

Para x > 0, la funcion gamma I" esta definida por
o
I'x) = / e dt.
0

Esta integral converge para todo x > 0. La funcién gamma tiene una historia fascinante y muchas propie-
dades interesantes. Para este caso, la mas util es la siguiente:

Si x > 0, entonces
F'x+1) =xI'k).

Prueba Si0 < a < b, entonces integre por partes, con u = £y dv = e~ dt, para obtener
b b b
/ e dt = [t (—e)]) — / xt*N(=1e " dt
a a

b
= —bet 4 ate +x/ e~ dr.
a
Tome el limite de esta ecuacién conforme a — 0+ y b — oo para obtener

o0 o0
/ e ldt =T(x+1) :x/ e dt = xT'(x).
0 0



186

CAPITULO 4  Funciones especiales, desarrollos ortogonales y onduletas

La razén por la cual ésta se llama propiedad factorial puede verse haciendo x = n, un entero positivo.
Repitiendo la aplicacion del teorema, obtiene

F'n+1)=nl'n)=nl'(n—-—1)4+1)=n(n—1HI'nh—-1)
=nn—DI'(n—-2)+1)=nn—1)(n—-2)I'(n —2)
=-.=nn—1Dn=2)---)(HI'(1) = n!T'(1).

Pero

o0
r'(1) =!/i eldt =1,
0

de manera que
'h+1)=n!

para cualquier entero positivo n. Esta es la razén para el término propiedad factorial de la funcién
gamma.

Es posible extender I'(x) a valores negativos (pero no enteros) de x usando la propiedad factorial. Para
x > 0, escriba

I'x) = )lcl"(x +1). 4.11)

Si —1 < x < 0, entonces x + 1 > 0 asi I'(x + 1) estd definida y use el lado derecho de la ecuacién (4.11)
para definir I'(x).

Una vez que ha extendido I'(x) a —1 < x < 0, puede permitir —2 < x < —1. Entonces —1 <x+ 1 <
0 de manera que I'(x + 1) ha sido definida y puede usar nuevamente la ecuacién (4.11) para definir I'(x).
En este camino puede avanzar hacia la izquierda a lo largo de la recta real, definiendo I'(x) en (—n—1,—n)
en cuanto ha sido definida en el intervalo (—n, —n + 1) inmediatamente para la derecha.

Por ejemplo,
r 1) = 1F 1+1 =-2r !
2) -1 2 B 2)’
3 1 3 2 1 4 1
rNN—-—z)=—r'{—z+1)=—IT'(—=|)==T(=]).
(3)= (5 r) =3 (3)=57()

La figura 4.5(a) muestra una graficade y = I'(x) para 0 < x < 5. En las figuras 4.5(b), (c) y (d) se dan
las gréficas para —1 < x <0, -2 <x < —1,y —3 < x < —2, respectivamente

y y
20 - —-10
15~ ——20
10 1= ——30
N ——40

| | | | Ly x ! ! ! ! ! X
0 1 2 3 4 5 1.0 —0.8 —0.6 —0.4 —0.2 0

FIGURA4.5(a) I'(x)para0 <x <>5. FIGURA 4.5(b) ['(x) para —1 <x < 0.



4.2 Funciones de Bessel 187

y y

or —-50

30 — 10k

20 + sk

10 |~ 0k

| | | | [ | | | | |

20| -1.8 -1.6 -14 -12 -1.0 —-3.0| —2.8 —2.6 —24 —22 —2.0
FIGURA 4.5(c) I'(x)para —2 <x < —1. FIGURA 4.5(d) ['(x) para —3 <x < —2.

4.2.2 Funciones de Bessel de la primera clase y soluciones de la ecuacion de Bessel

Ahora regrese a la solucién de Frobenius y(x) de la ecuacién de Bessel dada arriba. Parte del denominador
en esta solucién es

A+vQ2+v)---(n+v),
en la cual suponga que v > 0. Ahora use la propiedad factorial de la funcién gamma para escribir

F'm+v+1D)=m+v)[L(n+v)

m+vyn+v—-—DI'n4+v—1)
ce=m4+viin+v—1---n+v—m—-—1)r+v—(n-1))
T+v)2+v)---(n—14+v)(n+v)'(v +1).

Por tanto,

Tn+v+1)

T+v)2+v)---(n4+v)= NCESN)

y escriba la solucién como

o
(=D'Tw+1D) 5y,
y(x) _60;22"n!1“(n+v+1)x .

Es habitual elegir
1
(o= ——.
2'T(v+ 1)
para obtener la solucién denotaremos como J,,(x):
o
—1)n
Jv (x) — Z ( ) x2n+v.

2n+
n=02 "plll(n4+ v+ 1)

J,, es llamada una funcion de Bessel de la primera clase de orden v. La serie que define J,(x) converge
para todo x.

Debido a que la ecuacion de Bessel es de segundo orden (como una ecuacién diferencial), es necesa-
ria una segunda solucion, linealmente independiente de J,,, para escribir la solucién general. La ecuacién
indicial de la ecuacién de Bessel es 2 — v2 = 0, con raices &v. La clave radica en la diferencia, 2v, entre
estas raices. Omitiendo los detalles del andlisis, aqui estdn las conclusiones.
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1. SiZ2vno es un entero, entonces J, y J_, son linealmente independientes (ninguna es un multiplo
constante de la otra), y la solucién general de la ecuacién de Bessel de orden v es

y(x) =aJdy,(x)+bJ_,(x),

con a y b constantes arbitrarias.

2. Si2vesun entero positivo impar, por ejemplo 2v = 2n + 1, entonces v =n + % para algtn entero
positivo n. En este caso, J,, y J_, siguen siendo linealmente independientes. Se puede probar que
en este caso J,11»(x) y J_,_12(x) pueden expresarse en forma cerrada como una suma finita de
términos que involucran raices cuadradas, senos y cosenos. Por ejemplo, manipulando la serie
para J,(x), se encuentra que

2 2 2 [sen(x)
Jipx) = ;sen(x), Jo12(x) = ECOS(x), J3p2(x) = pl R —cos(x) |,

y

/2 cos(x)
J3p(x) = P [— sen(x) — P ] .

En este caso, la solucién general de la ecuacién de Bessel de orden v es
y&x) = adpy12(x) +bJ_p—12(x),

con a y b constantes arbitrarias.

3. 2vesun entero pero no es de la forma n + % para cualquier entero positivo n. En este caso, J,(x)
y J_,(x) son soluciones de la ecuacion de Bessel, pero son linealmente dependientes. Uno puede
verificar a partir de la serie que en este caso,

Jv(x) = (=D"Jy(x).

En este caso debe construir una segunda solucién de la ecuacion de Bessel, linealmente indepen-
diente de Jv(x). Esto conduce a las funciones de Bessel de segunda clase.

4.2.3 Funciones de Bessel de segunda clase

Otra solucién para la ecuacion de Bessel para el caso v = 0. Era

(_l)n+l

nu)=munmm+§:?ﬁgpmmﬁ%
n=1 :

en donde
1 1
By =1+ =+ 4.
2 n

En lugar de usar esta solucién como esta escrita, es habitual usar una combinacién lineal de y,(x) y
Jo(x), la cual, por supuesto, serd una solucién. Esta combinacion se denota como Y(x) y estd definida para
x > 0 por

2
Yox) = — [y2(0) + (¥ —In@2)) Jo(x)]
donde y es la constante de Euler, definida por

y = lim (@) — In(n)) = 0.577215664901533 . . . .
n—>0oo
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Jo'y Yy son linealmente independientes debido al término In(x) en Y((x), y por tanto, la solucién gene-
ral de la ecuacion de Bessel de orden cero es

y(x) = aJo(x) + bYp(x),

con a y b constantes arbitrarias. Y, es llamada funcion de Bessel de segunda clase de orden cero. Con la
eleccidn hecha para las constantes en la definicién de Y, esta funcién también se llama funcion de Neu-
mann de orden cero.

Si v es un entero positivo, a saber v = n, en una deduccién semejante a la de Yj(x), pero con mas
detalles en los célculos llega a la segunda solucién

00 ink+1
Y, (x) = ; [Jn(x) [m (%) + y] n Z (=D Bk) + Bk + 1)]x2k+":|
k=1

22k +Tk 1 (k 4 n)!

2 (—k—1)
- ;Z 22k—n+1p) X .
k=0

Esto coincide con Y(x) si n = 0, con la advertencia que en este caso no aparece la tGltima sumatoria.
La solucién general de la ecuacion de Bessel de orden un entero positivo n es por tanto

y(x) = aln(x) + bY,(x).

Hasta aqui, Y,(x) para v un entero no negativo. No es necesaria esta funcién de Bessel de segunda
clase para la solucién general de la ecuacién de Bessel en otros casos. Sin embargo, es posible extender
esta definicion de Y, (x) para incluir todos los valores reales de v haciendo

1

Yy(x) = ———[/v(x) cos(v) — J», ()]
sen(vimr)

Para cualquier entero no negativo n, muestre que

¥y (x) = lim ¥, (x).

Y, es funcion de orden v de Neumann-Bessel. Esta funcién es linealmente independiente de J,,(x) para x > 0,
y permite escribir la solucién general de la ecuacién de Bessel de orden v en todos los casos como

y(x) = aly(x) + b, (x).

En las figuras 4.6 y 4.7 se muestran las graficas de algunas funciones de Bessel de ambas clases.

y y
1.0 = y = J,(x) 04
- 0.2 —
L y=J,) | v sy I Ny S X
I Y = Jyx) e >
y =Y,
02 F - N ’
I T IV VA TR VA W X Y=Y y=Yw
1 3
FIGURA 4.6 Funciones de Bessel de la FIGURA 4.7 Funciones de Bessel de la

primera clase. segunda clase.



190 CAPITULO 4  Funciones especiales, desarrollos ortogonales y onduletas

Es interesante observar que las soluciones de la ecuacién de Bessel ilustran todos los casos del teo-
rema de Frobenius. El caso 1 ocurre si 2v no es un entero, el caso 2 si v = 0, el caso 3 sin término loga-
ritmosiv=n+ % para algtin entero no negativo n, y el caso 3 con un término logaritmo si v es un entero
positivo.

En las aplicaciones y los modelos de sistemas fisicos, la ecuacién de Bessel aparece en forma dis-
frazada, requiriendo de un cambio de variables para escribir la solucién en términos de las funciones de
Bessel.

EJEMPLO 4.2

Considere la ecuacion diferencial
9x2y” —27xy’ + 9x? + 35)y =0.
Sea y = x2u y calcule
y = 2xu + X2, vy = 2u + 4xu’ + x2u”.
Sustituya éstos en la ecuacion diferencial para obtener
18x2u + 36x3u’ 4+ 9x*u” — 54x%u — 273U’ + 9x*u + 35x%u = 0.
Agrupe términos para escribir
Ox*u” 4 9x3u’ + (9x* — xHu = 0.
Divida entre 9x2 para obtener
x2u’ + xu' + (x2 — é) u=0,
que es la ecuacion de Bessel de orden v = % Como 2v no es un entero, la solucién general para u es
u(x) =alyz(x) +bJ_13(x).
Por tanto, la ecuacién diferencial original tiene solucion general
y(x) = ax?Jy3(x) + bx*J_13(x)
parax > 0. W

Si a, b, y c son constantes y n es cualquier entero no negativo, entonces, es rutinario probar que
xaf,(bxc) y xaY,(bxc) son las soluciones de la ecuacion diferencial general

20 — 1 ] 2 _ .22
y' - ( . )y/ + <b202x2‘2 +I < )y =0. (4.12)
X X

EJEMPLO 4.3

Considere la ecuacion diferencial

243 —1 61
y' - (f—) y + <784x6 — —2) y=0.
X X
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Para encajar esto dentro del esquema de la ecuacion (4.12), debe elegir claramente a = V3. Debido al
término x°, intente poner 2¢ — 2 = 6, asi ¢ = 4. Ahora debe elegir b y v de manera que

784 = b*c* = 16b7,
dedonde b =7,y
a*> — vt =3 — 160> = —61.
Esta ecuacion se satisface por v = 2. Por tanto, la solucién general de la ecuacién diferencial es
y(x) = clxﬁJz (7x4> + czxﬁY2(7x4),

parax > 0. Aqui c¢; y ¢, son constantes arbitrarias. B

4.2.4 Funciones de Bessel modificadas

Algunas veces un modelo de un fenémeno fisico requerird una funcion de Bessel modificada para su solu-
cion. Se probard cdmo se obtienen €stas. Empiece con la solucién general

y(x) = c1Jo(kx) + c2Yp(kx)
de la funcién de Bessel de orden cero
1
y// + _y/ + k2y —=0.
X
Sea k = i. Entonces
y(x) = c1Jo(ix) + c2Yp(ix)
es la solucién general de
" 1 /
y+-y-y=0
X

para x > 0. Esta es una ecuacion de Bessel modificada de orden cero, y Jo(ix) es una ecuacion de Bessel
modificada de primera clase de orden cero. Usualmente se denota

. L, I 1 6
Ip(x) = Jo(ix) =1+ x" 4+ 5=x"+ -

22 2242 224262 X
Normalmente no se usa Y(ix), pero se elige la segunda solucién como
1
Ko(x) = [In(2) — y Ho(x) — Io(x) In(x) + sz +---

para x > 0. Aqui y es la constante de Euler. K es una funcion de Bessel modificada de segunda clase de
orden cero. La figura 4.8 muestra las graficas de Iy(x) y Ko(x).

y
5k y=1,x)
1= v =K

X
0 3

FIGURA 4.8 Funciones de Bessel
modificadas.
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La solucién general de
" 1 / _
YA+ —-y-y=0
X
€S por tanto
y(x) = cilo(x) + c2Ko(x)

para x > 0. La solucién general de

1
y”+;y’—b2y=0 (4.13)
€S
y(x) = c1lo(bx) + c2Ko(bx) (4.14)
para x > 0.

Por un célculo rutinario usando el desarrollo en serie, encuentre que
X /
xlp(ax)dx = —Iy(ax) +C
o

para cualquier constante distinta de cero «.

Con frecuencia se tiene interés en el comportamiento de una funcién cuando la variable toma valores
extremadamente grandes. Esto se llama el comportamiento asintdtico, y se abordard mas adelante con
cierto detalle, en general, para las funciones de Bessel. Sin embargo, con sélo algunos renglones de traba-
jo es posible tener alguna idea de cémo /(x) se comporta para x grande. Empiece con

1
y//_i__y/_y:(),
X

en donde cly(x) es una solucién para cualquier constante c. Bajo el cambio de variables y = ux—1/2, esta
ecuacidn se transforma en
1
"' =(1- — | u,
4x

con solucién u(x) = c4/xIp(x) para x > 0 y ¢ cualquier constante. Siga transformandola haciendo
u = ve*, obteniendo

v”+2v'+iv =0
4x2 ’

con solucién v(x) = c/xe ¥ Iy(x). Como esta interesado en el comportamiento de las soluciones para x
grande, intente una solucién en serie de esta ecuacién diferencial para v de la forma

1 1 1
vx) =l+ci—-+a—s+a5+-.
X X X
Sustituya en la ecuacién diferencial y agrupe los términos para obtener

1\ 1 1 1
_ZCI+Z ;-ﬁ- 261—462+ch e

1 1 1 1
+ (6c) —6c34+ —c2 ) — + | 12¢3 — 8¢y + —c3 +---=0.
4 x4 4

x5
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Cada coeficiente debe hacerse cero, asi

1
-2 - =0,
C1+4

1

2c) —4cr + —-c1 =0,
4
1

6cy) — 6c3 + Zcz =0,

1
12¢3 — 8¢ + ZC3 =0,
y asi sucesivamente. Entonces
1
cl=—,
=3
9 91 3
16 168 2.8
25 25 32 3252
= —C) = — = = — =,
STUTT w2 T g
49 493252 325272

“TRCT 03 T At

Cy) =

y el patrén es claro:

=) 1+11+ 32 1+32521+3252721
v(x) = -—— — — —
8x 2-82x2 3183 3 4184 x4

Entonces, para alguna constante c,

hy=cm(Itsxtrge T age ™ st
La serie de la derecha diverge, pero la suma de los primeros N términos se aproxima a I(x) tanto como
quiere, para x suficientemente grande. Esto se llama desarrollo asintético de Iy(x). Por un anélisis, que no
llevard a cabo, se puede probar que ¢ = 1/+/27.
Estos resultados, acerca de las funciones modificadas de Bessel, serdn aplicados brevemente a una des-
cripcién de los efectos en la superficie del fluido de una corriente alterna a través de una seccion circular
transversal de un alambre.

ex< 11 32 1 32521 325272 )

4.2.5 Algunas aplicaciones de las funciones de Bessel

Las funciones de Bessel aparecen en distintos contextos. Aqui se discutirdn algunas de estas situaciones.

La longitud critica de una barra vertical Considere una barra eldstica delgada de densidad uniforme
y seccion circular transversal, sujeta en una posicion vertical como en la figura 4.9. Si la barra es sufi-
cientemente larga y el extremo superior se desplaza y se mantiene en esa posicion hasta que la barra
estd en reposo, la barra quedara inclinada o desplazada cuando se suelte. Tal longitud se conoce como
una longitud inestable. En algunas longitudes mads cortas, sin embargo, la barra volverd a la posicién
vertical cuando se suelte, después de algunas oscilaciones pequefias. Estas longitudes se conocen como
longitudes estables para la barra. Nos gustaria determinar la longitud critica L¢, el punto de transicion
de estable a inestable.

Suponga que la barra tiene longitud L y peso w por unidad de longitud. Sea a el radio de su seccion
transversal circular y £ el médulo de Young para el material de la barra (ésta es la razén de la fatiga del
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0,0

Q¢ n
P(x,y)

-~ —

——————— e ————

_t
(L, 0)

FIGURA 4.9 FIGURA 4.10

esfuerzo correspondiente por el alargamiento o la compresion lineal). E1 momento de inercia alrededor
de un didmetro es / = ma*/4. Asuma que la barra estd en equilibrio y después se desplaza ligeramente
desde la vertical, como en la figura 4.10. El eje x es vertical a lo largo de la posicién original de la barra,
con la parte positiva hacia abajo y el origen en el extremo superior de la barra en equilibrio. Sean P(x, y) y
Q(&, n) puntos en la barra desplazada, como se muestra. El momento alrededor de P del peso de un ele-
mento wAx en Q es w Ax[y(§) — y(x)]. Al integrar esta expresion obtiene el momento alrededor de P del
peso de la barra arriba de P. Suponga a partir de la teoria de la elasticidad que este momento alrededor de
P es Ely’(x). Debido a que la parte de la barra arriba de P estd en equilibrio, entonces

EIy"(x) =/O wly(§) — y(x)]d§.
Diferencie esta ecuacion respecto a x:
EIy® () = wly@) -yl - /0 wy'(x) d§ = —wxy'(x).

Entonces
3 (x) + 2 xy/(x) = 0.
y(x) 71> (x)

Sea u =y’ para obtener la ecuacién diferencial de segundo orden

w

u’ + —xu =0.

EI

Compare esta ecuacion con la ecuacion (4.12). Necesita

2a—1=0, a®—12c=0, 2c-2=1y b =—
El

Esto lo lleva a elegir

La solucién general para u(x) es

2 [w 2 [w
() — PN (g V) 7 2w e
u(x) =y'(x) =civ/xJi3 (3 Tk + co/x 13 WE

Como no hay momento de torsion en el extremo superior de la barra,

y"(0) = 0.
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Queda al estudiante probar que esta condicién requiere ¢; = 0. Entonces

2 [w
y(x) = C2\/;J71/3 (3 Ex3/2> .

Como el extremo inferior de la barra estd sujeto verticalmente, y'(L) = 0, asi

2w
LJ_ Z/=r¥*) =o.
VL 1/3(3\/ El )

Debido a que ¢, debe ser distinto de cero para evitar una solucién trivial, necesita

2 [w
J-1/3 <§‘/EL3/2> =0.

La longitud critica L¢ es el menor nimero positivo que puede ser sustituido para L en esta ecuacion.
A partir de una tabla de las funciones de Bessel, encuentre que el menor niimero positivo « tal que
J_13(a) = 0 es aproximadamente 1.8663. Por tanto,

2
s =LY% ~ 18663,

El 1/3
Lc ~ 1.9863 (-) :
w

Corriente alterna en un alambre Analizara la corriente alterna en un alambre de seccidn transversal
circular culminando en una descripcién matemadtica del efecto superficial (a frecuencias altas, la mayor
parte de la corriente fluye a través de una capa delgada en la superficie del alambre).

Empiece con los principios generales de Ampere y Faraday, llamados asi en su honor. La ley de
Ampere establece que la integral de linea de una fuerza magnética alrededor de una curva cerrada (circui-
to), es igual a 47 veces la integral de la corriente eléctrica a través del circuito. La ley de Faraday establece
que la integral de linea de la fuerza eléctrica alrededor de un circuito cerrado, es igual al negativo de la
derivada respecto al tiempo de la induccién magnética a través del circuito.

Usara estas leyes para determinar la densidad de la corriente en el radio r en un alambre de seccién
transversal circular y radio a. Sean p la resistencia especifica del alambre, p su permeabilidad, y x(r, 1) y
H(r, r) la densidad de la corriente y la intensidad magnética, respectivamente, en el radio r y el tiempo .

Para empezar, aplique la ley de Ampere a un circulo de radio r que tiene su eje a lo largo del eje del
alambre. Obtiene

2nrH = 4m /rx(Zné})df;‘,
0

0
,
rH =47'r/ x& dé. (4.15)
0
Entonces
0
— (rH) =4mxr,
or
asi

1o (rH) = 4mx(r, t). (4.16)
ror
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FIGURA 4.11

Ahora aplique la ley de Faraday al circuito rectangular de la figura 4.11, teniendo un lado de longitud
L alo largo del eje del cilindro. Obtiene

pLx(0,t) — pLx(r,t) = —%/F WLHE, t)dE.
0

Diferencie esta ecuacidn respecto a r para obtener
ox  J0H @.17)
Por =H a0 ‘

Quiere usar las ecuaciones (4.16) y (4.17) para eliminar H. Primero multiplique la ecuacién (4.17) por r
para obtener

0x oH

r— = ur —.
Prar =M

Diferencie respecto a r:

9 ([ ox 9 [ 9H (D o D eer) = e
—|r—=)=un—\|r—)=n—-(— =pu— (4wxr) = dour —,
Poar Uor ) = Hor Uar ) =H % s Hoae ey

en el cual sustituye de la ecuacion (4.16) en los siguientes dos ultimos pasos. Entonces

a X ax
p—\|\r— | =4mpur v (4.18)

Laidea es resolver esta ecuacion diferencial parcial para x(r, t), después obtener H(r, ) a partir de la ecua-
cidn (4.15). Para hacer esto, suponga que la corriente a través del alambre es una corriente alterna dada por
C cos(wt), con C constante. Asf el periodo de la corriente es 27/w. Es conveniente escribir z(r, t) = x(r, 1)
+ iy(r, 1), asi x(r, t) = Re(z(r, 1)), y pensar en la corriente como la parte real de la exponencial compleja
Ceiot | La ecuacion diferencial (4.18), con z en lugar de x, es

0 0z 0z
B I R 4.19
P or <r8r> TR 5 (419)

Para resolver esta ecuacion, intente una solucion de la forma

2(r, 1) = f(r)e'.

Sustituya esta solucién propuesta en la ecuacion (4.19) para obtener

o 9 (rf/(r)ei“") = A prf(r)ioe®.

ar
Divida entre ei y lleve a cabo las diferenciaciones para obtener

1
f10)+ —f1) = b2 f(r) =0,

donde
47w
P

b =

i
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Comparando esta ecuacién con la ecuacidn (4.13), escriba la solucién general para f (r) en t€rminos de las
funciones de Bessel modificadas:

f(r) =cilo(br) + c2Ko(br),
donde

. drpw 1 +1i
P2

Debido al término logaritmo en Ky(r), el cual tiene limite infinito conforme » — 0 (centro del alambre),
elija c; = 0. Asi f (r) tiene la forma

b

f@) =ciIo(br)

2(r, 1) = c1 Io(br)e'®".

Para determinar la constante, use el hecho que (la parte real de) Cei«! es la corriente total, asi, usando la
ecuacion (4.14),

“ 2macy ,
C =2mcy rlg(br)dr = Iy(ba).
0
Entonces
bC 1
cl=———
2ma Ij(ba)
y
bC 1 .
2(r,t) = ———Io(br)e'®".

2ma Ij(ba)

Entonces x(r, f) = Re(z(r, 1)), y queda para que el estudiante pruebe que

H(r,t) = Re ( Io(br)ei“”) .

C
alj(ba)

Puede usar la solucidn de z(r, f) para modelar el efecto superficial. Toda la corriente fluye a través del
cilindro de radio r dentro del alambre (y con el mismo eje central que el alambre) es la parte real de

b

P
————Ce'' / Io(br)2mrdr,
2rwaly(ba) 0

y algunos calculos muestran que ésta es la parte real de
rly(br) Col®!
al(ba) '

Por tanto,

la corriente en el cilindro de radio r ~ r I(br)

la corriente total en el alambre  a 1 (ba) ’

Cuando la frecuencia w es grande, entonces la magnitud de b es grande, y puede usar el desarrollo asint6-
tico de /y(x) dada en la seccién 4.2.4 para escribir

r 1y(br) T e /ba . Ee*b(a*f)

;Ié(ba) T br ebe  Va
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Para cualquier r, con 0 < r < a, puede hacer \/E e~"@=" tan pequefio como quiera tomando la frecuencia
w suficientemente grande. Esto significa que para frecuencias grandes la mayor parte de la corriente esta
fluyendo cerca de la superficie exterior del alambre. Este es el efecto superficial.

4.2.6 Una funcion generadora para J,(x)

Abhora de regreso al desarrollo de las propiedades generales de las funciones de Bessel. Para los polino-
mios de Legendre, se elabora una funcién generadora L(x, f) con la propiedad que

L(x,t) = ZPn(x)t".

n=0

En forma similar, ahora construird una funciéon generadora para las funciones de Bessel de orden entero
de la primera clase.

= TEOREMA 4.12 Funcion generadora para las funciones de Bessel

o0
R AEE YN ACITLS (4.20)

n=—0oQ

Para entender por qué la ecuacidn (4.20) es cierta, empiece con el desarrollo familiar de Maclaurin de
la funcién exponencial para escribir

ex(t—l/t)/2 — ext/2e—x/2t

(2 3)) (e G

m
1+xt+1x2t2+1x3t3+ | x_{_l)c2 1x3+
2 20 22 31 23 2t 2122¢2 31233 ’

Para ilustrar la idea, busque el coeficiente de 4 en este producto. Obtiene 4 cuando x4t4/244! de la izquier-
da estd multiplicado por 1 de la derecha, y cuando x3¢5/255! estd multiplicado por —x/2¢ de la derecha,
y cuando x6r6/266! estd multiplicado por x2/2221¢2 de la derecha, y asi sucesivamente. De esta manera
encuentre que el coeficiente de ## en este producto es

| R I s 1 _ =" 2n+4
"t e aoa Zz2n+4n'(n+4)vx '

Ahora compare esta serie con

o0 o0

(=n" 24 (=n" 2
7 — n+4 _ I A n+4.
4(x) 112:(:)22”+4n!r(n+4+ n" §22n+4n!(n+4)1x

Un razonamiento semejante establece que el coeficiente de 7 en la ecuacién (4.20) es J,,(x) para cualquier
entero no negativo n. Para enteros negativos, puede usar el hecho de que

Jon(x) = (=" Ty (x).
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4.2.7 Una féormula integral para J,(x)

Usando la funcién generadora, es posible deducir una férmula integral para J,(x) cuando n es un entero
no negativo.

TEOREMA 4.13 Integral de Bessel

Si n es un entero no negativo, entonces
l T
Jo(x) = —/ cos(nf — x sen(h)) db.
T Jo

Prueba Empiece con el hecho de que

o0

ext/2e—x/2t= Z Jn(x)t".

n=—oo

Como J_,(x) = (—1)4J,(x),
.

o0
e x 2 = VDR = % T gy ()" + Jo(0) + ) a0t

n=—oo n=1

=D (=" )T+ Jo(x) 4+ D T ()"

n=1 n=0

— 1
= Jo(x) + Y Ju(x) (t" + (—1)"t—n>

n=1

oo o0
1 1
_ 2 2n—1
= Jo(¥) + Y Joa(x) <z - 7) + Y T () (z =l _ ﬂ_—l) . @.21)
n=lI n=1
Ahora sea
t =e'% = cos(0) + i sen(d).
Entonces
1 . .
t2n + tﬂ — eZln@ + e—21n0 — 2COS(2I10)
y
t2n—1 1 — ei(2n—1)9 _ e—i(zn—l)@ — 2l Sen((zn _ 1)9)

Tl
Por tanto, la ecuacién (4.21) se convierte en

GX=1/0)/2 _ ixsen(d)

= cos(x sen(#)) + i sen(x sen(f))

= Jo(x) +2 Z Jon (x) cos(2n0) + 2i Z Jon—1(x) sen((2n — 1)6).

n=1 n=1

La parte real del lado izquierdo de esta ecuacion debe ser igual a la parte real del lado derecho, y similar-
mente para las partes imaginarias:

cos(xsen(f)) = Jo(x) +2 Z Jou(x) cos(2n6) 4.22)

n=1
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sen(x sen(f)) =2 Z Jon—1(x)sen((2n — 1)60). (4.23)

n=1

Ahora reconocer que las series de la derecha en las ecuaciones (4.22) y (4.23) son series de Fourier.
Enfocandose, por el momento en la ecuacién (4.22), su serie de Fourier es por consiguiente

1 o0
cos(x sen(f)) = an + Z ay cos(kB) + by sen(kf)
k=1

= Jo(x) +2 Z Jon (x) cos(2n0).

n=1

Como conoce los coeficientes en un desarrollo de Fourier, concluye que

1 (7 0 si k es impar
ay = —/ cos(x sen(#)) cos(kB) df = (4.24)
T J-n 2Jr(x) si k es par
y
1 T
by = = cos(x sen(f))sen(kf)dfd =0 parak =1,2,3,.... (4.25)

-7

Similarmente, a partir de la ecuacion (4.23),

1 o0
sen(x sen(f)) = EAo + Z A cos(k®) + By sen(k6)
k=1

=2} Ju-1(x) sen(2n — 1)6),

n=1

de manera que los coeficientes de Fourier son

1 b
Ay = — sen(x sen(f)) cos(kf)dd =0 parak =0,1,2,... (4.26)
T J-x
y
1 (7 0 si k es par
B = — sen(x sen(0)) sen(kf) df = . 4.27)
T J_x 2Jk(x) si k es impar
Sumando las ecuaciones (4.24) y (4.27), tiene
1 [7 1 [7
— cos(x sen(f)) cos(kf) d6 + — sen(x sen(0)) sen(k6) do
s —TT s —TT
1 (™ 2Ji(x) si k es par
= — cos(kf — xsen(h)) db = .
T J_x 2Jk(x) si k es impar
Asi

1 T
Jr(x) = E/ cos(kf — xsen(0))df parak=0,1,2,3,....

=7

Para completar la prueba, s6lo debe observar que cos(kf — x sen()) es una funcién par, de donde f fﬂ =
2[5, asi

1 T
Jr(x) = ;/o cos(kf — xsen(0))df parak=0,1,2,3,....
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4.2.8 Una relacion recursiva para J,(x)

Deducira tres relaciones de tipo recursivo que involucran las funciones de Bessel de primera clase. Esto
provee informacién acerca de la funcién o su derivada en términos de funciones del mismo tipo, pero de
indice menor. Empezamos con dos relaciones que involucran derivadas.

= TEOREMA 4.14
Si v es un numero real, entonces
d v v
I xSy (x)) = x"Jy—1(x). (4.28)

Prueba Empiece con el caso que v no es un entero negativo. Por cdlculo directo,

o0

4 & Jy(x)) = a4 x” Z Sl x 2ty
dx ! dx =22l (n+v + 1)

_d i (=D" 2n+2v
= — X
dx | = 22ntvpIll(n+v + 1)

_ i (=D)"2(n +v) 221
~ 22ntvpl(n +v)I'(n + v)

v . (=D" 2n+v—1 vy (x)
=X Z X =X —1(X).
221+v=1pI0 (n + v) '
n=0
Ahora extienda este resultado al caso que v es un entero negativo, a saber v = —m con m un entero

positivo, usando el hecho de que
Jom(x) = (=1D)" T (x).

Queda este detalle al estudiante. M

— TEOREMA 4.15
Si v es un numero real, entonces
d _ _
— (VL) = —x T (). (4.29)
dx
La verificacién de esta relacién es semejante a la usada en la ecuacién (4.28).

Mediante estas dos férmulas recursivas que involucran derivadas, puede deducir la siguiente relacion
entre las funciones de Bessel de primera clase de 6rdenes diferentes.

— TEOREMA 4.16
Sea v un nimero real. Entonces para x > 0,
2v
;Ju(x) = Jyr1(x) + S (x). (4.30)

Prueba Efectte las diferenciaciones en las ecuaciones (4.28) y (4.29) para escribir

xVJL ) Fox" L (0 = xV g (x)
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x7VIL(x) —vx L () = —xV g ().
Multiplique la primera ecuacién por x—vy la segunda por xV para obtener

J)x) + Efu(x) = Jy_1(x)

() — Efv(x) = — Ty (1),

Restando la segunda de estas ecuaciones de la primera, obtiene la conclusién del teorema. M

EJEMPLO 4.4

Previamente se afirmé que

2 2
Ji2(x) =/ P sen(x), Jo12(x) =/ p— cos(x),

resultados obtenidos directamente de la serie infinita para estas funciones de Bessel. Poniendo v = % en
la ecuacidn (4.30), obtiene

1
;J1/2(X) = J32(x) + J-12(x).

Entonces

1

J3p(x) = ;11/2()6) —Jo12(x)
1 /2 [ 2
—,/ — sen(x) — ,/ — cos(x)
X TX TX

: (1 )
=,/— | —sen(x) — cos(x) | .

Tx \x

Entonces, poniendo v = % en la ecuacion (4.30), obtiene

3
;J3/2(X) = Js;2(x) + J1/2(x).
Entonces

3
Jspp(x) = =Ji2(x) + ;J3/2(x)

2 3 /2 (1 )
= —,/ —sen(x) + —,/ — | — sen(x) — cos(x)
TX xVomx \x
=,/ i [— sen(x) + % sen(x) — E cos(x):| .
X X by

Este proceso puede continuarse indefinidamente. El punto es que ésta es una mejor manera de generar las
funciones de Bessel J,,.1,,(x) que refiriéndose cada vez a la serie infinita. M
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4.2.9 Ceros de J,(x)

En varias de las aplicaciones revisadas se ha visto que algunas veces es necesario saber dénde J,(x) = 0.
Tales puntos son los ceros de J,(x). Probard que J,(x) tiene un nimero infinito de ceros simples positivos
y también obtendra estimaciones para sus localizaciones.

Como punto inicial, recuerde de la ecuacion (4.12) que y = J,(kx) es una solucién de

2y 4y <k2x2 _ vz)y -0

Sea k > 1. Ahora ponga u(x) = v kxJ, (kx). Sustituya éste en la ecuacion de Bessel para obtener

1 2 v? _éll _
u' (x)+ |k — 7 u(x) =0. (4.31)

La intuicién dicta que, conforme x crece, el t€rmino (v2 — }‘) /x? ejerce menos influencia en esta ecuacién para
u, la cual empieza a verse mas como u” + k*u = 0, con soluciones en seno y coseno. Esto sugiere que para x
grande, J,(kx) estd aproximada por una funcién trigonométrica, dividida entre +/kx. Debido a que tal funcién
tiene un nimero infinito de ceros positivos, lo mismo J,(kx).

Para explotar esta intuicién, considere la ecuacién

v (x) +v(x) =0. (4.32)

Esta tiene solucién v(x) = sen(x — «), con « cualquier nimero positivo. Multiplique la ecuacién (4.31)
por vy la ecuacién (4.32) por u y reste para obtener

p2 -1
w” — o’ = [k* — 4 ) uv — uv.

Escriba esta ecuaciéon como

/ N 2 vz_éll
(uv' —vu') = (k" —1— 5 uv.

Ahora calcule

a+m
/ (v’ —vu') dx
o

=u(o + )V (o +7) —ul@)v (o) —v(a +m)u' (o + ) + vie)u' ()
= —ula+m)— u(x)
1

o+ V2 _ 1
/ <k2 —1-— 5 4) u(x)v(x)dx.
o X

Aplique a la dltima integral, el teorema del valor medio para integrales. Existe algin ndimero t entre o y
o + mtal que

2 1
VT3

a—+m
—ula+m) —ula) = u(r)/ <k2 —1-— ) ) sen(x — a)dx.

Ahora sen(x — o) > 0 para @ < x < o + 7. Mds atn, puede elegir « suficientemente grande (dependiendo
de vy k) que




204

TEOREMA 4.17 Ceros de ], (x)
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para @ < x < « + 7. Por tanto, la integral de la derecha en la dltima ecuacion es positiva. Entonces u(« + ),
u(a) y u(t) no pueden ser todas del mismo signo. Como u es continua, u debe tener un cero en algin
sitio entre & y & + 7. Como u(x) = v/kx J, (kx), esto prueba que J,(kx) tiene al menos un cero entre o y
o+ 7.

En general, si « es cualquier nimero suficientemente grande y k > 1, entonces J,(x) tiene un cero
entre ' y o + k.

Ahora es posible establecer un resultado general sobre los ceros positivos de las funciones de Bessel
de la primera clase.

Sea k > 1 y v un nimero real. Entonces, para « suficientemente grande, existe un cero de J,(x) entre o +
knmy o+ k(n+ Dmparan =0, 1, 2, ... Mads atin, cada cero es simple.

Prueba El argumento, dado antes del teorema prueba que para cualquier nimero suficientemente grande
(dependiendo de v y la seleccionada k > 1), existe un cero de J,(x) en el intervalo de ese nimero a ese
nimero mds k. Asi existe un cero entre @ y « + ki, y entonces entre (o + k) y (o + (k + 1)), y asi
sucesivamente.

Mis atin, cada cero es simple. Porque si un cero j tiene multiplicidad mayor que 1, entonces J,(8) =
J, (B) = 0. Pero entonces J,(x) es una solucién del problema con valor inicial

2y +y + (k2x2 - vz) y=0  y(B =y =0.

Debido a que la solucién de este problema es tnica, y la funcién cero es una solucion, esto implicard que
Jy(x) = 0 para x > 0, una contradiccién. Por tanto, cada cero es simple. M

El teorema implica ordenar los ceros positivos de J,(x) en una sucesion creciente
N<jp<jp<--,

asi que lim,,_, oo j,, = 0.

Se puede probar que para v > —1, J,(x) no tiene ceros complejos.

Probard que J, no tiene ceros positivos comunes con J,,; 0 J,_;. Sin embargo, puede afirmar que
ambos J,_; y J,4 tienen al menos un cero entre cualquier par de ceros positivos de J,. Este es el lema
de entrelazado enunciado como el teorema 4.18, y significa que las graficas de estas tres funciones se
entrelazan entre ellas, como se puede ver en la figura 4.12 para J7(x), Jg(x) y Jo(x). Primero necesita lo
siguiente.

Jg(x)
v

03
J7(x) /Jg(x)
02+

0.1 —

0 | | | | | | | x
5 100115/ 120/ 25|30 35

—0.1—

—-02—

FIGURA 4.12 Entrelazado de J:(x), Jg(x)
y Jo(x).
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— LEMAA4.]

Sea v un ndmero real. Entonces, excepto posiblemente para x = 0, J, no tiene un cero en comun ni con
Jy_iniconJ, ;. M

Prueba Recuerde de la prueba del teorema 4.16 que

v
FL@) + =) = oo ().
SiB#0yJ(B) =J,_1(B) = 0, entonces también J;, (8) = 0. Pero entonces S debe ser un cero de multi-

plicidad al menos 2 para J,, una contradiccion.
Un uso similar de la relacién

T (x) — %Jv(x) = Jys1(x)

prueba que J, tampoco puede compartir un cero con J,, . M

= TEOREMA 4.18 Lema de entrelazado

Sea v cualquier ndmero real. Sean a y b ceros positivos distintos de J,. Entonces J,_; y J,, cada uno tiene
al menos un cero entre a y b.

Prueba Seaf(x) = x"J,(x). Entonces f(a) =f(b) = 0. Debido a que fes diferenciable en todos los puntos
entre a y b, por el teorema de Rolle, existe algiin ¢ entre a y b en donde f (¢) = 0. Pero

d
f'x) = o (" Jy(x)) = xVJy_1 (x),
X

de manera que f’(c) = 0 implica que J,_;(c) = 0.
Un razonamiento anédlogo, aplicado a g(x) = x—%J,(x), y usando la relacién

d
d_ (x_vjv(x)) = _x_v-]u+1(x),
X

probd que J,, tiene un cero entre a y b. M

La tabla siguiente da los primeros cinco ceros positivos de J,(x) parav =0, 1, 2, 3, 4. Aqui los nime-
ros estdn redondeados al tercer lugar decimal. La propiedad de entrelazamiento de funciones de Bessel
de indices sucesivos puede notarse observando hacia abajo las columnas. Por ejemplo, el segundo cero
positivo de J,(x) cae entre el segundo cero positivo de J;(x) y J3(x).

Ji J2 J3 J4 Js
Jo(x) 2.405 5.520 8.654 11.792 14.931
Ji1(x) 3.832 7.016 10.173 13.323 16.470
Jr(x) 5.135 8.417 11.620 14.796 17.960
J3(x) 6.379 9.760 13.017 16.224 19.410
Jy(x) 7.586 11.064 14.373 17.616 20.827

4.2.10 Desarrollos de Fourier-Bessel

Tomando como guia los polinomios de Legendre, podria sospechar que las funciones de Bessel son orto-
gonales en algun intervalo. No lo son.

Sin embargo, sea v cualquier nimero positivo. Sabe que J, tiene una infinidad de ceros positivos, los
cuales puede ordenar en una sucesion ascendente

JN<jp<js<--.
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Para cada j, puede considerar la funcién +/x J, (j,x) para 0 < x < 1 (asi j,x varfa de 0 a j,). Estas funciones
son ortogonales en [0, 1], en el sentido de que la integral del producto de cualesquiera de estas funciones en
[0, 1], es cero.

= TEOREMA 4.19 Ortogonalidad

Sea v > 0. Entonces las funciones v/x J,, (j, X), paran=1,2,3,...,sonortogonales en [0, 1] en el sentido
que

1
/x]v(jnx)J,,(jmx)dxzo sin # m.
0

Este es el mismo sentido de la ortogonalidad de los polinomios de Legendre en [—1, 1] y la ortogo-
nalidad de las funciones

1, cos(x), cos(2x), ..., sen(x), sen(2x), ...

en [—m, ).

Prueba Nuevamente invocando la ecuacion (4.12), u(x) = J,(j,x) satisface

"  xu' 4 (2 —vHu =0,

Y v(x) = J,(j,.x) satisface
x4+ xv 4+ (2x =02 =0,

Multiplique la primera ecuacion por v y la segunda por u y reste las ecuaciones resultantes para obtener

2.1

"o+ xu'v + (2x? = vHuv — x20"u — xv'u — (j2x* —vHuv = 0.

x2u
Esta ecuacidn se puede escribir
" v —uv") + x(@'v —uwv') = (j2 — jHx uv.
Divida entre x:
x(@'v—uv") + @' —uv') = (2 - jHxuv.
Escriba esta ecuacién como
x'v —uv)] = (j2 — jHxuv.
Entonces
1
/ [x(u'v — uv)dx = [x(w'v —uv)]}
0
= S G JoGm) = S (Gn) I, (i) = 0

1
=G =D f X Jy () Jy (jmx) dx.
0

Como j, # j..», esto prueba la ortogonalidad de estas funciones en [0, 1]. ™

Como es usual, siempre que hay una relaciéon de ortogonalidad debe intentar los desarrollos tipo
Fourier. Sea f definida en [0, 1]. ;Cémo debe elegir los coeficientes para tener un desarrollo

F@) =" andy(jax)?

n=1
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Use ahora una estrategia familiar, multiplique esta ecuacion por xJ,(j;x) € integre para obtener
oo

1 1 1
| s ds =3 an [ xadeontiods = a [ x2 oo d.
0 0 0

n=1

La serie infinita de las integrales se ha colapsado en un solo término debido a la ortogonalidad. Entonces

gy = 0 XS @G dx
Jy xJ2Gkx)dx

Estos nimeros son los coeficientes de Fourier-Bessel de f. Cuando estos nimeros son usados en la serie,
la Z:il a,J (jx) se llama desarrollo de Fourier-Bessel, o la serie de Fourier-Bessel, de f en términos de
las funciones +/xJy (jnX).

Algunas veces se adopta un punto de vista diferente. Es comun decir que las funciones J,(j,x) son
ortogonales en [0, 1] respecto a la funcion de peso p(x) = x. Esto significa simplemente que la integral
del producto de cualesquiera dos de estas funciones, y también multiplicada por p(x), es cero sobre el
intervalo [0, 1]:

1
f POy (ux)dy (nx) dx =0 sin #m.
0

Esta es la misma integral que ya se tenfa para ortogonalidad, pero la integral estd colocada en el contexto
de la funcién de peso p(x), un punto de vista que notard en breve con la teoria de Sturm-Liouville. Poner
p(x) = x en esta integral tiene el mismo efecto que poner un factor ,/x con cada J,(j,.x).

Como con los desarrollos de Fourier y de Fourier-Legendre, el hecho de que puede calcular los
coeficientes y escribir la serie no significa que esté relacionada con la funcién de alguna manera en par-
ticular. El siguiente teorema de convergencia trata este tema.

= TEOREMA 4.20 Convergencia de la serie de Fourier-Bessel

Sea f'suave a pedazos en [0, 1]. Entonces, para0 < x < 1,
> 1
D andun) = S (f () + f(x)),
n=1

donde a, es el n-ésimo coeficiente de Fourier-Bessel de f. M

Enseguida un ejemplo de un desarrollo de Fourier-Bessel antes de aprender méds acerca de los coefi-
cientes.
4.2.11 Coeficientes de Fourier-Bessel

. 1 . . ., . .
La integral [ o vaz (jix) dx aparece en el denominador de la expresion para los coeficientes de Fourier-
Bessel de cualquier funcion, de manera que es util evaluar esta integral.

— TEOREMA 4.21
Si v > 0, entonces
1 1
2. _ 2 .
/ xJy Gex) dx = =54 (i)
0

Observe aqui la importancia de que J, y J,.; no puedan tener un cero positivo en comin. Sabiendo que
Ju(x) = 0 implica que J,.41(jx) # 0.
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Prueba A partir de la discusion anterior,
xu” + xu' + (G2 —vHu =0,
donde u(x) = J,(jix). Multiplique esta ecuacién por 2u’ (x) para obtener
2x%u'u” + 2x (') + 2(jEx* — vHuu' = 0.
Puede escribir esta ecuacién como
@) + (jEx® —vHu?l —2j¢xu® = 0.
Ahora integre, teniendo en mente que u(1) = 0O:

1 1
0= / @) + (jEx® —vHuY dx — 2jk2/ xu?dx
0 0
1
= [)cz(u/)2 + (j,gx2 — vz)uz](l) — 2ij/ xu?dx
0
1
= (1) =252 f xi? dx
0

1
= TGO =27 /0 X[y (iex)1* dx.
Entonces
! 2 1 2
/ xJ2Ge dx = STLGOT-
0
Ahora en general

T = S0y = = ().

Entonces
7o) - jika(jk) = —Jos1(ir)
asi
Ty Gie) = =Jur1Gin)-
Por tanto,

1 1
/ vaz(jkx) dx = E[le(jk)]z-
0

En vista de esta conclusion, el coeficiente de Fourier-Bessel de f es

B 2
1 Gl

dn

1
/ xf(x)J,(jux)dx.
0

La serie de Fourier-Bessel aparecerd mds adelante al resolver la ecuacién de calor para cierto tipo
de regiones. Entonces enfrentard la tarea de desarrollar la funcién de temperatura inicial en una serie de
Fourier-Bessel. También verd un desarrollo de Fourier-Bessel cuando estudie las maneras normales
de vibracién en una membrana circular.

Generalmente, los coeficientes de Fourier-Bessel son complicados de calcular debido a que las fun-
ciones de Bessel son dificiles de evaluar en puntos particulares, e incluso sus ceros deben ser aproximados.
Sin embargo, con el poder computacional moderno frecuentemente hard aproximaciones con cualquier
grado de exactitud que necesite.
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EJEMPLO 4.5

Sea f (x) = x(1 — x) para 0 < x < 1. Como fes continua con una derivada continua, su serie de Fourier-
Bessel convergird a f (x) en (0, 1):

o
x(1—x) = Zanh(jnx) para0 < x < 1,
n=1

donde

2

1
2,
“ [Jz(jmz/o (1= )1 (o) dx.

Calcule a; hasta ay4, usando ocho lugares decimales en los primeros cuatro ceros de J;(x):

Jj1 =3.83170597, jo» =7.01558667, j3 =10.17346814, j4 = 13.32369194.
Pese a que estas integraciones son aproximaciones, calcule:

2
~ [J»(3.83170597)

1
a ]2/ x*(1 — x)J1(3.83170597x) dx
0

1
— 12.32930609 / x2(1 — x)J;(3.83170597x) dx = 0.45221702,
0

2
T [J2(7.01558667)

1
a 5 / x2(1 — x)J1(7.01558667x) dx
0
1
= 22.20508362 / x2(1 — x)J1(7.01558667x) dx = —0.03151859,
0

2
T [J2(10.17346814)]2

1
a3 / x2(1 = x)J1(10.17346814x) dx
0

1
= 32.07568554/ x2(1 — x)J1(10.17346814x) dx = 0.03201789,
0

2
T [/2(13.32369194)]2

1
as / x2(1 = x)J1(13.32369194x) dx
0

1
- 41.94557796/ x2(1 — x)J1(13.32369194x) dx
0

= —0.00768864.

Entonces, para0 < x < 1.

x(1 — x) ~ 0.45221702J; (3.83170597x) — 0.03151859.J; (7.01558667x)
+0.03201794J;(10.17346814x) — 0.00768864J; (13.32369194x)

La figura 4.13 muestra una gréfica de x(1 — x) y una grafica de esta suma de cuatro términos de las funcio-
nes de Bessel en [0, 1]. La gréfica esta dibujada en [—1, %] para enfatizar que fuera de [0, 1], no se puede
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FIGURA 4.13  Aproximacion de x(1 — x) en
[0, 1] por una serie de Fourier-Bessel.

afirmar que x(1 — x) estd aproximada por la serie de Fourier-Bessel, y de hecho, las gréficas divergen una
de la otra fuera de [0, 1]. La exactitud en [0, 1] puede mejorarse calculando mds términos de la serie. M

SECCION 4.2 PROBLEMAS

1. Pruebe que x4/ (bx<) es una solucién de

2a — 1
y”_(a )y:().
X

En cada uno de los problemas 2 al 9, escriba la solucién general
de la ecuacion diferencial en términos de las funciones x4/, (bx¢)
y xaJ_,(bxe).

2 2.2
a VTC
)y/ (bzczxzc—z 5
X

1
2. y//+_y/+<1+_
3x

w

1 4
. y”+;y/+<4x2——>y=

(64x6

3 5
.y//+_y/+ 16x2——2 y=0
X 4x

" 5/

Y=y
X

Eal
4

wn

"

3
6. —;y+9ﬁy:o
7 175
7. ”——/+(36x4+—) =
Y xy 16x2 Y
1
8. v A _
Y xy 16x2y

N

5 7
Y =Y+ mﬁ+—7)y=0
X 4x

10. Use el cambio de variables by = 1 % para transformar la
ecuacioén diferencial o

d
it by? = cx™
dx

en la ecuacién diferencial

d2
—Z — bexu = 0.
dx

Use el resultado del problema 1 para encontrar la solucién
general de esta ecuacion diferencial en términos de las fun-
ciones de Bessel, y use esta solucién para resolver la ecuacién
diferencial original. Suponga que b es una constante positiva.

En cada uno de los problemas del 11 al 16, use el cambio de
variables dado para transformar la ecuacién diferencial en una,
cuya solucién general puede escribirse en términos de las fun-
ciones de Bessel. Use ésta para escribir la solucién general de la
ecuacion diferencial original.

11. 4x2y" 4+ 4xy' + (x — 9y =0,z = /x

12. 4x%y" + 4xy’ + (9x3 — 36)y = 0; z = x32

13. 9x2y” + 9xy’ + (4x23 — 16)y = 0; z = 2x13

14. 9x2y” — 27xy’ + (9x2 4+ 35)y = 0; u = y/x2

15. 36x%y" — 12xy"' + (36x2 + T)y = 0; u = x—213y

16. 4x2y" + 8xy' + (432 — 35)y = 0; u = y/x

17. Pruebe que y(x) = /xJ;3(2kx323) es una solucién de

V' + k2xy = 0.
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En cada uno de los problemas del 18 al 22, escriba la solucién
general de la ecuacién diferencial en términos de las funciones
xaJ,(bxc) y xaY,(bxc).

1
"
19. y T (
" 5/ —
20y =Y+ 1= )y=0
3
21,y — —y/+(
X
22. vy —

23. Pruebe que

2 3 3
J5pp(x) = P [(x_2 — 1) sen(x) — T cos(x)] .

24. Pruebe que

2 3 3
J_5/2(x) = ; [(ﬁ — 1) cos(x) + )_c Sen(x)] .

25. Sea o un cero positivo de Jo(x). Pruebe que f(l) Ji(ax) dx =
1/a.

26. Sean u(x) = Jo(ax) y v(x) = Jo(Bx).
(a) Pruebe que xu” + w + a2xu = (. Obtiene una ecuacién
diferencial similar para v.

4.3

4.3.1 El problema de Sturm-Liouville

27.
28.

29.

(b) Multiplique la ecuacién diferencial para u por v y la
ecuacion diferencial para v por u y reste para probar que

x@'v —vw)] = (B2 — a®)xuv.

(c) Pruebe a partir de la parte (b) que

<ﬁ—a%/xmwmmwwdx

= x [aJj(@x)Jo(Bx) — BIH(Bx) Jo(ax)]

Este es uno de los conjuntos de férmulas llamadas integra-
les de Lommel.

Pruebe que [x/g (x)]" = xIo(x).

En cada uno de los incisos (a) al (d), encuentre (aproxima-
damente) los primeros cinco términos en el desarrollo de
Fourier-Bessel Zzo: 1 a,J1(jx) de f(x), cada uno estd defi-
nido para 0 < x < 1. Compare la grafica de esta funcién con
la gréfica de la suma de los primeros cinco términos en la
serie.

@f(x)=x

(b)fx)=e

©f(x) =xe

(@) f (x) = x?e~~

Lleve a cabo el programa del problema 28, s6lo que ahora
use un desarrollo Z/f,o:l anJ>(jX).

Teoria de Sturm-Liouville y desarrollos en funciones propias

En esencia, el mismo escenario ha aparecido tres veces:

ecuacion diferencial = soluciones que son ortogonales en [a, ]

— desarrollos en series de funciones arbitrarias de esas soluciones

= teorema de convergencia para el desarrollo.

Primero las series (trigonométricas) de Fourier, luego polinomios de Legendre y series de Fourier-Legen-
dre, y después funciones de Bessel y desarrollos de Fourier-Bessel.

Esto fuerza la imaginacion para pensar que las similitudes en los teoremas de convergencia no son
pura coincidencia. Ahora se desarrolla una teoria general en la cual estos teoremas de convergencia enca-
jan naturalmente. Esto también ampliard su arsenal de herramientas en preparacion para resolver ecuacio-

nes diferenciales parciales.
Considere la ecuacién diferencial

Y+ R@)y +(Q(x) + 1P (x)y = 0.

(4.33)

Dado un intervalo (a, b) en que los coeficientes son continuos, busque valores de A para los cuales esta
ecuacion tenga soluciones no triviales. Como verd, en algunos casos habra condiciones en la frontera que
deben satisfacerse (condiciones especificas en a y b), y algunas veces no.
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Primero ponga la ecuacién diferencial en una forma estindar conveniente. Multiplique la ecuacién
(4.33) por

r(x) — efR(x)dx
para obtener
y//efR(x)dx + R(x)y/efR(x)dx +(Q(x) +)\.P(X))€fR(x)de —0.

Como r(x) # 0, esta ecuacién tiene las mismas soluciones que la ecuacién (4.33). Ahora reconoce que la
ultima ecuacién puede escribirse como

ry") + (g + rp)y = 0. (4.34)

La ecuacién (4.34) es llamada la ecuacion diferencial de Sturm-Liouville, o 1a forma Sturm-Liouville de
la ecuacion (4.33). Suponga que p, ¢ y r'y ¥’ son continuas en [a, b], o al menos en (a, b) y p(x) > 0y
r(x) > Oen (a, b).

EJEMPLO 4.6

La ecuacién diferencial de Legendre es
(1 —x%)y" —2xy' + 1y =0.
Inmediatamente, escriba ésta en la forma de Sturm-Liouville como
(1 =x*)Y) + 2y =0,

para —1 < x < 1. Correspondientes a los valores A = n(n + 1), conn =0, 1, 2, . . ., los polinomios de
Legendre son soluciones. Como vio en la seccidn 4.1, también existen soluciones no polinomiales corres-
pondientes a otras elecciones de A. Sin embargo, estas soluciones no polinomiales no estdn acotadas en
[—1,1]. m

EJEMPLO 4.7

La ecuaciéon (4.12),cona =0,c=1yb= ﬁ, puede escribirse

X

2
(xy") + (Ax - v_) y =0.

Esta es la forma de Sturm-Liouville de la ecuacién de Bessel. Para A > 0, esta ecuacion tiene soluciones en
términos de las funciones de Bessel de orden v de la primera y segunda clase, Jo(VAx)y Yo (VAx). m

Ahora tres clases de problemas de Sturm-Liouville.

El problema de Sturm-Liouville regular Si quiere nimeros A para los cuales existen soluciones no
triviales de

ry") + (g +ip)y =0

en un intervalo [a, b]. Estas soluciones deben satisfacer condiciones regulares en la frontera, que tienen
la forma

Ary(a@) + A2y'(@) =0,  Biy(b) + B2y'(b) = 0.

A; y A, son constantes dadas, no ambas cero, y similarmente para By y B.
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El problema periodico de Sturm-Liouville ~Ahora suponga r(a) = r(b). Busque nimeros A y las solucio-
nes no triviales correspondientes de la ecuacion de Sturm-Liouville en [a, b] satisfaciendo las condiciones
periddicas en la frontera

y@ =y®), Y@ =y®b).

El problema singular de Sturm-Liouville Busque nimeros A y las soluciones no triviales correspon-
dientes de la ecuacién de Sturm-Liouville en (a, b), sujetas a una de las siguientes tres clases de condicio-
nes en la frontera:

Tipo 1. r(a) = 0 y no hay condiciones en la frontera en a, mientras en b la condicién en la
frontera es

Biy(b) + B2y'(b) = 0,

donde B; y B; no son cero.
Tipo 2. r(b) = 0y no hay condiciones en la frontera en b, mientras en a la condicién es

Ary(a) + A2y’ (a) =0,

con A; y A, no son cero.
Tipo 3. r(a) = r(b) = 0, y no hay condiciones en la frontera en a ni en b. En este caso requiere solu-
ciones que sean funciones acotadas en [a, b].

Cada uno de estos problemas es un problema con valor en la frontera, en el que se especifican cier-
tas condiciones en los extremos de un intervalo, en contraste con un problema con valor inicial, el cual
especifica informacién acerca de la funcién y su derivada (en el caso de segundo orden) en un punto. Los
problemas con valores en la frontera usualmente no tienen soluciones tinicas. De hecho, exactamente es
esta falta de unicidad la que puede ser explotada para resolver muchos problemas importantes.

En cada uno de estos problemas, un nimero A para el cual la ecuacién diferencial de Sturm-Liouville
tiene solucién no trivial se llama un valor propio del problema. La solucién no trivial correspondiente
se llama una funcion propia asociada con este valor propio. La funcién cero no puede ser una funcién
propia. Sin embargo, cualquier multiplo constante distinto de cero de una funcién propia asociada con un
valor propio particular también es una funcién propia para este valor propio. En los modelos matematicos
de los problemas en fisica e ingenieria, los valores propios usualmente tienen alguin significado fisico.
Por ejemplo, en el estudio del movimiento de onda los valores propios son frecuencias fundamentales de
vibracion del sistema.

Se considerardn ejemplos de estos géneros de problemas. Los dos primeros serdn importantes en el
andlisis de problemas que involucran condiciones de calor y propagacién de onda.

EJEMPLO 4.8 Un problema regular

Considere el problema regular
Yit+iy=0;  y(0)=y(L) =0

en un intervalo [0, L]. Encontrard los valores propios y las funciones propias considerando casos sobre A.
Como se probard mas adelante, un problema de Sturm-Liouville no puede tener valores propios comple-
jos, hay tres casos.

Casol A=0

Entonces y(x) = cx + d para c y d constantes. Ahora y(0) =d = 0y y(L) = cL = 0 requieren que ¢ = 0.
Esto significa que y(x) = cx + d debe ser la solucion trivial. En la ausencia de una solucién no trivial, . =0
no es un valor propio de este problema.

Caso 2 A es negativo, . = —k2 para k > 0.
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Ahora y” — k%y = 0 tiene solucién general

y(x) = c1e + cre .
Como
y0)=c14+c2=0,
entonces ¢, = —cy, de donde y = 2¢; senh(kx). Pero entonces

y(L) = 2¢; senh(kL) = 0.

Como kL > 0, senh(kL) > 0, de donde ¢; = 0. Este caso también nos lleva a la solucidn trivial, entonces
este problema de Sturm-Liouville no tiene valores propios negativos.

Caso 3 A es positivo, A = k2.
La solucidén general de y” + k2y = 0 es

y(x) = ¢y cos(kx) + ca sen(kx).
Ahora
y(0)=c1 =0,
asi y(x) = ¢, sen(kx). Finalmente, necesita
y(L) = cpsen(kL) = 0.

Para evitar la solucion trivial, necesita ¢, # 0. Entonces debe elegir k¥ de manera que sen(kL) = 0, lo que
significa que kL debe ser un entero positivo multiplo de 7, kL = nmr. Entonces

n27r2
L2

A = paran =1,2,3,....

Cada uno de estos nimeros es un valor propio de este problema de Sturm-Liouville. Correspondiente a
cada n, las funciones propias son

nmwx
yu(x) = csen <T> ,

en donde ¢ puede ser cualquier nimero real distinto de cero. M

EJEMPLO 4.9 Un problema periodico de Sturm-Liouville

Considere el problema
Yi+ry =0,  y(=L)=yL),y(-L)=y'(L)

en un intervalo [—L, L]. Comparando esta ecuacién diferencial con la ecuacién (4.34), tiene r(x) = 1, asi
r(—L) = r(L), como se requiere para un problema periédico de Sturm-Liouville. Considere casos en A.

Casol A=0
Entonces y = cx + d. Ahora

y(=L)=—cL+d=y(L)=cL+d

implica que ¢ = 0. La funcidn constante y = d satisface ambas condiciones en la frontera. Asi . = 0 es un
valor propio con funciones propias constantes distintas de cero.

Caso2 A <0, A=—k2
Ahora

y(x) = c1e + cre*.
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Como y(—L) = y(L), entonces
kL

cre ™ 4 cpeft = 1l + cpeHE (4.35)
y y(—L) = y'(L) da (después de dividir entre el factor comun k)

cle_kL — czekL = clekL — cze_kL. (4.36)

Reescriba la ecuacion (4.35) como

(e M — MLy = ¢y (e HL — ok,
Esto implica que ¢; = c,. Entonces la ecuacién (4.36) se convierte en

cre k= Ly = ¢ (kL — ¢ kL
Pero esto implica que ¢; = —cy, de donde ¢; = 0. La solucién es por tanto trivial, asi este problema no

tiene valor propio negativo.

Caso 3 A es positivo, A = k2.
Ahora

y(x) = c1 cos(kx) + co sen(kx).

Ahora
y(—=L) = cycos(kL) — cysen(kL) = y(L) = ¢y cos(kL) + cp sen(kL).
Pero esto implica que
crsen(kL) = 0.
Ahora,
vy (=L) = kcy sen(kL) + kcy cos(kL)
= V(L) = —kcy sen(kL) + kcp cos(kL).

Entonces

kcysen(kL) = 0.

Si sen(kL) # 0, entonces ¢; = ¢, = 0, obteniendo la solucidn trivial. Asi suponga sen(kL) = 0. Esto requie-
re que kL = nm para algin entero positivo n. Por tanto, los nimeros

N n’m?
n — L2
son los valores propios paran = 1, 2, . . ., con las funciones propias correspondientes

( ) (nJTX) T (nT[.X)
= COS|{ — sen{ ——
Yn(X C1 2 (&) 17 s

con ¢ y ¢; sin ser cero.
Puede combinar los casos 1 y 3 permitiendo n = 0, de manera que el valor propio A = 0 tiene las
funciones propias constantes distintas de cero correspondientes. M

EJEMPLO 4.10 Las funciones de Bessel como funciones propias de un problema singular

Considere la ecuacion de Bessel de orden v,

2
(xy") + (Ax — v;) y =0,
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en el intervalo (0, R). Aqui v es cualquier nimero real no negativo dado, y R > 0. En el contexto de la
ecuacion diferencial de Sturm-Liouville, r(x) = x, y #(0) = 0, de manera que no hay condiciones de fron-
tera en 0. Sea la condicién frontera en R

y(R) =0.
Si A > 0, entonces la solucién general de la ecuacién de Bessel es
y(x) = c1Jy(VAx) + Yy (VAix).

Para tener una solucién que esté acotada conforme x — 0+, debe elegir ¢, = 0. Esto lo lleva a soluciones
de la forma y = ¢1J,,(+/Ax). Para satisfacer las condiciones de la frontera en x = R, debe tener

Y(R) = e1Jy(VAR) = 0.
Necesita ¢; # 0 para evitar la solucién trivial, de manera que debe elegir A para que J,(v/AR) = 0.

Si ji, jas - . . son los ceros positivos de J,(x), entonces /AR pueden ser elegidos como cualquier j,. Esto
lleva a una sucesion infinita de valores propios

con funciones propias correspondientes

con ¢ constante pero distinta de cero.
Este es un ejemplo del problema de Sturm-Liouville singular del tipo 1. ™

EJEMPLO 4.11 Polinomios de Legendre como funciones propias de un problema singular

Considere la ecuacién diferencial de Legendre
(1 =xH)y) +iy=0

En el contexto de la teoria de Sturm-Liouville, 7(x) = 1 — x2. En el intervalo [—1, 1], tiene r(—1) = (1) =0,
de manera que no hay condiciones de frontera y €ste es un problema de Sturm-Liouville singular del tipo 3.
Quiere soluciones acotadas en este intervalo, de manera que elige A = n(n+1),conn =0, 1,2, ... . Estos son
los valores propios de este problema. Las funciones propias correspondientes son constantes distintas de cero
multiplos de los polinomios de Legendre P,(x). M

Finalmente, aqui hay un problema con condiciones en la frontera mas complicadas.

EJEMPLO 4.12

Considere el problema regular
YiHry=0;  y(0)=0,3y(1)+y'(1) =0.

Este problema estd definido en [0, 1]. Para encontrar los valores y funciones propios, considere casos
en A.
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Casol A=0.
Ahora y(x) = cx + d y y(0) = d = 0. Entonces y = cx. Pero de la segunda condicién de frontera,

3y(D+y' (1) =3c+c=0

fuerza ¢ = 0, de manera que este caso tiene solamente la solucion trivial. Esto significa que 0 no es un
valor propio de este problema.

Caso2 A <O.
Escriba A = —kZ con k > 0, de donde y” — k2y = 0, con solucién general

y(x) = c1e’ + cye k.
Ahora y(0) = 0 = c| + ¢, asi ¢, = —c; y y(x) = 2¢; senh(kx). Siguiente,
3y(1) + y/(1) = 0 = 6¢, senh(k) + 2c 1k cosh(k)

Pero para k > 0, senh(k) y k cosh(k) son positivos, asi esta ecuacion obliga a c; = 0 y nuevamente obtiene
s6lo la solucion trivial. Este problema no tiene valor propio negativo.

Caso3 A>0,A=Kk2
Ahora y” + k2y = 0, con solucién general

y(x) = c1 cos(kx) + ¢ sen(kx).
Entonces y(0) = ¢; = 0, asi y(x) = ¢; sen(kx). La segunda condicién de la frontera da
0 = 3¢y sen(k) + kcp cos(k).
Necesita ¢, # 0 para evitar la solucién trivial, asi busque k tal que

3sen(k) + kcos(k) = 0.

Esto significa que

k
tan(k) = —=.
(k) 3
Esta ecuacion no se puede resolver algebraicamente. Sin embargo, la figura 4.14 muestra las graficas de
y = tan(k) y y = —k/3 en el mismo conjunto de ejes. Estas graficas se cortan una infinidad de veces en

y {\y = tan (k) i\\

k
y=-3 7]

FIGURA 4.14
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el semiplano k > 0. Sean las k coordenadas de estos puntos de interseccion ki, ky, . . . Los niimeros A, = k%
son los valores propios de este problema, con las funciones propias correspondientes ¢ sen(k,x) para
c#0. |

4.3.2 El teorema de Sturm-Liouville

Con estos ejemplos como antecedente, he aqui el teorema fundamental de la teoria de Sturm-Liouville.

1. Cada problema regular y cada problema periédico de Sturm-Liouville tiene un nimero infinito
real de valores propios distintos. Si éstos estan etiquetados como Ay, A, . . . de manera que A, <
Ant1, €ntonces lim,,_, o, A, = 00.

2. Si X,y A, son valores propios distintos de cualquiera de las tres clases de problemas de Sturm-
Liouville definidos en un intervalo (a, b), y ¢, ¥ ¢,, son las funciones propias correspondientes,
entonces

b
/ PX)Pn (X))@ (x) dx = 0.

3. Todos los valores propios de un problema de Sturm-Liouville son nimeros reales.

4. Paraun problema regular de Sturm-Liouville, cualesquiera dos funciones propias correspondien-
tes a un solo valor propio son multiplos constantes una de la otra. ™

La conclusién (1) nos asegura la existencia de valores propios, al menos para problemas regulares y
periddicos. Un problema singular también puede tener una sucesion infinita de valores propios, como en
el ejemplo 4.10 con las funciones de Bessel. La conclusién (1) también afirma que los valores propios “se
esparcen”, de manera que si se acomodan en orden creciente, crecen sin limite. Por ejemplo, los nimeros
1—1/n no podrian ser valores propios de un problema de Sturm-Liouville, ya que estos nimeros tienden
a 1 conforme n— o0.

En (2) se denota f - g = f z p)f (x)g(x) dx. Este producto punto para funciones tiene muchas de las
propiedades vistas para el producto punto de vectores. En particular, para funciones f, g y & que son inte-
grables en [a, D],

f-g=g 1
f-g+h=f-g+f-h,
(af)-g=a(f-g)

para cualquier nimero real o, y
f-fr=0.

La dltima propiedad cuenta con la suposicioén hecha para la ecuacién de Sturm-Liouville que p(x) > 0 en
(a, b). Sif también es continua en [a, b], entonces f - f = 0 s6lo si fes la funcion cero, como en este caso
b . o
f P f(x)? dx = 0 puede ser cierto sélo si f(x) =0 paraa <x < b.
Esta analogia entre vectores y funciones es 1til en la visualizacién de ciertos procesos y conceptos, y
ahora es el momento apropiado para formalizar la terminologia.
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DEFINICION 4.1

Sea p continua en [a, b] y p(x) >0 paraa < x < b.

1. Sif y g son integrables en [a, b], entonces el producto punto de f con g, respecto a la fun-
cién de peso p, estd dado por

b
f‘g=f px) fx)gx)dx.

2. fy g son ortogonales en [a, b], respecto a la funcién de peso p, sif- g =0.

La definicién de ortogonalidad estd motivada por el hecho de que dos vectores F y G en el espacio
tridimensional son ortogonales exactamente cuando F - G = 0.

Ahora se puede exponer la conclusion (2): Las funciones propias asociadas con valores propios dis-
tintos son ortogonales en [a, b], con funcién de peso p(x). La funcién de peso p es el coeficiente de A en
la ecuacion de Sturm-Liouville.

Como se ha visto explicitamente para las series (trigonométricas) de Fourier, las series de Fourier-
Legendre y las series de Fourier-Bessel, esta ortogonalidad de funciones propias es la clave para los
desarrollos de funciones en series de funciones propias de un problema de Sturm-Liouville. Esto se con-
vertird en un resultado significativo cuando resuelva ciertas ecuaciones diferenciales parciales al modelar
fendmenos de onda y de radiacion.

La conclusién (3) formula que un problema de Sturm-Liouville puede no tener valores propios com-
plejos. Esto es consistente con el hecho que los valores propios para ciertos problemas tienen significado
fisico, tales como la medicion de los modos de vibracion de un sistema.

Finalmente, la conclusién (4) se aplica s6lo a problemas regulares de Sturm-Liouville. Por ejemplo, el
problema periddico de Sturm-Liouville del ejemplo 4.9 tiene funciones propias cos(nmwx/L) y sen(nmx/L)
asociadas con el tnico valor propio n272/L2, y estas funciones ciertamente no son multiplos constantes
una de la otra.

Se probaran partes del teorema de Sturm-Liouville.

Prueba La prueba de (1) requiere de algin analisis delicado que aqui no se reflejara.
Para (2), esencialmente, se reproducen los argumentos hechos previamente para los polinomios de
Legendre y las funciones de Bessel. Empiece con el hecho que

(rep) + (G + 2 p)en =0

(@) + (@ + Amp)pm = 0.
Multiplique la primera ecuacién por ¢, y la segunda por ¢, y reste para obtener
r @) om — (r@p) @0 = Oom — 2n) P2
Entonces

b b
/ [ ()5, (0)) @ (x) = (r (X), (X)) 9 (X)] dx = (o — )»n)/ P(X)@n(X)Pm (x) dx.
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Como A, # A, la conclusion (2) sera probada si demuestra que el lado izquierdo de la dltima ecuacién
es cero. Integrando por partes:

[ e, g dx— [ 060, () 9, ()
=0, (A WL~ [ 06 (6, ()

[0 WL+ [ 66, ()
= 1(0)6, (D)6, ) ~ @), (@) @)
~ D)6, (5)61,(5) + ), (@) @)
= 1) 9,(D)6,6) ~ £,(D)¢, (D))~ @) [0, @6, (@)~ e, @] @3

Para probar que esta cantidad es cero, use las condiciones de la frontera dadas. Suponga primero que tiene
un problema regular, con condiciones en la frontera

Ary(a) +A2y'(@) =0,  Biy(b) + B2y'(b) = 0.
Aplicando las condiciones de la frontera en a para ¢, y ¢, tiene

Argn(a) + Azg,(a) =0

Algp(a) + Axg,,(a) = 0.

Como supone que A; y A, no son cero en el problema regular, entonces el sistema de ecuaciones alge-
braicas

on(@)X + ¢, (@)Y =0,
om(@X + ¢, (@Y =0

tiene una solucién no trivial (a saber, X = A, Y = A;). Esto requiere que el determinante de los coeficien-
tes sea cero:

wn(a) (0,/1(61) , ,
= gn(a)¢,, (@) — m(a)p,(a) = 0.

em(a) ¢, (a)

Usando la condicion de la frontera en b, obtiene
@n (D)@, (b) — o (bY@, (b) = 0.

Por tanto, el lado derecho de la ecuacién (4.37) es cero, probando la relacion de ortogonalidad en el caso
de un problema regular de Sturm-Liouville. La conclusion se prueba similarmente para las otras clases de
problemas de Sturm-Liouville, aplicando las condiciones de la frontera pertinentes en la ecuacion (4.37).

Para probar la conclusién (3), suponga que un problema de Sturm-Liouville tiene un valor propio
complejo L = o + if. Sea ¢(x) = u(x) + iv(x) la funcién propia correspondiente. Ahora

(r¢') + (g + Ap)p = 0.
Aplicando el conjugado complejo de esta ecuacidn, observe que ¢/(x) = u/(x) + iv'(x) y

¢/ = i (x) — iV (x) = (m)
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Como r(x), p(x) y g(x) son de variable real, estas cantidades son sus propios conjugados, y obtiene
@) + (g +2p)p =0.

Esto significa que A también es un valor propio, con funcién propia @. Ahora, si 8 # 0, entonces A y A son
valores propios distintos, ahora

b
/ p(X)e(x)p(x)dx = 0.
a

Pero entonces

b

/ P[u()* +v(x)’]dx = 0.
a
Pero para un problema de Sturm-Liouville, se supone que p(x) > 0 para a < x < b. Por tanto, u(x)? +
v(x)2 =0, asi
ulx)=vx) =0
en [a, b] y ¢(x) es la solucidn trivial. Esto contradice que ¢ sea una funcién propia. Concluya que g = 0,
asi A es real.
Por ultimo, para probar (4), suponga que A es un valor propio de un problema regular de Sturm-

Liouville y ¢ y v son funciones propias asociadas con A. Use las condiciones en la frontera en a, y siguiendo
el razonamiento aplicado en la prueba de (2) muestre que

p@y' (@) — ¥ (@)¢'(a) = 0.
Pero entonces el Wronskiano de ¢ y v se hace cero en a, asi ¢ y ¥ son linealmente dependientes y uno es

un multiplo constante del otro. M

Ahora posee la maquinaria necesaria para los desarrollos en funciones propias generales.

4.3.3 Desarrollo en funciones propias

En la resolucion de ecuaciones diferenciales, con frecuencia encontrard la necesidad de desarrollar una
funcién en una serie de soluciones de una ecuacién diferencial ordinaria asociada, un problema de Sturm-
Liouville. La serie de Fourier, la serie de Fourier-Legendre y la serie de Fourier-Bessel son ejemplos de
tales desarrollos. La funcién a ser desarrollada tendra algin significado en el problema. Podria ser, por
ejemplo, una funcién de temperatura inicial, o el desplazamiento inicial o la velocidad de una onda.

Para crear un contexto unificado en donde tales desarrollos en serie puedan ser entendidos, considere
la analogia con los vectores en el espacio tridimensional. Dado un vector F, siempre encontrard nimeros
reales a, b y ¢ de manera que

F = ai + bj + ck.

A pesar de que es fécil encontrar las constantes, se sigue un proceso formal para identificar un patrén.
Primero,

Fei=di-i+bj-i+ck-i=aq,

ya que

Andlogamente,

b=F-j y c=F-k
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La ortogonalidad de i, j y k provee un mecanismo adecuado para determinar los coeficientes en el desa-
rrollo por medio del producto punto.

Mais generalmente, suponga que U, V' y W son cualesquiera vectores distintos de cero en el espacio
tridimensional que son mutuamente ortogonales, es decir

U-V=U-W=V-W=0.

Estos vectores no tienen que ser unitarios y no tienen que estar alineados con los ejes. Sin embargo,
debido a su ortogonalidad, también es posible escribir faicilmente F en términos de estos tres vectores.
De hecho, si

F =aU+ BV + yW
entonces
F-U=adU-U+pV-U+yW:-U=0aU"U,

de manera que

F.-U
a=——.
U.U
Andlogamente,
F.V F-W
- — = . 4.38
=y v Y "Twow (4.38)

De nuevo, una férmula simple con producto punto para los coeficientes.

La idea de expresar un vector como suma de constantes multiplicadas por vectores mutuamente
ortogonales, con las férmulas para los coeficientes, se extiende para escribir las funciones en serie de
funciones propias de problemas de Sturm-Liouville, con una férmula semejante a la ecuacién (4.38) para
los coeficientes. Ya ha visto tres de tales instancias, que se revisan brevemente en el contexto del teorema
de Sturm-Liouville.

Serie de Fourier El problema de Sturm-Liouville es

YVit+ay=0;  y(=L)=y(L)=0
(un problema periédico) con valores propios n27%/L2 paran =0, 1, 2, . . . y funciones propias
1,cos(mx/L),cos(Qnx/L),...,sen(wrx/L),sen(2rx/L), ...
Aqui p(x) = 1 y el producto punto utilizado es
L
fg= / f(x)g(x)dx.
-L

Si f'es suave a pedazos en [—L, L], entonces para —L < x < L,

%(f(x—}-) +fx=) = %ao + Xz%an cos (%) + b, sen (%) ,

donde
= S5 1) cosnm/L) dx _ f(x)-cos(nmx/L) =0,1,2
o f_LLcos2(n7rx/L)dx ~ cos(nmx/L) - cos(nmx /L) paran =1u, 1, 2, ...
y
J51 £ @) sentumx/ L) dx f(x) - sen(nmx/L)
= - para n=1,2,....

f_LL sen?(nmwx/L)dx ~ sen(nmwx/L) - sen(nmx/L)
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Serie de Fourier-Legendre El problema de Sturm-Liouville es
(1 =x*)y) + 2y =0,

sin condiciones en la frontera en [—1, 1] ya que r(x) = 1 — x2 se anula en estos extremos. Sin embargo,
busca soluciones acotadas. Los valores propios son n(n 4 1) cuyas funciones propias correspondientes son
los polinomios de Legendre Py(x), P1(x), . . . . Como p(x) = 1, use el producto punto

1
/-8 =/ f(x)g(x)dx.
-1
Sif es suave a pedazos en [—1, 1], entonces para —1 < x < 1,

1 o
SFGH +Fa=) = enPalx)

n=0
donde

L FwPmdx fep,
[LoP2ydx Pa-Pa

Serie de Fourier-Bessel Considere el problema de Sturm-Liouville

2
@y + (Ax - ”—) y=0

X
con condiciones en la frontera y(1) = 0 en (0, 1). Los valores propios son A = j i paran=1,2,...,donde
J1sj2, - - - son los ceros positivos de J,(x), y las funciones propias son J,(j,.x). En este problema de Sturm-

Liouville, p(x) = x y el producto punto es

1
f'g=f0 xf(x)gx)dx.

Si f'es suave a pedazos en [0, 1], entonces para 0 < x < 1 puede escribir la serie

1 oo
SFCH +F =) =Y endv(n),

n=1

donde

_ S @R G dx _ F@) - o)
folevz(jnx) dx Jy(jnx) - Ty ()

n

nuevamente se ajusta al patrén visto en las otras clases de desarrollos.
Estos desarrollos son casos especiales de una teoria general de desarrollos en series de funciones
propias de problemas de Sturm-Liouville.

= TEOREMA 4.23 Convergencia de los desarrollos de funciones propias
Sean Aj, Ay, . . . los valores propios de la ecuacion diferencial de Sturm-Liouville
Y 4+ (@ +2rp)y =0

en [a, b], con uno de los conjuntos de las condiciones en la frontera especificado previamente. Sean ¢,
¢y, . . . las funciones propias correspondientes y defina el producto punto

b
f-e :/ p(x) f(x)g(x)dx.
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Sea f'suave a pedazos en [a, b]. Entonces, paraa < x < b,

1 o0
SFGEH + =) =Y enpn(x),

n=1
donde
_ S n
= .
@n - Pn
Llame a los nimeros
oo (4.39)
Pn * Pn

los coeficientes de Fourier de f respecto a las funciones propias de este problema de Sturm-Liouville. Con
esta eleccion de los coeficientes, f:ii] cnpn(x) es el desarrollo en funciones propias de f respecto a estas
funciones propias.

Si la ecuacién diferencial generadora de los valores propios y las funciones propias tienen un nombre
especial (tal como la ecuacién de Legendre, o la ecuaciéon de Bessel), entonces el desarrollo en funcién
propia se llama usualmente la serie de Fourier..., por ejemplo, la serie de Fourier-Legendre y la serie de
Fourier-Bessel.

EJEMPLO 4.13

Considere el problema de Sturm-Liouville
/" . / ris
Y +ay =0; y(0)=y(5)=0.
Encuentre de manera rutinaria que los valores propios de este problema son A = 4n2 paran =0, 1, 2, ...
Correspondiente a A = 0, puede elegir ¢y(x) = 1 como una funcién propia. Correspondiente a 1 = 4n2,
@u(x) = cos(2nx) como una funcién propia. Esto da el conjunto de funciones propias

po(x) =1, ¢@1(x) =cos(2x), @ (x)=cos(4x),....

Debido a que el coeficiente de A en la ecuacion diferencial es p(x) = 1, y el intervalo es [0, /2], el
producto punto para este problema es

/2
f-g=/0 fx)gx)dx.

Escribira el desarrollo en funciones propias de f (x) = x2(1 — x) para 0 < x < /2. Como f y f’ son
continuas, este desarrollo convergird a x2(1 — x) para 0 < x < 7/2. Los coeficientes en este desarrollo

son
Fol [P0 —x)dx —(1/64)mt + (1/24)73 EYEE
co = = = = —_——_——
T T 77 dx /2 2 32
y,paran=1,2,...,
f - cos(2nx)

"= cos(2nx) - cos(2nx)

B fon/z x2(1 — x) cos(2nx) dx
fon/z cos2(2nx) dx

1
- (—4nn2(—1)" + 37202 (=1)" — 6(—1)" + 6) .
4 n4
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Por tanto, para 0 < x < n/2,

1
xz(l—)c)zrr2 -
12 32

1 1
- § :_ —4mn*(=1)" 4+ 372n* (= 1)" — 6(=1)" + 6) cos(2nx).
4

4 = n ( )

La figura 4.15(a) muestra la quinta suma parcial de esta serie, comparada con f, y la figura 4.15(b) muestra
la décimoquinta suma parcial de este desarrollo. Claramente este desarrollo en funcién propia esta conver-
giendo rapidamente a x2(1 — x) en este intervalo. M

4.3.4 Aproximacion en la media y la desigualdad de Bessel

En ésta y en las siguientes dos secciones se discuten algunas propiedades adicionales de los coeficientes
de Fourier, asi como algunas sutilezas en la convergencia de la serie de Fourier. Para esta discusion, sean
@1, @2, . . . funciones propias normalizadas de un problema de Sturm-Liouville en [a, b]. Normaliza-
da significa que cada funcién propia ¢, ha sido multiplicada por una constante positiva de manera que
¢, * @, = 1. Esto se puede hacer siempre debido a que un multiplo constante distinto de cero de una fun-
cién propia es nuevamente una funcién propia. Ahora tiene

1 sin=m

b
Pn - Pm = / PX) @ (X) P (x) dx = .
a 0 sin #m

Para estas funciones propias normalizadas, el n-ésimo coeficiente de Fourier es

fon
$On - On

=f- o (4.40)

Cp =

.. . . . . . ., . n
Ahora se definird una medida de qué tan bien aproxima una combinacion lineal Z,,zl k¢, a una
funcién dada f.



226

CAPITULO 4  Funciones especiales, desarrollos ortogonales y onduletas

DEFINICION 4.2 Mejor aproximacién en la media

Sea N un entero positivo y sea f una funcion integrable en [a, b]. Una combinacion lineal

N
D knn(x)
n=1

de @1, ¢, . . ., py es la mejor aproximacion en la media de f en [a, b] si los coeficientes ky, . . ., ky
minimizan la cantidad

2

b N
IN(f)Z/ p(x) (f(x)—zknwn(x)) dx.

n=1

In(f) es el producto punto de f (x) — Zj,\::] ku@, (x) con ella misma (con funcién de peso p). Para
vectores en R3, el producto punto de un vector V = ai + bj + ck con €l mismo es el cuadrado de su lon-
gitud:

V -V =a2+ b2+ ¢? = (longitud de V)2.

Esto sugiere que debe definir una longitud para funciones mediante

b
g-g= / p(x)g(x)*dx = (longitud de 9)?.
a

Ahora Iy(f) tiene la interpretacion geométrica de ser el (cuadrado de) la longitud de f (x) — Z,}:,:l kupn(x).
Cuanto mds pequefia sea esta longitud, mejor aproxima la combinacién lineal Z;V:] kypn(x) a f(x)
en [a, b]. Esta aproximacién es un promedio sobre todo el intervalo, en contraste a la aproximacién en
un A})unto particular, de ahi el término “aproximacién en la media”. Debe elegir las k;, para hacer de
ZH:I k,@n(x) la mejor aproximaciéon media posible de f en [a, b], lo que significa hacer la longitud de

fx) — ZnNzl k,@,(x) tan pequefia como sea posible.
Para determinar cémo elegir las k;,, escriba

2

b N N
0<In(f) = / p(x) f<x>2—22f<x)<pn<x>+(ansan(x)> dx
n=l1 n=1

a

b N b
:/ p(X)f(x)2dx—2Zk,,/ P(x) f () @n (x) dx
a n=1 a
N N b
+ Z ankmf P (X)) (X))@ (x) dx

n=1m=1

N N N
=F =2 kaf out Y Y Knkmu - om
n=1

n=1m=1

N N
=f‘f—22knf'(ﬂn+zki(ﬂn'¢n

N N
:f'f_zzkizf'§0n+zk,2p
n=1 n=1
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yaque ¢, - ¢, = 1 para este conjunto normalizado de funciones propias. Ahora sea ¢, = f - ¢,, el n-ésimo
coeficiente de Fourier de f para este conjunto normalizado de funciones propias. Complete el cuadrado
escribiendo la dltima desigualdad como

N N n n
0<ff=2) kncat Y kn=> ca+> cn
n=I1 n=1 n=1

n=1
N N
=ff+) (n—k)? =) cp. (4.41)
n=1 n=1

En esta formulacién, es obvio que el lado derecho alcanza su minimo cuando cada k, = c¢,. Ha probado
el siguiente.

— TEOREMA 4.24

Sea f integrable en [a, b] y N un entero positivo. Entonces, la combinacion lineal Zn:l k., que es la
mejor aproximacion en la media de fen [a, b] se obtiene poniendo

knzf'(pn
paran=1,2,.... ®

Asi, para una N dada, la N-ésima suma parcial ZN: 1 (f * )@, de la serie de Fourier Zo,f:l(f * O)Pn
de f'es la mejor aproximacién en la media de f por una combinacién lineal de ¢, ¢y, . . ., @n.

El argumento principal del teorema tiene otra consecuencia importante. Poniendo k, = ¢, =f* ¢, en
la igualdad (4.41) para obtener

N
0<f-f=) (o),

n=1

N
Yo
n=1

Como N puede ser cualquier entero positivo, la serie de los cuadrados de los coeficientes de Fourier de f
converge, y la suma de esta serie no puede exceder el producto punto de f con ella misma. Esta es la des-
igualdad de Bessel y fue probada en la seccidn 2.5 (teorema 2.7) para series de Fourier trigonométrica.

= TEOREMA 4.25 Desigualdad de Bessel

Sea fintegrable en [a, b]. Entonces la serie de los cuadrados de los coeficientes de Fourier de f respecto a
las funciones propias normalizadas ¢y, ¢, . . . converge. Mds atin,

S ff
n=1

Bajo ciertas circunstancias, la desigualdad puede ser reemplazada por una igualdad. Esto lleva a con-
siderar el concepto de convergencia en la media.
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4.3.5 Convergencia en la media y el teorema de Parseval

Continuando con el tema de la subseccion anterior, suponga que ¢y, ¢, . . . son las funciones propias nor-
malizadas de un problema de Sturm-Liouville en [a, b]. Si fes continua en [a, b] con derivada continua a
pedazos, entonces para a < x < b,

)= (f - en)gn(x).

n=1

Esta convergencia se llama convergencia puntual, porque trata con la convergencia de la serie de Fourier
individualmente en cada x en (a, b). Bajo ciertas circunstancias, esta serie también puede converger uni-
formemente.

Ademas de estas dos clases de convergencia, en el contexto de los desarrollos en funciones propias
también se utiliza con frecuencia la convergencia en la media.

DEFINICION 4.3  Convergencia en la media

Sea fintegrable en [a, b]. La serie de Fourier ZZO: 1 (f *o)@, de f, respecto a las funciones propias
normalizadas ¢y, ¢,, . . ., se dice que converge a f'en la media en [a, b] si

2

b N
Jim f p(x) (f(x) > (- gon)gon) dx = 0.

n=I

La convergencia en la media de una serie de Fourier de f, a f, sucede cuando la longitud de f (x) —
2=1(f * n)p,(x) tiende a cero conforme N tiende a infinito. Ciertamente, esto pasa si la serie de Fourier
converge a f, porque entonces f (x) = Z?f:l (f * on)en(x), y esto sucede si f'es continua con derivada con-
tinua a pedazos.
Para el resto de esta seccion, sea C'[a, b] €l conjunto de funciones que son continuas en [a, b], con
derivadas continuas a pedazos en (a, D).

TEOREMA 4.26

1. Sif(x)= Z(;o:](f * @)(x) para a < x < b, entonces Zono:l (f - ¢n)p, también converge en la
media a fen [a, b].
2. Sifestaen C [a, b], entonces ZZO:] (f * ¢n)@, converge en la media a fen [a, b]. W

El reciproco de (1) es falso. Es posible que la longitud de f (x) — Z,/:/:l (f * ¢)@,(x) tienda a cero con-
forme N — oo pero que la serie de Fourier no converja a f (x) en el intervalo. Esto es porque la integral en
la definicién de la convergencia media es un proceso de promedios y no se enfoca en el comportamiento
de la serie de Fourier en ningtin punto particular.

Se probara que la convergencia en la media para funciones en C'[a, D] es equivalente a poder convertir
la desigualdad de Bessel en una igualdad para todas las funciones en esta clase.
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— TEOREMA 4.27

Zc:;l(f * ©,)@, converge en la media de f para toda fen C'[a, b] si, y sélo si
(e.¢]
Z(f'(ﬂn)zzf'f
n=1
para toda fen C'[a, b].

Prueba A partir de los célculos hechos en la prueba del teorema 4.24, con k, =1+ ¢,,

b N
0<In(f) = f p(x) <f<x) - Z(f-wn)wn)
a n=1

2 N

dx=f-f=Y (f o)
n=1

Por tanto,

2

b N
Jin_ [y (f(x) s wnm) dx =0

si, y s6lo si

ff=> (o) =0.

n=1

Al reemplazar la desigualdad con una igualdad en la desigualdad de Bessel llega a la relacién de
Parseval. Ahora puede enunciar una condicién bajo la cual esto sucede.

= COROLARIO 4.1 Teorema de Parseval

Si festd en C'[a, b], entonces
o0
S(fre)=f-F
n=1

Esto se sigue inmediatamente a partir de los dos tltimos teoremas. Sabe por el teorema 4.26(2) que si
festaen C’[a, b], entonces la serie de Fourier de f converge a f'en la media. Entonces, por el teorema 4.27,
Z:O:l (f+ @2 =f- f.Con mas esfuerzo, la ecuacién de Parseval puede ser probada bajo condiciones
mas débiles sobre f.

4.3.6 Completez de las funciones propias

La completez es un concepto que quizé se entiende mejor en términos de vectores.

En el espacio tridimensional, el vector k no se puede escribir como una combinacién lineal i + §j, a
pesar de que los vectores iy j son ortogonales. La razén para esto es que hay otra direccion en el espacio
tridimensional que es ortogonal al plano de iy j, e i y j no llevan informacién acerca de la componente
que un vector puede tener en esta tercera direccion. Los vectores i y j son incompletos en R3. En contraste,
no existe ningun vector distinto de cero que sea ortogonal a cada uno de i, j y k, asi, estos vectores son
completos en R3. Cualquier vector tridimensional puede escribirse como combinacién lineal de i, j y k.

Ahora considere las funciones propias normalizadas ¢;, ¢,, . . . Piense que cada ¢; define una di-
reccion diferente o eje, en el espacio de funciones en consideracion, que en este caso es C'[a, b]. Estas
funciones propias son completas en C'[a, b] si la tinica funcién en C’[a, b] que es ortogonal a toda funcién
propia es la funcién cero. En cambio, si existe una funcién no trivial fen C’[a, b] que sea ortogonal a toda
funcién propia, se dice que las funciones propias son incompletas. En este caso hay otro eje, o direccidn,
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en C'[a, b] que no estd determinado por todas las funciones propias. Una funcién que tiene una compo-
nente en esta otra direccién posiblemente no pueda ser representada en una serie de las funciones propias
incompletas.

Por tanto, las funciones propias son completas en el espacio de funciones continuas con derivadas
continuas a pedazos en (a, b):

— TEOREMA 4.28
Las funciones propias normalizadas ¢, ¢», . . . son completas en C'[a, b]. M

Prueba Suponga que las funciones propias no son completas. Entonces, existe alguna funcién no trivial
fen C'[a, b] que es ortogonal a cada ¢,. Pero debido a que f'es ortogonal a cada ¢,, cada (f, ¢,) = 0, asi

)= (f - ¢a)gu(x) =0 paraa <x <b.

n=1

Esta contradiccion prueba el teorema. M

EJEMPLO 4.14

Las funciones propias normalizadas del problema de Sturm-Liouville
Yitry =0 YO =y(@/2)=0

son

- - (2x) - (4x) ’ (6x)

—, —=cos(2x), —=cos(4x), —=cos(bx),....

Vo' Jm Jr N
Las constantes se eligen para normalizar a las funciones propias, como
_ /2 ) B /2 4 ) B
On - Pn = @, dx = —cos“(2nx)dx = 1.
0 0o T

Este conjunto E de las funciones propias es completo en C’[0, 7/2]. Esto significa que excepto para
f(x) =0, no existe fen C’'[a, b] que es ortogonal a cada funcién propia.
Observe el efecto si quita una funcién propia. Por ejemplo, el conjunto E; de funciones propias

\/7 2 A 2 .
;, ﬁcos( X), ﬁcos( X), ...,

esta formado quitando f(x) = (2/+/7) cos (2x) de E. Ahora cos(2x) no tiene desarrollo en términos de E|,
a pesar que cos(2x) es continua con derivada continua en (0, 7z/2). Suponga que

2 2
cos(2x) = \/;co + Z cnﬁ cos(2nx),
n=2

/2
co=,/—-cos(2x) =0
b4

entonces
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2
¢, = cos(2x) - —=cos(2nx) =0,

N

lo que implica que cos(2x) = 0 para 0 < x < /2. Esto es un absurdo. El conjunto agujereado de funciones
propias Ej, al que se le quité una funcién de E, no es completo en C’[0, 7/2]. ™

SECCION 4.3 PROBLEMAS

En cada uno de los problemas del 1 al 12, clasifique los pro-
blemas de Sturm-Liouville como regular, periddico, o singular;
indique el intervalo relevante; encuentre los valores propios; y,
para cada valor propio, encuentre una funcién propia. En algunos
casos los valores propios pueden ser definidos implicitamente por
una ecuacion.

Ly +xy=0;y0)=0,y(L)=0
2.y + 2y =0;y(0)=0,y(L)=0
3.y +ay=0;y(0)=y4) =0
4. y" + 1y = 0; y(0) = y(x), y'(0) = y'(r)
S. y"+ ay = 0; y(=37) = y(3n), y'(=37) = y'(37)
6. y" + 1y =0; y(0) =0, y(m) + 2y'(r) = 0
7. y"+ Ay =0;y(0) — 2y(0) =0, y(1) =0
8.y +2y+(1+1)y=0;y0)=y(1)=0
9. (e*y) + reZy = 0; y(0) = y(m) = 0
10. (e=%yy 4+ (1 + X)e= 0y = 0; y(0) = y(8) =0
11. (3yY + Axy = 0; y(1) = y(e3) = 0

12. (x7lyy 4+ (4 + Mx3y = 0; y(1) = y(et) =0

En cada uno de los problemas del 13 al 18, encuentre el desarro-
1lo en funciones propias de la funcién dada en las funciones pro-
pias del problema de Sturm-Liouville. En cada caso, determine
a qué converge el desarrollo en funciones propias en el intervalo
y dibuje la grafica de la funcion y la suma de los primeros N tér-
minos del desarrollo en funciones propias en el mismo conjunto

4.4 Las onduletas

4.4.1 Laidea detras de las onduletas

de ejes para el intervalo dado y la N dada. (En el problema 13,
haga la grifica para L = 1).

13. f(x) =1 —xpara0 <x <L

Y+ ry=0:y0) =yL) =0;N=40
14. f(x) = x| para0 < x < 7

y'+ iy =0;y0)=y'(r) =0; N=30

15 f () ={

Y+ 1y =0;y'(0) = y(@4) =0; N =40
16. f(x) =sen(2x) para0 <x <7

'+ Ay =0;y(0) = y'() = 0; N =30
17. f(x) = x2 para =37 <x < 3w

'+ Ay = 0; y(=37) = y(3m), y'(=37) = y'(3n);
N=10

—1 para0 <x <2

1 para2 <x <4

0 paraOSxfl
18. f(x) = 1 2
1 para§<x§1

Y 42y + (1 + 1)y =0;y0)=y(1) =0; N =30

19. Escriba la desigualdad de Bessel para la funcién f (x) =
x(4 — x) para las funciones propias del problema de Sturm-
Liouville del problema 3.

20. Escriba la desigualdad de Bessel para la funcién f'(x) = e—*
para las funciones propias del problema de Sturm-Liouville
del problema 6.

Los afios recientes han visto una explosion tanto en el desarrollo matematico de onduletas como en sus
aplicaciones, que incluye el andlisis de sefiales, compresion de datos, filtrado y electromagnetismo. Aqui
nuestro propdsito es introducir suficientes ideas que estan detrds de las onduletas para permitir al estudian-
te proseguir con los tratamientos mas completos.

Piense en una funcién definida en la recta real como una sefal. Si la sefial contiene una frecuencia
fundamental w,, entonces f es una funcién periddica con periodo 27/wy y la serie de Fourier de f () es una
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herramienta para analizar el contenido de frecuencia de la sefial. El espectro de amplitud de f consiste de
un trazo de puntos (nwy, c,/2) en el cual

cn =Jai + b2,

con ay y b, los coeficiente de Fourier de f. Bajo ciertas condiciones sobre f, esto permite representar una
sefial como una serie trigonométrica visualizando las frecuencias naturales

1 o0
f) = a0+ > ay cos(nant) + by sen(nawot).

n=1

Con frecuencia se modela la sefial tomando una suma parcial de la serie de Fourier:

N
1
f@) = an + Z an cos(nwot) + by, sen(nwopt).

n=1

Aunque este proceso ha probado ser til en muchas instancias, la representacion trigonométrica en serie
de Fourier no siempre es el mejor dispositivo para analizar sefiales. Primero, puede estar interesado en una
sefial que no es periddica, o ain general, puede tener una sefial que estd definida sobre toda la recta real
sin periodicidad, y sélo requiere que su energia sea finita. Esto significa que [, (f (¢))? dt es finita o, si
f(1) es de variable compleja, que [*°_ | f(r)|? dt es finita. Esta integral es el contenido de energia de la sefial,
y las funciones que tienen energia finita se dice que son cuadrado integrables. En general, los desarrollos
de Fourier no son la mejor herramienta para el andlisis de tales funciones.

Hay otras desventajas para las series trigonométricas de Fourier. Para una f dada, podria tener que
elegir N muy grande para modelar f (f) mediante una suma parcial de una serie de Fourier. Finalmente, si
estd interesado en el comportamiento de f (f) en algin intervalo finito de tiempo, o cerca de algtin tiempo
en particular, no le es factible aislar esos términos en el desarrollo de Fourier que describen este comporta-
miento, sino que debe tomar toda la serie de Fourier, o toda su suma parcial, si estd modelando la sefial.

Para ilustrar lo anterior considere la sefial mostrada en la figura 4.16. Explicitamente,

1
1 0<t<-
para 0 < <4
1 1 3
—— para — <t < —
5 4 8
11 -,
— ara — <
s Pag=

L OSIE SN

1
1 ara — <t
p 5= <

3
f@=1-3 paraZ§t<l
4 5
—— paral <t < —
5 4
14 11
— para — <t < —
5 4 8
4 11 3
- para — <t < =
5 8 2
3
0 paratzz yparat <0
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-1.0 =05 O 0.5 1.0 1.5 2.0

FIGURA 4.16 La serial f (1).

La serie de Fourier de fen [—%, %] es

1 > 2nmx 2nmwx
E+;ancos< 3 )—i—bnsen( 3 ),

donde

b, = # [—6cos (%) + 5+ 12cos <%> — 6c¢cos (?) — 20 cos (%)

2nw Snw 1lnm
+ 11cos (T) + 18 cos (T) — 10cos (T) — 4cos(nrr)i| .

Esta serie converge muy despacio a la funcién. La figura 4.17(a) muestra la octagésima suma parcial
de esta serie, y la figura 4.17(b) la centésima suma parcial. Aun con este nimero de términos, esta
suma parcial no modela muy bien la sefial. Ademads, si estd interesado en s6lo parte de la sefial, no hay
manera de distinguir los términos de la serie de Fourier que llevan la mayor informacién acerca de esta
parte de la sefial. Dicho de otra manera, la serie de Fourier no localiza informacién.

Estas consideraciones sugieren que busque otros conjuntos de funciones ortogonales completas en las
cuales las funciones cuadrado integrables puedan ser expandidas y que superen algunas de las dificultades
recién mencionadas para las series trigonométricas de Fourier. Esta es una motivacién primaria para las
onduletas. La discusion de onduletas comienza desarrollando una onduleta importante en detalle, esta
construccién servird después para sugerir algunas de las ideas detras de las onduletas en general.

4.4.2 Las onduletas de Haar

Construird un ejemplo que es importante tanto histéricamente como para las aplicaciones en nuestros dias.
Las onduletas de Haar fueron las primeras en ser descubiertas (alrededor de 1910) y sirven como modelo
de una aproximacion al desarrollo de otras onduletas.
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3+ 3
2+ 2
1 1=
| | | | | | | | | | | | X
X — — _
1.5 10 05 0 05 10 15 15 =10 =05 051 1.0 )15
_1 —
l —
2 2
3k 30
FIGURA 4.17(a) Octagésima suma FIGURA 4.17(b) Centésima suma parcial
parcial de la serie de Fourier de la sefial. de la serie de Fourier de la sefial.

Sea L2(R) el conjunto de todas las funciones con valores reales que estan definidas en toda la recta real
y son cuadrado integrables. L2(R) tiene la estructura de un espacio vectorial, ya que las combinaciones li-
neales oy fi + asf> + * * * + «, f, de funciones cuadrado integrables son cuadrado integrables. El producto
punto para las funciones en L2(R) es

f'g=/ f@)g)dt.

Ahora considere la funcién caracteristica de un intervalo / (o de cualquier conjunto de nimeros en la
recta real). Esta funcién se denota por x; y tiene el valor 1 para f en I y cero para ¢ que no esté en /. Esto
es,

1 sitestaen [

x1(t) = {

0 sitnoestden /

Use la funcidn caracteristica del intervalo unitario semiabierto:

1 para0 <t < 1

0 sit <0 osit>1

Xx0,1)(t) = {

En la figura 4.18 se muestra la grafica de x).
Se trata de introducir nuevas funciones tanto por escalamiento como por traslacién, con el objetivo
de producir un conjunto ortonormal completo de funciones en L2(R). Recuerde que la grafica de f (1 — k)

X[0,1)

FIGURA 4.18 Xio.1)
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es la grafica de f (¢) trasladada k unidades a la derecha si k es positiva, y |k| unidades a la izquierda si k es
negativa. Por ejemplo, la figura 4.19(a) muestra la grafica de

t sen(t) para0 <t <15
f@ =
0 parat <0 yparatr > 15

La figura4.19(b) es la graficade f (r + 5) (grafica de f (¢) corrida cinco unidades a la izquierda), y la figura
4.19(c) es la grafica de f (r — 5) (la grafica de f (7) corrida cinco unidades a la derecha). Ademas, f (k7) es
un escalamiento de la grafica de f. f (kf) comprime (si k > 1) o estira (si 0 < k < 1) la gréfica de f (¢) para
a <t < b sobre el intervalo [a/k, b/k]. Por ejemplo, la figura 4.20(a) muestra una grafica de

tsen(rmt) para —2 <t <3

f@) =

parat < —2 yparat >0

La figura 4.20(b) muestra la grafica de f (3f), comprimiendo la grafica de la figura 4.20(a) a la derecha e
izquierda, y la figura 4.20(c) muestra la gréfica de f (#/3), estirando la grafica de la figura 4.20(a).

f fa+3)
10 — 10 |-
S5 50
| | | Ly /N0 | | Ly,
=5 0 5 10 15 =5 5 10 15
—10 —10 —
FIGURA 4.19(a) FIGURA 4.19(b) f(r+ 5).
t sen(t) para0 <r <15
f =
0 parat <O yparatr > 15
fe=13)
10 —
5 —
| | | | Ly
=5 0 5 10 15 20
75 —

FIGURA 4.19(c) f(t —5).
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2 -
1~ 1=
| | | | ¢ | | | [
—4 -2 0 2 4 —4 -2 0 2 4
1k -1~
FIGURA 4.20(a) FIGURA 4.20(b) f(31).
tsen(mt) para —2 <t <3
f) =
parat < —2 yparat >0
Sf@3)
2 —
1 |—
| | | | ¢
—10 -5 0 5 10
71 —

FIGURA 4.20(c) f (t/3).
Sea ¢(1) = xjo.1)(1) y defina
1
1 0<t<-—
para0 <1t < 5

V(1) =92 =92t = 1) = -1 paral <r<l
7 =

0 parat <0 yparar>1

En la figura 4.21 se muestra una grafica de .
Después, considere las traslaciones ¥/(t — n), en donde n es cualquier entero. Esta es la funcién

Yt —n) =92 —n)) —pQ2e —n)—1)
=2t —2n) — gt —2n—1)

1 paran§t<n+§

1
-1 paran+§§t<n+1

0 parat <n yparat>n+1
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(1)

D= —

71_

FIGURA 4.21

Y = (21 — @21 — 1),

con ¢(t) = X[o,l)'

wit = n) Wt~ m)
1 I
n n+1
| t t
1 m m 1 m+1
n+s3 7 2t%
FIGURA 4.22 FIGURA 4.23 (2t — m) =

Yt —n) = @2t —n) — 2t — n) — 1). (22t — m)) — (22t — m) — 1).

En la figura 4.22 se muestra la grafica de y¥/(r — n).
Ahora combine la traslacion con el escalamiento. Considere la funcién

Y2t —m) =922t —m)) — 22t —m) — 1)
= @4t —2m) — 4t —2m — 1)

| m<t <m>+1
ara — < |\ — —
para 5 = 2) "4

! (m)+1<t (m+1)
== — ara —_— — < 5
Pardi\7) Ty = 2

(m—+1)

m
0 parat<§ y parat >

en donde m es cualquier entero. Se muestra la gréfica de esta funcién en la figura 4.23.
Antes de proseguir, observe que estas funciones de traslacién y de escalamiento son ortogonales en

L2(R).

LEMA 4.2

1. Para enteros distintos n y m,

vt —n) -yt —m)=0

Y2t —n) - Y2t —m) = 0.
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2. Para cualesquiera enteros n 'y m,
Yt —n) Y2t —m) =0.

Prueba Sin # m, entonces los intervalos [n, n 4+ 1) en los cuales {/(r — n) toma sus valores distintos
de cero, y [m, m 4+ 1) en el cual y/(r — m) toma sus valores distintos de cero, son ajenos. Entonces y(t —
n)Y(t —m) =0 paratodo ty

w(t—n)'lﬁ(t—M)=/ Yt =)yt —m)dr =0.

Andlogamente, para n # m, los intervalos [n/2, (n + 1)/2) y [m/2, (m + 1)/2) en los cuales Y(2f —
n)y ¥(2t — m), respectivamente, toman sus valores distintos de cero, son ajenos, asi ¥(2t — n) - Y (2t —
m) = 0.

Para (2), sean n 'y m enteros cualesquiera. Si los intervalos en los cuales y(t — n) y ¥(2t — m) toman
valores distintos de cero son ajenos, entonces estas funciones son ortogonales. Hay dos casos en los que
estos intervalos no son ajenos.

Casol n=m/2
En este caso

1 peuranft<n—|—4—l

1 1
Yt —nmy 2t —m) = -1 paran+Z§t<n+§

1
0 parat <n yparatzn—i—z

Entonces

n+1/4 n+1/2
1/f(t—n)~1ﬁ(2t—m)=/ dt—/ dt = 0.

n +1/4

Caso2 n+12=m/2

Ahora
1 +1<t +3
- aran + — <n+ -
P 2= 4
3
Y —nmyQ2t—m)=4 1 paran+Z§t<n+1
1 3
0 parat <n+ ~ yparat>n-+ —
2 4
asi

n43/4 n+1
w(r—n)-wz:—m):—f dt+/ di = 0.

n+1/2 +3/4

Aunque las funciones ¥/(t — n) y ¥(2t — m) son ortogonales en L%(R), no forman un conjunto com-
pleto, cuando n y m varian sobre los enteros. Queda para el estudiante encontrar funciones cuadrado in-
tegrables no triviales (esto es, distintas de cero al menos en algtin intervalo) que sean ortogonales a todas
estas funciones trasladadas y escaladas.

Ahora la idea es extender este conjunto de funciones usando factores de escalamiento 2 para m en-
tero, para obtener funciones que tomen valores constantes distintos de cero en los intervalos que puedan
hacerse mas cortos (m positiva) o mds largos (m negativa). Sea

Uin,n(t) = 1//(2mt —n)
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‘Tm,n([)
0’3,n(t) 02,;1([)
1
| | | | t
_1 ﬂ/ \ % % \,_21 + % n 1/_) n+1

' 0 " L0
n 1 n 1 g
ttie TT% b o

FIGURA 4.24 o, (1) param=0,1,2,3.

para cada entero m y cada entero n. Entonces

Omn(t) = 2"t —2n) — (2"t —2n — 1)

| n n 1
para oo S U< ot omrt
B 1
=171 Pafaz—m+2m+15 2—m+2—m
0 ; n ‘> n n 1
aral < — ara - -—
p TRRA TR

La figura 4.24 muestra las gréaficas de oy,(), 01,(f), 02,(f) y 03,(f) en el mismo conjunto de ejes, para
compararlas. Observe que n determina qué tan lejos sobre el eje r aparece la grafica, mientras que m
controla el tamafio del intervalo sobre el cual la funcidn es distinta de cero (mds corto para m creciente y
positiva, mds largo para |m]| creciente pero m negativa). En el dibujo n es un entero positivo, pero 7 también
puede elegirse negativo, en cuyo caso las graficas estdn a la izquierda del eje vertical.

Estas funciones forman un conjunto ortogonal en L2(R).

TEOREMA 4.29

Sin, m, n’ y m’ son enteros, y (m, n) # (m’, n’), entonces
Omn O/ = 0.

Se deja al estudiante que pruebe este resultado.

Un dltimo detalle antes de abordar el punto principal. Las o7, , son ortogonales, pero no son ortonor-
males. Esto se arregla facilmente. Divida cada una de estas funciones entre su longitud, como se defini
por el producto punto en L2(R). Calcule

n/2"+1/2" n/2m+1/2m 1
(longitud de am,,,)2 =Omn: Omn = f on21 (O dt = / dt = —.
njm ’ njam 2m
Esto sugiere que defina las funciones

Ymn(t) =220, (1) = 22 [«)(2*"“: —2n) — 2"t —2n — 1]

2 n 1
om/ para > <t< o + IES

_ 2 n 1 1
o para o+ gt =1 2_m o

n n 1
0 parat<2—m parat>2—+ﬁ

Las funciones ,,,, forman un conjunto ortonormal en L2(R). Estas funciones son las onduletas de Haar.
En la construccioén, ¢ es llamada la funcion de escalamiento, y ¥(t) = ¢(2t) — ¢(2t — 1) es la onduleta
madre. Las graficas de estas onduletas son similares a las graficas de la figura 4.24, pero el segmento en
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la altura 1 en la figura 4.24 estd ahora en la altura 27/2, y el segmento en la altura —1 en la figura 4.24 esta
ahora en la altura —2m/2,

Las onduletas de Haar son completas en L%(R). La idea detrds de esto se puede visualizar como
sigue. Si f es cuadrado integrable, entonces f(f) puede ser aproximada tan exactamente como desee por
una funcién g que tiene soporte compacto (g(f) = 0 fuera de algin intervalo cerrado) y que tiene valores
constantes en los intervalos semiabiertos de la forma [n/2™, (n 4 1)/2™), con n'y m enteros. Tales intervalos
son de longitud 1/2, los cuales se pueden hacer mas largos o mds cortos debido a la eleccién del entero m.
Por su lado, g puede ser aproximada tanto como quiere por una suma de constantes multiplicadas por las
onduletas de Haar, las cuales estan definidas en tales intervalos, con el error en la aproximacién tendiendo
a cero conforme el nimero de términos en la suma es mds grande.

4.4.3 Un desarrollo en onduletas

Suponga que f es una funcién cuadrado integrable. Puede intentar un desarrollo de f en una serie de las
onduletas de Haar, que forman un conjunto ortonormal completo en L2(R). Tal desarrollo tiene la forma

fO= 3> conVma®).

m=—0o0 n=—00

La igualdad en esta expresion significa que la serie de la derecha converge en la media a f (7). Esto significa
que

00 M 00 2
Jim /_ N (f(t)— > > cmnwm,,,(r)) di = 0.

m=—o0n=—00

Los coeficientes c,,, pueden ser encontrados en la forma usual usando la ortonormalidad de las onduletas
de Haar:

00 00
i wmo,no = Z Z Cmnwm,n : I//mo,no = Cmong-

m=—0o0 n=—00

Complete el ejemplo que empezd en la seccion 4.5.1, en el cual fes la sefial cuya grafica se muestra
en la figura 4.16. Como vio en las figuras 4.17(a) y (b), debe usar un nimero muy grande de términos para
modelar esta sefial con la suma parcial de su desarrollo de Fourier en [— %, %]. Sin embargo, si calcula los
coeficientes en el desarrollo de Haar, encuentra que

F() = Y0.0(t) + V21 1(1) — 0.692,1(£) — 0.45/ 291 2() + P2.5(1).

Para algunos prop6sitos querra los desarrollos trigonométricos de Fourier, pero para esta sefial las ondu-
letas de Haar proveen un desarrollo muy eficiente.

4.4.4 El analisis de multirresolucion con las onduletas de Haar

El término andlisis de multirresolucion se refiere a una sucesion de subespacios cerrados de L2(R) que
estdn relacionados con el uso del escalamiento en la definicién de un conjunto de onduletas. Enseguida se
analiza lo que significa esto en el contexto de las onduletas de Haar.

Debido a que L2(R) tiene la estructura de un espacio vectorial, se satisfacen las siguientes tres con-
diciones:

1. Las combinaciones lineales Zjn: 1 ¢j f; de funciones en L2(R) también estdn en L*(R).
La funcién cero, 6(f) = 0 para todo ¢, estd en L2(R) y sirve como el vector cero de L2(R). Para
cualquier funcién fen L2(R), f+ 0 = f.

3. Sifestden L2(R), —f, definida por (—f)(f) = —f (t), también estd en L2(R).
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Un conjunto S de funciones cuadrado integrables se dice que es un subespacio de L2(R) si S tiene al
menos una funcién en €l, y siempre que fy g estén en S, entonces f — g estd en S. Por ejemplo, el conjunto
de todos los multiplos constantes de o 1} forman un subespacio de L2(R).

Un subespacio S es cerrado si las sucesiones convergentes de funciones en S tienen sus funciones
limite en S. Por ejemplo, el subespacio de todas las funciones continuas cuadrado integrables no es ce-
rrado, ya que un limite (en el sentido de convergencia en la media) de funciones continuas puede no ser
continuo.

Si un subespacio S no es cerrado, es posible formar el “menor” de los subespacios de L%(R) que con-
tiene a todas las funciones en S, junto con los limites de convergencia de las sucesiones de funciones en
S. Este subespacio, que puede ser todo L2(R), se llama la cerradura de S, y se denota por S. S es cerrado,
ya que por su construccion tiene todos los limites de sucesiones convergentes de funciones que estan en
este espacio.

Enseguida se probard cémo las onduletas de Haar generan una sucesion de subespacios cerrados de
L2(R), que puede ser indexada con los enteros de manera que cada uno esté contenido en el siguiente en
la lista. Los espacios estan generados por diferentes escalas de la funcidn de escalamiento ¢ y pueden ser
pensados como asociados con los diferentes grados de resolucion de la sefial.

Para empezar a definir estos espacios, sea Sy el conjunto de todas las combinaciones lineales de la
funcion de escalamiento trasladada. Estas funciones de escalamiento trasladadas tienen la forma ¢(r — n)
para n entero, y una funcién tipica en S tiene la forma

N
D cjpt —np),
j=1

donde N es un entero positivo, los cj/. son nimeros reales, y cada n; es un entero. Ahora, sea V; la cerradura
de Sy:

Vo =S_().

Ahora, sea S,, el espacio de todas las combinaciones lineales de las funciones ¢(2”t — n), donde n
varia en los enteros y m es un entero fijo en la definicién de S,,. Sea

Vin = S
A partir de la propiedad de escalamiento de la funcién de escalamiento,

o) = @2t) + Q21 — 1),

ha encontrado que f (¢) estd en V,, exactamente cuando f (2f) estd en V,, .|, y cada V,, estd contenida dentro
de V,,4 (escrito V,, C V,,11). Asi los subespacios cerrados V,,, con m entero, forman una cadena ascen-
dente:

e CVoLroCcVayocWVyecVicVrC---

Esta cadena tiene dos propiedades adicionales de importancia. Primero, no hay ninguna funcién no
trivial contenida en todo V. La interseccién de todos los subespacios cerrados V,, consiste sélo de la fun-
cién cero y, finalmente, la cadena ascendente termina en L2(R). Esto significa que toda funcién en L%(R)
tiene un desarrollo en serie en términos de las funciones de Haar, un hecho ya referido.

Se dice que los espacios V,, forman un andlisis de multirresolucion de L2(R). Este andlisis de multi-
rresolucidn estd generado por la funcién de escalamiento .

4.4.5 La construccion general de onduletas y el analisis de multirresolucion

Las onduletas de Haar han sido conocidas por cerca de un siglo, junto con la cadena de subespacios que
forman el andlisis de multirresolucion de L2(R). Sin embargo, por algtin tiempo no se supo cémo se podria
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duplicar esta construccion, para obtener un andlisis de multirresolucién a partir de funciones de escalamiento
distintas. Para este fin sirve la clave de la construccién de Haar para dar una definicién de una funcién de
escalamiento y el andlisis de multirresolucién asociado.

DEFINICION 4.4 La funcién de escalamiento y el andlisis de multirresolucion asociado

Sea ¢ en L2(R). Entonces ¢ es una funcion de escalamiento con andlisis de multirresolucién {V,,} si
ceeCV,ocVo,cVocVicV,Ce e
es una cadena ascendente de subespacios cerrados de L2(R) que satisface las condiciones:

1. Las funciones trasladadas ¢(¢ — n), para n entero, son ortonormales, y toda funcién en V{
es una combinacion lineal de las funciones de esta forma.

2. No existe ninguna funcién no trivial que pertenezca a todo V,, (esto es, los V,, tienen inter-

seccion trivial).

f () estd en V,, exactamente cuando f(27) estien V.

4. Toda funcién en L2(R) puede ser desarrollada en una serie de funciones de los V.

£

Vo es un subespacio de Vi, el cual contiene funciones ortogonales a toda funcién en V. El subespacio
de V| que contiene a todas estas funciones es llamado el complemento ortogonal de V, en V. Para hacer
una analogia con los vectores en R3, los multiplos constantes de k forman un subespacio de R3 que es el
complemento ortogonal del plano definido por iy j. Todo vector en este complemento ortogonal es orto-
gonal a cada combinacion lineal ai + bj.

Ahora use la funcion de escalamiento para producir una onduleta madre v, con la propiedad que toda
funcién en este complemento ortogonal de Vy en V; es una combinacidn lineal de trasladados ¥/(t — n). Si
existe tal onduleta madre, entonces forme la familia de onduletas

Yn = 2" 2y (2"t — n)

para enteros m y n.

4.4.6 Las onduletas de Shannon

Las onduletas de Haar forman un prototipo para las onduletas y el andlisis de multirresolucion, en parte
porque fueron las primeras y en parte porque es relativamente facil trabajar con ellas y visualizarlas. La
razén por la cual pasaron tantos afios antes de encontrar otros ejemplos de funcién de escalamiento/on-
duleta/andlisis de multirresolucién es que involucra un andlisis bastante pesado. Sin embargo, hay otros
ejemplos relativamente simples. Uno consiste de las onduletas de Shannon. Para éstas, empiece con la
transformada de Fourier de una funcién potencial de escalamiento. Sea

@(w) = X[-m,7)-

Tomando la transformada inversa de Fourier, obtiene
sen(t)

() = g

Esta funcién aparece en la reconstruccién del teorema de Shannon, que fue probado en la seccién 3.4.7
para funciones de ancho de banda < L. En el caso que L = m, el teorema establece que una sefial f cuya
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transformada de Fourier f (w) vale cero fuera del intervalo [—, 7] (esto es, f tiene un ancho de banda
< ) puede ser reconstruida con muestreo sobre sus valores en los enteros. Especificamente,

fo=3Y f(n)w;(’(’t(—’_;)"))= Y fmet —n).

n=—oo n=—0oo

El espacio V| en este contexto consiste de las funciones en L2(R) de ancho de banda que no excede 7.

Por escalamiento (sea g(f) = f (2f)) considere el espacio V| de funciones de ancho de banda que no
excede 2, y asi sucesivamente, formando un andlisis de multirresolucion. Asi ¢ es una funcién de esca-
lamiento. Ahora necesita una onduleta madre i que sea ortogonal a cada ¢(t — n) para n entero. Por un
argumento que no se llevard a cabo (pero cuyas conclusiones pueden ser verificadas de manera directa),
obtiene una 1 conveniente a partir de ¢ en este caso haciendo

sen(2mwt) — cos(mt)

7 (1=3)

1
v (1) =g0(f—§>—2¢(2t -D=

El contenido de frecuencia de esta funcion es obtenido de su transformada de Fourier,

J(w) = —e P xp(w),

donde A consisteAde todas las w en [—2m, —1), junto con todas las w en (7r, 27]. Esto es, en cada uno de
estos intervalos, ¥(w) = —e—@/2, y para w fuera de estos intervalos, ¥ (w) = 0. La figura 4.25 muestra la
grafica de la onduleta madre v, y la figura 4.26 la grafica de su espectro de amplitud. Esto da el contenido
de frecuencia de .

Las onduletas de Shannon son las funciones

Yn (1) = 224 (2"t = n)

2m/2
= ——— (sen7 (2"t — n)) — cos(w (2"t — n))).

-

Queda para el estudiante explorar las propiedades de estas onduletas. En las figuras 4.27(a) y (b) se dan
las graficas de V1o(f) y ¥21(0).

Hay muchas otras familias de onduletas, incluyendo las onduletas de Meyer, las onduletas de Daube-
chies y las onduletas de Stomberg. Estas requieren mucho trabajo preliminar para sus definiciones. Dife-
rentes onduletas son construidas para propdsitos especificos, y tienen aplicaciones en dreas como andlisis

10) |l2(f)|
1.0 —
0.8/~
0.6 — 0.8 —
A A e A 06~
-6 —4 -2 i 4 6 04—
—0.6 L 02—
-0.8 |- L1l [ |
Lo -8 -6-4-2 0 2 4 6 8
FIGURA 4.25 Onduleta madre de Shannon FIGURA 4.26 Espectro de amplitud de la
sen(27t) — cos(rt) onduleta madre de Shannon.

V() =

(Y
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FIGURA 4.27(b) Onduleta de Shannon yr»\(t).

de sefiales, compresion de datos y solucién de ecuaciones integrales. Para una aplicacién al problema de
usar el patrén de colores en el iris del ojo como un medio de identificacion, véase el articulo Iris Recogni-
tion, de John Daugman, aparecido en American Scientist, julio-agosto, 2001, pp. 326-333.

SECCION 4.4 PROBLEMAS

Pruebe que 0,,,(t) * O (£) = 0 si (m, n) # (m', n).

En el mismo sistema de ejes, dibuje la grafica de oy ,(f) y
012(t). Explique a partir de la gréfica de estas dos funciones
por qué son ortogonales.

En el mismo sistema de ejes, dibuje la grafica de oy 3(¢) y
0_5.1(8). Explique a partir de la grafica de estas dos funcio-
nes por qué son ortogonales.

En el mismo sistema de ejes, dibuje la grafica de 0,(¢) y
o01,1(¢). Explique a partir de la gréfica de estas dos funciones
por qué son ortogonales.

Dibuje la grafica de ¥(2t — 3).

Dibuje la grafica de ¥ (2t + 6).

10.

Seaf () =40_3 _»(t) + 60_; 1(t). Escriba la serie de Fourier
f(®) en[—5, 5]. Dibuje la gréfica de la quincuagésima suma
parcial de esta serie en el mismo conjunto de ejes con la
gréfica de f ().

Sea f (1) = =30, _5(t) + 4020(t) + 7o —1(2). Escriba la serie
de Fourier f (¢) en [—4, 4]. Dibuje la grafica de la quincua-
gésima suma parcial de esta serie en el mismo conjunto de
ejes con la grafica de f (7).

Seaf () =30_4_1(t) + 80_,,1(t). Escriba la serie de Fourier
f (1) en [—6, 6]. Dibuje la gréfica de la quincuagésima suma
parcial de esta serie en el mismo conjunto de ejes con la
gréfica de f ().

Sea f () = 0_5 _o(t) + 4013(t) + 207 _»(t). Escriba la serie
de Fourier f (¢) en [—7, 7]. Dibuje la grafica de la quincua-
gésima suma parcial de esta serie en el mismo conjunto de
ejes con la gréfica de f (¢).
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CAPITULO S

La ecuacion de onda

La ecuacion de onda y las condiciones inicial y en la frontera

Las vibraciones en una membrana o un tambor, o las oscilaciones inducidas en una cuerda de guitarra
o violin, son gobernadas por una ecuacién diferencial parcial llamada ecuacion de onda. Deducira esta
ecuacion en una situacion sencilla.

Considere una cuerda eldstica estirada entre dos clavijas, como en una guitarra. Se trata de describir
el movimiento de una cuerda a la cual se le da un desplazamiento pequefio y se libera para que vibre en
un plano.

Coloque la cuerda a lo largo del eje x de 0 a L y suponga que vibra en el plano xy. Busque una funcién
y(x, 1) tal que en cualquier tiempo ¢ > 0, la gréafica de la funcién y = y(x, ) de x sea la forma de la cuerda
en ese tiempo. Asi, y(x, ) permite tomar un instante de la cuerda en cualquier tiempo, mostrandola como
una curva en el plano. Por esta razén y(x, f) es llamada la funcion posicion para la cuerda. La figura 5.1
muestra una configuracion tipica.

Para empezar un caso sencillo, desprecie las fuerzas de amortiguamiento tales como la resistencia del
aire y el peso de la cuerda y suponga que la tensioén T(x, ) en la cuerda siempre actda tangencialmente a
la cuerda y que las particulas individuales de la cuerda se mueven sé6lo verticalmente. También suponga
que la masa p por unidad de longitud es constante.

Ahora considere un segmento tipico de la cuerda entre x y x + Ax y aplique la segunda ley del
movimiento de Newton para escribir

fuerza neta en este segmento debida a la tensién = aceleracion del centro de masa
del segmento por su masa.

Esta es una ecuacion vectorial. Para Ax pequefia, la componente vertical de esta ecuacion (figura 5.2) da
aproximadamente

2

9
T(x + Ax, 1) sen(d + AB) — T'(x, 1) sen(§) = pra—t;(E, 0,

245
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" T(x+ Ax, 1)

y = y(x, 1), tfijo

y(x, 1)

I
|
: | L x
X L * 0l X x+ Ax

T
0l
FIGURA 5.1 Perfil de la FIGURA 5.2

cuerda en el tiempo t.

donde X es el centro de masa del segmento y T(x, ) = ||T(x, )| = la magnitud de T. Entonces

T (x + Ax, t)sen(® + AQ) — T (x, t) sen(h) 2y _
Ax TR

Ahora v(x, 1) = T(x, 1) sen(0) es la componente vertical de la tensidn, asf la tltima ecuacién se vuelve

v(x + Ax,t) —v(x, 1) Bzy(_ 0
=p—(x,1).
Ax P 012

En el limite conforme Ax — 0, también X — x y la dltima ecuacién se vuelve

v 9%y 5.1
ax o '
La componente horizontal de la tension es h(x, 1) = T (x, f) cos(6), asi
dy
v(x,t) = h(x,t)tan(@) = h(x,t)—.
0x
Sustituya ésta en la ecuacién (5.1) para obtener
d [ dy 3%y
—|h—=) = p—(x,1). .
8x< 8x) P 1) (5-2)

Para calcular el lado izquierdo de esta ecuacion, use el hecho de que la componente horizontal de la
tension del segmento es cero, de manera que

h(x + Ax, t) — h(x, 1) = 0.

Asi h es independiente de x y la ecuacion (5.2) puede ser escrita como

L 3%y B 3%y
o2 P
Haciendo ¢2 = h/p, esta ecuacion se escribe frecuentemente
Zy _ 0%
ot? ax2’

Esta es la ecuacion de onda unidimensional (espacio de dimension I). Si usa la notacién de subindices
para las derivadas parciales, en donde

_dy _dy
)’x—ax y yt—at

entonces la ecuacion de onda es

Vi = e
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Esta foto espectacular, tomada por Ensign John Gay de la Constelacion U.S.S., muestra una
nube de onda de choque formada sobre la cola de la nave U.S. Navy F/A-18 Hornet conforme
rompe la barrera del sonido. La teoria actual es que la densidad de las ondas sonoras genera-
das por el plano acumuladas en un cono en el plano de la cola y una gota en la presion del aire
causan que el aire hiimedo se condense ahi en gotitas de agua. Las ondas de choque no estdn
completamente entendidas y sus modelos matemdticos usan técnicas avanzadas de la teoria de
ecuaciones diferenciales parciales.

Para modelar el movimiento de la cuerda, necesita mas que tan sélo la ecuacién de onda. Debe incor-
porar informacién acerca de las restricciones en los extremos de la cuerda y acerca de la velocidad inicial
y la posicion de la cuerda que obviamente influird en el movimiento.

Si los extremos de la cuerda estan fijos, entonces

v0,)=y(L,)=0 parar>0.

Estas son las condiciones de la frontera.
Las condiciones iniciales especifican la posicién inicial (en el tiempo cero)

Y, 0)=f(x) para0<x=<L
y la velocidad inicial

9
a—f(x, 0) = g(x) para0 <x <L,

en donde f'y g son funciones dadas que satisfacen ciertas condiciones de compatibilidad. Por ejemplo, si la
cuerda esta fija en sus extremos, entonces la funcién posicién inicial debe reflejar esto satisfaciendo

fO)=f(L)=0.

Si la velocidad inicial es cero (la cuerda es soltada desde el reposo), entonces g(x) = 0.
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La ecuacién de onda, junto con las condiciones iniciales y de la frontera, constituyen un problema con
valores en la frontera para la funcién posicion y(x, 7) de la cuerda. Estas dan suficiente informacién para
determinar de manera tnica la solucién y(x, 7).

Si hay una fuerza externa de magnitud F unidades de fuerza por unidad de longitud actuando sobre la
cuerda en la direccion vertical, entonces este desarrollo puede modificarse para obtener

Py 0%y 1
— =" — + —F.

w2 p

Nuevamente, el problema con valores en la frontera consiste de esta ecuacién de onda y de las condiciones
de la frontera e inicial.
En el espacio bidimensional la ecuacién de onda es

3%z (9% 9%z
o). 5.3
a2~ (ax2 8y2> (5-3)

Esta ecuacién gobierna los desplazamientos verticales z(x, y, f) de la membrana cubriendo una regién
especifica del plano (por ejemplo, las vibraciones de la superficie de un tambor).

De nuevo, las condiciones de la frontera e iniciales deben ser dadas para determinar una solucién
unica. Tipicamente, el marco est4 fijo en la frontera (el aro de la superficie del tambor), de manera que no
habra desplazamiento de los puntos en la frontera:

z(x,y,f) =0 para (x, y) en la frontera de la regién y t > 0.

Mais atn, el desplazamiento inicial y la velocidad inicial deben ser dados. Estas condiciones iniciales
tienen la forma

0
26,3, 0) = f(x, ), a—fu, ¥.0) = g(x. y)

con f'y g dados.
Habra ocasién de usar la ecuacién de onda bidimensional (5.3) expresada en coordenadas polares, asi
que obtendra esta ecuacién. Sea

x =rcos(d), y=rsen(d).

Entonces

r=4x24+y2 y 6 =tan"'(y/x).
Sea

z2(x, y) = z(r cos(), r sen(h)) = u(r, ).
Calcule

0z ou or n du 06
0x ar ox 00 ox
X du y  du
x2 4 y2 or x2 4+ y2 30

X ou y du
ror  r2of’



5.1 La ecuacion de onda y las condiciones inicial y en la frontera 249

Entonces

927 _ du 0 (x) du 0

@_Eax r

y2ou  2xy du
r3or ot 90

Mediante un célculo semejante, obtenemos

206 0x

x20%u  2xy 9%u y

y>+x8 au y 0 [ou
r2 rax \ or r2 9x \ 96

252y

r2ar2 3 9ra0 | 4962

8z_y8u+x3u
dy ror  r290

y
82z _ x29u  2xydu
dy? T3 or
Entonces
8%z 0%z
axZ  Jdy

rt 90 " r2or?

=0 T

202y 2xy 9%u x29%u
r3 0rog = rt 062’

Y

2u  10u 1 9%u

RETER

Por tanto, en coordenadas polares, la ecuacidon de onda bidimensional (5.3) es

2
u _
at?

19 192
au ”) , (5.4)

For e

en donde u(r, 6, t) es el desplazamiento vertical de la membrana desde el plano xy en el punto (7, 6) y en

el tiempo .

Para el resto de este capitulo resolverd problemas con valores en la frontera involucrando el movimien-
to de onda en una variedad de situaciones, haciendo uso de varias técnicas.

SECCION 5.1 PROBLEMAS

Sea y(x, r) = sen(nmx/L) cos(nmct/L). Pruebe que y satisface
la ecuacion de onda unidimensional para cualquier entero 7.

Pruebe que z(x, y, t) = sen(nx) cos(my) cos(\/ n? + mzcl)

satisface la ecuacion de onda bidimensional para cuales-
quiera enteros n 'y m.

Sea f una funcién de una variable dos veces diferenciable.
Pruebe que

1
y(x, 1) = E[f(x +ct) + f(x —ct)]
satisface la ecuacion de onda unidimensional.

1
Pruebe que y(x, 1) = sen(x) cos(ct) + - cos(x) sen(ct)

satisface la ecuacion de onda unidimensional, junto con las
condiciones en la frontera

1
v(0,1) = y(2m,t) = —sen(ct) parat >0
c

y las condiciones iniciales
a
y(x,0) = sen(x), 3—§(x, 0) =cos(x) para0 <x < 2m.

Formule un problema con valores en la frontera (ecuacién
diferencial parcial, condiciones de la frontera e inicial)
para vibraciones de una membrana rectangular ocupando
laregion 0 < x < a, 0 <y < b si la posicion inicial es la
grifica de z = f (x, y) y la velocidad inicial (en el tiempo
cero) es g(x, y). La membrana estd atada a un marco rigido
a lo largo de la frontera rectangular de la region.

Formule un problema con valores en la frontera para el
movimiento de una cuerda eldstica de longitud L, atada en
ambos extremos y soltada desde el reposo con una posicién
inicial dada por f (x). La cuerda vibra en el plano xy. Su
movimiento es contrarrestado por la resistencia del aire,
que tiene una fuerza en cada punto de magnitud proporcio-
nal al cuadrado de la velocidad en ese punto.
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5.2 Soluciones de la serie de Fourier de la ecuacion de onda

Ahora, problemas que involucran el movimiento de ondas en un intervalo acotado. Primero considere
el problema cuando hay un desplazamiento inicial, pero sin velocidad inicial (soltar una cuerda desde
el reposo). Posteriormente, con una velocidad inicial pero sin desplazamiento inicial (dando un impulso
inicial a la cuerda, pero desde la posicién horizontal de reposo). Después, aprendera como combinar éstas
para permitir una velocidad inicial combinada con un desplazamiento inicial.

5.2.1 Cuerda vibrante con velocidad inicial cero

Considere una cuerda elastica de longitud L, atada en sus extremos en el eje xen x = 0y x = L. La cuerda
es desplazada, después soltada desde el reposo para vibrar en el plano xy. Busque la funcién de desplaza-
miento y(x, t), cuya grafica es una curva en el plano xy que muestra la forma de la cuerda en el tiempo .
Si tomara una fotografia de la cuerda en el tiempo ¢, vera esta curva.

El problema con valores en la frontera para esta funcién de desplazamiento es

=c"—5 para0<x<L,t>0,

Py _ 0%
ot2 9x2

y(0,t) = y(L,t) =0 parat >0,

y(x,0) = f(x) para0 <x <L,

0
8—);(x,0):0 para0 <x < L.

La gréfica de f (x) es la posicién de la cuerda antes de soltarse.
El método de Fourier, o de separacion de variables, consiste en intentar una solucién de la forma
y(x, £) = X(x)T (¢). Sustituya esto en la ecuacioén de onda para obtener

XT" = *X''T,

donde T’ = dT /dt y X' = dX/dx. Entonces

X// T//

X ar

El lado izquierdo de esta ecuacion depende sélo de x, y el lado derecho sélo de 7. Debido a que x y £ son
independientes, puede elegir cualquier fy que quiera y fijar el lado derecho de esta ecuacién en el valor
constante T”(fy)/c2T (ty), mientras varia x en el lado izquierdo. Por tanto, X"/X debe ser constante para todo
xen (0, L). Pero entonces 7”/c2T debe igualar la misma constante para todo ¢ > 0. Se denota esta constante
por —A (el signo negativo es de costumbre y conveniente, pero se llega a la misma solucioén final si s6lo
usa 1A). A es llamada la constante de separacion, y ahora tiene

X// T//
X T
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Entonces
X' +2X=0 y T'+r2T=0.

La ecuacién de onda se ha separado en dos ecuaciones diferenciales ordinarias.
Ahora considere las condiciones en la frontera. Primero,

¥0,0) =XO0)T (1 =0
parat> 0. Si T (f) = 0 para todo ¢ > 0, entonces y(x,f) =0 para0 <x <Lyt > 0. Esta es ciertamente la
solucién si f(x) = 0, ya que en ausencia de velocidad inicial o fuerza de impulso, y con desplazamiento
cero, la cuerda permanece estacionaria para todo tiempo. Sin embargo, si 7 () # 0 para cualquier tiempo,
entonces esta condicién de la frontera puede satisfacerse sélo si
X(0)=0.
Andlogamente,
YL, ) =X)T () =0
para ¢ > 0 requiere que
X(L)=0.
Ahora tiene un problema con valores en la frontera para X:
X' +1X=0; X0)=X(L)=0.
Los valores de A para los cuales este problema tiene soluciones no triviales son los valores propios de este

problema, y las soluciones no triviales correspondientes para X son las funciones propias. Este problema
regular de Sturm-Liouville fue resuelto en el ejemplo 4.8, obteniendo los valores propios

Ay =

L2

Las funciones propias son multiplos contantes distintos de cero de

X, (x) = (nnx)
n(x) = sen{ —
paran =1, 2, ... En este punto hay, por tanto, una infinidad de posibilidades para la constante de sepa-

racion y para X(x).
Abhora regrese a T (f). Debido a que la cuerda es soltada desde el reposo,

dy /
E(x’ 0)=Xx)T'(0) =0.
Esto requiere que 7(0) = 0. El problema que debe resolverse para T es
T" + Ac2T = 0; T'(0) = 0.

Sin embargo, sabe que A puede tomar solamente valores de la forma n2w?/L2, asi este problema es real-
mente

2..2.2
yo nmeet L
" =T =0 T'(0) = 0.
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La ecuacioén diferencial para T tiene solucién general

ct ‘b nwct
sen
L

T'(0) = %b —0,

ni
T(t) =a cos(
Ahora

asi b = 0. Por tanto, hay soluciones para 7(f) de la forma

nmct
T, (t) = ¢, cos 7

para cada entero positivo n, con las constantes ¢, ain indeterminadas.
Abhora tiene, paran =1, 2, . . ., funciones

niwx nmct
yu(x,1) = ¢, sen (T) cos 7 . (5.5)

Cada una de estas funciones satisface la ecuacion de onda, las condiciones de la frontera y la condicién
inicial y/(x, 0) = 0. Necesita satisfacer la condicién y (x, 0) = f (x).

Es posible elegir algtin n de manera que y,(x, t) sea la solucién para alguna eleccién de c,. Por ejem-
plo, suponga que el desplazamiento inicial es

14 3mx
fx) = sen <T) .

Ahora elijan = 3y ¢3 = 14 para obtener la solucién

3nx 3mct
1) =14 — .
y(x,t) sen( 7 )cos( 2 >

Esta funcion satisface la ecuacién de onda, las condiciones y(0) = y(L) = 0, la condicién inicial y(x, 0) =
14 sen(37x/L) y la condicion de velocidad inicial cero

dy
—(x,0)=0.
8t(x )

Sin embargo, dependiendo de la funcién de desplazamiento inicial, es posible que no obtenga una n ni
¢, particular simplemente escogiéndolas en la ecuacidn (5.5). Por ejemplo, si toma incialmente la cuerda
por la mitad y tiene funcién de desplazamiento inicial

L
X parangsE

fx) = L , (5.6)
L —x paraz <x <L

(como en la figura 5.3), entonces nunca podra satisfacer y(x, 0) = f(x) que es una de las y,. Atn si intenta
con una combinacion lineal finita

N
YO0 = yalx0)

n=1

I
~ I

<

i~ O
AN
= =
N

_|®
0=

I~

— X,

DI~ =
[\

FIGURA 5.3
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no puede elegir cy, . . . , cy para satisfacer y(x, 0) = f(x) para esta funcion, ya que f(x) no puede escribirse
como una suma finita de funciones seno.
Por tanto, debe intentar la superposicién infinita

oo
nmwx nmct
e sen ( —— ) cos .
Yo=Y e (L)<L>

n=1

Debemos elegir las ¢, para satisfacer

o0
nwx
y(x,0) = cpsen | — ).
; " ( L )

iPodemos hacer esto! Esta serie es el desarrollo de Fourier en senos de f(x) en [0, L]. Asi elegimos los

coeficientes de Fourier en senos
2k nmwé
= — — d .
Cn L/o f(é)sen< L) &

Con esta eleccion, obtenemos la solucion

0 L
y(x,t) = %; </(; f(&)sen (#) dE) sen (WTX> cos <mzct> . 6.7

Esta estrategia funcionard para cualquier funcién de desplazamiento inicial f que sea continua con
derivada continua a pedazos en [0, L] y que satisfaga f(0) = f(L) = 0. Estas condiciones garantizan que
la serie de Fourier en senos de f(x) en [0, L] converge a f(x) para0 < x < L.

En circunstancias especificas, cuando f(x) estd dada, por supuesto podemos calcular explicitamente
los coeficientes en esta solucion. Por ejemplo, si L = m y la funcién de posicién inicial f(x) = x cos (5x/2)
en [0, ir]. entonces el n-€simo coeficiente en la solucién (5.7) es

c, = %/0” &cos(5&£/2) sen(nTnE> d&

8 (=1
1 (5+2n)2(5—-2n)*"

La solucién para esta funcion de desplazamiento inicial, y velocidad inicial cero, es

8 & n(=1)!

YD =2 2 G5 oy

sen(nx) cos (nct) . (5.8)

La figura 5.4(a) muestra las gréficas de esta funcién (perfiles de la cuerda) en los tiempos r = 0, 0.2,
0.4,0.7,0.9 y 1.3 segundos. La figura 5.4(b) muestra los perfiles en los tiempos r = 1.2, 1.9,3,3.5,42y
4.7.Y la figura 5.4(c) muestra las graficas en los tiempos t = 5.1, 5.6, 5.9, 6.4, 7 y 8.3. Estas instantdneas
se hacen en grupos en el mismo conjunto de ejes para transmitir cierto sentido del movimiento con el
tiempo.

La solucién obtenida por separacion de las variables se puede poner en el contexto de la teoria de
Sturm-Liouville (seccién 4.3). El problema para X, a saber,

X' +2X=0; X(0)=X(L)=0,
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FIGURA 5.4(a) Perfiles de las soluciones

en los tiempost =0,0.2,0.4,0.7,0.9 y 1.3.
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FIGURA 5.4(b) Perfiles de la cuerda en los tiempos

t=12,19,3,35,42y47.

es un problema regular de Sturm-Liouville, y ha encontrado sus valores propios y las funciones propias
correspondientes. El paso final en la solucién es desarrollar la funcién posicién inicial en una serie de
funciones propias. Para este problema esta serie es el desarrollo de Fourier en senos de f (x) en [0, L].
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FIGURA 5.4(c) Perfiles de la cuerda en los tiempos
t=15.1,5.6,59,64,7y83.

5.2.2 Cuerda vibrante con velocidad inicial dada y desplazamiento inicial cero

Ahora considere el caso en que la cuerda es soltada desde su posicion horizontal (desplazamiento inicial
cero), pero con una velocidad inicial dada en x por g(x). El problema con valores en la frontera para la
funcién de desplazamiento es

92 92
a—tg)zcza—z para0 <x < L,t >0,
X

y(©0,1) =y(L,t) =0 parat >0,
y(x,00=0 para0 <x <L,

d
8—);()6,0) =g(x) para0<x <L.

Empiece como antes, con la separacion de las variables. Ponga y(x, #) = X(x)7(z). Como la ecuacién
diferencial parcial y las condiciones en la frontera son las mismas que antes, nuevamente obtiene

X' +1X=0; X(0) = X(L) =0,

con valores propios

y funciones propias constantes multiplos de
nwx
X, (x) = sen <T) .
Ahora, sin embargo, el problema para T es diferente y tiene
y(x, 0) =0=Xx)T1(0),
de manera que 7(0) = 0. El problema para T es

n’m?c?

”
T" + 2

T=0;, T =0.
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(En el caso de velocidad inicial cero tenia 7' (0) = 0). La solucién general de la ecuacién diferencial para

T es
() nimwct b nmwct
=acos| — sen .
“ L L

Como T (0) = a = 0, las soluciones para T (f) son multiplos constantes de sen(nmct/L). Asi, paran = 1,

2, ..., tiene las funciones
nmwx nict
yn(x,t) = cpsen (T> sen 7 .

Cada una de estas funciones satisfacen la ecuacién de onda, las condiciones en la frontera y la condi-
cion de desplazamiento inicial cero. Para satisfacer la condicién de velocidad inicial y,(x, 0) = g(x), debe
intentar en general una superposicién

o0
niwx nmct
1) = E —— .
y(x, 1) cnsen< 7 )sen< 7 )

n=1

Suponga que puede diferenciar esta serie término a término, entonces

2—?(;@0) ch sen(mzx)zg(x).

Este es el desarrollo de Fourier en senos de g(x) en [0, L]. Elija el fodo el coeficiente de sen(nmx/L) para
ser el coeficiente de Fourier en senos de g(x) en [0, L]:

nwe 2 L nmwé& d
CnT—zfo 8(5)59H<T> &,

La solucion es

PRy | & niwx nmct
y(x,t):EZ;(/O g(é)sen( )ds) <T>sen< ., > (5.9)

n=1
Por ejemplo, suponga que la cuerda es soltada desde su posicién horizontal con una velocidad inicial
dada por g(x) = x(1 + cos(wx/L)). Calcule

/OLg(;:)sen< )d& f (1+cos<%g>>se <””€>d§

L2(=1)" .
_ {nn(nz_l) sin#1

2 . *
L sin=1
T

La solucidn para esta funcién de velocidad inicial es
5. 1) 2 (3L? (n’x) <nct)+ 2 i L*>(—1)" (nnx) (nnct)
x,t)=—|—|)sen{ —)sen( — |+ — ) —————sen( — )sen{ ——
Y e \ 4w L L ne ‘o n?n(n? —1) L L (5.10)

Sic=1yL = m, obtiene

1"
y(x,t) == sen(x) sen(r) + Zﬁ sen(nx) sen(nt).

La figura 5.5 muestra las graficas de esta solucién (posiciones de la cuerda) en los tiempos ¢ = 0.4, 1.2,

1.7,2.6,3.5y4.3.
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FIGURA 5.5 Perfiles de la cuerda en los tiempos
r=04,12,1.7,2.6,3.5y4.3.

5.2.3 Cuerda vibrante con desplazamiento y velocidad inicial

Considere el movimiento de la cuerda con desplazamiento inicial f(x) y velocidad inicial g(x).

Formule dos problemas separados, el primero con desplazamiento inicial f(x) y velocidad inicial cero,
y el segundo con desplazamiento inicial cero y velocidad inicial g(x). Sabe cémo resolver ambos. Sea
y1(x, 1) la solucién del primer problema, y y,(x, f) la solucién del segundo. Ahora sea

Y, ) = yi(x, 1) + ya(x, 1).

Entonces y satisface la ecuacién de onda y las condiciones en la frontera. Mds aun,

yx, 0) = yi(x, 0) + ya2(x, 0) = f(x) + 0 =f(x)

dy

_ 952 _ _
E(X’ 0) = o (x,0) + o (x,0) =04 g(x) = gx).

Asi y(x, ) es la solucién para el caso con funciones de desplazamiento inicial y velocidad inicial distintas
de cero.
Por ejemplo, sea la funcion de desplazamiento inicial

X para0 < x <
fx) = :

L
L —x para5<x§L

L
2

y la velocidad inicial

gx)=x (l + cos (?)) .

La solucién de la funcién de desplazamiento es la suma de la solucién y(x, f) para desplazamiento f(x),
con velocidad inicial cero, y la solucién y,(x, f) con desplazamiento inicial cero y velocidad inicial g(x).
Para y;(x, £), use la solucién (5.7). Primero evalde

([ r@sen( ) )

L/2

L/ gsen< g)derL/ (L— E)sen( Z$>d§

4L
= sen (nr/2).
n
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Por tanto,

oo

4L t
yx =" o sen (nm/2)sen (nTM> cos (nnc )

n=I

Ya se ha resuelto para y,(x, ), y se obtiene
(r 1) = 2 312 sen( mc) Sen(nct)
X, hhiad xer
%2 e L L
2 2 L= nmx nmct
—i_EX:n%T(n2 1) sen( L )sen( L )

La solucién con la posicién inicial y la velocidad inicial dadas es y(x, 1) = yi(x, ) + y(x, ). SiL=my
¢ = 1, esta solucién es

y(x, 1) = Z % sen (nw/2) sen(nx) cos (nt)

( ) sen(x) sen(t)
3 > (_2 ) sen(nx sen(nt) .
- n*(n
Las graficas de este perfil de la cuerda se muestran en la figura 5.6 para los tiempos ¢ = 0.125, 0.46, 0.93,
1.9,2.5,34y5.2.
y(x, 1) /t =0.93
0.46
15— 1 \
8
Lo X
05—
0 I N T T B
051015 20 25 30
0.5
-1.0— 25 5.2
—-15F 3.4

FIGURA 5.6 [Instantes de la cuerda en los
tiempos t = %, 0.46,0.93,1.9,2.5,34y5.2.

5.2.4 Verificacion de las soluciones

En las soluciones obtenidas hasta aqui ha tenido que usar una serie infinita

YO0 = y(x, 1)

n=1

y determinar los coeficientes en las y, usando un desarrollo de Fourier. La pregunta ahora es si esta suma
infinita es verdaderamente una solucién del problema con valores en la frontera.

Para ser especifico, considere el problema con funcién posicién inicial f (x) y velocidad inicial cero.
Deduzca la solucién propuesta

o
nwx nmct
y(x,t)zzlcn sen (T) cos( T >, (5.11)
n=
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en donde

L
e = % /O £(&) sen (?) .

Ciertamente, y(0, f) = y(L, f) = 0, ya que todo término en la serie para y(x, f) tiende a ceroen x = 0 y en
x = L. Mas ain, bajo condiciones razonables sobre f, la serie en senos de Fourier de f(x) converge a f(x)
en [0, L], asi y(x, 0) = f(x).

Sin embargo, no es obvio que y(x, ) satisfaga la ecuacién de onda, a pesar de que cada término en la
serie ciertamente si. La razon para esta incertidumbre es que no puede justificar la diferenciacién término
a término de la solucién en serie propuesta.

Ahora se demostrara un hecho sobresaliente, el cual tiene también otras ramificaciones. Probara que
la serie en la ecuacion (5.11) puede ser sumada en forma cerrada. Para hacer esto, primero escriba

nmwx <nnct) 1 [ <nn(x + ct)) (nn(x — ct)>]
sen (—) cos =—|sen| ————= ) +sen | ———= | |.
L L 2 L L

La ecuacion (5.11) se convierte en

e¢]

y(x,t) = % {ch sen (nn(xL—+ct)) + ;cn sen (@)} . (5.12)

n=1

Si la serie de Fourier en senos para f(x) converge a f(x) en [0, L], como normalmente podria esperarse para
una funcién que pueda ser una funcién de desplazamiento de una cuerda, entonces

fx) = iC” sen (me>
n=1

para 0 < x < L,y la ecuacidn (5.12) se convierte en

1
y.n =S fx+en+ flx—en].

Sif es doblemente diferenciable, puede usar la regla de la cadena para verificar directamente que y(x, f)
dada por esta expresion satisface la ecuacién de onda, siempre que f(x + cf) y f(x — cf) estén definidas.
Sin embargo, esto presenta una dificultad, ya que f(x) estd definida inicamente para 0 < x < L. Pero
t puede ser cualquier nimero no negativo, de manera que los nimeros x + ¢t y x — ct pueden variar sobre
toda la recta real. Asi que, ;cémo evaluar f(x + cf) y f(x — ct)?
Esta dificultad puede superarse en dos pasos. Primero, extienda f a una funcién impar f, definida en
[—L, L] haciendo

fx) para0 <x <L
fox) =
—f(=x) para —L <x <0
Observe que f,(0) = f,(L) = f,(—L) = 0 debido a que los extremos de la cuerda estan fijos.

Ahora extienda f,, a una funcién periédica F' de periodo 2L reproduciendo la gréfica de f, en intervalos
sucesivos [L, 3L], [3L, 5L], ..., [—3L, —L],[-5L, —3L], . ... Lafigura 5.7(a) exhibe la extension impar
de fdefinida en [0, L] a f, definida en [—L, L], y la figura 5.7(b) muestra la extensién periddica de f, en la
recta real.

Ahora tenemos

y(x,t) = %[F(x—l—ct)—i—F(x —ct)] (5.13)

paraQ < x < Lyt > 0. Suponga que fes doblemente diferenciable, y que las uniones en los extremos de
los intervalos donde f ha sido extendida para producir F son suficientemente suaves, entonces F también
es doblemente diferenciable, y se puede usar directamente la regla de la cadena para verificar que y(x, f)



260 CAPITULO 5  La ecuacion de onda

L

L
|

FIGURA 5.7(a) Extension impar de f
en[-L, L].
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FIGURA 5.7(b) Extension periddica F de f, en la recta real.

satisface la ecuacién de onda. Esta es una expresion elegante para la solucién en términos de la funcién
de desplazamiento inicial y el niimero ¢, que depende del material que estd hecha la cuerda. Es razonable
que el movimiento deba estar determinado por estas cantidades.

En la practica, a menudo hay un nimero finito de puntos en [0, L] en donde f no es diferenciable.
Por ejemplo, la f(x) dada por la ecuacién (5.6) no es diferenciable en L/2. En tal caso, y(x, f) dada por la
ecuacion (5.13) es la solucién en un sentido restringido, debido a que hay puntos aislados en los cuales no
se satisfacen todas las condiciones del problema con valores en la frontera.

La ecuacién (5.13) tiene una interpretacion fisica interesante. Si piensa en F(x) como una onda,
entonces F(x + cf) es esta onda trasladada cf unidades a la izquierda, y F(x — cf) es la onda trasladada ct
unidades a la derecha. El movimiento de la cuerda (en este caso con velocidad inicial cero) es la suma de
dos ondas, una moviéndose a la derecha con velocidad c, la otra a la izquierda con velocidad ¢, y ambas
ondas estan determinadas por la funcién de desplazamiento inicial. Habrd mds acerca de esto cuando se
discuta la solucién de d’Alembert para el movimiento de una cuerda de longitud infinita.

5.2.5 Transformaciéon de problemas con valores en la frontera
que involucran la ecuacion de onda

Hay problemas con valores en la frontera que involucran una ecuacién de onda para los cuales la separa-
cién de las variables no lleva a la solucién. Esto puede ocurrir debido a la forma de la ecuacién de onda
(por ejemplo, puede ser un término externo de fuerza), o debido a las condiciones de la frontera. Se mos-
trard un ejemplo de tal problema y una estrategia para superar la dificultad.

Considere el problema con valores en la frontera

32 32
?;}=8—)C)2)+Ax para0 <x < L,t >0,
y(0,1) =y(L,t) =0 parat >0,

0
y(x,0) =0, a—Jt)(x,O) =1 para0<x < L.

A es una constante positiva. El término Ax en la ecuacion de onda representa una fuerza externa que en x
tiene magnitud Ax. Ha hecho ¢ = 1 en este problema.
Si pone y(x, ) = X(x)T (¢) en la ecuacién diferencial parcial, obtiene

XT" = X"T + Ax,

y no hay manera de separar la dependencia de ¢ en un lado de la ecuacién y la dependencia de x en el
otro.
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Transforme este problema en uno para el cual funcione la separacién de las variables. Sea

Y, 1) = Y(x, 1) + p(x).

La idea es elegir v para reducir el problema dado en uno que ya haya resuelto. Sustituya y(x, f) en la ecua-
cién diferencial parcial para obtener

%Y  3%Y B
W:ax—z‘Flﬂ(x)-l—Ax.

ésta serd simplificada si elige ¥ de manera que
Y (x) + Ax = 0.

Hay muchas de tales elecciones. Integrando dos veces, obtiene

3
¥ (x) = —A% +Cx+D,

con C'y D constantes, todavia las puede elegir como quiera. Ahora, las condiciones de la frontera. Prime-
10,

¥(0, 1) = Y(0, 1) + ¥(0) = 0.
ésta solo serd y(0, 1) = Y(0, ) si elige
Y(0)=D=0.
Ahora,

3
y(L,t)=Y(L,t)+ (L) =Y(L,t) — A% +CL =0.

ésta se reducird a y(L, t) = Y(L, 1) si elige C de manera que

L3
V(L) =—A—+CL=0

C=-AL

Esto significa que

1 1 1
V@) = —cAx’ + AL = ZAx (L2 —xz) .

Con esta eleccion de i,
YO, =Y(L,1)=0.

Ahora relacione las condiciones iniciales para y con las condiciones iniciales para Y. Primero,

1
Y(x,0) = y(x,0) — ¥ (x) = —¢(x) = 8Ax<x2 - L%

Y =20 =1
—(x,0) = —(x,0)=1.
ot ot
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Ahora tiene un problema con valores en la frontera para Y(x, 7):
9’y 0%y
a2 9x2

Y(0,t)=0,Y(L,t) =0 parat >0,

para0 <x < L,t >0,

1 oY
Y(x,0) = gAx(x2 — Lz), E(X’O) =1 para0<x < L.

Usando las ecuaciones (5.7) y (5.9), inmediatamente escriba la solucién

o0

V(1) = %; (/OL FAEE — 17 sen (%) dé}) sen (75 cos (’%”)
S ([ () ) (T ()
0 S o ()
mr e () ().
=

La solucién del problema original es

y(x,t) =Y(x, 1)+ éAx <L2 - x2> .

La figura 5.8(a) muestra los instantes de la cuerda en los tiempos t = 0.03, 0.2, 0.5, 0.9, 1.4 y 2.2,
conc=1yL =mn. La figura 5.8(b) tiene tiempos t = 2.8, 3.7,4.4,4.8,53,6.1 y6.7,éstasusan L = y

c=1.
y(x, 1) y(x, 1)
41— 4+
2.2 2.8 .
3 14 3 )
2 0.9 2 4.4
6.7
— 4.8
1 0.5 0.03 I \
0.2 / | | I | | l
I | | | | | x 0 0.5-1.0 15" 20 25 1\30

0 05 10 15 20 25 30 Nos3 \
FIGURA 5.8(a) Posicion de la cuerda en los FIGURA 5.8(b) Posicion en los tiempos
tiempos t =0.03,0.2,0.5,0.9, 1.4y 2.2. t=128,3.7,44,48,53,6.1y6.7.

5.2.6 Efectos de las condiciones iniciales y las constantes en el movimiento

Usando la separacién de las variables, ha obtenido las soluciones en serie de los problemas que involucran
la vibracién de una cuerda en un intervalo acotado. Es interesante examinar los efectos que las constantes,
que aparecen en el problema, tienen en la solucién. Empiece con un ejemplo investigando el efecto de la
constante ¢ en el movimiento de la cuerda.
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EJEMPLO 5.1

Considere nuevamente el problema de la ecuacién de onda con desplazamiento inicial cero y velocidad

inicial dada por
gx)=x (1 + cos (7‘%6)) .

La solucion obtenida anteriormente, con L = 7, es

(x,1) 3 sen(x) sen(ct) + i 2c)” 1 sen(nx) sen(nct)
s = — X C _— nx nc
yi 2c = n?c n?2-1

La figura 5.5 muestra las graficas de las posiciones de la cuerda en diferentes tiempos, con ¢ = 1. Ahora
debe enfocarse en como c influye en el movimiento. La figura 5.9(a) muestra el perfil de la cuerda en el
tiempo ¢ = 5.3 segundos, con ¢ = 1.05. Las figuras 5.9(b) y (c) muestran el perfil en el mismo tiempo, pero
con ¢ = 1.1 y ¢ = 1.2, respectivamente. Estas graficas estdn colocadas en el mismo sistema de ejes para
comparar con la figura 5.9(d). Se invita al estudiante a seleccionar otros tiempos y dibujar la gréfica de la
solucién para valores diferentes de c. ™

Ahora, considere un problema en donde los datos iniciales de éste dependen de un pardmetro.

Y y
L1 | ' L1 x L | [ L, x
0 05 1.0 15 20 25 3.0 0 05 1.0 15 20 25 3.0
—02 -0.1 —~
-02—
—-04—
—03
—0.6 — —0.4
-0.8 — —-05—
10k —06
FIGURA5.9(a) 7=53yc=1.05. FIGURA5.9(b) t=53yc=1.1.
y
y
0.1 c=l2 3.0
T T e S R
0.08 - 0 05 10 15 20 25
—-021
0.06 —
—-04 c=1.1
0.04 —
—-0.6—
0.02 =
—0.8 1~ ¢ =1.05
LNy
0 05 1.0 15 20 25 3.0 -1.0
FIGURA5.9(c) t=53yc=12. FIGURA5.9(d) Perfil de la cuerda en el tiempo t = 5.3

para cigual a 1.05, 1.1y 1.2.
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EJEMPLO 5.2

La ecuacion de onda

Considere el problema

82y
a2

9
— 14422

2
9x2

para0 <x < m, t > 0,

y(0,1) = y(w,t) =0 parat >0,

dy

y(x,0) =0, E(x, 0) =sen(ex) para0 < x < m,

en donde € es un nimero positivo que no es un entero. Es de rutina escribir la solucién

Ahora compare las gréificas de esta solucién en varios tiempos, con distintas elecciones de €. La figura
5.10(a) muestra el perfil de la cuerda en t = 0.5 para € igual a 0.7, 0.9, 1.5, 4.7 y 9.3. La figura 5.10(b)
muestra las graficas para estos valores de € en t = 1.1, y la figura 5.10(c) muestra las gréficas en r = 2.8.
También es posible seguir el movimiento de la cuerda en distintos tiempos para el mismo valor de €. La
figura 5.11(a) muestra los perfiles de la cuerda para € = 0.7 en los tiempos r = 0.5, 1.1 y 2.8. Las figuras
5.11(b), (c), (d) y (e) cada una muestra el perfil de la cuerda para una € dada y para estos tres tiempos. M

3

o0

n=1

sen(me)(—1)rt!

5
7t - 53
Yo =32 — s

sen(nx) sen(1.2nt).

Y " 0.7
€e=09 €T
e=109
05 \ n
c— 07 0.8 N
04—
0.6 —
03 e=15 e=1.5
02 P 9\3 04
0.1~ 1.0} 1.5 2530 L
DOV N AN, 02 €=93
0 B 0.5 ) 2.0 | | | | | |
=0.1 e=47 0 05 10 15 20.725 3.0
-0z €= 4.7/
FIGURA 5.10(a) Perfiles de la cuerda en FIGURA 5.10(b) Perfiles de la cuerda en
t=0.5 para € igual a 0.7,0.9, 1.5, 4.7 y 9.3. t=1.1.
y
0.15— e=41
0.1 €T 9.3
0.05~ 1.5 3.0
I VR S N R
0 0.51.0 20 /25
—0.057
—0.11
—-0.15
=15
e=0.7 €
\E =09

FIGURA 5.10(c) Perfiles de la cuerda ent = 2.8.
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y y
L 0.8 — =
0.8 =11 r=1.1
061 t=05 061~ t=0.5
04+ 04—
02— 02—
2.5 2.5
I N N N N AN Lo N
0 05 10 15 20 3.0 0 05 1.0 15 20 3.0
—02- 1=28 02 1=28
FIGURA 5.11(a) Grdficas de la cuerda con FIGURA5.11(b) € =0.9.
€ = 0.7 para los tiempos t = 0.5, 1.1 y 2.8.
y
y
0.15
r=1.1
0.4+ t=11 0.1 1=05
t=0.5 0.05
02 A S I A Y R
0 0.5 1.0/ 15720 2.5 3.0
| | | | | | —0.05[7
0 05 1.0-15 20\ 25 3.0 01
—02 t=228 —0.15F t=2.8
FIGURA5.11(c) e= L.5. FIGURA5.11(d) € =4.7.
y
t=93
0.08 [~
0.06 [~
0.04 —
0.02 —
| | | l | |
0 05,10 1.5 /2.0 2.513.0
—0.02 1~
—0.04 -
—0.06 [~
—0.08 —
t=0.5 t=2.8

FIGURA5.11(e) €=9.3.

En algunos de los ejercicios siguientes, se le pedird al alumno que emplee un paquete graficador para
exhibir los perfiles de la cuerda en tiempos diferentes y bajo condiciones diferentes.

5.2.7 Solucion numérica de la ecuacion de onda

Se describird un método para aproximar soluciones de la ecuacién de onda en un intervalo. La idea subya-
cente es Util también para aproximar soluciones de la ecuacién de calor, y tiene que ver con aproximacio-
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nes de diferencias de la derivada. Para entender esta idea, comience con una funcion f de una sola variable
que es derivable en x. Aproxime

F(xg) ~ f(xo"‘hz_f(xo)

y también

F(xg) ~ fxg— li)h_ f(x)

donde la aproximacién mejora cuando se elige i cada vez mds préxima a cero. Si & > 0, éstas son, res-
pectivamente, las aproximaciones por diferencias hacia adelante y hacia atrds de f'(xp). Si se promedian
éstas se obtiene

ooy S+ h) = flxg—h)
f(x) » " .

Esta es la aproximacion por diferencias centrada de f'(x;).
Si fes derivable dos veces en x, entonces

f'(xo+h)—f"(xo—h)

1) =
~ i <f(x0+2h) — f(xp) _ flxo) — flxo _2h))
2h 2h 2h
_ Jlxg+2h) =2 f(xo) + f(xy — 2h)
o 4h? ’

Al reemplazar 2/ por h, puede escribir

Jxo+h) —2/(xp) + fxo— h)
h? '
Esta es la aproximacion por diferencias centrada de la segunda derivada.
Al aplicar estas ideas a y(x, f), puede tomar incrementos Ax en x y Afen ¢ty escribir las aproximacio-
nes por diferencias centradas de las segundas derivadas parciales:
62

Y ~
a0

f,/(xo) ~

y(x+Ax, 1) —2y(x, 1) + y(x — Ax, 1)
(Ax)?

Py y(x, t+ Ar) = 2y(x, t) + y(x, t — At)
—(x, 1)~ .
ar? (Ar)?

Estas las empleara para escribir ecuaciones numéricas de la solucién al problema:

Py Py

=

y(0,7)=y(L,1)=0 parat >0,

para0 <x<L,t>0,

y(x,0) = f(x) paraO0<x <L,
J
a—);(x, 0)=g(x) paraO<x<L.
La regién de interés x, t es la banda 0 < x < L, t > 0. Elija un entero positivo Ny sea Ax = L/N. La

particién [0, L] por puntos x; = jAx, por tanto.

L 2L _(N-DL _NL _

0< —< —«< < L.
N N N N
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Elija también un incremento At en el tiempo y sea fy = kAt parak =0, 1, 2,. . . De este modo forme una
cuadricula de puntos (x;, ), llamados puntos de reticula, sobre la banda x, ¢, como se muestra en la figura
5.12.

Es conveniente escribir

Vi =YX, i) = Y(Ax, kAD).

Ahora reemplace las derivadas parciales en la ecuacién de onda con aproximaciones por diferencias cen-
tradas para obtener

Yijk+1— 2yj,k +Vik-1 _ Czyj+1,k - 2yj,k +Yicik
(Ar)? (Ax)?

en (x;, yr). Al despejar yj x11, se obtiene

cAr\?
Vijk+1 = <E> (yj+1,k_2yj,k=yj—1,k) 2y = Vjk-1- (5.14)

En la figura 5.13 se muestra que esta ecuacién es ttil. Las lineas horizontales ¢t = f;, dividen la banda
x, t en las capas de tiempo horizontales At unidades. Calcule los valores aproximados y;, en los puntos
de reticula (x;, #;). Los puntos (x;, tiq1), (Xj—1, &), (X;, t), (Xjr1, t) ¥ (X;, fk—1) aparecen como una configu-
racién de diamante, con los tres puntos medios en el nivel #, el dltimo punto en el nivel #,_; y el primero
en el nivel ., superior. Si conoce el valor (aproximado) de y(x, f) en cada uno de los dltimos cuatro
puntos (en los niveles #; y #;_;), entonces se conocen todos los términos del lado derecho de la ecuacién
(5.14) y, por consiguiente, se conoce el valor y;;; (aproximado) en el nivel #;;. Se pueden obtener tales
configuraciones de cinco puntos al despejar siempre el valor de y(x, ) en el nivel més alto, de los valores
derivados antes en los dos niveles inferiores siguientes.

Este proceso falla en los bordes de la regién x, t porque no se puede formar alli esta configuracién de
diamante de cinco puntos. Sin embargo, la informacién inicial y de frontera del problema da informacién
acerca de y(x, f) en los bordes. En particular:

y(x, 0) = fix) en cada punto del fondo (+ = 0) de la banda, y

(0, £) = y(L, t) = 0 en los lados izquierdo y derecho de la banda.

Asi,

¥0, ) =y(L, ;) =0,
o de modo equivalente,

yo,kaL‘kZO parak:O, 1,2,...

y(x;, 0) =yj0o=f(GAx) paraj=1,..,N— 1.

t x=1L
i (O, 1)
| 1, —
Loyt k+1
/ | (x5, 1) | ;
k — _
| | K (x5 1) (5 1) (15 1)
At || | S
| | (5 i)
i | | | | | | i X | | | X
X=xg Ax XX, x=xy=1L Xip X X
FIGURA 5.12 Reticula de puntos en FIGURA 5.13 Para la ecuacion de onda, aproxima-
la que se hacen las aproximaciones. cion de y(x;, ty1) de aproximaciones anteriores, tres

al nivel t;, y una al nivel t;.,.
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FIGURA 5.14 Se debe crear una capa
t_y para poner en prdctica el esquema de
la figura 5.13 en la capa t,.

No se ha usado atin la condicién inicial sobre la velocidad. Use la aproximacion por diferencias hacia
atras de la primera derivada para escribir

dy y(x;, —At) = y(x;,0)
—(x.,0)~
ot (. 0) —At

_Yi-17 Yo
—At

=g(x;) =g(jAx),.j=1,...,N— L (5.15)

Observe que esta ecuacion contiene un término y; _;, que estd en la capa debajo del borde del fondo (r = 0)
de la banda x, t. En realidad no hay tal capa en un sentido natural, pero se crea artificialmente por medio de
la aproximacién por diferencias hacia atrds a fin de usar la informacién inicial (dy/df)(x, 0) = g(x) para
0 <x < L.De laecuacién (5.15) despeje y; _; para obtener

Vi1 =Yj0 — 8JAX)AL,

que permite determinar los valores apropiados por completar en esta capa inferior, en términos de valores
conocidos en el nivel cero y la funcién de velocidad inicial. Esto proporciona la configuracién de diamante
de la figura 5.14 cuando k = 0.

La estrategia ahora es comenzar a completar los valores de y(x, 7) en los puntos de cuadricula en los
niveles k = —1 y k = 0. Luego, elabore las capas, usando la ecuacion (5.14) para completar los valores
aproximados de y(x, f) en capas superiores sucesivas. Con la capacidad de cdlculo actual, esto se puede
hacer para un niimero muy grande de puntos de cuadricula.

Un punto fino, el ndimero (cA#/Ax)? tiene un efecto en la estabilidad del método. Si este nimero es
menor que 1/2, el método es estable y produce aproximaciones que mejoran cuando se elige a Ax 'y At
mds pequefias (manteniendo a (cA#/Ax)? < 1/2). Si (cAt/Ax)? < 1/2, las aproximaciones numéricas pue-
den ser inestables, lo que produce resultados poco confiables.

EJEMPLO 5.3

Considere el problema

Py _ &y O<x< 1,t>0

—— = —=  para >

a2 o *
y(0,0)=y(1,1)=0

1 para0 <x <1/2

dy
,0) =x cos(mx/2), —(x,0) = .
Y 0) =xcosmela). 5 00 =10 ia<x <1
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La solucion exacta es

y(x, 1) = 16 i <%> sen(nmx) sen(niwt)

2 21 [cos(nm/2) —1
S

=1

B

n=1

) sen(nmx) sen(nmt)
nmw

Se elegird N = 10, asi que Ax = 0.1. Sea Ar=0.025. Entonces (cA#/Ax)? = (0.025/0.1)2 = 0.0625 < 1/2.
Las ecuaciones para las aproximaciones son

Yixs1 = (0.0625) (ijrLk—Zyj‘k—i—yj_l,k)—}—2)//»’,(—)11-,,6_1 para j=1,...,9,k=0,1,2,...,
(5.16)

yio=f(0.1j) paraj=1,...,9,

Vi1 = Y0 — g(AX) AT = £(0.1)) —0.025g(0.1j) para j=1,...,9,

Note que se toma j del 1 a N — 1 = 9 porque j = 0 corresponde al lado izquierdo de la banda x, ¢, y
j = N = 10 se refiere al lado derecho de esta banda, y la informacién se da en estos lados: y(0, 1) =
y(1, 1) =0.
Primero, calcule los valores y; _; en el nivel horizontal inferior:
1., =0.07377,y, , =0.16521, y; _; = 0.24230
v41 =0.29861, y5 _; =0.32855, ys _; = 0.35267, y; , = 0.31779,

v, = 0.24721, y, _; = 0.14079.
A continuacion, calcule los valores aproximados y; o:

Y1.0=0.09877, y, o = 0.19021, y; , = 0.26730,
Y40 = 0.32361, ys o = 0.35355, y5 o = 0.35267, y; , = 0.31779,
ys,0 = 0.24721, y, , = 0.14079.

Ahora mueva sistemdaticamente el eje 7, un nivel a la vez. Para t = 0.025, coloque k = 0 en la ecuacion
(5.16), se tiene

Yin = (0.0625) ()’j+1,0 - 2)"/,0 +)’j71,0) + 2yj,0 =Y paraj=1,..., 9,
Los valores calculados son:

yi,=0.12331,y,, =0.21431, y; , =0.291
Yoy = 0.34696, ys | = 0.37662, ys ; = 0.35055,
Y11 =0.31556, y; , = 0.24160, y, , = 0.13864.

A continuacién se obtienen los valores aproximados en la capa k = 2 (r = 2(0.025) = 0.05) al escribir
k =1 en la ecuacién (5.16) y usar

Vi = (0.0625) (yj+l,2 - 2)’,‘,2 +yj71,2) +2yj,2 — Vi1

paraj=1,...,9. De este modo, puede formar aproximaciones en los puntos de reticula tan altas como
se quiera en la banda x, r. W
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SECCION 5.2 PROBLEMAS

En cada uno de los problemas del 1 al 8, resuelva el problema
con valores en la frontera usando la separacion de las variables.
Dibuje la grafica de algunas de las sumas parciales de la solu-
cién en serie, para los valores seleccionados del tiempo.

1. 82 32
Yy _ cz_y

ﬁ dx

y(0,1) =y(2,1) =0 parat >0,

para0 <x < 2,1 >0,

d
y(x,0) =0, a—f(x, 0) =g(x) para0 <x <2,

2x para0 <x <1
donde g(x) =
0 paral <x <2

2. 82y 82y
— =9—= para0<x <4,r >0,
ar2 a2 P

y(0,t) =y@,1)=0 paratr >0,

3
y(x,0) = 2sen(7x), a—f(x, 0)=0 para0<x <4

3. 92 92
Iy _ 4
912 dx

v(0,1) =y(3,1) =0 parar >0,

<

para0 <x <3, >0,

8]

9
y(x,0) =0, a—)t)(x,O) —x(3—x) para0<ux <3

4. 82 82
%y g
a2 dx

v(0,1) =y(mw,t) =0 parat >0,

<

para0 <x <m, t >0,

[ ]

9
y(x, 0) = sen(x), a—f(x, 0)=1 para0<x<m

5. 32y 3%y
— =8—= para0 < x <2m,t > 0,
a2 a2z P

v(0,1) = yQ2m,t) =0 parar >0,

0
y(x,0) = f(x), a—f(x, 0)=0 para0 < x <27,

donde
paa0 <x <m
fx) =
61 — 3x paramw < x <2m
6. 92y 3%y
— =4—= para0<x <5,1>0,
r2 oz P

y0,t) =y(5,t) =0 parat >0,

d
y(x,0) =0, a—f(x, 0)=g(x) para0<x <4,

donde
para0 <x <4
gx) =
5—x parad <x <5
2y 3%y
— =9—= para0<x <2, >0,
a2 ox2 P

y(0,1) =y(2,1) =0 parar >0,

0
y(x,0) =x(x —2), a—f(x, 0)=g(x) para0 <x <2,

donde
1
0 para0§x<§ yparal <x <2
gx) = 1
3 - <x<l1
para > <x <
& &
8. _y:25_y para0 < x < m, t> 0,
ar? dx?

¥(0,1) =y(m, )=0 parat >0,

d
y(x,0) = sen(2x), a—);(x, 0)=m—x para0<x<m

9. Resuelva el problema con valores en la frontera

32y 32y
— =3—=+2x para0<x <2,t>0,
ar2 9x2 P

y(0,1) =y(2,1) =0 parat >0,
dy
y(x,0) =0, E(x,O) =0 para0 <x <2.

Dibuje la grifica de algunas de las sumas parciales de la
solucién en serie. Sugerencia: Haciendo y(x, 1) = X(x)T (1),
encuentre que las variables no se separan. Haga Y(x, 1) =
y(x, 1) + h(x) y elija h para obtener un problema con valores
en la frontera que pueda ser resuelto mediante la serie de
Fourier.

10. Resuelva

82y 82y b
—— =9—= 4x
ar2 ax2

v(0,1) =y4,t) =0 parat >0,

para0 <x < 4,t > 0,

d
Y 0) =0, Z(x.0) =0 para0=x <4

Dibuje la gréfica de algunas de las sumas parciales de la
solucién para valores de .



11.

12.

13.

5.2
Resuelva
7y _ Y osn) 0 211> 0
— = —— — COS(x ara <X <zZm, 1 >0,
a2 x2 P

v(0,1) =yQ2m,t) =0 parar >0,

0
y(x,0) =0, a—i(x,O) =0 para0 < x <2m.

Dibuje la grifica de algunas de las sumas de la solucién
para valores seleccionados del tiempo.

Las vibraciones transversales en una vara homogénea de
longitud 7 son modeladas por la ecuacion diferencial par-
cial

0%u

2 8414
912

dx4 +

=0 para0<x <m,t>0.

Aqui u(x, ) es el desplazamiento en el tiempo ¢ de la sec-
cién transversal a través de x perpendicular al eje x, y a2 =
El/ pA, donde E es el médulo deYoung, / es el momento de
inercia de la seccion transversal perpendicular al eje x, p es
la constante de densidad, y A el drea de la seccion trans-
versal, considerada constante.

(a) Sea u(x, t) = X(x)T (1) para separar las variables.

(b) Resuelva para los valores de la constante de separacién
y para X y T en el caso de extremos libres:

92u 0.0 321,4( N 33u(0 N 33u( =0
—_— N = —_—— ]t, = —_— N = —_— j'L” =
9x2 9x2 ax3 ax3

parat > 0.

(c) Resuelva para los valores de la constante de separacién
y para X y T en el caso de extremos apoyados:

82u 0“u
—(0,1) = —= (@, 1) =0
axQ( ) axQ(n )

u(,t) =u(r,t) =
para t > 0.
Resuelva la ecuacion telegrdfica

3%u du 28214
— 4+ A— 4+ Bu =
oz TG TR T

para0 <x < L,t > 0.

Aqui A y B son constantes positivas. Las condiciones de la
frontera son

wO,)=u(L,t)=0 parat>0.
Las condiciones iniciales son
ou
u(x,0) = f(x), E(X’O) =0 para0<x <L.

Suponga que A2L2 < 4(BL? + c2r?).

Soluciones de la serie de Fourier de la ecuacion de onda\

14.

15.

16.

271

Considere el problema con valores en la frontera

82y 3

82
875 para0 <x <4,t > 0,
y(0,1) = y@4,1)=0 parar >0

0
y(x,0) = cos(mx), a—i)(x, 0)=0 para0 <x <4.

(a) Escriba una solucion en serie.

(b) Encuentre una solucién en serie cuando se quita el tér-
mino 5x3 de la ecuacion de onda.

(c) Para medir el efecto del término de fuerza en el movi-
miento, dibuje la gréfica de la 40-ésima parcial de la solu-
cion para (a) y (b) en el mismo conjunto de ejes en el tiempo
t = 0.4 segundos. Repita este procedimiento sucesivamente
para los tiempos t = 0.8, 1.4, 2, 2.5, 3 y 4 segundos.

Considere el problema con valores en la frontera

82y 82y
— =9—= 4 cos(mx ara0 <x <4,r>0,
ar2 ax2 () p

y(0,1) =y@,1) =0 parat >0

9
y(x,0) = x(4 — x), a—i](x,O) —0 para0<x <4

(a) Escriba una solucién en serie.

(b) Encuentre una solucién en serie cuando se quita el tér-
mino cos(rx) de la ecuacion de onda.

(c¢) Para medir el efecto del término de fuerza en el
movimiento, dibuje la grifica de la 40-ésima suma parcial
de la solucién para (a) y (b) en el mismo conjunto de ejes en
el tiempo ¢ = 0.6 segundos. Repita este procedimiento para
t=1,14,2,3,5y 7 segundos.

Considere el problema con valores en la frontera

2 2
07y _ gy
912 9x2

vy(0,1) =y4,t) =0 parat >0

para0 <x <4, >0,

9
y(x,0) = sen(x), 3—f(x, 0)=0 para0<x <4

(a) Escriba una solucién en serie.

(b) Encuentre una solucién en serie cuando se quita el tér-
mino e~ de la ecuacion de onda.

(c) Para medir el efecto del término de fuerza en el
movimiento, dibuje la gréfica de la 40-ésima suma parcial
de la solucién para (a) y (b) en el mismo conjunto de ejes en
el tiempo ¢ = 0.6 segundos. Repita este procedimiento suce-
sivamente para los tiempos t = 1, 1.4, 2, 3, 5 y 7 segundos.
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17. Considere el problema

82y ﬁzy
W:ﬁ para0<x< 1,7> 0,

y0,0)=y(1,1)=0 parat >0,
y(x,0) = f(x) para0<x <1,
d

a—i()ﬂo)=0 para0 <x <1,

donde

(SIE

X para0 <x <

f) =

1 —x para%fxfl.

Use Ax = 0.1 y At = 0.025 para calcular valores aproxi-
mados de y(x, 7) en los puntos de reticula en la banda x,
1,0 <x < 1,1 > 0. Realice los célculos para cinco capas 7 (es
decir, para t = 0 a r = 5(0.025) = 0.125).
18. Considere el problema
Py Py
Froiaien para0<x< 2,1>0,
v(0,7) =y(2,t) =0 parat >0,

y(x,0) =0 para0 <x <2,
dy
E(x,O)zl para0 < x < 2.

Use Ax = 0.1y Ar=0.025 y calcule valores aproximados
de y(x, 1). cinco capas hacia arriba desde r = 0 a r = 0.125.
19. Considere el problema
Py Py
(’)_[2:0_x2 para0<x< 2,l>0,

v(0,1) =y(2,t) =0 parar >0,

y(x,0) =sen(x) para0<x <2,
a
—y(x,O) =1 para0<x<2.
ot
Use Ax = 0.1y Ar=0.025 y calcule valores aproximados
de y(x, 1), cinco capas hacia arriba desde r =0 a r = 0.125.

20. Considere el problema
P’y _ Py
o ox?

y(0,1) =y(1,£) =0 parar >0,

para0 <x< 1,7>0,

y(x,0) =x(1—x)> para0 <x <1,
a
a—);(x, 0) = x> para0 <x < 1.
Use Ax =0.2 y Ar = 0.025 y calcule valores aproximados
de y(x, 1), cinco capas hacia arriba desde r = 0 a r = 0.125.
21. Considere el problema
Py _ Py
o ox?

y(0,t) =y(1,£)=0 parat>0,

para0 <x< 1,7>0,

y(x,0)=0 para0 <x <1,

a
a—i)(x, 0) =cos(mx) paraQ <x <1.

Use Ax =0.1y Ar=0.025 y calcule valores aproximados
de y(x, 1), cinco capas hacia arriba desde r =0 a r = 0.125.

53 Movimiento de onda a lo largo de cuerdas infinitas y semi-infinitas

5.3.1 Movimiento de onda a lo largo de una cuerda infinita

Si estdn involucradas distancias grandes (tales como con las ondas sonoras en el océano usadas para moni-
torear los cambios de temperaturas), algunas veces el movimiento de onda es modelado por una cuerda
infinita, en cuyo caso no existen las condiciones de frontera. Como con las cuerdas finitas, considere
separadamente los casos de velocidad inicial cero y desplazamiento inicial cero.

Velocidad inicial cero Considere el problema con valor inicial

%y 0%
= " —=

912 ax2

para —oo <x <o0o,t >0

ad
y(x,0) = f(x), a—f(x,O) =0 paraoco <x < o0.
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No hay condiciones de frontera, pero puede imponer la condicién de que la solucién sea una funcién
acotada.
Para separar las variables, sea y(x, f) = X(x)T(x) y obtiene, como antes,

X' +2X=0, T'+ r2T=0.

Considere los casos sobre A.

Casol A=0
Ahora X(x) = ax + b. Esta es una solucién acotada si a = 0. Asi A = 0 es un valor propio, con funcién
propia constante cero.

Caso2 A <0
Escriba A = —w? con @ > 0. Entonces X" — @w2X = 0, con solucién general

X(x) = aewx + be—wx,

Pero e®* no estd acotada en (0, 00), asi debe elegir a = 0. Y e—* no estd acotada en (—o0, 0), asi debe
elegir b = 0, dejando sélo la solucién cero. Este problema no tiene valor propio negativo.

Caso3 A>0,A=w?conw > 0.
Ahora X" + w2X = 0, con solucién general

X, (x) = a cos(wx) + b sen(wx).

Estas funciones son acotadas para todo @ > 0. As{ todo nimero positivo A = @? es un valor propio, con
funcién propia correspondiente a cos(wx) + b sen(wx) para a y b no ambos cero.

Puede incluir el caso 1 en el caso 3, ya que a cos(wx) + b sen(wx) = constante si w = 0.

Ahora considere la ecuacién para T, la cual puede escribir ahora como T + ¢2w?T = 0 para w > 0.
Esta tiene solucién general

T(t) = a cos(wct) + b sen(wct).

Ahora

%(x, 0) = X(1)T'(0) = X (1)weh = 0,

asi b = 0. Asi las soluciones para 7 son multiplos constantes de
T,(t) = cos(wct).
Para cualquier w > 0, ahora tiene una funcién
Yo(x, 1) = X,(0)T,(t) = [a, cos(wx) + b, sen(wx)] cos(wct)

que satisface la ecuacién de onda y la condicion
dy
—(x,0)=0.
ar 0

Necesita satisfacer la condicién y(x, 0) = f (x). Para el problema similar en [0, L], tenfa una funcién y,(x, f)
para cada entero positivo n, e intentaba una superposicién Y _ o yu(x, 1). Ahora los valores propios llenan
toda la recta real no negativa, de manera que reemplaza )y con [(> - - dw formando la superposicién:

y(x,t) = / Yo (x,t)dw = / la,, cos(wx) + by, sen(wx)] cos(wct) dw. (5.17)
0 0
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La condicién del desplazamiento inicial requiere que
o0
y(x,0) = / [ay cos(wx) 4 by, sen(wx)] dow = f(x).
0

La integral de la izquierda es la representacion de Fourier en integral de f (x) para —oo < x < 0o. Asi elige
las constantes como los coeficientes de la integral de Fourier:

1 o0
aw = ;L f (&) cos(wk) d&

1 o0
bo=- f (&) sen(wk) dE.

Con esta eleccién de los coeficientes, y ciertas condiciones sobre f (ver el teorema de convergencia para
las integrales de Fourier en la seccién 3.1), la ecuacion (5.17) es la solucion del problema.

EJEMPLO 5.4

Considere el problema

=" —

92 92
BT;} 28§ para —oo <x < o0o,t >0
X

d
y(x,0) = e H, a—i(x, 0) =0 paraco <x < 00.

En la figura 5.15 se da la grafica de la posicién inicial de la cuerda.
Para usar la ecuacién (5.17), calcule los coeficientes de la integral de Fourier:

Ay = l /oo eIl cos(wé)dE =
T J o T

2
(it )

by = ! /Oo el sen(wé) dg = 0.
T J oo

(Para b,, no necesitamos llevar a cabo la integracién ya que el integrando es una funcién impar). La solu-
cién es

2 [ 1
yx, 1) =— cos(wx) cos(wct) dw. M
T Jo 1+ w?

y
1.0 [~

0.8/~
0.6/ -
04

02+

L I I
-6 —4 -2 0 2 4 6

FIGURA 5.15 Grdfica de y = e\,
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La solucién (5.17) puede escribirse en una forma mas compacta de la siguiente manera. Inserte las
férmulas de integracion para los coeficientes:

y(x,t) = /OO [a, cos(wx) + by, sen(wx)] cos(wct) dw
0

%/OOO [(/_Z f(S)COS(wé)dS> cos(wx)

+ (/00 f(&)sen(wé) d$> sen(a)x)i| cos(wct) dw

= %/oo /°° [cos(w&) cos(wx) + sen(wé) sen(wx)] f (&) cos(wct) dw d&
—o00 JO

— %/ / cos(w (& — x)) £ (&) cos(wet) dw dE. (5.18)
—o0 J0

Desplazamiento inicial cero Suponga ahora que la cuerda es soltada desde una posicion horizontal
(desplazamiento inicial cero), con velocidad inicial g(x). El problema con valor inicial para la funcién de
desplazamiento es

?)%:clgz—z para —oo < x < 00,7 >0
X
dy
y(x,0) =0, E(X,O) =g(x) paraoco < x < 00.

Sea y(x, ) = X(x)T(¢) y proceda exactamente como en el caso de desplazamiento inicial f (x) y velo-
cidad inicial cero, obteniendo los valores propios A = w? para @ > 0y funciones propias

Xw(x) = a, cos(wx) + b, sen(wx).
Volviendo a 7, obtenga, como antes,
T(t) = a cos(wct) + b sen(wct).
Sin embargo, este problema difiere del anterior en la condicién inicial sobre 7(¢). Ahora tiene
y(x, 0) = X(x)7(0) = 0,

asi T(0) = 0 y entonces a = 0. Asi para cada w > 0, T(¢) es una constante multiplo de sen(wct). Esto da
las funciones

Yo(x, 1) = [a, cos(wx) + b, sen(wx)] sen(wct).
Ahora use la superposicion
o0
y(x,t) = / [ay cos(wx) + by, sen(wx)] sen(wct) dw (5.19)
0

para satisfacer la condicidn inicial. Calcule

dy o
Frie [ay cos(wx) + by, sen(wx)]wce cos(wct) dw.
0
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Necesita
ay °
E(x, 0) = [wcag, cos(wx) 4+ wceby, sen(wx)]dw = g(x).
0

Esta es una expansion de Fourier en integrales de la funcién de velocidad inicial. Con condiciones sobre g
(tales como las dadas en el teorema de convergencia para las integrales de Fourier), elija

weay — % f ~ o(6) cos(wt) de

wchb, = %/Oo 8(&) sen(wé) d§.

Entonces
1 [ [
“w=_f g(&) cos(wt)dE y bw=—/ g(&) sen(wé) d§.
TCcw J_oo Tew J_o

Con estos coeficientes, la ecuacién (5.19) es la solucion del problema.

EJEMPLO 5.5

Suponga que el desplazamiento inicial es cero y la velocidad inicial estd dada por

e
gx) =

0 parax <0 yparax > 1

x para0 <x <1

En la figura 5.16 se muestra la grafica de esta funcién. Para usar la ecuacion (5.19) para escribir la funcién
de desplazamiento, calcule los coeficientes:

1 © 1 1
Ay = —— g(&)cos(wé) dé = E/(; e cos(wé&) d&

Tew J oo

1 ecos(w) + ewsen(w) — 1

Tew 1+ w?

L1 Ly
-2 -1 0 1 2

FIGURA 5.16

ex

para0 <x <1
gx) = .
0 parax <0 yparax > 1



5.3 Movimiento de onda a lo largo de cuerdas infinitas y semi-infinitas 277

o 1

1
by = —— g&)sen(wé) dé =

Tcw J_

1
/ ¢* sen(wé) dé
w Jo

T C

1 ewcos(w) —esen(w) — w

Tew 1+ w?

La solucion es

Yo 1) = /‘X’ ( 1 ecos(w) + ewsen(w) — 1

TCcw 1+ w?

) cos(wx) sen(wct) dw

Tew 1 4+ w?

R 1 ewcos(w) — esen(w) — w
— f ( > sen(wx) sen(wct) dw. W
0

Como en el caso del movimiento de onda sobre [0, L], la solucién de un problema con velocidad ini-
cial distinta de cero y desplazamiento puede obtenerse como la suma de las soluciones de dos problemas,
en uno de los cuales no hay desplazamiento inicial, y en el otro, la velocidad inicial es cero.

5.3.2 Movimiento de onda a lo largo de una cuerda semi-infinita

Ahora considere el problema del movimiento de onda a lo largo de una cuerda atada en el origen y estirada
a lo largo de la parte no negativa del eje x. A diferencia del caso de la cuerda a lo largo de toda la recta,
ahora existe una condicién de frontera, en x = 0. El problema es

32 92
a_t;)=c28—§ paraQ < x < 0o, t > 0,
x

y(0,2) =0 parat >0,
9
y(x,0) = f(x), a—f(x, 0) = g(x) para0 < x < o0.

De nuevo, busca una solucién acotada.
Sea y(x, f) = X(x)T(f) y obtiene

X' +2X=0,T"+ rc2T=0.
En este problema hay una condicién en la frontera:
¥0, 1 =X(0)I(1) =0,

la que implica que X(0) = 0. Empiece por buscar los valores propios X y las funciones propias correspon-
dientes. Considere los casos sobre A.

Casol A=0
Ahora X(x) = ax + b. Como X(0) = b = 0, entonces X(x) = ax. La cual no esta acotada en [0, c0) a menos
que a = 0, asi . = 0 no lleva a una solucién no trivial y no acotada para X, y 0 no es un valor propio.

Caso 2 A es negativa.
Ahora escriba A = —? para obtener X" — @?X = 0. Esto tiene solucién general

X(x) = ae®™ + be—wx,
Ahora
X0)=a+b=0

lo que implica que b = —a, asi que X(x) = 2a senh(wx). La cual no estd acotada en x > 0 a menos que
a = 0, de manera que este problema no tiene valor propio negativo.
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Caso 3 A es positiva.
Ahora escriba A = w? y obtiene

X(x) = a cos(wx) + b sen(wx).

Como X(0) = a = 0, sélo quedan los términos en seno. Asi todo nimero positivo es un valor propio, con
las funciones propias correspondientes multiplos constantes distintos de cero de sen(wx).
Abhora el problema para T es T” + c2w?T = 0, con solucién general

T(t) = a cos(wct) + b sen(wct).

En este punto debe aislar el problema en uno con desplazamiento inicial cero o velocidad inicial cero.
Suponga, para ser especifico, que g(x) = 0. Entonces T'(0) = 0, asi b = 0 y T(¢) debe ser un multiplo
constante de cos(wct). Tiene, por tanto, funciones

Yo, 1) = ¢, sen(wx) cos(wct)
para cada w > 0. Defina la superposicion

o
y(x,t):/ Cy sen(wx) cos(wct) dw.
0

Cada una de estas funciones satisface la ecuacién de onda y la condicién de frontera, asi como y,(x, 0) =0
parax > 0. Para satisfacer la condicién en el desplazamiento inicial, debe elegir los coeficientes de manera
que

o
y(x,0) = / co sen(wx)dw = f(x).
0
Este es el desarrollo en integral de Fourier en senos de f (x) en [0, 00), asi elija
2 o0
cw== [ 5@ sentet) ds.
T Jo
La solucién del problema es
2 o o
y(x,t) = — / (f f(&)sen(wé) d%‘) sen(wx) cos(wct) dw.
T Jo 0

Si el problema tiene desplazamiento inicial cero, y velocidad inicial g(x), entonces un andlisis seme-
jante lleva a la solucién

o0
y(x,t) = / ce sen(wx) sen(wct) dw,
0

EJEMPLO 5.6

donde
2 o
Co = —/ g(&) sen(wf) d§.
Tcw Jo
Considere el movimiento de onda a lo largo de la semirecta gobernada por el problema:
32 32
F;} = 16% parax > 0,7 > 0,

¥(0,7) =0 parat >0,

0 sen(mwx ara0 <x <4
W 0) = 0, yr,0) = | N PO =X S
at 0 parax > 4
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Aqui, ¢ = 4. Para escribir la solucién, sélo necesita calcular los coeficientes

2 o0
o= / (&) sen(w8) de
7 Jo
2cos(w) — 1

4
= 3/ sen(&) sen(wé) dé = 8sen(w) cos(w) 3
T Jo

w? -7

La solucion es

o0 2 cos?(w) — 1
y(x,t) = 8 sen(w) cos(w) —————— sen(wx) cos(4wt) dw. M
0 w- — T

5.3.3 Solucion mediante la transformada de Fourier de problemas en dominios
no acotados

279

Es ttil tener una variedad de herramientas y métodos disponibles para resolver problemas con valores en
la frontera. Para este fin, se revisan los problemas de movimiento de onda en la recta y la semirecta y se

aproxima la solucidn utilizando una transformada de Fourier.
Primero, vea una breve descripcion de lo que estd involucrado al usar una transformada.

1. El rango de los valores para la variable en donde se aplicard la transformada es un factor deter-

minante en la eleccion de la transformada. Otra es como la informacién dada en el problema con
valores en la frontera se ajusta en la férmula operacional para la transformada. Por ejemplo, la
férmula operacional para la transformada de Fourier en senos es

Sslf)l(w) = —o fs(w) + of (0),

asi que debe conocer informacién sobre f(0) en el problema para hacer uso de esta transformada.

Si la transformada es aplicada respecto a una variable o del problema con valores en la frontera,
obtiene una ecuacion diferencial que involucra a la(s) otra(s) variable(s). Esta ecuacion diferencial
debe ser resuelta sujeta a otra informacién dada en el problema. Esta solucién da la transformada
de la solucién del problema con valores en la frontera original.

Una vez que tiene la transformada de la solucién del problema con valores en la frontera, debe

invertirla para obtener la solucién de problema con valores en la frontera.

Finalmente, la transformada de Fourier de una funcién de variable real frecuentemente es un valor
complejo. Si la solucién es un valor real, entonces, la parte real de la expresién obtenida usando la trans-
formada de Fourier es la solucién. Sin embargo, debido a que las expresiones tales como e—i~ frecuente-
mente son mds faciles de manipular que cos(wx) y sen(wx), a menudo queda toda la expresion compleja
como la “solucién” extrayendo la parte real cuando necesita los valores numéricos, las graficas u otra

informacidn.

Como referencia, en resumen (sin condiciones en las funciones) algunos hechos acerca de la transfor-

mada de Fourier y las transformadas de Fourier en senos y cosenos.

Transformada de Fourier

31 = fw) = / FO0e i dx

1 AN .
fo =5 / F@)e® do
T J 00

S (@) = —w? f ()
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Transformada de Fourier en cosenos

Selfl) = fe(w) = /o f(x) cos(wx) dx

fo =2 / % (@) cos(on) do
T Jo

Sclf ) = —o? fo() — £/(0)

Transformada de Fourier en senos

3s[f1(@) = fs(@) = fo F(x) sen(wx) dx

fx)= 2 / h fs(w) sen(wx) dw
T Jo

Fslf"1(@) = —o” fs(@) + of (0)
Solucion mediante la transformada de Fourier de la ecuacion de onda en la recta Considere nueva-
mente el problema

82—y—c282—y para —oo <x < o0o,t >0
a2 ax2 '

0
y(x,0) = f(x), a—i(x, 0) =0 para —00 < x < 0.

Debido a que x varia sobre toda la recta, puede intentar la transformada de Fourier en la variable x. Para
hacer esto, transforme y(x, f) como una funcién de x, dejando ¢ como un parametro. Primero aplique % a

la ecuacion de onda:
9%y 2 [0%y
S I:W] (w) =c°§ [@} (w).

Debido a que esta transformando en x, dejando a 7 sola, tiene

aZy 00 32y . 82 00 . 82 )
S[a?] (w) = /Oo W(x,t)e "Ydx = a7/700y(x,t)e "“Ydx = my(w,t),

donde y(w, 1) es la transformada de Fourier, respecto a x, de y(x, £). La derivada parcial respecto a ¢ entra
en la integral respecto a x ya que x y  son independientes.
Para la transformada de Fourier, en x, de d%y/dx2, use la férmula operacional:

82
5 [8—x§} (@) = (o, 1).

Por tanto, la ecuacion de onda transformada es
2

Sad.n = —o*d(, 1),

2
my(w, N+ to’H(w, 1) = 0.

Piense en ella como una ecuacién diferencial ordinaria para y(w, ) en ¢, con w considerado como un para-
metro. La solucién general tiene la forma

y(w, t) = a, cos(wct) + b, sen(wct).
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Obtiene los coeficientes transformando los datos iniciales. Primero,
H(@,0) = a, = Fy(x, 0)](@) = Fflw) = f(w),

la transformada de la funcién posicién inicial. Ahora

A

_9 _z| _ _
wchy, = ” (w,O)—S[at (x,O)} (@) = F[0](w) =0

debido a que la velocidad inicial es cero. Por tanto, b, =0y
$(w, 1) = f(w)cos(wet).

Ahora sabe la transformada de la solucion y(x, #). Invierta ésta para encontrar y(x, ?):
1 . .
y(x,t) = — / f () cos(wct)e' dw. (5.20)
27 J_ oo

La cual es una férmula integral para la solucién, ya que se supone que conoce f(w) porque fue dada f. Como
ei»x es un valor complejo, debe tomar la parte real de esta integral para obtener y(x, f). Sin embargo, la
integral frecuentemente se deja en la forma de la ecuacién (5.20) con el sobreentendido que y(x, 7) es
la parte real.

Probara que las soluciones de este problema obtenidas por la transformada de Fourier y la integral de
Fourier son la misma. Escriba la solucién que acaba de obtener por la transformada como

1 o, .
Yir(x, 1) = —f f(w) cos(wct)e' ™ dw
27 ) o
1 o0

:E -

</oo f(E)e 8 d§> cos(wet)e' dw
1 o o . B
= f / e E=0) cos(wer) f(£) dw dE
27 ) oo J o0
= % /Oo /OO [cos(w (& — x)) —isen(w(§ — x))]cos(wct) f(§) dw dE.

Como la funcién de desplazamiento toma valores reales, debe tomar la parte real de esta integral, obte-
niendo

1 o0 o0
y(x,t) = —/ / cos(w (& — x))cos(wct) f(§)dw dE.
27 J o J—o0
Finalmente, este integrando es una funcién par de o, de donde

1 [ 1 [*> 1 [
J— covdo =2— da):_/ v dw,
2 —00 2 0 T Jo

produciendo
y(x, 1) = %/ / cos(w(§ — x)) cos(wct) f(§) dw d§
—o00 JO

Esto coincide con la solucién (5.18) obtenida con la integral de Fourier.
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EJEMPLO 5.7

Encontrar la funcién de desplazamiento en la recta real si la velocidad inicial es cero y la funcion de des-
plazamiento inicial estd dada por
(x) T <x < T
cos(x ara —— <x < —
pa Ty =v=3
fx) =
0 ara |x| > T
P 2
Para usar la solucion (5.20) debemos calcular

/2

fl@) = / fE)e " dE = / cos(£)e 1% dg

—/2

paraw # 1

il araw = 1
2 para® =

f (w) es continua, ya que
. 2cos(mw/2) &
lim ——— = —.
w—1 1— a)2 2

La solucién puede escribirse como

1 [ 2 .
y(x,t) = — / %a)/z) cos(wct)e' ™ dw,
TJ) o l—o

bajo el entendido que y(x, ) es la parte real de la integral de la derecha. Si explicitamente toma esta parte
real, entonces

cos(wx) cos(wct) dw. M

1 /OO cos(mw/2)

xX,1) = —
y(x, 1) ) N g

EJEMPLO 5.8

En algunas ocasiones, un uso habil de la transformada de Fourier puede llevar a una forma cerrada de la

solucién. Considere el problema
Py _
— =9—= para —oc0 <x < 00,t >0,
o2~ ox2 P ! =

y(x,0) = 4] para —o0 < x < 00,
dy

—(x,0) =0.

8t(x )

Tome la transformada de la ecuacion diferencial, obteniendo como en la discusion
3%y 2

—(,1) = 907y (w, 1),

ot2 Y

con solucién general

y(w, 1) = a,cos(3wt) + by, sen(Bwt).

Ahora use las condiciones iniciales. Con la funcién posicién inicial tiene

40
25 4+ w?’

§(@,0) = ap = Ty, 01(@) = § [ 4e7 ] (@) =
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Ahora, usando la velocidad inicial, escriba
a7y 0
(@.0)=30b, = § [a—f(x, 0)} (@) =0,

asi b, = 0. Entonces

. 40
y(w,t) = Lo cos(Bwt).

54 w?

Ahora puede escribir la solucién en la forma integral como

_=1rs _ i /OO 40 iwx
y(x,t) =35 [V(w, )]x) = e Y] o cosBwt)e' ™ dw.

Sin embargo, en este caso invierta y(w, f) explicitamente, usando algunos resultados acerca de la transfor-
mada de Fourier. Empiece usando el teorema de convolucién para escribir

y, ) =§"" [ cos(3a)t):|

25 4+ w?

—1 40 —1
= g m * g [COS(3wt)]

= 4e W % T cosBwr)]. (5.21)

Necesita calcular la transformada inversa de Fourier de cos(3wf). Aqui w es la variable de la funcién trans-
formada, considerando a f como un parametro. La variable de la transformada inversa serd x. Combinando
el hecho que F[8(1)](w) = 1 de la seccién 3.4.5, con el teorema de modulacidn (teorema 3.6 en la seccién
3.3) para obtener

Sleos(won)] = 7[8(x + wo) + 8(x — wo)],
en donde § es la funcién delta de Dirac. Por el teorema de simetria (teorema 3.5 de la seccion 3.3),
Blr[8(x + wo) + 8(x — wp)]] = 27 cos(wow).

Por tanto,

5" eos(wpo) 1) = S130x + o) +30x — )]
Ahora w, = 3t para obtener

T cosBan)](x) = %[S(x +31) 4+ 8(x — 30)].
Por tanto, la ecuacion 5.21 da
y(x, 1) = 4« %[m +31) 4+ 8(x — 30)]

-2 <e—5‘)" % 8(x 4+ 31) + e s 5(x — 31))

o0

= 2/ e Els(E + 3r) dE + 2/ e Els(E — 31) de

—00 —00

— DSl 3il 4 p=Sle=3]
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en donde la ultima linea fue obtenida usando la propiedad de filtrado de la funcién Delta (teorema 3.13 de
la seccién 3.4.5). Esta es la forma cerrada de la solucién y es facil de verificar directamente. M

Solucion mediante la transformada de la ecuacion de onda en una semirecta Usara una transformada
para resolver un problema de onda en una semirecta, con el extremo izquierdo fijo en x = 0. Esta vez tome
el caso de desplazamiento inicial cero, pero una velocidad inicial distinta de cero:

92 92
a—j:cza—z para0 < x < oo, t > 0,
X

y(0,1) =0 parat >0,

0
y(x,0) =0, a—);(x, 0) =g(x) para0 < x < oo.

Ahora la transformada de Fourier es inapropiada porque tanto x como ¢ varian solamente sobre los nime-
ros reales no negativos. Puede intentar con la transformada de Fourier en senos o en cosenos en x. La
férmula operacional para la transformada en senos requiere el valor de la solucién en x = 0, mientras que
la férmula para la transformada en cosenos usa el valor de la derivada en el origen. Como hemos dado la
condicién y(0, 1) = 0 (el extremo izquierdo fijo de la cuerda), puede intentar la transformada en senos.
Sea y¢(w, t) la transformada en senos de y(x, f) en la variable x—. Tome la transformada en senos de
la ecuacion de onda. Las derivadas parciales respecto a ¢ pasan a través de la transformada, y use la
férmula operacional para la transformada de la segunda derivada respecto a x:

3%y 32
S _ A3 |: y] = —cza)z&s(a), 1)+ wczy(O, 1) = —cza)zﬁg(a), 1).

ot? 9x2
Entonces
ys(w, t) = a, cos(wct) + b, sen(wct).
Ahora
a, = ys(,0) = Fsly(x, 0)](w) = Fs[01(w) =0,

y

d3s .

2 (@.0) = web, = §5(@),

1
asi
L,
b, = —gs(w).
wc

Por tanto,

1
Y(w, 1) = —gs(w) sen(wct).
wc

Esta es la transformada en senos de la solucion. La solucidn se obtiene invirtiendo:

ﬂ&ﬂ:%?{ngMWWaqaﬁzszl@ﬂMRMMnm@aMm
wc T Jo wc
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EJEMPLO 5.9

Considere el siguiente problema en la semirecta

3? 92
Yi =255)2) parax > 0,7 > 0,
v(0,t) =0 parat >0,

ad
y(x,0) =0, a—};(x, 0) = g(x) para0 < x < o0,

9 — x?2
glx) =
0

Si usa la transformada de Fourier en senos, entonces la solucion es

donde

para0 <x <3

parax > 3

2 1,
y(x,t) = —/ —gs(w) sen(wx) sen(Swt) dw.
T Jo Sw

Todo lo que se deja para hacer es calcular

gs(®) =/0 g(&) sen(wx) dx

3
/ CE x2) sen(wx) dx
0

—8¢0s3(w) + 6cos(w) — 24w sen(w) cos?(w) + 6w sen(w) + 9w + 2

- El

w3

llegando a una expresion integral para la solucién. M

SECCION 5.3 PROBLEMAS

En cada problema del 1 al 6, considere la ecuacién de onda
(?:Ti = czg en la recta para el val(;)r de ¢ dado y las condicio-
nes iniciales dadas y(x, 0) =f(x) y a—);(x, 0) = g(x). Resuelva el
problema usando la integral de Fourier y después usando nue-

vamente la transformada de Fourier.

Le=12,f(x)=e3N, gx)=0

8 —x para0 <x <8
2.c=38,f(x)=
0 parax <0 y parax >0
gx)=0
sen(x) para —7 <x <m
Bc=4fm=0,gx) =
para |x| > m

2 — |x]| para —2 <x <2

4.c=1,f(x) =

gx)=0

para |x| > 2

e X parax > 1
5.¢=3,f(x)=0,8() =
0 parax <1
6.c=2,f(x)=0,
1 para0 < x <2
gx)=14—-1 para =2 <x <0
0 parax > 2 yparax < —2

En cada problema del 7 al 11, considere la ecuacién de onda

?y , 0%y .

—- — ¢>—= enlasemirecta, con y(x, 0) = 0 parax > 0, y para
ar? dx?

el valordado de cy las condiciones en la frontera dadas y(x, 0) = f(x)

a
y (9_y (x, 0) = g(x) para x > 0. Resuelva el problema usando
t
separacion de variables (la integral de Fourier en senos) y des-

pués, nuevamente usando la transformada de Fourier en senos.



286 CAPITULO 5  La ecuacion de onda

x(1=x) para0 < x < 1 Algunas veces la transformada de Laplace es efectiva en la reso-
T.c=3,fx) = 0 parax > 1 lucidén de los problemas con valores en la frontera que involu-
cran a la ecuacién de onda. Use la transformada de Laplace para
glx) =0 resolver lo siguiente.
0 ara0 <x <4
b ” %y _ 5%y
8.¢c=3,f(x)=0,g(x) =12 parad4 <x <11 . mzcax—z parax > 0, >0
0 parax > 11
©.5 sen(2mt) para0 <r <1
1) =
9.c=2,f(x)=0, Y 0 parat > 0
5 d
cos(x) para% <x < 77[ y(x,0) = a—f(x,O):O parax > 0
gx) =
0<x< il ara x > S
ara - —
P - 2 yP 2 13. Resuelva
. = Dot o) = 92 92
10. ¢ =6, () 2e7,8() =0 7y = 62—y parax > 0,7 >0
12 dx2

1. c=14,f(x) =0, g(x) =

5.4

0,t) =t parat >0
x23—x) para0<x <3 Y P

0
parax > 3 y(x,O):O,a—i(x,O)zA parax > 0

Caracteristicas y la solucion de d’Alembert

Esta seccidn involucrara diferenciaciones repetidas con la regla de la cadena, las cuales pueden escribirse
eficientemente usando la notacién de subindices para las derivadas parciales. Por ejemplo, du/ot = u,,
ou/ox = u,, 02u/ot> = u,, y asi sucesivamente. Nuestro objetivo es examinar una perspectiva diferente en
el problema

U = czuxx para —oo0 < x < 00,t > 0,

u(x,0) = f(x),u;(x,0) = g(x) para —0co < x < 00.

Aqui estd usando u(x, ) como la funcién posicidn porque estard cambiando variables del plano (x, y) al
plano (&, n), y no quiere confundir la funcién solucién con las coordenadas de los puntos.

Este problema con valores en la frontera, que a resuelto mediante la integral de Fourier y después
usando la transformada de Fourier, se conoce como el problema de Cauchy para la ecuacion de onda.
Ahora una solucién que data del siglo XVIII. Las rectas

x—ct=ky, x+ct=ks,

con k; y k, cualesquiera constantes reales, se llaman las caracteristicas de la ecuacién de onda. Estas for-
man dos familias de rectas, una consiste de las rectas paralelas con pendiente 1/c, la otra de rectas parale-
las con pendiente —1/c. La figura 5.17 muestra algunas de estas caracteristicas. Verd que estas rectas estan
estrechamente relacionadas con el movimiento de onda. Sin embargo, el primer uso de ellas sera escribir
una solucidén explicita de la ecuacién de onda en términos de los datos iniciales.

Defina un cambio de coordenadas

E=x—ct, n=x+ct.

Esta transformacion es invertible, ya que

1 1
x=sE+m. 1=-(=5+mn).
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x — ct =k

x+tect=k

FIGURA 5.17 Caracteristicas de la ecuacion de
onda.

Defina

UGE, ) = ux(E, n), y(&, m).

Calcule las derivadas:
uy = Ugbx + Upnxe = Ug + Uy,
Uxx = Ugg€x + Ugpiix + Upedx + Upynix
= Ut +2Ugy + Uy,
u; = Ug(—c) + Uy (c)

Uy = —clUg (—¢) + Ugy(0)] + c[Upe(—c) + Upy(c)] = c2Ug — 22U, + 2U,
Entonces
Uy — Clly = 42Uy,
En estas nuevas coordenadas, la ecuacion de onda es

Us, = 0.

287

Esta es llamada la forma canonica de la ecuacion de onda, y es una ecuacion fécil de resolver. Primero

la escribimos como

(Uye=0.
Esto significa que U, es independiente de &, por decir

U, = h(.

Integre para obtener

UE.n = /h(n)dﬂ+ F(&),

en donde F(§) es la “constante” de integracion de la derivada parcial respecto a . Ahora f h(n)dn es sélo

otra funcion de 7, la que se escribe como G(17). Asi

U n) = F(&) + G(n),
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donde Fy G deben ser funciones de una variable con segunda derivada continua, por lo demds son arbi-
trarias. Se ha mostrado que la solucién de u,, = c2u,, tiene la forma

u(x, 1) = F(x — ct) + G(x + ct). (5.22)
La ecuacioén (5.22) se llama la solucion de d’Alembert de la ecuacion de onda, en honor al matematico

francés Jean le Rond d’ Alembert (1717-1783). Toda solucién de u,, = c2u,, debe tener esta forma.
Ahora aparece como elegir F'y G para satisfacer las condiciones iniciales. Primero,

u(x, 0) = F(x) + G(x) = f(x) (5.23)

ux, 0) = —cF'(x) + ¢G'(x) = g(x). (5.24)
Integrando la ecuacién (5.24) y rearreglando los términos para obtener
1 X
—Fx)+Gkx) = Z/o g(&)d§ — F(0) + G(0).
Sume esta ecuacién a la ecuacidn (5.23) para obtener
1 X
26(x) = f(x) + Z/o 8()d§ — F(0) + G(0).
Por tanto,
1 1 [ 1 1
G(x) = Ef(x) + 2—/ g(€)ds — s F(0) + 5G(0). (5.25)
c Jo 2 2
Pero entonces, de la ecuacion (5.23),
1 1 [ 1 1
Fx)=f(x)—Gl) =5f(x)— —/ g(€)ds + ;F(0) — G(0). (5.26)
2 2¢ Jo 2 2

Finalmente, usando las ecuaciones (5.25) y (5.26) para escribir la solucién como

ulx,t)=F(x —ct)+ G(x + ct)
_ ! t Y d 1FO 1GO
_Ef(x_c)_z_c/() g(§) §+§ ()—5 ©)

! t o d 1FO lGO
+§f(x+0)+2—C/0 g®) 5—5 ()+§ 0,

o0, después de las cancelaciones,

x+ct

u(x,t) = % (f(x —ct) 4+ f(x +ct) + 2%/ g (&) dE. (5.27)

x—ct

La ecuacion (5.27) es la formula de d’Alembert para la solucidn del problema de Cauchy para la ecua-
cién de onda en toda la recta. Es una férmula explicita para la solucién del problema de Cauchy, en
términos de las funciones posicién y velocidad inicial dadas.

EJEMPLO 5.10

Resuelva el problema con valores en la frontera

upy =4uy, para —00 < x < 00,t >0,

u(x,0) = e_lxl, ur(x,0) =cos(4x) para —o0 < x < 00.
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Por la férmula de d’ Alembert, inmediatamente tiene

x—+2t

=3 () 1 [T cosag e

x—2t

(e—'x—2" + e—‘x+2") + %(Sen(4(x +20)) — sen(d(x — 21)))

| =

1 1
S, lx=21] —|x+2t] -
5 (e +e ) + g cos(4x)sen(8r). W

5.4.1 Una ecuacion de onda no homogénea

Usando las caracteristicas, escribird una expresién para la solucién del problema no homogéneo:

Uy = Pty + F(x,t) para —oo <x < 00,1 > 0,

u(x,0) = f(x),u;(x,0) =g(x) para —00 < x < 00.

Este problema se llama no homogéneo debido al término F(x, t), el que supondra continuo para todo real
xyt>0.F(x, t) puede pensarse como un impulso externo o una fuerza de amortiguamiento actuando en
la cuerda.

Suponga que quiere la solucién en (x,, fy). Recuerde que las caracteristicas de la ecuacién de
onda son lineas rectas en el plano x, . Hay exactamente dos caracteristicas que pasan por este punto,
y éstas son las rectas

X—ct=xp—cly y X+ ct=Xxp+ ct

Los segmentos de estas caracteristicas, junto con el intervalo [xy — cty, xo + cty], forman un tridngulo
caracteristico A, que se muestra en la figura 5.18. Etiquete los lados de A como L, M e I. Como A es una
region en el plano x, ¢, puede calcular la integral doble de —F(x, ) sobre A:

—// F(x,1)dA :// (Puyy —uy)dA :// <i(czux)— 3(u[)) dA.
A A A \0x at

Aplicando el teorema de Green a la dltima integral, con x y  como las variables independientes en lugar
de x y y. Esto convierte la integral doble en una integral de linea alrededor de la frontera C de A. Esta
curva suave a pedazos, que consiste de tres segmentos de recta, estd orientada en el sentido contrario al
movimiento de las manecillas del reloj.

X+ ct = xy + ¢t

/

X —ct=xy— ¢l

o (X0, %)
M L

Xo = Cly I X + ¢t

FIGURA 5.18 Tridngulo
caracteristico.



290 CAPITULO 5  La ecuacion de onda

Por el teorema de Green, obtiene

—// F(x,t)dA:jg up dx + cZuy dt.
A C

Ahora evalde la integral de linea de la derecha en cada uno de los segmentos de C.
En/,t =0, de donde df = 0, y x varia de xy — cty a xo + cty, asi

xo-+cty xo+ctg
/u,dx+czuxdt=/ uz(x,O)dx=/ g(§)dé.

1 xp—cty xp—ctg

En L, x + ¢t = xo + cty, de donde dx = —cdt 'y

1
/ u;dx +c2ux dt = / u;(—c)dt —G—czux <——) dx = —c/ du
L L c L

= —c[u(xo, to) — u(xp + ctp, 0)].

Finalmente, en M, x — ct = xy — cty, de donde dx = cdt y

1
/ uldx—i—czuxdt :/u,(c)dt—i—czux (—) dx =c/ du
M L ¢ M

= cu(xg — ctg, 0) — u(xo, to)] .

M tiene punto inicial (xy, #) y punto terminal (xo — cfy, 0) debido a la orientacién en sentido contrario al
movimiento de las manecillas del reloj en la frontera de A.
Sumando estas dos integrales de linea, obtiene

x0+cto
—// F(x,z)dA=/ g(&)dt
A x0—cto

— clu(xo, to) — u(xop + cto, 0)] + ¢ [u(xp — cto, 0) — u(xo, to)] .

Entonces

xp+ctg
- // F(x,t)dA = / g(&)d& — 2cu(xo, to) + cu(xo + cto, 0) + cu(xo — cto, 0)
A X

0—Cclo

xo+ctg
= / g(&)d& — 2u(xo, 10) + ¢ [ f(xo + cto) + f(xo — cto)].

0—Ccto

Resuelva esta ecuacion para u(xy, f,) para obtener

1 1 xp-+ctg 1
u(xo, to) = 3 [f (xo — cto) + f(xo0 + cto)] + —/ 8&)ds + % /_/A F(x,1)dA.

2c 0—Clp

Se ha usado el subindice 0 en (x, #,) para enfocar la atencién en el punto en el cual se estd evaluando
la solucién. Sin embargo, éste puede ser cualquier punto con x, real y #, > 0. Asi la solucién en un punto
arbitrario (x, 1) es

1 1 x+ct 1
w0y = S [f(x = e+ fx+en] + 2—/ (&) de + // F(&, ) dédn.
c 2¢ JJa

x—ct

Lasolucién en (x, f) del problema con el término de fuerza F(x, ) es por tanto la solucién de d’ Alembert
para el problema homogéneo (sin término de fuerza), mas (1/2¢) veces la integral doble del término de
fuerza sobre el tridngulo caracteristico teniendo (x, f) como un vértice.
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EJEMPLO 5.11

Considere el problema

2

Uy = 25Uy + x2t para —oo < x < o0o,t > 0,

u(x,0) = xcos(x), us(x,0) = e * para —00 < x < 00.

La solucién en cualquier punto x y tiempo ¢ tiene la forma

x+5t
u(x, ) = = [(x — 5t) cos(x — 5t) + (x + 5¢) cos(x + 5¢)] + 1 / et de

1
2 10 J,_s,

1 2.2
+m//A§nd$dU-

Todo lo que debe hacer es evaluar las integrales. Primero,
5
i x+5t e_s dE = _ie—x—St + ie—x+5t‘
10 J, s 10 10

Para la integral doble del término de fuerza, utilice la figura 5.19:

1 - 1 t px+5t—5n -
- £ dédn=—/ / §°n” dédn.
10 //A 10 0 Jx—5t+5n

lLao, S
= —1 —1.
T

La solucion es

u(x,t) = % [(x — 5¢) cos(x — 5¢) + (x + 5¢) cos(x + 5¢)]

1 —x—5t 1 —x+5t 1 4.2 5 6
- — — —t — m
10¢ T 10¢ TR T
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En el dltimo ejemplo, u(x, ¢) da la funcién posicion de la cuerda en cualquier tiempo dado ¢. La grafica
de u(x, ) en el plano x, # no es una fotografia de la cuerda en cualquier tiempo. Mds bien, una imagen de
la cuerda en el tiempo ¢ es la gréifica de los puntos (x, u(x, 1)), con ¢ fija en el tiempo de interés. La figura
5.20(a) muestra un segmento de la cuerda en el tiempo ¢t = 0.3, tanto para el movimiento de forzado como
el no forzado. La figura 5.20(b) muestra un segmento de la cuerda para ¢t = 0.6, nuevamente para ambos el

movimiento de forzado y el no forzado.

Este método de caracteristicas también se puede usar para resolver problemas con valores en la fron-
tera que involucran a la ecuacién de onda en un intervalo acotado [0, L]. Sin embargo, es bastante mas
complicado que el de la solucién en toda la recta, por lo que queda para un estudio mds avanzado de las

ecuaciones diferenciales parciales.

n
E+5Sp=x+5t E—5n=x—>5t
(x, 1)
(x =5t +57n,7m) ° (x + 5t —=5m,7)
- —————————— 9T ———————————— -o-/ —————
¢
x — 5t x + 5¢

FIGURA 5.19



292 CAPITULO 5  La ecuacion de onda

u(x, 0.3) u(x, 0.6)
20 —
30 —
15—
10 20 —
50 10 —
| | | L o L I e
—4 -2 0 2 4 -3 -2 -1 0 1 2 3

FIGURA 5.20(a) Perfil de una cuerda
forzada y sin forzar en t = 0.3.

5.4.2 Ondas hacia adelante y hacia atras

FIGURA 5.20(b) = 0.6.

Continuando con el problema de valores en la frontera para la ecuacién de onda en toda la recta real, puede
escribir la férmula de d’ Alembert (5.27) para la solucién como

1 1 x—ct
we.n) = 3 (f(x —ety — ;/0 g(&)ds)

1 1 x+ct
-, <f(x Fen + —/ 5(®) dé)
¢ Jo

=@ —ct) + Bx +cn),

donde

1 1 [~
p(x) = Ef(x) - 2—0/0 g(&)dg

1 I
L) = 2 /() + 2—6/0 8(6) d.

Llame a ¢(x — ct) una onda hacia adelante (o derecha), y S(x + cf) una onda hacia atras (o izquierda). La
grafica de ¢(x — cf) es la gréfica de ¢(x) trasladada cr unidades a la derecha. Es posible, por tanto pensar
en ¢(x — ct) como la grafica de ¢(x) moviéndose a la derecha con velocidad c. La grafica de S(x + cf) es
la grafica de B(x) trasladada cf unidades a la izquierda. Asi S(x + ct) es la grafica de f(x) moviéndose a la
izquierda con velocidad c. El perfil de la cuerda en el tiempo #, dado por la grafica de y = u(x, ) como una
funcién de x, es la suma de estas ondas hacia adelante y hacia atrds en el tiempo ¢ .

Como un ejemplo de este proceso, considere el problema con valores en la frontera con ¢ = 1,

4 —x?

fx) = 0

para —2 <x <2

para |x| > 2

y g(x) = 0. En la figura 5.21(a) se muestra esta funcién posicion inicial. La solucién es una suma de una

onda hacia adelante y una hacia atrés:

ux,t) = +ct)+ px —ct)

1 1
=§f(x+t)+§f(X—f)'
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u(x 0) u(x, 1)
4 —
3 6
2+ 41
1+~ 2
| l | | | |, & | | | | X
-3 -2 -1 0 1 2 3 —4 =2 0 2 4
FIGURA 5.21(a) FIGURA 5.21(b) Superposicion de ondas
4—x2 para —2<x<2 hacia adelante y hacia atrds en 't = %
(x) = T
! 0 para |[x| > 2
u(x, 1.2) u(x, 1.6)
50 =
4+ 3
3 I~ — —
b
—_— 2 | —_—
= un
| | | | X | | | | X
—4 =2 0 2 4 . ) 0 2 4
FIGURA5.21(c) 7= 1.2. FIGURA5.21(d) t= 1.6.
, 1.8
u(x 18) u(x, 2.1y
41— 41—
3 3
1~ 1=
e e T SN (NI N EE
-6 -4 -2 0 2 4 6
FIGURA5.21(e) = 1.8. FIGURA5.21(f) ¢=2.1.

En cualquier tiempo ¢, el movimiento consiste de la funcidn posicién inicial trasladada ¢ unidades a la
derecha, superpuesta con la funcién posicién inicial trasladada 7 unidades a la izquierda. Considere el
movimiento como la funcién posicién inicial (figura 5.21(a)) moviéndose simultineamente hacia la dere-
cha e izquierda. Debido a que f (x) vale cero fuera de [—2, 2], estas ondas hacia adelante y hacia atras
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u(x,3)
4
3
— P N

=

Ll L1l

-6 -4 -2 0 2 4 6
FIGURA 5.21(g) 7=3.

N Y Y [
—10-8—-6—-4-2 0 2 4 6

|
8 10

FIGURA5.21(h) ¢=7.

de hecho se separan y llegan a ser ajenas, una continia moviéndose hacia la derecha y la otra hacia la
izquierda en la recta real. En las figuras 5.21(b) a (h) se muestra este proceso.

SECCION 5.4 PROBLEMAS

En cada uno de los problemas del 1 al 6, determine las caracte-
risticas de la ecuacion de onda para el problema

Uy = Uy, para —oo < x < 00, t > 0,

u(x, 0) = f (x), u(x, 0) = g(x) para —o0 < x < 00

para el valor de ¢ dado y escriba la solucién de d’ Alembert.

Le=1f(x)=x2 gx) = —x

2. c =4, f(x) =22 — 2x, g(x) = cos(x)

3. c=17,f(x) =cos(mx), glx) =1 —x2
4. c =5, f(x) = sen(2x), g(x) = x3
5
6

Le=14, f(x) =€ gx) =x
Le=12, f(x) = —5x+x2 glx) =3

En cada uno de los problemas del 7 al 12, resuelva el problema
Uy = U+ F(x, ) para —o00 < x < 00, t > 0,
u(x, 0) =f(x), ulx, 0) = g(x) para —0o0 <x < 00

parala c, f (x) y g(x) dadas.

T.c=4fx)=x, gx)=e F(x, ) =x+1

8. ¢ =2, f(x) = sen(x), g(x) = 2x, F(x, ) = 2xt

9. ¢ =8, f(x) =22 —x, g(x) =cos(2x), F(x, 1) = x12
10. c =4, f(x) = 2, g(x) = xe~*, F(x, t) = x sen(r)
11. ¢ =3, f(x) = cosh(x), g(x) =1, F(x, 1) = 3x13
12. ¢ =7, f(x) =1 + x, g(x) = sen(x), F(x, f) = x —cos()

En cada uno de los problemas 13 al 18, escriba la solucién del
problema

Uy = Uy, Ppara —o0o <x < oo, t> 0,
u(x, 0) =f(x), u(x, 0) =0 para —00 <x < 00
como una suma de una onda hacia adelante y una hacia atras.
Dibuje la grafica de la funcién posicion inicial y después la gra-
fica de la solucidén en tiempos seleccionados, probando la solu-

cién como una superposicion de ondas hacia adelante y hacia
atrds moviéndose en direcciones opuestas a lo largo de la recta

real.
sen(2x ara —m <x <71
13. f() = (2x) p <x=
0 para |x| >
1—|x| para —1 <x <1
14. f(x) =
0 para |x| > 1
b4 b/d
cos(x) para -3 <x = 3
15. f(x) = -
0 il
para |x| > >
1—x2 para |[x| <1
16. f(x) =
0 para |x| > 1
x2—x-2 para —1 <x <2
17. f(x) =
0 parax < —1 yparax > 2
x3—x2—4x—|—4 para —2 <x <2
18. f(x) =

0 para |x| > 2
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Modos normales de vibracion de una membrana circular elastica

Analice el movimiento de una membrana (como la de un tambor) sujetada por un marco circular y puesta
en movimiento con posicion y velocidad iniciales. La posicion de reposo de la membrana es en el plano
xy con el origen en el centro y la membrana tiene un radio R. Usando coordenadas polares, la particula de
la membrana en (7 6) se supone que vibra vertical y perpendicularmente al plano x y, y su desplazamiento
desde la posicién de reposo en el tiempo ¢ es z(7, 6, 7).

La ecuacion (5.4), da la ecuacién de onda para esta funcién de desplazamiento:

Pz (0% laz+1822
arz a2 rar  r2o02 )’

Por el momento suponga que el movimiento de la membrana es simétrico respecto al origen, en cuyo caso
z s6lo depende de ry . Ahora la ecuacién de onda es

3%z (%2 1z
— = —_— 4t —-—).
ot2 arz2  ror
Sea el desplazamiento inicial dado por z(r; 0) = f (r), y sea la velocidad inicial

% (r.0) = g (1)
—(r,0) = g@).
at §
Intente una solucion

2(r, 1) = F(nNT(0).

Obtiene, después de cdlculos rutinarios,

” _ oo 1 A _
T"+AT =0y F' +-F+—5F=0.
r 2

Si A > 0, a saber A = w?, la ecuacion para F es una ecuacion de Bessel de orden cero, con solucion ge-
neral

F(r) = alo (fr) +bY, (gr> .
c c
Como Y (wr/c) — —oo conforme r — 0 (el centro de la membrana), elija b = 0. Ahora la ecuacién para
T es
T+ *T =0,
con solucién general
T(t) = d cos(wt) + k sen(wt).
Tiene, para cada @ > 0, una funcion
1) w
Zo(r, 1) = ayuJo (—r) cos(wt) + by, Jo (—r) sen(wt).
c c
Como la membrana estd fija en un marco circular,
w w
20(R, 1) = awdo (-R) cos(@t) + by Jo (-R) sen(wt) = 0
c c
parat > 0. Esta condicidn se satisface si Jo(wR/c) = 0. Sean jy, j,, . . . los ceros positivos de J,, con

J<jp<---,
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y elija
wR .
— =Jn
¢
0
a) —_— ‘]',1_6‘
"7 R
paran =1, 2, ... Esto produce los valores propios de este problema:
22
2 _ Jn€
=W = 22 )

Ahora tiene

in” nCt nl’ jnct
e (o5 ()5,

Todas estas funciones satisfacen la condicion en la frontera z(R, ) = 0. Para satisfacer las condiciones
iniciales, se intenta una superposicion

z(r,t) = Z [anJo (er> cos (j';t) + b, Jo (%) sen (J';st)} . (5.28)

n=1

Ahora
_ _ 200: JnT
Z(r’O)_f(r)_nzlanJ()(R)’

el desarrollo de Fourier-Bessel de f(r). Sea s = r/R para convertir esta serie en

0]

F(Rs) =" anJo(jns),

n=1

en donde s varfa de 0 a 1. Sabe de la seccién 4.3.3 que los coeficientes en este desarrollo estdn dados por

2 1
B m/o sf (Rs)Jo(jns) ds

paran=1,2,....
Ahora debe resolver para las b,. Calcule

d
S0 = () = an—Jo ( ) .

Este es el desarrollo de Fourier-Bessel de g(r). Nuevamente, en referencia con la seccion 4.3.3, debe elegir

n i = ﬁ /O S8R Jo ) ds,
0
by, = L /1 58(Rs)Jo(jns) ds
cinlJ1G) 12 Jo
paran =1, 2, ... Con estos coeficientes, la ecuacién (5.28) es la solucién para la funcién posicion de la

membrana.
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Los nimeros w, = j,¢/R son las frecuencias de los modos normales de vibracion, los cuales tienen
periodos 2m/w, = 2mR/j,c. Los modos normales de vibracién son las funciones z,(r, f). Frecuentemente
estas funciones se escriben en la forma angulo fase como

Jnl
Zn (ra t) = An JO <?) Cos(a),,t + (Sn)

en donde A, y §, son constantes.
El primer modo normal es

j1r
z1(r,t) = A1Jo (%) cos(wit + 681).

Conforme r varia de 0 a R, j;7/R varia de 0 a j;. En cualquier tiempo ¢, una seccién radial a través de la
membrana toma la forma de la grafica de Jy(x) para 0 < x < j; (figura 5.22(a)).
El segundo modo normal es

Jor
22(r, 1) = Ay Jy <?) cos(wyt + 87).

Ahora conforme r varia de 0 a R, j,7/R varia de O a j,, pasando a través de j; a lo largo del camino. Como
Jo(j27/R) = 0 cuando j,7/R = j;, este modo tiene un circulo nodal (fijo en el movimiento) de radio

J1R
r=—
J2
Una seccion a través de la membrana toma la forma de la grafica de Jy(x) para 0 < x < j, (figura

5.22(b)).
Andlogamente, el tercer modo normal es

J3r
z23(r, 1) = A3y <?> cos(wst + 83),

y este modo tiene dos nodos, uno en r = j|R/j3 y el segundo en r = j,R/j3. Ahora la seccion radial tiene la
forma de la grafica de Jy(x) para 0 < x < j; (figura 5.22(c)).

En general, el n-ésimo modo normal tiene n — 1 nodos (circulos fijos en el movimiento de la mem-
brana), sucediendo en j\R/j,, . . ., ju_1R/],.

En la siguiente seccidn se retomard este problema, esta vez teniendo la 6 dependiente de la funcién de
desplazamiento. Esto llevard a una solucién involucrando una serie doble de Fourier en senos.

y = Jox) y = Jyx)
Jo(x) \, i
| X | X L | X
0 Ji 0 /i J2 0 Jji J J3
FIGURA 5.22(a) Primer FIGURA 5.22(b) Segundo FIGURA 5.22(c) Tercer modo

modo normal. modo normal. normal.
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SECCION 5.5 PROBLEMAS

1. Seanc=R=1,f(r)=1—ry g(r) =0. Usando el material de 2. Repita el problema 1, pero ahora usando f(r) =1 — 12y
la seccién 4.2 (funciones de Bessel), aproxime los coeficien- g(r)=0.

tes a; a as en la solucién dada por la ecuacién (5.28) y dibuje
la gréfica de la quinta suma parcial de la solucién para una
seleccion de tiempos. Escriba los modos (aproximados) nor-

3. Repita el problema 1, pero ahora usando f(r) = sen(mr) y
§(r)=0.

males z,(r, t) = A, Jo (jur) cos (w,t + 8,) paran=1,... 5.

5.6

Vibraciones de una membrana circular elastica, vuelta a visitar

Se continta a partir de la dltima seccién con las vibraciones de una membrana eldstica fija en un marco
circular. Ahora, sin embargo, se mantiene la 6 dependiente de la funcién de desplazamiento y consideran-
do toda la ecuacién de onda.

Pz (%2  1dz  10d%
ot? ar2  roar r2962

para0 <r <R, —mw <6 < m, ¢t > 0. Usaremos las condiciones iniciales
9z
2(r,0,0) = f(r,0), E(r, 0,0) =0,

asi la membrana es soltada desde el reposo con el desplazamiento inicial dado.
En coordenadas cilindricas, 6 puede ser reemplazada por 6 + 2nm para cualquier entero n, asi, tam-
bién, se impondran las condiciones de periodicidad

0 0z
2(r,—m,t) =z(r,m,t) y %(n —7,t) = é(r, T, t)

para0 <r<Ryt>0.
Haga z(r;, 6, t) = F(r)®(6)T(r) en la ecuacién de onda para obtener
T" _ F’"+ (1/r)F' 1 ®

= Z
2T F r2 ®

para alguna constante A ya que el lado izquierdo depende sdlo de ¢, y el lado derecho sélo de ry 6. En-
tonces

T+ AT =0

2o ’ 7"
F F ®

L L P
F ®

Debido a que el lado izquierdo depende sélo de r y el derecho sélo de 6, y €stos son independientes,
para alguna constante t,
2 o ’ 1
F F ®
reAre + ar?
F ]

Entonces

Q"+ ud® =0
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PF" + rF' + (W — w)F = 0.

Resolviendo estas ecuaciones diferenciales para 7(¢), F(r) y ®(6), tiene las siguientes condiciones en
la frontera. Primero, por la periodicidad,

O(—m) = 0(n) y O (—m) = O'(m).
Ahora, debido a que la membrana esta fija en un marco circular,
F(R)=0.
Finalmente, debido a que la velocidad inicial de la membrana es cero,
T'(0) = 0.

El problema para ®(6) es un problema de Sturm-Liouville periédico, que fue resuelto en la seccién
4.3.1 (ejemplo 4.9). Los valores propios son

Upy=n? paran=0,1,2,...,
y las funciones propias son
0,(0) = a, cos(nd) + b,, sen(nb).
Con u = n?, el problema para F es
P2F"(r) + rF'(r) + (A2 — n2)F(r) = 0; F(R) =0.
Ha visto (seccion 3.2.2) que esta ecuacion diferencial tiene solucién general

F(r) = ady(Var) + bY,(Var),

en términos de las funciones de Bessel de orden n del primero y segundo tipo. Debido a que Yn(ﬁr) no

estd acotada conforme r — 0+, elija b = 0 para tener una solucién acotada. Esto deja F(r) = aJ,(v/Ar).
Para encontrar valores admisibles de A, necesita

F(R) = alJ,(VAR) = 0.

Busque satisfacer ésta con a distinta de cero para evitar una solucion trivial. As{ VAR debe ser uno de los
ceros positivos de J,. Sean estos ceros positivos
jnl <j112 <y
con doble indice ya que esta deduccion depende de la eleccion de u = n2. Entonces
2
— Jnk
=22

con j el k-ésimo cero positivo de J,(x). Las A, son los valores propios. Las funciones propias correspon-
dientes son multiplos distintos de cero de

Ank

J,,(%"r) paran=0,1,2,... y k=12,....

Con estos valores de A, el problema para T es
Jnk

2
T" + ¢* <?> T =0; T70) =0
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con soluciones constantes multiplos de

Jnk
T,k (t) = cos <%ct) .

2uk () 0, 1) = [an cO8(n0) + bux sen(n)1J, (7’%) cos (%"a)

Ahora puede formar las funciones

paran=0,1,2,...yk=1, 2, ... Cadauna de estas funciones satisface la ecuacién de onda y las condi-
ciones en la frontera, junto con la condicién de velocidad inicial cero. Para satisfacer la condicién que la
posicioén inicial estd dada por f, escriba una superposicién

[o.clNe ¢

2(r,0,1) = Z Z ank €08(n0) + by sen(n®)]J, (71’) cos (%a) (5.29)

n=0 k=1

Ahora necesita
Jnk
2(r,0,0) = f(r,0) = Z Z [ank cOS(n6) + bui sen(n6)1J, ( ; ) .
n=0 k=1
Para ver cdmo elegir estos coeficientes, primero escriba esta ecuacion en la forma

f@r,0) = ZaOkJO (j%r) Z <|:Za"kJ ( >:| cos(n6)
k=1

n=1

+ LZ:; Bk I (%"r)] sen(n@)) )

Para una r dada, piense en f (, #) como una funcién de 6. La tdltima ecuacion es el desarrollo en serie de
Fourier, en [—7, 7], de esta funcidén de 6. Como conoce los coeficientes en el desarrollo de Fourier de una
funcién de 6, puede escribir inmediatamente

Y aodo (2r) = — " 6ydo = Seo(r).
R 27 J_»
k=1
y,paran=1,2,...,
00 . P
Jnk 1
> ani (—r) =~ | f(r,0)cos(nh)db = a,(r)
= R T J_ .
y
Jnk 1 [”
ankJn =— | f0.0)sen(n0)d0 = B, (r)
—7IT
Ahora reconoce que paracadan =0, 1, 2, . .., las dltimas tres ecuaciones son las expansiones de las

funciones de r en funciones en series de Bessel, con conjuntos de coeficientes, ay, d.; y b, respectiva-
mente. A partir de la seccién 4.3.3, conoce los coeficientes en estas expansiones:

m/ Eag(RE) Jo(jor&)dE parak =1,2,.

y,paran=1,2,...,

ank =

m/ £y (RE) Sy (juk§) dé  parak =1,2,.
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. 2
B [-]n-i-l(jnk)]2

La idea en el célculo de los coeficientes es primero realizar las integraciones respecto a 6 para obtener
las funciones a(r), a,,(r) y B,(r), escribiéndolas como series de Fourier-Bessel. Obtenga los coeficientes
en estas series, que son las a,; y las b,;, evaluando las integrales para los coeficientes en este tipo de ex-
pansién en funcién propia. En la préctica, éstas son aproximadas debido a que los ceros de las funciones
de Bessel de orden n s6lo pueden ser aproximados.

1
bnk /()E,Bn(Ré)Jn(jnké)dé parak =1,2,....

SECCION 5.6 PROBLEMAS

1. Aproxime la desviacion vertical del centro de una membra- 2. Use la solucién dada en la seccion para probar el hecho plau-
na de radio 2 para cualquier tiempo ¢ > 0 calculando los tres sible de que el centro de la membrana queda fijo para todo
primeros términos no cero de la solucién para el caso ¢ = 2 tiempo, si el desplazamiento inicial es una funcién impar de 6
y el desplazamiento inicial es f(r, 0) = (4 — r2) sen? (6), con (estoes, f(r—0) = —f (1, 0)). Sugerencia: La tnica funcién de
g(r,0) =0. Bessel de orden entero que es distinta de cero en » = 0 es Jj.

5.7 Vibraciones de una membrana rectangular

Considere una membrana eldstica estirada sobre un marco rectangular al que esta fija. Suponga que el

marco y el rectdngulo que encierra ocupan una regién en el plano xy definido porO <x < L,0 <y < K.

Se da un desplazamiento inicial a la membrana y se suelta con una velocidad inicial dada. Busca determi-

nar la funcién de desplazamiento vertical z(x, y, 7). En cualquier tiempo #, la grafica de z = z(x, y, ) para

0 <x < L,0 <y < K es una fotografia de la posiciéon de la membrana en ese tiempo. Si tuviera una

pelicula de esta funcién conforme pasa el tiempo, tendria una imagen en movimiento de la membrana.
El problema con valores en la frontera para z es

3%z o (%2 9%z

— =a" | — + — para0<x <L, 0<y<K,t >0,
012 x2 9y

72(x,0,t) =z(x,K,t) =0 para0<x <L, >0,

20, y,t) =y(L,y,t) =0 para0<y < K,t >0,

72(x,y,0) = f(x,y) para0<x <L,0<y <K,

d
a—j(x,y,O):g(x,y) pra0<x < L,0<y<K.

Se resuelve este problema para el caso de velocidad inicial cero, g(x, y) = 0.
Intente una separacion de las variables, z(x, y, 1) = X(x)Y(y)T (¢). Obtiene

XYT" = a®[X"YT + XY'T],

T// Y// X//
2T Y X



302

CAPITULO 5  La ecuacién de onda

Estd imposibilitado para aislar tres variables en diferentes lados de una ecuacién. Sin embargo, puede
argumentar que el lado izquierdo es una funcién sélo de y y 7, y el lado derecho sélo de x, y estas tres
variables son independientes. Por tanto, para alguna constante A,

T// Y// X//

- = —A.
a’T Y X
Ahora tiene
T// Y//
X"+2X =0 — 4+ A= —.
+ e

En la dltima ecuacion, el lado izquierdo depende s6lo de ¢ y el lado derecho sélo de y, asi para alguna
constante (,

T// Y//
— 4 A= —
aT Y

Entonces
Y +uY=0 y T'+a®(A+u)T=0.

Las variables han sido separadas, con el costo de introducir dos constantes de separacion. Ahora use
las condiciones en la frontera:

2(0, , 1) = X(0)Y (»)T (r) = 0 implica que X(0) = 0.
Andlogamente,
XL)=0Y0)=0 y YK =0.
Los dos problemas para X y Y son

X' +2X=0; X(0)=X(L)=0

Y + uY = 0; Y(0) = Y(K) = 0.

Estos tienen soluciones:

n-m X
Ap = 12 X, (x) = sen (_)
y
2 2
mem mmy
i = 7 V() = sen ( 2 ).

con n'y m variando independientemente sobre los enteros positivos. Ahora el problema para T se convierte
en

2.2 2.2

" 5 (T m-m T—0
el T ) T

Mas atn, debido a la hipétesis de velocidad inicial cero,

0z ,

E(x, y,0) =Xx)Y(y»)T(0) =0,
asi T' (0) = 0. Entonces T debe ser un multiplo constante de

2 2

n m
+ —mat

Cos ﬁ X2
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Para cada entero positivo n y m, tiene ahora una funcién

mmy n?  m?
(—) cos -5 T —mat
K L K

que satisface todas las condiciones del problema, excepto posiblemente la condicién inicial z(x, y, 0) =
f(x, ). Para esto, use una superposicién

nmwx
Zum (X, Y, 1) = apm sen <T) sen

nwx mmy n m
z(x,y,t) = E E Ay SEN (T) sen (T) cos 17 + ﬁnat
n=1m=1
Debe elegir las constantes para satisfacer
> - nTx mmy
z2(x, y,0) = fx,y) = E E pm SEN (T) sen (T)

n=1m=1

Puede hacer esto explotando el truco usado cuando se introdujo la serie de Fourier. Escoja un entero posi-
tivo mg y multiplique ambos lados de esta ecuacién por sen(myry/K) para obtener

00 00
nix mmy momy
) = E E Apm SEN (—) sen (—) sen( )
L K K
n=1m=1

Ahora integre 0 a K en la variable y—, dejando los términos en x solos. Obtiene

f(x,y)sen (

momy
K

oo o0

[ st (M) = 53 v () [ () ()

n=lm

Por la ortogonalidad de estas funciones seno en [0, K], todas las integrales son cero excepto para el térmi-
no m = my. La serie en m se colapsa por tanto en un solo término, con

K m K
/ sen’ (0—71)}) dy = —
0 K 2
cuando m = my. Asi tiene

K momy =K niwx
) f(x,y)sen( K )dy:r;Eanmosen(T)'

El lado izquierdo de esta ecuacién es una funcién de x. Elija cualquier entero positivo n, y multiplique
esta ecuacién por sen(nyrx/L):

[o9]

K
nomwx momy K nwx nomwx
/0 f(x,y)sen( 7 )sen( X )dy ZZE‘Z””’O sen (T) sen( 7 )

n=1

Integre, esta vez, en la variable x:

Lork nomwXx momwy
‘/(;/0 f(x,y)sen( 7 )sen(T)dydx

i K /'L cen (nr[x) cen (nm'[x) d
= —a, —_— X.
~2 " S L L

Todos los términos de la derecha son cero, excepto cuando n = ny, y este término es L/2. La dltima ecua-

cidn se convierte en
fL /K Fx.y) (norrx> (morry)d d KL
X, y)sen sen X =——a .
o Jo y 7 % y 5 o Pmomo
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Elimine los subindices cero, que servian sélo para saber cudles enteros estaban fijos, ahora tiene

Apm = % /OL /(;K f(x,y)sen (?) sen (%) dydx.

Con esta eleccién de los coeficientes, tiene la solucién para la funcién de desplazamiento.

EJEMPLO 5.12
Suponga que el desplazamiento inicial estd dado por

2% 3, 0) = x(L — x)y(K — y),

y la velocidad inicial es cero. Los coeficientes en la doble expansién de Fourier son

A = f / x(L—x)y(K —y) sen( ) (mTjTy) dydx
L4K (/(; x(L — x)sen (nL )dx) (/OKy(K —-y) sen( ;{Ty)dy)

16L%2K? ; ”
2)3[( D" = 1[(=D" —1].

(nm
La solucién para la funcién de desplazamiento es en este caso

2 2

206, v, 1) = Z Z [ 16L°K” [(—=1)" — 1][(=1)" — 1] sen ("”Tx) sen (m;y) cos % +mar | | m

2)3

n=1m=1

SECCION 5.7 PROBLEMAS

1. Resuelva

827 827 827
3= T 3 para0 < x < 2m,
or dx dy z(x,y,0) =sen(x)cos(y) para0 <x <7mw,0<y<m,

20, y,t) =z(r,y,t) =0 para0 <y <m,t >0,

0<y<2m,t>0, )
—Z(x v,0)=xy para0<x <m,0<y<m.

72(x,0,1) = z(x,2m,t) =0 para0 <x <2m,t >0,

20, y,t) =zQ2m,y,t) =0 para0 <y <2m,t > 0, 3. Resuelva
z(x,y,0) = X2 sen(y) para0 <x <2m,0<y < 2m, 52 52 52
z z z
a — = — t+— para0 < x < 2m,
—Z(x v,0) =0 para0 <x <27,0<y <27 ar? (8x2 3)’2>
0<y<2m,t>0,
2. Resuelva 2(x,0,1) = z(x,2m,t) =0 para0 <x < 2m,t >0,
92z 2z 92z 2(0,y,1) =z(2n,y,1) =0 para0 <y <2n,t >0,
m:9 FJFW para0 <x <, 72(x,y,0) =0 para0 <x <27,0 <y <2m,
O<y<mt>0, 9z
—(x,y,00=1 para0<x <27,0 <y <2m.

72(x,0,t) = z(x,m,t) =0 para0 <x <m,t >0,
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CAPITULO 6

La ecuacion de calor

Los fenémenos de calor y radiacién con frecuencia son modelados por una ecuacién diferencial parcial
llamada ecuacion de calor. Deducira una version tridimensional de la ecuacién de calor, usando el teore-
ma de divergencia de Gauss. Después, examinard mas de cerca la ecuacién de calor y la resolvera bajo una
variedad de condiciones, siguiendo un programa paralelo al que llevé a cabo para la ecuacién de onda.

La ecuacion de calor y las condiciones iniciales y de frontera

Sea u(x, y, z, t) la temperatura en el tiempo ¢y el lugar (x, y, z) en una regién en el espacio, u satisface la
ecuacion diferencial parcial

Bu_ 82u+32u+32u LVK-V
oo =8 \ox2 T oy2 T a2 .

en donde K(x, y, 7) es la conductividad térmica del medio, (x, y, z) es el calor especificoy p(x, y, z) es la
densidad. El término VK + Vu es el producto punto de los gradientes de K y u. Esta es la ecuacién de calor
en tres variables espaciales y el tiempo.

Si la conductividad térmica del medio es constante, entonces VK es el vector cero y el término
VK - Vu = 0. Ahora la ecuacién de calor tridimensional es

Bu_K 82u+82u+82u
Rogr =2 \oe2 T2 T o2 )

La ecuacion de calor unidimensional es

ou K 0%u

A ppax?

Esta ecuacién se aplica frecuentemente, por ejemplo, a la conduccién de calor en una barra delgada o
alambre cuya longitud es mucho mayor que sus otras dimensiones. Para tener una mejor comprensién de
lo que estd involucrado en la ecuacién de calor unidimensional, se desarrollard por separado a partir
de los principios basicos.

305
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Considere una barra recta y delgada de densidad constante p y drea constante A de la seccién trans-
versal, colocada a lo largo del eje x desde 0 a L. Suponga que los extremos de la barra estdn aislados y no
permiten la pérdida de calor y que la temperatura en la seccidn transversal de la barra perpendicular al eje
x en x es una funcion u(x, ) sélo de x y . Suponga que el calor especifico i y la conductividad térmica K
son constantes.

Considere un segmento tipico de la barra entre x = « y x = 8, como en la figura 6.1. Por la definicién
del calor especifico, la razén a la que se acumula la energia calorifica en este segmento es

B ou
A—dx.
[t

u u(x, r) = temperatura en la seccién
/ transversal en x en el tiempo ¢
[ AYA A N
o\ AW, v/
o B L
FIGURA 6.1

Por la ley de enfriamiento de Newton, la energia calorifica fluye dentro de este segmento del extremo
caliente al frio en una razén igual a K veces el negativo del gradiente de la temperatura (diferencia en la
temperatura en los extremos del segmento). Por tanto, la razén neta a la que entra la energia calorifica en
este segmento de la barra en el tiempo 7 es

du u
KA—(B,t) — KA—(a, 1).
ax 0x

Suponga que no se produce energia dentro del segmento. Tal produccién podria ocurrir, por ejemplo, si
hay una radiacién o una fuente de calor tal como una reaccién quimica. Estos también cambiarfan la masa
en el segmento con el tiempo. En ausencia de estos efectos, la razén a la cual se acumula la energia calo-
rifica dentro del segmento debe balancear la razén a la que entra en el segmento. Por tanto,

B ou ou ou B 32y
A—dx =KA|—B,t) — —(a,t) | = KA —dx,
/a PR <8x(ﬂ )~ @ )) /a ax2

asi

B ou 9%u
— —K—)dx=0.
/a (“pat ax2> *

Esta ecuacién debe ser cierta para todo oy fcon 0 <o < < L. Si el término en el paréntesis en la
integral fuera distinto de cero en cualquier x, y fy, entonces por la continuidad podria elegir un intervalo
(e, B) alrededor de x en el cual este término seria estrictamente positivo o estrictamente negativo, en
todo el intervalo. Pero entonces esta integral de una funcién positiva o negativa en (c, ) seria positiva o
negativa respectivamente, lo cual es una contradiccién. Concluya que

ou X 8%u 0

1o ot ax2

para 0 < x < Ly parat > 0. Esta es la ecuacién de calor unidimensional. Frecuentemente se escribe esta
ecuacion diferencial parcial

ou 9%u

o ox2
donde k = K/up es una constante positiva que depende del material de la barra. El nimero k se llama la
difusividad de la barra.
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Ciertamente esta ecuacién no determina la funcién temperatura u(x, ) de manera unica. Por ejemplo,
si u(x, t) es una solucién, también lo es u(x, f) + c¢ para cualquier nimero real c. Para la unicidad de la
solucién, esperable en modelos de los fendmenos fisicos, necesita las condiciones en la frontera, especi-
ficando la informacién en los extremos de la barra en todo tiempo, y las condiciones iniciales, dando la
temperatura en toda la barra a algin tiempo designado usualmente como el tiempo cero. La ecuacion de
calor, junto con ciertas condiciones iniciales y en la frontera, determina de manera tnica la distribucién
de la temperatura en toda la barra en todo tiempo posterior.

Por ejemplo, puede tener el problema con valores en la frontera

9 9
8_’:=k8—1; para0 <x < L,t >0,
x

u©,t) =T,u(L,t) =T, parat >0,
u(x,0) = f(x) paraO0<x <L.

Este problema modela la distribucién de temperatura en una barra de longitud L cuyo extremo izquierdo
se mantiene a temperatura constante 77 y el extremo derecho a temperatura constante 7, y cuya tempe-
ratura inicial en la seccidn transversal en x es f(x). Las condiciones en los extremos de la barra son las
condiciones en la frontera y la temperatura en el tiempo cero es la condicién inicial.

Como un segundo ejemplo, considere el problema con valores en la frontera

ou k82u

§= ﬁ paraO<x<L,t>0,
X

ou ou
—(0,1) = —(L,1) =0 parat >0,
0x dx

u(x,0) = f(x) paraO<x <L.

Este problema modela la distribucién de temperatura en una barra que no tiene pérdida de calor por sus
extremos. Las condiciones dadas en la frontera en este problema se llaman condiciones de aislamiento.

Aun se pueden especificar otras condiciones en la frontera. Por ejemplo, es posible tener una combi-
nacion de temperatura fija y condiciones de aislamiento. Si el extremo izquierdo se mantiene a tempera-
tura constante 7'y el extremo derecho estd aislado, entonces

ou
u@0,)=T vy a(L,t):O.

O tener radiacion libre (transmisioén), en donde la barra pierda calor por radiacién desde sus extremos
en el medio que la rodea, que se supone que se mantiene a temperatura constante 7. Ahora el modelo
consta de la ecuacién de calor, la funcién de la temperatura inicial, y de las condiciones en la frontera.

ou ou
ox ox

parat > 0. Aqui A es una constante positiva. Observe que si la barra se mantiene mds caliente que el medio
que la rodea, entonces el flujo de calor, medido por du/dx, debe ser positivo en el extremo izquierdo y
negativo en el extremo derecho.

Las condiciones en la frontera

u(,1) =T, Z—z(L, t) =—Alu(L.t) — T»]

se usan si el extremo izquierdo se mantiene a temperatura constante 7 mientras el extremo derecho irradia
energia calorifica en un medio de temperatura constante 7.
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En el espacio de dos dimensiones, con conductividad térmica constante, la ecuacién de calor es

ou

at

9%u

P
<8x2 *

mientras que en el espacio de tres dimensiones es

u

o=

SECCION 6.1 PROBLEMAS

Formule un problema con valor en la frontera que modele
condiciones de calor en una barra delgada de longitud L si
el extremo izquierdo se mantiene a temperatura cero y el
extremo derecho estd aislado. La temperatura inicial en la
seccion transversal en x es f(x).

Formule un problema con valor en la frontera que modele
condiciones de calor en una barra delgada de longitud L si el
extremo izquierdo se mantiene a temperatura «(f) y el extre-

i

9%u
9x2

9%u

n)

9%u
9y?

9%u
072

).

mo derecho a temperatura S(f). La temperatura inicial en la
seccion transversal en x es f(x).

Formule un problema con valor en la frontera para la fun-
cién de temperatura en una barra delgada de longitud L si
el extremo izquierdo se mantiene aislado y el extremo dere-
cho a temperatura S(t). La temperatura inicial en la seccién
transversal en x es f(x).

Soluciones en serie de Fourier de la ecuacion de calor

En esta seccion resolverd varios problemas con valores en la frontera que modelan la conduccién de calor
en un intervalo acotado. Para este prop6sito usard la separacion de variables y la serie de Fourier.

6.2.1 Extremos de la barra mantenidos a temperatura cero

Suponga que busca la distribucién de la temperatura u(x, f) en una barra delgada, homogénea (densidad
constante) de longitud L, dado que la temperatura inicial en la barra en el tiempo cero en la seccién trans-
versal en x perpendicular al eje x es f(x). Los extremos de la barra son mantenidos a temperatura cero

durante todo el tiempo.

El problema con valores en la frontera que modela esta distribucién de temperatura es

ou
ar

2

0°u
_k_
dx?

para0 <x < L,t >0,

u©,t) =u(L,t) =0 parat >0,

u(x,0) = f(x) paraO<x <L.

Usard separacion de variables. Sustituye u(x, r) = X(x)7(¢) en la ecuacién de calor para obtener

XT' =kX'T

T/
kT

X//
X
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El lado izquierdo depende sélo del tiempo, y el lado derecho sélo de la posicién y estas variables son
independientes. Por tanto, para alguna constante A,

T/ X//
— = — = —A.
kT X
Ahora
u,t) =XO0)T()=0.

Si T(r) = 0 para todo ¢, entonces la funcién de temperatura tiene el valor constante cero, lo que ocurre si
la temperatura inicial f (x) = 0 para 0 < x < L. De otra manera, 7 (f) no podria ser idénticamente cero, de
manera que debe tener X(0) = 0. Andlogamente, u(L, f) = X(L)T (f) = 0 implica que X(L) = 0. El problema
para X es por tanto

X"+ A1X =0; X(0)=X(L)=0.

Busque valores de X (los valores propios) por los cuales este problema tenga soluciones no triviales (las
funciones propias) para X.

Este problema para X es exactamente el mismo que encuentra para la funcién que depende del espacio
en la separacion de variables en la ecuacion de onda. Ahi encuentre que los valores propios son

n’m?
An = 12
paran =1, 2, ...,y las funciones propias correspondientes son multiplos constantes distintos de cero de
nmwx
X, (x) = sen <T) .
El problema para T se convierte en
7 n’m’k T —0
+ Iz =0,

que tiene solucién general
2.2 2
Tn(t) =cye n°m kt/L .
Paran =1, 2, ..., ahora tiene funciones

ATTXN\ 22,72
u, (x,1) = c, sen (—L )e e kt/L

que satisfacen la ecuacién de calor en [0, L] y las condiciones en la frontera u(0, ) = u(L, t) = 0. Falta
encontrar una solucién que satisfaga la condicién inicial. Puede elegir n y ¢, de manera que

1n(x, 0) = ¢, sen (%) — f(x)

s6lo si la funcién de temperatura inicial dada es un multiplo de esta funcién seno. No siempre es asi. En
general, debe intentar construir una solucién usando la superposicion

o
niwx 2.2 2
—n?w 2kt /L
u(x,t)zzlcnsen(T)e nemkt/L7
n=

Ahora necesita

u(x,0) = icn sen (%) = f(x),

n=1
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que reconoce como el desarrollo de Fourier en senos de f'(x) en [0, L]. Asi elige

L
e = % fo £(&) sen (%) dt.

Con esta eleccion de los coeficientes, tiene la solucién para la funcién de distribucién de temperatura:

_ 2 & L nré RITXN 202012
uGr.t) = = ; (/O £(€) sen <T> dg) sen <T> e . 6.1)

EJEMPLO 6.1

Suponga que la funcién de temperatura inicial es constante A para 0 < x < L, mientras la temperatura en
los extremos se mantiene en cero. Para escribir la solucion para la funcién de distribucion de temperatura,
necesita calcular

2 /L (nn§> 24 2A ;
= — Asen| — | dé = —[1 —cos(nm)] = —[1 — (—D"].
L Jy L nmw ni

La solucidn (6.1) es

A1 — (=" nwXx 2 2172
) = sen —n“m<kt/L )
u(x,t) - nz_:l " ( T )e

Como 1 — (—1)"es cero si n es par, e igual a 2 si n es impar, s6lo necesita sumar sobre los enteros impares
y puede escribir

o0

4A 1 @n = DX\ _op_1y2x2k/12
1 =— —_ :
u(x,t) nZZn—lsen< T >€ u

n=1

Verificacion de la solucion La funcidn dada por la ecuacion (6.1) claramente satisface las condiciones
en la frontera e inicio del problema. Cada término vale cero en x = 0 y en x = L, y los coeficientes son
elegidos de manera que u(x, 0) = f(x). Si puede diferenciar esta serie término a término, también serd facil
probar que u(x, f) satisface la ecuacién de calor, ya que cada término la satisface.

Cuando enfrente este problema con la ecuacién de onda, use una identidad trigonométrica para sumar
la serie. Aqui, debido a la rapidez de decaimiento de la funcién exponencial en u(x, ), puede probar facil-
mente que la serie converge uniformemente. Elija cualquier 7y > 0. Entonces, para ¢ > f,

1 en ((2n - 1)7”) o~ Cn=172k/12| _ ; 1 1€—(2n—1)2n2kto/L2.
n—

S
2n — 1 L

Debido a que la serie

o0
Z 1 ef(2n71)2n2klo/L2
2n —1

n=1

converge, la serie para u(x, f) converge uniformemente para() <x < Ly t > t,, por un teorema de Weiers-
trass conocido usualmente como el teorema M de Weierstrass.

Por un argumento andlogo, puede probar que la serie obtenida diferenciando u(x, ¢) término a térmi-
no, una vez respecto a ¢ o dos veces respecto a x, también converge uniformemente. Por tanto, es posible
diferenciar esta serie término a término, una vez respecto a t y dos veces respecto a x. Como cada término
en la serie satisface la ecuacion de calor, entonces u(x, ) también, verificando la solucién (6.1).

Considere ahora el problema de la conduccion de calor en una barra con extremos aislados.
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6.2.2 Temperatura en una barra con extremos aislados

Consideramos la conduccion de calor en una barra con extremos aislados, aqui no hay pérdida de energia
por los extremos. Si la temperatura inicial es f (x), la funcién de temperatura estd modelada por el proble-
ma con valores en la frontera

u

2
:k—u para0 <x < L,t >0,
ot dx2

9 9
Mo,n=22L,1)=0 parat >0,
0x 0x

u(x,0)= f(x) paraQ <x <L.

Intente una separacién de las variables haciendo u(x, 1) = X(x)7(f). Obtenga, como en la subseccion
anterior,

X'"4+2X =0, T +x1T =0.
Ahora

0
HO.0)=XOT1) =0
ox
implica (excepto en el caso trivial de temperatura cero) que X /(0) = 0. Andlogamente,
ou ,
— (L, H)=X'(L)T@) =0
ox

implica que X'(L) = 0. Por tanto, el problema para X(x) es
X"+ A1X =0; X'(0)=X'(L) =0.

Los valores propios son

N 22
n L2
paran=0, 1, 2, ..., con funciones propias constantes distintas de cero multiplos de

X, (x) = cos (%) .

La ecuacién para T es ahora

n?m2k

/ —_—
T + TT =0.
Cuando n = 0, obtiene

To(t) = constante.
Paran=1,2,...,
T, (1) = Cne—nznzkt/Lz.
Abhora tiene funciones

nITx 22,2
u, (x, 1) = ¢, cos (T> e T kt/L

paran=0, 1, 2,..., cada una de las cuales satisface la ecuacién de calor y las condiciones de aislamiento
en la frontera. Para satisfacer la condicién inicial, generalmente debe usar una superposicion

1 > nmwx
ulx,t) = 50 + Z Cp COS (T> ekt /L?
n=1
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Aqui escriba el término constante (n = 0) como ¢(/2 como anticipacién a un desarrollo en serie de Fourier
en cosenos. Realmente necesita

u(x,0) = f(x) = %co + encos (””Tx) 6.2)
n=1

el desarrollo en serie de Fourier en cosenos de f(x) en [0, L] (ésta también es el desarrollo de la funcién de
temperatura inicial en la funcién propia de este problema). Elegimos, por tanto

L
e = % /O F(€) cos (?) dt.

Con esta eleccién de coeficientes, la ecuacion (6.2) da la solucién a este problema con valores en la fron-
tera.

EJEMPLO 6.2

Suponga que la mitad izquierda de la barra inicialmente estd a una temperatura A y la mitad derecha se
mantiene a temperatura cero. Asi

fx) =

L
0 para5<x§L

Entonces

2 L/2
C():—/ AdéE=A
L Jo

y,paran=1,2,...,

2 (L2 2A
Ccp = —/ A cos _nné d§ = —sen (E> .
L 0 L nim 2

La solucidén para esta funcion de temperatura es

_l, 24 1 nw NTXN poop 2
u(x,t)—z —l—?Z’—lsen(T)cos(T)e .
n=1

Ahora sen(n/2) es cero si n es par. Mds aun, si n = 2k — 1 es impar, entonces sen(nmw/2) = (—1)*+1. Por
tanto, la solucién puede escribirse como

o0

1 2A -1 n+1 m—1
u(x, 1) = EA +— Z (2n )_ [ cos <( " 7 )rrx) e~ =Tk /L

n=1

6.2.3 Distribucién de temperatura en una barra con extremos que irradian

Considere una barra delgada, homogénea de longitud L, con el extremo izquierdo mantenido a temperatu-
ra cero, mientras que el extremo derecho irradia energia hacia el medio que la rodea, el cual se mantiene
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a temperatura cero. Si la temperatura inicial en la seccién transversal de la barra en x es f(x), entonces la
distribucién de temperatura estd modelada por el problema con valores en la frontera

8 2
a_lzzka—l; para0 <x < L,1 > 0,
x

3
u(©,1) =0, a—“(L, )= —Au(L,t) parat >0,
X

u(x,0) = f(x) paraO<x <L.

La condicién en la frontera en L supone que la energia calorifica se irradia desde este extremo a una
razén proporcional a la temperatura en ese extremo de la barra. El nimero A es una constante positiva
llamada el coeficiente de transferencia.

Sea u(x, 1) = X(x)T(¢) y obtiene

X"+AX =0, T +AkT =0.
Como u(0, 1) = X(0)T(r) = 0, entonces
X(0)=0.
La condicién en el extremo derecho de la barra implica que

X' (L) = —AX (DT (1),

X'(L)+AX(L) = 0.
El problema para X es, por tanto
X" +1X=0, X0)=0, X'(L)+AX(L)=0.

Este es un problema regular de Sturm-Liouville, que resolvié en el ejemplo 4.12 para el caso A = 3
y L =1, con y(x) en lugar de X(x). Encontrard valores propios y funciones propias en este contexto mas
general siguiendo ese andlisis. Consideramos casos sobre A.

Casol 1=0
Entonces X(x) = cx + d. Como X(0) = d = 0, entonces X(x) = cx. Pero entonces

X'(L)=c=—AX(L) = —AcL

implica que ¢(1 + AL) =0. Pero 1 + AL > 0, de donde ¢ = 0 y este caso sdlo tiene la solucién trivial. Por
tanto, 0 no es un valor propio de este problema.

Caso2 1 <0
Escriba A = —a2 con « > 0. Entonces X7 — a2X = 0, con solucién general
X(x) =ce* +de ™.
Ahora
X0)=c+d=0
asi d = —c. Entonces X(x) = 2c¢ senh(ax). Ahora,

X'(L) = 2ac cosh(wL) = —AX (L) = —2Ac senh(aL).

Ahora oL > 0, asi 2ac cosh(aL) > 0y —2Ac senh(«L) < 0, de donde esta ecuacioén es imposible a menos
que ¢ = 0. Por tanto, este caso da solamente la solucion trivial para X, de manera que este problema no
tiene valor propio negativo.
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Caso3 A>0
Ahora escriba A = @2 con o > 0. Ahora X + «2X = 0, de donde

X (x) = ccos(ax) + d sen(ax).

Entonces
X0)=c=0,

asi X(x) = d sen(ax). Ahora,
X'(L) =dacos(al) = —AX(L) = —Ad sen(aL).
Entonces d =00

o
tan(al) = ——.
A
Es posible, por tanto, tener una solucién no trivial para X si se elige o que satisfaga esta ecuacion. Sea
z = aL para escribir esta condicién como

1
tan(z) = ——2z.

AL
La figura 6.2 muestra las graficas de y = tan(z) y y = —z/AL en el plano z, y (con z como el eje horizon-
tal). Estas gréficas tienen un ndmero infinito de puntos de interseccion a la derecha del eje vertical. Llame
71, 2o - - -, ala coordenada z de estos puntos de interseccidn, escritos en orden creciente. Como o = z/L,

entonces

2

2 Zn

o= =3

son los valores propios de este problema, paran = 1, 2, . . . Las funciones propias son multiplos constantes
distintos de cero de sen(«,x) o sen(z,x/L).

K

25
=

(%)

w

37 By
2 2

IE}

FIGURA 6.2 Los valores propios del
problema para una barra con un extremo
que irradia.

Los valores propios aqui son obtenidos como soluciones de una ecuacién trascendente que no es
posible resolver con toda exactitud. Sin embargo, de la figura 6.2 es claro que existe un nimero infinito de
valores propios positivos, y éstos pueden ser aproximados tanto como quiera por técnicas numéricas.

Ahora la ecuacién para T es

2k

1 n _
T +FT_O

con solucién general

T,(t) = cne_z'zlkt/l‘z.
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Para cada entero positivo n, sea
' — InX _2 2
un(x, 1) = X, (x)T, (1) = ¢y sen ("T) e~ wkt/L7,

Cada una de estas funciones satisface la ecuacién de calor y las condiciones en la frontera. Para satisfacer
la condicidn inicial, generalmente debe emplear una superposicion

o
inX 2 2
u(x,t) = ch sen (”T) o—inkt/L

n=1

y elegir las ¢, de manera que
- ZnX

. 0) = ) cnsen (%5) = re.

n=

Esta no es una serie de Fourier en senos. Es, sin embargo, un desarrollo de la funcién de temperatura ini-
cial en funciones propias del problema de Sturm-Liouville para X. De la seccién 4.3.3, elija

oy F@sen(t/L) de
! fOL sen(z,&/L)dE

La solucion es

& f) F@) sen(zag /L) ds WX\ 212
u(x,r) = Z < fOL won?(z,2 /L) dE sen( I )e .

n=1

Si busca calcular valores numéricos de la temperatura en diferentes puntos y tiempos, debe hacer
aproximaciones. Como ejemplo, supongaA =L =1y f(x) = 1 para0 < x < 1. Use el método de Newton
para resolver aproximadamente tan(z) = —z obteniendo

71 ~2.0288, 72,~4.9132, z73~7.9787, z4=~ 11.0855.
Usando estos valores, realice las integraciones numéricas para obtener
1~ 1.9207, ¢, ~2.6593, c3=~4.1457, ¢4~ 5.6320.

Usando solamente los primeros cuatro términos, tiene la aproximacién

u(x, 1) 2 1.9027 sen(2.0288x)e~+1160k | 2 6503 sen(4.9132x)e 241395k
+4.1457 sen(7.9787x)e 03697k 1 5 6329 sen(11.0855x)e 1228883k

Dependiendo de la magnitud de k, estas exponenciales pueden decaer tan rapido que estos pocos primeros
términos seran suficientes para algunas aplicaciones.

6.2.4 Transformaciones de los problemas con valores en la frontera
que involucran la ecuacion de calor

Dependiendo de la ecuacién diferencial parcial y de las condiciones en la frontera puede ser imposible
separar las variables en un problema con valores en la frontera que involucra la ecuacién de calor. Aqui
hay dos ejemplos de estrategias que funcionan para algunos problemas.
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Condiciones de calor en una barra con extremos a temperaturas diferentes
Considere una barra delgada, homogénea que se extiende de x = 0 a x = L. El extremo izquierdo se man-
tiene a una temperatura constante 7, y el extremo derecho a una temperatura constante 7,. La temperatura
inicial en toda la barra en la seccién transversal en x es f (x).

El problema con valores en la frontera que modela esta situacién es

du 92u
EZkﬁ para0 <x < L,t > 0,

u(,t) =T,u(L,t) =T, parat >0,
u(x,0) = f(x) paraO0<x <L.

Suponga que 77 y T, no son ambos cero.
Intente una separacion de las variables haciendo u(x, t) = X(x)T(¢) en la ecuacién de calor para obtener

X"4+2X =0, T +xkT =0.
Las variables han sido separadas. Sin embargo, debe satisfacer
u(0,1) = XO)T(t) =Ty.

Si T; = 0, esta ecuacidn se satisface haciendo X(0) = 0. Pero si T; # 0, entonces 7(¢) = T/X(0) =
constante. Andlogamente, u(L, t) = X(L)T(t) = T, asi T(¢t) = T»/X(L) = constante. Estas condiciones son
imposibles de satisfacer excepto en los casos triviales (tales que f(x) =0y T, =T, = 0).

Perturbard la funcién de distribucién de temperatura con la idea de obtener un problema mas mane-
jable para la funcién perturbada. Ponga

ulx,t) =Ux,t) +¢¥(x).
Sustituya esto en la ecuacién de calor para obtener
W _ k (82_U + W’(x)) .
ot dx2
Esta es la ecuacién de calor estdndar si elige 1 de manera que
¥ (x) =0.
Esto significa que 1 debe tener la forma
Y(x) =cx +d.
Ahora
u,t) =T, =UQ,t) + ¢(0)
se convierte en la condicién mds amigable U(0, 1) = 0 si y/(0) = T). Asi elige
d=T).
Hasta aqui, ¥/(x) = cx + T;. Ahora,
u(L,ty=T,=U(L,t)+ ¥ (L)

llega a ser U(L, t) = 0 si Y(L) = cL + T, = T, de manera que elige

1
=—(h-T).
c L(z 1)



6.2 Soluciones en serie de Fourier de la ecuacion de calor

Entonces sea

1
Y(x) = z(Tz —T)x +T.

Finalmente,
ux,0) = f(x) =U(x,0)+ ¥ (x)
se convierte en la siguiente condicién inicial para U:
Ux,0) = f(x) = ¢x).
Ahora tiene el problema con valores en la frontera para U:

U 92U
=k

ar  ox2’

U@,t)=U(L,t)=0,

1
Ux,0)= f(x)— Z(Tz —Tyx —Ti.

Conoce la solucién de este problema (ecuacién 6.1) y puede escribir inmediatamente

o0

L
Ux, 1) = % 3 (/0 [f(g) - %(Tz —TE — Tl} sen <?> dg) sen (””Tx> ek L

n=1

Una vez que obtiene U(x, f), la solucién del problema original es

1
u(x, 1) =U(x,1) + Z(Tz —T)x + 1.

317

Fisicamente puede ver esta solucién como una descomposicién de la distribucién de temperatura en
una parte transitoria y una parte de estado estacionario. La parte transitoria es U(x, f), que decae a cero
conforme ¢ crece. El otro término, ¥(x), es igual al lim,_, o, u(x, f) y es la parte del estado estacionario.
Esta parte es independiente del tiempo, representa el valor limite al cual la temperatura se acerca en un

lapso largo.

Tal descomposicion se presenta en muchos sistemas fisicos. Por ejemplo, en un circuito eléctrico tipi-
co la corriente puede ser escrita como la parte transitoria, la cual decae a cero conforme el tiempo crece,

y la parte de estado estacionario que es el limite de la funcién conforme r — oo.

EJEMPLO 6.3

Suponga, en la discusién anterior, Ty = 1, T, = 2,y f(x) = % para 0 < x < L. Calcule

L 1T - r nmwé Je — L/ 1 nmwé J
/0 f&) — z( 2> —T1)§ — T | sen (T) S—/O (E—ZE) sen <T> £
lLl—l-(—l)”_

2 niw

La solucidn en este caso es

oo
1 -1 1
.ty = 3 (FEE sen (M2 ) e L, ®

nm L
n=1
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6.2.5 Una ecuacion de calor no homogénea
En esta seccidn se considera un problema de conduccién de calor no homogéneo en un intervalo finito:
ou 0%u

EZka >+ F(x,1) para0 <x <L,1>0,

u(,t) =u(L,t) =0 parar >0,
u(x,0) = f(x) paraQ <x <L.

El término F(x, r) podria representar, por ejemplo, una fuente de calor dentro del medio. Es facil veri-
ficar que la separacién de variables no funciona para esta ecuacién de calor. Para intentar otro método,
regrese al caso mas simple donde F(x, t) = 0. En este evento encuentre una solucion

u(x,t) = an sen( Zx) ek /L2

en donde b, es el n-ésimo coeficiente en el desarrollo de Fourier en senos de f(x) en [0, L]. Tomando esto
como sugerencia, intente una solucién del problema de corriente de la forma

u(x, 1) = ; T, (1) sen (””Tx) . 6.3)

El problema es determinar cada 7,,(f). La estrategia para lograrlo es obtener una ecuacién diferencial para
Ty(0).

Si ¢ es fijo, entonces el lado izquierdo de la ecuacion (6.3) es una funcién de x inicamente, y el lado
derecho es su desarrollo de Fourier en senos en [0, L]. Conoce los coeficientes en este desarrollo, asi

L
T, (t) = %fo u(€, 1) sen< 5) dt. (6.4)

Ahora suponga que para cualquier eleccion de ¢ > 0, F(x, t), considerada como una funcién de x, también
puede desarrollarse en una serie de Fourier en senos en [0, L]:

s nmwx
F(x,t) = B,(t)sen (— ), (6.5)
> nsen (')
donde
P e 6.6
no—zA @ﬁw{jﬂ :. (6.6)

Este coeficiente por supuesto puede depender de .
Diferencie la ecuacion (6.4) para obtener

oo 2 L du nmwé
Tn(t) = Z/O E(E,l) sen <T) dé (67)

Sustituya du/dt en la ecuacion de calor para obtener

2k (L 9%u 2 [t
T,:(t)zf/() 32@ s n( ’f)ngrz/O F(ﬁ;,z)mn(?)ds.

En vista de la ecuacién (6.5), esta ecuacion se vuelve

2k &
o= ["" 2@>n(L>&+Bm ©8)
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Ahora, aplicando dos veces integracion por partes en la integral del lado derecho de la ecuacion (6.8),
y utilizando al final las condiciones en la frontera y la ecuacién (6.4):

L o%u Ut ou AN nw du nmé
/o o 2(5 1) se ( I )df— [a(é,t)sen (Tﬂo —/0 Ta—(s 1)co (T) de

nw (L ou nmé&
:—T ) a(&,[)COS(T) ds

. nmw nwé L
e ()],

nw (L nrm nwé&
+T A ——u(é,t)sen<T> d&

L
2_2
:—nLZ / u(&, t)sen( é)dé
0
n?r? L n2n2
=5 ) = =~ Tu(0).

Sustituya en la ecuacion (6.8) para obtener

, n’n’k
T,(@) = —TTn(f) + Bu(1).

Paran =1, 2, ..., ahora tiene una ecuacion diferencial ordinaria de primer orden para T,,(f):

n’r2k
T,(t) + —— 3 T, (t) = By,(1).

Ahora, use la ecuacién (6.4) para obtener la condicién

2
Tn<0>=Z/O ue, 0)sen< S)als— /f(é)s (’L’S)ds—bn,

el n-ésimo coeficiente en el desarrollo de Fourier en senos de f(x) en [0, L]. Resuelva la ecuacion diferen-
cial para T,(f) sujeta a esta condicién para tener

t
Tn(t) — / €7nZNZk(t7t)/L2Bn(f)dT +b €7n ﬂzkI/Lz
0

Finalmente, sustituya en la ecuacién (6.3) para obtener la solucién

o0

t
u(x, 1) = Z </(; e T k=D)/L? B, (7) dl’) sen (nzx)

n=1

%i ( / £ Sen< s ) dé) n (T) e,

Observe que el tdltimo término es la solucién del problema si no hay el término F(x, f), mientras que el
primer término es el efecto del término de la fuente en la solucién.

(6.9)
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EJEMPLO 6.4

Resuelva el problema

ou Pu + xt 0 t>0
— =4— +xt paraO0<x <m, >0,
ot ax2

u©,t) =u(r,t) =0 parat >0,

T
20 parangfZ

ulx,0) = f(x) =

T
0 para — <x <m
4
Como tiene una férmula para la solucion, sélo necesita llevar a cabo las integraciones requeridas.
Primero calcule
2 T (_1)n+1
B,(t) = —/ Etsen (n€) dé =2———t.
T Jo n

Ahora evalie

1 13 +1
/ e—4n2(t—‘[)Bn(_[) dt = / 2(_1)” Tg_4n2(t—1') dr
0 0 n

—1+4n%t + et
< )

1
= — (=)t
g D

n

Finalmente, necesita

2 7 40 [7/4 40 1 — cos(nm/4)
b, = —/ f(&)sen (n§) d§ = —f sen(n§)d§ = ——— ——.
T Jo 7 Jo

b4 n
Ahora puede escribir la solucién
o 2 —4n%t
1 —1+4n“t
u(x,t) = Z <§ (=t +an 5+ ¢ ) sen (nx)

n=1 n

.40 1 — cos(nw/4) >
+ Z — T sen(nx)e” M.

— n

El segundo término en la derecha es la solucién del problema sin el término x en la ecuacién de calor.
Denote esta solucién “sin fuente” como
2

uo(x,t) = sen(nx)e 4",

i 40 1 — cos(n/4)
T

n
n=1

La solucion con el término de la fuente es

n

o0 2 —dn’t
1 —1 + 4nt
u(r, 1) = ug(x, 1) + :<§ (—pyrtt T2 E 5+e )sen(nx).

n=1

Para medir el efecto en la solucién del término x7 en la ecuacidn de calor, las figuras 6.3(a) a (d) muestran
las gréficas de u(x, 1) y up(x, 1) en los tiempos r = 0.3, 0.8, 1.2, y 1.32. Ambas soluciones tienden a cero
bastante rdpidamente conforme el tiempo crece. Esto se muestra en la figura 6.4, la cual indica la evolu-
cion de uy(x, t) en esos tiempos, y la figura 6.5, que sigue u(x, ). El efecto del término xt es retardar este
decaimiento. Por supuesto, otros términos F(x, f) podrian tener distintos efectos. M
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u
1.2+
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sin
0.8~ fuente 0.3~
0.6 — 021
04—
0.1+
0.2+ sin fuente ~
Lo I N N RN B N
0 05 10 15 20 25 3.0 0 05 1.0 15 20 25 3.0
FIGURA 6.3(a) Comparacion de las soluciones FIGURA 6.3(b) 7=0.8.
con 'y sin un término fuente para t = 0.3.
u u
0.5 05
0.4 04
02— 02+
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FIGURA6.3(c) = 1.2. FIGURA 6.3(d) = 1.32.
u u
| t=03
10 0.5 N\
t=0.8
- t=203 04+
0.8 ) I
0.6 03 \
04— 0.2
t=038 r=1.32
02f 1= 1-32\ =12 0.1F N\
I |'/ L e I N B B S
0 05 1.0 15 20 25 3.0 0 05 10 15 20 25 30
FIGURA 6.4 u(x, t) en los tiempos t = 0.3, 0.8, FIGURA 6.5 u(x, 1) en los tiempos t = 0.3, 0.8, 1.2
1.2y 1.32. y 1.32.

6.2.6 Efectos de las condiciones en la frontera y las constantes en la conduccion de calor

Ha resuelto varios problemas que involucran la conduccién de calor en una barra delgada homogénea de
longitud finita. Como sucedi6 con el movimiento de onda en un intervalo, el poder del computo permite
examinar los efectos de varias constantes o términos que aparecen en estos problemas en el comporta-
miento de las soluciones.
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EJEMPLO 6.5

Considere una barra delgada de longitud m, cuya temperatura inicial estd dada por f(x) = x2 cos(x/2).
Suponga que los extremos de la barra se mantienen a temperatura cero. La funcién temperatura satisface

9 9?
B_L:Zka_l; para0 < x < 7,1 > 0,
x

u©,t) =u(r,t) =0 parat >0,

u(x,0) = x? cos(x/2) para0 <x <m.
La solucion es

2
ulx,t) = —
b4

n=1

Z </n £% cos (%) sen (né) d§> sen(nx)e*"zkt
0

4 Z <167m (—=1)" — 64mn3 (—1)" — 48n — 64n3
T

sen(nx)efnzkt.
64n% — 48n* + 12n% — 1

—_

n=

Puede examinar los efectos de la constante de difusividad & en esta solucién dibujando las graficas de y =
u(x, f) para varios tiempos, con elecciones distintas de esta constante. La figura 6.6(a) muestra las distribu-
ciones de temperatura en el tiempo 7 = 0.2, para k tomando los valores 0.3, 0.6, 1.1y 2.7. La figura 6.6(b)
muestra las distribuciones de temperatura en el tiempo ¢ = 1.2 para estos valores de k. M

u

20+ 03 u

0.6 121 0.3
1.5+ 1.1

§ 1.0~ 0.6
1oL 0.8

27 06 1.1
0.5 0.4~
021 27
| | | | | | X | I I I I |
0 05 10 15 20 25 30 0 05 1.0 15 20 25 30
FIGURA 6.6(a) Solucion en el tiempo t = 0.2 FIGURA 6.6(b) Solucion en el tiempo t = 1.2 con k =
conk=0.3,0.6,1.1y2.7. 0.3,0.6, 1.1y 2.7.
EJEMPLO 6.6

(Qué diferencia hay en la distribucién de temperatura, si los extremos estdn aislados o se mantienen a
temperatura cero? Considere una funcién de temperatura inicial f (x) = x2(7x — x), con una barra de longi-
tud 7. Sea la difusividad k = zlL- La solucidn, si los extremos se mantienen a temperatura cero es

0 _1ynt+l
up(x,t) = Z <w> sen(nx)e_"2’/4
n

n=1
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La solucion si los extremos estan aislados es

1 e¢]

2.2 _ n+1 1\
ur(x, 1) = — 3+Z<nn( D" +6(=D" -6
n=1

—n%t/4
1271 pe! >cos(nx)e .

La figuras 6.7(a) a (d) comparan estas dos soluciones para valores diferentes del tiempo. La figura 6.8(a)
muestra la evolucién de la solucién con temperaturas cero en los extremos en diferentes tiempos, y la
figura 6.8(b) muestra esta evolucién para la solucién con extremos aislados. M

6.2.7 Aproximacion numérica de soluciones

Considere el problema de conducién de calor estandar

du *u
5:](@ para0<x<L,t>0,

u(0,1)=u(L,1) =0 parat >0,
u(x,0) = f(x) para0 < x < L.

Una estrategia para calcular una aproximacién numérica de la solucién es comenzar formando una cua-

dricula sobre la banda x, 1, 0 < x < L, t > 0, como se hizo con la ecuacion de onda en un intervalo
acotado.

u(x, 0.4) u uy(x, 0.9)
8 8
6 6
4 0, (x, 0.4) 4
u,(x, 0.9)
2 2
[ N N N R N I R N N R N
0 05 10 15 20 25 3.0 0 05 1.0 15 20 25 3.0
FIGURA 6.7(a) Comparacion de la solucion FIGURA 6.7(b) 7=0.9.
con extremos aislados, con la solucion
teniendo extremos mantenidos a temperatura
cero, en el tiempo t = 0.4.
u u
u5(x, 1.5) u,(x, 3.6)
8 8=
6 6
41— 4
u(x, 1.5)
- 2 u,(x, 3.6)
I N N N N N Lol
0 05 10 15 20 25 3.0 0 05 1.0 1.5 20 25 30

FIGURA6.7(c) = L.5. FIGURA 6.7(d) = 3.6.
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u
u 9.5 t=04 /t:0.9
4 9.0
t=04 85 \
3 8.0 \ t=15
/t—0.9 750 t=36
L r=15" ol
6.5
1= r=36-" 6.0 =
| | | | l l X | | | | | | X
0 05 10 15 20 25 3.0 0 05 10 15 20 25 30
FIGURA 6.8(a) Evolucion con tiempo FIGURA 6.8(b) Evolucion de la solucion con
de la solucion con extremos mantenidos a extremos aislados.
temperatura cero.
Elija Ax = L/N, donde N es un entero positivo, y sea x;= jAx paraj =0, 1, ..., N. Asimismo, elija At

positiva. Esto define los puntos de reticula (x;, #;) = (jAx, kAr). Denote u(jAx, kAt) = u;.
Use las aproximaciones por diferencias centradas para las derivadas a fin de reemplazar la ecuacién
de calor con:

Wjgpr —Ujg Uiy =205 U

At B (Ax)?

En la ecuacion de calor, la derivada parcial en ¢ es de primer orden, asi que esta ecuacion usa la aproxima-
cién para ou/dt a la izquierda. Resuelva la ecuacion para u; .;:

kAt

Ujry = —(Ax)2 (g e =20 1y )+,

Esto permite aproximar los valores solucién en los puntos de reticula en el nivel horizontal k + 1 a partir de
la informacién en el siguiente nivel inferior, donde ya se han realizado las aproximaciones (figura 6.9).

() frar)
T =

X1 .
(/—1 o (xj, 1) (x,w 1)

L1 X
Xj-1 Xj Xjel

FIGURA 6.9 La aproximacion de
u(x, 1) se basa en valores aproximados
en tres puntos en la capa ty.

Puesto que estd subiendo las capas de puntos de reticula, completando las aproximaciones en cada
capa desde la capa inferior, debe haber una capa inicial en la que ya se tiene informacién. Los datos para
una capa inicial son proporcionados por las condiciones iniciales y de frontera.

U =ty =0
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(valores en los puntos de reticula en los lados izquierdo y derecho de la banda), y

u;o = f(x;) = f(jAx).

Estos valores se indican en la figura 6.10.

u=20

t

T |
u= I I u=20
u=20 | | u=20

| o = f(ij) | u=0

| L X
— /0) | /‘ K upo = f(LAX)

= f(Ax) = f(2Ax)

FIGURA 6.10 Los datos de frontera dan valores de u(x, t) en
los puntos de reticula en la frontera de la banda.

La cantidad k(A#r)/(Ax)? debe ser menor que 1/2 para asegurar la estabilidad del método.

EJEMPLO 6.7

Considere el problema

ou P u
—=—para0<x<1,r>0,
at  0x?

u(0,1) =u(1,1)=0
u(x,0) =x(1—x) para0 < x < 1.

Tiene solucion exacta

sen((2n — 1)mx)e 0’7

u(x, t) = :3 X;(
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Para hacer aproximaciones numeéricas, se elegird Ax = 0.1 (N = 10) y Az = 0.0025. En este ejemplo,

k =1 de modo que k(A1)/(Ax)? = 1/4 < 1/2. Se sabe que
Up = Uor =0.
Ademas

0 = f(jAY) = j(0.1)(1 — j(0.1)).

Esto inicia la aproximacion. Estos valores se completan en los puntos de reticula de nivel minimo (¢ = 0)

de la figura 6.11.
Para pasar de una capa horizontal a la siguiente (de acuerdo con la idea de la figura 6.9), use

Ujpr = 025Uy ) — 20 Uy )+ Uy

De aqui se va al nivel k = 1 (r = 0.0025), y se obtienen los valores mostrados en la figura 6.12. La
figura 6.13 muestra el siguiente nivel, k = 2 o t = 0.005. Y en la figura 6.14 se muestra el nivel k =3 o
t = 0.0075. Procediendo de esta manera, puede completar los valores aproximados en los puntos de

reticula en cualquier nivel vertical de la reticula. M
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? x=1L
0 0
0 0
Uo, k 0 0
0 0
0
| | | | | | | | | 0
U o 0 0.09 0.16 0.21 024 025 024 021 0.16 0.09 0
FIGURA 6.11  Los valores de ujp, uox y uy x se conocen en los puntos frontera de la
reticula.
! x=1
= 0.002
= 0.0025 0.085 0.155 0.205 0.235 0.245 0.235 0.205 0.155 0.085
uj |
! ! ! ! ! ! ! ! !
U o 0 0.09 0.16 021 024 025 024 021 0.16 0.09 O

FIGURA 6.12 Valores aproximados en el nivel t; = 0.0025 calculados de valores

conocidos en el nivel ty = 0.

t x=1
i 0.081 0.150 0.200 0.230 0.240 0.230 0.200 0.150 0.081
i 2
0.085 0.155 0.205 0.235 0.245 0.235 0.205 0.155 0.085
u |
| | | | | | | | | X
U o 0 0.09 0.16 021 024 0.25 024 0.21 0.16 0.09 0

FIGURA 6.13 Valores aproximados en el nivel t, = 0.005 calculados de valores

aproximados en el nivel t; = 0.0025.

y Ot 0.075 0.141 0.190 0.220 0.230 0.220 0.190 0.141 0.075 x=;

j 4 — _

ujm 0L 0.078 0.145 0.195 0225 0.235 0225 0.195 0.145 0.078 | 0

M,z 0L 0.081 0.150 0.200 0.230 0.240 0.230 0.200 0.150 0.081 | 0

4 oL 0.085 0.155 0.205 0.235 0.245 0.235 0.205 0.155 0.085 Jo
| | | | | | | | |

U o 0 0.09 0.16 021 024 025 024 021 0.16 0.09 0

FIGURA 6.14 Valores aproximados de la solucion u(x, t) en niveles sucesivos t.



SECCION 6.2 PROBLEMAS

En los problemas del 1 al 7, escriba una solucién del problema
con valores en la frontera. Dibuje la grafica de la vigésima suma
parcial de la funcién de distribucién de temperatura en el mismo
conjunto de ejes para diferentes valores del tiempo.

1. ou  9%u
— =k—5 para0<x <L,t>0
at ax2

u(,t) =u(L,t) =0 parat >0
u(x,0)=x(L—x) para0 <x <L

2. ou 3%u
E=43x_2 para0 <x < L,t >0

u©,t)=u(L,t) =0 parat>0
u(x,0) =x*(L —x) para0<x <L

3. p) 92
8_1::38_L2t parra0 <x < L,t>0
X

u©,t) =u(L,t)=0 parat >0
2w x
u(x,0)=L|[1—cos A para0 <x <L

4. du  9%u
E:W para0 <x <m,t >0

ad ad
—M(O, t) = —u(n,t) =0 parat>0
dx dx

u(x,0) =sen(x) para0<x <m

5. u 9%u
§=48x—2 para0 < x <2m,t >0

9 9
0,0 =20n,1)=0 parat>0
0x 0x

u(x,0) =xQ2mr —x) para0 <x <27

6. u a2u
52487 para0 <x <3, >0

ou ou
—0,)=—@,t) =0 parat >0
0x 0x

7. ou :232u

a7 Pyl para0 < x < 6,1 >0
X

ou ou
—(0,1) = —(6,t) =0 parar >0
ax 0x

u(x,0)=e* para0<x <6

8. Una barra delgada homogénea de longitud L tiene extremos
aislados y temperatura inicial B, una constante positiva.
Encuentre la distribucion de temperatura en la barra.
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9. Una barra delgada homogénea de longitud L tiene tempe-
ratura inicial igual a la constante B, y el extremo derecho
(x = L) esta aislado, mientras el extremo izquierdo se man-
tiene a temperatura cero. Encuentre la distribucién de tem-
peratura en la barra.

10. Una barra delgada homogénea de difusividad térmica 9 y
longitud 2 cm y lados aislados tiene su extremo izquierdo
mantenido a temperatura cero, mientras su extremo derecho
estd perfectamente aislado. La barra tiene una temperatura
inicial f (x) = x2 para 0 < x < 2. Determine la distribucién
de temperatura en la barra. ;Qué es lim,_, o, u(x, £)?

11. Pruebe que la ecuacion diferencial parcial

ou X 9%u A du B
i - - u
at 9x2 dx

puede ser transformada en una ecuacién de calor estandar
eligiendo apropiadamente « y By haciendo u(x, 1) = exx+pt
v(x, 1).

12. Use la idea del problema 11 para resolver
ou (82u ou

= ﬁ+4£+2u> para0 <x <, >0
X

u,1) =u(@r,t) =0 parat >0

u(x,0) =x(m —x) paral <x <m.

13. Use la idea del problema 11 para resolver

ou _ (8% +62 0 410
—=[— — ara0 < x < 4,t >
o \ox2  Cox) P o

u(0,t) =u@4,t)=0 parat >0

u(x,0)=1 para0<x<4.

Dibuje la grafica de la vigésima suma parcial de la solucién
para tiempos seleccionados.

14. Use la idea del problema 11 para resolver

3 a2 3
—u: —u—6—u para0 <x <m,t >0
ot 9x2  ox

u(,t1) =u(@r,t) =0 parat >0

u(x,0) = xz(n —x) para0 <x <m.

Dibuje la grafica de la vigésima suma parcial de la solucién
para tiempos seleccionados.
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15. Resuelva

9 2
e
ot 9x2

u(©0,1)=2,u(l,t) =5 parat >0

pra0 <x <1, >0

u(x,0) —— para0 <x < 1.

Dibuje la grafica de la vigésima suma parcial de la solucién
para tiempos seleccionados.

16. Resuelva

ou _ 82u

5_ dx2
u@,t) =T,u(L,t) =0 parat >0

para0 <x < L,t >0

u(x,0) =x(L—x) paraQ<x <1L.

17. Resuelva

du *u
— =4——Au para0<x<9,t>0
ot ox?

u(0,1) =u(9,1) =0 parat >0

u(x,0) =0 para0 <x <9.

Aqui A es una constante positiva.

Elija A = 41'1 y grafique la vigésima suma parcial de
la solucién para una seleccién de tiempos, con el mismo
conjunto de ejes. Repita esto para los valores A = %, A=1ly
A =3. Esto da cierto sentido del efecto del término —Au en
la ecuacion de calor en el comportamiento de la distribu-
cién de temperatura.

18.

a &
8_1;293_1: para0 <x<L,t>0
X

u(0,t) =T, u(L,t)=0 parat >0

u(x,0)=0 para0 < x <27r.

En cada uno de los problemas del 19 al 23, resuelva el pro-

blema
du k82M+F( t) para0 Li>0
— = K—F X, <x<L,t>0,
at dx2 P

u©,t) =u(L,t) =0 parat >0,
u(x,0) = f(x) para0 <x <L

para la F, k, L y f dadas. En cada uno, elija un valor del
tiempo y en el mismo conjunto de ejes, dibujar la grafica de
la vigésima suma parcial de la solucién del problema dado,
junto con la vigésima suma parcial de la solucién del pro-
blema sin el término fuente F(x, ). Repita esto para otros
tiempos. Esto sirve para entender la importancia de F(x, 1)
en el comportamiento de la distribucion de la temperatura.

19. k=4 Fx, )=t f(x)=x(r—x), L=m
20. k=1, F(x, ) =xsen(t), f(x) =1, L=4
21. k=1, F(x, t) =t cos(x), f(x) =x2(5 —x), L=5

22,

K para0 <x <1
k=4 F(x,t)=
0 paral <x <2

f(x)=sen(mx/2),L =2

23. k=16 F(x, ) =xt, f(x) =K, L=3

24. Enuncie una definicién de dependencia continua de la solu-
cion en los datos iniciales para el problema.

a &?

Dy

ot ax?
u(0,t)=u(L,t) =0 parat >0

u(x,0) = f(x) para0 < x < L.

parra0 <x<L,t>0

Demuestre que este problema depende continuamente de
los datos iniciales.

25. Encuentre los valores solucién aproximados del problema
o u

a_t:ﬁ para0 <x<1,t>0,
X

u(0,7) =u(l,t) =0 parat >0,
u(x,0)=x*(1—x) para0 <x < 1.
Use Ax = 0.1 y Ar = 0.0025. Realice los cdlculos para las
primeras cuatro capas horizontales, incluso la capa t = 0.
26. Encuentre los valores solucién aproximados del problema

ou  u
E:ﬁ para0 <x <2,1>0,

u(0,1) =u(l,1)=0 parat >0,

u(x,0) =sen 77—2)‘) para 0 < x <2.

Use Ax = 0.2 y Ax = 0.0025. Realice los célculos para las
primeras cuatro capas horizontales, incluso la capa ¢ = 0.

27. Encuentre los valores solucién aproximados para el problema
ou P u

a3
u(0,1) =u(l,t)=0 parat >0,

para0<x<1,r>0,

u(x,0) = xcos(”—zx) para0 < x < 1.

Use Ax = 0.1 y Ar = 0.0025. Realice los cdlculos para las
primeras cuatro capas horizontales, incluso la capa r = 0.
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Conduccion de calor en un medio infinito

Considere ahora problemas que involucran la ecuacién de calor con la variable espacial extendiéndose
sobre toda la recta real o la semirecta.

6.3.1 Conduccion de calor en una barra infinita

Para una situacién en donde la longitud del medio es mucho mdas grande que las otras dimensiones, algu-
nas veces es conveniente modelar la conduccién de calor imaginando que la variable espacial se mueva
sobre toda la recta real. Considere el problema

ou 9%u
— =k—5 para —oc0 <x <o00,t >0,
ot 9x?

u(x,0) = f(x) para —o0o0 < x < 00.

No hay condiciones en la frontera, de manera que imponga las condiciones fisicamente realistas que las
soluciones deben ser acotadas.
Separe las variables haciendo u(x, f) = X(x)7(f) para obtener

X"+2X =0, T +ArkT =0.

El problema para X es el mismo al encontrado con la ecuacién de onda en una recta, y el mismo anali-
sis produce los valores propios A = w? para w > 0y las funciones propias de la forma a,, cos(wx) + b,,
sen(wx).
El problema para T es T’ +w2kT = 0, con solucion general de—«*!, que esté acotada para t > 0.
Ahora tiene, para w > 0, funciones

Uy (x, 1) = [ay, cos(wx) + by, sen(wx)] ekt

que satisfacen la ecuacién de calor y estdn acotadas en la recta real. Para satisfacer la condicién inicial,
intente una superposicion de estas funciones sobre todo @ > 0, que toma la forma de una integral:

u(x, 1) = / [de cOs(@x) + by, sen(wx)] e~ * de. (6.10)
0

Necesita
(0.¢]
u(x,0) = / [ay cos(wx) + by, sen(wx)] dw = f(x).
0
Esta es la integral de Fourier de f(x) en la recta real, que lleva a elegir los coeficientes

] o0
Ay = ;/ f (&) cos(wé) d&

1 o0
b= / (&) sen(wk) dE.

EJEMPLO 6.8

Suponga que la funcién de temperatura inicial es f (x) = e—I*l. Calcule los coeficientes

1f°° Il cos(wk) d = = —
=— cos ==
G0 =2 _ooe @ 71+ w?
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1 o0
by = —/ e ¥l sen(wt) dg = 0.
T J-c0
La solucidn para esta distribucién de temperatura inicial es
2 [ 1 2
ulx,t) = = — _cos(wx)e 4w, m
(. 1) T /0 1+ ? (@x)
La integral (6.10) para la solucién algunas veces se escribe en forma mas compacta, recordando los

célculos en la seccién 5.3.1 para las soluciones de la integral de Fourier de la ecuacién de onda en toda la
recta real. Sustituya las integrales para los coeficientes en la integral para la solucién para escribir

u(x,t) = /oo [% /oo f (&) cos(w&) d& cos(wx)
0 —00

+ %/oo f(&)sen(wé) d& sen(wx)i| e—wzkt do
= %/oo /o" [cos(wé) cos(wx) + sen(wé) sen(wx)]f(§) A= 4o
0 —00

1 o o —w?kt
_ 1 f / cos(@ (& — 1)) f(E)e ™ dt do.
T Jo —00

Una sola expresion integral para la solucion en la recta real Considere nuevamente el problema

ou 9%u
EZkW para —oo0 < x < 00,1t > 0,

u(x,0) = f(x) para —o00 < x < 00.
Ha resuelto este problema para obtener la doble integral

_ 1 Rl —w?kt
ulx,t) = ;/0 / cos(w(& —x))f(&)e dédw.

. ., o0 00 sz [
Como el integrando es una funcién par en w, entonces J ¢ - - - dw = % J 7 - - - do y esta solucién también

se puede escribir como

u(x, 1) = % /oo /Oo cos(@(& — x)) f(&)e~ " de daw.

Probard cémo esta solucién puede ponerse en términos de una sola integral. Necesita lo siguiente.

— LEMAG6.]

Para o y B reales, con  # 0,

/ e cos (O%) dc = ﬁe‘“2/4ﬁ2. ]

—00

Prueba Sea

F(x) = /OO e~ cos(x¢) de.
0
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Uno puede probar que esta integral converge para todo x, como sucede con la integral obtenida al inter-
cambiar d/dx y fooo - - d¢. Puede por tanto calcular

o0 2
F'(x) = / —e % sen(xg) de.
0

Integre por partes para obtener

, X
F'(x) = == F(x).
2
Entonces

F'(x)  x

F(x) 2

y una integracién produce
1 2
In|F(x)| = —Zx +c.
Entonces

F(x) = Ae /4,

Para evaluar la constante A, use

F(0)=A :/ ede = ﬁ,
) 2

un resultado encontrado en muchas tablas de integracién. Por tanto,

f et cos(x¢)d¢ = ge_"z/‘t.
0

Finalmente, sea x = «/f y use el hecho de que el integrando es par respecto a ¢ para obtener

/oo o~ cos (ﬁ) dc = 2/00 o~ cos (%) de = Jre 1 g
—00 :3 0 ﬂ

Ahora sea
izmw,a:x—g, y ,8:«/5.
Entonces
al
— =wkx —§)
B
y
* o ag ki —(x—£)? 4kt
/ e cos | = d;:/ e~ cos(w(x — E))Wkt dw = e CTE /K
—00 ﬂ —00
Entonces

f " M cos(o(x — £)) doo = g~ —EP ik
Vkt

—00

La solucién de la conduccién de calor en la recta real es, por tanto

_ 1 oo * —w?kt
ulx,t) = E[ / f(&)cos(w(E —x))e dédw

LT e
=5 | e F(&) de.
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Después de algunas manipulaciones, esta solucion es

2/ mkt

ulx,t) =

Esta es mds simple que la solucién anterior en el sentido de que contiene sélo una integral.

6.3.2 Conduccion de calor en una barra semi-infinita

Si considera la conduccién de calor en una barra extendida de O a infinito, entonces hay una condicién
de frontera en el extremo izquierdo. Si la temperatura se mantiene en cero en ese extremo, entonces el
problema es

u 2

— =k— para0 < x <o00,t >0,
ot ax2

u(0,1) =0 parat >0,

u(x,0) = f(x) para0 <x < oo.

Haciendo u(x, f) = X(x)T(¢), los problemas para X y 7 son
X"+1X =0, T +xiT =0.
Si procede como lo hizo para la recta real, obtiene A = w? para w > 0y funciones
X, (x) = a, cos(wx) + b, sen(wx).
Pero ahora, también tiene la condicién
u(0,1) = XO0)71() =0,
implicando que
X(0)=0.

Asi debe elegir cada a,, = 0, dejando X,,(x) = b,, sen(wx). Las soluciones para T tienen la forma de mdlti-
plos constantes de e—«*, de manera que para cada @ > 0 tiene funciones

2
Ue(x, 1) = by sen(wx)e k.

Cada una de estas funciones satisfacen la ecuacion de calor y la condicién en la frontera u(0, ) = 0. Para
satisfacer la condicion inicial, escriba una superposicién
o 2
u(x, 1) =/ by, sen(wx)e ¥ dw. 6.11)
0
Ahora la condicién inicial requiere que
o
u(x,0) = / by, sen(wx) dw,
0

de manera que elija las b,, como los coeficientes en la integral de Fourier en senos de f (x) en [0, c0):

2 o0
by = = / F(€) sen(wé) dE.
7 Jo

Con esta eleccion de coeficientes, la funcién dada por la ecuacién (6.11) es la solucién del problema.
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EJEMPLO 6.9

Suponga que la funcién de la temperatura inicial estd dada por

T —X para0 <x <m
fx) =
0 parax > m

Los coeficientes en la solucién (6.11) son

bo =2 [ — & senog) ag = 2721
0

T w?

La solucién para esta funcién de temperatura inicial es

u(x,t) = 2 /OO <w> sen(a)x)e_wzk’ dow. W
0

T w?

6.3.3 Métodos de transformadas integrales para la ecuacion de calor
en un medio infinito

Como sucedio con la ecuacion de onda en un dominio no acotado, se ilustrara el uso de las transformadas
de Fourier en problemas que involucran la ecuacién de calor.

Conduccion de calor en la recta  Considere nuevamente el problema

ou 2y
EZkﬁ para —oo < x < 00,1 > 0,
X

u(x,0) = f(x) para —oo < x < 00,

que ha resuelto por separacion de las variables. Como x varfa sobre la recta real, puede intentar el uso de
la transformada de Fourier en la variable x. Tome la transformada de la ecuacién de calor para obtener

ou 92u
s [ﬂ =48 [m] ‘

Debido a que x y  son independientes, la transformada pasa a través de la derivada parcial respecto a t:

{S’[Z—I;} () — /00 8u(&‘,t)e_iwé dt = %/OO u(E, e ' dg = %ﬁ(a), t).

o O .

Para la transformada, en la variable x—, de la segunda derivada parcial de u respecto a x, use la férmula
operacional:

9? R
5 [a—xﬂ (@) = —0%i(o, 1).
La transformada de la ecuacién de calor es, por tanto
8 A 2 A
Eu(a), 1)+ ko u(w,t) =0,

con solucién general

~ 2
h(w, 1) = age "
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Para determinar el coeficiente a,,, tome la transformada de la condicién inicial para obtener
i(,0) = f() = a.

Por tanto,
i, 1) = f(w)ye ",

Esta es la transformada de Fourier de la solucién del problema. Para recuperar la solucién, aplique la
inversa de la transformada de Fourier:

u(x,r) = 371 I:f(a))einkth (x) = % /OO f(w)e*wzkleiwx do.

Por supuesto, la parte real de esta expresion es u(x, ). Para ver que esta solucién coincide con la obtenida
por separacion de las variables, inserte la integral para f (w) para obtener

1 0 ~ 2 ) 1 o0 o0 ) ) 5
2_/ f(w)e—w ktelwx do = 2_/ </ f(é)e—lw§d§> PO Pt kt do
T J_ oo 7)o\ o

27 J o J =00
1 * * —w?kt
= /_ ) /_ F©cosE — e de do

l' o [e¢) 2k
o [ r@sentoE — e de do,
—00 J —00
Tomando la parte real de esta expresion, tiene

u(x,r) = L foo /oo F&) cos(@(E — x)e™ M dE do,

2 J_

la solucién obtenida por separacién de las variables.

Conduccion de calor en la semirecta  Considere nuevamente el problema

9 9
a_?:ka—z para0 < x < oo, t >0,
X

u(0,1) =0 parat >0,

u(x,0) = f(x) para—co<x < 00,
el cual ha resuelto por separacién de las variables. Para ilustrar la técnica de la transformada, resolvera
este problema nuevamente usando la transformada de Fourier en senos. Tome la transformada en senos de

la ecuacion de calor respecto a x, usando la formula operacional para la transformada del término 02u/0x2,
para obtener

3
Eﬁs(a), 1) = —w’kiis(w, 1) + wku(0, 1).
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Como u(0, 1) = 0, esto es

%ﬁg(a), 1) = —o*kis(w, 1),
con solucién general
lis(w, 1) = bye X,
Ahora u(x, 0) = f(x), asi
iis (@, 0) = fs(@) = by
y por tanto
fis(@, 1) = fs(@e ™",

Esta es la transformada en senos de la solucién. Para la solucidn, aplique la inversa de la transformada de
Fourier para obtener

u(x,t) = %/Ooo fs(a))e*wzk’ sen(wx) dw.

Queda para que el estudiante inserte la expresion de la integral para fs(a)) y pruebe que esta solucién
coincide con la obtenida usando la separacién de las variables.

La solucion mediante la transformada de Laplace de un problema con valores en la frontera Se ha
ilustrado el uso de la transformada de Fourier y de la transformada de Fourier en senos en la resolucién
de problemas de conduccién de calor. Aqui hay un ejemplo en donde la transformada natural que hay que
usar es la transformada de Laplace.

Considere el problema en una semirecta:

ou 9%u
E:km parax > 0,¢ > 0,

u(x,0) =A parax >0,
B para0 <t <19

0,1) =
u(©.7) 0 parat >ty

en donde A, B'y t, son constantes positivas. Esto define un problema con una temperatura inicial constante
distinta de cero y una distribucién de temperatura discontinua en el extremo izquierdo de la barra.
Puede escribir la condicién en la frontera mds nitidamente en términos de la funcién de Heaviside H:

u(0,1) = B[1 — H(t — tp)].
Debido a la discontinuidad en u(0, ), puede intentar con una transformada de Laplace en ¢. Denote
Llulx, )](s) = Ulx,s),

con s la variable de la funcién transformada y x tratada como un pardmetro. Tome la transformada de
Laplace de la ecuacién de calor:
9 9?
el =ke| .
at 0x2

Para la transformada de 0u/0t, la derivada de la variable transformada, use la férmula operacional para la
transformada de Laplace:

£ [3—?} (s)=sUx,s) —ux,0)=sU(x,s) — A.
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La transformada pasa a través de 92u/0x2 debido a que x y ¢ son independientes:

92U (x, s)

3%u © 3% 3 [,
£|:Wi| (s):/0 e’ ﬁ(x,t)dtz— e u(x,t)dt = P

8x2 0

Transformando la ecuacion de calor se obtiene

32U (x, s)
Ukx,s) —A=k———.
sU(x,s) 512
Escriba esta ecuaciéon como
92U (x,s) s A
- 4. 0 _U ’ = -7,
ax2 RV =—¢

una ecuacion diferencial en x, para cada s > 0. La solucién general de esta ecuacidn es

A
U(x,s) = ageVs/* 4 pe VK e

La notacién refleja el hecho de que los coeficientes, en general, dependerdn de s. Ahora, para tener una

solucién acotada necesita a; = 0, ya que eV s/kx _ 50 conforme s — 0o. Por tanto,
—/s/kx A
U(x,s) = bse + —. (6.12)
S

Para obtener by, aplique la transformada de Laplace de u(0, r) = B[1 — H(t — t;)] para obtener

U0, s) = BL[11(s) — BEH(t — t0)1(s) = gl plons,
S S

Entonces
1 1, A
U@O,s)=B- —B-¢ " =b; + —,
s S s
asi
bs == B-A — Eeftgs'
s s

Ponga esto en la ecuacién (6.12) para obtener

Ux,s) = [B -4 Ee_"’s] e VsIkx é
s s s

Ahora obtiene la solucién usando la inversa de la transformada de Laplace:
u(x,t) = LU (x, 9)].

Esta inversa puede ser calculada usando tablas estandar y haciendo uso de la funcién error y la funcién de
error complementario, las cuales tienen un uso frecuente en estadistica. Estas funciones estan definidas
por

erf(x) = if et de
~ 7

erfc(x) = % /OO e_SZ dé =1 —erf(x).
T Jx
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u(x, 1) = (A erf (%) + Berfe (2%/5)) (1— H(t — 1))

X X X
+ <A erf (2_\/H) =+ B erfc (2—m> — Berfc <m>> H([ — to).

SECCION 6.3 PROBLEMAS

En los problemas del 1 al 4, considere el problema

du 9%u
E:kax—2 para —o0o < x < o00o,t >0

u(x,0) = f(x) para —00 < x < 00.

X para0 <x <2
8. f(x) =

0 parax > 2

En los problemas 9 y 10, use una transformada de Fourier
en la semirecta para obtener una solucién.

Obtenga primero una solucién por separacion de las variables au  92u
(integral de Fourier) y después nuevamente mediante transfor- B a2 tu parax >0,r>0
mada de Fourier.
1 £ = e=4x] ur,0) =xe™" parax >0
2. f(x) = [ sen(x)para|x| <m u0,7) =0 parar >0
0 para |x| > 7 10. ou 924 010
o fo= (x para0 <x <4 o g2 W parax>0.1>
parax < 0y parax > 4 u(x,0)=0 parax >0
4. f(x) = [e* para—1<x<1 ou
0 para |x| > 1 a(oyf)zf(f) parat >0
En los problemas del 5 al 8, resuelva el problema En los problemas 11 y 12, use la transformada de Laplace
para obtener una solucion.
P 0 0.1 >0
— =k— para0 <x < oo,t > 0,
at ax2 " 1. ou 92u
— =k_— parax >0,r>0,
u(,t) =0 parar >0, ar dx
_ 2
u(x,0) = f(x) para0 <x < oo. u(0,1) =" parat >0,
u(x,0)=0 parax >0
5. f(x) = e~ con « cualquier constante positiva.
6. f(x)=xe—, cona > 0. 12. d 92
f® —M:k—z parax > 0,7 > 0,
1 para0 <x<h ot ax
7. f0) = _
0 parax > h u(0,1) =0 parar >0,
con & cualquier nimero positivo. u(x,0) =e* parax >0
6.4 La conduccion de calor en un cilindro infinito

Considerara el problema de determinar la funcién de distribucién de temperatura en un cilindro sélido,
de longitud infinita, homogéneo de radio R. El eje del cilindro estd a lo largo del eje z en el espacio x, y, z
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r/—y

0
AL
(r,0)

FIGURA 6.15

(figura 6.15). Si u(x, y, z, ) es la funcién de temperatura, entonces u satisface la ecuacién de calor en tres

dimensiones
ou _ 9%u n 9%u n 9%u
ar  \axZ2  9yr  9z2 )’

Es conveniente usar coordenadas cilindricas, las cuales consisten de las coordenadas polares en el
plano junto con la coordenada usual z, como en el diagrama. Con x = r cos(#) y y = r sen(6), sea

ux,y,z, 1) =U(r0,z,1).
Se vio en la seccién 5.1 que
u  0*w 93U 10U | 19°U

ax2 " 8y2  or2 ' ror  r2oe*

Asi, en coordenadas cilindricas, con U(r, 6, z, ) la temperatura en el cilindro en el punto (r, 6, z) y tiempo
t, U satisface:

oU _ (U 19U  19°U 35U
ot \or2 " ror  rrae?  9z2 )’
Esta es una ecuacién formidable para tratar de resolverla en este momento, asi suponga que la tempe-

ratura en cualquier punto en el cilindro depende solamente del tiempo ¢ y la distancia horizontal r desde el
eje z. Esta suposicion simétrica significa que 0U/060 = dU/dz = 0, y la ecuacion de calor se convierte en

U 22U 19U
k=22 paraQ <r < R,t > 0.
ot arz  r or

En este caso escribird U(r, f) en lugar de U(r, 6, z, 1).
La condicion en la frontera es

U(R,t) =0 parat > 0.

Esto significa que la superficie exterior del cilindro se mantiene a temperatura cero.
La condicién inicial es

U@, 0)= f(r) paraO<r < R.

Separe las variables en la ecuacién de calor haciendo U(r, 1) = F(r)T(f):
1
FNT'(t) =k <F”(r)T(t) + —F/(r)T(t)) .
r

Debido a que ry ¢ son variables independientes, esto produce

T _ F"+1/r)F’ _

= -,
kT F
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en donde X es la constante de separacién. Entonces
T'+MT =0y F”+%F’+AF=O.
Mas atn, U(R, t) = F(R)T () = 0 para t > 0, asf tiene la condicién en la frontera
F(R) =0.

El problema para F es un problema de Sturm-Liouville singular (véase la seccién 4.3.1) en [0, R],
con s6lo una condicién en la frontera. Imponga la condicién que la solucién debe ser acotada. Considere
casos sobre A.

Casol A =0
Ahora
Vi l /
F'"+—-F =0.
r

!
Para resolver esto, hacemos @ = F'(r) para obtener

w'(r) + lw(r) =0,
r

rw' +w = (rw) = 0.
Esta tiene solucién general

rw(r) =c,

w(r) = ¢ = F'(r).
r

Entonces
F(r)=cln(r) +d.

Tiene que In(r) - —oo conforme » — 0+ (centro del cilindro), de manera que elige ¢ = O para tener una
solucion acotada. Esto significa que F(r) = constante para A = 0. La ecuacién para T en este caso es 7' = 0,
con T = constante también. En este evento, U(r, f) = constante. Como U(R, ) = 0, esta constante debe ser
cero. De hecho, U(r, f) = 0 es la solucién en el caso que f(r) = 0. Si la temperatura en la superficie se mantie-
ne en cero, y la temperatura en todo el cilindro es inicialmente cero, entonces la distribucidn de temperatura
permanece cero en todo tiempo, en ausencia de fuentes de calor.

Caso2 A <0
Escriba A = —w? con w > 0. Ahora T' — kw? T = 0 tiene solucién general
2
T(t) = ce® ™,
que es no acotada a menos que ¢ = 0, llevando nuevamente a u(r, ) = 0. Este caso conduce sélo a la
solucién trivial.

Caso3 A >0,estoes A = w2
Ahora T’ + kaw?T = 0 tiene soluciones que son muiltiplos constantes de e~ y éstas son acotadas para
t > 0. La ecuacién para F es

F'(r) + %F’(r) +@’F(r) =0,
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r?F"(r) +rF'(r) + *r* F(r) = 0.
En esta forma reconoce la ecuacién de Bessel de orden cero, con solucién general
F(r) = cJo(wr) + dYo(wr).

Jo es la funcién de Bessel del primer tipo de orden cero, y Y es la funcién de Bessel de segundo tipo
de orden cero (véase la seccion 4.2.3). Como Yy(wr) — —oo conforme r — 0+, debe tener d = 0. Sin
embargo, Jo(wr) estd acotada en [0, R], asi F(r) es una constante multiplo de Jy(wr).

La condicién F(R) = 0 ahora requiere que esta constante sea cero (en cuyo caso tiene la solucién
trivial) o que w sea elegida de manera que

Jo(wR) = 0.

Esto se puede hacer. Recuerde que Jy(x) tiene una infinidad de ceros positivos, los cuales se ordenan
como

O<ji<jo<---.

Por tanto, puede tener Jo(wR) = 0 si wR es cualquiera de esos nimeros. As{
a) —_— j_n
n R .
Los nimeros
2
2_ In
n R2
son los vectores propios de este problema, y las funciones propias son constantes distintas de cero multi-
plos de Jy(j,7/R).
Ahora tiene para cada entero positivo n, una funcién

Un(r,t) = anJo (%) e~ in Kt/

Ap =

Para satisfacer la condicién inicial U(r, 0) = f (r) generalmente debe usar una superposicion

o0 .
Ur, 1) = ZanJO (%) o inkt R
n=1

Ahora debe elegir los coeficientes de manera que

ee]

U 0) =Y ando (%) = f ().

n=1

Este es un desarrollo en funciones propias de f (r) en términos de las funciones propias de un problema
de Sturm-Liouville singular para F(r). Sabe de la seccién 4.3.3 cdmo encontrar los coeficientes. Sea & =
7/R. Entonces

f(RE) =" anJo(jnb).

n=1

= (] e f EF (RE)Jo(jnk) dE.

La solucién del problema es
(e.¢]

Uen =3 (—2 / eF (RO sms) i (ﬂ) e kiR
O 2\ Gor Jo o "\Ur '
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SECCION 6.4 PROBLEMAS

. Suponga que el cilindro tiene radio R = 1 y, en coordenadas
polares, la temperatura inicial es U(r, 0) = f (r) = r para
0 <r < 1. Suponga que U(1, t) = 0 para t > 0. Aproxime la
integral en la solucién y escriba los primeros cinco términos
de la solucion en serie para U(r, 1), con k = 1. [Los prime-
ros cinco ceros de Jy(x) se dan en la seccién 4.2]. Dibuje la
grifica de esta suma de los primeros cinco términos para
distintos valores de .

. Suponga que el cilindro tiene radio R = 3 y, en coordenadas
polares, la temperatura inicial es U(r, 0) = f (r) = e para
0 < r < 3. Suponga que U(3, t) = 0 para t > 0. Aproxime la
integral en la solucién y escriba los primeros cinco términos
de la solucién en serie para U(r, 1), con k = 16. Dibuje la
grifica de esta suma de los primeros cinco términos para
distintos valores de .

. Suponga que el cilindro tiene radio R = 3 y, en coordenadas
polares, la temperatura inicial es U(r, 0) =f(r) =9 — r2 para

6.5 La conduccion de calor en una placa rectangular
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0 < r < 3. Suponga que U(3, t) = 0 para t > 0. Aproxime la
integral en la solucién y escriba los primeros cinco términos
en la solucién en serie para U(r, t), con k = % Dibuje la
gréfica de esta suma de los primeros cinco términos para los
distintos valores de .

. Determine la distribucién de temperatura en un cilindro

circular homogéneo de radio R con las tapas superior e infe-
rior aisladas bajo la suposicion que la temperatura es inde-
pendiente tanto del dngulo radial como de la altura. Suponga
que el calor irradia de la superficie lateral hacia el medio que
lo rodea, el cual tiene temperatura cero, con coeficiente de
transferencia A. La temperatura inicial es U(r, 0) = f (7).
Sugerencia: Es necesario saber que una ecuacion de la for-
ma kJj(x) + AJy(x) = O tiene una infinidad de soluciones
positivas. Esto puede probarse, pero aqui lo supondra. Las
soluciones de esta ecuacion conducen a los valores propios
de este problema.

La conduccion de calor en una placa rectangular

Considere la distribucién de temperatura u(x, y, f) en una placa rectangular, plana y homogénea que cubre
laregion 0 < x < 1,0 <y < 1 en el plano. Los lados se mantienen a temperatura cero y la temperatura

interior en el tiempo cero en (x, y) estd dada por

o, y) =x(1=x2)yd —y).

El problema para u es

ou

9%u
=k ==
ot (8x2 +

9%u
8y2

) para0<x <1,0<y<1,t>0,

u(x,0,t) =u(x,1,1) =0 paraO<x <1,t>0

u@,y,t) =u(l,y,t) =0 paraO<y<1,t>0,

u(x,y,0) =x(1 —x2)y(l —y).

Sea u(x, y, 1) = X(x)Y(y)T (t) obtenemos

X" 4+ 21X =0,

Y'+uy =0,

T'+ (A + wkT =0,

donde X y u son las constantes de separacién. Las condiciones en la frontera implican en el sentido usual

que

X0)=X1)=0,

Los valores y funciones propios son

An=n

paran=1,2,...y

2
M = m-TT,

2

T

2

)

2

Y(©) =Y(l)=0.

X, (x) =sen(nmwx),

Yin(y) = sen(mmy)
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param =1, 2, ... El problema para T es ahora
T' + (n*> + m>)7 kT =0,
con solucién general
Tnm (l) — Cnmef(anrmz)nzkt.
Para cada entero positivo n y cada entero positivo m, ahora tiene las funciones
—(n2+m?) 72kt

Unm (X, Y, 1) = Cpm sen(nmx) sen(mmy)e

que satisfacen la ecuacidén de calor y las condiciones en la frontera. Para satisfacer la condicién inicial,
sea

(0.¢] [e )
u(x, y, t) = Z Z Cnm Sen(nn’x) sen(mny)e—(n2+mz)n2kt‘

n=1m=1

Debe elegir los coeficientes de manera que

ux,y,0) =x(— xz)y(l —y) = Z Z Cnm Sen(nx) sen(mmy).

n=1m=1

Encuentre (como en la seccién 5.7) que

1 pl
Com = 4/ / x(1— xz)y(l — y)sen(nzx)sen(mmy)dxdy
o Jo

1 1
=4 </ x(1— xz) sen(nmwx) dx) </ y(1 — y)sen(mmy) dy)
0 0
AV
:48(n3n3)< 33 )
La solucion es
u(x,y,z)

48 e —1)" —_1" =1
= — Z Z ( 3) ) <( ) 3 > sen(nmwx) sen(mny)e_(”z""”z)nzkt'
T n "

SECCION 6.5 PROBLEMAS

1. Tomando como antecedente el problema recién resuelto, u,y,t) =u(L,y,t) =0 para0 <y< K,t>0,
escriba una solucién con una serie doble para el siguiente
problema mds general: u(x,y,0)= f(x,y).
ou 92u  9%u . »
Tl k (ax_2 + W) para0 <x < L, 2. Escriba la solucién para el problema 1 en el caso que k = 4,
L=2,K=3yf(x y)=x%(L — x)sen(y)(K — y).

0<y<K,t>0,
3. Escriba la solucién para el problema 1 en el caso que k = 1,
u(x,0,t) =u(x,K,t) =0 para0<x <L,t>0 L=n,K=myf(x y)=sen(x)y cos(y/2).



CAPITULO 7

La ecuacion
del potencial

7.1 Las funciones armoénicas y el problema de Dirichlet

La ecuacién diferencial parcial

?u  9%u

a2t 5=0
ax dy

se llama la ecuacion de Laplace en dos dimensiones. En tres dimensiones esta ecuacion es

9%u 9%u 9%u

)
ax2  3y?  9z2

El laplaciano V2 (se lee “nabla cuadrada”) esta definido en dos dimensiones por

y en tres dimensiones por

9%u 9%u 9%u

VR
. 8x2+8y2+312

En esta notacidn, la ecuacién de Laplace es V2 u = 0.
Una funcién que satisface la ecuacion de Laplace en cierta regién se dice que es armdnica en esa
region. Por ejemplo,

X2 —y2

2xy

son armonicas sobre todo el plano.
343
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La ecuacion de Laplace se encuentra en problemas que involucran potenciales, tales como los poten-
ciales para el campo de fuerza en mecdanica o electromagnetismo o campos gravitacionales. La ecuacién
de Laplace también se conoce como la ecuacion del estado estacionario del calor. La ecuacién de calor
en el espacio de dos o tres dimensiones es

— = kVZu.
ot

En el caso de estado estacionario (el limite cuando r — 00), la solucién se vuelve independiente de ¢, as{
du/dt = 0y la ecuacién de calor se convierte en la ecuacién de Laplace.

En problemas que involucran la ecuacién de Laplace no hay condiciones iniciales. Sin embargo, fre-
cuentemente se encuentra el problema resolviendo

V2u(x, y) =0
para (x, y) en alguna regién D del plano, sujeta a la condicién que

u(x, y) =f(x, y)

para (x, y) en la frontera de D. Esta frontera se denota dD. Aqui f es una funcién que tiene valores en 9D,
que frecuentemente es una curva o estd compuesta por varias curvas (figura 7.1). El problema de deter-
minar una funcién arménica conociendo su valor en la frontera, se llama un problema de Dirichlet, y f se
llama datos en la frontera del problema. Hay versiones de este problema en dimensiones mayores, pero
aqui se abordard principalmente en la dimensién 2.

oD
D

| ¥ )

FIGURA 7.1
Frontera tipica 0D de
una region D.

La dificultad en el problema de Dirichlet dependiente usualmente de qué tan complicada es la region
D. En general, hay mas oportunidad de resolver un problema de Dirichlet para una regién que posea cierto
tipo de simetria, tal como un disco o un rectangulo. Empezara resolviendo el problema de Dirichlet para
regiones familiares en el plano.

SECCION 7.1 PROBLEMAS

Sean fy g arménicas en un conjunto D de puntos en el pla-
no. Pruebe que f + g es armonica, asf como « f para cual-
quier nimero real «.

Pruebe que las siguientes funciones son arménicas en todo
el plano:

(a) x3 — 3xy?

(b) 3x%y — y?

(c) x* — 6x2y2 4 y*
(d) 4x3y — 4xy3

(e) sen(x) cosh(y)
(f) cos(x) senh (y)
(8) e=*cos(y)

3. Pruebe que In(x2 + y2) es armdnica en el plano excepto en
el origen.
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4. Pruebe que r” cos(nd) y r” sen(nd), en coordenadas polares, 5. Pruebe que para cualquier entero positivo n, r—" cos(nb),
son armonicas en el plano, para cualquier entero positivo n. y r—" sen(nf) son armonicas en el plano excepto en el
Sugerencia: Busque la ecuacion de Laplace en coordenadas origen.
polares.

7.2 Problema de Dirichlet para un rectangulo

Sea R un rectangulo sélido, que consiste de los puntos (x, y) con 0 <x < L, 0 <y < K. Busque una fun-
cién que sea armoénica en los puntos interiores de R y tome valores prescritos en los cuatro lados de R, que
forman la frontera oR de R.

Este tipo de problema puede ser resuelto por separacion de variables si los valores en la frontera son
distintos de cero en sélo un lado del rectangulo. Se ilustra este tipo de problema y después se esboza una
estrategia a seguir si los valores en la frontera son distintos de cero en mas de un lado.

EJEMPLO 7.1

Considere el problema de Dirichlet

VZu(x,y) =0 para0<x <L,0<y <K,
u(x,0) =0 para0<x <L,
u©,y) =u(L,y)=0 para0 <y =<K,
u(x,K) =(L —x)sen(x) para0 <x <L.

La figura 7.2 muestra la regién y los valores en la frontera.
Sea u(x, y) = X(x)Y(y) y sustituya en la ecuacién de Laplace para obtener

X// Y//
i ——
X Y

Entonces
X"+2X=0 y Y' =AY =0.
A partir de las condiciones en la frontera,

ux,0)=Xx)Y0)=0

y
(L —x) sen(x)
(0,K) (L,K)
0 R 0

0 (L,0)

FIGURA 7.2 Valores en la
frontera dados en los lados de
la frontera del rectdngulo.
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asi Y (0) = 0. Andlogamente,
X0)=X(L)=0.

El problema para X(x) ya es familiar, con valores propios A, = n2x%/L? y funciones propias que son mul-
tiplos constantes distintos de cero de sen(nwx/L).
El problema para Y es ahora

2.2

7
Y—L2

Y=0, Y(0) =0.

Las soluciones de este problema son multiplos constantes de senh (nmy/L).
Para cada entero positivo n = 1, 2,..., ahora tiene funciones

(. y) = b <nnx> h(nny)
uy(x,y) = by, sen 7 sen )

que son armonicas en el rectdngulo y satisfacen la condicién de que valen cero en los lados izquierdo,
inferior y derecho del rectdngulo. Para satisfacer la condicién en la frontera en el lado y = K, debe
usar la superposicion

u(x,y) = ébn sen (MTX) senh (nrrTy) .

Elija los coeficientes de manera que

ulx,K) = an sen (MTX> senh (WZK) = (L — x) sen(x).
n=1

Este es un desarrollo en serie de Fourier en senos de (L — x) sen(x) en [0, L], de manera que debe elegir
todo el coeficiente como el coeficiente de seno:

b h nwKy\ 2 LL nré& J
n Sen! < 7 >_Z/0( —E)sen(é)sen<T> &

s nmr[l — (=1)"cos(L)]

=4L .
L* — 2020272 + ntyt

Entonces

B 417 nr[l — (—=1)" cos(L)]
~ senh(nmk /L) (L2 —n?n2)?

n

La solucion es

= 412 n[l — (—1)" cos(L)] nwx nmy
u.y) =) senh(ir k /L) (L2 — n2n2)> Sen( L ) senh <T) -

n=1

Si se dan valores distintos de cero en los cuatro lados de R, se definen cuatro problemas de Dirichlet,
en cada uno de los cuales los valores en la frontera son distintos de cero tnicamente en un lado. Este
proceso se muestra en la figura 7.3. Cada uno de estos problemas puede resolverse por separacién de las
variables. Si u; (x, y) es la solucién del j-ésimo problema, entonces

4
w(x,y) =y uj(x,y)
j=1

es la solucién del problema original. Esta suma satisfard los datos originales en la frontera, ya que cada
u; (x, y) satisface los valores distintos de cero en un lado y es cero en los otros tres lados.
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y
Sox) y y y
(0, k)
0 0 Sx) 0
g1y R &)
0of R |0 R |&» o R |0 &l R |0
X X X X
fik) (L, 0) i) 0 0 0

FIGURA7.3 u(x,y) = T4_ u;(x, ).

SECCION 7.2 PROBLEMAS

En los problemas del 1 al 5, resuelva el problema de Dirichlet
para el rectdngulo, con las condiciones en la frontera dadas.

1. u( y)=u(l,y)=0para0 <y <m,u(x, 1) =0,y u(x, 0) =
sen(zx) para0 <x <1

2. u0,y)=y2—y),uB,y)=0para0 <y <2,yu(x, 0)=
ux,2)=0para0 <x <3

3. u@ y)=u(l,y)=0para0 <y <4,y ux, 0) =0, u(x, 4)
=xcos(mx/2) para0 <x <1

4. u(0, y) =sen(y), u(w, y) =0para0 <y < m, y u(x, 0) =
x(mr —x), u(x, ty=0para) <x <m

5. u(0,y)=0, u2, y)=sen(y)para0 <y <m,y u(x, 0) =0,
u(x, m) = x sen(mx) para0 < x <2

6. Aplique la separacién de variables para resolver el siguiente
problema mixto con valores en la frontera (“mixto” signifi-
ca que algunas condiciones en la frontera estdn dadas en la
funcién y otras en sus derivadas parciales):

Vau(x, y) =0para0 <x<a, 0<y<b

9
u(x,0) = %(x,b)zo para0 <x <a

u(,y) =0,u(a,y) =g(y) para0 <y <b.

Aplique la separacion de variables para resolver el siguiente
problema mixto con valores en la frontera:

V2u(x,y)=0 pral <x <a,0<y<b
u(x,0)=0,u(x,b) = f(x) para0<x<a

9
u(0, y) = %(a,y) —0 para0<y<b.

Resuelva la distribucion de temperatura del estado estacio-
nario en una placa delgada, plana que cubre el rectdngulo
0 <x<a,0<y<bsilatemperatura en los lados verticales
e inferior se mantiene en cero y la temperatura a lo largo del
lado superior es f (x) = x(x — a)2.

Resuelva la distribucion de temperatura del estado estacio-
nario en una placa delgada, plana que cubre el rectdngulo
0 <x<4,0<y<1silatemperatura en los lados horizon-
tales es cero, mientras que en el lado izquierdo es f (y) =
sen(rry) y en el lado derecho es f (y) = y(1 — y).

7.3 El problema de Dirichlet para un disco

Resuelva el problema de Dirichlet para un disco de radio R centrado en el origen. En coordenadas polares,

el problema es

VZu(r,0) =0 pra0 < r < R,—m <6 <m,

u(R,0) = f(0) para —m <6 <m.
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La ecuacién de Laplace en coordenadas polares es

u  1ou 1 3%u

— 4+ —-—— 4+ —=—=0.
ar? +r8r +r2 262

Es fécil verificar que las funciones
1,r"cos(nf) 'y r"sen(nd)
son armonicas en todo el plano. Entonces intente una solucién

1 o0
u(r.0) = ao + Z anr cos(nd) + b,r" sen(nd).

n=1

Para satisfacer la condicidn en la frontera, necesita elegir los coeficientes de manera que

1 o0
u(R,0) = f(0) = a0+ ZanR” cos(nf) + b, R" sen(no).

n=1

Pero éste es precisamente el desarrollo de Fourier de f (0) en [—, 7], que conduce a elegir

1 T
ap=— [ [f(&)ds,
T

-7

1 i
anR" = p f (&) cos(n§) d§,

—TT

y
1 T
b,R" = - f(&)sen(ng)dé.
Entonces
l s
e = f F(€) cos(nt) dE
TR | _,
y
1 T
b= — | F@costng) as.
TR" J_,

La solucion es

1 T
u(r.0)=-— [ f)ds

-7

+ %szl (%) (f_z F(8) cos(ng) dt cosmb) + | f(€) sen(n) dé sen(n9)>.

Esto también puede escribirse

o0

1 [" 1 n (%
w0y =5 [ r@ae+ -3 (2)" [ s cosinte - on s,

n=1

—TT

1 (7 ad n
u(r,0) = E/ [l + 22 (%) cos(n(é — 9)):| f(&)déE.
n=1
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EJEMPLO 7.2

Resuelva el problema de Dirichlet
Vu@r,0) =0 para0< r <4, —w <0 <,
u4,0)= f()=06%> para —w <6 <m.

La solucion es

1 (" I\ (7
w0y =5 [ s+ -3 (5) [ 6 costn - as
- n=1 -

oo

= %nz + Z 4(;—21),1 (2)71 cos(np). W

n=1

EJEMPLO 7.3

Resuelva el problema de Dirichlet
VZu(x,y) =0 parax>+y> <9,
u(x,y) =x>y> parax? +y> =09.
Convertir el problema a coordenadas polares, usando x = r cos(0) y y = r sen(). Sea
u(x,y) =u(rcos(@),rsen(9)) = U(r,0).
La condicion en la frontera, donde r = 3, se convierte en

U3, 6) = 9cos?(0)9sen’(0) = 81 cos>(0) sen’(0) = f(6).

La solucidn es

Ur,0) = 1 /n 81 sen’ (&) cos>(£) d&

2 ),

+ I Z (%)n |:/jr 81 cos? (&) sen(§) cos(n&) d& cos(nb)

b
n=1

+ / ! 81 cos> (&) sen’(€) sen(né) dé sen(ne)] )

Y

Ahora
/ﬂ 81 sen’ (&) cos?(£) dE = %n,
- 0 sin #4
/ 81 cos?(€) sen’(£) cos(né) dé = § _g1n
- paran =4
8
y
/ " 81 cos?(£) sen(£) sen(n€) dé = 0.
Por tanto,

1 81x 1 81w /r\4 81 1 4
U(r, 9) = ZT — ;T (g) COS(49) = ? — gr COS(46).

349
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Para regresar esta solucién a coordenadas rectangulares, use el hecho de que

cos(49) = 8cos*O — 8cos? 6 + 1.

Entonces
81 1 4 4 22 .2 4
U(r,9)=§—§<8r cos™(0) — 8r-r-cos”(0) +r )
81 1 4 2 2\.2 2 2\2

SECCION 7.3 PROBLEMAS

En los problemas del 1 al 8, encuentre una solucién en serie Escriba una solucién para cada uno de los siguientes problemas
para el problema de Dirichlet para un disco del radio dado, de Dirichlet convirtiendo a coordenadas polares.

con los datos dados en la frontera (en coordenadas polares). 9. Vau(x, y) = 0 parax? + 2 < 16
. u(x, y) = X242 <

1. R=3,fO)=1 u(x, y) = x2 para x2 + y2 = 16

2. R =3, f(0) = 8 cos(46)

3 R=2f@) =6 10. V2u(x, y) = 0 parax2 +y2 <9

4. R—S,f(G)—Gcos(Q) )=y pa =
5. R=4 f(0) =t 11. V2u(x, y) =0 paraxz + y2 < 4

6. R=1,f(0) =sen2(H) u(x, y) =x2 —y2parax2 +y2 =4
7. R=8,f(O)=1—6 12. V2u(x, y) = 0 para x% 4+ y2 < 25

8. R=4,f(6) =6 u(x, y) = xy para x2 + y2 =25
7.4 La formula de la integral de Poisson para el disco

Existe una férmula en serie para la solucién del problema de Dirichlet para un disco. En esta seccién
obtendrd una férmula integral para esta solucién. El problema para un disco de radio 1, en coordenadas
polares, es

V2u(r,0) =0 para0<r <1,—m <6 <,

u(l,0) = f(0) para —m <0 <.
La solucion en serie de la seccidn anterior, con R = 1, es
el >
u(r,9) = —/ 1+22r"cos(n(§ —0)) | f(&)dE. (7.1

27 - n=1

La cantidad

% 142 Z P cos(n;)]

L n=1
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se llama el niicleo de Poisson 'y se denota por P(7; ¢). En términos del nicleo de Poisson, la solucién es

u(r. 9) =/ P(r.& — 0) (&) dt.

-7

Ahora obtendra una forma cerrada para el nicleo de Poisson, llegando a una férmula integral para la solu-
cion. Sea z = re¢. Por la formula de Euler,

2" =r"e™ = " cos(ng) + ir" sen(nt),

asi r” cos(ng), que aparece en el nicleo de Poisson, es la parte real de z#, denotada Re(z). Entonces

1 —i—ZZr" cos(n¢) = Re (1 +2Zz”> )
n=l1

n=1

. . . . 2ot o0 Z 3
Pero |z] = r < 1 en el disco unitario, de manera que la serie geométrica Z,,:l 7" converge. Mads atin,

o0
Zznzlz ‘
n=1 <

Entonces

1+ 2§:r" cos(n¢) = Re <1 +2§:z”>

n=1 n=1

1 1+reft
=Re(1+2——)=Re Tz =Re +—re- .
1—z 11—z 1 —reit
El resto son sélo calculos para extraer esta parte real:
L+re'®  (14+re®\ (1—re
1 —rei¢ — \1—rei¢ 1 —re it
L—r24r(eff—e)  1—r2+2irsen(?)
14+r2—r (eif —i—e‘if)) 1 4r2—2rcos(¢)

Por tanto,
%) 00 1— 7‘2
1+2 " =Re(|l+2 "= )
* Zr cos(ng) =Re {1+ ZZ 1472 —2rcos(¢)
n=1 n=1
asf la solucién dada por la ecuacién (7.1) es
wo=o [ L= peya
u(r,0) = — .
27 J_x 1+ 712 —2rcos(E —0)

Esta es la formula de la integral de Poisson para la solucién del problema de Dirichlet para el disco unita-
rio. Para un disco de radio R, un simple cambio de variables conduce a la solucién

o) — 1 T R2 —I"2 4
ur,8) = o /;,, R2 4+ r2 —2Rrcos(€ — G)f(é) £ (7.2)

Esta integral, para el disco de radio R, también se conoce como la formula de Poisson.
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EJEMPLO 7.4

De nuevo al problema

VZu(r,0) =0 para0 <r <4, —m <0 <m,

u,0)= f®)=60> para —w <0 <,

que fue resuelto en la seccién anterior mediante la serie de Fourier. La férmula integral de Poisson para

la solucion es

1
u(r,0) = Ef

-7

16 — 2

16 +r2 — 8r cos(£€ — 0)

£2de

52

16 —r?

2

d
7 16 +r%2 —8rcos(é —0)

E.

Esta integral no puede ser evaluada en la forma cerrada, pero frecuentemente es mas conveniente para las
aproximaciones numéricas que la solucién en serie infinita. #

SECCION 7.4 PROBLEMAS

En los problemas del 1 al 4, escriba una férmula integral para
la solucién del problema de Dirichlet para un disco de radio
R alrededor del origen con los valores dados de la funcién en
la frontera. Use la solucidn integral para aproximar el valor de
u(r, 0) en los puntos dados.

1. R=1,f() =0, (/2 n), (3/4, n/3), (0.2, n/4)

2. R =4 f(6) = sen(40); (1, n/6), (3, Tn/2), (1, n/4),
(2.5, n/12)

3. R=15f0)=6—06;4, n), (12, 31/2), (8, n/4), (7, 0)

4. R=6,f(O)=e"?;(5.5 37/5), 4 2n/7), (1, m), (4, 97/4)

5. Laférmula integral de Dirichlet puede usarse algunas veces
para evaluar integrales bastante generales. Como un ejem-
plo, sea n un entero positivo y sea u(r;, 6) = r” sen(nb) para
0 <r<R,0 =<6 <2m Sabe que u es armonica en todo el
plano. Puede, por tanto, pensar en # como la solucién del
problema de Dirichlet en el disco r < R que satisface u(R, 0)

7.5

= f(0) = R" sen(nd). Use la férmula integral de Poisson de
la ecuacion (7.2) (cuya solucién ya conoce) para escribir

r'* sen(nf)
1 2 RZ _ r2
= — R" sen(n&) dé.
27 Jo  r2 —2rRcos(d — &) + R? (n&) d&

Ahora evalte u(R/2, 7/2) para obtener la férmula integral

27 sen(ng) B T nmw
/O 5 dsen®) T 3Ty SN (7) :

En el problema 5, evalie u(R/2, m). ;Qué integral se
obtiene?

Use la estrategia mostrada en el problema 5, pero ahora
use u(r, 0) = r cos(nd). Obtenga las integrales evaluando
u(R/2, /2) y u(R/2, m).

(Qué integral se obtiene haciendo u(7;, 6) = 1 en la férmula
integral de Poisson?

Los problemas de Dirichlet en regiones no acotadas

Considere el problema de Dirichlet para algunas regiones que no estin acotadas en el sentido de contener
puntos arbitrariamente lejanos del origen. Para tales problemas, la integral de Fourier, la transformada de
Fourier, o la transformada de Fourier en senos o cosenos pueden ser buenos recursos para su solucion.



7.5 Los problemas de Dirichlet en regiones no acotadas 353

7.5.1 El problema de Dirichlet para el semiplano superior

Considere el problema
Vzu(x,y) =0 para —o0o <x <00,y >0,

u(x,0) = f(x) para —oo < x < 00.

Busque una funcién que sea arménica en el semiplano superior y tome valores dados a lo largo del eje x.
Sea u(x, y) = X(x)Y(y) y separe las variables en la ecuacion de Laplace para obtener

X" +1X =0, Y —AY =0.
Busque una solucién acotada. Considere casos sobre A.

Caso1 A =0.
Ahora X(x) = ax + b, y obtiene una solucién acotada eligiendo a = 0. Asi 0 es un valor propio de este
problema, con funciones propias constantes.

Caso2 A = —0? < 0.

Ahora X(x) = ae®® + be—*. Pero e®* — 0o conforme x — 00, de manera que se debe elegir a = 0.
Y e—»r — 00 conforme x — —00, de manera que también debe hacer b = 0, llegando a la solucion trivial.
Este problema no tiene valor propio negativo.

Caso3 A =w?> 0.
Ahora X(x) = a cos(wx) + b sen(wx), una funcién acotada para a y b constantes cualesquiera.

La ecuacidn para Y ahora se convierte en ¥~ — w2¥ = 0, con solucién general Y(y) = ae®y 4+ be~».
Comoy >0y w > 0, e»y — 0o conforme y — 00, de manera que necesita a = 0. Sin embargo, e~ estd
acotado paray > 0, asi Y(y) = be—».

Para cada w > 0, ahora tiene una funcién

uy(x, y) = [a, cos(wx) + b, sen(wx)]e”

que satisface la ecuacién de Laplace. Intente una solucién del problema con la superposicion
o
u(x,y) = / [ae, cos(wx) + by, sen(wx)]e”™ Y dw.
0
Para satisfacer las condiciones en la frontera, elija los coeficientes de manera que
o
ulx,0) = f(x) = / [ay, cos(wx) + b, sen(wx)]dw.
0

Este es el desarrollo integral de Fourier de f (x), asi

1 o0
aw=- / (&) cos(wE) d

1 o0
bo=- / F(€) sen(wk) dE.
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Con estos coeficientes, tiene la solucién, que puede escribirse en una forma compacta, involucrando
s6lo una integral, de la siguiente manera. Escriba

1 o0 o0
u(x,y)=;/0 [(/ f(S)COS(wE)dS)COS(wx)

+ (/OO f &) Sen(wé)dé&) sen(a)x):| e dw
= %/o" /00 [cos(wE) cos(wx) + sen(wé) sen(wx)] f(£)e™ Y d& dw
0 —00

= l /00 [/‘00 cos(w(& — x))e™ ™ da)] f(&)de.
T J_oo LJO

La integral interna puede ser evaluada explicitamente:

o0 —wy o0
/0 cos(w(& —x))e  dw = [m[_)} cos(w(& —x)) + (§ —x)sen(w(§ — )c))]]0
-y
Y2+ (E -0
Por tanto, la solucién del problema de Dirichlet para el semiplano superior es
Y[ f®
u(x,y) = - /;oo N —— dé&. (7.3)

Para ilustrar la técnica, resuelva nuevamente este problema usando la transformada de Fourier.

Solucion usando la transformada de Fourier Aplique la transformada de Fourier en la variable x para
la ecuacion de Laplace. Ahora d/0y sale de la transformada, y puede usar la regla operacional para aplicar
la transformada a la derivada respecto a x. Obtiene

3%u 3%u 3% -
(52) +3 (G) - G n - -0
La solucidén general de la ecuacién diferencial en la variable y es

w(w,y) = aye™ + bye 7.

Tenga presente aqui que w varia sobre toda la recta real (a diferencia de la solucién mediante la integral
de Fourier, donde w era una variable de integracion sobre la semirecta). Debido a que e®y — co conforme
y — 00, debe tener a,, = 0 para w positivo. Pero e~-»¥ — oo conforme y — oo si w < 0, asi b,, = 0 para
 negativo. Asi,

bye™ Y siw>0
ww,y) = " )
a,e® siw <0
Simplifique esta notacién escribiendo

i(w,y) = cpe .

Para resolver c,, use el hecho de que u(x, 0) = f (x) para obtener
i(@,0) = f(©) = coy.

La transformada de Fourier de la solucién es

i(w,y) = f(we b
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Para obtener u(x, y), aplique la transformada inversa de Fourier de esta funcion:
uer,y) =57 [f@e ] )

o0
/ (w)e™1®lYelox g

1 .
P f

- %/ (/oo fEe* dg) ooy giox g,
% (/ " glalrginte— dw) F(&) dt.

Ahora
e EY) — cos(w (& — x)) — i sen(w(€ — x))

y una integracién rutinaria da

/OO o loly pmiwE—x) g, _ %
—00 Y+ & —x)

La solucién por la transformada de Fourier es

_y [T fE)
=g /_oo EreE-o0

que coincide con la solucién obtenida usando separacién de las variables.

7.5.2 El problema de Dirichlet para el primer cuadrante

Algunas veces puede usar la solucién de un problema para elaborar la solucién de otro problema. Se ilus-
tra esto con el problema de Dirichlet para el primer cuadrante:

Vzu(x,y)zO parax >0,y > 0,
u(x,0) = f(x) parax >0,
u0,y) =0 paray >0.

La frontera del primer cuadrante consiste en la parte no negativa del eje x junto con la parte no negativa del
eje v, y la informacién acerca de la funcién buscada debe ser dada en ambos segmentos. En este caso estd
asignando el valor cero en la parte vertical y los valores f (x) dados en la parte horizontal de la frontera.

Podria resolver este problema por separacién de las variables. Sin embargo, si dobla el semiplano
superior a lo largo del eje vertical, obtiene el primer cuadrante, lo que sugiere que explore la posibilidad
de usar la solucién para el semiplano superior para obtener la solucién para el primer cuadrante. Para
hacer esto, sea

fx) parax >0

gx) = .
cualquier valor parax < 0

Por “cualquier valor,” implica que por el momento no importa qué valores de g(x) para x < 0, pero se
reserva el derecho de asignar después estos valores.
El problema de Dirichlet

Vzu(x,y) =0 para —00o <x <00,y >0,

u(x,0) =g(x) para —o00o <x <00
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para el semiplano superior tiene la solucién

*© (é)
e =3[ e

Escriba esto como

0 o0
_y _ 8@ _8®)
Mhp(x,y)—n[/wyz_i_(g_x)zdS‘i‘/(; y2+(€:_x)2d‘§‘i|.

Intercambie variables en la integral que estd mas a la izquierda haciendo w = —£ . Esta integral se con-
vierte en

0 0 —
/ _s® 2d52/ _8CW g,
—o0 YT (§ =) 0o Y7+ (w4 x)
Ahora reemplace nuevamente la variable de integracion por & para escribir

0 00
g(=8) ¢(6)
/oo VG DE +/0 V-2 dé]

_y [ 8(=%) )
- n/o <y2+(s+x)2 * ¥+ (& —x)2> a5

donde en la dltima integral ha usado el hecho de que g(&) = f () si £ > 0. Ahora reemplace “cualquier
valor” en la definicién de g. Observe que la dltima integral se hace cero en la parte positiva del eje y, en los
puntos (0, y), sif (&) + g(—&) = 0 para & > 0. Esto ocurrird si g(—&) = —f (€). Esto es, hace a g la extensién
impar de f a toda la recta real, obteniendo

_y o0 1 B 1
”””(x’y)_n/o <y2+(é—x)2 y2+<s+x>2)f($)d€'

uhp(xv y) = % [

Esta es la solucion de este problema de Dirichlet particular para el semiplano superior. Pero esta funcién
también es armoénica en el primer cuadrante, haciéndose cero cuando x = 0, e igual a f(x) six > 0y
y = 0. Por tanto, u,(x, y) también es la solucién de este problema de Dirichlet para el primer cuadrante
del plano.

EJEMPLO 7.5

Considere el problema
VZu=0 parax>0,y>0,
u(,y) =0 paray >0,

X

u(x,0) =xe " parax > 0.

La solucidn es

_y (™ 1 B ! &
”(x’”_n/o (y2+(s—x>2 y2+(s+x>2)§e at- W

EJEMPLO 7.6

Resuelva el problema
Viu=0 parax > 0,y > 0,
u0,y) =0 paray >0,

u(x,0) =1 parax > 0.
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La solucion es

BN S N _X/w——i——
u(x,y)—n/o yz—l-(E—x)zdg 7 Jo y2+(§+x)2d§.

Estas integrales pueden ser evaluadas en la forma cerrada. Para la primera,

y/w S yfw : dé

mJo ¥+ (E—x)? wJo Y14 (& —x)/y?]
3 (5 wen (5)) = 3+ o ()
~— | = —arctan [ —— = — 4+ —arctan| — ).
Ty \2 y 2 7 y

Por un célculo semejante,

y [ 1 11 x
= -5 df =5 — —arctan( — |.
T Jo y +(E+x) 2 7 y

Entonces

2 X
u(x,y) = ;arctan ; .

Esta funcion es armdnica en el primer cuadrante del plano y u(0, y) = 0 para y > 0. Mds adn, si x > 0,

L2 X 2
Iim —arctan| — | = —— =1,
y—=0+ 7T y T 2

como se requeria. M

7.5.3 Un problema del potencial electrostatico

Considere el problema

Vzu(x, y)=—h para0<x <m,y>0,
u(0,y) =0,u(w,y) =1 paray >0,

u(x,0) =0 para0 <x < m.

Este es un problema de Dirichlet si # = 0, pero suponga que / es una constante positiva. Este pro-
blema modela el potencial electrostatico en la banda que consiste en todos los (x, y)con 0 < x <mwyy > 0,
suponiendo una distribucion uniforme de la carga con densidad A/4m en toda esta region. La ecuacion
diferencial parcial V2u = —h se llama la ecuacion de Poisson. La frontera de la banda consiste en las
semirectas x =0y x = wcony > 0y el segmento en el eje x con 0 < x < r. En la figura 7.4 se muestran
la banda y su frontera.

T

FIGURA 7.4
Banda 0 < x <,
y=0.
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Considere las posibilidades para resolver este problema. Como y > 0, debe considerar una transfor-
mada de Fourier en senos o en cosenos en y. La dificultad aqui es que al transformar la ecuacién de Pois-
son, tendria que tomar la transformada de —#, y una constante no tiene transformada en senos o cosenos.
Por ejemplo, si intenta calcular la transformada de Fourier en senos, debe evaluar

o0
/ —h sen(wx) dx,
0

y esta integral diverge.

Como x varia de 0 a 7, podria intentar una transformada de Fourier finita en senos o cosenos en x.
Si intenta la transformada de Fourier finita en cosenos, entonces la férmula operacional requiere que tenga
informacién acerca de la derivada de la funcién en el origen, y no tiene dicha informacién. Sin embargo,
la férmula operacional de la transformada finita en senos requiere de informacién acerca de la funcién
en los extremos del intervalo, y esto estd dado en las condiciones en la frontera para y > 0. Se buscar4,
por tanto, una solucién usando esta transformada. Denote la transformada de Fourier finita en senos en la
variable x como

Slu(x, y)1 = us(n, y).
Ahora aplique la transformada respecto a x a la ecuacién de Poisson:
8u 3u
G| — G| —|=6[-hl
[ o[ ] - eron

Por la férmula operacional,
aZM 2~ n
S Fys) =—n‘usn,y) —n(—D"u(m, y) +nu(,y).

Debido a que x y y son independientes,

T aZu 2

K ‘/ (x, y) sen(nx) d 32f1(>RM)d O s, y)
— | = —(x, nx)dx = — u(x, nx)dx = —us(n,y).
dy? o ay2 Y 3y Jo Y ayz S

Finalmente,

S[—h] = / —hsen(nx) dx = —ﬁ[l - (=D"L
0 n

Por tanto, la ecuacion de Poisson se transforma en

- 8% _ h
—n?is(n, y) — n(=D)"u(x, y) + nu(0, y) + a_yZMS(”’ y) = —;[1 - (—=D"

Ahora u(mr, y) = 1y u(0, y) = 0, de manera que esta ecuacién se puede escribir como

82 ~ 2~ n h n
~us(n, y) —n-us(n,y) =n(=1" — —[1 = (=D7].
dy n
Paran =1, 2, ..., esta ecuacidn tiene solucién general
~ N . (_l)n—i-l h ;
Ws(n, y) = ane™ + bpe™ + ——— + =[1 - (~1)"].
n n
Para que esta funcién permanezca acotada paray > 0, elijaa, =0 paran =1, 2, .. .. Entonces
(- 1)n+1

- _ h
us(n,y) =bpe™"™ + + n—3[1 - (=D"L



7.5 Los problemas de Dirichlet en regiones no acotadas 359

Para resolver b,, aplique la transformada de la condicién u(x, 0) = O para obtener

(_1)n+l

Entonces
by,

Tiene, por tanto

~ 1"

us(n,y)=[( )
=Dk
_[n _

_ e

h .
—;n—ewqem+

h n
+ 5= (=D

h

- 3ll- (=D"].

—1 n+1 h
COM

;u—vwﬂwﬂ—u

Por la férmula de inversion, estos son los coeficientes en la serie de Fourier en senos (en x) de la solucion,

asi la solucion es

2 & (="
M(Xa)’)ZEZ[( n)

n=1

SECCION 7.5 PROBLEMAS

Escriba una solucién integral para el problema de Dirichlet
para el semiplano superior si los valores en la frontera son
—1 para —4<x <0
fx)y=431 para0 <x <4
0 para |x| > 4
Escriba una solucién integral para el problema de Dirichlet

para el semiplano superior si el valor en la frontera es

f(x) = e Nl

Escriba una solucién integral para el problema de Dirichlet
para el primer cuadrante si

u(x, 0) = e cos(x) parax> 0,

w0, y)=0 paray > 0.

Escriba una solucién integral para el problema de Dirichlet
para el primer cuadrante si

u(x,0)=0 parax>0

u(0, y) = g(y) paray>0.

Obtenga la solucién primero usando la separacién de las
variables, y después usando una transformada de Fourier
adecuada.

h .
-l - (—1)"]] (e — 1) sen(nx).
n

Escriba una solucién integral para el problema de Dirichlet
para el primer cuadrante si

ulx, 0)=f(x) parax>0

u(0, y) = g(y) paray > 0.

Escriba la solucidn integral para el problema de Dirichlet
para el semiplano inferior y < 0.

Resuelva el problema del potencial electrostitico para la
banda 0 < x < 7, y > 0 con los valores en la frontera

u(0, y) =0, u(w, y) =0 paray >0,
u(x, 0) =Bsen(x) para0 <x < m.
Aqui B es una constante positiva.

Resuelva el problema del potencial electrostitico para la
banda —co <x < 00,0 <y < 1si

ulx, 0)=0 parax <0

u(x, 0) = e—ex parax > 0,
con ¢ un nimero positivo.

Resuelva el problema de Dirichlet para la banda 0 < x < 7,
y>0si

w0,y)=0 y u(m y)=2 paray>0
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ux,0)=—-4 paral0 <x<m.

10. Resuelva el siguiente problema, en donde los datos en la
frontera son una mezcla de valores de la funcién y los valo-
res de una derivada parcial de la funcién:

Viu=0 para0<x<m0<y<?2,

u(0, y) = 0

u(m,y)=4 para0<y<?2,

9
a—u(x,O) —u(x,2) =0 paral <x <.
y

11. Encuentre la distribucién de temperatura en estado estacio-
nario en una placa plana, homogénea, finita que se extiende
en el primer cuadrante x > 0, y > 0 si la temperatura en y en

12.

13.

14.

el lado vertical es e= y la temperatura en el lado horizontal
es cero.

Encuentre la distribucién de temperatura en estado estacio-
nario en una placa plana, homogénea, infinita que cubre el
semiplano x > 0 si la temperatura en la frontera x = 0 es

f(v), donde

1 para [y| <1

fo = 0 para |y| > 1

Encuentre la distribucion de temperatura en estado estacio-
nario en una placa plana, homogénea, infinita que cubre el
semiplano y > 0O si la temperatura en la frontera y = 0 es
cero para x < 4, la constante A para 4 < x < 8, y cero para
x> 8.

Escriba una expresion general para la distribucién de tempe-
ratura en estado estacionario en una placa plana, homogénea,
finita que cubre la banda 0 <y < 1, x > 0 si la temperatura
en la frontera izquierda y el lado inferior son cero y la tem-
peratura en la parte superior de la frontera es f (x).

El problema de Dirichlet para un cubo

Tlustrara el problema de Dirichlet en el espacio de tres dimensiones. Considere:
Vzu(x,y,z)zo para0 <x <A, 0<y<B,0<z<C,
ux,y,0) =u(x,y,C) =0,
u(©,y,z) =u(A,y,z) =0,
u(x,0,2) =0, u(x,B,z)= f(x,2).

Busque una funcién que sea armoénica en el cubo (el cual puede tener lados de distintas longitudes), y cero
en cinco lados, pero con los valores prescritos f (x, z) en el sexto lado.
Sea u(x, y, 7) = X(x)Y(y)Z(z) para obtener

S
X Y Z
y entonces, después de una segunda separacion,
Z// Y//
— =A— — = —LU.
Z y -

Entonces
X' +2X=0,Z2"4+puZ=0 y Y —(QA+wnYy=0.

A partir de las condiciones en la frontera,

X(0) = X(A) = 0,
2(0) = Z(C) = 0,

Y(0) =0.
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Los problemas para X y Z son familiares, y obtiene los valores y funciones propios:

n?x? nix
Ay = VR X, (x) =sen (_A ) ,
y
m2z? mnz
Hm = —77 Zm(z)=sen( C )

con n 'y m variando independientemente sobre los enteros positivos.
La ecuacién diferencial para Y(y) se convierte en

2.2

2.2
” n-mw m-mw . _

Esta tiene soluciones que son multiplos constantes de senh(f,,,y), donde

n2r? mlm2

Prm =\ "z e

Para cada entero positivo n y m, ahora tiene una funcién
nwx mmz
Upm (X, Y, Z) = Cpm SEN (T) sen (T) senh(Bum y),

que satisface la ecuacién de Laplace y las condiciones cero en la frontera dadas en cinco de las caras del
cubo. Para satisfacer la condicién en la sexta cara, generalmente debe usar una superposicioén

o o
nIx mm
ulx,y, ) ZZZC’”" sen <T> sen( <

n=1m=1

) senh(Bum ).

Ahora debe elegir los coeficientes de manera que

u(x,B,z) = f(x,2) = i i Cnm SEN (%) sen (mgz) senh(Bum B).

n=1m=1

Ha encontrado previamente esta clase de desarrollos dobles de Fourier en senos, en el tratamiento
de vibraciones en una membrana eldstica, rectangular y fija a un marco. A partir de esa experiencia, puede

escribir
€ AC senh(ﬁnt) 0 0 f é:, { 5 A 5 C C S

Como es usual, si hay mds de una cara con valores distintos de cero, entonces divida el problema de
Dirichlet en una suma de problemas, en cada uno de los cuales hay s6lo una cara con valores distintos
de cero.
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SECCION 7.6 PROBLEMAS

1. Resuelva 3. VZu(x,y,2)=0 paraO<x<1,0<y<2n,0<z<m,

VZu(x,y,2)=0 para0<x<1,0<y<1,0<z<1, u(x, v, 0) =0, u(x, y, ) = u(w — x)y (7 — y),
u(x,y, 0)=ulx 1,2) =0,
w0, y,2) =u(l, y, 2) =0,

u(0, y, 2) = u(l, y, 2) =0,

u(x, 0, ) = u(x, y, 0) =0,
ux, 0,2) =0, ulx, y, 1) = xy. | ) ’
2. Resuelva ey = 2 2) = 2

VZu(x,y,z)=0 para0<x <27, 0<y<2m,0<z<l, 4. V2u(x,y2)=0 para0<x<1,0<y<20<z<m,

ux 3 0) = utw 3 1) =0, u(x, 3, 0) = 22(1 — Y2 — y), u(x, y, 1) =0,

u(0, y,z) =0,
M(X 0 Z) =0 M(X 2, Z) =0 M(O’ » Z) = 07 M(l, Y Z) = sen(rry)sen(z),
u2m, y,7) =z ux, 0,2) =0,ux 2,2 =0
7.7 La ecuacion de calor en estado estacionario para una esfera solida

Considere una esfera sélida de radio R, centrada en el origen. Busque resolver para la distribucién de
temperatura en estado estacionario, dada la temperatura en la superficie en todo tiempo.

En el caso de estado estacionario, du/dt = 0 y la ecuacion de calor es la ecuacién de Laplace VZu = 0.
Use coordenadas esféricas (p, 6, ¢), en donde p es la distancia desde el origen a (x, y, z), 0 es el angulo polar
entre el eje x positivo y la proyeccion en el plano xy de la recta que va del origen a (x, y, z), y ¢ es el angulo
de declinacién desde el eje z positivo a esta recta (figura 7.5). También suponga la simetria alrededor del
eje z, asi u es una funcién solamente de p y ¢. Entonces 0u/06 = 0, y la ecuacién de Laplace se vuelve

5 2u  20u 1 3%u  cot(p) du
Vau(p, ) = — + + 55+t —
p= O

S—+ =0.
dp=  pdp  p-Ip

(p, 0, ¢)

FIGURA 7.5
Coordenadas esféricas.

La temperatura en la superficie es

u(R, ¢) = f(p).
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Para separar las variables en la ecuacion diferencial, sea u(p, ¢) = X(p)®(p) para obtener

2 1 cot
X'+ X'+ X0 + (f)xq>/ —0.
o o o
Entonces
1 / " /
L cot((p)z =—p?— —2p= =i
(O] (O] X X
Después

X" +2pX —2X =0 y @"+cot(p)® +rd =0.

La ecuacioén diferencial para @ puede escribirse

[® sen(p)] +Ad = 0.
sen(g)

Cambie variables haciendo

x = cos(p).

Entonces ¢ = arccos(x). Sea

G(x) = d(arccos(x)).
Como 0 < ¢ < m, entonces —1 < x < 1. Calcule

dd dx

sen(fp)a %

sen(¢)G'(x)[— sen(p)]
—sen®(¢)G'(x) = —[1 — cos?(¢)1G' (x)
=—(1-xHG ).

@’ () sen(p)

Entonces
d / d 2 /
do [D'(¢) sen(p)] = “do [(1 =x)G (x)]
_ _i 42 / d_x
=7 [(1=x)G (x)] do
d 2 /
=-7 [(1 = x7)G (x)](—sen(p)).
Entonces

d[cb’() ]—d[l—z)G/ ]
e ¢)sen(p)] = —— [(1 = x)G' ()],

y la ecuacién (7.4) se transforma en

[(1 —x)G'(x)] +1G(x) = 0.

363

(7.4)

Esta es la ecuacidn diferencial de Legendre (seccién 4.1). Para las soluciones acotadas, elija A = n(n+1)
paran =0, 1, 2, . .. Estos son los valores propios de este problema. Las funciones propias son multiplos

constantes distintos de cero de los polinomios de Legendre P,(x).
Paran =0, 1, 2, .. ., ahora tiene la solucién de la ecuacion diferencial para ®:

D, (p) = G(cos(p)) = Py(cos(p)).
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Ahora que conoce los valores admisibles para A, la ecuacién diferencial para X se vuelve
0°X" +2pX —n(n+ )X =0.
Esta es una ecuacién diferencial de Euler de segundo orden, con solucién general
X(p) = ap" +bp™" .

Debe elegir b = 0 para tener una solucién acotada en el centro de la esfera, ya que p—"~! — oo conforme
p — 0+. Asi

Xn(p) = app".
Para cada entero no negativo n, tiene ahora una funcién
un(p, ) = anp" Py(cos(p))

que satisface la ecuacién de Laplace. Para satisfacer las condiciones en la frontera, escriba una superpo-
sicién de estas funciones:

o0
w(p.9) =Y anp" Pa(cos()).
n=0
Debe elegir los coeficientes para que satisfagan
o
u(R, @) =Y ayR"P,y(cos(p)) = f(¢).
n=0

Para poner esto en el contexto de los desarrollos de Fourier-Legendre, sea ¢ = arccos(x) para escribir
o
> ayR"P,(x) = f(arccos(x)).
n=0

Esta es una serie de Fourier-Legendre para la funcién conocida f(arccos(x)). De la seccién 4.1.5, los
coeficientes son

2n+1 !
a, R" = f f (arccos(x)) P, (x) dx,
-1

2

2n+ 1
a, =
2R

1
/ f (arccos(x)) P, (x) dx.
-1

La distribucién de temperatura en estado estacionario es

241 (! n
wp. =3 " ( / lf(arCCOS(x))Pn(x)dx) (%) Putcosto.
n=0 -

EJEMPLO 7.7

Considere esta solucién en un caso especifico, con f (¢) = ¢. Ahora

oo

1 n
u(p, @) = Z 2ntl (f 1 arccos(x)Pn(x)dx> (%) P, (cos(g)).

n=0 2
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Determinara algunos de estos coeficientes aproximando las integrales. De la seccion 4.1, los primeros seis

polinomios de Legendre son

Pox)=1, Pi(x)=nx, Pz(X)=%(3x2—1)

1 1
P3(x) = 5(5x3 —3x), Pilx)= g(35x4 —30x% +3),

1
Ps(x) = g(63x5 —70x3 + 15x).

Aproxime:

1
/ arccos(x) dx ~ n,/
-1

1
1
/ E(3x2 — 1) arccos(x) dx = 0,

1

1

1

1

x arccos(x) dx ~ —0.7854,

1
1
/ 5(5x3 — 3x) arccos(x) dx ~ —4.9087 x 1072

1
1
/ §(35x4 —30x2 + 3) arccos(x) dx = 0,

1
1
/ g(63x5 —70x> + 15x) arccos(x) dx ~ —1.2272 x 1072.

Tome los primeros seis términos de la serie como una aproximacién de la solucion, obtiene

3 7 1/ p\3
u(p. @)~ 5 E(0.7854)% cos(p) — 3(0.049087) 3 (%) (5 cos®(¢) — 3cos(<p))

1 51
- 3(0.012272)(%) S (63 cos> (@) — 70 cos (@) + 15 cos(go)) .

Algunos de estos términos pueden ser combinados, pero se han escrito todos ellos para indicar cémo

aparecen. M

Regresara nuevamente al problema de Dirichlet cuando se trate de andlisis complejos. Ahi estard en

posicién de explotar los mapeos conformes. La idea serd mapear la regién de interés de cierta manera al

disco unitario. Como puede resolver el problema de Dirichlet para el disco (esto es, sabe una férmula

para la solucién), éste mapea el problema original en un problema que puede resolver. Entonces, intentara

invertir el mapeo para transformar la solucién para el disco en la solucién para la region original.
Concluird este capitulo con una breve discusion del problema de Neumann.

SECCION 7.7 PROBLEMAS

Escriba la solucién para la distribucién de temperatura en
estado estacionario en la esfera si los valores iniciales estdn
dados por f (¢) = A¢?, en donde A es una constante posi-
tiva. Haga una aproximacién a la integracién para obtener
el coeficiente y escriba (calcule) los primeros seis términos
de la solucién en serie.

Lleve a cabo el programa del problema 1 para la funcién de
valores iniciales f (¢) = sen(g) para 0 < ¢ < 7.

Lleve a cabo el programa del problema 1 para la funcién de
valores iniciales f (¢) = ¢3.

Lleve a cabo el programa del problema 1 para la funcién de
valores iniciales f (¢) = 2 — ¢2.
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5. Resuelva para la distribucién de temperatura en estado Resuelva para la distribucién de temperatura en estado esta-
estacionario en una esfera agujereada, dada en coorde- cionario en un hemisferio cerrado sélido, el cual en coorde-
nadas esféricas por R; < p < R,. La superficie interior nadas esféricas estd dadopor0 < p <R, 0 <6 <27, 0 <
p = R; se mantiene a temperatura constante 7', mientras ¢ < 7/2. El disco base se mantiene a temperatura cero y la
que la superficie exterior p = R, se mantiene a temperatu- superficie hemisférica a temperatura constante A. Suponga
ra cero. Suponga que la distribucién de temperatura es una que la distribucién es independiente de 6.
funcion tnicamente de oy ¢. Rehaga el problema 7, pero ahora la base estd aislada en

6. Aproxime la solucién del problema 5 escribiendo los lugar de mantenerse a temperatura cero.
primeros seis términos de la solucion en serie, llevando Rehaga el problema 7 para el caso en que la temperatura en
a cabo cualquier integracion requerida por un método la superficie hemisférica es u(R, ¢) = f (¢), no necesaria-
numeérico. mente constante.

7.8 El problema de Neumann

El problema de Neumann en el plano consiste en encontrar una funcién que sea arménica en una regién
dada D y cuya derivada normal en la frontera de la region esta dada. Este problema tiene la forma

V2u(x, y) =0 para(x,y)enD,

ou
E(x, y) = g(x,y) para(x,y)enaD,

donde, como es usual, dD denota la frontera de D. Esta frontera frecuentemente es una curva suave a peda-
zos en el plano (pero no necesariamente una curva cerrada). La derivada normal estd definida por

u
— =Vu -n,
on

el producto punto del gradiente de u con la normal unitaria exterior a la curva (figura 7.6). Si estd normal
es n = nyi + n,j, entonces du/on es

du ou n ou

_— = [ no —

on o : dy

Use el siguiente.
y
P
D
| X
oD

FIGURA 7.6 Normal exterior
n en un punto en oD.
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=— LEMA 7.1 Primera identidad de Green

Sea D una region acotada en el plano cuya frontera 0D es una curva cerrada suave a pedazos. Sean ky h
continuas con primera y segunda derivadas parciales continuas en D y su frontera. Entonces

ah
% k—ds:/ (kVZh + Vk - Vh)dA.
op on D

En esta integral de linea, ds denota la integracion respecto a la longitud de arco a lo largo de la curva
que acota D.

Prueba Por el teorema de Green escriba

% k—ds—‘(ﬁ (kVh) - nds—// div (kVh) dA.

Ahora,

h.  oh
div(kVh) = div (ka—l + ka—J>

a oh a oh
=—\\k— |+ —|k—
dx \ dx ay \ dy

2h  9%h N ok oh N 9k dh
dx dx  dy dy

—_— + JR—

ax2  9y?
=kV*h + Vk-Vh.

Use este resultado como sigue. Si k = 1 y & = u, una funcién arménica en D, entonces la integral

doble es cero ya que su integrando se hace cero y la integral de linea es sdlo la integral de linea de la deri-
vada normal de u sobre la frontera de la region. Pero en 0D, du/on = g, una funcién dada. Concluya que

0
% lds:% gds =0.
ap On aD

Esto significa que una condicidn necesaria para que el problema de Neumann tenga solucion, es que la
integral de la derivada normal dada alrededor de la frontera de la region sea cero. Esta conclusion puede
ser extendida al caso que dD no sea una curva cerrada. Por ejemplo, la frontera del semiplano superior es
el eje horizontal, el cual no es una curva cerrada.

EJEMPLO 7.8

Resuelva el problema de Neumann para un cuadrado:
Vou(x,y)=0 para0<x<1,0<y<l,
sujeto a

u

an
en el lado izquierdo y en los lados superior e inferior, mientras

ou 2
—((l,y)=y° para0<y<I.
on
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Como

este problema no tiene solucién. M

La existencia también puede ser una pregunta para el problema de Dirichlet. Sin embargo, para un
problema de Dirichlet, si la funcién dada en la frontera es bien portada (por ejemplo, continua) y la regién
es “simple” (tal como un disco, rectingulo, semiplano), entonces el problema de Dirichlet tiene una solu-
cion. Para los problemas de Neumann, aun para regiones sencillas y aparentemente con valores para la
derivada normal con buen comportamiento, puede no haber solucidn si la integral de la funcién de valores
alrededor de la frontera no es cero.

Resolvera ahora dos problemas de Neumann para ilustrar lo que estd involucrado.

7.8.1 El problema de Neumann para un rectangulo

Considere el problema

Vzu(x,y)zo paral <x <a,0<y<b,

u ou
—(x,0)=—(x,b)=0 para0 <x <a,
dy dy

0
220.y)=0 para0 <y <b,
0x

u
a(a, y) =g(y) para0 <y <b.

Para el rectangulo, la derivada normal es du/0x en los lados verticales, y du/dy en los lados horizontales.
Como una condicién necesaria (pero no suficiente) para la existencia de una solucion, se pide que

b
/ gy dy =0.
0

Este ejemplo aclarard por qué puede no haber solucién sin esta condicién.
Sea u(x, y) = X(x)Y(y) y obtiene

X'"+2X=0, Y'—ay=0.

Ahora

0

M x,0)=X@)Y'(0) =0

dy
implica que Y'(0) = 0. Andlogamente,

d

M by = X@)Y'(b) =0

dy
implica que Y'(b) = 0. El problema para Y es

Y — 1Y =0; Y'(0) =Y'(b) = 0.

Esta ecuacién de Sturm-Liouville familiar tiene valores y funciones propios

2.2

nemw nmwy

) =oos (12)

= —

paran=0,1,2, ...
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Ahora el problema para X es

Mas aun,
ou ,
8_(0’ =X O)Y(») =0
X

implica que X'(0) = 0.

Para n = 0, la ecuacidn diferencial para X es s6lo X” = 0, de donde X(x) = cx + d. Entonces X'(0) =
¢ = 0, asi en este caso X(x) = constante.

Si n es un entero positivo, entonces la ecuacion diferencial para X tiene solucién general

X(x) = cennx/b +d€_m”/b.

Ahora

X' (0)=—c——d=
0) P bd

implica que ¢ = d. Esto nos da
nwTXx
X, (x) = cosh (T> .

Ahora tiene las funciones
ug(x, y) = constante

y, para cada entero positivo n,

nmwx

u,(x,y) = c, cosh <T> cos

(nny)
)
Para satisfacer la dltima condicién en la frontera (en el lado derecho del rectangulo), use una superposi-
cién
> nwx nwy
, V) = cosh (—) cos (—) .
u(x,y)=co+y cn p b

n=1

Necesita

nmwa

o0
z—Z(a, y)=g() = Z %cn senh (T) cos

nmwy
(5):
un desarrollo de Fourier en cosenos de g(y) en [0, b]. Observe que el término constante en este desarrollo
de g(y) es cero. Este término constante es
1 b
- /0 gy dy,

b

que debe suponer cero. Si esta integral no es cero, entonces el desarrollo en cosenos de g(y) tendria un
término constante distinto de cero, contradiciendo el hecho que no lo tiene. En este caso este problema de
Neumann no tendrd solucién.

Para los otros coeficientes en la serie en cosenos, tiene

nw nwa 2 (b nmwé
TCn senh (T) = l—)A g("g“) Cos <T> dg,

asi

2 b nwé
~ nm senh(nma/b) /0 § () cos (T) ds.



370 CAPITULO 7  La ecuacién del potencial

Con esta eleccién de los coeficientes, la solucién de este problema de Neumann es

o
u(x,y) =co+ Zl ¢, cosh (%) cos (%) .
n=

El nimero ¢ es indeterminado y permanece arbitrario. Esto se debe a que los problemas de Neumann no
tienen soluciones unicas. Si u es cualquier solucién de un problema de Neumann, también lo es u + ¢ para
cualquier constante ¢, debido a que la condicidn en la frontera estd en la derivada normal y ¢ se anula en
esta diferenciacion.

7.8.2 El problema de Neumann para un disco

Resuelva el problema de Neumann para un disco de radio R centrado en el origen. En coordenadas pola-
res, el problema es

VZu(r,0) =0 para0<r <R,—7m <0 <,

9
8—“(R, 0) = f(0) para —7 <0 <.
.

La derivada normal aqui es d/0r, ya que la recta del origen a un punto en este circulo esta en la direccion
del vector normal exterior al circulo en ese punto.
Una condicion necesaria para la existencia de una solucion es que

’ f(6)do =0,

-7

y suponga que f satisface esta condicion.
Como hizo con el problema de Dirichlet para un disco, intente una solucién

1 o0
u(r, 0) = S0+ Z anr" cos(nd) + b,r" sen(nd).

n=1

Necesita

a o0
a—”(R,e) = f(0) = § na, R" ' cos(n) + nb, R" ! sen(nd).
p

n=1

Este es un desarrollo de Fourier de f (0) en [—, 7]. El término constante en este desarrollo es
1 T
= f©)de,
T J-x

y debe ser cero ya que esta serie de Fourier para (du/dr)(R, 6) tiene un término constante cero. La suposi-
cion de que esta integral es cero es por tanto consistente con esta condicion en la frontera.
Para los otros coeficientes, necesita

na, R" 'a, = % ! f(&)cos(n&)dé

-7

1 T
na,R" by = — | f(&)sen(ng) dt.
T J-n
Asi elija
T

1
an = ——— | [f(§)cos(n§)dé

" nm Rl )
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bn_n Rnl

/ f (&) sen(nf) ds.

Insertando estos coeficientes, la solucién es
u(r, 0) = —ao + = Z ( ) [ [cos(n&) cos(nd) + sen(nf) sen(nd)] £ (€) dé.
También puede escribir esta solucién como
1 RK1 ryn [T
) = a0+ 2320 (7) | costute — 6 de.

El término a(/2 es una constante arbitraria. El factor de 1/2 en esta constante arbitraria es s6lo costumbre.

EJEMPLO 7.9

Resolver el problema de Neumann
V2u(x,y) =0 parax®+y* <1,
0
—u(x, y) =xy? parax?+y%=1.
on
Cambie a coordenadas polares, haciendo u(r cos(0), r sen(6)) = U(r;, 6). Entonces
VU@, 0)=0 para0<r<1,—-m<6<m,
oU )
—(1,0) = cos(f) sen“(0).
or
Primero calcule

/ cos(0) sen’(9) do = 0,

-7

asf vale la pena intentar resolver este problema. Escriba la solucién

Ur,0) = —ao + = Z (r)”/ cos(n(§ — 0)) cos(&) sen* (&) dé.

—IT

Evalue
0 paran=2,4,5,6,...
- 7 cos(6) 1
/ cos(n(€ — ) cos(€) sen’(§)ds =1 4 "7
—TT
3 6
—1 cos>(0) + %S() sin=23

La solucién es, por tanto

U(r, 0) = ! 5% + ircos(@) +-r (— cos’(6) + Z cos(G))

1 1
= an—l— —rcos(f) — r cos’ (0)+ —rcos(6).

Para obtener la solucién en coordenadas rectangulares, use x = r cos(0) y 2 = x2 + y? para escribir

1 1 1
u(x,y) = a0+4x—§x+ x(x +y). m
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Nuevamente, la solucién tiene una constante arbitraria, que estd escrita con un factor de % debido
simplemente a que inicié con una serie de Fourier y la constante a menudo se llama a,/2.

7.8.3 El problema de Neumann para el semiplano superior

Como una ilustracién de un problema de Neumann para un dominio no acotado, considere:
Vzu(x,y) =0 para —00o <x <00,y > 0,
ou
a—(x,O) = f(x) para —00 < x < 0.
y

La frontera de la region es el eje real, y d/dy es la derivada normal de esta recta.

. 00 . e, . . I3
Requiere que f —0.f (x)dx = 0 como una condicién necesaria para que exista una solucion.
Hay una manera elegante de reducir este problema a uno que ya ha resuelto. Sea v = 9u/dy.

Entonces
vzv=3_2<3_“)+3_2<3_“> =i<32_“+@> —0
0x2 \ 9y dy2 \ dy dy \axz = 9y? ’
de manera que v es arménica siempre que u lo sea. Mas atn

d
v(x,0) = %(x,O) = f(x) para —00 < X < 00.

Por tanto v es la solucién de un problema de Dirichlet para el semiplano superior. Pero conoce la solucién

de este problema:
y [ f (&)
Vo) = /ooy -

Ahora recupere u de v por integracién: Dentro de una constante arbitraria,

o= [ [ e e

=_f (/y 21 - )f@)dé

_ 1 *© 2 2
=5 / In(y*+ ¢ —x)7) f(§)dé +c,
T J—o0o

en donde ¢ es una constante arbitraria. Esto da la solucién del problema de Neumann para el semiplano
superior.

SECCION 7.8 PROBLEMAS

1. Resuelva

2. Resuelva

Vzu(x,y)=0 prald <x <1,0<y <1, V2u(x, y)=0 para0<x<1,0<y<m,
B]

=2 (x,0) = 4cos(rx), —( 0) = —(x 7)=0 para0<x <1,
ay ay

O 1) =0 0<x<l o 0, y) z 0<y<

— = — (0, =y — — ara0) <y <m,
8y(x, ) para0 < x < I, Y =y=—75 P y

u u Ju
—(@0,y)=—(1,y)=0 para0<y=<1. —(m,y) =cos(y) para0 <y <m.
ox 0x 0x
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3. Resuelva 7. Escriba una solucién para
v2u(r,9):o para0 <r < R,—m <0 <m,
V2u(x,y)=0 pra0 <x <n,0<y<m, S
ou — (R, 0) =cos(20) para —m <6 <.
- (x,0) = cos(3x), ar
Y 8. Resuelva el siguiente problema de Neumann para el semi-
B_M(x’ 7)=6x —37 para0 <x <, plano superior:

ad
Y V2u(x,y)=0 para —0o < x < 00,y > 0,

ou ou
—(0,y) = —(@m,y)=0 0<y<m. d
8x( y) ax(” ») para0 <y <m 8—u(x,0)=)€€_|x| para —oo < X < 00.
y
9. Resuelva el siguiente problema de Neumann para el semi-

4. Use laseparacion de las variables para resolver el problema
plano superior:

con valor mixto en la frontera
Vzu(x,y) =0 para —00 <x <00,y >0,

Vzu(x,y)zo para0 <x <m,0<y<m, Ju X
_ — X —_
w(x,0) = f(x), u(x, 7) =0 para0 < x <7, 3y()c,O)_e sen(x) para —o0 < X < 0O.
10. Resuelva el siguiente problema de Neumann para el semi-

ou ou
—(0,y)=—(@,y)=0 para0 <y <m. o
ax ox plano inferior:

. e Vzux, =0 para —c0o<x <00,y <0,
( Tiene este problema una solucién tnica? ) P Y

0
6 : —M(X,0)=f(x) para —oo < X < 0.
5. Intente una separacion de las variables para resolver dy

11. Resuelva el siguiente problema de Neumann para el primer

V2u(x,y) =0 para0<x<1,0<y <1, cuadrante:
u(x,0) =u(x,1) =0 para0<x <1, V2u(x,y)=0 parax >0,y >0,

ou d

—(0,y) =3y* -2y, 0,9 =0 paray >0,

ox dax

ou du

a(l,}’)zo para0 <y < 1. 8—(x,0):f(x) para0 < x < oo.

y

. . . 12. Resuelva el siguiente problema mixto:
6. Escriba una solucién en serie para

Vzu(x,y) =0 parax >0,y >0,
V2u(r,6) =0 para0<r <R,—7m <6 <, u(0,y)=0 paray >0,

ou
5, (R.6) =sen(36) para —7w <0 <. g_“(x,o) — f(x) paral<x < oo.
y
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CAPITULO 8

Geometria y aritmética
de los niimeros
complejos

Los nimeros complejos

Un niimero complejo es un simbolo de la forma x + iy o x + yi, en donde x y y son nimeros reales
e i2 = —1. La aritmética de los nimeros complejos esta definida por

igualdad: a + ib = ¢ + id exactamente cuandoa = cy b =d,

suma: (a + ib) + (¢ + id) = (a + ¢) + i(b + d),

multiplicacion: (a + ib)(c + id) = ac — bd + i(ad + bc).

En la multiplicacién de nimeros complejos, proceda exactamente como lo haria con los polinomios
de primer grado a + bx y ¢ + dx, pero con i en lugar de x:

(a + bi)(c + di) = ac + adi + bci + bdi?
=ac — bd + (ad + bc)i

ya que i2 = —1. Por ejemplo,
(6 — 4i)(8 + 13i) = (6)(8) — (—4)(13) + i{[(6)(13) + (—4)(8)] = 100 + 46i.

El nimero real a se llama la parte real de a + bi y es denotado Re(a + bi). El nimero real b es la parte
imaginaria, denotado Im(a + bi). Por ejemplo,

Re(—23 + 7i) = —23 y Im(—=23 + 7i) = 7.

Tanto la parte real como la imaginaria de cualquier nimero complejo son nimeros reales.

Piense al sistema de los niimeros complejos como una extension del sistema de los nimeros reales en
el sentido que todo nimero real a es el nimero complejo a + 0i. Esta extension de los nimeros reales a
los complejos tiene consecuencias profundas, tanto para el dlgebra como para el andlisis. Por ejemplo, la
ecuacién polinomial x2 + 1 = 0 no tiene solucién real, pero tiene dos soluciones complejas, i y —i. En
general, el teorema fundamental del dlgebra establece que todo polinomio de grado positivo n, con coefi-

375
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cientes complejos (algunos o todos pueden ser reales), tiene exactamente n raices en los nimeros comple-
jos, contando las raices repetidas. Esto significa que no necesita extender los nimeros complejos para
encontrar las raices de los polinomios con coeficientes complejos, como sucede con los nimeros reales
para encontrar las raices de un polinomio simple tal como x2 + 1.

La suma compleja obedece a muchas de las reglas de la aritmética de los nimeros reales. Especifica-
mente, para cualesquiera nimeros complejos z, w y u,

Z 4+ w = w + z (conmutatividad de la suma)

7w = wz (conmutatividad de la multiplicacion)

724 (w + u) = (z + w) + u (asociatividad de la suma)
z(wu) = (zw)u (asociatividad de la multiplicacion)
zZ(w 4 u) = zw + zu (distributividad)

72+0=0+z

z+1=1-z

8.1.1 El plano complejo

Los nimeros complejos admiten dos interpretaciones geométricas naturales.

Primera, identifique el nimero complejo a + bi con el punto (a, b) en el plano, como en la figura 8.1.
En esta interpretacion, cada nimero real a, o a + 04, esta identificado con el punto (a, 0) en el eje horizon-
tal, el cual es por tanto llamado el eje real. Un nimero O + bi, o s6lo bi, se llama un niimero imaginario
puro 'y estd asociado con el punto (0, b) en el eje vertical. Este eje se llama el eje imaginario. Debido a
esta correspondencia entre los niimeros complejos y los puntos en el plano, seran referidos en el plano xy
como el plano complejo.

Cuando los nimeros complejos aparecieron por primera vez (en la resolucién de ecuaciones polino-
miales), los matemadticos recelaron de ellos, aun el gran matemadtico suizo del siglo XVIil, Leonhard Euler,
quien los us6 en calculos con habilidad sin precedente, no los reconocié como nimeros “legitimos”.
Fue el matemadtico aleman del siglo X1x, Carl Friedrich Gauss, el que aprecié plenamente su significado
geométrico y utilizé su reputacidn en la comunidad cientifica para promover su legitimidad entre otros
matematicos y filésofos naturales.

La segunda interpretacion geométrica de los nimeros complejos es en términos de vectores. El nime-
ro complejo z = a + bi, o el punto (a, b), puede pensarse como un vector ai + bj en el plano, el cual a su
vez es representado como una flecha desde el origen a (a, b), como en la figura 8.2. La primera compo-
nente de este vector es Re(z) y la segunda componente es Im(z). En esta interpretacion, la definicién de
suma de nimeros complejos es equivalente a la ley del paralelogramo para suma de vectores, ya que dos
vectores se suman, sumando sus componentes respectivas (figura 8.3).

Eje

imaginario @t bi
& ai + bj
a+ bi (a,b) y { gatct (bt
° =7
@b) a+bi--" ) )
Eje c+di
real X f X
FIGURA 8.1 FIGURA 8.2 FIGURA 8.3 Laley del
El plano Los niimeros paralelogramo para la suma de
complejo. complejos como niimeros complejos.

vectores en el
plano.
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8.1.2 Magnitud y conjugado

DEFINICION 8.1 Magnitud

La magnitud de a + bi es denotada por |a + bi| y esta definida por

|a + bi| = Va2 + b2.

Por supuesto, la magnitud de cero es cero. Como sugiere la figura 8.4, si z = a + ib es un nimero
complejo distinto de cero, entonces |z| es la distancia del origen al punto (a, b). Alternativamente, |z| es
la longitud del vector ai + bj representando a z. Por ejemplo,

12— 5i| = /4 +25 = +/29.

La magnitud de un nimero complejo también se llama su modulo.

DEFINICION 8.2  Conjugado

El complejo conjugado (o s6lo conjugado) de a + bi es el nimero denotado por a + bi 'y definido por

a—+bi =a—bi.

Obtiene el conjugado de z cambiando el signo de la parte imaginaria de z. Por ejemplo,

3-8i=3+4+8i,i=—-i y -25=-25.
Esta operacién no cambia la parte real de z. Tiene

Re(a + ib) = a = Re(a + ib)

Im(a + ib) = —b = — Im(a + ib).

La operacién de conjugar puede ser interpretada como una reflexion sobre el eje real, debido a que el
punto (a, —b) asociado con a — ib es la reflexion a través del eje horizontal del punto (a, b) asociado con
a + ib (figura 8.5).

Aqui hay algunas reglas computacionales para la magnitud y el conjugado.

y a+ bi
y il @ + bi T (a, b)
|a + 1| (a, b) X
‘ (a, —b)
X a—bi=a+bi
FIGURA 8.4 FIGURA 8.5
Magnitud de un Conjugado de un niimero

niimero complejo. complejo.
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— TEOREMA 8.1

Sean z y w nimeros complejos. Entonces

z+w=z74+w.
(

|zwl = 2| |wl.
Re(z) = 3(z +2) y Im(2) = 5 (z = 2).
|z >0 yl|z] =0si,ysélosiz=0.

® N kW=

7 = |z|%.

Prueba La conclusion (1) establece que conjugar un conjugado regresa al nimero original. Esto es
geométricamente evidente, ya que la reflexion de (x, y) a (x, —y), seguida de la reflexién de (x, —y) a
(x, ), regresa al punto original. Para un argumento analitico, escriba

atib=a—ib=a+ib.
Para la conclusion (5), sean z = a + ib y w = ¢ + id. Entonces
lzw| = [(ac — bd) + i(ad + bc)|
= (ac — bd)? + (ad + bc)?
= Va%c? + b2d? — 2achd + a*d? + b%c? + 2adbc
= Va2? + a2d® + b2 + b2d?
= Va2 + P22+ d? = |z |w].

Una demostracién mucho mas clara de (5) estard disponible cuando conozca la forma polar de un
nimero complejo.
Las otras partes del teorema se dejan al estudiante. M

8.1.3 Division compleja

Suponga que quiere formar el cociente z/w, donde w # 0. Este cociente es el nimero complejo u tal que
wu = z. Sin embargo, esto nos ayuda mucho para encontrar u. He aqui una manera computacional efectiva
de realizar la divisién compleja. Seanz=a +ibyw=c+idy

a+ib a+ibc—id ac+bd+i(bc—ad)
c+id cHidc—id 2 +d? '

Multiplicando y dividiendo la fraccién original por el conjugado del denominador, obtiene una expresion
en la cual las partes real e imaginaria del cociente son evidentes. La razén de esto es que el denominador
es ww, el cual es el nimero real |w|2.

Por ejemplo,

2-7i 2-T7i8-3i —5-62 5 62,

8+3i 8+3i8-3 6419 73 73"

asf la parte real de este cociente es —5/73 y la parte imaginaria es —62/73.
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8.1.4 Desigualdades

Hay varias desigualdades que tendra ocasién de usar.

TEOREMA 8.2

Sean z y w nimeros complejos. Entonces

L. [Re(2)| < |z| y Im(z)| < |z].
2. |z 4+wl < lz| + wl.
3. llzl = lwl] < |z — wl.

Prueba Siz= a + ib, entonces

Re(z)| = |a] < Va?+b% = |z]

[Im(z)| = |b| < Va2 + b2 =|z].

La conclusion (2), que se llama la desigualdad del tridngulo, se prueba para vectores. He aqui una
demostracién en el contexto de los nimeros complejos:

O<lz+wPl=GC+wEF+w) =C+wE+W) =22+ 0+ wz +ww
=z + 7w + 7w + |w|* = z1* + 2Re(zw) + [w|* < |z]* + 2 |zw] + |w|?
= |22+ 2zl W] + [w]* = [z* + 2 |z] lw] + [w]® = (|z] + |w])?.

En resumen,

0<lz4wf < (Iz| + lw])?.

Sacando la raiz cuadrada de estas cantidades no negativas, obtiene la desigualdad del triangulo.
Para (3), use la desigualdad del tridngulo para escribir

Izl =1z +w) —wl <lz+wl+ [wl],
asi
lz| — lw| < |z + w].
Intercambiando z y w,
lw| = lz| = |z + wl.
Por tanto,
—lz+wl =<zl = wl < |z +wl,

asi

llz] = lwll < |z + w].
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8.1.5 Argumento y forma polar de un niimero complejo

Sea z = a + ib un nimero complejo distinto de cero. Entonces (a, b) es un punto distinto del origen en el
plano. Este punto tiene coordenadas polares (r, #). Como es estdndar con las coordenadas polares, el dngulo
polar 6 de (a, b) no estd tinicamente determinado. Si camina en el eje real r unidades a la derecha desde el
origen y rota este segmento 6, radianes desde el extremo del segmento en (a, b), como en la figura 8.6,
entonces el dngulo polar 6 para (a, b) es cualquier nimero 6, 4 2n, en el cual n es cualquier entero. Una
eleccion positiva para n corresponde a girar el segmento desde 0 hasta » un radian inicial 6, para alcanzar
a (a, b) y después continuando en sentido contrario al movimiento de las manecillas del reloj dar n vueltas
completas, lo cual nuevamente lo coloca en (a, b). Una eleccién negativa para n corresponde a girar el
segmento desde O hasta r un radian inicial de 6y, y después dar n vueltas en el sentido de las manecillas
del reloj, terminando nuevamente en (a, b). Asi, por convencion, se piensa en rotaciones en sentido con-
trario al movimiento de las manecillas del reloj como las que tienen orientacion positiva y las rotaciones
en sentido del movimiento de las manecillas del reloj como las que tienen orientacién negativa.

Para ilustrar, considere z = 1 + i. El punto (1, 1) tiene coordenadas polares (+v/2, 77/4), ya que 1 + i
estd a /2 unidades del origen, y el segmento desde el origen a 1 + i forma un angulo 7/4 radianes con la
parte positiva del eje real (figura 8.7). Todas las coordenadas polares de (1, 1) tienen la forma

(\/E /4 + 2n7r),

de n puede ser cualquier entero.

Si z distinto de cero tiene coordenadas polares (r, 6), entonces r = |z|. El angulo 0 (el cual siempre
se expresa en radianes) se llama un argumento de z. Cualquier nimero distinto de cero tiene una infi-
nidad de argumentos y ellos difieren uno del otro en miiltiplos enteros de 2. Los argumentos de 1 + i son
7/4 + 2nmw, para cualquier entero 7.

Ahora recuerde la férmula de Euler

e = cos(0) + i sen(9).

Si 6 es cualquier argumento de z = a + ib, entonces (a, b) tiene coordenadas polares (r, 8), asi @ = r cos(6)
y b = r sen(d). Combinando este hecho con la férmula de Euler, tiene

z=a+ib=rcos(@)+irsen(d) = re'?.

Esta forma exponencial para z se llama la forma polar de z. Cualquier argumento de z puede usarse en
esta forma polar, ya que cualesquiera dos argumentos 6, y 6, difieren en algiin miltiplo entero de 2.
Si, 6, = 6y + 2km, entonces

re'”t = r[cos(fp + 2km) + i sen(6y + 2km)]

= r[cos(6y) + i sen(8p)] = re'®.

y y
1+i
(a,b)e NG) \\
N
\
% %\ A
° X X
7 | 2
FIGURA 8.6 (a, b) tiene FIGURA 8.7 Las
coordenadas polares coordenadas polares de 1 + i
(r, Oy + 2nm), n cualquier son (2, /4 +2nmw), n

entero. cualquier entero.
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EJEMPLO 8.1

Encuentre la forma polar de —1 + 4i. Primero, r = |—1 + 4i| = +/17. Ahora considere la figura 8.8. 6 es
un argumento de —1 + 4i, y « serd util para la determinacién de 6. A partir del diagrama, tan(«) = 4, asi

0 =7r—a=71—tan_1(4).

Puede, por tanto, escribir la forma polar

—144i = 17/ T @)

-1+ 4i
\
\
\
\

L

1

—_——— e — —

——

FIGURA 8.8 m — tan—!(4)es
un argumento de —1 + 4i.

EJEMPLO 8.2

Encontrard la forma polar de 3 + 3i. Como se indica en la figura 8.9, /4 es un argumento de 3 + 3i. La
forma polar es

3+3i
(3,3)

s
4
X

FIGURA 8.9 /4 esun
argumento de 3 + 3i.

3+ 3i = /1864,

Para cualquier real 6,

| = cos?(0) + sen’(0) = 1.

Esto significa que al escribir la forma polar z = rei?, la magnitud de z esta totalmente contenida en el factor
r, mientras e®, el cual tiene magnitud 1, aporta toda la informacién acerca de la direccién de z (distinto de
cero) desde el origen.

Debido a las propiedades de la funcién exponencial, algunos cdlculos con nimeros complejos se
simplifican si usa las formas polares. Para ilustrar, suponga que quiere probar que |zw| = |z| |w|, algo que
hizo por manipulacion algebraica. Hace z = re y w = pe’ para obtener inmediatamente

lzw| = ‘r,oemeig

=rp |z] Jw].

ei(0+$)‘ —rp=

El hecho de que €i0+5 = ¢l ¢i& también significa que el argumento de un producto es la suma de los
argumentos de los factores, médulo un miiltiplo entero de 2. Escrito mds cuidadosamente, si 6, es cual-
quier argumento de z, y 0; es cualquier argumento de w, y ® es cualquier argumento de zw, entonces para
algtn entero n,

O =60y+ 60 +2nm.
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Multiplicar dos nimeros complejos tiene el efecto de sumar sus argumentos, médulo un mdltiplo
entero de 2.

EJEMPLO 8.3

Sean z =iy w =2 — 2i. Un argumento de z es 6, = 7/2, y un argumento de w es ¢, = 7x/4 (figura 8.10).
Ahora

w=1i(2—2i)=2+2i,
y un argumento de 2 4 2i es ® = n/4. Con esta eleccién de argumentos,

T I o

Op+0 ==+ —=—=0+2m7.
o + 01 2+ ) 2 + 2
Si hubiera elegido 6y = 7/2 y 0; = —n/4, entonces obtendria
9+9_n T_T_o
OTAE T Ty T
y

Yo —2i

FIGURA 8.10 7/2 es un
argumento de i,y Tr/4
un argumento de 2 — 2i.

8.1.6 Orden

Dados dos nimeros reales distintos cualesquiera a y b, exactamente unade a < b o b < a debe ser cierta. Se
dice que los niimeros reales son ordenados. Comprobard que no hay un orden de los nimeros complejos.

Para entender por qué esto es cierto, debe investigar la idea detrds del orden de los nimeros reales que
es una verdadera particion de los nimeros reales distintos de cero en dos conjuntos mutuamente exclusi-
vos, Ny P, con las siguientes propiedades:

1. Si x es un ndmero real distinto de cero, entonces x estd en P 0 —x estd en P, pero no ambos.

2. Sixyyestin en P, entonces x + y y xy estdn en P.

Piense en P como el conjunto de los nimeros positivos y en N como el conjunto de los nimeros nega-
tivos. La existencia de tal particién de los niimeros reales distintos de cero que satisface las condiciones
(1) y (2) es la razén por la cual ordena a los reales. Un orden esta establecido al definir x < y si, y sélo si
y — x estd en P. Por ejemplo, 2 < 5 yaque 5 — 2 = 3 es positivo.

(Existe una particién de los niimeros complejos distintos de cero en dos conjuntos, P y N, que tengan
las propiedades (1) y (2)? Si es asi, puede ordenar los nimeros complejos.
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Suponga que tal particién existe. Entonces i estd en P o —i estd en P, pero no ambos. Si i estd en P,
entonces 2 = —1 estd en P por (2), asi (—1)(i) = —i estd en P. Pero esto viola la condicién (1). Si —i estd
en P, entonces (—i)(—i) = i2= —1estden P, asi (—1)(—i) = i estd en P, nuevamente viola (1).

Esto prueba que tal particién no existe, y los niimeros complejos no se pueden ordenar. Siempre que
escriba z < w, estd suponiendo que z y w son nimeros reales.

SECCION 8.1 PROBLEMAS

En cada problema del 1 al 10, lleve a cabo el célculo indicado.

1.
2.

10.
11.

12.
13.
14.
15.

16.

8.2

(3 — 4i)(6 + 2i)
i(6 —2i) + |1+
24i
4-7i
Q+i)— (3 —4i)
G-D@+1i0)
(17 — 6i)(—4 — 12i)
3i
—4+8i

i3 —4i2 42
G+ip

—6+2i\2
1—8i

(=3 = 80)(2i)(4 — i)

Pruebe que, para cualquier entero positivo 7,

=1, fnt 1= 2 = 1,y 43 = —j,

Sea z = a + ib. Determine Re(z2) e Im(z2).
Sea z = a + ib. Determine Re(z2 — iz + 1) e Im(z2 — iz + 1).
Pruebe que z2 =72 si, y sdlo si z es real o imaginario puro.

Sean z, w y u nimeros complejos. Pruebe que cuando estdn
representados como puntos en el plano, estos niimeros for-
man los vértices de un tridngulo equilétero si, y sélo si

2+ w4 ud=zw+ zu+ wu.

Pruebe que Re(iz) = —Im(z) e Im(iz) = Re(z).

En cada problema del 17 al 22, determine arg(z). La respuesta
debe incluir todos los argumentos del nimero.

17.
18.
19.
20.
21.

22

3i
—242i
342
8+i
—4
3—4i

En cada problema del 23 al 28, escriba el nimero complejo en
forma polar.

23

24.
25.
26.
27.
28.
29.

30.

—2+2i
—Ti
5-2i
—4—i
8+
—1243i

Sean z y w nimeros complejos tales que 7w # 1, pero tales
que z o w tienen magnitud 1. Pruebe que

=1.

Z—w
1—zZw

Sugerencia: En los problemas que involucran magnitud,
muchas veces es util recordar el teorema 8.1(8). Para aplicar
este resultado, eleve al cuadrado ambos lados de la igualdad
propuesta.

Pruebe que para cualesquiera nimeros complejos z y w,
e+ w41z —wl? =2 (122 + wP).

Sugerencia: Tenga en mente el teorema 8.1 (8).

Lugares geométricos y conjuntos de puntos en el plano complejo

Algunas veces la notacién compleja es muy eficiente en la especificacion de lugares geométricos de pun-
tos en el plano. En esta seccidn se ilustrard esto, y también la representacién compleja de ciertos conjuntos
que aparecen frecuentemente en discusiones de integrales y derivadas complejas
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8.2.1 Distancia

Si z = a + ib es cualquier niimero complejo, |z| = v/a? + b? es la distancia del origen a z (punto (a, b))
en el plano complejo. Si w = ¢ + id también es un nimero complejo, entonces

lz—w|=1[(a—c)+i(b—d)|
=V@—?+ (b —d?

es la distancia entre z y w en el plano complejo (figura 8.11). Esta es la férmula estandar de geometria para
la distancia entre puntos (a, b) y (¢, d).

8.2.2 Circulos y discos

Si a es un nlimero complejo y r es un nimero positivo (por tanto real), la ecuacién
lz—al=r

se satisface exactamente por aquellos puntos z cuya distancia a a es r. El lugar geométrico de los puntos que
satisfacen esta condicidn es el circulo de radio r alrededor de a (figura 8.12). Esta es la manera de especifi-
car a los circulos en el plano complejo, y muchas veces se hace referencia “al circulo |z — a| = 7.

Si a = 0, entonces cualquier punto en el circulo |z| = r tiene forma polar

7= reie)

donde 6 es el dngulo desde la parte positiva del eje real a la recta desde el origen hasta z (figura 8.13).
Conforme 6 varia de 0 a 27, el punto z = rei se mueve una vez en sentido contrario al movimiento de las
manecillas del reloj alrededor de este circulo, empezando en z = r en el eje real positivo cuando 6 = 0,
encontrando i cuando 0 = n/2, —r cuando € = 7, —ri cuando 6 = 371/2, y regresando a r cuando 6 = 2.

Si a # 0, entonces el centro del circulo |z — a| = r es a en lugar del origen. Ahora un punto en el
circulo tiene la forma

z=a+ re?,

que es simplemente un sistema de coordenadas polares trasladado para tener @ como su origen (figura
8.14). Conforme 6 varia de 0 a 27, este punto se mueve una vez en sentido contrario al movimiento de las
manecillas del reloj alrededor de este circulo. Por ejemplo, la ecuacion |z — 3 + 7i| = 4 define al circulo
de radio 4 alrededor del punto (3,—7) en el plano. El nimero complejo 3 — 7i es el centro del circulo. Un
punto tipico en el circulo tiene la forma z = 3 — 7i + 4e® (figura 8.15).

y
z
|z = wl
x
w

FIGURA8.11 |z —w]|es FIGURA 8.12 FIGURA 8.13

la distancia entre 7 y w. El circulo El circulo
de radio r de radio r
alrededor de a. alrededor del

origen.
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Zo%

a
z=a+ rei?

FIGURA 8.14

y
é x
L (3 + 4 cos(9), =7 + 4 sen(6))
4 = 3-7Ti+4ei®
P A U
3,-7

FIGURA 8.15 El circulo |z — 3 + 7i| = 4.
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Una desigualdad |z — a| < r especifica a todos los puntos dentro del circulo de radio r alrededor de a.
Tal conjunto se llama un disco abierto. “Abierto” aquf significa que los puntos en la circunferencia del
circulo que acota a este disco no pertenecen al conjunto. Un punto en este circulo deberia satisfacer
|z —al =r,no |z — a| < r. En un dibujo se indica que un disco es abierto dibujando la frontera del circulo
punteada (figura 8.16). Por ejemplo, |z — i| < 8 especifica a los puntos dentro del disco abierto de radio 8

alrededor de i.

Un disco cerrado de radio r y centro a consiste de todos los puntos en o dentro del circulo de radio »
alrededor de a. Este conjunto estd especificado mediante la desigualdad débil |z — a| < r. Al mostrar este
conjunto, frecuentemente dibujamos un circulo sélido como la frontera para indicar que esos puntos estan
incluidos en el disco cerrado (figura 8.17).

8.2.3 Laecuacion |z —a| = |z - b|

Sean w; y w, nimeros complejos distintos. Una ecuacién

|z — wi| = |z — wyl

puede expresarse como “la distancia entre z y w; debe ser igual a la distancia entre z y w,”. Como lo
sugiere la figura 8.18, esto requiere que z esté en la bisectriz perpendicular del segmento de recta que
conecta a w; y w,. La ecuacién |z — w;| = |z — w,| debe, por tanto, ser considerada como la ecuacién de

esta recta.

y

Ve
(
\

8 )

2N
)
/

N7

—

X

FIGURA 8.16
lz—a|<rnel
disco abierto de
radio r alrededor
de a.

FIGURA 8.17
|z—al <rel
disco cerrado
de radio r

alrededor de a.

FIGURA 8.18

|z —al=lz— bl
se satisface
para todo z

en la bisectriz
perpendicular

al segmento ab.
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EJEMPLO 8.4

La ecuacion
|z 4 6i] = |z — 14 3i]

se satisface para todos los puntos en el bisector perpendicular del segmento entre —6i y 1 — 3i. Este es el
segmento que conecta (0,—6) y (1,—3), como se muestra en la figura 8.19.
Puede obtener la ecuacion “estdndar” de esta recta como sigue. Primero escriba

lz 4 6i]2 = |z — 1+ 3if2,

(z4+6i)(z —6i) = (z—14+3i)(z — 1 - 3i).
Esto elimina los signos de los valores absolutos. Lleve a cabo las multiplicaciones para obtener

2Z2+6i(—2)+36=z7—2z—3iz—7+1+3i+3i7—3i+09.

Seaz=x+iy. Entonces 7 — z = (x — iy) — (x + iy) = —2iyy —7 — z = —2x, asi la tltima ecuacién se
convierte en

6i(—2iy) + 36 = —2x + 3i(—2iy) + 10,

12y = —2x + 6y — 26.

Esta es la recta
1
=—= 13).
y=-—3(+13)
Ahora considere la desigualdad
|z 4+ 6i] <|z—1+3i|.

Ya sabe que la ecuacidn |z 4 6i] = |z — 1 + 3i| describa una recta separando el plano en dos conjuntos,
teniendo esta recta como frontera (figura 8.19). La desigualdad dada mantiene a los puntos en uno de
estos conjuntos, en un lado u otro de esta recta. Claramente z estd mds cerca de —6i que de 1 — 3i si z estd
abajo de la recta frontera. Asi la desigualdad especifica todos los puntos z debajo de esta recta, la regién
sombreada en la figura 8.20. La recta frontera estd punteada porque los puntos en esta recta no pertenecen
a esta region.

La desigualdad débil |z 4 6i| < |z — 1 + 3i| especifica todos los puntos en la regién sombreada de la
figura 8.21, junto con todos los puntos en la recta frontera.

) - 11 4 .
x S—_
s1—3i Lo [h1-3i
I’ ~
—6i { —6i D>
FIGURA 8.19 El lugar FIGURA 8.20 Region I consiste FIGURA 8.21 La region dada
geométrico de la ecuacion de los puntos que satisfacen por |z + 6i| <|z—1+43i|.

|z +6i| = |z — 1+ 3il. |z +6i] <|z— 1+ 3il.
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8.2.4 Otros lugares geométricos

Cuando un argumento geométrico no es claro, se intenta determinar un lugar geométrico sustituyendo
7 =x + iy en la ecuacion o desigualdad dada.

EJEMPLO 8.5

Considere la ecuacion
|z]2 + 3Re(z2) = 4.
Si z = x + iy, esta ecuacién se convierte en

X242 4 3(x2 —y?) =4,

4x2 — 2y2 = 4.

La gréfica de esta ecuacién es la hipérbola de la figura 8.22. Un niimero complejo satisface la ecuacién
dada si, y sélo si su representacién como un punto en el plano esta en la hipérbola.

y
x
K—1y?=1
FIGURA 8.22

Lugar geométrico
de los puntos z con
|z]2 + 3 Re(z2) = 4.

8.2.5 Puntos interiores, puntos frontera y conjuntos abiertos y cerrados

En el desarrollo del calculo de funciones complejas, ciertos tipos de conjuntos y puntos serdn importan-
tes. Para esta seccion sea S un conjunto de niimeros complejos. Un nimero es un punto interior de S si
estd en un sentido completamente rodeado de puntos de S.

DEFINICION 8.3  Punto interior

Un nimero complejo z es un punto interior de S si existe un disco abierto alrededor de zy que con-
tenga sélo puntos de S.

Esto significa que, para algtn r positivo, todos los puntos que satisfacen |z — zp| < r estdn en S. Cla-
ramente esto fuerza también a z; a estar en S.
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DEFINICION 8.4  Conjunto abierto

S es abierto si todo punto de S es un punto interior.

EJEMPLO 8.6

Sea K el disco abierto |z — a| < r (figura 8.23). Todo punto de K es un punto interior ya que alrededor de
cualquier punto en K es posible dibujar un disco de radio lo suficientemente pequefio que contenga s6lo
puntos en K. Asi K es un conjunto abierto, justificando la terminologia “disco abierto” usado anteriormen-
te para un disco que no inclufa ningtn punto de su circulo frontera.

EJEMPLO 8.7

Sea L consistente en todos los puntos que satisfacen |z — a| < r. Ahora L contiene puntos que no son
puntos interiores, especificamente aquellos en el circulo |z — a| = r. Cualquier disco abierto dibujado
alrededor de un punto tal contendra puntos fuera del disco L (figura 8.24). Este conjunto no es un conjunto
abierto.

EJEMPLO 8.8

Sea V consistente en todo z = x + iy con x > 0. Este es el semiplano derecho, sin incluir el eje imaginario
que forma la frontera entre los semiplanos izquierdo y derecho. Como lo sugiere la figura 8.25, todo punto
de V es un punto interior, ya que alrededor de cualquier punto zg = xo + iy con xo > 0, es factible dibujar
un disco bastante pequefio para que todos los puntos que encierre también tengan partes reales positivas.
Debido a que todo punto de V es un punto interior, V es un conjunto abierto.

EJEMPLO 8.9

Sea M consistente en todo z = x + iy con x > 0. Todo punto en M con parte real positiva es un punto inte-
rior, igual que en el ejemplo anterior. Pero no todo punto de M es interior. Un punto z = iy en el eje ima-

y
y 4
2 L } %
. K X | .
° eda N
X . e )
|~
FIGURA 8.23 FIGURA 8.24 FIGURA 8.25
Un disco abierto es Los puntos en El semiplano
un conjunto abierto |z — al = rno son Re(z) >0
(todos sus puntos son puntos interiores de (un conjunto
puntos interiores). lz—al<r abierto).
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FIGURA 8.26

El semiplano

Re(z) > 0 (no es

un conjunto abierto).

ginario estd en M pero no se puede encerrar en un disco que contenga sélo puntos en M, que tengan parte
real no negativa (figura 8.26). Como M contiene puntos que no son puntos interiores, M no es abierto.

EJEMPLO 8.10

Sea W consistente en todos los puntos en el eje real. Entonces ningiin punto de W es un punto interior.
Cualquier disco, sin importar qué tan pequefio tenga el radio, dibujado alrededor de un punto en el eje real
contendrd puntos que no estén en este eje, por tanto no en W. Ningtn punto de W es un punto interior de
w.

Regresando a la discusién general, los puntos frontera de un conjunto S son nimeros complejos que
estdn en algun sentido en el “borde” de S.

DEFINICION 8.5 Punto frontera

Un punto 7z es un punto frontera de S si todo disco abierto alrededor de z, contiene al menos un
punto en Sy al menos un punto que no esté en S.

Un punto frontera puede o no estar en S. Debido a que la definicion de punto interior y punto frontera
son exclusivos, ningin punto puede ser un punto interior y un punto frontera del mismo conjunto. El con-
junto de todos los puntos frontera de S se llama la frontera de Sy se denota 9S.

EJEMPLO 8.11

Los conjuntos K'y L de los ejemplos 8.6 y 8.7 tienen la frontera, a saber, los puntos en el circulo |z — a| = r.
K no contiene a ninguno de sus puntos frontera, mientras L los contiene a todos.

EJEMPLO 8.12

El conjunto V del ejemplo 8.8 tiene todos los puntos en el eje imaginario como sus puntos frontera. Este
conjunto no contiene ninguno de sus puntos frontera. En contraste, M del ejemplo 8.9 tiene los mismos
puntos frontera que V, a saber, todos los puntos en el eje imaginario, pero M contiene todos esos puntos
frontera.
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EJEMPLO 8.13

Para la recta real (W en el ejemplo 8.10), todo punto de W es un punto frontera. Si dibuja cualquier disco
abierto alrededor de un niimero real x, este disco contiene un punto de W, a saber, x, y muchos puntos que
no estan en W. No hay otros puntos frontera de W.

EJEMPLO 8.14

Sea E consistente en todos los nimeros complejos z = x + iy con y > 0, junto con el punto —23; (figura
8.27). Entonces —23i es un punto frontera de E, ya que todo disco alrededor de —23i ciertamente contiene
puntos que no estan en E, pero también contiene un punto de E, a saber el mismo —23i. Todo nimero real
(eje horizontal) también es un punto frontera de E.

» —23i

FIGURA 8.27 —23i es un punto
frontera de E.

Una lectura cuidadosa de la definicién prueba que todo punto de un conjunto es un punto interior o
un punto frontera.

— TEOREMA 8.3

Sea S un conjunto de nimeros complejos y sea z en S. Entonces z es un punto frontera de S o un punto
interior de S.

Prueba Suponga que z estd en S, pero no es un punto interior. Si D es cualquier disco abierto alrededor de z,
entonces D no puede contener s6lo puntos de S, y asf debe contener al menos un punto que no esté en S. Pero
D también contiene un punto de S, a saber, el mismo z. De donde z debe ser un punto frontera de S.

Sin embargo, un conjunto puede tener puntos frontera que no estén en el conjunto, como ocurre en algu-
nos de los ejemplos anteriores.
Ademas, un conjunto abierto no puede contener cualesquiera de estos puntos frontera.

— TEOREMA 8.4

Sea S un conjunto de nimeros complejos. Si S es abierto, entonces S no puede contener ningin punto
frontera.

Prueba Suponga que z estd en S'y S es abierto. Entonces algtin disco abierto D alrededor de z contiene
solamente puntos de S. Pero entonces este disco no contiene ningtin punto que no esté en S, de esta manera
z no puede ser un punto frontera de S.
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DEFINICION 8.6 ~Conjunto cerrado

Un conjunto de nimeros complejos es cerrado si contiene todos sus puntos frontera.

Por ejemplo, el disco cerrado |z — zo| < r es un conjunto cerrado. Los puntos frontera son todos los
puntos en el circulo |z — zo| = r, y todos estdn en el disco cerrado. El conjunto M del ejemplo 8.9 es cerra-
do. Sus puntos frontera son todos los puntos en el eje imaginario, y todos éstos pertenecen al conjunto.
El conjunto W del ejemplo 8.10 es cerrado, ya que todo punto en el conjunto es un punto frontera, y el
conjunto no tiene otros puntos frontera.

Los términos cerrado y abierto no son mutuamente exclusivos, y uno no es el opuesto del otro. Un
conjunto puede ser ambos, cerrado y abierto, o cerrado y no abierto, o abierto y no cerrado, o ni abierto
ni cerrado. Por ejemplo, el conjunto € de todos los niimeros complejos es abierto (todo punto es interior)
y cerrado (no hay puntos frontera, de manera que € los contiene a todos). Un disco cerrado es cerrado
pero no abierto, y un disco abierto es abierto y no cerrado. El siguiente ejemplo da un conjunto que no es
ni abierto ni cerrado.

EJEMPLO 8.15

Sea T consistente en todos los puntos z =x 4+ iycon —1 <x < 1y y> 0. En la figura 8.28 se muestra esta
banda infinita. Los puntos frontera son todos los puntos —1 + iy con y > 0, todos los puntos 1 + iy con
y > 0, y todos los puntos x con —1 < x < 1. Algunos de estos puntos estdn en 7, por ejemplo, los puntos
frontera —1 + iy con y > 0. Esto significa que 7 no puede ser abierto. Pero algunos de estos puntos frontera
no estan en 7, por ejemplo, los puntos x con —1 < x < 1. Asi T no es cerrado.

T

——Lr 11 5 x

-1 1

FIGURA 8.28 La
banda que consiste en
todo z = x + iy con
—1<x<1,y>0.

8.2.6 Puntos limite

Un ndmero z es un punto limite de S si hay puntos de S arbitrariamente cercanos a zo pero diferentes
de 20-
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DEFINICION 8.7 Punto limite

Un nimero complejo zp es un punto limite de un conjunto S si todo disco abierto alrededor de zj
contiene al menos un punto de S distinto de z.

El punto limite difiere del punto frontera en requerir que todo disco abierto alrededor del punto con-
tenga algo de S distinto de él mismo. En el ejemplo 8.14, —23i es un punto frontera de W, pero no es un
punto limite de W, porque hay discos abiertos alrededor de —23i que no contienen otro punto de W.

EJEMPLO 8.16

Para el conjunto V del ejemplo 8.8, todo punto del eje vertical es un punto limite. Dados cualesquiera de
tales puntos z, = iy, todo disco alrededor de z, contiene puntos de V distintos que iyy. Asi zj es tanto un
punto frontera como un punto limite. Este ejemplo muestra que un punto limite de un conjunto no necesita
pertenecer al conjunto. Este conjunto tiene muchos otros puntos limite. Por ejemplo, todo nimero x + iy
con x > 0 es un punto limite que también pertenece a V.

EJEMPLO 8.17

Sea Q consistente en los nimeros i/n paran = 1, 2, . . . . Todo disco abierto alrededor de 0, sin importar
qué tan pequeiio sea el radio, contiene puntos i/n en Q si elige n suficientemente grande. Por tanto, 0 es un
punto limite de Q. En este ejemplo, 0 también es un punto frontera de Q (su tnico punto de frontera).

EJEMPLO 8.18

TEOREMA 8.5

Sea N consistente en todo in, con n un entero. Entonces N no tiene puntos limite. Un disco abierto de radio
% alrededor de in puede tener solamente un punto en comtn con N, a saber, el mismo in.

Como prueban estos ejemplos, un punto limite de un conjunto puede o no estar en el conjunto. Los
conjuntos cerrados son exactamente aquellos que contienen todos sus puntos limite, en el entendido de
que un conjunto que no tiene puntos limite contiene a todos sus puntos limite.

Sea S el conjunto de nimeros complejos. Entonces S es cerrado si, y s6lo si S contiene todos sus puntos
Iimite.

Prueba Suponga primero que S es cerrado y sea w un punto limite de S. Probard que w estd en S. Suponga
que w no estd en S. Sabe que cualquier disco |z — w| < r debe contener un punto z, de S distinto de w. Pero
entonces este disco contiene un punto en S (a saber z,) y un punto que no estd en S (a saber el mismo w).
Por tanto, w es un punto frontera de S. Pero S es cerrado y entonces contiene todos sus puntos frontera, en
particular w. Esta contradiccion muestra que w debe estar en S, asi S contiene todos sus puntos limite.

En sentido inverso, suponga que si w es un punto limite de S, entonces w estd en S. Quiere probar que
S es cerrado. Para hacer esto, probaremos que S contiene sus puntos frontera. Sea » un punto frontera de S.
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Suponga que b no estd en S. Si |z — b| < res un disco abierto alrededor de b, entonces este disco contiene
un punto de S, ya que b es un punto frontera. Pero este punto no estd en b, porque supuso que b no estaba
en S. Entonces todo disco abierto alrededor de b contiene un punto de S distinto de b, asi b es un punto
limite de S. Pero habia supuesto que todo punto limite de S estaba en S, asi b estd en S. Esta contradiccion
prueba que S contiene todos sus puntos frontera, por tanto S es cerrado.

Aqui hay algunos ejemplos adicionales de puntos limite.

EJEMPLO 8.19

Sea X consistente en todos los nimeros 2 — i/n,conn =1, 2, . . . . Entonces 2 es un punto limite (y punto
frontera) de X. No hay otros puntos limite de X.

EJEMPLO 8.20

Sea Q consistente en todos los nimeros complejos a + ib con a y b nimeros racionales. Entonces todo
nimero complejo es tanto un punto limite como un punto frontera de Q. Algunos puntos limite de Q estan
en Q (si ay b son racionales), y algunos no lo estan (si a o b es irracional).

EJEMPLO 8.21

Sea P consistente en todos los niimeros complejos x + iy con —1 <y < 1. Entonces cada punto de P es un
punto limite, y los x 4 i también son puntos limite de P que no pertenecen a P.

EJEMPLO 8.22

Sea D el disco abierto |z — zo| < r. Todo punto en D es un punto limite. Sin embargo, los puntos en el circulo
frontera |z — zy| = r, el cual no pertenece a D, también son puntos limite, asi como puntos frontera, de D.

8.2.7 Sucesiones complejas

La nocién de sucesion compleja es una adaptacion directa del concepto de sucesion real.

DEFINICION 8.8  Sucesién

Una sucesion compleja {z,} es una asignacién de un nimero complejo z, a cada entero positivo .

El nimero z, es el n-ésimo término de la sucesién. Por ejemplo, {i"} tiene n-ésimo término i".

Frecuentemente se indica una sucesion haciendo una lista de los primeros términos, incluyendo sufi-
cientes términos de manera que el patrén quede claro y uno pueda predecir que z, es para cada n. Por
ejemplo, puede escribir {i"} como

LB,



394

CAPITULO 8  Geometria y aritmética de los mimeros complejos

y
Zn+3
L L]
2y . *Zp+2
L]
Zn+1
° 7 d
g s
X
L Vo)
° 7

FIGURA 8.29 Convergencia de
{z.} a L.

La convergencia de sucesiones complejas también estd modelada a partir de la convergencia de suce-
siones reales.

DEFINICION 8.9 Convergencia

La sucesion compleja {z,} converge a un niimero L si, dado cualquier nlimero positivo €, existe un
nimero positivo N tal que

|z, — L <€ sin>N.

Esto significa que puede hacer cada término z, tan cerca como quiera de L eligiendo n al menos
tan grande como algin ntimero N. Puesto de otra manera, dado cualquier disco abierto D alrededor de
20, puede encontrar algin término de la sucesiéon de manera que todos los términos de la lista a partir
de €l (esto es, para un indice suficientemente grande) caiga en D (figura 8.29). Esta es la misma idea
que estd detrds de la convergencia de sucesiones reales, excepto en que los intervalos abiertos en la
recta real son reemplazados por discos abiertos. Cuando {z,} converge a L, se escribe z, — L o lim,_, o,
z, = L. Si una sucesién no converge para ninglin nimero, entonces la sucesion diverge.

EJEMPLO 8.23

La sucesion {i"} diverge. Esta es la sucesion

i, =1, =i 1,61 —i1 ...
y no hay ningtin punto en la sucesion anterior a partir del cual todos los términos se aproximen a un nime-
ro especifico tanto como quiera. Por ejemplo, si toma el disco |z — i|] < %, entonces los primeros términos

de la sucesion, y cada cuarto término a partir de éste, estd en el disco, pero ningin otro término estd en
este disco.

EJEMPLO 8.24

La sucesion {1 + i/n} converge a 1. Esto se sigue a partir de la definicidn ya que, si € > 0, entonces

(1+2)-1-

si n se elige mayor que 1/6. Dada € > 0, puede elegir N = 1/¢ en la definicién de convergencia.

n

= —<E€
n
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La convergencia de una sucesion compleja siempre se puede reducir a un problema de convergencia
de dos sucesiones reales.

— TEOREMA 8.6

Sea z, = x, + iy, y L = a + ib. Entonces z, — L si, y s6losix, - ayy, — b.

Por ejemplo, sea z, = (1 4+ 1/n)" 4+ ((n + 2)/n)i. Sabe que

1 n
Iim (1 + —) =e
n—00 n

y
, 2
Iim nt =1.
n—-oo n
Entonces

Iim z, =e+i.
n— oo

Prueba Suponga primero que z, — a + bi. Sea € > 0. Para alguna N, |z, — L| < € si n > N. Entonces,
por el teorema 8.2(1), paran > N,

|xn - Cl| = |RC(Z,1 - L)l =< |Zn - Ll <€,
asi x, — a. Andlogamente, sin > N,
[y = bl = [Im(z, = L)| < |z, = L| <,

asiy, — b.
Inversamente, suponga que x, — a'y y, — b. Sea € > 0. Para algtin Ny,

€
|x, —al < = sin> Nj.
2
Para algtn N,,
€ .
|y,,—b|<§ sin > Nj.
Entonces, paran > N; + N,
. € €
|zn — Ll = [(xn —a) +i(yn — b)| < |xpn —al + |yu — DI <§+§=€,

probando que z, — L.

La nocién de convergencia de una sucesién compleja estd intimamente ligada al concepto de punto
limite de un conjunto.

— TEOREMA 8.7

Sea K un conjunto de nimeros complejos y sea w un nimero complejo. Entonces w es un punto limite de
K si, y sdlo si existe una sucesion {k,} de puntos en K, con cada k,, # w, que converge a w.

Esta es la razén para el nombre punto limite. Un niimero w puede ser un punto limite de un conjunto
s6lo si w es el limite de la sucesién de puntos en el conjunto, todos distintos de w. Esto se satisface si w
estd o no él mismo en el conjunto.
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Por ejemplo, considere el disco abierto unitario |z] < 1. Sabe que i es un punto limite del disco, porque
cualquier disco abierto alrededor de i contiene puntos del disco unitario diferentes de i. Pero también pue-
de encontrar una sucesién de puntos en el disco unitario que converja a i, por ejemplo, z, = (1 — 1/n)i.

Prueba Suponga primero que w es un punto limite de K. Entonces para cada entero positivo n, el disco
abierto de radio 1/n alrededor de w debe contener un punto de K distinto de w. Elija tal punto y lldmelo
k,. Entonces cada k,, # w, k, estien K, y |k, — w| < 1/n. Como 1/n — 0 conforme n — oo, entonces {k,}
converge a w.

Inversamente, suponga que hay una sucesion de puntos k, en K, todos distintos de w y que convergen
a w. Sea D cualquier disco abierto alrededor de w, de radio €. Debido a que k, — w, D debe contener
todos los k, para n mayor que algtin nimero N. Pero entonces D contiene puntos de K diferentes de w, y
por tanto w es un punto limite de K.

8.2.8 Subsucesiones

Una subsucesion de una sucesion se forma eligiendo ciertos términos para producir una nueva sucesion.

DEFINICION 8.10 Subsucesién

Una sucesion {w;} es una subsucesion de {z,} si existen enteros positivos
n<n<:---

tales que

La subsucesion estd, por tanto formada a partir de {z,} enlistando los términos de esta sucesion,
21, 22,33 - - -
y eligiendo después, en orden de izquierda a derecha, algunos de los z; para formar una sucesién nueva.

Una subsucesion es una sucesion por si misma pero consiste en términos selectos de una sucesion dada
de antemano.

EJEMPLO 8.25

Sea z, = i". Puede definir muchas subsucesiones de {z,}, veamos una. Sea
Wj=24j

paraj=1,2,....Entonces cada w; = z4; = i*/ = 1, y todo término de esta subsucesion es igual a 1. Aqui
n; = 4j en la definicion.

Si una sucesién converge, entonces toda subsucesion de ella converge al mismo limite. Para ver esto,
suponga que z, — L. Sea D un disco abierto alrededor de L. Entonces “eventualmente” (esto es, para n
suficientemente grande), todo z, estd en D. Si {w;} es una subsucesion, entonces cada w; = s asi even-
tualmente todos estos términos estardn también en D y la subsucesion también converge a L.

Sin embargo, una subsucesion de una sucesion divergente puede diverger, o puede converger, como
muestra el ejemplo 8.25. La sucesion {i"} diverge, pero puede elegir una subsucesion que tenga todos sus
términos iguales a 1, y esta subsucesién converge a 1.
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También es posible que una sucesidn divergente no tenga subsucesiones convergentes. Por ejemplo,
sea z, = ni. Esta sucesion diverge, y no es posible elegir una subsucesion que converja. Ahora no importa
qué subsucesion se elija, sus términos creceran sin cota conforme avance en la subsucesion.

En este ejemplo, la sucesién {ni} no estd acotada, por tanto es divergente, y cualquier subsucesion
tampoco estd acotada y es divergente. Obtendra un resultado mas interesante para sucesiones acotadas.

DEFINICION 8.11  Sucesién acotada

{z,} es una sucesion acotada si para algin nimero M, |z,| < Mparan=1,2,....

Alternativamente, una sucesion estd acotada si existe algin disco que contenga todos sus elementos.
Toda sucesion acotada, convergente o no, tiene una subsucesién convergente.

TEOREMA 8.8

Sea {z,} una sucesién acotada. Entonces {z,} tiene una subsucesién convergente.

Este resultado tiene consecuencias importantes, por ejemplo, en el teorema integral de Cauchy.
Suponga el resultado correspondiente para una sucesion acotada real, la conclusién para una sucesién
acotada compleja se sigue del teorema 8.6.

Prueba Sea z, = x,, + iy, una sucesion acotada. Entonces {x,} es una sucesion real acotada, de manera
que tiene una subsucesion {x,lj} que converge a algiin nimero real a. Pero entonces { y,lj} también es una
sucesion real acotada, y asi tiene una subsucesion convergente {y, } que converge a algin nimero real
b. Usando estos indices, se forma la subsucesion {xnjk} de {x,;}. Esta subsucesion también converge a a.
Entonces {x,,jk + iynjk} es una subsucesion de {z,} que converge a a + ib.

8.2.9 Compactibilidad y el teorema de Bolzano-Weierstrass

DEFINICION 8.12  Conjunto acotado

Un conjunto K de nimeros complejos estd acotado si, para algin nimero M, |z| < M para todo z
en K.

Un conjunto acotado es, por tanto, uno cuyos puntos no pueden estar arbitrariamente lejos del origen.
Ciertamente cualquier conjunto finito esta acotado, como cualquier disco abierto o cerrado. El conjunto
de puntos in, para n entero, no esta acotado.

Los conceptos de conjunto cerrado y conjunto acotado son independientes. Sin embargo, cuando son
combinados, caracterizan a unos conjuntos que tienen propiedades que son importantes en el analisis de
funciones complejas. Tales conjuntos se llaman compactos.
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TEOREMA 8.9 Bolzano-Weierstrass
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DEFINICION 8.13 Conjunto compacto

Un conjunto K de nimeros complejos es compacto si es cerrado y acotado.

Cualquier disco cerrado es compacto, mientras que un disco abierto no lo es (no es cerrado). El con-
junto de puntos in para n entero no es compacto ya que no esta acotado (a pesar de ser cerrado). Cualquier
conjunto finito es compacto.

Ahora probara que cualquier conjunto compacto infinito debe contener al menos un punto limite. Este
es un resultado notable, ya que los conjuntos cerrados no tienen que contener (o incluso tener) ningtin
punto limite, y los conjuntos acotados no necesitan tener puntos limite.

Sea K un conjunto compacto infinito de nimeros complejos. Entonces K contiene un punto limite.

Prueba Como K es cerrado, cualquier punto limite de K debe estar en K. Se concentrard por tanto en
demostrar que hay un punto limite de K.

Elija cualquier nimero z; en K. Debido a que K es infinito, puede elegir un segundo nimero z; en K,
distinto de z;. Ahora elija algiin z3 en K distinto de z; y z, y contintie este proceso. De esta manera genera
una sucesion infinita {z,} de puntos distintos en K. Como K es un conjunto acotado, esta sucesion es aco-
tada. Por tanto, {z,} contiene una subsucesion {znj} que converge a algin nimero L. Como cada término
de esta sucesion es distinto de todos los demds, elija la subsucesion de manera que ningiin z,,, sea igual a

L. Por el teorema 8.7, L es un punto limite de K.

Ahora estd listo para empezar el cdlculo de funciones complejas.

SECCION 8.2 PROBLEMAS

En cada problema del 1 al 11, determine el conjunto de todos
los puntos z que satisfacen la ecuacién o la desigualdad dada.
En algunos casos puede ser conveniente que especifique el con-
junto con un diagrama claramente etiquetado.

Im(z — i) =Re(z + 1)

2] =Im(z — i)

1. |z—-8+4il=9
2. |zl =1z -1

3. |22 +Imz) =16
4. lz—il+1z2l=9
5. |zl +Re(z) =0
6. z+72=4

7.

8.

9.

lz+1+6i=|z—3+1
10. |z —4i]| <|z+ 1]
1. [z+2+i>z—1]

En cada problema del 12 al 19, un conjunto de puntos (nime-
ros complejos) estd dado. Determine si el conjunto es abierto,
cerrado, abierto y cerrado, o ni abierto ni cerrado. Determine
todos los puntos limite del conjunto, todos los puntos frontera,
y la frontera del conjunto. También determine si el conjunto es
compacto.

12. S es el conjunto de todos los puntos z con |z] > 2.

13. K es el conjunto de todos los puntos z que satisfacen |z — 1|
<lz+4il.

14. T es el conjunto de los puntos z con 4 < |z + i| < 8.
15. M consiste en todos los puntos z con Im(z) < 7.

16. R es el conjunto de todos los nimeros complejos 1/m +
(1/n)i, en donde m y n pueden ser enteros positivos.

17. U es el conjunto de todos los puntos z tal que 1 < Re(z) < 3.

18. Ves el conjunto de todos los puntos z tal que 2 < Re(z) <3
y—1<Im(z) < 1.
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19. W consiste en todos los puntos z tales que Re(z) > (Im(2))>2.

20. Suponga que S es un conjunto finito de nimeros complejos,
a saber consiste en los ndmeros z, 2o, . . . , Zp.

(a) Pruebe que S no tiene punto limite.
(b) Pruebe que todo z; es un punto frontera de S.
(c) Pruebe que S es cerrado.

En cada problema del 21 al 27, encuentre el limite de la suce-
sion, o establezca que la sucesion diverge.

21. {1+ 2in }
n

+1

22. {i?n}

23.

24.
25.
26.

27.

28.

29.

1+2n2 n—1.
}’12 B n !

{enn[/3}
{=@#n}

{sen(n)i}
1+ 3n2i
22 —n

Considere la sucesion {e"7”3} del problema 24. Encuentre
dos subsucesiones convergentes diferentes de esta sucesion.

Encuentre dos subsucesiones convergentes diferentes de la
sucesion {27} del problema 22.






9.1

CAPITULO 9

Funciones complejas

Limites, continuidad y derivadas

Una funcion compleja es una funcion que estd definida para los niimeros complejos en algtin conjunto S
y toma valores complejos. Si € denota al conjunto de los nimeros complejos, y fes tal funcién, entonces
f: S — €. Esto simplemente significa que f (z) es un nimero complejo para cada z en S. El conjunto S se
llama el dominio de f. Por ejemplo, sea S consistente de todos los z con |z| < 1y se define f (z) = 72 para z
en S. Entonces f: S — € fes una funcién compleja.

Con frecuencia se define una funcién por alguna expresion explicita en z, por ejemplo,

z+i
2244

f@)=

Si no se especifica el dominio S, se acuerda permitir a todo z para el cual la expresion f (z) esté definida.
Dicha funcién esta, por tanto, definida para todo complejo z excepto 2i y —2i.

9.1.1 Limites

La notacion de limite para una funcién compleja estd modelada a partir de la de funciones con valores
reales, reemplazando intervalos por discos.

DEFINICION 9.1  Limite

Seaf: S — € una funcién compleja y sea zo un punto limite de S. Sea L un ndimero complejo.
Entonces

lim f(z) =L
Z—20

401
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si, y s6lo si, dado € > 0, existe un niimero positivo ¢ tal que

If(@) —L| <e

para todo z en S tal que
0<|z—2z0| <§6.

Cuando lim,_, f(z) = L, L es el limite de f(z) conforme z se acerca a .

Asi, lim,,,; f(z) = L si es factible hacer que los valores de la funcién f (z) estén arbitrariamente
cercanos (a menos de € ) a L eligiendo z en S (de manera que f (z) esté definida) y suficientemente cerca
(a menos de §) a zo, pero de hecho no igual a zy. La condicién 0 < |z — zo| < § excluye al punto zy. S6lo
interesa el comportamiento de f (z) en otros puntos cercanos a z.

Dicho de otra manera, dado un disco abierto D, de radio ¢ alrededor de L, debe encontrar un disco
abierto Dy de radio § alrededor de 7y de manera que cada punto en Dg, excepto el mismo z,, que también
estd en S, es mandado por la funcién a D.. Esto se ilustra en la figura 9.1.

Aunque en esta definicién no se pide que f (z) esté definida, si requiere que haya puntos arbitraria-
mente cercanos a z en los cuales f(z) estd definida. Esto se asegura haciendo que z sea un punto limite de
Sy es larazon por la cual se hace este requerimiento en la definicién. No tiene sentido hablar de un limite
de f (z), conforme z se acerca a zy, si f (z) no estd definida conforme z se acerca a z.

Aun si f(zp) estd definida, no se esta pidiendo que f(zg) = L.

EJEMPLO 9.1
Sea
22 paraz # i
f@)= ,
0 paraz =i
Entonces lim,_,; f (z) = —1, pero el limite no es igual a f (0). Aun si f (0) no estuviera definida, todavia

podria tener lim,_,; f(z) = —1. ™

Frecuentemente se escribe
f(z) > L conforme z — 29
cuando lim__, f(z) = L.
Muchos teoremas de limite del cdlculo real también son vélidos para funciones complejas. Suponga
que lim__,; f(z) = Ly lim__,, g(z) = K. Entonces
lim [f(z) +¢@]=L+K,
=20
lim [f(z) —g(2)] =L - K,
=20
lim cf(z) = cL para cualquier nimero c,

Z—>20

zlir?()[f(Z)g(Z)] =LK,
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y
4
y D e 2
D 7L
2 - f(2)
6 20 X
X
|
FIGURA9.1 lim,,,f(z) =L. FIGURA 9.2 7 se aproxima a zy
a lo largo de cualquier trayectoria
en la definicion de lim,_;, f (2).
y, si K # 0,
p Z L
lim —f( ) = —.
=20 g(2) K

Una diferencia significativa entre los limites de funciones complejas y los limites de funciones reales
es la manera en que la variable se aproxima al punto. Para una funcién real g, 1im,_,, g(x) involucra el
comportamiento de g(x) conforme x se aproxima a a por cualquier lado. En la recta hay s6lo dos maneras
de que x pueda aproximarse a a. Pero lim__,., f (z) = L involucra el comportamiento de f (z) conforme
z se aproxima a 7o en el plano complejo (o en un conjunto especifico S de valores aceptables) y esto
puede involucrar que z se aproxime a z, desde cualquier direccion (figura 9.2). Los nimeros f (z) deben
aproximarse a L a lo largo de cualquier trayectoria de aproximacién de z a zp en S. Si a lo largo de una
sola trayectoria de aproximacién de z a zp, f (z) no se aproxima a L, entonces f (z) no tiene limite L ahi.
Esto hace que lim,_,; f (z) = L en el plano complejo sea un enunciado més fuerte que su contraparte
real, exigiendo mds de f (z) para z cerca de zo que lo que se exige a funciones reales. Mds adelante se
profundizard en este hecho para obtener propiedades acerca de las funciones complejas.

9.1.2 Continuidad

DEFINICION 9.2

Una funcién complejaf: S — € es continua en un nimero zq en S si, y solo si
lim f(z) = f(zo0).
Z—20

fes continua en un conjunto K si fes continua en cada punto de K. En particular, si fes continua
en todo punto z para el cual f (z) estd definida, entonces f es una funcion continua.

Muchas funciones familiares son continuas. Cualquier polinomio es continuo para todo punto z, y
cualquier funcién racional (cociente de polinomios) es continua si su denominador es distinto de cero.
Cuando tenga versiones complejas de las funciones trigonométricas y exponenciales, verd que también
son continuas.

Si f es continua en z,, también lo es | f|. Debe esperar esto. Si conforme se elige z més cerca de zo,
f(2) llega a estar mds cerca de f(zy), entonces es razonable que |f(z)| se aproxime a |f(z)|. Més
rigurosamente,

0=<lf@|=I[foll =1f() = f(zo) = 0

si 1im, . £ (2) = f (20)-
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TEOREMA 9.1

TEOREMA 9.2
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Si {z,} es una sucesién de nimeros complejos y cada f (z,,) estd definida, entonces {f (z,)} también es
una sucesion compleja. Por ejemplo, si f(z) = 2z2y z, = 1/n, entonces f (z,) = 2/n2. Se afirma que {f (z,)}
converge si {z,} converge, cuando f'es continua. Otra manera de decir esto es que la continuidad conserva
la convergencia de sucesiones.

Seaf: S — € continua, y sea {z,} una sucesién de nimeros complejos en S. Si {z,} converge a un nimero
w en S, entonces {f (z,)} converge a f(w). M

Aqui estd la idea detrds del teorema. Como f es continua en w, entonces lim,_,,, f (z) = f (w). Esto
significa que f (z) debe aproximarse a f (w) a lo largo de cualquier trayectoria de aproximacién de z a w en
S. Pero, si z, = w, las z, determinan una trayectoria de aproximacion de la variable z a w. Entonces f (z)
debe aproximarse a f (w) a lo largo de esta trayectoria, y por tanto f (z,) — f (w).

También se puede probar el reciproco del teorema 9.1. Si f (z,) — f (w) para toda sucesion {z,} de
puntos de S que converge a w, entonces f es continua en w.

Ahora desarrolle una propiedad importante de funciones continuas. Primero, defina una funcién
compleja (continua o no) acotada, si los nimeros f (z) no se vuelven arbitrariamente grandes en mag-
nitud.

DEFINICION 9.3 Funcién acotada

Seaf: S — €. Entonces f es una funcién acotada si existe un nimero positivo M tal que

lf@) =M

para todo z en S.

Alternativamente, f'estd acotada si existe un disco alrededor del origen que contiene todos los niimeros
f(z)parazensS.

Una funcién continua no necesita ser acotada ( f (z) = 1/z para z # 0). Sin embargo, una funcién con-
tinua definida en un conjunto compacto estd acotada. Esto es andlogo al resultado de que toda funcién real
que es continua en un intervalo cerrado es acotada. En la recta real, los intervalos cerrados son conjuntos
compactos.

Seaf: S — €. Suponga que S es compacto y f'es continua en S. Entonces f es acotada. M

Prueba Suponga que f no es acotada. Entonces, si n es un entero positivo, el disco de radio » alrede-
dor del origen no puede contener todas las f (z) para z en S. Esto significa que hay algtn z, en S tal que
| f @] > n.

Ahora {z,} es una sucesién de puntos en el conjunto acotado S, por tanto tiene una subsucesion
convergente {an}- Esta subsucesion converge a w. Entonces w es un punto limite de S, y S es cerrado, de
manera que w también estd en S.

Debido a que fes continua, f (z,,j) — f(w). Entonces, para algin N, es posible hacer que cada f (z,,j)
esté en el disco abierto de radio 1 alrededor de w eligiendo n; > N. Pero esto contradice el hecho de que
cada | f (z,,j )| > n;. Por tanto, f debe ser una funcion acotada. ™
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Es factible mejorar este teorema de la siguiente manera. Ademds de ser acotada, se afirma, bajo las
condiciones del teorema anterior que, | f (z)|, que es un valor real, alcanza un maximo y un minimo en S.

TEOREMA 9.3

Sea f: S — € continua, y suponga que S es compacto. Entonces existen nimeros z; y 7, en S tales que,
paratodo zen S,

lf Dl = 1@ = 1f(z2)].

9.1.3 La derivada de una funcién compleja

DEFINICION 9.4 Derivada

Seaf: S — €y suponga que S es un conjunto abierto. Sea zq en S. Entonces f es diferenciable en z,
si, para algin nimero complejo L,

lim f(ZO +h) - f(ZO) _

h—0 h

1L

En este caso llamamos L a la derivada de fen zq y la denota por f'(z).
Si f es diferenciable en cada punto de un conjunto, entonces f es diferenciable en este
conjunto.

La razén para pedir S abierto en la definicidn es estar seguros que existe algiin disco abierto alrededor
de zo en donde f (z) esté definida. Cuando el nimero complejo / es en magnitud suficientemente pequefio,
entonces zo +h estd en el disco y f(zo + h) estd definida. Esto permite que 4 se aproxime a cero desde
cualquier direccién en el limite que define la derivada. Esto tendrd ramificaciones importantes en las
ecuaciones de Cauchy-Riemann.

EJEMPLO 9.2

Sea f (z) = z2 para todo complejo z. Entonces

. e+ =72
"(z) = lim ———" = lim 2z +h) =2
1@ = i = = fim @b =22
paratodoz. M

Para funciones familiares tales como los polinomios, se aplican las reglas usuales para derivadas.
Por ejemplo, si n es un entero positivo y f (z) = z%, entonces f'(z) = nz»—1. Cuando desarrolle la funcién
compleja seno f (z) = sen(z), verd que f'(z) = cos(z). Otras férmulas familiares de derivadas son:

(f+8)'@ = f'(2)+8 @,
(f —9'@=f2) - ¢,
(cf) (2) = cf'(2),
(fe)'(2) = f(2)g'(2) + f(2)g(2),
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(f) @ = g f'(2) = f2)g'(2) S g(2) £ 0.

g [¢()]2

Estas conclusiones suponen que las derivadas involucradas existen. También hay una versién compleja
para la regla de la cadena. Recuerde que la composicion de dos funciones esta definida por

(f e 8)(z) = f(g(2)).
La regla de la cadena para diferenciar una composicién es
(fo8) (@) = f'(g)g (),

suponiendo que g es diferenciable en z y f'es diferenciable en g(z).
Frecuentemente f'(z) se denota usando la notacién de Leibniz

df
dz’
En esta notaciodn, la regla de la cadena es
4 (e =22
dz 8= 0w dz’

donde w = g(2).
No todas las funciones son diferenciables.

EJEMPLO 9.3

TEOREMA 9.4

Sea f (z) = z. Demostrard que f no es diferenciable en ningtin punto. Para ver por qué esto es cierto,
calcule

f@+h) —f@ z+h-2
h - h

Busque el limite de este cociente conforme 7 — 0. Pero este limite estd en el plano complejo, y el nlimero
complejo & debe poder aproximarse a cero a lo largo de cualquier trayectoria. Si & se aproxima a cero a lo
largo del eje real, entonces h es real, h = h'y h/h = 1 — 1. Pero si h se aproxima a cero a lo largo del eje
imaginario, entonces i = ik para k real, y

=—=—-1—- -1

h
h ik

conforme k — 0. El cociente h/h se acerca a nimeros distintos conforme /4 se aproxima a cero a lo largo
de trayectorias distintas. Esto significa que

Iim —

h—0h
no existe, de manera que f'no tiene derivada en ningtin punto. M

Como en el caso de las funciones reales, una funciéon compleja diferenciable es continua.

Sea f diferenciable en z,. Entonces f es continua en z,. M
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Prueba Sabe que

Iim
h—0

h) —
(f(zo+ 2 f (o) —f/(zo)> _o.

Sea

fo+h) — fzo)

e(h) = Y

1 (o).

Entonces lim;,_,y €(h) = 0. Mas atn,
f(zo+h) = f(z0) = hf'(z0) + he(h).

Como el lado derecho tiene limite cero conforme & — 0, entonces

]ll’_)mo[f(ZO +h) — f(z0)] =0.

Esto es lo mismo que

}}1_1)1% f(zo+h) = f(zo0),

que a su vez implica que lim__, f(z) = f (zo). Por tanto, fes continua en zo. H

9.1.4 Las ecuaciones de Cauchy-Riemann

Obtendra un conjunto de ecuaciones diferenciales parciales que deberdn ser satisfechas por las partes real
e imaginaria de una funcién compleja diferenciable. Estas ecuaciones también juegan un papel importante
en la teoria del potencial y en el tratamiento del problema de Dirichlet.

Sea f una funcién compleja. Si z = x + iy, siempre escriba

f@) = flx+iy) =ulx,y) +ivix,y),

en donde u y v son funciones con valores reales de las dos variables reales x y y. Entonces

u(x,y) =Re[f(z)] y wv(x,y)=Im[f(z)]

EJEMPLO 9.4
Sea f (z) = 1/z para z # 0. Entonces
. I x—iy x .y
f(x+ly)_x+iy Cox4iyx—iy x24y? lx2+y2'
Para esta funcion
Y
u(x, = —— v(x, =—— N
(x,y) 212 Y (x,y) 212

Ahora obtendra una relacién entre las derivadas parciales de u y v en cualquier punto
donde fes diferenciable.

TEOREMA 9.5 Ecuaciones de Cauchy-Riemann

Seaf:S — €, con S un conjunto abierto. Escriba f = u + iv. Suponga que z = x +iy es un punto de S'y
() existe. Entonces, en (x, y),

ou B ov ov ou

ax dy O ox 9y
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Prueba Empiece con

h) — 4
h—0 h
Sabe que este limite existe, entonces debe tener el mismo valor, f'(z), sin importar c6mo se aproxima % a

cero. Considere dos trayectorias de aproximacién de & al origen.
Primero, sea 7 — 0 a lo largo del eje real (figura 9.3). Ahora hesreal,y z + h=x + h + iy.

Entonces
12 , “(x+h»y)+iv(x+h»y)—M(x,y)—iv(x»y)
f'(z) = lim
h—0 h
y
. <u(x+h»)’)—u(xs)’) .U(-x+hsy)_v(x1y))
h = lim +i
X h—0 h h
du . Jv
FIGURA 9.3 = —+i—.
ax ax
Ahora, tome el limite a lo largo del eje imaginario (figura 9.4). Ponga i = ik con k real, asi h — 0
conforme k — 0. Ahoraz=x+i(y + k) y
Coulx,y+k)+ivx,y+k)—ulx,y) —iv(x,
v £(2) = 1im (x,y+k) ( y.) (x,y) (x, )
k—0 ik
h =ik C (lu(x,y+k)—u(x,y) vx,y+k) —v(x,y)
X = Ilim [ - +
k=0 \ 1 k k
ou n dv
= —]— _—,
FIGURA 9.4 3y | ay
en donde ha usado el hecho que 1/i = —i.
Ahora tiene dos expresiones para f'(z), de manera que deben ser iguales:
du . Jv ou  dv

3 +1 Pl —i 5 + @ .
Haciendo la parte real del lado izquierdo igual ala parte real del lado derecho, y después la parte imaginaria del

lado izquierdo a la parte imaginaria del lado derecho, se obtienen las ecuaciones de Cauchy-Riemann. M

Un resultado extra que se obtiene de esta prueba es que también ha obtenido férmulas para f'(z) en
términos de las partes real e imaginaria de f (z). Por ejemplo, si f (z) = z3, entonces

f@) = fx+iy) = (x +iy)® = x> = 3xy* +i(B3x%y — 7).
Entonces
u(x,y) =x3 =3xy% y w(x,y) =3x%y -y,

de manera que
d av
()= a +i— = (3x2 —3y2> +1i(6xy).
ox ox

Esto muestra autométicamente las partes real e imaginaria de f'(z). Por supuesto, para esta funcién sencilla
es igualmente fécil escribir directamente

f(z) =322 =3(x +iy)> = 3(x* — y?) + 6xyi.

Las ecuaciones de Cauchy-Riemann constituyen una condicién necesaria para que f sea diferenciable
en un punto. Si no se satisfacen, entonces f'(z) no existe en ese punto.
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EJEMPLO 9.5

Sea f(z) = z. Entonces f(z) = x — iy y u(x, y) = x, v(x, y) = —y. Ahora

a d
g, 0
ax dy

asf las ecuaciones de Cauchy-Riemann no se cumplen para f, en cualquier punto, y por tanto f no es dife-
renciable en ningtin punto. M

EJEMPLO 9.6

Sea f (z) = z Re(z). Entonces
fx+iy) =(x+iy)x =x2 +ixy,

asi u(x, y) = x2y v(x, y) = xy. Ahora

du av
— =2, —=x
ax ay

y
ou _0 v
ay  ax Y

Las ecuaciones de Cauchy-Riemann no se cumplen en ningtin punto excepto en z = 0. Esto significa que
fno es diferenciable en z si z # 0, pero puede tener derivada en 0. De hecho, esta funcién es diferenciable
en 0, ya que

£(0) = lim FW=FO _ o Re(h) =0. m
h—0 h h—0
Mientras que las ecuaciones de Cauchy-Riemann son condiciones necesarias para la diferenciabilidad,
no son suficientes. Si las ecuaciones de Cauchy-Riemann se satisfacen en un punto z, entonces f puede
o no ser diferenciable en z. En el ejemplo anterior, las ecuaciones de Cauchy-Riemann se satisfacen en
el origen y f'(0) existe. A continuacién un ejemplo en el cual las ecuaciones de Cauchy-Riemann se

satisfacen en el origen, pero f no tiene derivada ahi.

EJEMPLO 9.7

Sea

2/ z)* paraz # 0
fl@)=
0 paraz =0

Demostrard que las ecuaciones de Cauchy-Riemann se satisfacen en z = 0 pero que f no es diferenciable
en 0. Primero algo de dlgebra para obtener

Sxy* — 10x3y? +x
(x2 + y2)2

y> — 10x2y® + 5x*y
(x2 + y2)2

ulx,y) = si (x, y) # (0,0),

v(x,y) = si(x,y) # (0,0),
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u(0,0) =v(0,0) =0.

Calcule las derivadas parciales en el origen:

du . u(h,0) —u(,00 .k
—0,0)=1lim ——— "~ — lim — = 1;
ax( ) h—0 h h—0 hh*
9 0, h) — u(0,0
0.0y = 1im 1O =100 o0
ay h—0 h h—0
0.0y = tim YO =vO0 6.
0x h—0 h h—0
y
v(0,h) —v(0,0) . K
_—_— 111’1’1 =1.

% 0,0) = 1im
dy >0 h " h—0 hh4

Por tanto, las ecuaciones de Cauchy-Riemann se satisfacen en el origen. Sin embargo, fno es diferenciable
en 0. Considere

FO+m—FO B B _h_2_<ﬁ)2
h T hn)t hah?: @2 \n)

Asegure que (h/h)2 no tiene limite conforme /1 — 0. Esto se puede ver facilmente convirtiendo a la forma
polar. Si h = re?? , entonces h = re=¥'y

2 2,26
B\ 2 e e
n) T rle-2i6 T :

En la recta que forma un dngulo 6 con el eje real positivo (figura 9.5), el cociente

JO+h) - f(0)
h

tiene el valor constante e?, y asi se aproxima a este nimero conforme 4 — 0. Por tanto, el cociente de
las diferencias se aproxima a valores diferentes a lo largo de distintas trayectorias, y asi no tiene limite
conforme h — 0. W

Este ejemplo significa que debe agregar algunas condiciones a las ecuaciones de Cauchy-Riemann
para garantizar la existencia de la derivada en un punto. El siguiente teorema da las condiciones suficien-
tes para la diferenciabilidad.

FIGURA 9.5



TEOREMA 9.6

TEOREMA 9.7

9.1 Limites, continuidad y derivadas 411

Sea f: S — € una funcién compleja, con S un conjunto abierto. Sea f = u + iv. Suponga que u, v y sus
primeras derivadas parciales son continuas en S. Asimismo u y v satisfacen las ecuaciones de Cauchy-
Riemann en S. Entonces f es diferenciable en cada punto de S. M

En célculo real, una funcién cuya derivada es cero en todo un intervalo debe ser constante en ese
intervalo. Aqui estd el andlogo complejo de este resultado, junto con otro resultado que necesitard mas
adelante.

Sea f diferenciable en un disco abierto D. Sea f = u + iv y suponga que u y v satisfacen las ecuaciones de
Cauchy-Riemann y son continuas con primeras derivadas parciales continuas en D. Entonces,
1. Sif'(z) = 0 para todo z en D, entonces f (z) es constante en D.

2. Si|f(2)| es constante en D, también lo es f (z).

Prueba Para probar (1), recuerde que en la prueba del teorema 9.5, para z en D,

du ov
/ :O:— ‘—.
F @ 8x+13x

Pero entonces du/0x y dv/0x son cero en todo D. Por las ecuaciones de Cauchy-Riemann, du/dy y dv/dy
también son cero en cada punto de D. Entonces u(x, y) y v(x, y) son constantes en D, y también lo es

f@.
Para (2), suponga que | f (z)| = k para todo z en D. Entonces
£ @1 =ux, y)* +v(x, y)* =k 9.1)

para (x, y) en D. Si k = 0, entonces | f (z)| = 0 para todo z en D, entonces f (z) = 0 en D. Si k # 0, deriva
respecto a x la ecuacién (9.1) para obtener

u—+v—=90 9.2)

— — =0. 9.3
u oy +v 3y 9.3)
Usando las ecuaciones de Cauchy-Riemann, las ecuaciones (9.2) y (9.3) pueden escribirse como
du du
u——v—=0 94
ax dy
y
w2y ©9.5)
u— +v— =0. .
dy dax

Al multiplicar la ecuacién (9.4) por u y la ecuacién (9.5) por v y sumar las ecuaciones resultantes
obtiene

u u
2,2 2
+uH)= =22 0.
(u v )8)C 0x
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Por tanto,
du
=0
0x
para todo (x, ¥) en D. Por las ecuaciones de Cauchy-Riemann,
ov
-0
dy
en todo D. Ahora una manipulacién semejante muestra que

ou dv

ay  ox

en D. Por tanto, u(x, y) y v(x, y) son constantes en D, asi que f (z) también es constante. M

SECCION 9.1 PROBLEMAS

En cada problema del 1 al 12, encuentre u# y v de manera que

— 112
f (@ =u(x, y) + iv(x, y), determine todos los puntos (si los hay) S S =il
en donde las ecuaciones de Cauchy-Riemann se satisfagan, y 6. f(z) =z+Im(z)
determine todos los puntos en donde la funcién es diferenciable. 7. F@) = 4
Se pueden suponer todos los resultados familiares acerca de la Re(z)
continuidad de funciones reales de dos variables. 8. f(0)=z>—8z+2
9. f(z) =32
1. =z—i ;
fR =z 10. () =iz + 2|
2. f(z):zz—iz 1
11. =—4z+ -
3 /@)=l f@ =4ty
2z +1 ozl
4. f(z) = . 12. f(z)_z—i—i
9.2 Series de potencias

Ahora sabe algunos resultados acerca de la continuidad y la diferenciabilidad. Sin embargo, las tnicas
funciones complejas que tiene hasta ahora son los polinomios y las funciones racionales. Un polinomio
complejo es una funcién

p(2) =ao+aiz+az? + - +and",

en donde las a; son nlimeros complejos, y una funcion racional es un cociente de polinomios,

Los polinomios son diferenciables para todo z, y una funcién racional es diferenciable para todo z en
donde el denominador no sea cero.

El vehiculo para enriquecer nuestro catidlogo de funciones, obteniendo funciones exponenciales y
trigonométricas, logaritmos, funciones de potencias, y otras, es la serie de potencias. Construird las series
de potencias complejas usando algunos resultados acerca de las series de constantes.
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9.2.1 Series de nimeros complejos

Suponga resultados estdndares acerca de las series de niimeros reales. Considere una serie compleja 3> |
¢y, con cada ¢, un nimero complejo. La N-ésima suma parcial de la serie es la suma finita Z]::l Cp-
La sucesion {Zf{zl cn} es la sucesion de sumas parciales de esta serie, y la serie converge si, y sélo si
esta sucesion de sumas parciales converge.

Si ¢, = a,, + ib,, entonces
N

N
D en=
n=1

N
an—f—ian,
1 n=1

n=

de manera que {Z]:: | Ca} converge si, y sOlo si las sumas parciales reales Zf{:l a,y le;/:l b, convergen
conforme N —o00. Mds atn, si 3°°  a, =Ay > > b, = B, entonces

o]

ch = A+iB.

n=1

Por tanto, puede estudiar cualquier serie de constantes complejas considerando dos series de constantes
reales, para las cuales los criterios estan disponibles (criterio de la razoén, criterio de la raiz, criterio de
comparacion, etcétera).

Como en las series reales, si ZZ’; | Cn converge, entonces necesariamente lim,, o, ¢, = 0.

En algunos casos no sélo probaremos que la serie converge sino que es factible encontrar su suma. La
serie geométrica es un ejemplo importante de esto que usara con frecuencia.

EJEMPLO 9.8

Considere la serie >_°°  z%, con z un niimero complejo dado. Una serie que suma potencias sucesivas de

un numero se llama serie geométrica. Puede sumar esta serie como sigue. Sea
N

Sn =ZZ" =z+ 22+ 4+ + V4N
n=1
Entonces
WSy =+ + -+ N
si resta esta suma finita, la mayoria de los términos se cancelan y queda
Sy —zSy=(0—2)Sy =z — "1

Entonces, para z # 1,

z 1
SN — ZN+1-

Si |z] < 1, entonces |z[¥+! — 0 conforme N — 0o, entonces también z¥+! — 0 y en este caso la serie
geométrica converge:

o0

Y "= lim SN=1Z

N—o0 —Z
n=1

Si |z] > 1, la serie geométrica diverge. M

Algunas veces tiene una serie geométrica con el primer término igual a 1. Esta es la serie
o o
n n < 1 .
EZ=1+EZ=1+ =— izl < 1.
11—z 11—z
n=0 n=1

Se dice que la serie >-°7 | ¢, converge absolutamente si la serie real 377 | |c,| converge.
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Si ZZC:] ¢, converge absolutamente, entonces esta serie converge. M

Prueba Sea c, = a, + ib,. Suponga que > |c,| converge. Como 0 < |a,| < |c,|, entonces por
comparacion, - | a, converge. Andlogamente, 0 < |b,| < |c,|, asi >-°° | b, converge. Entonces Y-  a,
+ ib, =377 | ¢, converge. M

EJEMPLO 9.9

Considere la serie

o]

Z(_l)"i
I+

n=1

Calcule

V5
W

2—i
(I+i)n

‘(—1)"

Ahora la serie real Z;’i \/5/ (\/E)” converge. Esto es V5 veces la serie geométrica real Z:‘;l 1/(«/5)", la
cual converge ya que 1/4/2 < 1. Por tanto, la serie compleja dada converge absolutamente, de aqui que
converge.

El punto para el teorema 9.8 es que >>™ | |c,| es una serie real, y tiene métodos para demostrar la
convergencia o divergencia de las series reales. Por tanto, puede (en el caso de convergencia absoluta)
probar la convergencia de una serie compleja probando la de una serie real. Sin embargo, este acercamiento
no cubre todos los casos, ya que una serie puede converger, pero no converger absolutamente. Una serie
asi se dice que converge condicionalmente. Por ejemplo, se sabe que la serie

= (—1)"
2.,

n=1

converge, pero la serie de los valores absolutos de sus términos es la serie armdnica divergente
> (1/n).
Con estos antecedentes sobre las series complejas, puede abordar las series de potencias.

9.2.2 Series de potencias

DEFINICION 9.5  Serie de potencias

Una serie de potencias es una serie de la forma

o
> ez —z0)",
n=0

en donde 7z y cada ¢, son nimeros complejos dados.
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21

20

FIGURA 9.6 Convergencia en
71 # zo implica convergencia
en |Z - Zo| <r= |Zl - Z0|~

La sumatoria en una serie de potencias empieza en n = 0 para permitir un término constante:

(o8]
ch(z —z20)" =co+c1z—z0) + 22 —20)7 + - .
n=0

El ndmero zj es el centro de la serie, y los nimeros ¢, son sus coeficientes.

Dada una serie de potencias, quiere saber para qué valores de z, si los hay, la serie converge.
Indudablemente cualquier serie de potencias converge en su centro z = zp, ya que entonces la serie es
unicamente c. El siguiente teorema proporciona la clave para determinar si hay otros valores de z para los
cuales converge. Dice que si encontramos un punto z; # zo donde la serie de potencias converge, entonces
la serie debe converger absolutamente al menos para todo punto que esté mds cerca de zo que z;. Esto da
convergencia (absoluta) al menos en los puntos interiores del disco de la figura 9.6.

— TEOREMA 9.9

Suponga que Zf;o cu(z — zo)" converge para algun z; distinto de z,. Entonces la serie de potencias converge
absolutamente para todo z que satisfaga

|z — zol < lz1 —zol.
Prueba Suponga que Zz‘;o cu(zi — zo)" converge. Entonces lim,_,, c,(z;1 — 2z0)* = 0. Entonces, para
algtin N,

len(zi —20)"| <1 sin>N.

Entonces, paran > N,

(z —z0)" "

(z1 — zo)"

(z —z0)"
(z1 — z0)"

Z—20

en(z = 20)"| = leal |(z1 —z0)"| <

71 — 20
Pero si |z — zg| < |z1 — zo|, entonces

Z—20

i1 — 20

y la serie geométrica

n
Z—20

21 — <20

n=1
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converge. Por comparacién (ya que éstas son series de nimeros reales),
[e¢)
n
> |en(z — 20)"|
n=N

converge. Pero entonces

o]

> lentz = 20)"|

n=0

converge, de manera que }_° | ¢,(z — z0)" converge absolutamente, como querfa probar. M

Aplique esta conclusion de la siguiente manera. Imagine que se encuentra en z, en el plano complejo.
Mirando en todas las direcciones, distinguird que no hay ningin otro punto en el cual la serie de
potencias converge. En este caso, la serie converge s6lo para z = zy. Esta es una serie de potencias poco
interesante.

Una segunda posibilidad es que vea sélo puntos en donde la serie de potencias converge. Ahora la
serie de potencias converge para todo z.

La tercera posibilidad es que vea algunos puntos en los que la serie converge y otros en los que
diverge. Sea R la distancia de z; al punto mas cercano, sea ¢, en el cual la serie de potencias diverge. La
distancia R es critica en el siguiente sentido.

Si z estd mas lejos de zy que ¢, entonces la serie de potencias debe diverger en z. Ya que si convirgiera,
entonces deberfa converger en todos los puntos que estdn mds cercanos a z, que z, y por el teorema 9.9
deberia converger en ¢.

Si z estd mds cerca de 7z que ¢, entonces la serie de potencias debe converger a z, ya que ¢ es el punto
mds cercano a zq en el que la serie diverge.

Esto significa que en el tercer caso, la serie de potencias

converge para todo z con |z — zg| < R,

diverge para todo z con |z — zo| > R.

El niimero R se llama el radio de convergencia de la serie de potencias, y el disco abierto |z — z9| < R
se llama el disco abierto de convergencia. La serie converge dentro de este disco y diverge fuera del
disco cerrado |z — zo| < R. En puntos de la frontera de este disco, |z — zo| = R, la serie puede converger o
diverger.

Si la serie de potencias converge s6lo para z = z, el radio de convergencia es R = 0. En este caso no
hay un disco abierto de convergencia.

Si la serie de potencias converge para todo z, sea R = oco. Ahora el disco abierto de convergencia es
todo el plano complejo. En este caso es conveniente denotar al disco de convergencia como |z — zg| < 0.

Algunas veces se puede calcular el radio de convergencia para una serie de potencias usando el
criterio de la razon.

EJEMPLO 9.10

Considere la serie de potencias

S .,
Y (=D (r = 1+ 20)7
= n—+1

El centro es zo = 1 — 2i. Busque el radio de convergencia de la serie.
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Considere la magnitud del cociente de términos sucesivos de esta serie:

n+1 .
(_1)"+1iﬁ(z_1+2’)2”+2 _ 2n+1) 2 — 142
(=125 (= 1+ 20 n+2

—2|z—1 —i—2i|2 conforme n — 0.

A partir del criterio de la razén para series reales, la serie de potencias convergird absolutamente si este
limite es menor que 1 y divergird si este limite es mayor que 1. Asi, la serie de potencias converge
absolutamente si

20z — 142> <1,

1
Iz —1+2i] < —.

NG

Y la serie diverge si

y
2|1z —1+2i>>1,
—_— X
, o
S !
Y lz —14+2i] > —.
1 L,; Elradio de convergencia es 1/4/2 y el disco abierto de convergencia es |z — 1 + 2i| < 1//2 (figura
FIGURA 9.7 97). m
Suponga ahora que las series de potencia tienen un radio de convergencia positivo o infinito. Para
cada z en el disco abierto de convergencia
o
f@ =) ealz—20)"
n=1
Esto define una funcién f sobre este disco. Debe explorar las propiedades de esta funcion, en particular si
es diferenciable. Para responder a esta pregunta necesita el lema técnico.
— LEMA9.1

La serie de potencias -/ c,(z — 20)" Y 20—, nc,(z — z0)"~! tienen el mismo radio de convergen-
cia. m

Una prueba de este lema, que estd esbozada en los ejercicios, puede ser omitida pero la conclusién es
importante. Establece que la diferenciacién término a término de una serie de potencias no cambia el radio
de convergencia. Esto significa que dentro del disco abierto de convergencia, una serie de potencias define
una funcién diferenciable cuya derivada puede obtenerse diferenciando término a término.

= TEOREMA 9.10

Sea Z;":O cn(z—z0)" con radio de convergencia positivo o infinito. Para cada z en el disco abierto de con-
vergencia, sea

o0

f@ =) calz—z0)".

n=0
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Entonces f'es diferenciable en este disco abierto, y

fl@) =) nealz —z0)""".

n=1

Mediante este teorema, puede diferenciar una funcién definida con una serie de potencias. Pero alli
puede obtenerse mas del teorema 9.10 que esto. La serie ) Zo: nc,(z — zp)*~! es una serie de potencias en
sf misma, y tiene el mismo radio de convergencia que la serie Y- ¢,(z — zo)". Por tanto, puede aplicar
este teorema a esta serie diferenciada y obtener

o0

'@ =Y nn—1eaz —20)" >

n=2

dentro del disco abierto de convergencia. Mds aun, continte diferenciando tantas veces como quiera den-
tro de este disco. Si f ®(z) denota la k-ésima derivada, entonces

9]

fP@ =) ntn—1n—2)c" 7,

n=3
y en general
fP@ =3 "nm-1D@—-2)(—k+ Dealz — 200"~
n=k

Si la k-ésima derivada es evaluada en zj, entonces todos los términos de la serie para f®)(zy) que
tienen potencias positivas de z — z, se hacen cero, dejando sélo el primer término constante en esta serie
diferenciada. En este camino, obtiene

f (z0) = co,
f'(z0) = c1,
1" (z0) = 2¢2,
P (z0) =3Q2)e3

y, en general,
FP o) = ktk = Dk =2) - (Dex.
Puede resolver estas ecuaciones para los coeficientes en términos de la funcién y sus derivadas en zy:
= %f”‘)(m) parak =0,1,2, ..., (9.6)

donde k! es el producto de los enteros desde 1 hasta k, por convencién 0! = 1, y la derivada cero f ©)(z)
es solo f(z). Esta notacién permite escribir una férmula para los coeficientes, sin considerar por separado
el caso k = 0. Los nimeros dados por la ecuacién (9.6) son los coeficientes de Taylor de fen z,, y la serie
de potencias

= 1 (n) n
Y =0 G - 20)
n=0n.

se llama la serie de Taylor para f en (o alrededor de) z.

Ha probado que si una funcién f estd definida en un disco por una serie de potencias con centro en
20, entonces los coeficientes en esta serie de potencias deben ser los coeficientes de Taylor, y la serie de
potencias debe ser la serie de Taylor de f alrededor de z.
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Ahora estd en la posicién de definir algunas funciones complejas elementales, incluyendo las funcio-
nes exponencial y trigonométricas y funciones de potencias.

SECCION 9.2 PROBLEMAS

En cada uno de los problemas del 1 al 8, determine el radio de

convergencia y el disco abierto de convergencia de la serie de po-

tencias.
1. zoo 2n (z+31)"
1 H
2. ;ﬁo(—l)nm(z—l) n
n

00 NG
3. n= OW 1+3l)

00 2i \" o
4. n=0 E (Z+3—4l)

w

=)

9.3

in )
. Z;.lO:O W(Z + 8[)11

U D"
n+2

10.

11.

Bl

I’l2
2n+1

(z+6+2))"

i’l3 3

. ¢Es posible que X_ ¢,(z — 2i) converja en 0 y diverja en i?

(Es posible que ) 2020 cn(z — 4 4+ 2i)" converjaen iy diver-

jaenl+i?

Considere Y ;'O:O cpz",donde ¢, =2sinesparyc,=1sin
es impar. Pruebe que el radio de convergencia de esta serie
de potencias es 1, pero que este niimero no se puede calcular
usando el criterio de la razén. (Esto significa simplemente
que no siempre se puede usar este criterio para determinar

el radio de convergencia de una serie de potencias.)

Las funciones exponencial y trigonométricas

Busque definir la funcién exponencial compleja ez de manera que coincida con la funcién exponencial real

cuando z es real. Para todo real x,

=1
=l

n=|

(=}

En esta serie, reemplace x con z, para obtener la serie de potencias

Calcule

n—o00

1
2

n=

2+ 1))

0

‘ — lim lz| = 0.

n—oon + 1

Debido a que este limite es menor que 1 para todo z, esta serie de potencias converge para todo z, y hace

la siguiente definicion.
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DEFINICION 9.6 Funcién exponencial

Para z complejo, defina la funcién exponencial compleja ez por

oY

n=0

3'.—

TEOREMA 9.11

Para todo nimero complejo, y todo entero positivo k, la k-ésima derivada de ez es

f(k)(Z) =é. m

Prueba Calcule

oo oo

/ 1 n— —
f(Z)ZZﬁnZ 1_Z(n_1)v Z

n=1 " n=1 n=0

Por tanto, f'(z) = ez Ahora al seguir diferenciando da f (¥)(z) = ez para cualquier entero positivo k. B

Enseguida aparece una lista de las propiedades de la funcién exponencial compleja, muchas de las
cuales son familiares del caso real. La conclusién (8) da las partes real e imaginaria de ez, lo que permite
escribir ez = u(x, y) + iv(x, y). La conclusion (9) es quizd la sorpresa principal al extender la funcién
exponencial real al plano complejo. jLa funcién exponencial compleja es periddica! Este periodo no se

manifiesta en el caso real ya que es imaginario puro.

TEOREMA 9.12

1. e0=1.

2. Si g es diferenciable en z, entonces también lo es es©@, y

d
%em = g'(2)e8@.

estw = etew para todo complejo z y w.
ez # ( para todo z.
e~ = 1/ex.

Si z es real, entonces e< es real y ez > 0.

NS AW

(Férmula de Euler) Si y es real, entonces

e = cos(y) + i sen(y).
8. Siz=ux+ iy, entonces
ez = ex cos(y) + ie* sen(y).

9. ez es periddica con periodo 2nsri para cualquier entero .
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Prueba (1) es obvio y (2) se sigue a partir de la regla de la cadena para la diferenciacion.
Para probar (3), fije cualquier nimero complejo u y defina f (z) = e%e—<, para todo complejo z. En-
tonces

f/(z) fr eZeu*Z ja— eZell*Z f 0

para todo z. Por el teorema 9.7, en cualquier disco abierto D : |z] < R, f(z) es constante. Para algunos nd-
meros K, f (z) = K para |z| < R. Pero entonces f (0) = K = eO¢t = ¢*, de manera que para todo z en D,

elen—i = el,
Ahora u = z + w para obtener
etew —= eztw,

Como R puede ser tan grande como desee, esto se cumple para todo complejo z y w.
Para probar (4), suponga que e = 0. Entonces

1 =0 = ev—o = grg—a = (),

una contradiccion.
Para (5), argumente como en (4) que

1 =0 = et=2 = etey,

de manera que

et = 1/e.
Para probar (7), escriba
21 =1 > 1
iy v\ — L (iv)2n 20+
¢ Zn!(ly) Z(zn)z(’y) +Z(2n+1)!(’y)
n=0 n=0 n=0
=1 ad 1
_ 2n . 2n 2n+1_2n+1
_Z(Zn)!l Y +Z(2n+l)!l oo
n=0 n=0
Ahora
l-2n — (lz)n — (_l))’l
y

i2)’l+1 — l(IZn) — l(_l)n,

de manera que
o0 o

iy =D" 5, . =" 5, )
=D G o g =0 Hisen(),

en donde ha usado las expansiones de Maclaurin (real) de cos(y) y sen(y) para y real.
Para (8), use (7) para escribir

eF = T = ¢l = ¢*(cos(y) +i sen(y)).
Finalmente, para la conclusién (9), para cualquier entero n,
eitnmi — g H(F2T) — ¥ (cos(y 4 2nm) + i sen(y + 2n7))
= e cos(y) +ie sen(y) = €.

Asfi para cualquier entero » distinto de cero, 2nsi es un periodo de ez.
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La conclusién (8) da la forma polar de e¢ en términos de x y y. Implica que la magnitud de ez es eXy
que un argumento de ez es y. Establezca estas conclusiones:

|ez| — eRe(z) —
arg(e®) = Im(z) + 2nw = y + 2nm.
También es facil de verificar que
el =e".

Para esto, escriba

eZ = e*(cos(y) + i sen(y)) = e*(cos(y) — i sen(y)) = ¢* 1 = ¢%.
Por ejemplo,
o261 — 2O _ 260 62(005(6) —isen(6)).

La conclusién (9) se puede mejorar. No solamente es 2n7i un periodo de e sino que estos nimeros
son los tnicos periodos. Esto es la parte (4) del siguiente teorema.

—_

ez =1 si, y s6lo si z = 2nmi para algin entero n.

2. et = —1si,ysoblosiz=(2n + 1)mi para algtn entero n.
3. et =evsi, ysolo si z — w = 2nmi para alglin entero 7.
4

Si p es un periodo de ez, entonces p = 2nmi para algin entero 7.

Compare la conclusion (2) de este teorema con la conclusion (6) del teorema anterior. Si x es real,
entonces e* es un nimero real positivo. Sin embargo, la funcién exponencial compleja puede dar valores
negativos. La conclusion (2) de este teorema da todos los valores de z tales que e toma el —1.

Prueba Para (1), suponga primero que ¢z = 1. Entonces

et =1=¢"cos(y) +ie* sen(y).
Entonces

e*cos(y) =1 y e*sen(y) =0.

Abhora x es real, de manera que e¥ > 0 y la segunda ecuacién requiere que sen(y) = 0. Como esta es la
funcién seno real, conoce todos sus ceros y puede concluir que y = kmr para k entero. Ahora debe tener

e* cos(y) = e* cos(km) = 1.
Pero cos(kxr) = (—1)* para k entero, de manera que
&(=DF =1.

Para que se satisfaga esto, primero necesita que (—1)k sea positivo, mientras k debe ser un entero par,
k = 2n. Esto deja

de manera que x = 0. Por tanto, z = x + iy = 2nmi.
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Reciprocamente, suponga que z = 2ni para algtin entero n. Entonces
e* =cos(2nm) +isen(2nmw) = 1.

La conclusién (2) puede probarse con un argumento paralelo al que acaba de elaborar para (1).
Para (3), si z — w = 2nzi, entonces

et i
esz — —e nii 1,
ew
asi
et =e".

Reciprocamente, suponga que e = e*. Entonces e<~* = 1, de manera que por (1), z — w = 2nmi para
algin entero n.
Finalmente, para (4), suponga que p es un periodo de e<. Entonces

ez+p — ¢
para todo z. Pero entonces

‘el =e
de manera que e? = 1y, por (1), p = 2nmi para algin entero n. M

Usando las propiedades que ha obtenido para ez, algunas veces puede resolver ecuaciones que invo-
lucran a esta funcién.

EJEMPLO 9.11

Encontrar todas las z tales que
et =1+2i.
Para hacer esto, sea z = x + iy, de manera que
e* cos(y) +ie*sen(y) =1+ 2i.
Entonces

e*cos(y) =1

e* sen(y) = 2.
Sume el cuadrado de estas ecuaciones para obtener
e>* (cos?(y) + sen’(y)) = ¢** = 5.
Entonces
x = £1n(5),
en donde In(5) es el logaritmo natural real de 5. Ahora, dividiendo

e* cos(y) ’

asi y = tan—1(2). Una solucién de la ecuaciéon dada es z = % In(5) + i tan—1(2), o aproximadamente
0.8047 + 1.1071i. m
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Ahora est4 listo para extender las funciones trigonométricas de la recta real al plano complejo. Bus-
que definir sen(z) y cos(z) para todo complejo z de manera que estas funciones coincidan con las funciones
seno y coseno reales cuando z es real. Aplique el método usado para extender la funcién exponencial de
la recta real al plano complejo, empiece con la serie de potencias.

DEFINICION 9.7

Para todo complejo z, sea

— (=" o (=D" ,,
sen(z) = nz:(:)mzz +1 y cos(z) = nX:(:) )] 22",

La definicién presupone que estas series convergen para todo complejo z, un hecho fécil de probar.
A partir de la serie de potencias, es inmediato que

cos(—z) =cos(z) 'y sen(—z) = —sen(z).

Diferenciando término a término esta serie, encuentra que para todo z,
d d
—sen(z) =cos(z) y —cos(z) = —sen(z).
dz dz

La férmula de Euler establece que, para y real, eiy = cos(y) + i sen(y). Ahora extienda esto a todo el
plano complejo.

— TEOREMA 9.14

Para todo nimero complejo z,
e'* = cos(z) + i sen(z).

Se sigue la prueba del teorema 9.12(7), con z en lugar de y.
Exprese sen(z) y cos(z) en términos de la funcién exponencial de la siguiente manera. Primero, del
teorema 9.14,

e'" = cos(z) + i sen(z)

e 7% = cos(z) — i sen(z).

Resuelva estas ecuaciones para sen(z) y cos(z) para obtener

1 . . 1 . .
cos(z) = 5(@’Z +e ')y sen(z) = 2—1'(61Z —e '),

Férmulas como éstas revelan uno de los beneficios de extender estas funciones familiares al plano com-
plejo. En la recta real, no hay una conexion evidente entre e*, sen(x) y cos(x). Estas formulaciones también
son convenientes para llevar a cabo manipulaciones que involucren sen(z) y cos(z). Por ejemplo, para
obtener la identidad

sen(2z) = 2 cos(z) sen(z),
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inmediatamente tiene que

1 . 1. .
2sen(z) cos(z) = 25(8” + e_’z);(e’Z —e ')
i

1 ) . 1 . .
— _.(6211 _ 67211 +1— 1) — —.(6211 _ 67212) — sen(2z).
2i 2i

Las identidades que involucran funciones trigonométricas reales siguen siendo ciertas en el caso
complejo, y siempre las usard sin probarlas. Por ejemplo,

sen(z + w) = sen(z) cos(w) + cos(z) sen(w).

No todas las propiedades del seno y coseno reales pasan a sus extensiones complejas. Recuerde que
|cos(x)] < 1y |sen(x)| < 1 para x real. Contraste esto con el siguiente.

— TEOREMA 9.15

cos(z) y sen(z) no estan acotados en el plano complejo. M

La prueba consiste en mostrar que ambas funciones pueden hacerse arbitrariamente grandes en mag-
nitud para cierta eleccién de z. Sea z = iy con y real. Entonces

1 . ,
sen(z) = sen(iy) = T(e‘»" —e)
i
asi
1 -
sen(z)| = Sle’ —e™'],
2
y el lado derecho puede hacerse tan grande como se quiera eligiendo y suficientemente grande en magni-
tud. Esto es, conforme z se aleja del origen en cualquier direccion a lo largo del eje vertical, [sen(z)| crece

en magnitud sin cota. Es facil verificar que |cos(z)| muestra el mismo comportamiento.
Frecuentemente es util conocer las partes real e imaginaria de estas funciones.

— TEOREMA 9.16

Sea z = x + iy. Entonces

cos(z) = cos(x) cosh(y) — i sen(x) senh(y)

sen(z) = sen(x) cosh(y) + i cos(x) senh(y). ™

Es rutinario obtener estas expresiones a partir de las expresiones exponenciales para el sen(z) y el
cos(2).

Ahora probard que las funciones seno y coseno complejas tienen exactamente los mismos periodos y
ceros que sus contrapartes reales.

— TEOREMA 9.17

1. sen(z) = 0 si, y s6lo si z = n para algiin entero n.

2. cos(z) = 0si, y sélo si z = (2n + 1)7/2 para algun entero n.
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3. sen(z)y cos(z) son periddicas con periodos 2n, para n cualquier entero distinto de cero. Més aun,
estos son los Unicos periodos para estas funciones.

La conclusién (3) significa que
cos(z +2nmw) =cos(z) y sen(z+ 2nmw) = sen(z)

para todo complejo z y, reciprocamente, si

cos(z + p) = cos(z) para todo z,
Entonces p = 2nm, y si

sen(z + ¢g) = sen(z) para todo z,
Entonces g = 2nr. Esto garantiza que las funciones seno y coseno no tendran periodos adicionales cuando
se extienden al plano complejo, como ocurre con la funcién exponencial compleja.
Prueba Para (1), si n es un entero, entonces

1 - ; 1
sen(nw) = Z(e”’” —e M = Z(l -1 =0.
Asi todo z = n, con n un entero, es un cero de sen(z). Para probar que estos son los tinicos ceros, suponga
que sen(z) = 0. Sea z = x + iy. Entonces
sen(x) cosh(y) + i cos(x) senh(y) = 0.
Entonces
sen(x)cosh(y) =0 y cos(x)senh(y) = 0.

Como cosh(y) > 0 para todo real y, entonces sen(x) = 0, y para esta funcién seno real, esto significa que
x = nr para algtin entero n. Entonces

cos(x) senh(y) = cos(nm) senh(y) = 0.

Pero cos(nm) = (—1)" # 0, de manera que senh(y) = 0 y esto fuerza que y = 0. Por tanto, z = n.
(2) puede probarse con un argumento similar al utilizado para (1).
Para (3), si n es un entero, entonces

1

(ei(z+2nn) _ e—i(z+2nn))
2i

sen(z + 2nmw) =
_.(eize2n7ri . e—ize—an') — _.(eiz _ e—iZ) = sen(z),
2i 2i
asi cada entero par multiplo de 7 es un periodo de sen(z). Para probar que no hay otros periodos, suponga
que p es un periodo de sen(z). Entonces

sen(z + p) = sen(z)

para todo complejo z. En particular, esto debe cumplirse para z = 0, de manera que sen(p) = 0 y entonces
por (1), p = nm para n entero. Pero también puede poner z = i para tener

sen(i + nmw) = sen(i).
Entonces
Plinm) _ ilitnm) _ =1 _

Por tanto,

e ! cos(nmw) —ecos(nmw) = el —e.
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Si n es par, entonces cos(nr) = 1 y esta ecuacion es cierta. Si n es impar, entonces cos(nr) = —1 y esta
ecuacion se convierte en

—671 +e :eil —e,

que es imposible. Por tanto, n es par, y los tinicos periodos de sen(z) son enteros pares miltiplos de 7.
Un argumento similar establece el mismo resultado para los periodos de cos(z). ™

El siguiente es un ejemplo en el cual se usan resultados acerca del cos(z) para resolver una ecuacion.

EJEMPLO 9.12

Resolver cos(z) = i.
Sea z = x + iy, de manera que

cos(x) cosh(y) — i sen(x) senh(y) = i.

Entonces

cos(x)cosh(y) =0 y sen(x)senh(y) = —1.

Como cosh(y) > 0 para todo real y, la primera ecuacién implica que cos(x) = 0, asi

2n +1
2

X =

T,
en donde (hasta aqui) n puede ser un entero. A partir de la segunda ecuacion,

2 1
sen < n;— 7t> senh(y) = —1.

Ahora sen((2n + 1)7/2) = (—1)", de manera que

senh(y) = (—1)"*",
con n cualquier entero. Asi y = senh—1((—1)7*+1). Las soluciones de cos(z) = i son, por tanto, los nimeros
complejos

2n + 1 ) _
m +isenh™ (—1) paran un entero par,

2n + 1 . _1 .
m +isenh” (1) paran un entero impar.

Una férmula estandar para la funcidén del seno hiperbdlico inversa da
senh™! (8) = ln(,B +VB 1)

para S real. Por tanto, las soluciones se pueden escribir como

2n+1

T+ 1n<— 1+ ﬁ) para n un entero par,

2n 4+ 1

T+ ln(l + \/5) para n un entero par. |
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Las otras funciones trigonométricas se definen por

sec(z) =

tan(z) =

1
cos(z)’
sen(z)
cos(z)’

1
csclz) = sen(z)
=2

en cada caso para todo z para el cual el denominador no sea cero. Las propiedades de estas funciones se
pueden obtener a partir de las propiedades del sen(z) y cos(z).

SECCION 9.3 PROBLEMAS

En cada problema del 1 al 10, escriba la funcién en la forma

a+ bi.
1. €
2. sen(l — 4i)
3. cos(3 + 2i)
4. tan(3i)
5. ¢5+2i
6. cot (1 — E)
4
7. sen2(1 +1i)
8. cos(2 —i)—sen(2 —i)
9. emi2
10. sen(e?)
11. Encuentre u(x, y) y v(x, y) tales que ez = u(x, y) + iv(x, y).

9.4

Pruebe que u y v satisfacen las ecuaciones de Cauchy-Rie-
mann para todo complejo z.

El logaritmo complejo

12.

13.

14.

15.
16.

17.
18.
19.

Encuentre u(x, y) y v(x, y) tales que ez = u(x, y) + iv(x,
y). Pruebe que u y v satisfacen las ecuaciones de Cauchy-
Riemann para todo z excepto cero.

Encuentre u(x, y) y v(x, y) tales que tan(z) = u(x, y) +
iv(x, y). Determine donde estdn definidas estas funciones y
pruebe que satisfacen las ecuaciones de Cauchy-Riemann
para estos puntos (x, y).

Encuentre u(x, y) y v(x, y) tales que sec(z) = u(x, y) +
iv(x, y). Determine dénde estdn definidas estas funciones
y pruebe que satisfacen las ecuaciones de Cauchy-Rie-
mann para tales puntos.

Pruebe que sen?(z) + cos?(z) = 1 para todo complejo z.

Sean z y w nimeros complejos.

(a) Pruebe que sen(z + w) = sen(z) cos(w) + cos(z)
sen(w).

(b) Pruebe que cos(z + w) = cos(z) cos(w) — sen(z)
sen(w).

Encuentre todas las soluciones de ez = 2i.
Encuentre todas las soluciones de sen(z) = i.

Encuentre todas las soluciones de ez = —2.

En célculo real, el logaritmo natural es la inversa de la funcién exponencial para x > 0,

y = In(x)

si, y s6lo si x = e.

En este sentido, el logaritmo natural real se puede pensar como la solucién de la ecuacion x = e¥ para y

en términos de x.

Puede intentar este acercamiento para buscar una definicién del logaritmo complejo. Dado z # O,
cuando existen nimeros complejos w tales que

ev =z
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Para contestar a esta pregunta, ponga z en la forma polar como z = re. Sea w = u + iv. Entonces

= reie = ew = e”ei”. (97)
Como 0y v son reales, |e| = |eiv| = 1 y la ecuacién (9.7) dan r = |z| = e*. De donde
u = In(r),

el logaritmo natural real del nimero positivo r.
Pero ahora la ecuacién (9.7) implica que e = e, de manera que por el teorema 9.13(3),

iv =160+ 2nmi
y por tanto
v =6+ 2nm,

en donde n puede ser cualquier entero.
En resumen, dado un nimero complejo z = re® distinto de cero, existe una infinidad de nimeros
complejos w tales que e* = z, y estos nimeros son

w = In(r) + i0 + 2ni,

con n cualquier entero. Como 6 es cualquier argumento de z, y todos los argumentos de z estdn contenidos
en la expresion 6 + 2nm para n entero, entonces en términos de z,

w = In([z]) + i arg(2),

con el entendido de que hay una infinidad de valores distintos para arg(z). Cada uno de estos nimeros se
llama un logaritmo complejo de z.

Cada nimero complejo distinto de cero tiene, por tanto, una infinidad de logaritmos. Para enfatizar
esto, escriba

log(z) = {In(|z| + i arg(z)} .

Esto se lee, “el logaritmo de z es el conjunto de todos los nimeros In(|z|) + i, donde & varia sobre todos
los argumentos de z”.

EJEMPLO 9.13

Sea z =1 + i. Entonces 7 = +/2¢!@/4+217) Entonces
T
log(z) = {ln(ﬁ) i+ 2nm‘] .

Algunos de los logaritmos de 1 + i son

n(v2) + %i, n(v2) + 97”1', n(v2) — 77”1',.... n

EJEMPLO 9.14

Sea z = —3. Un argumento de z es 7, y en la forma polar z = 3ei(r+2nm) = 3e(nt+Dri Entonces
log(z) = {In(3) + 2n + 1)mi}.

Algunos valores de log(—3) son In(3) + i, In(3) + 37, In(3) + 57, . . ., In(3) — ni, In(3) — 3mi, y asi
sucesivamente. M
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El logaritmo complejo no es una funcién ya que con cada z distinto de cero estdn asociados infinidad
de nimeros complejos distintos. No obstante, log(z) muestra algunas de las propiedades de la funcién
logaritmo real, con las que esta familiarizado. M

TEOREMA 9.18

Sea z # 0. Si w es cualquier valor de log(z), entonces e = z.

Esta es la funcién compleja equivalente al hecho que en célculo real, ei"® = x. Esta es la condicién
para entender una definicién de log(z).

TEOREMA 9.19

Sean z y w niimeros complejos distintos de cero. Entonces cada valor de log(zw) es una suma de valores
de log(z) y log(w).

Prueba Sean z = re y w = pe¢. Entonces zw = rpei®t¢). Si o es cualquier valor de log(zw), entonces
para algtin entero N,

o =1In(pr) + i(0 + ¢ + 2Nn) = [In(r) + i8] + [In(p) + i(p + 2N7)].

Pero In(r) + i0 es un valor de log(z), y In(p) + i(¢ +2Nm) es un valor de log(w), lo que prueba el
teorema. M

Aqui hay un ejemplo del uso del logaritmo para resolver una ecuacién que involucra la funcién ex-
ponencial.

EJEMPLO 9.15

Resolver para todo z tal que ez =1 + 2i.
En el ejemplo 9.11 encontrd una solucién separando las partes real e imaginaria de e¢. Usando el
logaritmo, obtiene todas las soluciones como sigue:

ee=1+2i
significa que
z=log(1 +2i) =In(|1 4+ 2i|) +iarg(l +2i) = %ln(S) + i(arctan(2) + 2nm),

en donde n es cualquier entero positivo. M

Algunas veces es conveniente elegir un logaritmo en particular para usarlo con los niimeros comple-
jos distintos de cero. Esto se puede hacer eligiendo un argumento. Por ejemplo, para z # 0,

Log(z) = In(|z]) + i6,

donde 0 < 6 < 2m. Esto asignado al simbolo Log(z) cuyo valor particular de log(z) corresponde al argu-
mento de z que estd en [0, 2m). Por ejemplo,

Log(1+i) = In(v2) + i%

Log(—=3) =In(3) +imn.
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Si se hace esto, entonces hay que tener cuidado con los célculos. Por ejemplo, en general Log(zw) #
Log(z) + Log(w).

SECCION 9.4 PROBLEMAS

En cada problema del 1 al 6, determine todos los valores de 5. -9+2i
log(z) y también el valor de Log(z) definido en la discusion. 6. 5
L —4i 7. Sean z y w nimeros complejos distintos de cero. Pruebe
2. 2_2i que cada valor de log(z / w) es igual al valor de log(z) me-
nos un valor de log(w).

3. =5

8. Dé€ un ejemplo para probar que, en general Log(zw) #
4. 1+5i Log(z) + Log(w) para todo complejo z y w distinto de cero.

9.5

Potencias

Busque asignarle un significado al simbolo z* cuando w y z son nimeros complejos y z # 0. Construird
esta idea en pasos. A lo largo de esta seccidn z es un nimero complejo distinto de cero.

9.5.1 Potencias enteras

Las potencias enteras no presentan problemas. Defina z0 = 1. Si n es un entero positivo, entonces
"=z-z--- -z un producto de n factores de z. Por ejemplo,

A+#=0+D0+DA+H1+10)=—4
Si n es un entero negativo, entonces z# = 1/z11. Por ejemplo,

A+ *= ; N
(14+i)* 4

9.5.2 zl/» para n entero positivo

Sea n un entero positivo. Un nimero u tal que u" = z se llama la n-ésima raiz de z, y se denota z/*. Como
con el logaritmo y el argumento, este es un simbolo que denota mds que un nimero. De hecho, todo ni-
mero complejo distinto de cero tiene exactamente n raices n-€simas distintas.

Para determinar estas n-ésimas raices de z, sea z = rei, con r = 7| y 6 cualquier argumento de z.
Entonces

7 = rei®+2km),
en donde k puede ser cualquier entero. Entonces
7V = pl/ngi(@+2km)in, 9.8)

Aqui r!/n es la tnica raiz n-ésima real del nimero positivo r. Conforme k varia sobre los enteros, la ex-
presion del lado derecho de la ecuacién (9.8) produce nimeros complejos cuyas n-€simas potencias son
iguales a z. Vea cudntos de tales nimeros produce.
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Parak=0,1,..., n— 1, tenemos n raices n-ésimas distintas de z. Ellas son
rl/neié/n’ rl/nei(9+2n)/n, rl/nei(9+4n)/n’ R rl/nei(0+2(n—1)m)/n, (99)
Otra eleccién de k simplemente reproduce una de estas raices n-ésimas. Por ejemplo, si k = n, entonces
la ecuacidn (9.8) lleva a

rl/nei(0+2nm)/n — pl/negit/ne2ni — rl/neié?/n,

el primer niimero de la lista (9.9). Si k = n + 1, obtiene

rl/nei0+2(n+1)m)/n — pl/nei(0+2n)/ne2ni — rl/nel(9+2n)/n

el segundo nimero en la lista (9.9), y asi sucesivamente.
En resumen, para cualquier entero positivo n, el nimero de raices n-ésimas de cualquier nimero
complejo z distinto de cero, es n. Estas raices n-ésimas son

y 1/ gl O+2km)/n parak =0,1,...,n—1,

0 + 2k 0 + 2k
rl/n (cos (u) +isen<¥>> parak=0,1,...,n— 1.
n n

EJEMPLO 9.16

Encuentre las raices cuartas de 1 + i.
Como un argumento de 1 + i es 7/4 y |1 + i| = 4/2, tiene la forma polar

1 +l zﬁei(ﬂ/4+2kﬂ)‘
Las raices cuartas son
(ﬁ)l/4ei(ﬂ/4+2kﬂ)/4 para k = O, 1’ 2’ 3.

Estos nimeros son

DUBEI/I6  p1/BiGr/A+2m)/4 /8 ilx/dtdm) /4 1/8 yilm/4+6m)/4.

21/8 <cos <1l6) + i sen )) ,
21/8 (cos (916> +isen >
2173 (cos (117—;> +isen
2178 (cos <215_67r> + i sen (

b

N——

)

l\) N /\ —
—_ \O
g ;‘\1 = 5

5|8
N~
\_/\/

EJEMPLO 9.17

Las raices n-ésimas de 1 se llaman las raices n-ésimas de la unidad. Estos nimeros tienen muchos usos,
por ejemplo, en conexién con la transformada rapida de Fourier. Como 1 tiene magnitud 1, y un argumen-
to de 1 es cero, las raices n-ésimas de la unidad son

e2kmi/n para k= O’ 1, N 1.
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FIGURA 9.8

Si pone w = €27/ entonces estas raices n-ésimas de la unidad son 1, w, @?, .. ., w"~ L
Por ejemplo, las raices quintas de la unidad son

27i/S  pATi/S  pOmi/S 87i/5
, € , € , € ye .

! 2 i 2 4 yi 4
, COS 5 i sen 5 ) cos 5 isen 5 )
6 Li 67 8w Li 8 "

cos 5 i sen 5 ) cos 5 i sen 5 )

Si dibuja como puntos en el plano, las raices n-ésimas de la unidad forman los vértices de un poligono
regular con los vértices en el circulo unitario |z = 1 y teniendo un vértice en (1, 0). La figura 9.8 muestra
las raices quintas de la unidad vistas de esta manera.

Si n es un entero negativo, entonces

Estas son

1/n 1

VT

en el sentido que los n nimeros representados por el simbolo en la izquierda son calculados tomando los
n nimeros producidos en la derecha. Estos son sélo los reciprocos de las raices n-ésimas de z.

9.5.3 Potencias racionales

Un ndmero racional es un cociente de enteros, a saber r = m/n. Suponga que n es positivo y que m y n no
tienen factores comunes. Escriba

7r = Zm/n — (Zm) l/n,

las raices n-é€simas de z.
Verifique que obtiene los mismos nimeros si primero saca las raices n-ésimas de z, entonces eleva
cada una a la potencia m. Esto se debe a que

(Zm)l/n _ <rmeim(0+2kn))l/n — pm/n g im©@+2km)/n _ (rl/nei(9+2kn)/n>m _ (Zl/n>m .

EJEMPLO 9.18

Encuentre todos los valores de (2 — 2i)35.
Primero, (2 — 2i)3 = —16 — 16i. Asi que quiere las raices quintas de —16 — 16i. Ahora |—16 — 16i]
= /512,y 57/4 es un argumento de —16 — 16i. Entonces

_16 _ 161 — (5]2)1/Zei(5ﬂ/4+2kﬂ)
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(=16 — 16i)1/5 = (512)V10¢i(Sn/4+2km)/s,

Haciendo k =0, 1, 2, 3, 4, obtiene los numeros
(512)V10¢5mir4 (512)10e137i20, (5]2)1/10g21mi20,  (5]2)1/10297i/20,  (5]2)1/10¢37ir20),

Estos son todos los valores de (2 — 2i)¥5. &

9.5.4 Potencias z¥

Suponga que z # 0 y sea w cualquier nimero complejo. Busca definir el simbolo z.

En el caso de potencias reales, a’ se define como b In(a). Por ejemplo, 27 = 7 In(2), y éste estd defini-
do ya que In(2) esta determinado. Siga el mismo camino para z¥, excepto que ahora, para el hecho de que
log(z), denote un conjunto infinito de niimeros complejos. Por tanto, defina z*¥ como el conjunto de todos los
ndimeros e log),

Si w = m/n, un nimero racional en su minima expresion, entonces e®0g@@ tiene n valores distintos. Si
w no es un nimero racional, entonces z* es un conjunto infinito de nimeros complejos.

EJEMPLO 9.19

En cada problema del 1 al 14, determine todos los valores

Calcule todos los valores de (1 — 7)1+,

Estos niimeros se obtienen como e(!+) log-)_Primero, |l — i| = +/2 y —7/4 es un argumento de 1 —
i (obtiene el punto (1,—1) rotando 7/4 radianes en sentido negativo desde el eje real positivo). Por tanto,
en la forma polar,

1 —j= ﬁei(—n/4+2nn).

Asi todos los valores de log(1 — i) estdan dados por
In(v2) + i (—% + 2nn) .

Todo valor de (1 — i)!*/ estd contenido en la expresion

eUHDIIN2)Fi (=7 /442n7)] _ In(v2)+7/4=2n7 i (In(v/2)—7 /4+2n7)

= /2T /A 2T (cos(ln(ﬁ — /44 2n7)) + isen(In(v/2 — 7 /4 + 2nn))>

= 2¢7/A- (cos(ln(ﬁ — 1/4)) + i sen(In(v/2 — 71/4))) .

Conforme n varia entre todos los valores enteros, esta expresion da todos los valores de (1 — i)!+i. W

SECCION 9.5 PROBLEMAS

de zv.
1. i+
2. (140

3.

it

(1 + 02
(=1 + i)~

4
5

6. (1— i3
7. A

8

1614
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9. (—4)2-i 14. (7i)%
10. 6-2-3i 15. Sea n un entero positivo, y sean uy, . . . , u, las raices
s n-ésimas de la unidad. Pruebe que Z;’:l u; = 0. Sugerencia:
11. (—16) . L. . .
Escriba cada raiz n-ésima de la unidad como una potencia
12. <i + l ) 1/3 de eZnVn.
—i

16. Sea 7 un entero positivo, y @ = e27/», Evalde Z;:é
13. 116 (=Vw.
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CAPITULO 10

Integracion
compleja

Ahora conoce algunas funciones complejas importantes, asi como ciertos resultados acerca de las deriva-
das de las funciones complejas. A continuacién se desarrolla una integral para las funciones complejas.

Las funciones reales estan definidas sobre conjuntos de nimeros reales y con frecuencia se integran
sobre intervalos. Las funciones complejas estdn definidas sobre conjuntos de puntos en el plano y se inte-
gran sobre curvas. Antes de definir esta integral, repasard algunos resultados sobre las curvas.

Curvas en el plano

Una curva en el plano complejo es una funcioén I': [a, b] — €, definida en un intervalo real [a, b] y que toma
valores complejos. Para cada ndmero ¢ en [a, b], ['(f) es un nimero complejo, o punto en el plano. El lugar
geométrico de tales puntos es la grdfica de la curva. Sin embargo, la curva es mds que un lugar geomé-
trico de puntos en el plano. I" tiene una orientacidn natural, que es la direccién en la que el punto I'(¢)
se mueve a lo largo de la gréifica conforme 7 crece de a a b. En este sentido, es natural referirse a I'(a) como
el punto inicial de la curva 'y a I'(b) como el punto final.

Si I'(f) = x(¢) + iy(?), entonces la grafica de I' es el lugar geométrico de los puntos (x(¢), y()) para
a <t <b.Elpunto inicial de I" es (x(a), y(a)) y el punto final es (x(b), y(b)) y (x(t ), y(¢)) se mueve del pun-
to inicial al punto final conforme ¢ varia de a a b. Las funciones x(¢) y y(¢) son las funciones coordenadas
deT.

EJEMPLO 10.1

Sea I'(f) = 2t + f2i para 0 < ¢ < 2. Entonces

['(#) = x(n) 4 iy(1),

437
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y

4 4, 4)

3 y

- V(1) = e

1 L

VY37 =—1 v0)=1
[ | | L,y

0 1 2 3 4
FIGURA 10.1 x =2¢,y =t para FIGURA10.2 W(r) =e"para 0 <t <3m.
0<r<?2.

donde x(r) = 2ty y(t) = 2. La gréfica de esta curva es la parte de la parabola y = (x/2)2, que se muestra en
la figura 10.1. Conforme ¢ varia de 0 a 2, el punto I'(f) = (2t, 12) se mueve a lo largo de esta grafica del pun-
to inicial I'(0) = (0, 0) al punto final I'(2) = (4, 4). Las flechas en la grafica indican esta orientacién. M

EJEMPLO 10.2

Sea W(f) = e para 0 <t < 3m. Entonces W(¢) = cos(t) + i sen(f) = x(¢) + iy(t), asi
x(t) = cos(), y(t) = sen(?).

Como x2 + y2 = 1, todo punto en esta curva estd en el circulo unitario alrededor del origen. Sin embargo,
el punto inicial de W es W(0) = 1 y el punto final es W(37) = 37 = —1. Esta curva no es cerrada. Si ésta
fuera una pista de carreras, la carrera empezaria en el punto 1 de la figura 10.2 y terminaria en —1. Una
pista de carreras circular no significa que los puntos de inicio y fin de la carrera sean el mismo. Esto no es
evidente a partir sélo de la grafica. W estd orientada positivamente, como lo indica la flecha. ™

EJEMPLO 10.3

Sea O(f) = e para 0 < t < 4. Esta curva es cerrada, ya que ®(0) = 1 = ®(4m). Sin embargo, el punto
(x(2), y(t)) se mueve alrededor del circulo unitario x2 + y2 = 1 dos veces conforme ¢ varia de 0 a 47. Esto
tampoco es evidente a partir sélo de la grafica (figura 10.3). ™

O) = e

00) =027 =0@r) =1 *

FIGURA 10.3 O(f) =eifpara0 <t < 4m.
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YT = x(0) + y(0)i = x(0i + () YT r, 4.1

I, 4
X T® X | X

FIGURA 10.4 Vector posicion de una curva. FIGURA 10.5 Vector = FIGURA 10.6
tangente a una curva. La concatenacion
NHerhelr;erl.

Una curva I' es simple si I'(¢;) # I'(t,) siempre que #; # t,. Esto significa que el mismo punto nun-
ca se repite en tiempos diferentes. Se hace una excepcion para las curvas cerradas, que requieren que
['(a) = I'(b). Si éste es el tinico punto en el cual I'(#;) = ['(f,) con #; # t,, entonces I" es una curva cerra-
da simple. La curva ® del ejemplo 10.3 es cerrada, pero no simple. Si define A(f) = e’ para 0 < t < 2,
entonces (x(7), y(¢)) recorre el circulo exactamente una vez conforme ¢ varfa de 0 a 27, y A es una curva
cerrada simple.

Una curva I': [a, b] — € es continua si cada una de sus funciones coordenadas es continua en [a,
b]. Si x(7) y y(¢) son diferenciables en [a, b], " es una curva diferenciable. Si x'(t) y y'(f) son continuas, y
no valen cero para el mismo valor de ¢, I" es una curva suave. Todas las curvas en los ejemplos anteriores
son suaves.

En términos vectoriales, escriba ['(f) = x(1)i 4+ y(¢)j (figura 10.4). Si I" es diferenciable, y x'(¢) y y'(¢)
no son cero, entonces ['(f) = x'(1)i 4+ y'(1)j es el vector tangente a la curva en el punto (x(¢), y(t)) (figura
10.5). Si I" es suave, entonces x'(f) y y’() son continuas, asi que el vector tangente es continuo. Una curva
suave es, por tanto, la que tiene una tangente continua. Para ilustrar, en el ejemplo 10.3, ®(¢) = cos(?) +
i sen(?), de manera que ®'(f) = —sen(f) + i cos(?). Puede dejar esto como esta o escribir el vector tangen-
te ©'(f) = —sen(n)i + cos(¥)j, explotando la correspondencia natural entre los ndmeros complejos y los
vectores en el plano.

Algunas veces se forma una curva I" juntando varias curvas 'y, . . ., [, en sucesion, en el entendido
de que el punto final de I';_; debe ser el mismo que el punto inicial de I'; para j = 2, . . ., n (figura 10.6).
Una curva asi se llama la concatenacion de I'y, . . ., I, y se denota

r=riehlhe - -aerl,
Las curvas I'; son las componentes de esta concatenacion. Si cada componente de una concatenacion es
suave, entonces €ésta es suave a pedazos. Tiene una tangente continua en cada punto, excepto quizd en los

puntos de conexién donde I';_; es unida a I';. Si la conexidn es de manera suave, la concatenacion puede
tener una tangente en cada uno de estos puntos y ella misma ser suave.

EJEMPLO 10.4

SeaI')(f) = e para 0 < t < mwysea[,(f) = —1 + ti para 0 < ¢t < 3. Entonces [';() = —1 = I'5(0), de
manera que el punto final de I'; es el punto inicial de I';. La figura 10.7 muestra una grafica de I'y @ I',.
Esta curva es suave a pedazos, ya que es la concatenacién de dos curvas suaves. La concatenacién tiene
una tangente en cada punto excepto en — 1, donde se hace la conexién para formar la concatenacién. M

Se definird un tipo de equivalencia entre curvas. Suponga
I:la,b]>C y @:[A Bl—C
son dos curvas suaves. Llame a estas curvas equivalentes si una se puede obtener a partir de la otra

mediante un cambio de variables definido por una funcién creciente y diferenciable. Esto significa que
existe una funcién ¢ que manda puntos de [A, B] en [a, b] tal que
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1. ¢ (p) > 0paraA <p < B,
2. p(A)=ay e(B)=b,y
3. ®(p) =T(p(p)) paraA <p < B.

Si piensa en t = ¢(p), entonces ['(f) = ®(p). Las curvas tienen el mismo punto inicial y terminal y la
misma grafica y orientacién, pero I'(f) se mueve a lo largo de la grafica conforme ¢ varia de a a b, mientras
®(p) se mueve a lo largo de la misma grafica en la misma direccién conforme p varia de A a B. Informal-
mente, dos curvas son equivalentes si una es sélo una reparametrizacioén de la otra.

-1+ 3i y

FIGURA 10.7 La concatenacion
deT(t) =etpara0 <t < m, con
Iy(t)=—1+itpara0 <t <3.

EJEMPLO 10.5

Sean

I't)y=1—2ti para0 <r<lI,

D(p) = sen?(p) — 2 sen(p)i para0 <p < n/2.

Ambas curvas tienen la misma grafica (figura 10.8), extendiéndose del punto inicial 0 al punto final
1 — 2i. Sea

t=¢(p)=sen(p) para0<p <mn/2

Entonces ¢ es una funcién creciente y diferenciable, que manda [0, /2] sobre [0, 1]. Mas ain, para 0 <
p <7/,

I'(sen(p)) = sen(p) — 2 sen(p)i = O(p).
Por tanto, estas curvas son equivalentes. M

Informalmente, se describird a menudo una curva geométricamente y se hablara de la curva y de su
gréafica de manera indistinta. Cuando se hace esto, es importante no perder de vista la orientacion a lo largo
de la curva y si es 0 no una curva cerrada.

Por ejemplo, suponga que I" es una rectade 1 + 7 a 3 4 3i (figura 10.9). Esto proporciona la grafica y
su orientacion, y asi encuentra I'. Como la grifica es el segmento de recta de (1, 1) a (3, 3), las funciones
coordenadas son

x=ty=t paral <t<3.
Entonces

'Oy=x@®+y@®)i=1+it paral <tr<3
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FIGURA 10.8 Grdfica de I'(t) = 12 — 2it
paraQ <t <1.
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3i D) =i+2"0<t<%

X i 2+

T X

0.9 Recta dirigida FIGURA 10.10

y
3+ 3
1+
FIGURA 1
del+ia3+3i

es una representacion de la curva que ha sido descrita. Por supuesto, hay otras representaciones equiva-

lentes.

Como otro ejemplo, suponga que P es el cuarto de circulo de radio 2 alrededor de i, de 2 4 i a 3i
(figura 10.10). Nuevamente, se ha dado la grafica y su orientacién. Usando coordenadas polares con cen-
tro en i = (0, 1), puede escribir las funciones coordenadas

x(t) =2cos(t), y(t) =1+ 2sen(f) paraO <t <m/2.

Como una funcidn, esta curva puede escribirse como

D(r) =2 cos(r) + 2isen(t) +i=1i+ 2" para0 <t <m/2.

También se pueden usar otras representaciones equivalentes.

Finalmente, interpretard con frecuencia enunciados tales como “f es continua en I'”, lo que significa
que f es una funcién compleja que es continua en todos los puntos en la graficade I'. Y “z en ', signifi-
ca un nimero complejo z que estd en la grafica de I

Las curvas son los objetos sobre los cuales se integran las funciones complejas. Ahora se definird esta

integral.

SECCION 10.1 PROBLEMAS

En cada problema del 1 al 10, dibuje la grafica de la curva,
determine sus puntos inicial y terminal, si es o no cerrada, si
es o no simple y la tangente a la curva en cada punto donde
exista. Esta tangente puede expresarse como un vector o como
una funcién compleja.

1. () =4 —2i+ 2etpara0 <t <m
2. I'(t) = ietitpara ) <t < 2w

3. =t++tiparal <t<3

10.

. I'(#) = 3 cos(t) + S sen(t)i para 0 <t < 2w

. O@) =3 cos(?) + Ssen(t)i para0 <t < 4rx

. A(t) =4 sen(t) — 2 cos(t)i para —w <t < m/2
U@ =t—ripara—2<r<4

L P =+ 1) — L ipara -3 <1< -1

. I'(t) = cos(f) — 2 sen(2)i para0 <t <2

A)=1 —tipara—1<r<1
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10.2 La integral de una funciéon compleja

Definird la integral de una funcién compleja en dos pasos, empezando con el caso especial donde f'es una
funcién compleja definida en un intervalo [a, b] de nimeros reales. Un ejemplo de este tipo de funcién es
f(x) = x2 4 sen(x)i para 0 < x < 7. Es natural integrar tal funcién como

T T T 1
/ fx)dx = / x2dx + i/ sen(x)dx = —7°> + 2i.
0 0 0 3

Este es el modelo para estas funciones.

DEFINICION 10.1

Seaf: [a, b] — € una funcién compleja. Sea f(x) = u(x) + iv(x) para a < x < b. Entonces

b b b
/f(x)dX=/ M(X)dx+i/ v(x)dx.

Ambas integrales de la derecha son integrales de Riemann de funciones de variable real sobre [a, b].

EJEMPLO 10.6

Seaf(x) =x — ix2para 1 <x < 2. Entonces

2 2 2 3 7
/ f(x)dx:/ xdx—i/ dx==-—-i. m
1 1 1 2 3

EJEMPLO 10.7

Sea f (x) = cos(2x) + i sen(2x) para 0 < x < 7 /4. Entonces

/4 /4 /4 1 1
/ f(x)dx = / cos(2x)dx + i/ sen(2x)dx ==+ —-i. m
0 0 0 22

En el dltimo ejemplo, es tentador hacer f (x) = e2 y adaptar el teorema fundamental del célculo a
funciones complejas para obtener

/ " ear = / " e = [%62”}:/4 L)
=%<C°S<‘)+"SC“<%) -1) =%(—1 +i) = %(1 +i).

Estos célculos se justificardn en breve.
Abhora se define la integral de una funcién compleja sobre una curva en el plano.
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DEFINICION 10.2

Sea funa funcién compleja. Sea I': [a, b] — € una curva suave en el plano. Suponga que fes con-
tinua en todos los puntos en I'. Entonces la integral de f'sobre I' se define como

b
frf(z)dz=/ F@T()T'(t)dt.

Como z = I'(¢) en la curva, esta integral se escribe frecuentemente como

b
frf(z)dz=f fz®))Z (t)dt.

Esta formulacién tiene la ventaja de sugerir la manera que f r f(z) dz es evaluada, reemplace z con z(¢) en
la curva. Sea dz = 7/(¢) dt, e integre sobre el intervalo a <t < b.

EJEMPLO 10.8

Evaluar fr Z7dzsi'(t) =etpara0 <t <.

La gréfica de I" es la mitad superior del circulo unitario, orientado en sentido contrario al movimiento
de las manecillas del reloj de 1 a —1 (figura 10.11). En T, z(r) = eit y Z/(f) = ieit. Mds atin, f(z(1)) = z(r) =
e~itya que t es real. Entonces

T X . b
/f(z)dz=/ e_”ie”dt=i/ dt =mi. |
r 0 0

EJEMPLO 10.9

Evaluar f¢ 2dzsi®(t)=t+ itpara0 <t <1.
La gréfica de ® es el segmento de recta del origen a (1, 1), como se muestra en la figura 10.12. En la
curva, z(t) = (1 + i)t. Como f(z) = 22,

f@®) = (20)? = (1 + )22 = 2ir?

70 =1+1i.

Entonces

1 1
2
/z2dz=/ 2it2(1+i)dt=(—2+2i)f P2di==(—1+i). m
0] 0 0 3

y
2(h=et,0<t<mw Y L+
zZ=t+ir,0=<r=<1
X
-1 | 1 *l—'x

FIGURA 10.11 FIGURA 10.12
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EJEMPLO 10.10

Evaluar fr zRe(z) dzsiT'(f) =t — irfpara0 <t < 2.
Aqui f(z) = zRe(z), y en esta curva, z(f) = t — if?, asi

f@®) =z(t) Re(z(1)) = (1 — i)t =12 — i3,
Mas aun,

() =1-2it,

2 2
/zRe(z) dz = / (2 — i) = 2it)dt = / (12 = 3it> — 2% dt
r 0 0

2 2 152
=/ (t2—2t4)dt—3i/ Bdt=——"2"—-12i{. m

Se probara que las integrales de una funcién sobre curvas equivalentes son iguales. Esto es importante
porque posibilita parametrizar una curva de una infinidad de maneras distintas, y esto no cambiara el valor
de la integral de una funcién dada sobre la curva.

— TEOREMA 10.1

Sean I' y @ curvas equivalentes y sea f continua en su grafica. Entonces

/f(z)dz=/ f(@dz. m
r (o]

Prueba SupongaqueT: [a, b] > Cy @ :[A, B] — €. Debido a que estas curvas son equivalentes, existe
una funcién continua ¢ con derivada positiva en [A, B] tal que p(A) =ay ¢(B) =by ®(p) = I'(¢(p)) para
A < p < B. Por laregla de la cadena,

@' (p) = I'(e(p)¢'(p).

Entonces
B B
[D F)dz = /A F@(p)P (p)dp = /; FC ()T (0P (p) dp.

Sea s = ¢(p). Entonces s varia de @ a b conforme p varfa de A a B. Continuando a partir de la dltima
ecuacion,

b
A F(2)dz = / FCE)(s)ds = /r F@)dz m

Hasta aqui integra sélo sobre curvas suaves. Puede extender la definicidn a una integral sobre curvas
suaves a pedazos sumando las integrales sobre las componentes de la concatenacion.
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DEFINICION 10.3

Seal'=T;® I' ®- - -® I';, una concatenacion de curvas suaves. Sea f continua en cada I'; . Enton-
ces

/f(z)dz=Z/ f@)dz.
r =y

EJEMPLO 10.11

Sea I'i(f) = 3eitpara 0 < t < /2,y sea ['»(f) = 2 4+ 3i(t + 1) para 0 < ¢t < 1. Iy es el cuarto de circu-

lo de radio 3 alrededor del origen, recorrido en sentido contrario al movimiento de las manecillas del reloj,

de 3 a 3i, y I'; es la parte de la parabola x = (y — 3)2/9 de 3i a 1 + 6i. La figura 10.13 muestra la grafi-
y cade ' =T I',. Evaluara fp Im(z) dz.

En I'y, escriba z(f) = 3ei* = 3 cos(t) + 3i sen(?). Entonces

/2 /2
/ Im(z)dz = / Im(z(1))Z'(t) dt = / 3sen(r)[—3sen(r) + 3i cos(t)] dt
r 0 0

FIGURA 10.13

/2 /2 9 9
= —9[ senz(t) dr + 9i/ sen(t)cos(t) dt = ——m + —1i.
0 0 4 2
EnTy, z(t) = 2 +3i(t + 1) y 2/ (t) = 2t + 3i, asi

1
/lm(z)dz=/ Im[7? + 3i(t + D)][2¢ + 3i]dt
1) 0
1 1
=/ 3(t+1)(2t+3i)dt=/ (6% + 61 + 9it + 9i) dt
0 0

1 : 27
Zf (6f2+6f)dt+9i/ (t+1dt =5+ =i,
0 0

Entonces

/f()d = 9n+9‘+5+27'—5 9n+18' ]
. Z 7= 4 21 21— 2 l.

10.2.1 La integral compleja en términos de integrales reales

Es posible pensar en la integral de una funcién compleja sobre una curva como una suma de integrales de
linea de funciones de valor real de dos variables reales sobre la curva. Sea f(z) = u(x, y) + iv(x, y) y, en
la curva I', suponga que z(f) = x(7) + iy(f) paraa < t < b. Ahora

J@(0) = ulx(), y(1) + iv(x(2), y(1))

() =x(0+ iy
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asi
F @) (@) = [ux(0), y(0)) + iv(x(t), y(O)] [X' () + iy'()]
= u(x(t), ()X’ (1) — v(x(1), y())y'(2)
+ i[v(x(®), Y(O)X' (1) + ulx(t), y(1)y'()].
Entonces

b
frf(Z) dz 2/ [u(x (@), y()x' (1) = v(x (@), y(0))y'(1)] dt

b
+ i/ [w(x (@), y(O))x' () + ulx(t), y()y' (1)]dt.
a
En la notacién de integrales de linea reales,

/f(z)dz=/udx—vdy+i/vdx+udy. (10.1)
r r r

Esta formulacién permite una perspectiva que algunas veces es ttil en el desarrollo de las propiedades
de las integrales complejas.

EJEMPLO 10.12

Evaluar f r iz2dz si I'(f) = 4 cos(t) + i sen(f) para 0 <t < 7/2. La figura 10.14 muestra la grafica de T,
que es parte de la elipse

2

X 2
— = 1.
617

Para evaluar f r iz2 dz en términos de integrales de linea reales, primero calcule

f@) =i =—2xy +i(x2 —y2) =u+ i,

donde

ulx, y)=—=2xy y v(x y) =x2—y2%

y

1.0~
0.8 —
0.6 —
04—

0.2

| | | L, .
0 1 2 3 4

FIGURA 10.14 x = 4 cos(?), y = sen()
para O <t <m/2.
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En la curva, x(f) = 4 cos(f) y y(f) = sen(f). Ahora la ecuacién (10.1) da

/2

/2
fiz2 dz =f (—8cos(?) sen(r)) (—4sen(t))dt—/
r 0

(16 cosz(t) — senz(t)) cos(t) dt
0

/2

/2
+i |:/ (16 cos?(r) — sen2(t)) (—4sen(r)) dt + / (—8cos(t) sen(t)) cos(t) dti|
0 0

Tendr4 una manera fécil de evaluar integrales de linea sencillas tales como [1iz2 dz, cuando tenga mas
propiedades de las integrales complejas.

10.2.2 Propiedades de las integrales complejas

Desarrollara algunas propiedades de f rf(2)dz.

= TEOREMA 10.2 Linealidad

Sea I" una curva suave a pedazos y sean f'y g continuas en I'. Sean « y B nimeros complejos. Entonces

/F (@f (@) +Bg(@)dz = /F F)dz+ B fr ¢(2) dz.

Esta conclusién es ciertamente lo que se espera de cualquier cosa llamada una integral. El resultado
se extiende a sumas finitas arbitrarias:

/Zaifj(Z)dZ=Zaj/fj(Z)dZ.
rio = r

La orientacién juega un papel significativo en la integral compleja, ya que es una parte intrinseca
de la curva sobre la cual se calcula la integral. Suponga que I': [a, b] — € es una curva suave, como se
distingue en la figura 10.15. La flecha indica la orientacién. Puede invertir esta orientacién definiendo una
curva nueva

F@o=T(a+b—1 paraa<tr<bh
", es una curva suave que tiene la misma grafica que I'. Sin embargo,
F(@=T®) y TI,0)=TI(a)

I, empieza donde termina I', y ', termina donde empieza I'. Se invirtid la orientacion.
Invertir la orientacién cambia el signo de la integral.

r

y r y _
T I (@) T r L) =T(a)

| X

rw) ! | * T (@) = I'h)

FIGURA 10.15 Orientacion invertida en una curva.
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= TEOREMA 10.3 Inversion de la orientacion

Sea I': [a, b] — C una curva suave. Sea f continua en I'. Entonces

/f(Z)dz=—/ f(@dz. m
r T,

Prueba Seau=a+ b — t. Porlareglade la cadena,

% T,(t) = % Ta+b—1) =T () =-T'(u) = —-T"(a+b—1).

Entonces
b b
/ f(dz = / F@) (1) dt = —/ f@@+b—)I(a+b—1)dt.
r, a a
Ahora cambie variables poniendo s = a + b — ¢ . Entonces

a b
. f()dz = —/; F@ENI(s)(—D)ds = —f F@ )OI (s)ds = —/Ff(z)dz.

No necesita definir I', para invertir la orientacion en integrales especificas, s6lo integrar de b a a en
lugar de a a b. Esto invierte los papeles de los puntos inicial y terminal y por tanto, la orientacién. O puede
integrar de a a b y tomar el negativo del resultado.

Enuncie una versién compleja del teorema fundamental del cédlculo. Establece que si f tiene una
antiderivada continua F, entonces el valor de f r f(2)dz es el valor de F en el punto final de I' menos el
valor de F en el punto inicial.

— TEOREMA 104

Sea f continua en un conjunto abierto G y suponga que F'(z) = f (z) parazen G. Sea I': [a, b] — G una
curva suave en G. Entonces

b
/ f(z)dz = F(I'(b)) — F(I'(a)).
Prueba ConT'(1)=z(t) =x() +iy(t) y F(z) = U(x, y) + iV (x, y),

b b b
fr F)dz = / FEO (@) di = / Fl(2(0)2 (1) dt = f %F(Z(I))dt

b d b d
Z/a EU(x(t),y(t))dt—}-i/a SV, ) dr.

Ahora es factible aplicar el teorema fundamental del célculo a las dos integrales reales de la derecha para
obtener

/rf(z) dz =Ux(D), y(b)) +iV(x(D), yb)) — [Ux(a), y(a)) +iV(x(a), y(a))]

= F(x(b), y(b)) — F(x(a), y(a)) = F(T'(b)) — F(I'(a)).

EJEMPLO 10.13

Calculara fr(z2 4iz)dzsi'(f) =6 — tcos(f)ipara0 <t < 1.
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Este es un célculo elemental pero tedioso si lo hace calculando f (]) f(z(1)Z/(¢) dt. Sin embargo, si G es
todo el plano complejo, entonces G es abierto, y F(z) = z3/3 + iz2/2 satisface F'(z) = f(z). El punto inicial
de I" es I'(0) = 0 y el punto final es I'(1) = 1 — cos(1)i. Por tanto,

/(Z2 +iz)dz = F(I'(1)) — F(I'(0)) = F(1 —cos(1)i) — F(0)
r

= l(1 —cos(D)i)> + i(1 —cos(1)i)? = (1 — cos(1)i)? <1(1 — cos(1)i) + li)
3 2 3 2 ) m

Una consecuencia del teorema 10.4 es que bajo las condiciones dadas, el valor de - f (z)dz depende
solamente de los puntos inicial y terminal de la curva. Si @ también es una curva suave en G teniendo el
mismo punto inicial que I" y el mismo punto final que I", entonces

/f(z)dz=/ f(@)dz.
r (o]

Esto se llama independencia de la trayectoria, 1a cual vera mas adelante.
Otra consecuencia es que si I” es una curva cerrada en G, entonces los puntos inicial y final coinciden y

/f(z)dz=0.
r

Considerara esta circunstancia con mds detalle cuando vea el teorema de Cauchy.
El siguiente resultado se usa para acotar la magnitud de una integral, ya que algunas veces lo necesita
para hacer estimaciones en ecuaciones o desigualdades.

Sea I': [a, b] — C una curva suave y sea f continua en I'. Entonces

V f(2)dz
r

Si, ademds, existe un nimero positivo M tal que |f(z)| < M para todo z en I', entonces

/f(z)dz
r

Prueba  Escribir el nimero complejo - f (z) dz en la forma polar:

b
< / |f @) |/ (0)]dt.

<ML,

donde L es la longiud de I'.

/ f(2)dz = re'’.
r
Entonces
b
r= e_m/ f@)dz = e_w/ f@)Z (1) dtr.
r a

Como r es real,

b b
r =Re(r) = Re [e—” / f(z(t))z’(t)dt}= / Re[e‘”f(z(r»z’(t)]dr

a

Ahora para cualquier nimero complejo w, Re(w) < |w|. Por tanto,

’

Re[e £ )] = |e7 @) 0] = [ @)
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como |e~| = 1 para 6 real. Entonces

‘/ f(2)dz
r

como queria demostrar.
Si ahora |f(z)] < M en I', entonces

/ F(2)dz
r

Si I'(t) = x(¢) + iy(¢), entonces

b b b
=r= / fz@)Z (1) dt s/ |f(z(t))z/(t)|dt=/ | f )] |z @) dt,

b b
5/ |f<z<z>>|yz’(r>|drst 10| dr.

0] = ¥ O + iy 0] = & ©)? + ()2,

) /F f@)dz

b
= M/ \/(x/(t))2 + (y'(t))?dt = ML.

EJEMPLO 10.14

Obtendr4 una cota en | fr eRe®@ dz|, donde T es el circulo de radio 2 alrededor del origen, recorrido una
vez en sentido del movimiento de las manecillas del reloj.
En I" puede escribir z(f) = 2 cos(?) + 2i sen(?) para 0 < ¢t < 2m. Ahora

’ QRECO)| = 2c0s() 2

para 0 < ¢ < 2m. Como la longitud de I" es 47, entonces

/ Re@ g
r

Este ndmero acota la magnitud de la integral. No se pide que sea una aproximacion del valor de la integral
con ningtin grado de exactitud.

< 4w’ ]

10.2.3 Integrales de series de funciones

Frecuentemente querrd intercambiar una integral y una serie. Se dan condiciones bajo las cuales

ﬁ(; fn(z)dz) i’;/an(z) dz.

Probard que si puede acotar cada f,(z), para z en la curva, por una constante positiva M,, de manera
que 25>, M, converja, entonces intercambiard la sumatoria y la integral e integrard la serie término a
término.

= TEOREMA 10.6 Integracion término a término

Sea I' una curva suave y sea f,, continuaen I' paran =1, 2, . . . . Suponga que para cada entero positivo n
existe un nimero positivo M, tal que Z‘Zf’: 1 M, converge y, para todo zen I,

(2| < M.
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Entonces 25, f.(z) converge absolutamente para todo z en I'. Mds aun, si denota 2% f2) = g(2),

/g(z)dZ:Z/fn(Z)dZ- n
r ¥

Prueba Para cada z en T, la serie real )52, | f.(2)| converge por comparacién con la serie convergente
oL M,,. Ahora sea L la longitud de T" y considere la suma parcial

entonces

Cada Fyes continuaen I" y

N
‘f g(z)dz—Z/fn(z)dz
r n=1 r

Ahora paratodo zen I,

lg(2) — Fu(2)| =

Y. hH)

n=N-+1

N
Fn() =) fr(@).

n=1

= ‘/r[g(z) dz — Fn(2)]dz

<L (ma’X lg(z) — FN(Z)|) .
zenl

o0
> Myl

n=N+1

=<

Si € es cualquier ndmero positivo, puede elegir N suficientemente grande para que )%y M, < €/L, ya

que Zono:] M,, converge. Pero entonces

. €
max [g(z) — Fn(2)| < —,
zenl

N
‘/ g(z)dz—fon@dz
r n=1 r

para N suficientemente grande. Esto prueba que

/fn(z)dz=/g(z)dz,
r r

N

lim Z

=1

N—o0
n

como queria demostrar. M

L

€
<L—=c¢
L

Por supuesto, el teorema se aplica a series de potencias dentro de su circulo de convergencia, con f,,(z)

= ¢z — z0)™

SECCION 10.2 PROBLEMAS

En cada problema del 1 al 15, evalde [ f(z)dz. Todas las curvas
cerradas estdn orientadas en sentido contrario al movimiento de
las manecillas del reloj, a menos que se especifique la excep-
cién.

Lf2)=1T@E) =0 —itparal <t <3.

2. f(z) = z2 — iz; I es el cuarto de circulo alrededor del origen
de 2 a2i.

3. f(z) =Re(z); " es el segmento de rectade 1 a2 + i.

4. f(z) = 1/z; T es la parte del semicirculo de radio 4 alrede-
dor del origen de 4i a —4i.

5. f(z) = z — 1; I' es cualquier curva suave a pedazos de 2i a
1 —4i

6. f(z) = iz% ' es el segmento de rectade 1 + 2ia3 + i.
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7. f(z) = sen(2z); I es el segmento de recta de —i a —4i.

8. f(z) =1 + 22 I es la parte del circulo de radio 3 alrededor
del origen de —3i a 3i.

9. f(z) = —i cos(z); I' es cualquier curva suave a pedazos de
Oa2+.i.

10. f(z) = |z]?; " es el segmento de recta de —4 a i.
1. f@) =Gz — D} ()=t —iPpara0 <t < 2.

12. f(z) = e%; T es cualquier curva suave a pedazos de —2 a
—4 — .

10.3 Teorema de Cauchy

13. f(z) =iz; I' es el segmento de recta de 0 a —4 + 3i.

14. f(z) = Im(z); I" es el circulo de radio 1 alrededor del ori-
gen.

15. f(z) = |z|%; T es el segmento de rectade —i a 1.

16. Encuentre una cota para ) /l“ cos(zz) dz|, si I' es el circulo

de radio 4 alrededor del origen.

17. Encuentre una cota para |/I‘ IL dz|, si T es el segmento
+

derectade2 +ia4d+ 2i.

El teorema de Cauchy (o de la integral de Cauchy) es considerado el teorema fundamental de la integra-
cién compleja y su nombre es en honor del matematico e ingeniero francés del siglo xx, Augustin-Louis
Cauchy. El tuvo la idea del teorema, asi como de muchas de sus consecuencias, pero fue capaz de pro-
barlo sélo bajo condiciones, que después se encontré que son restriciones innecesarias. Edouard Goursat
probo el teorema como se suele enunciar ahora, y por esta razén algunas veces es llamado el teorema de

Cauchy-Goursat.

El enunciado del teorema usa implicitamente el teorema de la curva de Jordan, que establece que una
curva continua, simple y cerrada I' en el plano separa al plano en dos conjuntos abiertos. Uno de estos
conjuntos es no acotado y se llama el exterior de I, y el otro es acotado y se llama el interior de I'. La
(grafica de la) curva no pertenece a ninguno de estos conjuntos, pero forma la frontera de ambos. La figura
10.16 ilustra el teorema. A pesar de que esta conclusiéon puede parecer obvia para las curvas cerradas que
se suelen dibujar, es dificil de probar debido a la generalidad de su enunciado.

Alguna terminologia determinard al enunciado del teorema de Cauchy mas eficiente.

DEFINICION 10.4 Trayectoria

Una trayectoria es una curva simple, suave a pedazos.
Una trayectoria en un conjunto S es una trayectoria cuya grafica estd en S.

Asi, una trayectoria es una concatenacion de curvas suaves que no se cruzan a si mismas.

Exteriorde I'

Interior de '

FIGURA 10.16 Teorema de la
curva de Jordan.
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DEFINICION 10.5 Conjunto conexo

Un conjunto S de nimeros complejos es conexo si, dados dos puntos cualesquiera z y w en S, existe
una trayectoria en S que tiene a z y a w como puntos extremos.

S es conexo si es posible ir desde cualquier punto de S a cualquier otro punto moviéndose a lo largo
de alguna trayectoria totalmente contenida en S. Un disco abierto es conexo, asi como también lo es un
disco cerrado, mientras que el conjunto que consiste en los dos discos abiertos |z| < 1y |z — 10i] < 1 no
lo es (figura 10.17), ya que no es posible ir de 0 a 10i sin salir del conjunto.

DEFINICION 10.6 Dominio

Un conjunto de nimeros complejos, abierto y conexo se llama un dominio.

D es un dominio si:
1. Alrededor de cualquier z en D, hay algtin disco abierto que contiene s6lo puntos de D.
2. Puede ir desde cualquier punto en D a cualquier otro punto en D por una trayectoria en D.

Por ejemplo, cualquier disco abierto es un dominio, como lo es el semiplano superior que consiste de
todo z con Im(z) > 0. Un disco cerrado no es un dominio (es conexo pero no abierto), y un conjunto que
consiste en dos discos abiertos ajenos no es un dominio (es abierto pero no conexo).

DEFINICION 10.7  Simplemente conexo

Un conjunto S de nimeros complejos es simplemente conexo si toda trayectoria cerrada en S encie-
rra inicamente puntos de S.

Todo disco abierto es simplemente conexo (figura 10.18). Si dibuja una trayectoria cerrada en un
disco abierto, esta trayectoria cerrada encerrard solamente puntos en el disco abierto. El anillo de la figura
10.19, que consiste de los puntos entre dos circulos concéntricos, no es simplemente conexo, a pesar de
ser conexo. Puede dibujar una trayectoria cerrada contenida en el anillo, pero que encierra la frontera inte-
rior circular del anillo. Esta curva encierra puntos que no estan en el anillo, a saber aquellos encerrados
por la frontera interior circular.

Ahora estd listo para enunciar una version del teorema de Cauchy.

TEOREMA 10.7 Teorema de Cauchy

Sea f diferenciable en un dominio simplemente conexo G. Sea I una trayectoria cerrada en G. Entonces

/f(z)dz —o.
r

Con frecuencia las integrales alrededor de trayectorias cerradas se denotan por 95 En esta notacion, la
conclusién del teorema se lee gsp f(z) dz = 0. El 6valo en el signo de la integral es sélo para recordar que
la trayectoria es cerrada y no altera cémo opera la integral o la manera de evaluarla.
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y
10i
y
— X X
FIGURA 10.17 Discos FIGURA 10.18 Un
abiertos ajenos forman disco abierto es
un conjunto que no es simplemente conexo.

conexo.

/-|Z|:1

X

|zl =2

FIGURA 10.19 El conjunto

de puntos entre dos circulos
concéntricos no es simplemente
conexo.

Informalmente, el teorema de Cauchy establece que $r f(z) dz = 0 si f es diferenciable en la curva
y en todo punto encerrado por la curva. Se analizard la prueba después de ver dos ejemplos. Como una
convencion, las curvas cerradas estin orientadas positivamente (en sentido contrario del movimiento de

las manecillas del reloj), a menos que se especifique.

EJEMPLO 10.15

Evaluar 9Sp ¢” dz, donde T es cualquier trayectoria cerrada en el plano.

La figura 10.20 muestra una I tipica. Aqui f(z) = ¢ es diferenciable para todo z, y el plano completo

es un dominio simplemente conexo. Por tanto,

2
fez dz=0. m
r

EJEMPLO 10.16

Evaluar
2z+1
% ﬁdz,
r z-+3iz

donde I' es el circulo |z + 3i| = 2 de radio 2 y centro —3i (figura 10.21).

Y y
r X
r
X 2
|2 +3i| =2
FIGURA 10.20 Una FIGURA 10.21

trayectoria cerrada simple T.
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Puede parametrizar ['(f) = —3i 4 2e para 0 < t < 2m. ['(¢) recorre el circulo una vez, en sentido
contrario del movimiento de las manecillas del reloj, conforme ¢ varia de 0 a 2.

Primero observe que f(z) es diferenciable excepto en los puntos donde el denominador se anula, O
y —3i. Use una descomposicién en fracciones parciales para escribir

11 (6+i 1
f@) = ( +l)

3 7+3i

Como 1/z es diferenciable en I' y dentro del dominio simplemente conexo encerrado por ella, por el

teorema de Cauchy,
——dz =0.
f} 3iz °=

Sin embargo, 1/(z 4+ 3i) no es diferenciable en el dominio simplemente conexo encerrado por I', de
manera que no es posible aplicar el teorema de Cauchy a la integral de esta funcién. Evalde esta integral
directamente escribiendo z(f) = —3i + 2eit:

6+i\ 1 6+i (27 1
%( +’) dz = J”f (1) dt
r\ 3 7+ 3i 3 Jo z() +3i

6 . 2 1 6 . 2 6 .
— +’/ — iei dr = +’/ idt =2 o).
0 3 Jo 3

3 2e!t

Por tanto,

2741 6+z 2
———dz = 2 =|—=+4i)nx.
£Z2+3iz z= Q2mi) = ( 3+ z>rr ]

En breve veremos otras ramificaciones del teorema de Cauchy impresionantes.

10.3.1 Prueba del teorema de Cauchy para un caso especial

Si afiade una hipétesis adicional, es facil probar el teorema de Cauchy. Sea f(z) = u(x, y) + iv(x, ¥) y
suponga que 1 y vy sus primeras derivadas parciales son continuas en G. Ahora obtiene el teorema de
Cauchy inmediatamente aplicando el teorema de Green y las ecuaciones de Cauchy-Riemann a la ecua-
cién (10.1). Si D consiste en todos los puntos en y encerrados por I', entonces

%f(z)dzzygudx—vdy —|—if£vdx+udy
r r r

[ R [ (5 5o

ya que, por las ecuaciones de Cauchy-Riemann,

ou _ ov ou ov

ax Dy Y dy  ox’

Este argumento es suficientemente bueno para muchas situaciones donde se usa el teorema de Cau-
chy. Sin embargo, no es un argumento 6ptimo ya que hace una suposicién adicional acerca de la continui-
dad de las derivadas parciales de # y v. Una prueba rigurosa del teorema como estd enunciado involucra
sutilezas topoldgicas con las cuales no es conveniente involucrarnos aqui.

En la siguiente seccidn desarrollard algunas consecuencias importantes del teorema de Cauchy.
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SECCION 10.3 PROBLEMAS

En cada problema del 1 al 12, evalde la integral de la funcién
sobre la trayectoria cerrada dada. Todas las trayectorias estdn
orientadas positivamente (en sentido contrario del movimiento
de las manecillas del reloj). En algunos casos se satisface el
teorema de Cauchy, y en otros no.

1. f(z) = sen(3z); " es el circulo |z| = 4.
2z . .
2. f(z) = ——; Teselcirculo |z — i| = 3.
z—1
1
3. f(z) = ————; " estd dada por |z — 2i| = 2.
f@ 23 por | |
4. f(z) = 22 sen(z); T es el cuadrado con vértices 0, 1, 1 4+ i, e i.

5. f(z) = 7; I es el circulo unitario alrededor del origen.

6. f(z) = 1/Z; T es el circulo de radio 5 alrededor del origen.
7. f(z) = zes; T es el circulo |z — 3i] = 8.

8. f(z) = 22 — 4z + i; I es el rectangulo con vértices 1, 8, 8 +
4iy 1+ 4i.

9. f(2) = |z|% T es el circulo de radio 7 alrededor del origen.
10. f(z) = sen(1/z); I"es el circulo |z — 1 + 2i| = 1.
11. f(z) = Re(z); I" estd dada por |z] = 2.

12. f(z) = z2 + Im(z); T es el cuadrado con vértices 0, —2i,
2—-2iy?2.

104 Consecuencias del teorema de Cauchy

Esta seccion exhibe algunos de los resultados principales de la integracién compleja, con implicaciones
profundas para entender el comportamiento y las propiedades de las funciones complejas, asi como para
las aplicaciones de la integral. Como es usual, todas las integrales sobre curvas cerradas son tomadas con
una orientacién en sentido contrario del movimiento de las manecillas del reloj a menos que se diga otra

cosa.

10.4.1 Independencia de la trayectoria

En la seccién 10.2.2 se mencioné la independencia de la trayectoria, en la que, bajo ciertas condiciones
sobre f, el valor de /- f(z) dz depende solamente de los extremos de la curva, y no de la curva particular

elegida entre estos extremos.

La independencia de la trayectoria también se puede ver bajo la perspectiva del teorema de Cauchy.
Suponga que f es diferenciable en un dominio simplemente conexo G, y zo y z; son puntos de G. Sean
I'y y T'; curvas suaves a pedazos en G con punto inicial zy y punto final z; (figura 10.22). Si invierte la
orientacion en I'p, obtiene una curva nueva, —I',, que va de z; a zp. Mds aun, la concatenacién de I'; y
—I'; forma una curva cerrada I', con punto inicial y final z (figura 10.23). Por el teorema de Cauchy y el

teorema 10.3,

ff(z)dz=0=y§ f@dz= ¢ f()dz— P f(2)dz,
r INTSICI )] Iy I

implicando que

}{f(z)dz=‘¢ f()dz.
I I

Esto significa que la integral no depende de la curva particular (en G) entre zp y z; y es, por tanto, inde-

pendiente de la trayectoria.

Este argumento no es muy riguroso, ya que I'; @ (—I',) puede no ser una curva simple (figura 10.24).
De hecho, I'y y I'; pueden cruzarse una a la otra cualquier nimero de veces conforme van de zj a z;. No
obstante, se quiere seflalar la conexidn entre el teorema de Cauchy y el concepto de independencia de la
trayectoria de una integral que fue discutida antes.
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r, 2
e 2
I, _
T I r,
I
F) 20 <0
FIGURA 10.22 FIGURA 10.23 FIGURA 10.24
Trayectorias Curva cerrada 'y & (—T",) no necesita
Iylydezpaz. r=r;&(-I>y). ser simple.

Si ﬁ f(z) dz es independiente de la trayectoria en G, y I es cualquier trayectoria de z, a z;, algunas
veces se escribe

Z
?{f(z)dz=/ 1f(z)dz.
r 20

El simbolo de la derecha tiene el valor de la integral de linea de la izquierda, siendo I" cualquier trayectoria
dezpazenG.

10.4.2 El teorema de deformacion

El teorema de deformacion permite, bajo ciertas condiciones, reemplazar una trayectoria de integracién
cerrada por otra, quizd mas conveniente.

= TEOREMA 10.8 Teorema de deformacion

Sean I' y y trayectorias cerradas en el plano, con y en el interior de I'. Sea f diferenciable en un conjunto
abierto que contiene ambas trayectorias y todos los puntos entre ellas. Entonces,

ff(z)dz=ff(z)dz-
r Y

La figura 10.25 muestra la situacion del teorema. Puede pensar en deformar una curva, y, en otra.
Imagine que y estd hecha de goma, y la deforma de manera continua en la forma de I'. Al hacer esto, es
necesario que en los pasos intermedios de la deformacion de y a I s6lo se pase sobre puntos en donde f

FIGURA 10.25 Deformando
y continuamente en I'.
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es diferenciable, de aquf la hipétesis acerca de que f sea diferenciable en algtiin conjunto abierto que con-
tiene ambas trayectorias y todos los puntos entre ellas.

El teorema establece que la integral de f tiene el mismo valor sobre ambas trayectorias cuando una
puede ser deformada en la otra, moviéndose s6lo sobre los puntos en los cuales la funcién es diferencia-
ble. Esto significa que reemplaza I" con otra trayectoria y que pueda ser mds conveniente para usar en la
evaluacion de la integral. Considere el siguiente ejemplo.

EJEMPLO 10.17

Evaluar

1
7§ dz
rz—a

sobre cualquier trayectoria cerrada que encierra el nimero complejo a dado.

La figura 10.26 muestra una trayectoria tipica. No es posible parametrizar I' porque no la cono-
ce especificamente, es simplemente cualquier trayectoria que encierra a a. Sea y un circulo de radio r
alrededor de a, con r suficientemente pequefio para que y quede encerrada por I' (figura 10.27). Ahora
f(z) =1/(z — a) es diferenciable en todos los puntos excepto a, es decir, en ambas curvas y la region entre
ellas. Por el teorema de deformacion,

1 1
7{ dz=¢‘ dz.
rz—a Vz—a

Pero y se puede parametrizar facilmente: y (f) = a + rei* para 0 < ¢t < 2. Entonces

1 2 1 . 2
‘(ﬁ dz = / —,tire”dt = / idt = 2mi.
yZ—a o re 0

Por tanto,

1
% dz =2mi.
r<—a

El punto es que por medio del teorema de deformacién, puede evaluar esta integral sobre cualquier trayec-
toria que encierre a a. Por supuesto, si [ no encierraa a, y a no estd en I, entonces 1/(z — a) es diferencia-
ble en I' y el conjunto que encierra, de manera que §5r[1 /(z — a)] dz = 0 por el teorema de Cauchy. ®

La prueba del teorema emplea una técnica ttil en diversas ocasiones.

Prueba La figura 10.28 muestra graficas de trayectorias tipicas I' y y. Inserta rectas L, y Lrentre "'y y
(figura 10.29) y las usa para formar dos trayectorias cerradas ® y W (en la figura 10.30 se muestran sepa-
radas para enfatizar). Una trayectoria, ®, consiste de partes de I y y, junto con L, y L,, con orientacién
en cada pieza como se muestra para tener orientacion positiva en ®. La otra trayectoria, W, consiste del
resto de I' y y, nuevamente con L; y L,, con la orientacion elegida en cada pieza de manera que W ten-
ga orientacion positiva. La figura 10.31 muestra las trayectorias mds realisticamente, compartiendo los
segmentos insertados L; y L,. En la figura 10.31, I" estd orientada en sentido contrario del movimiento

*Q

X

FIGURA 10.26 FIGURA 10.27



10.4 Consecuencias del teorema de Cauchy 459
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x ‘ v
FIGURA 10.28 FIGURA 10.29 FIGURA 10.30 FIGURA 10.31

de las manecillas del reloj, pero y en el sentido del movimiento de las manecillas del reloj, debido a sus
orientaciones como parte de & y W.

Debido a que f'es diferenciable en ambas ® y W y los conjuntos que encierra, se satisface el teorema
de Cauchy

?if(Z)dZ=§éf(z)dz=0.

Entonces

% f(z)dz—i—% f(@dz=0. (10.2)
@ w

En esta suma de integrales, cada uno de L, y L, es integrado en una direccién como parte de @ y la
direccion opuesta como parte de W. Las contribuciones de estos segmentos se cancelan en la suma (10.2).
Ahora observe que en la suma de estas integrales, obtiene la integral sobre toda I', orientada en sentido
contrario del movimiento de las manecillas del reloj, junto con la integral sobre toda y, orientada en sen-
tido del movimiento de las manecillas del reloj. En vista del teorema 10.3, la ecuacién (10.2) se convierte
en

7{ f(z)dz—?{f(z)dz=0,
@ Y

7€ f(r)dz = f f(z)dz,
o Y

en donde la orientacién en ambas I' y y en estas integrales es positiva (en sentido contrario del movimiento
de las manecillas del reloj). Esto prueba el teorema. M

10.4.3 Foérmula de la integral de Cauchy

Ahora se establecerd un resultado notable que da una férmula de la integral para los valores de una fun-
cién diferenciable.

= TEOREMA 10.9 Férmula de la integral de Cauchy

Sea f diferenciable en un conjunto abierto G. Sea I" una trayectoria cerrada en G que encierra inicamente
puntos de G. Entonces, para cualquier z, encerrada por I,

1
Flao) = — ¢ L@

- dz.
2wi Jr 72— 20

Vera muchos usos de este teorema, pero uno es inmediato. Escriba la férmula como

f(@

r <—20

dz =2mif(z0)-



460 CAPITULO 10  Integracién compleja

Esto da, bajo las condiciones del teorema, una evaluacion de la integral de la izquierda como un multiplo
constante del valor de la funcién de la derecha.

EJEMPLO 10.18

Evaluar ,

eZ
jlg -dz
rz—i

para cualquier trayectoria cerrada que no pase por i.
Sea f(z) = e7. Entonces f es diferenciable para todo z. Hay dos casos.

2

e

=1

Caso 1 T no encierra a i. En este caso Sﬁr dz = 0 por el teorema de Cauchy, ya que e¢*/(z — 2) es

diferenciable en I" y dentro de ella.

Caso 2 T encierra ai. Por la férmula de la integral de Cauchy, con zp = i,
2

Z
f C dz=2nmif(i) =2nie”". o
r

z—1

EJEMPLO 10.19

Evaluar

2z 2
% e“*sen(z )dZ
r z—2

sobre cualquier trayectoria que no pase por 2.
Sea f (z) = e% sen(z2). Entonces f es diferenciable para todo z. Esto lleva a dos casos.

Caso1 SiI noencierraa?2, entonces f(z)/(z — 2) es diferenciable en la curva y en todos los puntos que
encierra. Asi que la integral es cero por el teorema de Cauchy.

Caso 2 SiI encierra a 2, entonces por la férmula de la integral,

2z 2
?g % dz =2mif(2) =2mie* sen(d).
r <-—

Observe los distintos papeles de f(z) en el teorema de Cauchy y en la representacién integral de
Cauchy. El teorema de Cauchy est4 interesado en - f(z) dz. La representacion integral estd interesada en
las integrales de la forma Ssr[f(z)/ (z — z0)] dz, con f(z) dada, pero multiplicada por un factor 1/(z — z),
que no estd definido en zy. Si ' no encierra a z,, entonces f (z)/(z — zg) = g(z) puede ser diferenciable en
zo y puede intentar aplicar el teorema de Cauchy a $ g(z) dz. Si z, estd encerrada por I, entonces, bajo
condiciones apropiadas, la férmula de la integral da Sﬁr g(z) dz en términos de f(z).

Aqui estd una prueba de la representacion integral.

Prueba Primero use el teorema de la deformacién para reemplazar I" por un circulo y de radio r alrede-
dor de zj, como en la figura 10.32. Entonces
f(@) f(2) J _ygf(Z)—f(zo)Jrf(zo)
z= dz
14

dz = ——
rZ-—20 y 2= 20 =20

1 —
=f(Zo)?§—dz+j£Mdz,
y £ 20 Y

Z—20
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FIGURA 10.32

en donde f(z() pudo sacarse de la primera integral ya que f(z() es constante. Por el ejemplo 10.17,

1
% dz =2mi
y 2= 20

debido a que y encierra a zy. Por tanto,

f@

r<—x2o0

dz = 2mif(z0) —i—f —f(Z) — /) dz.

y 2720

La representacion integral estd probada si prueba que la dltima integral es cero. Escriba y(f) =
70 + rei* para 0 < ¢t < 2m. Entonces

7 f(zo +re't) — FG) . ity

f(@) — f(z0) dz‘ _

vy Z2—20

0 re”

2 )
= Uo [f(zo+re'") — f(zo)ldt

2
</

<2 ( max | f(zo +re'’) — f(Zo)|> :
0<t<2m

Fzo+reh) — f(m)( dt

Debido a la continuidad de f(z) en zo, f(zo + rei’) — f(zo) conforme r — 0, asi el término de la derecha en
esta desigualdad tiene limite cero conforme r — 0. Por tanto, puede hacer

yg f@) = f(zo) dz’
Y

Z—20

arbitrariamente pequefo haciendo r suficientemente pequefio. Pero esta integral es independiente de r por
el teorema de la deformacion. Asi

[Q=fG) .

y 2720

-

yg f@)— f(zo) dz=0
Y

Z—20

y el teorema queda probado.

La representacion integral da alguna idea de lo fuerte que es la condicion de diferenciabilidad para
las funciones complejas. La integral

f(@)

r<—=20

dz

es igual a 27i f(z0) y de esta manera determina f(zo) en cada z, encerrada por I'. Pero el valor de esta
integral depende sélo del valor de f(z) en I'. Asi, para una funcién diferenciable, conociendo los valores



462

=———TEOREMA 10.10 Fdrmula integral de Cauchy para derivadas de orden superior

CAPITULO 10  Integracién compleja

de la funcién en I" determina los valores de la funcién en todos los puntos encerrados por I'. No hay un
resultado andlogo para funciones diferenciables reales. El conocimiento de los valores de una funcién
diferenciable real ¢(x) en los extremos de un intervalo en general no da informacidén acerca de los valores
de esta funcién en todo el intervalo.

10.4.4 La formula de la integral de Cauchy para derivadas superiores

Ahora probara que una funcién compleja que es diferenciable en un conjunto abierto debe tener derivadas
de todos los 6rdenes en este conjunto. No hay un resultado como éste para funciones reales. Una funcién
real que es diferenciable puede no tener segunda derivada.Y si tiene segunda derivada, puede no tener una
tercera, y asi sucesivamente.

No solamente una funcién compleja diferenciable tiene derivadas de todos los érdenes, probara que
la n-ésima derivada de la funcién en un punto también estd dada por una férmula integral, muy parecida
a la férmula integral de Cauchy.

Sea fdiferenciable en un conjunto abierto G. Entonces ftiene derivadas de todos los 6rdenes en cada punto
de G. Mas aun, si I" es una trayectoria cerrada en G que encierra inicamente puntos de G, y zy es cualquier
punto encerrado por I', entonces

) _nt g @
[ (z0) = i b T dz.

La integral de la derecha es exactamente lo que obtendria diferenciando la férmula integral de Cauchy
para f(zg), n veces respecto a 7y, bajo el signo de la integral.
Como con la férmula de la integral, esta conclusion se usa frecuentemente para evaluar integrales.

EJEMPLO 10.20

Evaluar
3

z
.
r(z—1i)3
con I cualquier trayectoria que no pase por i.
Si I' no encierra a i entonces esta integral es cero por el teorema de Cauchy, ya que el dnico punto en
el que e’/ (z — i)3 no es diferenciable es i. Entonces suponga que I encierra a i. Debido a que el factor z —
i aparece a la tercera potencia en el denominador, use n = 2 en el teorema, con f(z) = %, para obtener

23 :
?g =Gy = mif ).
. 2!

(z—1i)3

Ahora

@) =322y f'(z) = 6z¢% +9z%7,

ﬁ (ze——i)?’dz =i |:6l'€71 + 9€7li| =(—6+9%)me”". g

El teorema puede probarse por induccién sobre n, pero no se llevardn a cabo los detalles.
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10.4.5 Cotas en las derivadas y el teorema de Liouville

La férmula integral de Cauchy para derivadas de orden superior puede utilizarse para obtener cotas para
las derivadas de todos los 6rdenes.

TEOREMA 10.11

Sea f diferenciable en un conjunto abierto G. Sea zp un punto de G y deje el disco abierto de radio r alre-
dedor de zy que estd contenido en G. Suponga que

F@l =M
para z en el circulo de radio r alrededor de zy. Entonces, para cualquier entero positivo n,

Mn!
(n)
[F | < = .

Prueba Sea y(f) = zo+ rei para 0 < t < 2m. Entonces | f(zo + re’)| < M para 0 <t < 2m. Por los teo-
remas 10.10y 10.5,

n! z n! | % f(zo+reé’ :
|f(n)(ZO)| =5 —f( )n+1 dz‘ =3 —f'l(+? i(n+l)t)ire’[dt
7 |Jy (2= 20) 7 |Jo r*tle
nt (27 |f(zo+re” n! 1 Mn!
< —f Mu’t <X omm— =22
2r Jo r’ 2 r’ rh
Como una aplicacién de este teorema, probard el teorema de Liouville para funciones diferenciables

y acotadas.

TEOREMA 10.12 Liouville

Sea funa funcién acotada que es diferenciable para todo z. Entonces f'es una funcién constante. M

Anteriormente observé que sen(z) no es una funcién acotada en el plano complejo como lo es en la
recta real. Esto es consistente con el teorema de Liouville. Como sen(z) es diferenciable para todo z y
claramente no es una funcién constante, no puede ser acotada.

Aqui estd una prueba del teorema de Liouville.

Prueba Suponga que |f(z)| < M para todo complejo z. Elija cualquier nimero z, y cualquier r > 0. Por
el teorema 10.11, conn =1,

M
|f'zo)| = —.
p

como f es diferenciable en todo el plano complejo, r se puede elegir tan grande como quiera, asi que
| f'(z0)| debe ser menor que cualquier niimero positivo. Se concluye que | f'(zp)| = 0, de donde f'(zy) = 0.
Como z es cualquier nimero, entonces f(z) = constante. M

El teorema de Liouville se puede usar para una demostracion sencilla del teorema fundamental del
algebra. Este teorema establece que cualquier polinomio complejo no constante p(z) = ag + a;z +- - -+
a,z" tiene una raiz compleja. Esto es, para algiin nimero ¢, p(¢) = 0. A partir de esto se puede probar
que si a, # 0, entonces p(z) debe tener exactamente n raices, contando cada raiz k veces en la lista si su
multiplicidad es k. Por ejemplo, p(z) = z2 — 6z 4+ 9 tiene exactamente dos raices, 3 y 3 (una raiz de mul-
tiplicidad 2).

Este teorema fundamental supone terminologia elemental para su enunciado y usualmente se incluye,
en alguna forma, en el curriculum de matematicas de ensefianza media. El matematico mds importante del
siglo xrx=, Carl Friedrich Gauss, considerd este teorema tan importante que lo demostré de distintas mane-
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ras (cerca de 20) a lo largo de su vida. Pero atin hoy en dia las pruebas rigurosas del teorema requieren
términos matematicos y técnicas que estdn lejos de las que se necesitan para enunciarlo.

Para probar el teorema usando el teorema de Liouville, suponga que p(z) es un polinomio complejo
no constante y que p(z) # 0 para todo z. Entonces 1/p(z) es diferenciable para todo z.

Seap(z) =ap+ aiz+ -- -+ a,zconn > 1y a, # 0. Pruebe que |p(z)| estd acotado para todo z.
Como

a,z" =p() —ap — aiz—: - +— ap_ 12",
entonces
la,| |z|" < Ip(@)] + lao| + |ail |z|+- - -+lan—1] |z]*=L.

Entonces, para |z| > 1,

1P| = lan| |zI" = (laol + la1 [z + - - + lan—1] 12" 7")

-1 lao| lay| lan—1]
= Iz ('an” iy E v S e
|z] |z] |z]
> 21"V (lan] 12| = laol — lar] = -+ = lan—1) .
Pero entonces
1 1
@I~ 121" (lanl Izl — laol — lai] — -+ - — lan—1])

conforme |z| — oo. Por tanto, lim,_., 1/|p(z)| = 0. Esto implica que para algin nimero positivo R,

<1 si|z| > R.
lp(2)|

Pero el disco cerrado |z] < R es compacto, y 1/|p(z)| es continuo, de manera que, por el teorema 9.1,
1/ |p(z)| esta acotado en este disco. Por tanto, para algin M,

1
—— <M para |z]| <R.
Ip(2)|

Ahora tiene que 1/|p(z)| estd acotado dentro y fuera |z| < 1. Poniendo estas cotas juntas,

<M+ 1 paratodo z,
[p(2)|

tanto en |z| < R como en |z| > R. Esto hace que 1/p(z) sea una funcién acotada y diferenciable para todo
z. Por el teorema de Liouville, 1/p(z) debe ser constante, una contradiccion. Por tanto debe haber algtin
complejo ¢ tal que p(¢) = 0, lo que prueba el teorema fundamental del dlgebra.

El andlisis complejo proporciona varias demostraciones de este teorema. Mds adelante verd una usan-
do una técnica para evaluar integrales reales de funciones racionales involucrando senos y cosenos.

10.4.6 Un teorema de deformacion extendido

El teorema de deformacién permite deformar una trayectoria cerrada de integracion, I', en otra, y, sin
cambiar el valor de la integral de linea de una funcién diferenciable f. Una condicién crucial para este
proceso es que ningtin paso de la deformacién debe pasar sobre un punto en el cual f no sea diferenciable.
Esto significa que f necesita ser diferenciable en ambas curvas y en la region entre ellas. Ahora extendera
este resultado al caso que I' encierra un nimero finito de trayectorias cerradas ajenas. Como es usual, a
menos que se establezca explicitamente de otra manera, todas las trayectorias cerradas se suponen orien-
tadas positivamente (en sentido contrario del movimiento de las manecillas del reloj).
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= TEOREMA 10.13 Teorema de deformacion extendido

Sea I" una trayectoria cerrada. Sean y, . . ., y, trayectorias cerradas dentro de I'. Suponga que ningtin par
de trayectorias se intersecan, y que ningtin punto interior de alguna y; es interior a alguna otra y;. Sea f
diferenciable en un conjunto abierto que contiene a I', cada y;, y todos los puntos que son interiores a I y
exteriores a cada y;. Entonces,

yﬁr f@dz = ;fy f@)dz.

Este es el teorema de deformacién en el caso n = 1. La figura 10.33 muestra un escenario tipico
cubierto por este teorema. Con las curvas como se muestran (y suponiendo la diferenciabilidad de f'), la
integral de f alrededor de I' es la suma de las integrales de f alrededor de cada una de las curvas cerradas

Y15 - -5 Vn-
Después de una ilustracion de un uso tipico del teorema se hace un bosquejo de la demostracion.

EJEMPLO 10.21

Considere

Z,

Nt
r (z+2)(z—4i)

donde I'" es una trayectoria cerrada que encierra a —2 y a 4i. Evalte esta integral usando el teorema de
deformacion extendido. Coloque un circulo y; alrededor de —2 y un circulo y; alrededor de 4i con radios
suficientemente pequefios para que ningun circulo interseque al otro o a I' y que cada uno esté encerrado
por I' (figura 10.34). Entonces

Z Z Z
fr Cre =4 = 7%1 Cre—a T 752 Croe =4

Use la descomposicién en fracciones parciales para escribir

1 2. 4 2-
z 5—5 5135

Z+2)(z—4) z+2 -4

/41’
V2

Y ne

ke

FIGURA 10.33 FIGURA 10.34
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Entonces

% Z J <1 2)% 1 d+<4+2'>

———dz=\=-— =i — 4 =i

r a4 T\ T5) N 2T \5 TS
2
5

1 2, 1 4 . 1
+-— <! %—dz—i— -+ i % -dz.
5 5 mZt+?2 5 »Z— 4

A la derecha, la segunda y tercera integrales son cero por el teorema de Cauchy (), no encierra a 4iy y, no
encierra a —2). La primera y cuarta integrales son iguales a 277 por el ejemplo 10.17. Por tanto,

. e T2 (420
ﬁ(z+2)(z—4i> c=om [(3_§’>+<§+51>}_ .

Se puede modelar una prueba del teorema, a partir de la prueba del teorema de deformacion.

Prueba Como se sugiere en la figura 10.35, dibuje los segmentos de recta L; de I" a yy, L, de y; a
V2 ..., L,de y,_1 ay,,y, finalmente, L, de y, a I'. Forme las trayectorias cerradas ® y A mostradas
separadamente en las figuras 10.36, 10.37 y 10.38. Entonces

f f(z)dz+7§ f(@)dz =0,
(o] A

ambas integrales son cero por el teorema de Cauchy. (Por las hipétesis del teorema, f es diferenciable en
® y A y dentro de ellas.)

En esta suma de integrales sobre ® y A, cada segmento de recta L; es integrado en ambas direccio-
nes, de donde las contribuciones de las integrales sobre estos segmentos son cero. Mds atin, en esta suma
recupere la integral de f(z) sobre toda I" y sobre cada y;, con la orientacion en sentido contrario del movi-
miento de las manecillas del reloj en I' y en sentido del movimiento de las manecillas del reloj en cada y;
(observe las orientaciones en la figura 10.38). Invirtiendo las orientaciones en las y;, de manera que todas

y
L LT
n+]y 'yl
n Lz
L, V>
‘yn*l
Ln*l *
(O]
FIGURA 10.35 FIGURA 10.36
A

FIGURA 10.37 FIGURA 10.38
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las trayectorias sean orientadas en sentido contrario del movimiento de las manecillas del reloj, la dltima

suma se convierte en

f f@dz=Y ¢ f()dz=0,
r =177

llegando a la conclusién del teorema. M

SECCION 10.4 PROBLEMAS

En cada problema del 1 al 12, evaltde f f(2) dz para la funcién y
trayectoria dadas. Estos problemas pueden involucrar el teore-
ma de Cauchy, las férmulas integrales de Cauchy, y/o los teore-
mas de deformacion.

4
z . . .
1. f(o)= m; I" es cualquier trayectoria cerrada que encie-

rra a 2i.
sen(z2) . )
2. f(z) = 5 ; I es cualquier trayectoria cerrada que
7 —
encierra a 5.
2 ,
zc—=5z+i
. =—F T 1 circul =3.
3. f(2) i1 es el circulo |z] = 3
Z3
4. = ———: 1 rectangul drtices 4 =+ §
f@ z—2)2 es el rectdngulo con vértices 4 = i y
—4 =+

ie?
5.fr) = m? [ esel circulo |z — 1] = 4.

cos(z — 1) . )

6. f(z) = ————; I" es cualquier trayectoria cerrada que
! (z 4 2i)3 q y !
encierra a —2i.

7. f) = w; I"es el circulo |z — 2i| =9.

(z+4)

8. f(z) = 2iz |z| ; Tesel segmento de rectade 1 a —i.

2 +i)sen(z*
9. fa)=— %; I' es cualquier trayectoria cerra-
b4

da que encierra a —4.

10. f(z) = (z — )% I es el semicirculo de radio 1 alrededor de
Odeia—i.

11. f(z) = Re(z + 4); T es el segmento de recta de 3 + i a
2 —5i.

2
12. f(2) = w; I' es el circulo de radio 8 alrededor
(z+2i)?
de 1.
13. Evalte

2
/ 95O cos(sen(6)) do.
0

Sugerencia: Considere §r (ez/7)dz, con I' el circulo unita-
rio alrededor del origen. Evalde esta integral una vez usan-
do la férmula de la integral de Cauchy, después otra vez
directamente usando las funciones coordenadas para I'.

14. Use la forma extendida del teorema de deformacién para
evaluar sﬁr ;:_—Tzdz, donde I es una trayectoria cerrada

que encierra al origen, 2i y —2i.






CAPITULO 11

Representacion en
serie de una funcion

Ahora se desarrollardn dos tipos de representaciones de una f (z) en serie de potencias de z — z. La prime-
ra serie contendrd solamente potencias enteras no negativas, asi que es una serie de potencias, y se aplica
cuando f'es diferenciable en zy. La segunda contendrd ademds potencias enteras negativas de z — zp y se
usara cuando fno es diferenciable en z,.

11.1 Representacion en serie de potencias

Ya sabe que una serie de potencias que converge en un disco abierto, o quizd en todo el plano, define
una funcién que es infinitamente diferenciable dentro del disco o del plano. Ahora ird por el otro senti-
do y probard que una funcién que es diferenciable en un disco abierto estd representada por un desarrollo
en serie de potencias alrededor del centro de ese disco. Esto tendrd aplicaciones importantes, incluyen-
do informacién acerca de los ceros de las funciones y el maximo valor que puede ser tomado por el médu-
lo | f (z)| de una funcién diferenciable.

= TEOREMA 11.1 Serie de Taylor

Sea f diferenciable en un disco abierto D alrededor de z,. Entonces, para cada z en D,

o0

(n)
r@ =y L

n
n=0

(z —z0)".

La serie de la derecha es la serie de Taylor de f(z) alrededor de zy, y el nimero f((zq)/n! es el n-ésimo
coeficiente de Taylor de f(z) en z,. El teorema afirma que la serie de Taylor de f(z) converge a f(z), asi que

representa a f(z), dentro del disco. 460
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R

20
L]

w

FIGURA 11.1

Prueba Sea z cualquier punto de D y R el radio de D. Elija un nimero r con |z — zg| < r < Ry sea yel
circulo de radio r alrededor de z, (figura 11.1). Por la férmula de la integral de Cauchy, usando w para la
variable de integracién en y,

f(z)=%?§ f(w)d
Tl y

w—z
Ahora

1 i o 1
w—z w—z0—(z—20) w—201—(z—20)/(w—z0)

Como w estd en yy z estd encerrada por y, entonces

Z—20
220,

w — 20

de manera que use una serie geométrica convergente para escribir

1 1 =/(z-20)" «— 1 )
w— =w_ Z w— =Z(w— )n+1(Z_ZO)'
Z 20 =0 20 0 20

Entonces

z—z0)".

f(w) =§3 fw)
(

w—z w—Z())n+1(

n=0 (11.1)

Como fes continua en y, para algin M, |f (w)| < M para w en y. Més atn, |w — zo| = r, asi

<M |z — zol
r

1 (1z—z0l\"
M- —— =M,.
r r

o0 . . s, .
Entonces ano M, converge (esta serie es una constante por una serie geométrica convergente). Por el
teorema 10.6, la serie en la ecuacién (11.1) puede ser integrada término a término para llegar a

L rf 1 fw)
F@ =55 ),w—zdw_2711'?5(}qzz;)(w—zo)’”rl(Z ZO))dw

J(w) 0 S f(n)(ZO) )
X:: <27Tt f (w — zo)" 1 dw) (@ =20 = ’; @20

en donde use la férmula de la integral de Cauchy para la n-ésima derivada para escribir el coeficiente en
la dltima serie. Esto prueba el teorema. M

S (w)

—(w mpsevEy (z —z0)"

Llamada

Se dice que una funcién compleja es analitica en z; si tiene un desarrollo en serie de potencias en
algtn disco abierto alrededor de zy. Acaba de probar que una funcién que es diferenciable en un disco
abierto alrededor de un punto es analitica en ese punto.

Sélo se han calculado los coeficientes de una serie de Taylor por las férmulas de derivacién o integra-
cién cuando otros medios fallan. Cuando es posible, use series conocidas y operaciones tales como dife-
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renciacién e integracién para obtener una representacion en serie. Esta estrategia hace uso de la unicidad
de las representaciones en serie de potencias.

TEOREMA 11.2

Suponga que, en algtn disco |z — zo| < 1,

o0 o0
D ez —z20)" =) du(z —20)".
n=0 n=0

Entonces, paran=20,1,2,..., ¢, =d,.
Prueba Sillama f(z) a la funcion definida en este disco por ambas series de potencias, entonces

Y ACONE
=B

dy.

n

Esto significa que sin importar qué método se use para encontrar una serie de potencias para f(z)
alrededor de z, el resultado final es la serie de Taylor.

EJEMPLO 11.1

Encontrar el desarrollo de Taylor de ez alrededor de i.
Sabe que para todo z,

Para un desarrollo alrededor de i, la serie de potencias debe estar en términos de potencias de z — i. De
esta manera

SN
8 = ot — Gl — Zez_(z _ i)n.
n!
n=0

Esta serie converge para todo z. M

En este ejemplo, hubiera sido igual de fécil calcular los coeficientes de Taylor directamente:

AN

Cn .
n! n!

EJEMPLO 11.2

Escriba la serie de Maclaurin para cos(z3).
Un desarrollo de Maclaurin es una serie de Taylor alrededor de cero. Para todo z,

o]

COS(Z) _ Z (_l)n Z2n
R
= (2n)!
Todo lo que necesita hacer es reemplazar z con z3:
(e.¢] o
5o ED 5 ED 6
cos(z )—HX_E) )] (z7) _,12_(:) @) s

Como es un desarrollo alrededor del origen, es el desarrollo que buscaba. M
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EJEMPLO 11.3

Desarrollar

2i
44iz

en una serie de Taylor alrededor de —3i.
Busque una serie de potencias en z + 3i. Haga un poco de manipulacién algebraica y después use la
serie geométrica. Para obtener z + 3i, escriba

2 2i B 2i 2 1
d4iz  A+i(z+30)+3 THiG+3i) T 1+G/D(E+30)

Si |t ]| < 1, entonces

1 ] o0 o0
= =) (="=) (="
I+ 1-(-n = ~
Con t = (z + 3i)i/7, tiene
1 > i n
- = D = 3 .
1+ (/)& +30) g( ) (7(“r ’)>
Por tanto,
2i 2i & i\" 2 2(=1)njnt!
4+ iz 72( ) <7> (2430 }; @3

Debido a que es un desarrollo en serie de la funcion alrededor de —3i, es la serie de Taylor alrededor de
—3i. Esta serie converge para

<1,

'%(z+3i)

lz +3i] < 7.

Asfi z debe estar en el disco abierto de radio 7 alrededor de —3i. El radio de convergencia de esta serie
es7. @

Por la seccién 9.2, puede diferenciar una serie de Taylor término a término dentro de su disco abierto
de convergencia. Algunas veces, esto es util para la obtencién del desarrollo de Taylor de una funcién.

EJEMPLO 11.4

Encontrar el desarrollo de Taylor de f(z) = 1/(1 — z)3 alrededor del origen.
Es posible hacerlo por manipulacién algebraica, pero es mas facil empezar con la serie geométrica
familiar

1 o0
g(x) = T—:" ZZ" para |z| < 1.
n=0

Entonces

/ _ 1 __<” n—1
g(2) = a—2 - an

n=1
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y
§@ = ——— =3 n = D2 = Y+ D +2)2"
(1 - Z) n=2 n=0

para |z| < 1. Entonces

f@) = Z %(ﬂ +1)(n +2)7" para|z] <1. W
n=0

Cuando se desarrolla f(z) en una serie de potencias alrededor de zy, el radio de convergencia de la
serie serd la distancia de z, al punto mds cercano en donde f(z) no es diferenciable. Piense en un disco
expandiéndose uniformemente a partir de z,, que puede continuar su expansién hasta que choca con un
punto en donde f(z) no es diferenciable.

Por ejemplo, suponga que f(z) = 2i/(4 + iz) y quiere el desarrollo de Taylor alrededor de —3i. El
unico punto en donde f(z) no estd definida es 47, de manera que el radio de convergencia de esta serie
serd la distancia entre —3i y 4i o 7. Este resultado se obtiene previamente a partir del desarrollo de Taylor
Yoo (2(—Dyrint1/Tn41)(z + 3i) de f(2).

EJEMPLO 11.5

TEOREMA 11.3

Encuentre el radio de convergencia de la serie de Taylor de csc(z) alrededor de 3 — 4.

Como csc(z) = 1/sen(z), esta funcion es diferenciable excepto en z = niw, con n cualquier entero.
Como ilustra la figura 11.2, 7 es el punto mds cercano a 3 — 4i en el cual csc(z) no es diferenciable. La
distanciaentre 1y 3 — 4i es

V(T —3)? + 16,

y es el radio de convergencia del desarrollo en serie de csc(z) alrededor de 3 — 4i. M

y
4 T .
V@ —3)2 + 16
«3—4i
FIGURA 11.2

La existencia de un desarrollo en serie de potencias implica la existencia de una antiderivada.

Sea f diferenciable en un disco abierto D alrededor de zy. Entonces existe una funcién diferenciable F tal
que F'(z) = f(z) para todo z en D.

Prueba Sabe que ftiene un desarrollo en serie de potencias en D:

f@ =Y cnlz—20)"
n=0

Sea

o0

I
F@ =3 —en—)""

n=0
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para z en D. Es rutinario verificar que esta serie de potencias tiene un radio de convergencia al menos tan
grande como el radio de D y que

F(2) =f(2)

parazen D. M

11.1.1 Ceros aislados y el teorema de la identidad

Use larepresentacion en serie de Taylor de una funcién diferenciable para obtener informacién importante
acerca de sus ceros.

DEFINICION 11.1

Un niimero ¢ es un cero de f'si f(¢) = 0.

Un cero ¢ de fes aislado si existe un disco abierto alrededor de ¢ que no contenga ningiin otro
cerode f.

Por ejemplo, los ceros de sen(z) son n 7, con n cualquier entero. Estos ceros son todos aislados. En
contraste, sea

sen(l/z) siz %0

siz=20

f@) =

Los ceros de f'son 0 y los niimeros 1/n7, con n cualquier entero distinto de cero. Sin embargo, 0 no es un
cero aislado, ya que cualquier disco abierto alrededor de cero contiene otros ceros, 1/nmw, para n suficien-
temente grande.

Probard que el comportamiento de los ceros en este ejemplo descalifica a f para ser diferenciable
en 0.

Sea f diferenciable en un conjunto abierto G y sea ¢ un cero de fen G. Entonces, o ¢ es un cero aislado de
f o existe un disco abierto alrededor de ¢ en donde f(z) es idénticamente cero.

Esto significa que una funcién diferenciable que no es idénticamente cero en algin disco solamente
puede tener ceros aislados.

Prueba Escriba el desarrollo en serie de potencias de f(z) alrededor de ¢,

f@ =) ealz =0,

n=0
en algtn disco abierto D con centro en . Ahora considere dos casos.

Caso 1 Sitodas las ¢, = 0, entonces f(z) = 0 en todo D.

Caso 2 Suponga que algtin coeficiente en la serie de potencias no es cero. Sea m el entero mas pequefio
tal que ¢,, # 0. Entonces co=c;=---=¢,,-1 =0yc, # 0. Parazen D,

f@O=) aG@=0"=) G =" =GC =" ) cnimz ="

n=m n=0 n=0
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Ahora Zzio cnem (z — ©)" es una serie de potencias, asi que define una funcién diferenciable g(z) para z
en D. Mas aun,

f@)=E—-0mgQ.

Pero g(¢) = ¢,, # 0, de manera que hay algtin disco abierto K alrededor de ¢ en donde g(z) # 0. Por tanto,
paraz # {en K, f(z) # 0, asi que ¢ es un cero aislado de /. M

Esta prueba contiene informacién adicional acerca de los ceros y serd ttil mas adelante. El nime-
ro m en la prueba se llama el orden del cero ¢ de f (z). Es el menor entero m tal que el coeficiente c,,
en el desarrollo de f(z) alrededor de ¢ es distinto de cero. Ahora recuerde que ¢, = f™ (¢)/n!. Asi ¢y =
¢y =---=cp_1 = 0implica que

fO=f@Q=--=f)=0,
mientras c¢,, # 0 implica que
Fm(z)#0.

En resumen, un cero aislado ¢ de f'tiene orden m si la funcién y sus primeras m —1 derivadas valen cero en
¢, pero la m-ésima derivada en ¢ es distinta de cero. Dicho de otra manera, el orden del cero ¢ es el menor
orden de la derivada de f que no vale cero en ¢.

También obtuvo que si ¢ es un cero aislado de orden m de f, entonces puede escribir

f@)=@—-0mgQ),

donde g también es diferenciable en algtn disco alrededor de ¢, y g(¢) # 0.

EJEMPLO 11.6

Considere f(z) = z2 cos(z). 0 es un cero aislado de esta funcion diferenciable. Calcule

f (z) =2z cos(z) — 22 sen(z)

f" (z) =2 cos(z) — 4z sen(z) + 22 cos(z).

Observe que f(0) = £'(0) = 0 mientras que f"(0) # 0. Asi 0 es un cero de orden 2 de f. En este caso, ya
tiene

f@)=(z—-0)%g@
con g(0) # 0, ya que puede elegir g(z) = cos(z). ™

EJEMPLO 11.7

Debe tener cuidado al identificar el orden de un cero. Considere f(z) = z2 sen(z). 0 es un cero aislado de
f. Calcule

f(z) = 2zsen(z) + 22 cos(2),
f"(2) = 2sen(z) + 4z cos(z) — 22 sen(z),
fO(z) = 2cos(z) + 4 cos(z) — 4z sen(z) — 2z sen(z) — z2 cos(z)

= 6 cos(z) — 6z sen(z) — z2 cos(2).
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Entonces
fO)=f'0)=f"0)=0
mientras que
f®(0) # 0.

Esto significa que 0 es un cero de orden 3. Puede escribir

o0 oo

_ 2 =D" i1 3 =D" 5, 3
f@) =z };(%H)!Z L n;(znﬂ)!z =780,
donde 0 1y
— N
8@ = ,;) nt+ °

es diferenciable (en este ejemplo, paratodoz) y g(0) =1 # 0. W

El resultado del teorema 11.3, prueba que si una funcién compleja diferenciable vale cero en una
sucesion de puntos convergente en un dominio (conjunto abierto conexo), entonces la funcioén es idéntica-
mente cero en todo el dominio. Este es un resultado muy fuerte, para el que no hay andlogo para funciones
reales. Por ejemplo, considere

x? parax > 0

{O parax <0

h(x) =

cuya gréfica se muestra en la figura 11.3. Esta funcidn es diferenciable para todo x real y es idénticamente
cero en la semirecta, pero no es idénticamente cero sobre toda la recta. Otra diferencia entre la diferencia-
bilidad para funciones reales y complejas es evidente en este ejemplo. Aunque 4 es diferenciable, no tiene
desarrollo en serie de potencias alrededor de 0. En contraste, una funcién compleja que es diferenciable en
un conjunto abierto tiene un desarrollo en serie de potencias alrededor de cada punto del conjunto.

Sea f diferenciable en un dominio G. Suponga que {z,} es una sucesion de ceros distintos de fen G, que
converge a un punto de G. Entonces f(z) = 0 para todo z en G.

h(x)

—_— =
NN A~
I

FIGURA 11.3

x2 parax >0 < 1

h(x) =
0 parax <0
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G
f@=0
y D, D,
/‘f(z) =0 Jo
. 1 '.. {

D \\ Distancia > 2r |
! ' Do D,
FIGURA 11.4 FIGURA 11.5 FIGURA 11.6

Prueba Suponga que z, — ¢en G. Como fes continua, f(z,) — f(¢). Pero cada f(z,) = 0, de manera que
f(©) =0y ¢ también debe ser un cero de fen G. Esto significa que ¢ no es un cero aislado, asi por el teore-
ma 11.3, debe haber un disco abierto D alrededor de ¢ en donde f(z) es idénticamente cero (figura 11.4).

Busque probar que esto fuerza a que f(z) = 0 para todo z en G. Para hacer esto, sea w cualquier punto
de G. Pruebe que f(w) = 0.

Como G es conexo, hay una trayectoria I" en G de ¢ a w. Elija un nimero r tal que todo punto de
I" esté a una distancia de al menos 2r de la frontera de G, y también que r sea menor que el radio de D.
Ahora camine a lo largo de I" de ¢ a w, en el camino seleccione puntos a una distancia menor que r uno

del otro. Esto produce puntos { = &, &y, ..., §, = wen I', como en la figura 11.5. Forme un disco abierto
D; de radio r alrededor de cada &; . (Por la eleccion de 7, ninguno de estos discos toca la frontera de G.)
Cadag;_jestdenD; |, D;jy Dj paraj=1,...,n—1.Mds atn, §y=¢estienDyy D,y westden D,_,
y D,.

Como & estd en Dy y Dy, existe una sucesién de puntos en ambos Dy y D; que converge a &, (figura
11.6). Pero f(z) es idénticamente cero en D, de manera que f(z) vale cero en esta sucesién. Como esta
sucesion también estd en Dy, f(z) = 0 para todo z en D;.

Ahora &, estd en D, y D,. Elija una sucesién de puntos comunes a ambos de estos discos y convergen-
tes a &. Como f(z) es idénticamente cero en D, entonces f(z) = 0 en cada punto de esta sucesiéon. Pero
como esta sucesion también estd en D,, entonces f(z) es idénticamente cero en D,.

Al continuar de esta manera, caminando a lo largo de I" de ¢ a w. Encuentre que f(z) es idénticamente
cero en cada uno de los discos a lo largo del camino. Finalmente, f (z) es cero en D,. Pero w estd en D,,, de
manera que f(w) = 0, y por tanto, f(z) = 0 paratodo zen G. ™

Este teorema conduce inmediatamente a la conclusién que dos funciones diferenciables que coinci-
den en una sucesién convergente en un dominio deben ser la misma funcién. Esto se llama el teorema de
la identidad.

= COROLARIO 11.1 Teorema de la identidad

Sean f y g diferenciables en un dominio G. Suponga que f(z) y g(z) coinciden en una sucesién convergen-
te de puntos distintos de G. Entonces f(z) = g(z) paratodo zen G. M

Prueba Aplique el teorema 11.4 a la funcion diferenciable f — g. M
Para tener una idea del poder de este resultado, considere el problema de definir la funcién seno

compleja sen(z) de manera que coincida con la funcién seno real cuando z es real. ;De cudntas maneras
se puede hacer esto?
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Dicho de otra manera, jes posible inventar dos funciones complejas diferenciables distintas, 'y g,
definidas para todo z, tales que, cuando x es real,

f(x) = g(x) = sen(x)?

Si esto se puede hacer, entonces f(z) = g(z) en una sucesién convergente de nimeros complejos (ele-
gidos a lo largo de la recta real) en un dominio (todo el plano), asi necesariamente f = g. S6lo puede haber
una extension de una funcién diferenciable del dominio real al complejo.

Esta es la razén por la cual, cuando extiende una funcién a real (tal como la exponencial o las funcio-
nes trigonométricas) al plano complejo, puede estar seguro que esta extension es Unica.

11.1.2 El teorema del modulo maximo

Suponga que f: S — €, y S es un conjunto compacto. Sabe del teorema 9.3 que |f(z)| alcanza un valor
maximo en S. Esto significa que al menos para una ¢ en S, |f(z)| < |f(¢| para todo z en S. Pero esto no da
ninguna informacién acerca de dénde esta el punto ¢ en S. Ahora pruebe que cualquiera de estas ¢ debe
estar en la frontera de S si fes una funcién diferenciable. Este se llama el teorema del médulo mdximo. El
nombre del teorema se deduce del hecho de que la funcién de valor real | f(z)| se llama el modulo de f(z),
y le interesa el maximo que tiene el médulo de f(z) conforme z varia sobre el conjunto S.

Primero probara que una funcién diferenciable que no es constante en un disco abierto no puede tener
su médulo méximo en el centro del disco.

Sea f diferenciable y no constante en un disco abierto D con centro en z,. Entonces, para algin z en este
disco,

@] > 1f(z0)l.

Prueba Suponga lo contrario, que |f (z)| < |f (zo| para todo z en D. Obtendra una contradiccién.

Sea y(f) = zo + rei para 0 < t < 27. Suponga que r es lo suficientemente pequefio para que este
circulo esté contenido en D. Por el teorema de la integral de Cauchy,
f@ L

1 ,
fzo) = =— dz = — f(zo+re'’)dr.
2ri J, z— 20 27 Jo

Entonces

1 2 .
@l = o [ 1o+ reniar
2 0
Pero zy + rei estd en D para 0 <t < 2w, de manera que |f(zg + re” )| < |f(zo)|- Entonces

1 2 ) 1 2
2—/ fo+redi < — [ 1fGolde = £l
T Jo 2w 0

Las dos tltimas desigualdades implican que

27 )
zi/ o+ ré)dt = | f (zo)].
T Jo

Pero entonces

1 [ ,
= [ (rei=]reo+ren

> )dt:O.
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Este integrando es continuo y no negativo para 0 < ¢ < 27. Si fuera positivo para algun ¢, entonces habria
un subintervalo de [0, 277] en el cual el integrando seria positivo y entonces esta integral deberia ser posi-
tiva, una contradiccién. Por tanto, el integrando debe ser idénticamente cero:

|f(zo + rei)| = [f(z0)| para0 <1 <27

Esto dice que |f(z)| tiene el valor constante |f(zo)| en todo circulo alrededor de z, y contenido en D. Pero
todo punto en D estd en algin circulo alrededor de zy y contenido en D. Por tanto, |f(z)| = | f(zo)| = cons-
tante para todo z en D. Entonces por el teorema 9.7, f(z) = constante en D. Esta contradiccién prueba el
lema. ™

Ahora puede obtener el teorema del médulo méaximo.

= TEOREMA 11.6 Teorema del médulo mdximo

Sea S un conjunto conexo y compacto de nimeros complejos. Sea f continua en S y diferenciable en cada
punto interior de S. Entonces | f(z)| alcanza su valor mdximo en un punto frontera de S. Mds aun, si fno es
una funcién constante, entonces | f(z)| no alcanza su maximo en un punto interior de S.

Prueba Debido a que S es compacto y fes continua, sabe por el teorema 9.3 que | f(z)| alcanza un valor
mdéximo en algiin punto (quizd muchos) de S. Sea ¢ dicho punto. Si ¢ es un punto interior, entonces existe
un disco abierto D alrededor de ¢ que contiene solamente puntos de S. Pero entonces |f(z)| alcanza su
maximo en este disco en su centro. Ahora hay dos casos.

Caso 1 f(z) es constante en este disco. Por el teorema de la identidad, f(z) es constante en S. En este
caso | f(z)| es constante en S.

Caso 2 f(z) no es constante en este disco. Entonces |f(z)| < |f(¢)| para z en este disco, contradiciendo

el lema 11.1. En este caso |f(z)| no puede alcanzar un maximo en el interior de S y de esta manera debe
alcanzar su mdximo en un punto de la frontera. M

EJEMPLO 11.8

Sea f(z) = sen(z). Determine el valor maximo de |f(z)| en el cuadrado0 <x < w7, 0 <y <.
Primero, es conveniente trabajar con |f(z)|2, ya que ésta tendrd su maximo en el mismo valor de z
donde lo tiene |f(z)|. Ahora

f(z) = sen(z) = sen(x)cosh(y) + icos(x)senh(y),

If (2)|> = sen2(x)cosh2(y) + cos2(x)senh2(y).

Por el teorema del médulo maximo, |f(z)|? debe alcanzar su valor maximo (para este cuadrado) en uno de
los lados del cuadrado. Vea, por turno, cada lado.

En el lado inferior, y = 0 y 0 < x < 7, de manera que |f(z)|> = sen?(x) alcanza un valor maximo
de 1.

En el lado derecho, x = my 0 <y < &, de manera que | f(z)|2 = senh?(y) alcanza un valor maximo de
senh?(7r). Esto se debe a que cos2(;r) = 1 y senh(y) es una funcién estrictamente creciente en [0, 7].
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En el lado superior del cuadrado, y = 7y 0 < x < . Ahora |f(2)|? = sen?(x)cosh?(x) + cos2(x)
senh?(7r). Necesita saber donde alcanza ésta su valor maximo para 0 < x < . Este es un problema de
calculo de una variable. Sea

Entonces

g(x) = sen2(x)cosh? () + cos?(x)senh? ().

g'(x) = 2 sen(x)cos(x)cosh(;r) — 2 cos(x)sen(x)senh? (i)

= sen(2x)[cosh2(;r) — senh2(7r)] = sen(2x).

Esta derivada es cero en (0, ) en x = /2, de manera que este es el punto critico de g. Mds atn,

g (%) = coshz(n).

En los extremos del intervalo,

2(0) = g(r) = senh2(r) < cosh?(m).

Por tanto, en el lado superior del cuadrado, |f(z)|? alcanza su valor maximo de cosh?(r).
Finalmente, en el lado izquierdo del cuadrado, x = 0y 0 <y < m, de manera que |f(z)|?> = senh?(y),
con maximo senh?(mr) en 0 <y < 7.
La conclusién es que en este cuadrado, | f(z)|? tiene su valor maximo igual a cosh2 (), que es el valor
maximo de |f(z)|? en la frontera del cuadrado. Por tanto, |f(z)| tiene un valor maximo igual a cosh(r) en
este cuadrado. M

SECCION 11.1 PROBLEMAS

En cada problema del 1 al 12, encuentre la serie de Taylor de

la funcién alrededor del punto. También determine el radio

de convergencia y el disco abierto de convergencia de la serie.

1

2.

10.
11.

12.

. c0s(22);z=0

e z7=-3i

1 .
s 40
1—-z2
. sen(zz);O
1 0
G
1 .
. —; 1 —8i
24z
L2 =3z 402
PR
-
2472

.1

s @= 9% +i
e —isen(z); 0

sen(z +1); —i
3 .
7 —4i’

13.

14.

15.

Suponga que f es diferenciable en un disco abierto alre-
dedor de cero y satisface f” (z) = 2f(z) + 1. Suponga que

f(0) =1y f'(0) = i. Encuentre el desarrollo de Maclaurin

de f(2).

Encuentre los primeros tres términos del desarrollo de
Maclaurin de sen2(z) de tres maneras, como sigue:

(a) Primero, calcule los coeficientes de Taylor en 0.

(b) Encuentre los primeros tres términos del producto de
la serie de Maclaurin para sen(z) con ella misma.

(c) Escriba sen?(z) en términos de la funcién exponencial
y use el desarrollo de Maclaurin de esta funcién.

Pruebe que

o 1 1 2
Z ZZn — _/ e2zcos(9) do.
= ()2 27t Jo

Sugerencia: Primero pruebe que

n\ 2 n

z 1 z

=) =— Y dw
n! 27i Jr nlwntl
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paran =0, 1, 2, ...y I" el circulo unitario alrededor del 17. Encuentre el maximo valor de |e?| enel rectdngulo0 <x <1,
origen. 0<y<m.

16. Encuentre el maximo valor de |cos(z)| en el cuadrado 0 < 18. Encuentre el maximo valor de |sen(z)| en el rectangulo 0 <
x<m0<y<m. x<2m,0<y<l.

11.2 Desarrollo de Laurent

— TEOREMA 11.7

Si f es diferenciable en algtn disco alrededor de zj, entonces f(z) tiene una representacién en serie de
Taylor alrededor de z.

Si una funcién no es diferenciable en z(, puede tener un tipo diferente de desarrollo en serie alrede-
dor de zy, un desarrollo de Laurent. Esto tendrd implicaciones profundas en el andlisis de las propiedades
de funciones y en aplicaciones tales como la suma de series y la evaluacién de integrales reales y com-
plejas.

Primero es necesaria alguna terminologia. El conjunto abierto entre dos circulos concéntricos se 1la-
ma un anillo. Un anillo se describe tipicamente por las desigualdades

r<lz—2z <R,

en donde r es el radio del circulo interior y R el radio del circulo exterior (figura 11.7). Permita » = 0 en
esta desigualdad, en cuyo caso el anillo 0 < |z — 79| < R es un disco agujerado (disco abierto sin el cen-
tro).

También permita R = oo. El anillo r < |z — z9| < oo consiste en todos los puntos fuera del circulo
interior de radio r. Un anillo 0 < |z — zo| < oo consiste en todos los complejos z excepto zp.

Ahora puede enunciar el resultado principal en series de Laurent.

Sea 0 < r < R < oo. Suponga que f es diferenciable en el anillo » < |z — zo| < R. Entonces, para cada z

en este anillo,
o0

f@= ) ak—z20)"

n=—0oo
donde, para cada entero n,

1 f@

h==—@¢ —————dz,
27i Jr (z — zo)" !

y I' es cualquier trayectoria cerrada alrededor de z, totalmente contenida en el anillo. M

En la figura 11.8 se muestra una I tipica. La serie en el teorema, que puede incluir tanto potencias de
7 — 7o positivas como negativas es el desarrollo de Laurent, o serie de Laurent, para f (z) alrededor de z,
en el anillo dado. Este desarrollo tiene la apariencia

c_» c_1
.. 3 J’_
(z —z0) 71—z

+CO+CI(Z—Z0)+C2(Z—10)2+....
0

La funcién no tiene que ser diferenciable, o incluso estar definida, en z; o en otros puntos dentro del
circulo interior del anillo. Los nimeros ¢, son los coeficientes de Laurent de f alrededor de z,.
Una serie de Laurent es una descomposicién de f(z) en una suma

1 00

fO= 3 al-0"+Y a—20"=Y —L— 3 ez 20)" = h(2) +8(2).
n=0

(z — z0)"

n=—o00 n=0 n=1
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20

.Z
P ’

FIGURA 11.7 FIGURA 11.8
Circulos |z — zo| = r Trayectoria cerrada
y |z — 20| = R acotando encerrando a zy y

el anillo abierto contenida en el anillo
r<lz—zl <R. r<|z—2z0l <R.

La parte que contiene sélo potencias no negativas de z — z, define una funcién g(z) que es diferenciable
en |z — zo| < R (debido a que esta parte es un desarrollo de Taylor). La parte que contiene s6lo potencias
negativas de z — z, define una funcidén A(z) que no estd definida en z,. Esta parte determina el compor-
tamiento de f(z) alrededor del punto z, donde f no es diferenciable.

Como con la serie de Taylor, raramente se calculan los coeficientes del desarrollo de Laurent usando
esta férmula integral (mads bien al contrario, se usa uno de estos coeficientes para evaluar las integrales).
En cambio, utilice series y manipulaciones algebraicas o analiticas conocidas. Esto requiere que esté
seguro de que el desarrollo de Laurent de una funcién en un anillo alrededor de un punto es tnica y no
cambia con el método de derivacion.

— TEOREMA 11.8

Sea f diferenciable en un anillo r < |z — zg| < R. Suponga que, para z en este anillo,
o
f@= ) buz—2z0)".
n=—o00

Entonces los b, son los coeficientes de Laurent ¢, de f'y esta serie es el desarrollo de Laurent de f(z) en
este anillo.

Prueba Elija y como un circulo alrededor de zj en el anillo. Sea k cualquier entero. Usando el teorema
10.6, obtiene

. fw) S " L
27‘[le=¢ (w—ZO)k‘H w:f/( Z bn(z — z0) )de

Nn=—00

-y f(w—zo)k e

n=—00 (11.2)

Ahora, en y, w = zo + rei para 0 < t < 27, con r el radio de y. Entonces

1 e 1
—_——dw = —ire"t dt
Y (w _ Zo)k_"'H 0 rk—n+l(eit)k—n+l

i 27 0 sik #n
l in—k)t g,
k—n f ¢ dt = . :
r 0 2mi sik=n
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Asi en la ecuacién (11.2), todos los términos en la dltima serie son cero excepto el término con n = k, y
la ecuacion se reduce a

2mic; = 2miby.
Asi que para cada entero k, by = ¢;. M

Los siguientes son ejemplos de desarrollos de Laurent.

EJEMPLO 11.9

el es diferenciable en el anillo 0 < |z| < oo, el plano sin el origen. Como

1
I n
=2
n=0
entonces, en este anillo,
o0 n
1 /1 1 11 11 11
Iz _ —(Z) =1+ I
¢ %n!(z) Tt Tuat

Este es el desarrollo de Laurent de e!/z alrededor de 0, y converge para todo z distinto de cero. Ademads
contiene un término constante y un nimero infinito de potencias enteras negativas de z, pero no potencias
positivas. M

EJEMPLO 11.10

Encontrara el desarrollo de Laurent de cos(z)/z5 alrededor de cero. Para todo z,

o (—1)"
cos(z) = E 2",
|
= (n)!
Paraz # 0,
cos(z) = (=) 1 11 11 1 1
e S B 2n—5:____ s -3
2 2::0 an) -~ 523 24z 7208 T 10320°

Este es el desarrollo de Laurent de cos(z)/z3 alrededor de 0. Este desarrollo tiene exactamente tres térmi-
nos que contienen potencias negativas de z, y el resto de los términos contienen sélo potencias positivas.
Puede pensar en cos(z)/z° = h(z) + g(z), donde

I 5

|
8@ = =335 0320°

es una funcién diferenciable (es una serie de potencias alrededor del origen), y

1
5

1
24

h(z) =

N =
AN =

Ly
z z3

Es h(z) quien determina el comportamiento de cos(z)/z> cerca del origen. M
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EJEMPLO 11.11

Encontrar el desarrollo de Laurent de

1
(z+ D(z—=30)
alrededor de —1.
Use fracciones parciales para escribir
1 _—1+3i 1 +1—3i 1
z+D@E-3) 10 z+1 10 z-3i

1/(z 4+ 1) ya estd desarrollada alrededor de —1, de manera que concéntrese en el Gltimo término:

1 1 1 1 - i z+1)"
z=3i  —1=3i+@+1) —1-3il-{5 1+3i = \1+3i
__i;(z_}_l)"
N (1 + 3i)n+! ’
n=0

Este desarrollo es vélido para |(z + 1)/(1 + 3i)| < 1,0 |z+ 1| < +/10. El desarrollo de Laurent de 1/(z + 1)

(z — 3i) alrededor de —1 es
1 —14+3i 1 1—3i

1
= — ln
(z+ Dz —3i0) 10 z+1 10 nzz;)(l+3i)n+1(z+ )"

o0

y esta representacion es valida en el anillo 0 < |z 4 1] < +/10.

Observe que +/10 es la distancia de —1, el centro del desarrollo de Laurent, al otro punto, 3i, en el

que la funcién no es diferenciable. M

En el siguiente capitulo utilizard el desarrollo de Laurent para obtener el poderoso teorema del resi-
duo, el cual tiene muchas aplicaciones, incluyendo las evaluaciones de las integrales reales y complejas

y la sumatoria de series.

SECCION 11.2 PROBLEMAS

En cada problema del 1 al 10, escriba el desarrollo de Laurent de 2411
la funcién en un anillo 0 < |z — z9| < R alrededor del punto. 6. 2z — 1 ' 5
2
L
1 +z 7. —2; 0
z
2 senz(z) 0
Z 3 sen(4z) 0
1 —cos(2z) ) z
3. ————0
‘ z+i
4. zzcos<l;>;0 % z—i;l
z2 1
5. 1 10. senh =) 0
1—z z



CAPIiTULO 12

Singularidades
y el teorema
del residuo

Como preludio al teorema del residuo, usara el desarrollo de Laurent para clasificar puntos en donde una
funcién no es diferenciable.

12.1 Singularidades

DEFINICION 12.1  Singularidad aislada

Una funcién compleja f tiene una singularidad aislada en zj si f es diferenciable en un anillo 0 <
|z — zo| < R, pero no en el mismo z.

Por ejemplo, 1/z tiene una singularidad aislada en 0, y sen(z)/(z — ) tiene una singularidad aislada
en 7.
Ahora identificard las singularidades de diferentes tipos, dependiendo de los términos que aparezcan
en el desarrollo de Laurent de la funcién alrededor de la singularidad.

DEFINICION 12.2  Clasificacién de singularidades

Sea f con una singularidad aislada en z,. Sea el desarrollo de Laurent de f(z) en un anillo 0 <
|z — 20| < R.

o]

f@=7 clz—2r

n=—0Q

485
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Entonces:
1. zp es una singularidad removible de f'sic, =0 paran=—1, =2, ....
2. zp es un polo de orden m (m un entero positivo) sic_,, # 0y c_,,_1=c__o=---=0.

3. 7o es una singularidad esencial de f'si c_,, # 0 para una infinidad de enteros positivos 7.

Estos tres tipos cubren todas las posibilidades para una singularidad aislada.
En el caso de una singularidad removible, el desarrollo de Laurent no tiene potencias negativas de
Z — Zo Y, por tanto, es

f@) =) ealz—20)",
n=0

una serie de potencias alrededor de z,. En este caso puede asignar a f(zq) el valor ¢q para obtener una fun-
cién que es diferenciable en el disco abierto |z — zo| < 7.

EJEMPLO 12.1

Sea

1 — cos(z)

f@) =

para 0 < |z] < co. Como

2 4 6

z Z z

cos(z):1—2—!+4—!—a+~-~
para todo z, entonces
C 1 —cos(z z 2 7 2 (=1t
f(z)z—()z———-l-—-i-'": LZn—l
20 4! 6! (2n)!

n=1

para z # 0. La serie de la derecha es una serie de potencias, que vale 0 en z = 0. Puede, por tanto, definir
una funcién nueva

g(z) =

)

{(1 —cos(z))/z paraz #0

paraz =0

que coincide con f(z) para z # 0 pero estd definida en O de tal manera que es diferenciable ahi, ya que g(z)
tiene un desarrollo en serie de potencias alrededor de 0. Debido a que es posible extender f a una funcién
g que es diferenciable en 0, llame a 0 una singularidad removible de f. W

Asfi, una singularidad removible es la que se puede “quitar” asignando a la funcién un valor apropiado
en un punto.
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EJEMPLO 12.2

f(z) = sen(z)/(z — m) tiene una singularidad removible en 7. Para ver esto, primero escriba el desarrollo
de Laurent de f(z) en 0 < |z — 7| < 0o. Una manera fécil de hacer esto es empezar con

sen(z — ) = sen(z) cos(rwr) — cos(z) sen(wr) = —sen(z),
asi

sen(z) = —sen(z —w) = i ﬂ(z _ n.)2n+1
= Cn+ 1!

Entonces, para z # ,

1)n+1 5
+1)'( z—m)"=—1+— (z—n) ——(Z—ﬂ) +-

sen(z) (=
-7 Zzz n 120

Aunque f () no estd definida, la serie de la derecha estd definida para z = m, y ahi es igual a —1. Por
tanto, extienda f a una funcién diferenciable g definida en todo el plano asignando el valor —1 a la nueva
funcién cuando z =

f(@ paraz # 7
g(x) =

-1 paraz =m
Esta extension “quita” la singularidad de fen 7, ya que f (z) = g(z) paraz # ty g(m) = —1. |
Para que f tenga un polo en z, el desarrollo de Laurent de f alrededor de 7, debe tener términos con poten-

cias negativas de z — zo, pero s6lo un nimero finito de tales términos. Si el polo tiene orden m, entonces
este desarrollo de Laurent tiene la forma

C_ Cc_
f@) = —2_p Ty —I-ch(z—Zo)"

(z—zo)"  (z—zo)"! i—0 =

con c_,, # 0. Este desarrollo es valido en algin anillo 0 < |z — 79| < R.

EJEMPLO 12.3

Sea f (z) = 1/(z + ). Esta funcién es su propio desarrollo de Laurent alrededor de —i y ¢_; = 1, mientras
que todos los otros coeficientes son cero. Asi —i es un polo de orden 1 de f.

Esta singularidad no es removible. No hay manera de asignarle un valor a f (—i) para que la funcién
extendida sea diferenciable en —i. M

EJEMPLO 12.4

g(z) = 1/(z + i)3, entonces g tiene un polo de orden 3 en —i. Aqui la funcidén es su propio desarrollo de
Laurent alrededor de —i, y el coeficiente de 1/(z + )3 es distinto de cero, mientras que todos los otros
coeficientes son cero. M
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DEFINICION 12.3  Polo simple y doble

Un polo de orden 1 se llama polo simple. Un polo de orden 2 es un polo doble.

EJEMPLO 12.5

Sea
sen(z)
@) =—7F
Paraz # 0,
L g (D" L2t (D"
f(Z)__3Z Cn+ DS _Z(Zn—i—l)!z
n=0 n=0
1 1 1 2 1 A
=276 120" " 5040°
Por tanto, f tiene un polo doble en 0. ™
EJEMPLO 12.6
el’z estd definida para todo z distinto de cero, y para z # 0,
o)
RV e N
n!z"

n=0

Como este desarrollo de Laurent tiene una infinidad de potencias negativas de z, 0 es una singularidad
esencial de elz,

Se discutirdn algunos resultados que son ttiles en la identificacion de los polos de una funcién.

= TEOREMA 12.1 Condicién para un polo de orden m

Sea f diferenciable en el anillo O < |z — z9| < R. Entonces ftiene un polo de orden m en z si,
y soélo si

;f_rgo(z —z20)" f(2)

existe, es finito y distinto de cero. M

Prueba Desarrolle f (z) en una serie de Laurent en este anillo:

o0
f@ =) clz—20)" para0 < |z —z| < R.
n=—o00
Suponga que f tiene un polo de orden m en zy. Entonces ¢_,, # 0y c¢_,,_1 = ¢c_,_» = - - - = 0, de manera

que la serie de Laurent es

oo

f@ =Y az—z0)"

n=—m
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Entonces
o0 o0
GE—20"f@) =Y ealz—20"" = cam(z—20)"
n=—m =0
= Com + Comp1(Z = 20) + Comia(z — 20)> + -+
Entonces

lim (z = 20)" f(2) = c-m # 0.

Reciprocamente, suponga que lim__, ., (z — z0)"f (z) = L # 0. Busque probar que ftiene un polo de orden
m en 2.
Sea € > 0. Debido al limite, existe un positivo § < R tal que

|z—20)"f(@)—L| <€ si0<|z—2z| <8.

Entonces, para tal z,
[z — 20" f@)| < IL| + .

En particular, si |z — zo| = §, entonces
(z— zo)fnflf(z)‘ <(Ll+elz—zol™" ™ V= (LI +€) s L

Los coeficientes en el desarrollo de Laurent de f(z) alrededor de z, estdn dados por

PR R A €O N
" 2mi Jr (2 —zo)n T

en donde puede elegir a I' como un circulo de radio § alrededor de z,. Entonces

1 .
leal = 5-QEOMEX | £()(z = 20" <8 (LI+ €87 = (LI + 87"

Ahora §—"—7 puede hacerse tan pequefio como quiera eligiendo § pequefia, si n < —m. Se concluye que
|c,| =0, de donde ¢, = 0, si n < —m. Asi el desarrollo de Laurent de f(z) alrededor de zj tiene la forma

(e.¢]
_ C—m C—m+1 (S _ n
f@) = E— + P +- pp— + nézocn(z 20)",

y por tanto f tiene un polo de orden m en z;, como queria demostrar. M

EJEMPLO 12.7

Vea nuevamente el ejemplo 12.3. Como

. 1

lim (z 4+i)f(z) =1lim (z4i)—— =1#0,
z—>—i 7> —i Z+1
ftiene un polo simple en —i.
En el ejemplo 12.4,
lim (z+i)°g(z) = lim (z +i)? L #0
7—>—i 7—>—i (z41i)3 ’

asi g tiene un polo de orden 3 en —i.
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En el ejemplo 12.5,

P sen sen
lim ;2 (2) = lim (2)
z—0 Z7 z—0 d

=1#0,

asi sen(z)/z3 tiene un polo doble en 0. Es un error comin pensar que esta funcion tiene un polo de orden
3 en cero ya que el denominador tiene un cero de orden 3 ahi. Sin embargo,

sen(z)

lim 7>~

z—0 4

=lim sen(z) =0,
z—0

entonces por el teorema 12.1, la funcién no puede tener un polo de tercer orden en 0. M

Si f(z) es un cociente de funciones, es natural buscar polos en los valores donde el denominador vale
cero. El primer resultado a lo largo de estas lineas trata con un cociente en donde el denominador vale cero
en 7, pero el numerador no. Recuerde que g(z) tiene un cero de orden k en zj si g(z9) = - - - = g*—(zp) =
0, pero g®)(z9) # 0. El orden del cero es el de la derivada de menor orden que no vale cero en el punto.

TEOREMA 12.2

Sea f(z) = h(z)/g(z), donde h y g son diferenciables en algin disco abierto alrededor de zy. Suponga que
h(zp) # 0, pero g tiene un cero de orden m en z,. Entonces ftiene un polo de orden m en z,. M

Queda para el estudiante la prueba de este resultado.

EJEMPLO 12.8

1+ 473
sen®(z)

f@)=

tiene un polo de orden 6 en 0, ya que el numerador no vale cero en 0, y el denominador tiene un cero de
orden 6 en 0. Por la misma razén, f tiene un polo de orden 6 en n para cualquier entero n. M

El teorema 12.2 no se puede aplicar si el numerador también vale cero en z. El ejemplo f(z) =
sen(z)/z3 es instructivo. El numerador tiene un cero de orden 1 en O y el denominador un cero de orden
3en 0, y por el ejemplo 12.5 el cociente tiene un polo de orden 2. Pareceria que los 6rdenes de los ceros
del numerador y del denominador se restan (o cancelan) para dar el orden de un polo en el punto. Este es
el caso.

TEOREMA 12.3 Polos de cocientes

Sea f(z) = h(z)/g(z) y suponga que h y g son diferenciables en algin disco abierto alrededor de z,. Sea
h con un cero de orden k en zp y g con un cero de orden m en zp, con m > k. Entonces f tiene un polo de
ordenm — ken zy,. ™

Se deja al estudiante la prueba del teorema. Al permitir k = 0, este teorema incluye el caso que el
numerador 4(z) no tenga ceros en z.
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EJEMPLO 12.9

Considere
(z —3m/2)*
cos’(z)

f@) =

El numerador tiene un cero de orden 4 en 377/2 y el denominador tiene ahi un cero de orden 7, entonces el
cociente f tiene un polo de orden 3 en 37/2. W

EJEMPLO 12.10

Sea f(z) = tan3(z)/z°. El numerador tiene un cero de orden 3 en 0 y el denominador tiene un cero de orden
9 en 0. Por tanto, f tiene un polo de orden 6 en 0. ™

También hay algunos resultados enunciados en términos de productos en lugar de cocientes. Por tan-
to, el orden de un polo de un producto es la suma de los 6rdenes de los polos de los factores en un punto
dado.

= TEOREMA 12.4  Polos de productos

Sea f'con un polo de orden m en z y sea g con un polo de orden n en zy. Entonces fg tiene un polo de orden
m+nenz, M

EJEMPLO 12.11

Sea
1

cos*(2)(z — m/2)%"

f@) =

Aqui f(z) es un producto, que se escribe para enfatizar como

1 I
1= [0084(1)} [(Z - 71/2)2} '

Ahora 1/cos*(z) tiene un polo de orden 4 en 7/2 y 1/(z — 7/2)? tiene ahi un polo de orden 2, asi f tiene
un polo de orden 6 en /2. f también tiene un polo de orden 4 (no 6) en z = (2n 4 1)n1/2 para cualquier n
distinto de cero. M

Abhora estd preparado para desarrollar el poderoso teorema del residuo.

SECCION 12.1 PROBLEMAS

cos(z)
2

1.
b4

En cada problema del 1 al 12, determine todas las singularidades
4sen(z + 2)

de la funcidn y clasifique cada singularidad como removible, un X
polo de cierto orden, o una singularidad esencial. (z+ )z —1i)
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3. el/2(z +2i) 10. tan(z)

" sen(z) 1. 1
z—7 cos(z)

5 cos(2z) 12, e!/2@+D

* — D21 2
(2= D7 +29 13. Sea f diferenciable en zp y sea g con un polo de orden m en
6. m Z0- Suponga que f (zo) # 0. Pruebe que fg tiene un polo de
o orden m en z.

7. 22_1 14. Sean h y g diferenciables en zy, g(zp) # 0, y & tiene un cero
@+l de orden 2 en zy. Demuestre que g(z)/h(z) tiene un polo de
sen(z)

8. orden 2 en z.
senh(z) . .

15. Suponga que & y g son diferenciables en zy y g(z0) # O,

9. mientras que / tiene un cero de orden 3 en zy. Demuestre que

-1

12.2

g(z)/h(z) tiene un polo de orden 3 en z.

El teorema del residuo

Para ver una conexioén entre la serie de Laurent y la integral de una funcién, suponga que f tiene un desa-
rrollo de Laurent

(@) = Z cn(z — 20)"

n=—oo

en algin anillo 0 < |z — zg| < R. Sea I una trayectoria cerrada en este anillo que encierra a zy. De acuerdo
con el teorema 11.6, los coeficientes de Laurent estin dados por una férmula integral. En particular,
el coeficiente de 1/(z — zp) es

1
c_1 = %ﬁf(z)dz.

Por tanto,

frf(z)dzzznicq. (12.1)

Si conoce este coeficiente en el desarrollo de Laurent puede obtener el valor de esta integral. Este hecho
da una importancia especial a este coeficiente, de manera que tomara ese nombre.

DEFINICION 12.4  Residuo

Sea f con una singularidad aislada en z, y desarrollo de Laurent f(z) = Zzo:_oo c,(z — zo)" en al-
gtin anillo 0 < |z — 79| < R. Entonces el coeficiente c_; se llama el residuo de fen zy y se denota
Re s(f; zo)-

Ahora extienda la idea detras de la ecuacién (12.1) para incluir el caso en que I" pueda encerrar cual-
quier nimero finito de puntos en donde f no es diferenciable.
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72 . 7/'
° el
5
Y e r
Zn. <3
FIGURA 12.1

Sea I una trayectoria cerrada y sea f diferenciable en I" y en todos los puntos encerrados por I', excepto
parazy, ..., Z, que son todas singularidades aisladas de f encerradas por I'. Entonces

f f(2)dz =2mi ) Res(f. z)).
r

j=1

En palabras, el valor de esta integral es 2mi veces la suma de los residuos de f en las singularidades
de fencerradas por I

Prueba Encierre cada singularidad z; en una trayectoria cerrada y; (figura 12.1) de manera que cada y;
esté en el interior de I', encierre exactamente una singularidad, y no interseque ninguna otra y;. Por el
teorema de la deformacién extendido,

yg f()dz = Z?g f(z)dz =2mi ZRes(f, Zj).
r Vi j=1

Jj=1

El teorema del residuo es efectivo en la medida de nuestra eficiencia para evaluar los residuos de una
funcidén en sus singularidades. Si realmente tuviera que escribir el desarrollo de Laurent de f alrededor de
cada singularidad para mostrar el coeficiente del 1/(z — z;) término, el teorema serfa dificil de aplicar en
muchos ejemplos. Lo que aumenta su importancia, es que, al menos para los polos, es una manera eficien-
te de calcular los residuos. Ahora desarrolle algunos de éstos.

Si ftiene un polo simple en zy, Entonces

Re s(f, z0) = le’)nrzlo(z —z0) f(2).

Prueba Si f'tiene un polo simple en z;, entonces su desarrollo de Laurent alrededor de zj es

c

F@=——+ culz—z0)"
— 0 n=0

Z

en algin anillo 0 < |z — 79| < R. Entonces

G—20)f@ =c1+ Y calz —20)""",

n=0
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asi
lim (z — z0) f(z) = c—1 =Res(f, zp).
Z—20

EJEMPLO 12.12

f(2) = sen(z)/z2 tiene un polo simple en 0, y

Re s(f.0) = 1fm 20 _ jg S0 _
z—0

1.
72 =0 z

Si I' es cualquier trayectoria cerrada en el plano que encierra al origen, entonces por el teorema del residuo,

f Senz(Z) dz = 27iRes(f,0) = 27i. ™
r <

EJEMPLO 12.13

Sea

z — 60
&= e v a4

Entonces f tiene un polo simple en —4i y un polo doble en 2. El teorema 12.6 no ayudard con el residuo
de fen 2, pero en el polo simple,

Z—6i 1—6i  —4i—6i

Re s(f, —4i) = lim (z+4i)——— = lim =

O A = ) e+ 4 T i =22 T (a2
B 2+ 3. -

Antes de estudiar residuos en polos de orden mayor que 1, vea la siguiente version del teorema 12.6
que algunas veces es til.

— COROLARIO 12.1

Sea f (z) = h(z)/ g(z), donde h es continua en 7y y h(z9) # 0. Suponga que g es diferenciable en zj y tiene
ahi un cero simple. Entonces ftiene un polo simple en 7y y

Res(f, z0) = h,(ZO) . m
&' (z0)

Prueba Por el teorema 12.2, ftiene un polo simple en zy. Por el teorema 12.6,

h@) _ h(z) _ h(zo)

= Ii — — = = X
Res(frz0) =1 G =20) 0 = 0 @ — 2@/ G —20) & Go)

EJEMPLO 12.14

Sea 4iz — 1
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Entonces ftiene un polo simple en 7 y por el corolario 12.1,

4imr — 1

Res(f, m) = cos ()

=1—4mi.
De hecho, ftiene un polo simple en nm para cualquier entero n, y

dinw —

Res(f,nm) = : =(—=D"(—=1+4nmi). W

cos(ni)

EJEMPLO 12.15

TEOREMA 12.7 Residuo en un polo de orden m

Evaluar

f 4iz — 1
dz
r sen(z)

con I la trayectoria cerrada de la figura 12.2.

FIGURA 12.2 T encierra solamente

las singularidades —m, 0, m'y 2 de
4iz—1
sen(z)

I" encierra los polos 0, 7, 27 y —m pero no otras singularidades de f. Por el teorema del residuo y el

ejemplo 12.14,

% diz—1 dz =2mi[Res(f,0) +Res(f, m) +Res(f, 2m) +Res(f, —m)]
r sen(z)

=27i[—1 4 (1 —4mi) + (=1 4 87i) + (1 + 4mi)] = —167>. m

Aqui hay una férmula para el residuo de una funcién en un polo de orden mayor que 1.

Sea f con un polo de orden m en z,. Entonces

m—1

1 i
Res(f, z0) = D ilglzo g1l = 20" @)

495
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Sim = 1 (polo simple), entonces (m — 1)! = 0! = 1 por definicién, y la derivada de orden (m — 1)
estd definida para ser exactamente la propia funcién. Con estas convenciones, la conclusién del teorema
se reduce al resultado para los residuos en polos simples cuando m = 1.

Prueba En algun anillo alrededor de z,

o0
Cm C—m+1 C—1 n
2) = + +oet + E cn(Z —20)" -
TO = T e i—z20 = ne =z

Quiere encontrar c_;. Escriba

o
@—20"f@ =cm+cmr1@ =20+ + ez —20"" + Y calz — 20"
n=0

El lado derecho de esta ecuacion es una serie de potencias alrededor de zy y puede ser diferenciada cual-
quier ndmero de veces dentro de su disco abierto de convergencia. Calcule

m—1

dzm—l

[(z —z0)" f(2)]

=@m—Dlc_; + Z(n +m)n+m—1)- (n+ 1)z —z0)" .
n=0

En el limite conforme z — 7, esta ecuacién produce

m—1

lim [z = 20)" f(2)] = (m = Dle_s = (m — D!Res(f, 20).

z—z0 dzm—1

EJEMPLO 12.16

Sea

Entonces ftiene un polo de orden 3 en —i. Por el teorema 12.7,

2
Res(f, —1) = 1 lim d ((Z+i)3 cos(z) )

2! 7 —i dz? (z+i0)3

! lim @ (2) ! (1) ! (). m
= — ——= COS(Z) = —— COS(— = — — COS .

2 imidz? % 2 ! 7 O

Aqui hay algunos ejemplos del uso del teorema del residuo para la evaluacion de integrales complejas.

EJEMPLO 12.17

Sea
2iz — cos(z)
PB+z

f@)=

Busque evaluar $r- f(z)dz, con I una trayectoria cerrada que no pasa por ninguna singularidad de f.
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Las singularidades de f son polos simples en 0, i y —i. Primero calcule el residuo de f'en cada uno de
estos puntos. Aqui es conveniente usar el corolario 12.1:

—cos(0) _

Res(f,0) = | -1,
. 2i*—cos(i) —2—cos(i) . 1
Res(f,i) = 302 r1 ) =1+ 3 cos(i),
y
. 2i(=i) —cos(—i) _ l .
Res(f, —i) = 3CEel 1+ 5 cos(i).

Ahora se consideran casos.
1. Si I' no encierra ninguna de las singularidades, entonces fﬁp f(@dz = 0 por el teorema de
Cauchy.

2. SiT encierra a 0 pero no a i 0 —i, entonces
% f(z)dz =2miRes(f,0) = —2mi.
r

3. Si I'encierra a i pero no a 0 o —i, entonces

f f(@)dz =2mi <1 + lcos(z’)) .
r 2

4. SiTencierra a —i pero no a 0 o i, entonces

f f()dz =2mi <—1 + lcos(i))
r 2

5. SiT encierraa Oy a i pero no a —i, entonces

7§ f(z)dz =2mi (—1 + 1+ %cos(i)) = micos(i).
r

6. SiI encierraa Oy a —i pero no a i, entonces

f f(@)dz =2mi (—1 -1+ lcos(i)) =2mi (—2 + lcos(z’)) .
o 2 2

7. SiT encierraaiy a —i pero no a 0, entonces
: 1 . 1 . : :
f(@dz=2nmi |1+ 3 cos(i) — 1 + 3 cos(i) | = 2micos(i).
r

8. Si T encierra a las tres singularidades, entonces

yg f()dz =2mi <—1 + 1+ %cos(i) -1+ %cos(i)) =2mi (—1 +cos(i)). m
r

EJEMPLO 12.18

Sea
sen(z)

0= a2z s

Busque evaluar $r- f(z)dz, donde T es una trayectoria cerrada que encierra a 0 y a 2i pero no a —2i.
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Por el teorema 12.3, ftiene un polo simple en 0, no un polo doble, ya que sen(z) tiene un cero simple
en 0. ftambién tiene polos simples en 2i y —2i. S6lo los polos en 0 y 2i son de interés en el uso del teorema
del residuo, ya que I' no encierra a —2i.

Calcule
sen(z) 1 1
N O =1 :1/ = -,
Res(f, 0) le_r)%zf(z) M, — 2= 3
y
. . . . sen(z) sen(2i) i )
R 1 2i) =1im (z —2 ) = lim = = — 2i0).
estf2) =lm G=20f@=1m =2 = Ca@) ~ 16"
Entonces

f sen(z) d i l+i 2h). m
—_—— = 47T — — Sen .
L 2@+ T T T e

EJEMPLO 12.19

Evalie

%el/zdz
r

para I" cualquier trayectoria cerrada que no pase por el origen.

Hay dos casos. Si I" no encierra al origen, entonces gﬁr e'z dz = 0 por el teorema de Cauchy.

Si I' encierra al origen, entonces se usa el teorema del residuo. Necesita Re s(elz, 0). Como encontrd
en el ejemplo 12.6, 0 es una singularidad esencial de elz. No hay una férmula general simple para el resi-
duo de una funcién en una singularidad esencial. Sin embargo,

2011

n!z"
n=0 <

el/z —

es el desarrollo de Laurent de e!/z alrededor de 0, y el coeficiente de 1/z es 1. Asi Re s(elz, 0) =1y
% efdz =2rni. m
r

Abhora verd una variedad de aplicaciones del teorema del residuo.

SECCION 12.2 PROBLEMAS

Z
En cada problema del 1 al 16, use el teorema del residuo para 3. % (e—> dz; T es el circulo de radio 2 alrededor de —3i.
evaluar la integral sobre la trayectoria dada. rAz
|+ 272 4. % COS(Z; dz; T es el cuadrado de lado de longitud 3 y lados
. 7§ ————————dz; T es el circulo de radio 7 alrededor r4+z
r(z— Dz +20) paralelos a los ejes, con centro en —2i.
de —i. i
2 . .
2. 7{ ( < 3 4 T es el citeulo de radio 3 alrededor de 1. . ?gr 72+ ¢ 2w T esel cuadrado de lado de longitud 8 y lados
r(z—i

paralelos a los ejes, con centro en el origen.



6. % ‘! dz; T esel circulo de radio 1 alrededor del origen.
r2z+1

1
dz; T es el circulo de radio 1 alrededor de 3

s
I senh“(z)

8.

1 i
cos(2) dz; ' es el circulo de radio = alrededor de —.
r zet 2 8

dz; T es el circulo de radio 2 alrededor

9 f .
T @2 +9GE—0)
de —3i.

10. f e 2 dz; T es el cuadrado con lados paralelos a los ejes
r

y de longitud 3, con centro en —i.

8z —4i+1 . .
11. ————dz; T es el circulo de radio 2 alrededor
r z+4i

de —i.

2
12. % s dz; T esel cuadrado de lado de longitud 4 y
rz—1+2i

lados paralelos a los ejes, con centro en 1 — 2i.
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2
z
16. f ( l) dz; T es cualquier trayectoria cerrada que
r\<—

encierraa 1.

17. Con h'y g como en el problema 14 de la seccién 12.1, pruebe
que

R (g(z) )_ g0)  28p)h® (zo)
es| —,z0) =2 - = .
h() h'(zo) 3 [h'(z0)]2

18. Con iy g como en el problema 15 de la seccion 12.1, pruebe
que

Re (@ . ) _58"0) 3 g@)h® )
@ ™) T W) 10 (07 (z0)?2

o (g(zo>h<4> (z0) g’(zo>h’”(zo)> h® (z0)
24 6 (h""(z0))>"

19. Sean g y h diferenciables en zo. Suponga que g(zp) # 0y sea
h con un cero de orden k en zy. Pruebe que g(z)/h(z) tiene un
polo de orden k en zy, y

wes(55-00) = (i)
N )~ A& (z0)

H 0 0 -~ 0 Go
13. % coth(z)dz; T es el circulo de radio 2 alrededor de i. Hiq Hy, 0 e 0 G
r
X | Hgvo  Hiyr He - 0 Ga |
(1-2)* ) , : : . . .
14. 3 dz; T es el circulo de radio 2 alrededor de 2. : : : : :
ro-8 Hyp—y Hpyp—p Hog—3 -+ Hpp1 G
27 donde
15. 9 ———dz; T Iquier t tori d i ;
fi—‘ Z(Z — 41) 25 €S cualquier trayectoria cerrada que oo h(])(Z()) G _ g(J)(z()) '
encierraa 0y a 4i. J J! / J!
12.3 Algunas aplicaciones del teorema del residuo

12.3.1 El principio del argumento

El principio del argumento es una férmula integral para la diferencia entre el nimero de ceros y el nimero
de polos de una funcién (contando multiplicidades) encerrada por una trayectoria cerrada I" dada.

= TEOREMA 12.8 Principio del argumento

Sea f diferenciable en una trayectoria cerrada I' y en todos los puntos en el conjunto G de puntos ence-
rrados por I, excepto posiblemente en un nimero finito de polos de fen G. Sea Z el nimero de ceros
de fen G, y P el nimero de polos de fen G, contando cada polo y cero k veces si su multiplicidad es k.

Entonces,

f'(@)
r f(2)

dz = 27i(Z — P).

Prueba Observe primero que los dnicos puntos en G donde f'/f podria tener una singularidad son los

ceros y los polos de fen G.
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Ahora suponga que f tiene un cero de orden k en 7 en G. Probard que f'/f debe tener un polo simple
en 2o, y que Re s(f'/f, z0) = k. Para ver esto, primero observe que, debido a que 7z, es un cero de orden %,

feo)=f'G@) == ") =0
mientras f ®)(zo) # 0. Entonces, en algtin disco abierto alrededor de zy, el desarrollo de Taylor de f (z) es
o0 o
f@ =) enlz—20" =) capilz—z0)"™
n=k

n=0

= (2= 20" ) k@ —20)" = 2 — 20" 8(2),
n=0

donde g es diferenciable en z; (porque ahi tiene un desarrollo de Taylor) y g(z9) = ¢ # 0. Ahora, en algtin
anillo0 < |z — 79| < R,

f'@) _ke—)"lg@+@-0''@ _ k8@
f @ (z — z0)kg(2) z—z0  &(zo)

Como g'(z)/ g(z) es diferenciable en z, entonces f” (z)/f (z) tiene un polo simple en zy y Re s(f'/f, z9) = k.
Ahora, suponga que f tiene un polo de orden m en z;. En algdn anillo alrededor de zy, f(z) tiene de-
sarrollo de Laurent

f@ =) diz—21)",

n=—m

cond_,, # 0. Entonces

G—2)"f@= Y diz—20)"" =) dym(z—21)" =h(2),

n=—m n=0

con h diferenciable en z; y h(z;) = c¢_,, # 0. Entonces f (z) = (z — z1)~™h(z), asi en algiin anillo alrededor

de zj,
fl@  —mGeE—z2)" " h@)+ @—z2) ") —m L@
[ (z —z1)7"h(z) =21 h(@)
Por tanto, f'/ftiene un polo simple en z;, con Re s(f' /f, z;) = —m.

Por tanto, la suma de los residuos de f' (z)/f (z) en las singularidades de esta funcién en G cuenta los
ceros de fen G, de acuerdo con su multiplicidad, y el negativo del niimero de polos de fen G, nuevamente
de acuerdo con su multiplicidad. ™

EJEMPLO 12.20

Evalde gﬁr cot(z) dz, con I' la trayectoria cerrada de la figura 12.3.
Escriba

_cos(z)  f'(2)
sen(z)  f(z)

donde f (z) = sen(z). Como f tiene cinco ceros simples y ningin polo encerrado por I', el principio del
argumento da

f cot(z)dz =2mi(5—0) = 10wi. m
r
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=37 27 \—7 0

FIGURA 12.3

12.3.2 Una férmula de inversién para la transformada de Laplace

Si fes una funcién compleja definida en al menos todo z en [0, 0o), la transformada de Laplace de fes
oo
YUl = / e f (1) dt,
0

para todo z tal que esta integral esté definida y sea finita. Si &[ f'] = F, entonces F es la transformada
de Laplace de f, y f es una transformada inversa de Laplace de F. Algunas veces se escribe f = ¥-1[ f],
aunque esto requiere de condiciones adicionales para la unicidad ya que en general, hay muchas funciones
cuya transformada de Laplace es F.

Se da una férmula para £-![ /'] en términos de la suma de los residuos de e#F(z) en los polos de f.

= TEOREMA 12.9 Transformada Inversa de Laplace

Sea F diferenciable para todo z excepto para un nimero finito de puntos zy, . . ., z,, que son todos los polos
de F. Suponga que para algtn o real, F' es diferenciable para todo z con Re(z) > o. Suponga también que
existen nimeros M y R tales que

|zF(z)| <M para |z| > R.
Parar > 0, sea
n
f(@©) = Res(e”F(2). ).

j=1
Entonces

L[f1(z) = F(z) para Re(z) > o.

La condicién F es diferenciable para Re(z) > o significa que F '(z) existe para todo z a la derecha de
la recta vertical x = 0. También se supone que zF(z) es una funcién acotada para z fuera de un circulo,
suficientemente grande, alrededor del origen. Por ejemplo, esta condicién la satisface cualquier funcién
racional (cociente de polinomios) en donde el grado del denominador sea mayor que el del numerador.

EJEMPLO 12.21

Sea a > 0. Se busca una transformada inversa de Laplace de F(z) = 1/(a% + 72).
Esta se puede encontrar en tablas de las transformadas de Laplace. Para usar el teorema, F tiene polos
simples en £ai. Calcule

R 6‘zt ) eati
es| =——=,ai )| = —
a2+ 72 2ai
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et e—ati
Res| ——, —ai ) = -,
<a2 +z2 > —2ai
Una transformada inversa de Laplace de F esta dada por

_ 1 ati __ ,—ati _l
f(l)—ﬁ(e e )—asen(at)

parat>0. M

EJEMPLO 12.22

Busque una funcién cuya transformada de Laplace es

Fo=m—pco

F tiene polos simples en 2 y un polo doble en 1. Calcule

eZT ezt 1 2
Res| ———=,2 ) =1lim ——— = —¢“,
((22 -4z - 1)? > =2z +2)(z-D* 4

eZt ezt 1 ”
R —_———, —2 = i R — s
“((z2 “HeE-12 ) A e T 3%

eZl 1 d eZT
—_ 1) =lim — ( ——
Res((zz—ﬁl)(z—l)2 ) ~>1dz (12—4>

=11'rn Ezt—tzz _ 4t _ 2Z = ! t 2 !

3 te
z—1 (Z2 _ 4) 3 9
Una transformada inversa de Laplace de F estd dada por

1 2 1
)= ——tel — Zel 4 —¢2 — o2
f) =—31¢ —ge + 3¢~ 35¢

para ¢ > 2 (ya que todos los polos de F estdn en la recta Re(z) = 2 o a su izquierda). M

En estas secciones podra ver el desarrollo de un tema. Una variedad de problemas (ceros de funcio-
nes, sumas de series, transformadas inversas de Laplace y otros pueden ser resueltos integrando una fun-
cién compleja debidamente elegida sobre una trayectoria apropiada. La funcién y la trayectoria deben ser
seleccionadas de manera que la integral dé la cantidad que quiere calcular, quiza después de un proceso de
limite. Entonces puede usar el teorema del residuo para evaluar explicitamente la integral. Dependiendo
del problema, la eleccién de la funcidn correcta y la trayectoria correcta pueden ser una tarea no trivial,
pero al menos este método provee un camino.

12.3.3 [Evaluacion de integrales reales

Se ilustrard el uso del teorema del residuo en la evaluacion de varias clases generales de integrales
reales.
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Integrales de f 3 K(cos(0), sen(0)) d§ Sea K(x, ¥) un cociente de polinomios en x y y, por ejemplo,
Xy —2xy? 4+ x =2y
)C4 + )C3 :

Si reemplaza x por cos(6) y y por sen(6), obtiene un cociente que involucra sumas de productos de poten-
cias enteras de cos(#) y sen(6). Se busca evaluar integrales de la forma

21
/ K (cos(8), sen()) dO.
0

La idea serd probar que esta integral real es igual a una integral de cierta funcién compleja sobre el circulo
unitario. Después usard el teorema del residuo para evaluar esta integral compleja, obteniendo el valor de
la integral real.

Parallevar a cabo esta estrategia, sea y el circulo unitario, orientado en sentido contrario del movimien-
to de las manecillas del reloj, como es usual. Parametrice y por y () = e para 0 < 6 < 2. En esta curva,
z=efyz=e""=1/z asi

Mis atin, en y, e — 10 g — i2do.

1
1z

Ahora tiene

1 1\ 1 1\ 1 2 1
Kl=(z+-),—(z—- —dz = K (cos(0), sen(@))ﬁze do
Y 2 z) 2i z)) iz 0 iél

2
:/ K (cos(0), sen(0)) db.
0

Esto convierte la integral real a evaluar en la integral de la funcién compleja f (z) sobre el circulo unitario,

donde
1 1 1 1 1
f(Z):K<§<Z+E),2—i<Z—E))i—Z.

Use el teorema del residuo para evaluar §, f(z)dz, obteniendo

2
/ K (cos(0),sen(0))dO = 2mi ZRes(f, p). (12.2)
0 p

La suma de la derecha es sobre todos los polos p de f (z) encerrados por el circulo unitario. Los polos
que estdn fuera del circulo unitario no se incluyen en el cdlculo. Finalmente, la ecuacién (12.2) supone que
f(2) no tiene singularidades en el circulo unitario.

Asf que el procedimiento para evaluar f 20” K(cos(0), sen()) db consiste en calcular f (z), determinar
sus polos dentro del circulo unitario, evaluar ahi los residuos y aplicar la ecuacion (12.2). Este es un mé-
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todo muy poderoso que permite obtener evaluaciones en forma cerrada de integrales para las cuales las
técnicas usuales de integracién del calculo real son inadecuadas.

EJEMPLO 12.23

Evalte
2 2
sen~ (0
/ _sen"(0) .
0o 24 cos(d)
La funcidn K en la discusion anterior es
2

K(x,y)= Ty

El primer paso es reemplazar x = cos(d) con (z + (1/2))/2 y y = sen(6) con (z — (1/z2)/2i, y entonces
multiplicar por 1/iz, para producir la funcién compleja

_ (! 1\ 1 N\ 1
o=k (3(=+3) 5 (-3))z

[(120)z —1/2)1F 1 i z*=222+1

24+ 3@ +1/2) iz T2 A4+ D)

f tiene un polo doble en 0 y polos simples en los ceros de z2 4+ 4z + 1, que son —2 + /3y —2 — /3.
De estos dos polos simples de f, el primero estd encerrado por y y el segundo no, de manera que descarte
—2 — /3. Por la ecuacién (12.2),

2 2
/ S’ ®) o o [Res(f, 0) +Res(f, —2+J§)].
0

2 + cos(0)
Ahora
d dizt—272+1
0=t L2 =t L1522
Res(f.0) 0 dz @) N dz2 22+ Az + 1
. 5 4 2 3
677 —4z- -3 277 =12
=l—11’m 21+z Z z-i;z — 9
2720 (22 +47 + 1)
y
. 4 2
i =2z +1
Res(f, —2++/3 =—[ i|
(f ) ey yrper; ey I
i 422443
T 2124743
Entonces

21 sen?(0) , i 42— 243 90 — 524/3
do = 2mi =
0

—_— _2i+_ T[’
2 + cos(f) 212473 12-7v3

aproximadamente 1.68357. W

Al aplicar este método, si se obtiene un nimero que no es real, hay que verificar los calculos, ya que
una integral real tiene un valor real.
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EJEMPLO 12.24

Evalie

T 1
| e 0
o o+ Bcosd)

donde 0 < B8 < «.
Como el método desarrollado tiene que ver con integrales sobre [0, 277], primero debe decidir cémo
acomodar una integral sobre [0, r]. Escriba

2 1 b4 1 2 1
/ —dG:f —d9+/ — dof.
0o o+ Bcos(®) 0o «+ Bcos(®) x o+ Bcos()

Sea w = 2w — 0 en la tltima integral para obtener

2 0 b4
f U =/ ! (=1 dw =f S —
* o+ Bcos() x o+ BcosCmr —w) o o+ Bcos(w)

Por tanto,

b4 1 1 2 1
/ S - / R —
0o o+ Bcos(d) 2 Jo o+ Bcos)

ahora puede concentrarse en la integral sobre [0, 277]. Primero obtiene la funcién

1 —2i

f(Z):a+5<z+§)i_zzﬂz2+2az+ﬁ'

2
[ tiene polos simples en

ot T
e

=

Como « > f, estos nimeros son reales. S6lo uno de ellos,

—a+ T
—F,

i1 =

estd encerrado por y. El otro estd fuera del disco unitario y es irrelevante para sus propdsitos. Entonces

/n—l do l/zn—l 46 = SomiRes( . 21)
= — = <1 5
o -+ Bcos®) 2 )y a+ Bcos®) i Res

. —2i T
=711 = .l
2Bz1 + 2« a2 — B2

Antes de continuar con otros tipos de integrales reales a evaluar usando el teorema del residuo, hara
una breve excursién y verd otra, quizd sorprendente, prueba del teorema fundamental del dlgebra. Este
argumento se debe originalmente a N. C. Ankeny, y la version presentada aparece en Lion Hunting and
Other Mathematical Pursuits, por R. P. Boas (The Mathematical Association of America Dolciani Mathe-
matical Expositions, Vol. 15).

Sea p(z) un polinomio no constante con coeficientes complejos. Busque probar que para algunos
nimeros z, p(z) = 0.

Primero, suponga que p(x) es real si x es real. Para ver por qué es cierto esto, sea

p@)=ao+aiz+ -+ a2",
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donde a,, # 0. Denote
p(x) =ao+aiz+---+a,z".
Entonces ¢(z) = p(z)p (z) es un polinomio no constante. Mds atn, si z = x es real, entonces x = xy

qg(x) = p(x)p(x)
=(ap+aix +---+ax") (@ +arx + - +a,x")

= (a0 + a1x + -+ + a,x") (a0 + a1x + - - - + a,x")

= lag +aix + - - - + apx"|?
es real. Entonces podria usar ¢(z) en el argumento en lugar de p(z), ya que ¢(z) es un polinomio sin ceros
cuando p(z) no tiene ceros. Asi, suponga que p(z) # 0 para todo z, y p(x) es real si x es real.

Debido a que p(x) es continuo y nunca vale cero para x real, p(x) debe ser estrictamente positivo o
estrictamente negativo para todo x real. Pero entonces

2
——do £0.
/0 p(2cos(0)) a

Pero, por el método recién discutido, con y el circulo unitario, se concluye que

2 1 1 1 1 anl
/ —dezf—,—dzsz dz #0,
0o p2cos(¥)) y P(z+1/2) iz iJ, r(@

n 1
r)=7"plz+ -
Z
. 1 1\? 1\"
=2z |ao+a Z+Z +az Z+Z T tan Z+g

" 241 @2+ 1)7? 2+ 1)
=2z |ap+ai +ay +-ota—.
z 72 7"

donde

De aqui es claro que 7(z) es un polinomio. Si r(¢) = 0 para algin ¢ # 0, entonces p(¢ + 1/¢) = 0, de ma-
nera que ¢ + 1/¢ seria un cero de p, una contradiccién. Mds aun, r(0) = a,, # 0 debido a que p tiene grado
n. Por tanto, r(z) # 0 para todo z, de manera que z*~1/r(z) es una funcién diferenciable para todo z. Pero
entonces, por el teorema de Cauchy,

1 anl

- ?g dz =0,

iJ, r@

una contradiccién. Concluye que p(z) = 0 para algin nimero z, probando el teorema fundamental del
dlgebra.

Evaluacion de f * [p(x)/q(x)] dx  Ahora se consideran integrales reales de la forma
o0
X
f p(x) dx.

—oc 4(X)
en donde p y ¢ son polinomios con coeficientes reales y sin factores comunes, g no tiene ceros reales,
y el grado de g excede el grado de p por al menos 2. Estas condiciones son suficientes para asegurar la
convergencia de esta integral impropia.

Como con la clase anterior de integrales, la estrategia es obtener una integral compleja que sea igual
a esta integral real, entonces evaluar la integral compleja usando el teorema del residuo. Para hacer esto,
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y
Y N RS
. s
. Z.m R,’
el3 7 Z|. X

-R S R

FIGURA 124

primero observe que ¢(z) tiene coeficientes reales, de manera que sus ceros aparecen en pares complejos
conjugados. Suponga que los ceros de g son zy, 71, 22, 22, - - - » Zms Zm» CON cada z; en el semiplano superior
Im(z) > 0y cada z; en el semiplano inferior Im(z) < 0. Sea I' la curva mostrada en la figura 12.4, que con-
siste del semicirculo y de radio R y el segmento S de —R a R en el eje real, con R suficientemente grande

para que I encierre todos los polos zy, . . ., z, de p(z)/q(z) en el semiplano superior. Entonces
P N @) @)
—Zdz =2mi E Res(p/q, z;) =/ —dz+ | —=dz. (12.3)
ﬁ q(2) = 7 )sa@ y 4(2)

En S, z=xpara —R < x <R, asi
R
/p(z) dz:/ p(x) dx
s q(2) —r q(x)

Ahora considere la integral sobre y. Como el grado de ¢(z) excede el de p(z) por al menos 2,
grado de z2p(z) < grado de ¢(z).

Esto significa que para R suficientemente grande, z2p(z)/q(z) esta acotada para |z| > R. Esto es, para algtin
numero M,

2
w <M para |z] > R.
q(z)
Entonces
Z M M
pa| M Ml > R,
q(2) 4 R
asi

M
f ;752 dz‘ < = (longitud de y)
y

M M
= —(@R)=——— 0 conforme R — oo.
R? R

Asf que, en el limite conforme R — oo en la ecuacién (12.3), la primera integral de la derecha tiene limite
> (p(x)/q(x)) dx y la segunda integral tiene limite cero. En el limite conforme R — 00, la ecuacién (12.3)

produce
/oo Pt dx =2mi iRes(E Z ) . (12.4)
o0 4 (X) )" '

La ecuacién (12.4) provee un método general para evaluar integrales de funciones racionales sobre la recta
real, bajo las suposiciones antes hechas. No es necesario repetir la obtencion de esta ecuacion cada vez
que se usa, simplemente hay que determinar los ceros de ¢(z) en el semiplano superior, evaluar el residuo
de p/q en cada uno de tales ceros (que es un polo de p/q cuyo orden debe ser determinado), y aplicar la
ecuacion (12.4).
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EJEMPLO 12.25

Evalie

o 1
f SN
oo X0+ 64

Aqui p(z) = 1y q(z) = 20 + 64. El grado de g excede al de p por 6, y ¢ no tiene ceros reales. Los ceros de
70 + 64 son las raices sextas de —64. Para encontrarlas, escriba —64 en la forma polar:

—64 = 64¢' T

en donde n puede ser cualquier entero. Las raices sextas de —64 son
2eitn+2nml6 paran =0, 1, 2, 3, 4, 5.
Las tres raices en el semiplano superior son
71 = Zeﬂi/ﬁ, = 267{1’/2 — 2 y 3= 265711'/6.

Necesita el residuo de 1/(z6 + 64) en cada uno de estos polos simples. Es conveniente usar aqui el
corolario 12.1:

ni/()) 1 _ 1 e—5ﬂi/6

1
Res ,2 . = — ,
e <z6 To4 6(2¢71/6)5 ~ 192

1 1 i
72. = = T T 5
Res <z6 T 64 l) 60205 192

y
1 . 1 1 ) 1 .
2 Smi/6) : — _ ,25mif6 —n1/6.
Res <z6 o4 ¢ ) 6(2e571/6)5 ~ 192° 192°
Entonces
o 1 2 . .
dx = L [ —57i/6 - —m/6]
/_oox6+64 MR the
i Sm ) Sm . T ) T
= —|cos|— | —i1sen| — —z+cos<—)—tsen<—) .
96 6 6 6 6
Ahora
S
cos| — —)=0
( 6 ) + cos (6>
y
sen Sl + se ( ) 1
_ nl{— —
6
asi
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Integrales de f = [p(x)/g(x)] cos(cx) dx y f > [p(x)/q(x)] sen(cx) dx  Suponga que p y g son polinomios
con coeficientes reales y sin factores comunes, que el grado de g excede al grado de p por lo menos en 2,
y que g no tiene ceros reales. Busque evaluar las integrales

/OO P) cos(cx)dx 'y / Msen(cx)dx
—o00 q(X) 0o q(x)

en donde ¢ es cualquier nimero positivo.
Nuevamente, proceda buscando la integral de una funcién compleja convenientemente elegida sobre
una curva cerrada apropiadamente elegida. Considere

% &e"cZ dz,
r q(z)

donde I" es la trayectoria cerrada de la subseccién anterior, que encierra todos los ceros zj, . . ., z,, de g
que estdn en el semiplano superior. He aqui por qué esta integral es prometedora. Con I" consistente en el
semicirculo y y el segmento S en el eje real, como antes, se tiene

P@ e / PR e /R P e
PR jiez gy = | P2 ez y P jiex g
7€r @ Tl a¢ T iame ¢

R R
— % &eicz dz +/ P cos(cx)dx +i f Px) sen(cx) dx
(x) q(x)

y 4(2) —-R 94X —R

Conforme R — 0o, uno puede probar que f v [P(2)/q(2)]eic dz — 0, dejando

/ % cos(cx)dx +i /oo % sen(cx) dx = 2mi ZReS<P(Z) icz Z]) (12.5)

—oo 4(X —o0 (2)

La parte real del lado derecho de la ecuacién (12.5) es f [p(x)/g(x)] cos(cx) dx, y la parte imaginaria
es [ [p(x)/q(x)] sen(cx) dx.

EJEMPLO 12.26

Evalie

o0 cos(cx)
T oD 2 1 g
o (P D)2+ )
en donde ¢, « y B son nimeros positivos y o # .
Los ceros del denominador en el semiplano superior son «i y Bi, y €stos son polos simples de

icz

e
Q= Zrd@s iy
Calcule
R ( ) B eicai _ e—ca
st o) = T —ad) - 2ai (B — o)
y

e <P

R P = api =y
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Entonces

/‘oo cos(cx) dx 4+ ,[‘X’ sen(cx) d
e P+ T e

i e~ e—cﬂ B T (e—ca e—cﬂ)
- [2ai(ﬂ2—a2> +2/3i(a2—ﬂ2)] “pP-2\« "B )

Separando las partes real e imaginaria, tiene
o cos(cx) b e~ =B
I Ry iy e— -
oo (X7 + ) (x* + f9) B —a o B

o sen(cx) B
f_oo ranepn 0

Lo dltimo es obvio ya que el integrando es una funcién impar. M

Integrales usando contornos dentados La ecuacion (12.4) permite evaluar ciertas integrales impropias
de cocientes de polinomios, suponiendo que el denominador no tiene ceros reales. Extienda este resultado
al caso en que el denominador tenga ceros simples reales. Considere

o0
/ P&
—o0 4(X)
en donde p y g son polinomios con coeficientes reales y sin factores comunes y el grado de g excede al
de p por al menos 2. Suponga que ¢ tiene ceros complejos zy, . . ., z,, en el semiplano superior asi como
ceros simples reales 74, . . ., f.

Sea I' la trayectoria de la figura 12.5, que incluye el semicirculo y de radio R alrededor del origen,
los semicirculos pequefios y; de radio € con centro en cada cero real #; , y los segmentos L; a lo largo de
la recta real que conectan estos semicirculos, como se muestra. A una trayectoria de este tipo se le llama
trayectoria dentada debido a los semicirculos pequefios alrededor de los ceros reales de g(x). Sea € sufi-
cientemente pequefio para que los semidiscos determinados por y; y ¥, no se corten si j # k, y ningtin z;
esté encerrado en ninguna y,. También suponga que R es suficientemente grande para que I" encierre a
todos los z; . Observe que cada ¢; estd fuera de I'.

Por el teorema del residuo,

P(2) . (p(z) )

220, =2 Ly

ﬁq(z) Z m;Res 72 Zj
k+1

) ‘ @ (x)
:/p—dz+§ / P2 iz 4 / P g (12.6)
v v j=1"Li

q(2) oy a@ q(x)

Investigue qué pasa en la ecuacién (12.6) cuando R — ooy € — 0.

y
Y
"N Y,
X
L | L b

FIGURA 12.5
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Cuando R — 00, se afirma que | v [P(2)/q(2)] dz — 0 por un argumento como el anterior. La suma de
los residuos en los ceros de ¢ no cambia en este limite.

Conforme € — 0, los semicirculos y; se contraen en ¢;, y los segmentos L; se expanden para cubrir el
intervalo [—R, R] y después toda la recta real conforme R — oo. Esto significa que en la ecuacién (12.6),

k41
i / r@ /°° Pe)
Z X
(z) —o0 q(x)
Todavia no es claro qué pasa, en este proceso, con cada integral | y; [P(2)/q(2)] dz. Se probard que cada

una de estas integrales se aproxima a 7i veces el residuo de p(z)/g(z) en el polo real simple £
Para ver esto, escriba el desarrollo de Laurent de p(z)/q(z) alrededor de #;:

p@) 1 s
a@ "o +;cs(z 1) =

donde g es diferenciable en #. En y; , z = t; + €e', donde ¢ varia de 7 a O (para la orientacién en sentido
contrario del movimiento de las manecillas del reloj en I'). Entonces

/&dz—c 1/ ! dz-l—/ g(z)dz
y, 4(2) v 270 Y

J 7

0 1 . 0 . )
c_1 Jiee” dt + / g(tj +eeiee' di
T

/g

0
= —mic_q + ief g(tj +eee' di
T

0
= —mi Res(&, tj> + ie/ g(tj +ee')e' d.
q bg

Abhora ie fy? g(tj + eeit )eit dt — 0 conforme € — 0. Por tanto,

P(Z) ) p(2)
d _
/V @ ’”R“< @' )

J

Por tanto, conforme R — oo y € — 0 en la ecuacién (12.6), obtiene

2mi ZRes(p(Z),zJ) = —7i Xk:Res(p(Z),tJ) +/ pt) dx,
s q(2) w0 4(x)

de donde

k
< p(x) : (2) : (2)
f Pl dx =iy Res <%,t,-) +21i ) Res(%,zj')- (12.7)

o0 4(X) =

En un sentido, los polos simples de p(z)/q(z) en la recta real contribuyen como “medios residuos”,
siendo encerrados por semicirculos en lugar de circulos, mientras que los polos en el semiplano superior
contribuyen como “residuos completos’ en esta suma.
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EJEMPLO 12.27

Evaluar
/oo 3x +2
oo X(x =) (x2 + 9)

3242
2z —dH(E2+9)

Aqui
f) =

El denominador tiene ceros reales simples en 0 y 4 y ceros complejos simples —3i y 3i. S6lo 3i estd en el
semiplano superior. Calcule los residuos:

P 2 1
Res(f,0) = ii“ozf(z) = %= I%
Res(f,4) = lim(z —4) f(z) = 14 — 7
. —>4 100 50
y
Res(f.30) = lim (z = 30) f (2) = Si(;j;(&) _ 75 J_F ;i.
Entonces

/‘Oo 3x +2 ) 1 7 o 2+09i 14
———— =ni|——=+ = |+ i | o/ )| = —==7.
oo X(x = (x2+9) 18 50 72 — 54i 75

Integrales f Soxa[p(x)/q(x)] dx Sea( < a < 1. Se consideran integrales de la forma

/ooxaM dx,
0 q(x)

en donde p y g son polinomios con coeficientes reales y sin factores comunes, g no tiene ceros positivos,
y el grado de ¢ excede el grado de p por lo menos en 1. También se supone que g(0) # 0 o g(z) tiene un
cero simple en el origen.

Sean zy, . . ., z, los ceros distintos de cero de g. Estos son todos los ceros distintos de cero de ¢, no
solo aquellos que estan en el semiplano superior. Como los coeficientes de g son reales, esta lista incluye
los pares complejos conjugados.

Elija r suficientemente pequefio y R suficientemente grande, para que, la trayectoria cerrada I', que se
muestra en la figura 12.6, encierre a zy, . . ., z,,. I consiste en yx (“la mayor parte” del circulo de radio R
alrededor de 0), y, (“la mayor parte” del circulo de radio r alrededor de 0), y los segmentos de recta L; y
L, que conectan y, y yg. Al final se hard r — 0 y R — o0, pero antes se requiere de cierto trabajo.

Habra que definirse el significado de z4, ya que este simbolo generalmente denota un conjunto (posi-
blemente infinito) de niimeros distintos. Escriba z = pe® para algtin 6 en [0, 277) y defina

74 = pa elatd,

Conforme z se acerca a L,

2p(2) N xp(x)

&= OR
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y
Vr
% i
Y, L,
X
Zm L,
2'4 Z;
FIGURA 12.6

donde » < x < R. Pero conforme z se acerca a L,, el lado inferior del eje real positivo,

xanTraip(x)

f@) — 70

La razo6n para esto es que el argumento crece en 27 conforme z se acerca desde abajo, al eje positivo real,
y entonces

Za — paet(0+2n)a — paela962ﬂaz.

Por el teorema del residuo,

2p(2) -
fi—‘%dZZZﬂl;Res(f;Zj)
2 p(2) [ 2 p(2) / xp(x) / x4 p(x)
— d d d — “dx.
/yR @ ) 9o CT )L o YL T

En L, x varia de r a R, mientras en L,, x varia de R a r para mantener la orientacién, en sentido contrario
del movimiento de las manecillas del reloj, en I'. La dltima ecuacién se convierte en

2niZRes(f,Zj)=/ “p) dz+/ I

ot e 4() q(2)
R .a r .a, 2mai
+f xp(x)derfx—e PO 4
rooqx) R q(x)

Haciendo una estimacién en los dos arcos circulares, puede probar que las primeras dos integrales en la
ultima ecuacién tienden a cero conforme r — 0y R — oo. En este limite, la tltima ecuacion se vuelve

< L [ xp) 0 x p(x)
Znt;Res(f,zj)—/O prES) dx+/oonx.

ae2nai

A partir de esto obtiene

® xp(x) 2w n ‘
/0 pree il p ;Res(f, 2j). (12.8)
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EJEMPLO 12.28

Use la ecuacién (12.8) para evaluar

oo x1/3
——dx.
/0 X2+ 1)

Aquip(z)=1,a= % y q(z) = z(1 4 z2), con ceros simples en 0, i y —i. Calcule

1/3 1/3 7i/2N1/3 1
Res<z ) i _ T L g

—’l = — =
q(2) 2i2 -2 2
y
1/3 3mi/2y1/3
RGS(Z_, _i> _ @ L ain
q(z) -2 2
Entonces

©  L1/3 2mi 1 . .
dx — _ L (m/6 7n/2>
/0 xx2+n 1—e2m/3< 2) et

i 3
=—_’” .(\/7_—1—51’4—1’):71.-

Muchas otras clases de integrales pueden ser evaluadas usando las técnicas de las integrales com-
plejas. Algunas de éstas requieren de un ingenio considerable en la bisqueda de la funcién correcta para
integrarlas sobre una trayectoria elegida para obtener el resultado que se quiere.

El valor principal de Cauchy Como ha estado tratando con integrales impropias, es conveniente men-
cionar el valor principal de Cauchy.
Una integral

I = / g(x)dx

se define como
0 R
lim / g(x)dx + ll’m/ g(x)dx,
r—>—00 J,. R—o00 0

si ambas integrales convergen. Estos limites son independientes uno del otro.
El valor principal de Cauchy de I se define como

00 R
VPC </ g(x) dx) = lim / g(x)dx.
— 00 R—oo J_R

Este es un caso especial de los dos limites independientes que definen /.

En el caso en que [ > 8(x)dx converja, indudablemente el valor de / coincide con el valor principal de
Cauchy de la integral. Sin embargo, es posible que una integral tenga VPC finito pero ser divergente en el
sentido extenso de la definicidon de /. Esto ocurre con ff"oo xdx, la cual ciertamente diverge. Sin embargo,
esta integral tiene un valor principal de Cauchy de 0, ya que para cualquier positivo R,

R
/ xdx = 0.
—R

En algunos de los ejemplos discutidos, se han calculado los valores principales de Cauchy siempre que
se tomo el limite de [ fR g(x) dx conforme R — oo. En estos ejemplos las condiciones impuestas aseguran
que la integral impropia converge en el sentido mas general.



SECCION 12.3 PROBLEMAS

z
1. Evalie ?g 5 dz, con T el circulo |z| = 2, primero
rl+z

usando el teorema del residuo y después por el principio del

argumento.

2. Evalte fl‘ tan(z) dz, con I el circulo |z| = 7, primero usan-
do el teorema del residuo y después por el principio del ar-

gumento.

z+1
3. Evalﬁeyg —————dz, con I" el circulo |z| = 1, primero
r

2 +2:44

usando el teorema del residuo y después por el principio del

argumento.

4. Sean p(z) = (2 —z2)(@ — 22) - - - (T — Zx) con gy, . . .
nimeros complejos distintos. Sea I' una trayectoria cerra-
da orientada positivamente que encierra cada uno de los z;.

Pruebe que

/
yg PQ 40— onin,
I

primero usando el teorema del residuo y después por el prin-

cipio del argumento.

En cada problema del 5 al 9, encuentre una transformada inver-

sa de Laplace de la funcién, usando residuos.

Z
> 749
_r
6 432
1
7 (z—2)2@z+4
1
8- 2 2
2 +9(:-2)
9. (z45)3

En cada problema del 10 al 22, evalde la integral.

2 1
10./ —df
o 6+ sen(d)
2w 1
. —df
1 /0 2 —cos(0)
o0 1
12. —d
w/—oo x4 41 *

1
13./ —dx
oo X041
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14.

15.

16.

17.

18.

1

o

20.

21.

22.

23.

24.

25.

26.

27.

o]

—dx

X sen (2x)
dx

./ —2x+6
[
2
/ 2 sen(0) a0
0o 2+ sen2(9)
f 4
—oo X(x +4)(x2 +16)

/"o sen(x)
o R dx
oo X° —4x +5

/o" cos?(x) d
3 BN

/2” sen(0) + cos(0) ”
0

2 —cos(f)

© 1
[ —
—co (x =H (x> + 1)
oo\ 3/4
/ 7T dx
0o x*+1
Sea o un nimero positivo. Pruebe que

/oo costery) dx =me @
oo X241 '

Sean « y  un nimero positivo. Pruebe que

® cos(ax) T —aB
f_mmdx:ﬁ(l—kaﬁ)e .

Sean o y B niimeros positivos distintos. Pruebe que

/277 1 g0
0 a2cos2(0) + p2sen2(0)  af’

Sea o un nimero positivo. Pruebe que

L 4 z
/0 a+sen2®)  2Ja(ltoa)

Sea f un niimero positivo. Pruebe que

o0 2 2
/ e ¥ cos(2Bx) dx = ﬁe_ﬂ .
0 2
Sugerencia: Integre e—# alrededor de la trayectoria rec-
tangular con vértices £R y =R + fi. Use el teorema de
Cauchy para evaluar esta integral, igualar esto a la suma
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28.

CAPITULO 12

de las integrales en los lados del rectdngulo, y tomar el limite
conforme R — oo. Suponga el resultado estdndar que

/ooe_xzdx = ﬁ
0 2

Obtenga las integrales de Fresnel:

/ cos(x“)dx = / sen(x“)dx = = | —.
0 0 2V 2

Sugerencia: Integre ei? sobre la trayectoria cerrada acotan-
do el sector 0 < x < R, 0 < 6 < m/4, que se muestra en
la figura 12.7. Use el teorema de Cauchy para evaluar esta
integral, después evaluarla como la suma de las integrales
sobre los segmentos frontera del sector. Use el lema de Jor-
dan para probar que la integral sobre el arco circular tiende
a cero conforme R — 00, y use las integrales sobre los seg-
mentos de recta par obtener las integrales de Fresnel.

Singularidades y el teorema del residuo

X
R

FIGURA 12.7

29. Sean o y  niimeros positivos. Pruebe que

 x sen(ax) R YN} <%>
/(; —x4+,34 dx_zﬁze sen 7))

30. Sea 0 < B < «. Pruebe que

/” 1 d0 — (o514
0 (@+pBcos(@)? (a2 —pH3/2



13.1

CAPITULO 13

Mapeos
conformes

En el célculo de funciones reales de una sola variable real, es factible entender mas del comportamie-
to de una funcién si hace un esbozo de su grafica. Para funciones complejas no puede hacer el mismo tipo
de gréficas, ya que una variable compleja z = x + iy por si misma tiene dos variables. Sin embargo, si le
es posible establecer w = f(z) y hacer dos copias del plano complejo, una para z y la otra para los pun-
tos imagen w. Conforme z traza una trayectoria o varia sobre un conjunto S en el plano z, trace los puntos
imagen w = f(z) en el plano w, obteniendo una figura de cémo actda la funcién en esta trayectoria o en
los puntos en S. El conjunto de todos los puntos imagen f(z) para z en S es denotado por f(S). A una
funcién de esta manera, se le llama mapeo o transformacion. En la figura 13.1 hay un diagrama con esta
idea.

FIGURA 13.1

Pensar en una funcién como un mapeo puede ser una herramienta poderosa en la resolucién de cierta
clase de problemas, incluyendo el andlisis del movimiento de fluidos y la solucién de ecuaciones dife-
renciales parciales, en particular los problemas de Dirichlet. Ahora se desarrollardn algunas ideas sobre
los mapeos, después las aplicaciones.

Funciones como mapeos

Primero necesita alguna terminologia. Sea f una funcién compleja y D un conjunto de puntos en el plano

donde estd definida f(z). Sea D* también un conjunto de nimeros complejos.
517
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DEFINICION 13.1

1. fmapea D en D* si f(z) estd en D* para todo z en D. En este caso, escriba f: D — D*.
2. fmapea D sobre D* si f(z) estd en D* para todo z en D y, reciprocamente, si w estd en D*,
entonces existe algiin z en D tal que w = f(z). f es un mapeo sobre.

Asi, f: D — D= es sobre si todo punto de D* es la imagen bajo f de algtin punto en D.

EJEMPLO 13.1

Sea f(z) = iz para |z] < 1. Entonces factiia sobre los puntos del disco unitario cerrado D : |z| < 1. Si z estd
en D, entonces | f(z)| = |iz| = |z|] < 1, de manera que la imagen de cualquier punto de este disco estd en
el mismo disco. Aqui f mapea D en D (asi D* = D en la definicion).

Este mapeo es sobre. Si w estd en D, entonces z = w/i también estd en D, y

f(2) =f(w/i) =i(w/i) = w.

Todo punto en el disco unitario es la imagen de algtin punto del disco bajo este mapeo.
Puede ver este mapeo geométricamente. Como i = ei7/2, si 7 = re, entonces

f(Z) =iz= rein/2pit — rei(0+n/2),

de manera que a cada z, f le suma /2 a su argumento. Esto gira la recta que va del origen a z un
dngulo de /2 radianes en sentido contrario del movimiento de las manecillas del reloj. La accién de
fen z puede verse en la figura 13.2. Como esta funcién es simplemente una rotacion de 7/2 radianes, en
sentido contrario del movimiento de las manecillas del reloj, es claro por qué f mapea el disco unitario
sobre €l mismo. M

z w
i i
fle) =iz
: “TOF 5
B [N
1 w =iz 1

FIGURA 13.2 El mapeo f(z) = iz para |z] < 1.

Frecuentemente se tiene la funcién f'y el conjunto D de ntimeros complejos a los cuales se busca
aplicar este mapeo. Entonces debe analizar f (z) para determinar la imagen de D bajo el mapeo. En efecto,
estd encontrando D* de manera que f sea un mapeo de D sobre D*.

EJEMPLO 13.2

Sea f(z) = z2 para z en la cufla D que se muestra en la figura 13.3. D consiste en todos los nimeros com-
plejos en o entre el eje real no negativo y la recta y = x.



13.1 Funciones como mapeos 519

N

FIGURA 13.3 w = z2 mapea D uno
a uno sobre D*.

En la forma polar, z = re® estd en D si 0 < 6 < r/4. Entonces f(z) = z2 = r2e?¥, de manera que f tiene
el efecto de elevar al cuadrado la magnitud de z y duplicar su argumento. Si z tiene un argumento entre 0 y
/4, entonces z2 lo tiene entre 0 y 7/2. Esto abre la cufia D para cubrir todo el primer cuadrante del plano,
que consiste en los puntos en o entre el eje real no negativo y el imaginario. Si llama D* a este cuarto de
plano derecho, entonces f mapea D sobre D*. W

Algunas funciones mapean mds de un punto a la misma imagen. Por ejemplo, f(z) = sen(z) mapea

todos los enteros multiplos de m en cero. Si cada punto imagen proviene de exactamente un punto, enton-
ces el mapeo se llama uno a uno.

DEFINICION 13.2

Un mapeo f: D — D* es uno a uno si puntos distintos de D se mapean en puntos distintos en D*.

Asifesunoauno (o 1 — 1)siz; # zp implica que f(z1) # f(z2)-

Las nociones de uno a uno y sobre son independientes una de la otra. Un mapeo puede tener una
de estas propiedades, ambas, o ninguna. El mapeo f(z) = z2 del ejemplo 13.2 mapea la cufia 0 < arg(z)
< 7/4 de una manera uno a uno sobre el primer cuadrante del plano. Sin embargo, f(z) = z2 no mapea
todo el plano complejo de manera uno a uno, ya que f(—z) = f(z). Esta funcién mapea el plano sobre si
mismo, ya que, dado cualquier nimero complejo w, existe algin z tal que f(z) = z2 = w.

EJEMPLO 13.3

Sea h(z) = z2 para todo z. & mapea todo el plano sobre si mismo pero no es uno a uno.
Si z = x + iy, entonces

h(z) = x2 — y2 4+ 2ixy = u + iv,

donde u = x2 — y2y v = 2xy. Use esta informacion para determinar la imagen bajo f de una recta vertical
x = a. Cualquier punto en esta recta tiene la forma z = a + iy, y se mapea en

hia 4+ iy) = u + iv = a? — y2 4 2iay.

Los puntos en la recta x = a se mapean en puntos (&, v) con u = a?> —y2y v = 2ay. Escriba y = v/2a
(suponiendo que a # 0) para obtener
)V

u=a’- —
4q2

v2 = 4a%(a? — u),

la ecuacidn de una pardbola en el plano uv. h mapea rectas verticales x = a # 0 en pardbolas.
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Si a = 0, la recta vertical x = a es el eje imaginario, que consiste en los puntos z = iy. Ahora
h(z) = —y?, de manera que 7 mapea el eje imaginario del plano xy en la parte no positiva del eje real en
el plano uv.

La figura 13.4 muestra la imagen parabdlica de una recta x = a # 0. Cuanto mds grande sea a, mas
abre la parabola a la izquierda (cortando el eje v mas lejos del origen). Conforme se elige a pequeia, cer-
cana a 0, estas pardbolas se vuelven “cerradas,” aproximandose al eje real no positivo en el plano uv.

Una recta horizontal y = b consistente en los puntos z = x + ib, se mapea en

h(z) = (x + ib)?2 = x2 — b2 + 2ixb = u + iv.
Ahora u = x2 — b2y v = 2xb, de manera que, para b # 0,
v2 = 4b2(b? + u).
En la figura 13.5 se muestra una parabola tipica, abriendo hacia la derecha. Estas pardbolas también

abren mas conforme b es mds grande. Si b = 0, larecta y = b es el eje real en el plano z, y ésta se mapea
en h(x) = x2, dando el eje real no negativo en el plano uv conforme x toma todos los valores reales. M

z _ 2 w z w =72 w

A |

b, L 2 bi| Im(z)=b .

—r—=—=—X ———T—F—>u B >X W ————— +——>u

| I —b%

| Rez=a | | |
FIGURA 13.4 w = 72 mapea rectas verticales FIGURA 13.5 w = 72 mapea rectas horizontales

en pardbolas que abren a la izquierda. en pardbolas que abren a la derecha.

EJEMPLO 13.4

Vea la funcién exponencial w = E(z) = ez como un mapeo. Escriba

w=u+ iv= ety = e¥ cos(y) + ie* sen(y),

u=-ecos(y) y v=e*sen(y).

Como un mapeo de todo el plano en él mismo, E no es sobre (ningtin niimero se mapea al cero), y E tam-
poco es uno a uno (todos los puntos z + 2ni tienen la misma imagen, para cualquier entero n).

Considere la recta vertical x = a en el plano xy. La imagen de esta recta consiste en los puntos
u + iv con

u=e*cos(y), v=esen(y).
Entonces
W2+ 12 = e2a,

de manera que la recta x = a se mapea en el circulo de radio e alrededor del origen en el plano uv. De
hecho, conforme el punto z = a + iy se mueve a lo largo de esta recta vertical, el punto imagen u + v
da una vuelta completa alrededor del circulo conforme y varia sobre un intervalo de longitud 2, ya que
cos(y + 2nm) = cos(y) y sen(y 4+ 2nm) = sen(y). Por tanto, puede pensar en una recta vertical como un
nimero infinito de intervalos de longitud 27 uno detrds de otro, y a la funcién exponencial envolviendo
cada segmento una vez alrededor del circulo u? 4+ v2 = e2¢ (figura 13.6).
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s

| |

I la 1€
- ——=d—>u
! |Rez=a 7 w] = e
FIGURA 13.6 w = ¢z envuelve una

recta vertical alrededor de un circulo
cubriendo el circulo una vez por cada
intervalo de longitud 2.
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Z W= e? w
1y P L
| |
by Imz=b |
- > X ——J—Q‘X—> u
| |
| |
FIGURA 13.7 w = e? mapea rectas

horizontales en semirrayos desde el origen.

Z w 0=d
Ay AV
Imz=d d: w=e ! 0=c
| |
Imz=c . |
————— S—-——>X —————r=——=——>1Uu
OmC i
| [w| = e?
! |
Rez=ua Rez=0b I lw| = e

FIGURA 13.8 w = ez mapea el rectangulo mostrado en una
cufia acotada por dos semirrayos y dos circulos.

La imagen de un punto z = x 4 ib en la recta horizontal y = b es un punto u + iv con

u = e* sen(b),

y = e cos(b).

521

Conforme x varfa sobre la recta real, e* varia de 0 a oo sobre el eje real positivo. El punto (ex sen(b),
ex cos(b)) se mueve a lo largo de una semirecta desde el origen hacia infinito, formando un dngulo de b
radianes con el eje real positivo (figura 13.7). En coordenadas polares, esta semirecta es 6 = b.

Usando estos resultados, se encuentra la imagen de cualquier rectdngulo en el plano xy, con lados
paralelos a los ejes. Considere al rectdngulo con lados en las rectasx =a,x=b,y =cyy=d (enel plano
xy en la figura 13.8). Estas rectas se mapean, respectivamente, en los circulos

W2 412 = e

y las semirectas

U2 4 v2 = 2b

f=c y 0=d.

La cufia en el plano uv en la figura 13.8 es la imagen del rectdngulo bajo este mapeo exponencial. M

Dado un mapeo f'y un dominio D, se muestra una estrategia que usualmente es ttil para determinar

S (D). Suponga que D tiene una frontera formada por curvas yj, . . .

, ¥»- Encontrar las imédgenes de estas

curvas, f(y1), . . -, fF(¥n). Estas forman curvas en el plano w, acotando a dos conjuntos, etiquetados como
Iy Il en la figura 13.9. f(D) es uno de estos dos conjuntos. Para determinar cudl es, elija un punto cual-
quiera ¢ en D y localice f(¢). Este punto estard en f(D).

EJEMPLO 13.5

Se determinara la imagen, bajo el mapeo w = f(z) = sen(z), de la franja S que consiste en todo z con
—m/2 < Re(z) < /2 e Im(z) > 0. En la figura 13.10 se muestra S.
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Z w z
Y2/ D & I Rez=—%1 | !Rez=7%
. Imz>0 | | jImz>0
fr) b
-2 17
FIGURA 13.9

FIGURA 13.10 Banda acotada
por las rectas verticales x = —m /2y
x=m/2yelejex.

La frontera de S consiste en el segmento —n/2 < x < /2 en el eje real, junto con las semirectas
x=—n/2yx=mn/2paray > 0. Llevard a cabo la estrategia de ver las imdgenes de las rectas que acotan
a S. Primero,

w = u + iv = sen(x) cosh(y) + i cos(x) senh(y).
Si x = —m/2, entonces
w = u + iv = —cosh(y).

Como 0 <y < oo en esta parte de la frontera de S, entonces cosh(y) varfa de 1 a co. La imagen de la
frontera vertical izquierda de S es, por tanto, el intervalo (—oo,—1] en el eje real en el plano uv.

Six = /2, un andlisis similar muestra que la imagen de la frontera vertical derecha de S es [1, co)
en el eje real en el plano uv.

Finalmente, si y = 0, entonces

w = sen(x).

Conforme x varfa de —n/2 a /2, sen(x) varia de —1 a 1. Asi [—n/2, /2] mapea [—1, 1] en el plano
uv.

La figura 13.11 muestra estos resultados. La frontera de S se mapea sobre todo el eje real en el plano
uv. Este eje es la frontera de los dos conjuntos en el plano w, el semiplano superior y el semiplano inferior.
Elija cualquier z adecuada en S, z = i. Su imagen es

w = sen(i) = i senh(1),

que estd en el semiplano superior. Por tanto, la imagen de S es el semiplano superior.

La orientacién juega un papel importante en estos mapeos. Imagine que camina a lo largo de la fron-
tera de S en sentido contrario del movimiento de las manecillas del reloj. Esto significa que empieza en
algtn lugar de la frontera izquierda x = —m/2, recorra esta recta hacia el eje real, después gire a la izquier-
da y camine a lo largo de este eje hacia x = /2, después a la izquierda nuevamente y prosiga hacia arriba
por la frontera derecha recta. Siga el movimiento del punto imagen f(z) conforme z toma esta ruta. Con-

forme z se mueve hacia abajo por la recta x = —n/2, f(z) = sen(z) empieza en algin lado a la izquierda
z w
4y g
T | T |
Rez=—35 | ' Rez=73 |
Imz>0 : Imz>0 :
—————— e ——— > X ————JI-————>M
313 -1y

FIGURA 13.11  w = sen(z) mapea x = —m/2,y
>0,enu<—1;—n/2<x<n/2en—1<u<
Liyx=n/2,y>0,enu>1.
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de —1 en el eje real en el plano w, y se mueve hacia w = —1. Conforme w gira la primera esquina y se
mueve a lo largo del eje real en el plano z de —n/2 a /2, f(z) continda a partir de —1 y sigue adelante
a lo largo del eje real hasta w = +1. Finalmente, z gira hacia arriba y se mueve a lo largo de la recta
x=m/2,y f(z) se mueve desde w = 1 hacia afuera del eje real en el plano w. Conforme z recorre la fronte-
ra de la banda en sentido contrario del movimiento de las manecillas del reloj (interior de S a la izquierda),
f(2) recorre la frontera del semiplano superior de izquierda a derecha en sentido contrario del movimiento
de las manecillas del reloj (interior del semiplano a la izquierda). ™

En este ejemplo, conforme z se mueve sobre la frontera de D en sentido positivo (en sentido contrario
del movimiento de las manecillas del reloj), f(z) se mueve sobre la frontera de f(D) en sentido positivo.
En la siguiente seccidn se analizan mapeos que conservan dngulos y sentido de rotacion.

SECCION 13.1 PROBLEMAS

1. En cada inciso de (a) a (e), encuentre la imagen del rectan-
gulo dado bajo el mapeo w = ez. Dibuje el rectdngulo en el
plano z y su imagen en el plano w.

(@ 0<x=<m0=<y=<m

. En cada inciso de (a) a (e), encuentre la imagen del rectdn-
gulo dado bajo el mapeo w = cos(z). Dibuje, en cada caso,
el rectdngulo y su imagen.

@0<x<l1<y<2

T
@)55x5m1§y§3
b
(QOSXSEESySH
dr<x=<2m1<y<?2

b4
(e) OSXSE,OSYSI
. En cada inciso de (a) a (e), encuentre la imagen del rec-

tdngulo dado bajo el mapeo w = 4 sen(z). Dibuje, en cada
caso, el rectdngulo y su imagen.

T T

0<x<—-,0<y=<-—
(a) sx=5.0=y=7

b4 b4 bid
b) - <x<—-,0<y<—
0 g=xr=3.0=y=7
(@0§x<L0§y§%

b4 3 b4
d —<x<—,0<y<—
@3 =x=7.0=y=7
(e 1=x=<21=<y=<2

4.

10.

Determine la imagen del sector /4 < 0 < 57/4 bajo el
mapeo w = z2. Dibuje el sector y su imagen.

. Determine la imagen del sector 7/6 < 6 < m/3 bajo el

mapeo w = z3. Dibuje el sector y su imagen.

. Pruebe que el mapeo

mapea el circulo |z| = r sobre una elipse con focos 1y —1
en el plano w. Dibuje un circulo tipico y su imagen.

. Pruebe que el mapeo del problema 6 mapea la semirecta

6 = constante sobre una hipérbola con foco =1 en el plano
w. Dibuje una semirecta tipica y su imagen.

. Pruebe que el mapeo w = 1/z mapea toda recta en un circu-

lo o una recta, y todo circulo en un circulo o una recta. Dé
un ejemplo de un circulo que se mapee en una recta, y una
recta que se mapee en un circulo.

. Encuentre la imagen de la banda infinita definida por

0 <Im(z) < 27 bajo el mapeo w = ez.

Sea D el rectangulo que cuyos vértices son ol y m * ai,
con ¢ un nimero positivo.

(a) Determine la imagen de D bajo el mapeo w = cos(z).
Dibuje D y su imagen.
(b) Determine la imagen de D bajo el mapeo w = sen(z).

Dibuje esta imagen.

(c) Determine la imagen de D bajo el mapeo w = 272
Dibuje esta imagen.



524

13.2

CAPITULO 13

Mapeos conformes

Mapeos conformes

Sea f: D — D* un mapeo.

DEFINICION 13.3 Mapeo que conserva dngulos

f conserva dngulos si para cualesquiera zy en D, dos curvas suaves en D que se cortan en 2o, y el
angulo entre estas curvas en z es 0, las imdgenes de estas curvas se cortan en el mismo dngulo 6 en

f(z0).

En la figura 13.12 se ilustra esta idea. Las imdgenes de y; y y, son las curvas f(y;) y f(y2) en D*.
Suponga que y; y y, se cortan en zop y que sus tangentes tienen ahi un dngulo 6 entre ellas. Busque
que las tangentes a f(y) y f(y2) se corten en f(zp) en el mismo dngulo. Si esta condicién se cumple para
todas las curvas suaves que pasan por cada punto de D, entonces f conserva dngulos en D.

Z w
Y.
T 5 ’ ! S
| |
Y, fzg) 0
: / 1 0\ |
: 0 : )
S S L —> —————l————>

FIGURA 13.12 Mapeo que conserva dngulos.

DEFINICION 13.4 Mapeo que conserva orientacion

f conserva la orientacion si una rotacion en sentido contrario del movimiento de las manecillas del
reloj en D es mapeada por f en una rotacion en sentido contrario del movimiento de las manecillas
del reloj en D*.

Esta idea se ilustra en la figura 13.13. Si L, y L, son rectas que pasan por cualquier punto zpen D'y el
sentido de la rotacién de L, a L, es contrario al movimiento de las manecillas del reloj, entonces el sentido
de larotacion de (L) a f(L,) a través de f(zo) en D* también debe ser en sentido contrario del movimien-
to de las manecillas del reloj. Por supuesto, f(L;) y f(L,) no necesitan ser rectas, pero uno puede seguir
considerando el sentido de la rotacién de la tangente de f(L;) a la tangente de f(L,) en f(z¢). En contraste,
la figura 13.14 ilustra un mapeo que no conserva la orientacion.

Z

A L,

|

| N L

| Z, 1
__l_ _____ >

FIGURA 13.13 Mapeo que conserva la

orientacion.

orientacion.

=

] F(L)
F(Ly)

FIGURA 13.14 Mapeo que no conserva la
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La conservacién de los dngulos y la orientacién son conceptos independientes. Un mapeo puede con-
servar uno pero no el otro. Si f: D — D* conserva ambas, decimos que fes conforme.

DEFINICION 13.5 Mapeo conforme

f: D — Dx es un mapeo conforme si f conserva tanto dngulos como orientacion.

El siguiente teorema genera muchos ejemplos de mapeos conformes.

Seaf: D — D* una funcién diferenciable definida en un dominio D. Suponga que f'(z) # 0 para todo z
en D. Entonces f'es conforme. M

Asi, una funcién diferenciable con derivada distinta de cero en un dominio (conjunto abierto conexo)
mapea este conjunto de tal manera que conserva tanto angulos como orientacion. Se esbozard un argu-
mento mostrando por qué esto es cierto. Sea zp en D y sea y una curva suave en D que pasa por zo. Enton-
ces f() es una curva suave que pasa por f(zg) en D* (figura 13.15). Si w = f(2) y wy = f(z0), entonces

_ f@ = f(z0)
0="——"—"(2~—

Z—20

20)-

w —

Ahora recordemos que el argumento se comporta como un logaritmo, en el sentido que cualquier argu-
mento de un producto es una suma de los argumentos de los factores individuales salvo multiplos de 2.
Entonces

f(zo)

arg(w — wp) = arg (f(i—_) + arg(z — zo), (13.1)

- 20

En la figura 13.16, 6 es el dngulo entre el eje real positivo y la recta que pasa por 7y zp y es un argumento
de z — zo. El dngulo ¢ entre el eje real positivo y la recta que pasa por w y wy en el plano w es un argu-
mento de w — wy. En el limite, conforme z — zy, la ecuacién (13.1) da

@ = arg[f'(z0)] + 6.

Es aqui donde se usa la suposicion que f'(zo) # 0, debido a que 0 no tiene argumento.
Si y* es otra curva suave que pasa por zo, entonces por el mismo razonamiento,

@ = arg[f'(z0)] + 6~
Entonces

p—pr=0-10

<
<
=
=
-

: f@) /

b fe) |/ P7 P AL

FIGURA 13.15 FIGURA 13.16
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(salvo mudiltiplos de 2). Pero 6 — 6* es el angulo entre las tangentes a y'y y*en zp, y ¢ — ¢* es el angulo
entre las tangentes a f(y) y f(y*) en f(zo). Por tanto, f conserva angulos.

Ladltima “ecuacién” también implica que f conserva orientacion, ya que el sentido de la rotacién de y
a y* es el mismo que el sentido de la rotacién de f(y) a f(y*). Habria obtenido una inversion en el sentido
de rotacion si hubiera encontrado que ¢ — ¢* = 6* — 6. Por ejemplo, w = sen(z) es diferenciable, con
una derivada distinta de cero en la banda —7/2 < Re(z) < /2, y asi es un mapeo conforme de la banda
sobre un conjunto en el plano w.

Una composicién de mapeos conformes es conforme. Suponga que f mapea D conformemente sobre
D*, y g mapea D* conformemente sobre D**. Entonces g o f mapea D conformemente sobre D** (figura
13.17), ya que angulos y orientacién son conservados en cada paso del mapeo.

Ahora considere la siguiente clase, importante, de mapeos conformes.

13.2.1 Transformaciones lineales racionales

Con frecuencia hay dominios D y D* (por ejemplo, representando areas de un flujo de fluido), y busca
producir un mapeo conforme de D sobre D*. Esto puede ser una tarea formidable. Las transformaciones
lineales racionales son mapeos conformes relativamente sencillos que servirdn algunas veces a este pro-
posito.

DEFINICION 13.6  Transformacion lineal racional

Una transformacion lineal racional es una funcién

az+b
cz+d’

T(z) =

en donde a, b, ¢ y d son nimeros complejos dados y ad — bc # 0.

Otros nombres para esta clase de funcion son transformacion de Mébius y transformacion bilineal.

La funcién estd definida excepto en z = —d/c, que es un polo simple de 7. Mas atin,

ad — bc

T'(z) = ——,
@ (cz+d)?

f
D D’

gef 8

D**

FIGURA 13.17 Una composicion
de mapeos conformes es conforme.



13.2  Mapeos conformes 527

y es distinto de cero si z # —d/c. T es por tanto, un mapeo conforme del plano sin el punto
z=—d/c.
La condicién ad — bc # 0 garantiza que T es uno a uno, por tanto, invertible. Si w = (az + b)/
(cz + d), entonces el mapeo inverso es
dw—b

—cw+a’

que también es una transformacién lineal racional.
Ahora algunas clases especiales de transformaciones lineales racionales.

EJEMPLO 13.6

Sea w = T(z) = z + b, con b constante. Esta se llama una traslacién debido a que T desplaza a z horizon-
talmente Re(b) unidades y verticalmente Im(z) unidades.

Por ejemplo, si T (z) =z + 2 — i, entonces 7 toma a z y lo mueve dos unidades a la derecha y una
unidad hacia abajo (figura 13.18). Puede ver esto con los siguientes puntos y sus imdgenes:

0—-2—-i 1-3—-i i—2 443i—->6+2i W

EJEMPLO 13.7

Sea w = T (z) = az, con a una constante distinta de cero. Esta se llama una rotacion/dilatacion. Para ver
por qué, primero observe que

lw| = |al |z].

Si |a| > 1, esta transformacién alarga un nimero complejo, en el sentido que la linea estd mas lejos del
origen que z. Si |a| < 1, acorta esta distancia. De ahi el término dilatacion.
Ahora escriba las formas polares z = re y a = Aeie. Entonces

T(2) = arei®+a),

de manera que la transformacién suma « al argumento de cualquier nimero complejo distinto de cero.
Esto gira al nimero en sentido contrario del movimiento de las manecillas del reloj un dangulo «. Esta es
la raz6n para el término rotacion.

El efecto total de la transformacidn es, por tanto, un escalamiento y una rotacién. Como un ejemplo
especifico, considere

w =2+ 2i)z
Esto mapeara
i—>—2421 =242 y 14+i—4

como se muestra en la figura 13.19. Como sugiere la figura 13.20, en general la imagen de z se obtiene
multiplicando la magnitud de z por |2 4 2i| = +/8 y rotando la recta del origen a z en sentido contrario del
movimiento de las manecillas del reloj /4 radianes. M

Si |a| = 1, T (z) = az se llama una rotacion pura, ya que en este caso no hay efecto de dilatacién, sélo
una rotacién del argumento de a.
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Z w
v
Y 4i
P ARE 2 +2i
i -2 +2i
w=z+2—1i X u
T | 1 |
FIGURA 13.18 FIGURA 13.19
y v
W= T(z)

’

// .
2+ 2lld
// T
L Z / \0‘1‘2
-0 X ’ u

FIGURA 13.20 Elmapeo T (z) = (2 + 2i)z. FIGURA 13.21 [magen
de 7 bajo una inversion.

EJEMPLO 13.8

Sea w = T(z) = 1/z. Este mapeo se llama una inversion. Para z # 0,

lw| = —

|z]

arg(w) = arg(1) — arg(z) = —arg(2)

(salvo multiplos enteros de 2). Esto significa que llega a 7(z) al moverse 1/ |z| unidades desde el origen a
lo largo de la recta de 0 a z y después reflejando este punto a través del eje real (figura 13.21). Esto mapea
puntos dentro del disco unitario, en el exterior de €l y puntos del exterior al interior, mientras que los pun-
tos en el circulo unitario permanecen en el circulo unitario (pero se mueven alrededor del circulo, excepto
para 1 y —1). Por ejemplo, si z = (1 + i)/+/2, entonces 1/z = (1 — i)/~/2 (figura 13.22). m

Ahora probara que las traslaciones, las rotaciones/dilataciones y las inversiones son las transforma-
ciones lineales racionales fundamentales, en el sentido que cualquiera de estos mapeos puede obtenerse
como una secuencia de transformaciones de estos tres tipos. Para ver cémo hacerlo, empiece con

az+b
T(z) = .
@ z+d
Si ¢ = 0, entonces
T =247
) =-2 ]

es una rotacién/dilatacién seguida por una traslacién:

a a n b
- -z — —.
< rot/dil dZ tras dZ d
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Z
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I 1+
|Z|:1 2

[S)

FIGURA 13.22
Imagen de un punto en
el circulo unitario bajo
una inversion.

Si ¢ # 0, entonces T es el resultado de la siguiente secuencia:

1
z = cz—>cz+d—
rot/dil tras inv ¢z +d
bc—ad 1 bc—ad 1 a az+b
— — - = =T(2).
rot/dil ¢ cz+d tas ¢ c¢cz+d ¢ cz+d

Esta manera de descomponer una transformacién lineal racional en componentes mas simples tiene
dos propésitos. Primero, es posible analizar propiedades generales de estas transformaciones analizando
las componentes mds sencillas de las transformaciones. Quizd mds importante, algunas veces se usa esta
secuencia para construir mapeos conformes entre dominios dados.

La siguiente es una propiedad fundamental de las transformaciones lineales racionales. Se aplica el
término recta para linea recta.

— TEOREMA 13.2

Una transformacion lineal racional mapea cualquier circulo en un circulo o recta y cualquier recta en un
circulo o recta. ™

Prueba Debido a la discusién anterior, necesita verificar esto solamente para traslaciones, rotacio-
nes/dilataciones e inversiones.

Es obvio geométricamente que una traslacién mapea un circulo en un circulo y una recta en una recta.
Similarmente, una rotacién/dilatacién mapea un circulo en un circulo y una recta en una recta.

Ahora necesita determinar el efecto de una inversion en un circulo o una recta. Comience con el
hecho que cualquier circulo o recta en el plano es la grafica de una ecuacién

A2+ y2)+Bx+ Cy+R=0,

en donde A, B, C'y R son nimeros reales. Esta grafica es un circulosiA # O y unarectasiA=0y By C
no son ambas cero. Con z = x + iy, esta ecuacion se vuelve

2, B . C _
Ak|+3@+@+EQ—D+R=O

Ahora sea w = 1/z. La imagen en el plano w de este lugar geométrico es la grafica de

A LB 1+1 +c 11 L R—0
w? 2\w w/) 2i\w w o

Multiplique esta ecuacién por ww (que es |w|2) para obtener

» B _.C _
R|w] +5(w+w)—z(w—w)+A=O.
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En el plano w, esta es la ecuacion de un circulo si R # 0, y una recta siA = 0y By C no son ambas
cero. W

Como muestra la prueba, las traslaciones y las rotaciones/dilataciones mapean circulos en circulos
y rectas en rectas, mientras una inversién mapea un circulo en un circulo o una recta y una recta en un
circulo o recta.

EJEMPLO 13.9

Sea w = T(z) = i(z — 2) + 3. Esta es la secuencia
7> 7—2—->i(z—2)—>i(z—2)+3=uw, (13.2)

una traslacion de 2 a la izquierda, seguida de una rotacidn, en sentido contrario del movimiento de las

manecillas del reloj, de 7/2 radianes (un argumento de i es 7/2), y después una traslacion de 3 a la dere-

cha. Debido a que este mapeo no involucra una inversién, mapea circulos en circulos y rectas en rectas.
Como un ejemplo especifico, considere el circulo K dado por

(x =22 +y2=9,
con radio 3 y centro (2, 0). Escriba esta ecuaciéon como

X+y2—4x—-5=0

0
lz2 = 2(z+72)—-5=0.

Resuelva w = i(z — 2) + 3 para obtener z = —i(w — 3) + 2 y sustituya en la dltima ecuacién para

obtener

|i(w—3)+2|2—2(—i(w—3)+2+—i(w_—3)+2>—5:0.

Después de una manipulacion rutinaria, obtiene

lw|?> — 3(w + W) = 0.

Con w = u + iv, esto es
=32+ =9,

un circulo de radio 3 y centro (3, 0) en el plano uv—. Este resultado pudo haber sido pronosticado geomé-
tricamente a partir de la secuencia de mapeos elementales 13.2, mostrados en pasos en la figura 13.23. La
secuencia, primero mueve el circulo 2 unidades a la izquierda, después (multiplicacién por i) lo rota 7/2
radianes (que deja el mismo centro y radio), y finalmente lo traslada 3 unidades a la derecha. El resultado
es un circulo de radio 3 alrededor de (3, 0). ™

EJEMPLO 13.10

Examinara los efectos de una inversion w = 1/z en la recta vertical Re(z) = a # 0. En estarecta, z =a +
iy y su imagen consiste en los puntos

1 a
w = = —
a+iy a’>+y? a*+y?

1 2+ , 1
u—— V= —5,
2a 4a?

i=u-+iv.

Es de rutina verificar que
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Traslacion Rotacion Traslacion U

X

5
(x-2)%+y?=9
(a) (b) (© (d)

FIGURA 13.23

-3 3

de manera que la imagen de esta recta vertical es un circulo en el plano uv con centro (1/24, 0) y radio
1/2a. m

Como preparacién para la construccion de mapeos entre dominios dados, probard que siempre se
encontrard una transformacion lineal racional que mapee tres puntos dados en tres puntos dados.

TEOREMA 13.3 Teorema de los tres puntos

Sean zj, 7, y z3 tres puntos distintos en el plano z y w;, w, y ws tres puntos distintos en el plano w. Enton-
ces existe una transformacion lineal racional T del plano z al plano w tal que

Tz)=w, T)=w, y T(z3)=ws W
Prueba Sea w = T(z) la solucién para w en términos de z y de los seis puntos dados en la ecuacion
(w1 — w)(ws — wa)(z1 — 22)(z3 — 2) = (21 — )23 — 22) (W1 — W)(w3 — ). (13.3)

Sustituyendo z = z; en esta ecuacion obtiene aw = w;paraj=1,2,3. |

EJEMPLO 13.11

Busca una transformacion lineal racional que mapea
3>i,l—-i—>4 y 2—i—>6+2i
Haga

=3 n=1—-i z=2-i

w1=i, LU2=4, w3=6+21

en la ecuacion (13.3) para obtener

(—wR+2H2+D2—-i—2)=0C—2)()(i —4)(6 + 2i — w).

Resuelva para w y obtenga
20+ 4i)z — (68 4 16i)
645z —224+7i)

w="T()=

Entonces cada T(z) = w;. &
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b4
N:(0,0,2)

To X S )

y
X (x’ y)
FIGURA 13.24
Proyeccion
estereogrdfica

identificando la esfera
compleja con el
plano complejo extendido.

Se puede probar que la especificacién de tres puntos y sus imdgenes determina univocamente una
transformacion lineal racional. Entonces, en el dltimo ejemplo, 7T es la tnica transformacion lineal racio-
nal que mapea los tres puntos dados en sus imdgenes dadas.

Cuando trate con mapeos, a veces es conveniente reemplazar el plano complejo con la esfera com-
pleja. Para visualizar como se hace esto, considere el sistema coordenado de tres dimensiones en la figura
13.24. Una esfera de radio 1 es colocada con su polo sur en el origen y su polo norte en (0, 0, 2). El plano
xy es el plano complejo. Para cualquier (x, y) en este plano, la recta de (0, 0, 2) a (x, y) corta a la esfera
exactamente en un punto S(x, y). Esto asocia con cada punto en la esfera excepto el (0, 0, 2), un tinico
punto en el plano complejo, y reciprocamente. Este mapeo se llama la proyeccion estereogrdfica de la
esfera (excepto su polo norte) sobre el plano. Esta esfera agujerada se llama esfera compleja. El punto
(0, 0, 2) juega el papel de un punto al infinito. Esto estd motivado porque conforme (x, y) esté mas lejos del
origen en el plano xy, S(x, y) se mueve mds cerca a (0, 0, 2) en la esfera. El punto (0, 0, 2) no estd asociado
con ninglin nimero complejo, pero da una manera de visualizar al infinito como un punto, algo que no se
puede hacer en el plano. El plano complejo extendido (que consiste en todos los nimeros complejos, junto
con el infinito) estd en una correspondencia uno a uno con esta esfera, incluyendo su polo norte.

Para darle algiin sentido al punto al infinito, considere la recta y = x en el plano xy. Esta consiste en
los ndmeros complejos x + xi. Si hace que x — 00, el punto (1 + i)x se mueve sobre esta recta alejdndose
del origen. La imagen de esta recta en la esfera compleja es parte de un circulo méximo, y el punto imagen
S(x, y) en la esfera se aproxima a (0, 0, 2) conforme x — oo. Esto permite pensar que (1 + i)x acerca a
una ubicacidn especifica que puede sefialar en este proceso de limite, en lugar de s6lo decir que se aleja
del origen.

Al definir una transformacion lineal racional, algunas veces es conveniente mapear uno de los tres
puntos dados a los que se refiere el dltimo teorema en el punto infinito. Esto se puede hacer anulando los
factores que involucran a ws en la ecuacién (13.3).

= TEOREMA 134

Sean zj, zp, z3 tres nimeros complejos distintos y wy, w, nimeros complejos distintos. Entonces existe una
transformacion lineal racional w = 7(z) que mapea

Tz) =w, M) =wy y T(zz)=00. W
Prueba Tal transformacion se obtiene resolviendo para w en la ecuacién

(w; — w)(z1 — 22)(z3 — 2) = (21 — D(w; — wr)(z3 — 20). W (13.4)
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Encontrard una transformacién lineal racional que mapea

i— 4

Resuelva para w la ecuacion

13-4 24i— oo

G —-w(i—-D2+i—-2=>0—2)(=3+5)1+1)

para obtener

w=T() =

B5—i)z—1+3i
—z424+i

Algunas otras propiedades de las transformaciones lineales racionales son propuestas en los ejerci-
cios. Ahora, el problema de construir mapeos conformes entre dos dominios dados.

SECCION 13.2 PROBLEMAS

En cada problema del 1 al 5, encuentre una transformacion
lineal racional que mande los puntos dados en las imagenes
indicadas.

.1->1L2>—-i3—>1+i
2.i—> 0L, 1->—,2—>0
3.1=-14i2i—-3—-i4— o0
4, -54+2i—>1,3i > 0,—1 — o0
5.64+i—>2—ii—>3i4—>—i

En cada problema del 6 al 12, encuentre la imagen del circulo o
recta dado bajo la transformacion lineal racional.

2i
6. w= —;Re(z) = 4
z

7. w=2iz — 4;Re(z) = 5

=il Dt D=4
8. w= iz,zz z 2l.z 7) =
z—1+1i
9. w 71 |z]
10. w=3z—1i;|z—4|=3
2z -5 4z 3( 5 _5-0
w = R — T (z—72)-5=
11. Py z+2 ZiZ z
143i)z—-2
12.w:¢;|z—i|=l
b4

13. Pruebe que el mapeo w = Z no es conforme.

14. Pruebe que la composicién de dos transformaciones linea-
les racionales es una transformacion lineal racional.

15. Pruebe que toda transformacién lineal racional tiene una
inversa y que esta inversa también es una transformacién
lineal racional. (7* es una inversa de T'si T o T*y T* o
T siendo ambas el mapeo identidad, que manda cada punto
en si mismo).

16. Pruebe que no existe una transformacion lineal racional que
mapea el disco abierto |z| < 1 sobre el conjunto de puntos
acotados por la elipse u2/4 + v2 =1/16.

En los problemas 17 y 18, el escenario es el plano complejo
extendido, el cual incluye el punto al infinito.

17. Un punto zj es un punto fijo del mapeo fsi f (zo) = zo. Supon-
ga que f'es una transformacion lineal racional que no es ni
una traslacion ni el mapeo identidad f(z) = z. Pruebe que
fdebe tener uno o dos puntos fijos pero no puede tener tres.
(Por qué esta conclusion falla para traslaciones? ;Cuantos
puntos fijos puede tener una traslacion?

18. Sea f una transformacion lineal racional con tres puntos
fijos. Pruebe que f'es el mapeo identidad.

En cada problema del 19 al 22 escriba la transformacion lineal
racional como el resultado final de una secuencia de mapeos,
cada uno de los cuales es una traslacion, rotacion/dilatacion o

inversion.
iz—4
19. w =
Zz
—4
20 w= "
2z +1
2. w=i(z4+6)—2+1i
- — 1
2ow= "

z+3+1i
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TEOREMA 13.5 Teorema del mapeo de Riemann

CAPITULO 13 Mapeos conformes

Construccion de mapeos conformes entre dominios

Una estrategia para resolver cierto tipo de problemas (por ejemplo, los problemas de Dirichlet) es encon-
trar la solucién para un dominio “simple” (por ejemplo, el disco unitario), luego mapear este dominio
conformemente al dominio de interés. Este mapeo puede llevar la solucién para el disco a la solucién
para el ultimo dominio. Por supuesto, esta estrategia depende de dos pasos: encontrar un dominio para el
cual es posible resolver el problema, y poder mapear este dominio en el dominio donde desee la solucion.
Ahora se discute el tltimo problema.

Aunque en la prictica puede ser una tarea imponente encontrar un mapeo conforme entre los domi-
nios dados, el siguiente resultado asegura que dicho mapeo existe, con una excepcion.

Sea D* un dominio en el plano w y suponga que D* no es todo el plano w. Entonces existe un mapeo
conforme uno a uno del disco unitario |z| < 1 sobre D*. |

Este resultado implica la existencia de un mapeo conforme entre los dominios dados. Suponga que
busca mapear D sobre D* (ninguno de los cuales es todo el plano). Inserte un tercer plano, el plano ¢, entre el
plano z y el plano w, como en la figura 13.25. Por el teorema de Riemann, existe un mapeo conforme uno
a uno g del disco unitario [¢| < | sobre D*. Similarmente, existe un mapeo conforme uno a uno f'de || < 1
sobre D. Entonces g o f —! es un mapeo conforme uno a uno de D sobre D*.

En teoria, entonces, dos dominios, ninguno de los cuales es todo el plano, pueden ser mapeados
conformemente de una manera uno a uno, uno sobre el otro. Esto no hace, sin embargo, que sea fécil de
encontrar el mapeo. En un intento por encontrar tal mapeo, la siguiente observacion es util.

Un mapeo conforme de un dominio D sobre un dominio D* mapeard la frontera de D en la frontera de
D*. Esto se usa de la siguiente manera. Suponga que D estd acotado por una trayectoria C (no necesaria-
mente cerrada) que separa el plano z en dos dominios, D'y . Estos se llaman dominios complementarios.
Andlogamente, suponga que D* estd acotado por una trayectoria C* que separa el plano w en dos dominios
complementarios D* y ©* (figura 13.26). Intente encontrar un mapeo conforme f que mande puntos de C
en puntos de C*. Esto puede ser mds facil que tratar de encontrar un mapeo de todo el dominio. Entonces,
este mapeo mandard D en D* o en ©D*. Para saber a cudl, elija un punto zy en Dy vea si f(zo) estd en D*
o en D*. Si f(zp) estd en Dx (figura 13.27(a)), entonces f: D — D* y el mapeo es conforme. Si f(zq) estd
en ©* como en la figura 13.27(b), entonces f: D — ©*. No es el mapeo que busca, pero algunas veces es
necesario hacer otro paso y usar f para fabricar un mapeo conforme de D a D*.

Abhora construird algunos mapeos conformes, empezando con unos faciles y después unos mas difi-
ciles.

Z 7 gofl W

W g Pl
D D¥*

e e e

FIGURA 13.25 Mapeo D sobre D* FIGURA 13.26
por medio del disco unitario.
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w
f(zp)
@*

D*

C*

FIGURA 13.27(a) FIGURA 13.27(b)

EJEMPLO 13.13

Suponga que busca mapear el disco unitario D : |z] < 1 de manera conforme sobre el disco D* : |w| < 3.

Claramente la dilatacién w = f(z) = 3z hard esto, ya que todo lo que debe hacer es expandir el disco
unitario a un disco de radio 3 (figura 13.28). Observe que este mapeo manda la frontera de D sobre la
frontera de D*. |

EJEMPLO 13.14

Mapeo conforme del disco unitario D : |z] < 1 sobre el dominio |w| > 3.
Aqui estd mapeando D en el dominio complementario del ejemplo anterior. Ya sabe que f(z) = 3z
mapea conformemente a D sobre |w| < 3. Combinando este mapeo con una inversién, haciendo

g =1f (l) =2
Z Z

Este mapea |z| < 1 en |w| > 3 (figura 13.29). Nuevamente, la frontera del disco unitario se mapea en la
frontera de |w| > 3, que es el circulo de radio 3 alrededor del origen en el plano w. M

EJEMPLO 13.15

Mapeard el disco unitario D : |z| < 1 sobre el disco D*: |lw — i| < 3, de radio 3 y centro en i en el
plano w.

La figura 13.30 sugiere una manera de construir este mapeo. Desea expandir el radio del disco uni-
tario por un factor de 3. Después traslada el disco resultante una unidad hacia arriba. Asi, el mapeo en
pasos es:

z—>3z—>3z+1,

FIGURA 13.28 Mapeo de |z] < 1 FIGURA 13.29 Mapeo de |7] < 1
sobre |w| < 3. sobre |\w| > 3.
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=/+i=3z+1i w Z
w=_+i=3z+i l T 4 y .VTVV
N =3z 3iT w={+i |4l iT Re(z)>0 ll
i | Il <1
. | X | .
3 | 0| -1 1
— 2il —i
|
FIGURA 13.30 Mapeo de |z| < 1 sobre |lw — i| < 3. FIGURA 13.31

una dilatacién seguida de una traslacién. El mapeo es
w=f()=3z+1i
Este mapea el circulo unitario |z| = 1 en el circulo |w — i| = 3 ya que
lw—i| =3z =3 |z] =3.

Mas atin, el origen en el plano z (centro de D) se mapea en i en el plano w—, e i es el centro de D*, as{
f:D—D*. |

EJEMPLO 13.16

Suponga que desea mapear el semiplano derecho D : Re(z) > 0 sobre el disco unitario D* : |w| < 1.

En la figura 13.31 se muestran los dominios. La frontera de D es el eje imaginario Re(z) = 0. Mapea-
rd ésta en la frontera del disco unitario [w| = 1. Para hacer esto, elija tres puntos en Re(z) = 0 y tres en
|w| =1y dselos para definir una transformacion lineal racional. Hay, sin embargo, una sutileza para man-
tener la orientacién positiva (en sentido contrario del movimiento de las manecillas del reloj en curvas
cerradas), elija tres puntos en sucesion hacia abajo en el eje imaginario, de manera que una persona cami-
nando a lo largo de estos puntos vea el semiplano derecho a la izquierda. Mapee estos puntos en orden en
sentido contrario del movimiento de las manecillas del reloj alrededor de |w| = 1.

Por ejemplo, elija

=0L2=0y un=-i

en el eje imaginario en el plano z y mapear éstos en orden

A partir de la ecuacién (13.3), tiene

(= w)(=1 = DO)(—i —2) = = (=D = D)(=1 —w).

z—1
:T = — —— .
v @ l<z+l>

Este mapeo conforme debe mandar el semiplano derecho al interior o exterior del disco unitario en el pla-
no w. Para ver cudl es, elija un punto en Re(z) > 0, z= 1. Como 7(1) = 0 estd en D*, T mapea el semiplano
derecho en disco unitario |w| < 1, como buscaba. ™

Resuelva para w:

EJEMPLO 13.17

Suponga que desea mapear el semiplano derecho en el exterior del disco unitario, el dominio es |w| > 1.
Del ejemplo anterior tenemos 7': Re(z) > 0 — |w| < 1. Al seguir este mapeo (mandando Re(z) > 0 sobre
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el disco unitario) con una inversién (mandando el disco unitario al exterior del disco unitario), tendra el
mapeo buscado. Asi, con 7(z) como en el dltimo ejemplo, sea

1 fz+1
f(z)—m_l<z_—l).

Como una verificacion, 1 + i estd en el semiplano derecho, y
24
fa +i>=i( T’) —2i
l

es exterior al disco unitario en el plano w. M

EJEMPLO 13.18

Mapeard el semiplano derecho Re(z) > 0 conformemente sobre el disco |w — i| < 3.
Puede hacer esto como una composicidon de mapeos. Ponga un plano intermedio ¢ entre los planos z
y w (figura 13.32). Por el ejemplo 13.16, mapeamos Re(z) > 0 sobre el disco unitario |{ | < 1 mediante

¢ =fe) =i (—Z — 1)
= Z) = —1 .
z+1
Ahora use el mapeo del ejemplo 13.15 y mande el disco unitario |¢ | < 1 sobre el disco |w — i| < 3:
w=g(&)=30+1
La composicién g o f'es un mapeo conforme Re(z) > 0 sobre |w — i| < 3:

— - _ | (2] . 2i(=z+2)
w=(g f)(z)—g(f(z))—3f(z)+z_3[ l(z+1)]+,_—z+l .

EJEMPLO 13.19

Mapeard la banda infinita S : —7/2 < Im(z) < 7/2 sobre el disco unitario |w| < 1.

Recuerde del ejemplo 13.4 que la funcién exponencial mapea rectas horizontales a semirectas desde
el origen. La frontera de S consiste en dos rectas horizontales, Im(z) = —n/2 y Im(z) = /2. En la recta
de la frontera inferior, z = x — i /2, de manera que

et =eXe im/2 = —ie¥,

varia sobre el eje imaginario negativo conforme x toma todos los valores reales. En la frontera superior
de S, z=x+in/2,y

ex = je*

varia sobre la parte positiva del eje imaginario conforme x se mueve sobre la recta real.

El eje imaginario forma la frontera del semiplano derecho Re(w) > 0, asi como la del semiplano
izquierdo Re(w) < 0 en el plano w. El mapeo w = ez debe mapear S en uno de estos dominios comple-
mentarios. Sin embargo, el mapeo manda el O al 1, en el semiplano derecho, de manera que el mapeo
w = f(z) = e¢ mapea S en el semiplano derecho.

Quiere mapear S sobre el disco unitario. Pero ahora conoce un mapeo de S sobre el semiplano dere-
cho, y también un mapeo del semiplano derecho sobre el disco unitario. Todo lo que debe hacer es poner-
los juntos.
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Z 14 w z Ve w
= W e e
Y A . }
ATI = ‘ Re({)> 0 ‘

— 2il

FIGURA 13.32 Mapeo de Re(z) > 0

) FIGURA13.33 [Im(z)| <% — Re() > 0 — |w| < 1
sobre lw — i| < 3.

produce un mapeo de |Im(z)| < % sobre |w| < 1.

En la figura 13.33, se pone un plano ¢ entre los planos z y w. EI mapeo
{=fl)=e
manda § sobre el semiplano derecho Re(¢) > 0. Ahora el mapeo
(- 1)
w = =—i|—,
g() ( Crl
manda el semiplano derecho Re(¢) > 0 sobre el disco unitario |w| < 1. Por tanto, la funcién

w=(go f)z) =g(f(2)

— () =—i<ez_ 1)
et +1

es un mapeo conforme de S sobre |w| < 1. En términos de funciones hiperbdlicas, este mapeo puede es-
cribirse como

Z
— it h(-).
w itanh (2). m

El mapeo conforme del dltimo ejemplo no es una transformacién lineal racional. Es conveniente
usar éstas siempre que sea posible. Sin embargo, aun cuando sabe por el teorema de mapeo de Riemann
que existe un mapeo conforme entre dos dominios, no hay garantia de que siempre pueda encontrar tal
mapeo en la forma de una transformacion lineal racional.

EJEMPLO 13.20

Mapeara el disco |z| < 2 sobre el dominio D* : u + v > 0 en el plano uv. En la figura 13.34 se muestran
estos dominios.

Se consideran mapeos ya vistos que se relacionan con este problema. Primero, puede mapear |z|
< 2 en |¢| < 1 mediante una simple dilatacién (multiplicando por %). Pero también conoce un mapeo
del disco unitario al semiplano derecho. Finalmente, puede obtener D* a partir del semiplano derecho
mediante una rotacién, en sentido contrario del movimiento de las manecillas del reloj, de /4 radianes,

z
y

w
%
D TD*
X | u
‘ z=2 u+v=20

FIGURA 13.34
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T { é: T}
‘ |Z|<2 ‘|§|<1 ‘ Re(£)>0 }/ifr ut+v>0
FIGURA 13.35

y conseguir el efecto multiplicando por e7/4. Esto sugiere la estrategia de construir el mapeo que desea en
los pasos que se muestran en la figura 13.35:

Izl <2—=> [kl <1 —>Re(®) >0—>u+v>0.
El primer paso se consigue mediante
1
¢ = 21.

Ahora, use el inverso del mapeo del ejemplo 13.16 y nombre las variables ¢ y & para obtener

_l+ic
T 1—il’

3

Esto mapea
¢l <1 — Re(§) > 0.
Finalmente, realice la rotacion:
w = ein/AE.

En resumen,

1—i¢ 1-i(z/2))

w = el T/Ag — o/ <1 +i§> _ i/ (1 +i(z/2)) _ 2+izem/4_
2—iz

Esto mapea el disco |z| < 2 conformemente sobre el semiplano u + v > 0. Por ejemplo, O estd en el
disco, y

. 2
w(0) = 7/ = %(1 +i)
estienu+ v>0. M

Ahora se discutird brevemente la transformacién de Schwarz-Christoftel, que puede ser usada cuando
la frontera del dominio es un poligono.

13.3.1 Transformacion de Schwarz-Christoffel

Suponga que quiere un mapeo conforme del semiplano superior $ al interior %8 de un poligono P, que
podria ser un tridngulo, rectangulo, pentdgono u otro poligono. Una transformacién lineal racional no
hara esto. Sin embargo, la transformaciéon de Schwarz-Christoffel fue construida justo para este propd-
sito.

Sea P con vértices wy, . . . , w, en el plano w (figura 13.26). Sean 7oy, . . . , o, los dngulos exteriores
de P. Existen constantes zy, @ y b, con Im(z) > 0, y niimeros reales xj, . . . , x, tales que la funcién

f2) = a/ E—x)™E-—x)E—x) " dE+D (13.5)
20
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y v
Y ae T aim(m
v 1 w, /7 .
. w Wy n’
Wy n —
PN y
77“2 a277' Wy
X u
X; X X, E
4
I u Ja T
FIGURA 13.36 FIGURA 13.37

es un mapeo conforme de $ sobre . Esta integral se toma sobre cualquier trayectoria en $ de zg a z en
$. Los factores (§ — x;)~¢ estdn definidos usando el logaritmo complejo obtenido al tomar el argumento
en [0, 27).

Cualquier funcién de la forma de la ecuacién (13.5) se llama una transformacion de Schwarz-Chris-
toffel. Para ver la idea que estd detrds de esta funcion, suponga que cada x; < x;;1. Si z estd en 9, sea

8(@) =alz — x)=4(z — x)7% - - - (2 — x,) "%
Entonces '(z) = g(2) y
arg[f'(z)] = arg(z) — o arg(z — x))— - -— @, arg(z — X,).

Como vio en la discusién del teorema 13.1, arg[f'(z)] es el nimero de radianes que rota el mapeo f a las
rectas tangentes, si f'(z) # 0.

Ahora imagine que z se mueve de izquierda a derecha a lo largo del eje real (figura 13.37), que es la
frontera de . En (—o0, x1), f(z) se mueve a lo largo de la recta (no hay cambios en el dngulo). Cuando z
pasa sobre x;, sin embargo, arg[f’(z)] cambia por o 7. Este dngulo permanece fijo conforme z se mueve
de x; hacia x,. Cuando z pasa sobre x,, arg[ f'(z)] cambia por a7, después permanece con este valor hasta
que z encuentra a x3, donde arg[f'(z)] cambia por a3, y asi sucesivamente. De donde arg[f'(z)] perma-
nece constante en intervalos (x;_j, x;) y crece en a7t conforme z pasa sobre x;. El resultado neto es que el
eje real es mapeado al poligono P* con dngulos exteriores o7, . . . , o, 7. Estos nimeros estdn ya deter-
minados por «y, . . ., &,_1, ya que

n
Z o;m =2m.
j=1

P* tiene los mismos dngulos exteriores que P pero no tiene que ser el mismo que P debido a su loca-
lizacién y tamafio. Debe rotar, trasladar y/o dilatar P* para obtener P. Estos efectos se consiguen eligiendo

X1, - . ., X, para hacer P* similar a P, y después eligiendo a (rotacién/dilatacién) y b (traslacién) para
obtener P.
Si elige z, = oo, entonces zj, . . . , Z,—1, 00 son mapeados en los vértices de P. En este caso la trans-

formacién de Schwarz-Christoffel es

f@) = a/ E—x) ME—x)" " —xn) " dE+ D (13.6)
20

Se puede probar que cualquier mapeo conforme de § sobre un poligono debe tener la forma de una
transformacion de Schwarz-Christoffel.

En la préctica una transformacioén de Schwarz-Christoffel puede ser dificil o imposible de determinar
en forma cerrada debido a la integracién.
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EJEMPLO 13.21

Mapeard el semiplano superior £ sobre un rectangulo.
Elijja x; = 0, x, = 1 y x3 como cualquier nimero real mayor que 1. La transformacién de Schwarz-
Christoffel de la ecuacién (13.6) tiene la forma

: 1
- dé +b
1@ a/zo DT

con a y b elegidos para ajustar las dimensiones del rectdngulo y su orientacién respecto a los ejes. El

. . . . 4
radical aparece ya que los dngulos externos del rectangulo son todos iguales a 77/2, de manera que =1
a; = 4oy = 2. Esta integral es eliptica y no se puede evaluar en forma cerrada. M

EJEMPLO 13.22

Mapeard $ sobre la banda S : Im(w) > 0, —¢ < Re(w) < ¢ en el plano w. Aqui ¢ es una constante posi-
tiva.

En la figura 13.38 se muestran § y la banda S. Para usar la transformacién de Schwarz-Christo-
ffel, debe pensar en S como un poligono con vértices —c, ¢ e co. Elija x; = —1 para mapearlo en —cy
X, = 1 para mapearlo en c. Mapee co en oco. Los dngulos exteriores de la banda son 7/2 y 7/2, asi
o=y = % . La transformacion tiene la forma

w=f(z)= a/ E+D72E - 172 dE +b.
20
Elijazp =0y b = 0. Escriba
E—-D712=[-(1 =712 =—i(l1 - §)~1"2
Con —ai = A, tiene
< 1

Esta integral recuerda a la representacion de la integral real de la funcién inversa del seno. De hecho,
puede escribir

w = A sen—1(g),

con lo que quiere decir que

—sen(w)
= 1)

Elija A de manera que —1 se mapea en —c y 1 en c, necesita

c
sen (—) =1.
A

Rew= —c Rew=c¢

FIGURA 13.38
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Asic/A=m/2,0

El mapeo es

2¢ 1
w= —sen (2).
b4

A=—.
b4

Si elige ¢ = 7/2, este mapeo es simplemente w = sen—!(z), mapeando $ sobre la banda Im(w) > 0,
—n/2 < Re(w) < m/2. Esto es consistente con el resultado del ejemplo 13.5. ™

SECCION 13.3 PROBLEMAS

cada problema del 1 al 6, encuentre una transformacién

lineal racional que mapee el primer dominio sobre el segundo.

1.
2.

13.4

|z <3 sobre|w—1+il <6

|z] <3 sobre|lw—1+1i >6

. |z + 2i] < 1sobre |w— 3| >2
. Re(z) > 1 sobre Im(w) > —1

. Re(z) < 0 sobre |w| < 4

. Im(z) > —4 sobre |w — i| > 2

. Encuentre un mapeo conforme del semiplano superior

Im(z) > 0 sobre el lado 0 < arg(w) < 7/3.

. Sea w = Log(z), en donde el logaritmo toma un valor tinico

para cada z distinto de cero, pidiendo que el argumento de z
esté en [0, 2). Pruebe que el mapeo manda Im(z) > 0 sobre
labanda 0 < Im(w) < 7.

. Pruebe que la transformacién de Schwarz-Christoftel

fl)=2i /Z(g F 1)~ — 1)~ 126172 g
0

10.

11.

12.

mapea el semiplano superior sobre el rectangulo con vérti-
ces0,c,c+ iceic,donde c =T (%)F(é—lt)/ l"(%). Donde I
es la funciéon gamma.

Defina la razén cruzada de zj, z, 23 ¥ 24 como la imagen de
z; bajo la transformacién lineal racional que mapea z, —
1, z3 — 0, z4 — oo. Denote esta razon cruzada como [z;,
22, 73, 24]. Suponga que 7T es cualquier transformacion
lineal racional. Pruebe que 7 conserva la razén cruzada.
Esto es,

[z1, 22, 23, 24l = [Ty, Tzo, Tz3, Tzal.

Pruebe que [z), 22, 23, z4] s la imagen de z; bajo la transfor-
macién lineal racional definida por

3—242—22
w=1-—2""22"%2
3—222—124

Pruebe que [zj, 22, 23, z4] es real si, y s6lo si las z; estdn en el
mismo circulo o recta.

Funciones arménicas y el problema de Dirichlet

Dado un conjunto D de puntos en el plano, sea dD la frontera de D. Un problema de Dirichlet para D
consiste en encontrar una solucion de la ecuacién de Laplace

8x2

9%u _0
ay?

para (x, y) en D, que satisfaga las condiciones en la frontera

u(x, y) =f(x, y) para(x, y)en dD.

Aqui f'es una funcién dada, usualmente se supone que es continua en la frontera de D.
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Una funcién que satisface la ecuacién de Laplace en un conjunto se dice que es armdnica en ese con-
junto. Asi el problema de Dirichlet para un conjunto consiste en encontrar una funcién que es armoénica en
ese conjunto y satisface los datos dados en la frontera del conjunto.

El capitulo 7 estd dedicado a las soluciones de problemas de Dirichlet usando métodos del analisis
real. El propésito aqui es aplicar los métodos de funciones complejas a los problemas de Dirichlet. La
conexién entre un problema de Dirichlet y la teoria de funciones complejas estd dada por el siguiente
teorema.

TEOREMA 13.6

Sea D un conjunto abierto en el plano, y sea f(z) = u(x, y) + iv(x, y) diferenciable en D. Entonces u y v
son armodnicas en D. M

Esto es, las partes real e imaginaria de una funcién compleja diferenciable son armonicas.

9%u N Fu 9 (du N du

9x2  9y2  9x \ox dy
3 (v v v
dx \ dy ax dxdy  dydx

Por tanto, u es arménica en D. La prueba de que v es armoénica es similar. M

Prueba Por las ecuaciones de Cauchy-Riemann,

9
dy
9
dy

Reciprocamente, dada una funcién arménica u, existe una funcién arménica v tal que f(z) = u(x, y)
+ iv(x, y) es diferenciable. Tal v se llama una conjugada armonica para u.

TEOREMA 13.7

Sea u armoénica en un dominio D. Entonces, para algtn v, u(x, y) + iv(x, y) define una funcién compleja
diferenciable paraz =x 4+ iyen D. W

Prueba Sea
ou  ou

8(1)25—15

para (x, y) en D. Usando las ecuaciones de Cauchy-Riemann y el teorema 9.6, g es diferenciable en D.
Entonces, para alguna funcién G, G'(z) = g(z) para z en D. Escriba

G(z) =Ux, y) + iV (x, y).

Ahora
oU iU ou ou
G/ = — — | — = :——.—,
@ ax : ay 8@ ax lay
Por tanto,
U _ ou iU B ou
ax  Ox Y dy 9y

en D. Entonces, para alguna constante K,

Ulx, y) = u(x, y) + K.
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Sea f(z) = G(z) — K. Entonces f es diferenciable en todos los puntos de D. Mas aun,
f(@)=G@) —K=Ukxy +iV(x,y) — K=u(x y) + iv(x, y).
Por tanto, puede elegir v(x, y) = V(x, y), probando el teorema. M

Dada una funcién arménica u, no estard interesado realmente en obtener una conjugada armoénica v.
Sin embargo, explotard el hecho de que existe tal funcién para obtener una funcién compleja diferenciable
f = u+ iv, dada u arménica. Esto permite aplicar los métodos de funciones complejas a los problemas
de Dirichlet. Como preliminar, se obtendran dos propiedades importantes de las funciones arménicas.

Sea u armoénica en un dominio D. Sea (xo, yo) cualquier punto de Dy sea C un circulo de radio r con centro
en (xg, o), contenido en D y que encierra solamente puntos de D. Entonces

1 2
w0, 0) = 5 /0 u(xo + r cos(8). yo + r sen(9)) de.

Conforme 6 varia de 0 a 2 (xo + 7 cos(d), yo + r sen(6)) se mueve una vez alrededor del circulo de
radio 7 con centro en (xo, yo). La conclusion del teorema se llama la propiedad del valor medio debido a
que establece que el valor de una funcién arménica en el centro de cualquier circulo en el dominio es el
promedio de sus valores en el circulo.

Prueba Para alguna v, f = u + iv es diferenciable en D. Sea zy = x¢ + iyo. Por la férmula de la integral
de Cauchy,

; 1 f(@
u(xo, yo) + iv(xo, yo) = f(z0) = =— dz
271 cZ—20
1 2 i0 )
= — Mirele do
27i 0 rele

1 2
=5- / u(xo + rcos(0), yo + r sen(0)) do
T Jo

: 2
+ L / v(xg + rcos(@), yo + r sen(09)) db.
2 0

Tomando la parte real e imaginaria de ambos lados de esta ecuacion, obtiene la conclusion del teo-
rema. M

Si D es un dominio acotado, entonces el conjunto D que consiste en D junto con todos los puntos
frontera de D se llama la cerradura de D. El conjunto D es cerrado y acotado por tanto, es un conjunto
compacto. Si u(x, y) es continua en D, entonces u(x, y) debe alcanzar un valor maximo en D. Si u también
es armonica en D, ese maximo debe alcanzarse en un punto frontera de D. Esto recuerda el teorema del
modulo maximo, del cual se sigue.

Sea D un dominio acotado. Suponga que u es continua en D y arménica en D. Entonces u(x, y) alcanza su
valor mdximo en D en un punto frontera de D. M

Prueba Primero construya v de manera que f = u + iv sea diferenciable en D. Defina

8(z) = /@
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para todo z en D. Entonces g es diferenciable en D. Por el teorema del médulo maximo, |g(z)| alcanza su
maximo en un punto frontera de D. Pero

| ux,y)+ivx,y) | _ ju(x,y

1g(2)| = YV | u(xy)

Como e(xy) es una funcién real estrictamente creciente, e“(¥) y u(x, y) deben alcanzar sus valores maxi-
mos en el mismo punto. Por tanto, u(x, y) debe alcanzar su maximo en un punto frontera de D. M

Por ejemplo, u(x, y) = x2 — y2 es armonica en el disco unitario abierto x2 + y2 < 1, y continua en
su cerradura x2 + y2 < 1. Esta funcién debe, por tanto, alcanzar su valor maximo para x2 + y2 < | en un
punto frontera del disco, a saber en un punto para el cual x2 4 y2 = 1. Este valor maximo es 1, alcanzado
en(l,0)yen (-1, 0).

13.4.1 Solucién a problemas de Dirichlet mediante mapeos conformes

Busque usar los mapeos conformes para resolver los problemas de Dirichlet. La estrategia consiste en
resolver primero el problema de Dirichlet para un disco. Una vez hecho esto, intentara resolver el pro-
blema de Dirichlet para otro dominio D construyendo un mapeo conforme entre el disco unitario y D, y
aplicando este mapeo a la solucién para el disco.

En la seccioén 7.3 se obtuvo la formula de la integral de Poisson para la solucién del problema de
Dirichlet para un disco, mediante los métodos de Fourier. Usaremos los métodos de funciones complejas
para obtener una forma de esta solucién que es particularmente apropiada para usar con los mapeos con-
formes.

Busque una funcién u que sea arménica en el disco D:lzl <1 y que tome valores dados u(x, y) =
g(x, ) en la frontera del circulo. Suponga que u es arménica en el disco, ligeramente mds grande |z| <
1 + €. Si v es una conjugada armoénica de u, entonces f = u + iv es diferenciable en este disco. Si es nece-
sario sume una constante, elija v tal que v(0, 0) = 0.

Desarrolle f en una serie de Maclaurin

f@) =) an".
n=0 (13.7)

Entonces

<f (@) + m>

N =

u(x,y) =Re(f(x +iy)) =

o 1 (e.¢]
D (a2 +az") =ao + 5 > (a2 +@z").

n=0 n=1

N =

Ahora sea ¢ en el circulo unitario y . Entonces |2 = ¢ =1, asi { = 1/{ y la serie es

1 & .
u@) =ao+5 ) (ant" +ac™").

n=1

Multiplique esta ecuacién por ¢”/2mwi e integre sobre y. Dentro del disco abierto de convergencia, se pue-
den intercambiar la serie y la integral. Obtiene

L m _a_() m li . n—+m —% —n+m
2m.§£yu(c)c dz—szyc d§+22ni;<an5€¢ dera P otde ). a38)

Recuerde que
' 0 sik #—1
ygi g =4 _ . .
y 2mi sik=—1
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Por tanto, si m = —1 en la ecuacién (13.8), tiene
o; u©rs dc = a.
2ri J, e
Sim=-n—1conn=1,2, 3,...,obtiene

u(g)g™"! 1a
Y 2 "

Sustituya estos coeficientes dentro de la ecuacién (13.7) para obtener

=) ad=— —dc+) —,f "1>d "
f@ nzoa = fé,u@)g“ ¢ 2 (m yu(i)f ¢z

— [1+2Z( )"} u(@)

Como |z] < 1y [¢] = 1, entonces |z/¢| < 1y la serie geométrica en esta ecuacidén converge:

= ! /¢ z
Z( > -2/t -2

n=1

L 2 1L L e (£55)
f(Z)_zmyﬁy”@)[“rg—z};dg_Znif;u@)Q—Z)édc'

Si u(¢) = g(¢), son los valores dados para u en la frontera del disco unitario, entonces, para |z| < 1,

B 1 ¢+z\ 1
u(x,y) =Relf(2)] = Re<2m?§ (C)<§ Z>Ed§>. (13.9)

Esta es una férmula integral para la solucién del problema de Dirichlet para el disco unitario. Queda como
ejercicio para el alumno recuperar la férmula de la integral de Poisson a partir de esta expresién haciendo
z=refy ¢ =e.

La ecuacion (13.9) es apropiada para resolver ciertos problemas de Dirichlet mediante mapeos con-
formes. Suponga que conoce un mapeo conforme, uno a uno y diferenciable 7 : D — D, donde D es el
disco unitario |w| < 1 en el plano w. Suponga que 7 mapea C, la frontera de D, sobre el circulo unitario

2mi

Entonces

ol que acota a D y que T—! también es un mapeo conforme diferenciable.

Para continuar esta discusion, use ¢ para denotar un punto arbitrario de C & para un punto en C, y
(X, y) para un punto en el plano w (figura 13.39).

Ahora considere un problema de Dirichlet para D:

Pu B e (r,y)en D
— 4+ — = ara (x, y) en D,
ax2  9y? P Y

u(x,y) =g(x,y) para(x,y)enC.

Vi D [w|<]

. &Y

u

FIGURA 13.39
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Si w = T(z), entonces z = T-!(w) y defina
gw) = g(T~'(w)) = ().

en el plano w, ahora tiene un problema de Dirichlet para el disco unitario:

L RITE Eiv

Pyl + P =0 para(X,y)en D,

H(¥.5) =g@&. 5 para(¥ 5 enC.

Por la ecuacién (13.9) la solucién de este problema para el disco unitario es la parte real de

N Y O A
f(w)—%y%g(i)<m>zd§-

Finalmente, recuerde que 7 mapea C sobre E, sea ¢ = T (§) para & en C para obtener

T($)+T(z)> 1

T'()déE|.
Ié)—-T)) TE) © E}

1
u(x,y) =Re[f(z)] =Re [—2 ./?(”E))(
L Jc

Como g(T(§)) = g(T ~(T(§)) = g(&), tiene la solucién

T+ T(Z)) ') dg}

1
9 = R = R 27
u(x,y) =Re[f(z)] =Re |: /Cg(f) (T(g) —-T(@)) TE)

2mi (13.10)

Esto resuelve el problema de Dirichlet para el dominio original D.
Para ilustrar esta técnica, resuelva el problema de Dirichlet para el semiplano derecho:

9%u 9%u

@Jra_yZ:O parax > 0, —00 < x < 00,

u,y) =g(y) para —oo <y < o0.

Necesita un mapeo conforme del semiplano derecho al disco unitario. Hay muchos de tales mapeos.

Por el ejemplo 13.16, use
z—1
w=T(z)=—i .
0==(351)

Calcule
T/( ) = _—21
RRRCESI
De la ecuacion (13.10), la solucién es la parte real de
_L —iE-D/E+D)—-iz=1)/@z+ 1) 1 —2i
@)= 2mi /;u(é) (—i(é -D/E+D+iz—-D/(z+ 1)) —iE-D/E+ D E+D? @

_L Ez—1 1
BE7 cu(§)<é—1>$2—1d$'
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La frontera C del semiplano derecho es el eje imaginario y no es una curva cerrada. Parametrice C como &
= (0, ) = it, con t variando de oo a —oo para obtener la orientacidn positiva en C (conforme camina sobre
el eje, D estd sobre su hombro izquierdo). Obtiene

1 - itz — 1 —1 .
f(Z):;./oo M(Ovt)(l-t_z>(l+t2>ldt
1 [ itz—1 1
;/_oou(o’t)<it—z><1+t2)dt'

La solucién es la parte real de esta integral. Ahora ¢, u(0, §) y 1/(1 + #2) son reales, de manera que con-
céntrese en el término que contiene aiy z = x + iy:

itz—1 itx—ty—1 itx—ty—1—it —x+1iy

it —z it —x—1y it —x —1iy —it—x+1iy
Ctx(t—y) —itx? +ity(t —y) +ixy +i(t —y) +x
B X241 —y)? '
La parte real de esta expresion es
x(1+12%)
X2+ (r=p)*

Por tanto,

1 [ 1+ 1
u(x,y) =Relf(2)] = ;[ u(0, f)xsz(r (;L_t i)z oy
1 o0

X
- ;/;wg(t)x2+ 2"

Esta es una férmula integral para la solucién del problema de Dirichlet para el semiplano derecho.

SECCION 13.4 PROBLEMAS

. Usando los métodos de las funciones complejas, escriba

una solucidn integral para el problema de Dirichlet para el
semiplano superior Im(z) > 0.

. Usando los métodos de las funciones complejas, escriba

una solucidn integral para el problema de Dirichlet para el
primer cuadrante Re(z) > 0, Im(z) > 0, si las condiciones
en la frontera son u(x, 0) = f(x) y u(0, y) = 0.

. Escriba una solucién integral para el problema de Dirichlet

para el disco |z — 79| < R.

. Escriba una férmula para la solucién del problema de Di-

richlet para el semiplano derecho si la condicién en la fron-
tera estd dada por
1 para —1 <y <1

u,y) =
Y 0 para |y| > 1.

. Escriba una férmula para la solucién del problema de Di-

richlet para el disco unitario si la condicion en la frontera estd
dada por u(x, y) = x — y para (x, y) en el circulo unitario.

6. Escriba una férmula para la solucién del problema de Di-

richlet para el disco unitario si la condicién en la frontera
estd dada por

i0 1 para0 <6 <m/4
u'?y =
0 paraw/4 < 6 < 2m.

7. Escriba una férmula para la solucién del problema de Di-

richlet para la banda —1 < Im(z) < 1, Re(z) > 0 si la con-
dicién en la frontera estd dada por

ulx, 1) =u(x, =1)=0 para0 <x < o0
u@,y)=1—1]y| para—1<y<l1.

8. Escriba una férmula integral para la solucién del problema

de Dirichlet para la banda —1 < Re(z) < 1, Im(z) > O si la
condicién en la frontera estd dada por

ux,0)=1 para—1<x<1
u(—1,y)=u(l,y)=e> paral <y < oo.
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Modelos de funciones complejas de flujo de fluido plano

Aqui se trata como las funciones complejas y la integracion son usadas en la modelacion y el andlisis del
flujo de los fluidos.

Considere un fluido incompresible, tal como el agua bajo condiciones normales. Suponga que tiene
un campo de velocidad V(x, y) en el plano y que el flujo depende solamente de dos variables, supone que
el flujo es el mismo en todos los planos paralelos al plano complejo. Un flujo asi se llama plano paralelo.
Este vector velocidad también se supone independiente del tiempo, esta circunstancia se describe diciendo
que el flujo es estacionario.

Escriba

Vx, y) = ulx, yi + v(x, y)j.

Debido a que puede identificar vectores y nimeros complejos, escriba, por un abuso moderado de nota-
cion, el vector velocidad como una funcién compleja

V() =V +iy) = ulx, y) + iv(x, y).

Dado V (z), parece que el plano complejo estd dividido en dos conjuntos. El primero es el dominio D
en donde estd definido V. El complemento de D consiste en todos los nimeros complejos que no estdn en
D. Piense en el complemento como canales contenedores confinando el fluido a D o como barreras por las
cuales el fluido no puede correr. Esto permite modelar el flujo de un fluido por medio de una variedad de
configuraciones y alrededor de barreras de distintas formas.

Suponga que y es una trayectoria cerrada en D. Del andlisis vectorial, si parametriza y por x = x(s),
y = y(s), con s la longitud de arco a lo largo de la trayectoria, entonces el vector x'(s)i + y'(s)j es un vector
tangente unitario de y, y

d d
dx,  dy

(ui + vj) - (ds dsJ> ds = udx + vdy.

Este es el producto punto de la velocidad con la tangente a la trayectoria, por lo cual interpreta

% udx + vdy.
%

como una medida de la velocidad del fluido a lo largo de y. El valor de esta integral se llama la circulacion
del fluido a lo largo de y.

El vector —y’(s)i + x'(s)j es un vector unitario normal a y, siendo perpendicular al vector tangente
(figura 13.40). Por tanto

C dy, dx,
—f(ul—}—vj)- ——i+ —j)ds = —vdx + vdy.
¥ dx ds ¥

es el negativo de la integral de la componente normal de la velocidad a lo largo de la trayectoria. Cuan-
do esta integral no es cero, se llama el flujo del fluido a través de la trayectoria. Esto da una medida del

N
Y

)Nltl
~

FIGURA 13.40
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flujo del fluido a través de y fuera de la regién acotada por y. Cuando este flujo es cero para toda trayec-
toria cerrada en el dominio del fluido, éste se llama solenoidal.

Un punto zp = (xq, yo) es un remolino del fluido si la circulacién tiene un valor constante distinto de
cero en toda trayectoria cerrada alrededor de z, en el interior de algtn disco agujereado 0 < |z — zo| < r.
El valor constante de la circulacion es la energia del remolino.

Si $, — vdx + udy tiene el mismo valor positivo k para toda trayectoria cerrada alrededor de z, en
algun disco agujereado alrededor de zj, entonces llamamos a z una fuente de energia k; si k es negativo,
7o es un sumidero de energia |k|.

La conexién entre el campo de velocidad de un fluido y las funciones complejas es proporcionado
por el siguiente.

Sean u y v continuas con primera y segunda derivadas parciales continuas en un dominio simplemente
conexo D. Suponga que ui + vj es irrotacional y solenoidal en D. Entonces u# y —v satisfacen las ecuacio-
nes de Cauchy-Riemann en D, y f(z) = u(x, y) — iv(x, y) es una funcion compleja diferenciable en D.

Reciprocamente, si u y —v satisfacen las ecuaciones de Cauchy-Riemann en D, entonces ui + vj
define un flyjo irrotacional, solenoidal en D.

Prueba Sea y cualquier trayectoria cerrada en D. Si M es el interior de y, entonces todo punto en M
también estd en D por la hipdtesis que D es simplemente conexo. Por el teorema de Green,

3
?{udx+vdy—/[ (%—a)m—o

ya que el flujo es irrotacional. Pero el flujo también es solenoidal, de manera que, nuevamente por el

teorema de Green,
0
f—vderudy—//(“ )dA—O

Debido a que M puede ser cualquier conjunto de puntos en D acotado por una trayectoria cerrada, los
integrandos en ambas de estas integrales dobles deben ser cero en todo D, de donde

du 3( ) ou 8( )
— = —(—v — = ——(—v).
dx  dy Y ay ax

Por el teorema 9.6, f(z) = u(x, y) — iv(x, y) es diferenciable en D.
El reciproco se sigue por un argumento similar. M

El teorema 13.9 nos ensefia algo sobre los flujos irrotacionales y solenoidales. Si el flujo es irrotacional,
entonces

ov du

rot (ui + vj) = (a — 5)k =0,

como se muestra en la prueba del teorema. Este rot es el vector normal al plano del flujo. El rot de ui 4 vj
es dos veces la velocidad angular de la particula del fluido en (x, y). El hecho que este rot es cero para un
flujo irrotacional significa que las particulas del fluido pueden experimentar traslaciones y distorsiones en
su movimiento, pero no rotaciones. No hay efecto de remolino en el fluido.
Si el flujo es solenoidal, entonces
du  dv
div(ui +vj) = — + — =0.
dy

Otra conexioén entre los flujos y las funciones complejas es proporcionada por el siguiente.
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Sea f una funci6n diferenciable definida en un dominio D. Entonces f(z) es un flujo irrotacional, solenoi-
dalen D.

Reciprocamente, si V = ui 4+ vj es un campo vectorial irrotacional, solenoidal en un dominio sim-
plemente conexo D, entonces existe una funcién compleja diferenciable f definida en D tal que}Tz) =V
Mis aun, si f(z) = ¢(x, y) + iv/(x, y), entonces

dp % oy oy
— =U,— =V, — =— y — = U
ox ay ax ay

Queda la prueba de este resultado al alumno. En vista de que f/(z) es la velocidad del flujo, f es un
potencial complejo del flujo.

El teorema 13.11 implica que cualquier funcién diferenciable f(z) = ¢(x, y) 4 i¥/(x, y) definida en un
dominio simplemente conexo determina un flujo irrotacional y solenoidal.

dp 0y - .
f'(z) = W +i— =ulx,y)—ivx,y) =ulx,y) +iv(x,y).
X ax

Llame ¢ al potencial de velocidad del flujo, y las curvas ¢(x, y) = k se llaman las curvas equipotencia-
les. La funcién ¢ se llama funcion de corriente del flujo, y las curvas ¥(x, y) = ¢ se llaman las lineas de
corriente.

Puede pensar en w = f(z) como un mapeo conforme siempre que f'(z) # 0. Un punto en donde
f'(z) = 0 se llama un punto estacionario del flujo. Piense en f como un mapeo en el plano w, tiene

w=f(z) =@, y) + iYx y) =a +ip.

Las curvas equipotenciales ¢(x, y) = k se mapean bajo f en rectas verticales o = k, y las lineas de corriente
Y¥(x, y) = ¢ se mapean en rectas horizontales g = ¢. Como estos conjuntos de rectas verticales y horizon-
tales son mutuamente ortogonales en el plano w, las lineas de corriente y las curvas equipotenciales en el
plano z también forman familias ortogonales. Cada linea de corriente es ortogonal a cada curva equipo-
tencial en cualquier punto donde se corten. Esta conclusién falla en un punto estacionario, donde el mapeo
puede no ser conforme.

A lo largo de una curva equipotencial ¢(x, y) = k,

do = 8—(/)d)c—i-a—('oafy = udx + vdy = 0.
ox ay
Ahora ui + vj es la velocidad del flujo en (x, y) y x'(s)i + y'(s)j es una tangente unitaria a la curva equi-
potencial en (x, y). Como el producto de estos dos vectores es cero del hecho que dg = 0 a lo largo de la
curva equipotencial, concluya que la velocidad es ortogonal a la curva equipotencial en (x, y), siempre que
(x, y) no sea un punto estacionario.
Andlogamente, a lo largo de una linea de corriente ¥(x, y) = c,

9 9
dv =Y ae + YV ay = vdx + udy = 0.
ax dy

de manera que la normal al vector velocidad es ortogonal a la linea de corriente. Esto significa que la
velocidad es tangente a la linea de corriente y justifica la interpretacién de que la particula del fluido en
(x, ¥) se estd moviendo en la direccion de la linea de corriente en ese punto. Por tanto, interprete las lineas
de corriente como las trayectorias de las particulas en el fluido. Si se colocara en una particula podria
cabalgar a lo largo de una linea de corriente. Por esta razdn, las graficas de las lineas de corriente forman
una figura de los movimientos de las particulas del fluido.

El resto de esta seccion estd dedicado a algunas ilustraciones de estas ideas.
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EJEMPLO 13.23

Sea f(z) = —Kei?z, en donde K es una constante positivay 0 < 6 < 2.
Escriba

f(@) = —K[cos(0) + i sen(0)][x + iy]
= —K][x cos(0) — y sen(6)] — iK[y cos(6) + x sen(d)].
Sif(z) = @(x, y) + iv(x, y), entonces
@(x, y) = —K[x cos(6) — y sen(6)]

Y(x, y) = —K[y cos(6) + x sen(6)].
Las curvas equipotenciales son graficas de
o(x, y) = —K[x cos(f) — y sen(f)] = constante.

Como K es constante, las curvas equipotenciales son graficas de

x cos(0) — ysen(d) =k,

y = cot(O)x + b,

en donde b = k csc(0) es constante. Estas son rectas con pendiente cot(6).
Las lineas de corriente son graficas de

y = —tan(0)x + d,

rectas con pendiente —tan(6). Estas rectas forman un dngulo 7 — 6 con el eje real positivo, como en la
figura 13.41. Estas son las trayectorias del flujo, que pueden pensarse como moviéndose a lo largo de
estas rectas. Las lineas de corriente y las curvas equipotenciales son ortogonales, siendo sus pendientes
reciprocas negativas.

Ahora calcule

f(z) = —Kei® = —Ke .

Esto implica que la velocidad es de magnitud constante K.
En resumen, f modela un flujo uniforme con velocidad de magnitud constante K y forma un dngulo
7 — 6 con el eje real positivo, como en la figura 13.41. M

EJEMPLO 13.24

Considere el flujo representado por el potencial complejo f(z) = z2. Esta funcion es diferenciable para
todo z, pero f(0) = 0, asi el origen es un punto estacionario. Vea qué efecto tiene esto en el flujo y deter-
mine las trayectorias.

Con z = x + iy, f(z) = x2 — y2 4 2ixy, asi

Pl y)=x>—y> y  Plx y) =2xy
Las curvas equipotenciales son las hipérbolas

2—y2=k
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FIGURA 13.41 FIGURA 13.42

Lineas de corriente Curvas equipotenciales y

del flujo con potencial lineas de corriente del flujo con
complejo f(z) = —Kez. potencial complejo f(z) = Z2.

si k # 0. Las lineas de corriente son las hipérbolas
xy=c

sic # 0. En la figura 13.42 se muestran algunas curvas de estas familias.

Si k = 0 las curvas equipotenciales son la grafica de x2 — y2 = 0, formada por dos rectas y = x y
y = —x por el origen. Si ¢ = 0 las lineas de corriente son los ejesx =0y y = 0.

La velocidad del flujo es f'(z) = 2z. f modela un flujo no uniforme con velocidad de magnitud 2|z|
en z. Puede interpretar este flujo como un fluido moviéndose a lo largo de las lineas de corriente. En cual-
quier cuadrante, las particulas se mueven a lo largo de las hipérbolas xy = ¢, con los ejes actuando como
las barreras del flujo (piense en los lados de un recipiente que contiene el fluido). B

EJEMPLO 13.25

Analizara el potencial complejo

iK

L )
o 08(2)

f@) =

Aqui K es un ntimero positivo y Log(z) denota esa rama del logaritmo definida por Log(z) = & In(x2 +
y2) + i6, donde 6 es el argumento de z en 0 < 6 < 27 para z # 0. Si z = x + iy, entonces

iK (1 Ko iK
f@)=— (=2 +y)+i0) = —— 4+ —In(x> + y?).
27 \2 27 47

Ahora
K

plx,y) = g

K 2.2
0y ¥,y =_—In(x"+y).

4
Las curvas equipotenciales son gréficas de 6 = constante, y éstas son las semirectas desde el origen y que
forman un angulo 6 con el eje real positivo. Las lineas de corriente son graficas de ¥/(x, y) = constante,
y éstas son circulos alrededor del origen. Como las lineas de corriente son trayectorias del fluido, las
particulas se mueven en circulos alrededor del origen. En la figura 13.43 se muestran algunas lineas de
corriente y curvas equipotenciales.
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Lineas y y
equipotenciales <\
X X
Lineas de =X
corriente
FIGURA 13.44
FIGURA 13.43 Lineas de corriente Lz’neas. de corriente .
y lineas equipotenciales del flujo delﬁ“]? con potencial
con potencial complejo complejo f(z) =
f(z) = (iK/2m)Log(2). (iK/2m)Log(z).

Es fécil verificar que f'(z) = (iK/2m)(1/7) si z # 0. En un circulo |z| = r, la magnitud de la velocidad
del fluido es
7ol st
N= e~ e
La velocidad crece conforme » — 0, de manera que tiene particulas del fluido arremolindndose en el ori-
gen, con velocidad creciente hacia el centro (origen) (figura 13.44). El origen es un remolino del flujo.
Para calcular la circulacién del flujo alrededor del origen, escriba

iK1 iK z K y iK x
F@=-—c=-—

=—— = - — =u+iv.
2 7 21 712 2w x2 4y 2w x2 4y

Si y es el circulo de radio r alrededor del origen, entonces en y, x = r cos(#) y y = r sen(#), asi

2
f udx + vdy = / [5 r 862(9) (—r sen(@)) — - "°%O) cos(e))} o
Y o |27 r 27 r?

= — —df = —K.
2 0

Este es el valor de la circulacién en cualquier circulo alrededor del origen.
Por un célculo semejante, obtenga

'¢. —vdx + udy =0,
12

asf el origen no es ni una fuente ni un sumidero.
En este ejemplo restringe |z| > Ry piense en un cilindro sélido alrededor del origen como barrera,
con el fluido arremolindndose alrededor de este cilindro (figura 13.45). ™

EJEMPLO 13.26

Puede intercambiar los papeles de las lineas de corriente y las curvas equipotenciales en el ejemplo ante-
rior haciendo

f(z) = K Log(z),

con K una constante positiva. Ahora

K 2 2 .
f) = 31n(x +y)+iK0,
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y
y
/ Lineas de
\ corriente X
X

lz =R Curvas

/ equipotenciales—/
FIGURA 13.45 Flujo alrededor FIGURA 13.46 Curvas
de una barrera cilindrica de equipotenciales y lineas de corriente
radio R. para el potencial f (z) = K Log(z).

asli

K 2 2
Qo(x9Y)=Eln(x +y ) y W(xvy)ZKe

Las curvas equipotenciales son circulos alrededor del origen y las lineas de corriente son semirectas que
salen del origen (figura 13.46). Como deben ser, estos circulos y lineas forman familias ortogonales de
curvas. La velocidad de este flujo es

=K +iK

)2 x2+y2=u+iv.

K
== o >
Z

Sea y un circulo de radio r alrededor del origen. Ahora encuentre que

%udx—i—vdyzo
Y

f —vdx +udy =27 K.
Y

El origen es una fuente de energia 277K. Piense en particulas del fluido manando desde el origen, movién-
dose a lo largo de rectas con velocidad decreciente conforme crece su distancia del origen. ™

EJEMPLO 13.27

Modelard un flujo alrededor de una barrera eliptica. Del ejemplo 13.25, el potencial complejo f(z) =
(iK/2m)Log(z) para |z| > R modela el flujo con circulacién —K alrededor de una barrera cilindrica de
radio R alrededor del origen. Para modelar el flujo alrededor de una barrera eliptica, mapee el circulo
|z| = R conformemente en la elipse. Para esto, considere el mapeo

w=z+ —,
z
en donde a es una constante positiva. Este se llama una transformacion de Joukowski, y se usa para ana-
lizar flujo de fluido alrededor de las alas de un aeroplano debido a las imdgenes distintas del circulo que
resulta de hacer distintas elecciones de a.
Seanz =x + iyy w = X + iY . El circulo x2 + y2 = R? es mapeado en la elipse

x? S R
1+ (a/R)? + 1—(a/R)?

)

siempre que a # R. En la figura 13.47 se muestra esta elipse. Si a = R, el circulo mapea en [—2a, 2a] en
el eje real.
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z 5 w
B A
el=r
FIGURA 13.47 Transformacion

de Joukowski mapeando un circulo
en una elipse.

Resuelva para z en la transformacion de Joukowski. Como es una ecuacién cuadrética, tiene dos
soluciones, y elija

w + Vw? — 4a?
5 .

Componga este mapeo con la funcién compleja potencial para la barrera circular en el ejemplo 13.25.
Obtiene

=

iK

: /212 — 4 2
F(w) = f () = 5 Log (M) .

2

Esto es un potencial complejo para el flujo en el plano w alrededor de una barrera eliptica si R > a, y
alrededor del plato plano —2a <X <2a,Y=0siR=a. W

Esta seccion concluye con una aplicacién de integracion compleja a un flujo de fluido. Suponga que f
es un potencial complejo para un flujo alrededor de una barrerra cuya frontera es una trayectoria cerrada y.

Suponga que el empuje del fluido fuera de la barrera estd dado por el vector Ai + Bj. Entonces un teorema
de Blasius asegura que

A—iB= lip f [f'(2)]?dz,
2 Y

en donde p es la densidad constante del fluido. Mds aun, el momento del empuje alrededor del origen esta

dado por
Re (—Lo% z[f/(z)]2 dz) .
22y

En la préctica, estas integrales usualmente son evaluadas mediante el teorema del residuo.

SECCION 13.5 PROBLEMAS

. Analice el flujo dado por el potencial complejo f(z) = az, en

donde a es una constante compleja distinta de cero. Dibuje
algunas curvas equipotenciales y lineas de corriente, y deter-
mine la velocidad y si el flujo tiene alguna fuente o sumidero.

. Analice el flujo con potencial f(z) = z3. Dibuje algunas cur-

vas equipotenciales y lineas de corriente.

. Dibuje algunas curvas equipotenciales y lineas de corriente

para el flujo con potencial f(z) = cos(z).

. Dibuje algunas curvas equipotenciales y lineas de corriente

para el flujo con potencial f (z) = z + iz2.

. Analice el flujo con potencial f(z) = K Log(z — zo), en don-

de K es una constante real distinta de cero y zj es un niimero
complejo dado. Pruebe que zj es una fuente para este flujo

si K > 0y un sumidero si K < 0. Dibuje algunas curvas
equipotenciales y lineas de corriente del flujo.

. Analice el flujo con potencial f(z) = K Log(z — a)/(z —

b), donde K es un nimero real distinto de cero y a y b son
nimeros complejos distintos. Dibuje algunas curvas equi-
potenciales y lineas de corriente para este flujo.

. Sea f(z) = k(z + 1/z), con k un real constante distinto

de cero. Dibuje algunas curvas equipotenciales y lineas de
corriente para este flujo. Pruebe que f modela el flujo alre-
dedor de la mitad superior del circulo unitario.

8. Sea

()_m—ikL (z—a)
f@ = w8\ )
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en donde m y k son niimeros reales distintos de cero y a y
b son nimeros complejos distintos. Pruebe que este flujo
tiene una fuente o sumidero de energia m y un remolino de
energia k en ambos a y b. (Un punto en donde se combinan
las propiedades de fuente [0 sumidero] y remolino se llama
un remolino espiral). Dibuje algunas curvas equipotencia-
les y lineas de corriente para este flujo.

. Analice el flujo con potencial

1 ib
f(z)=k (z + —) + — Log(2),
z 2
en donde k y b con constantes reales distintas de cero. Dibu-
je algunas curvas equipotenciales y lineas de corriente para
este fluido.

10.

11.

Analice el flujo con potencial

27 +iav3

con Ky a constantes positivas. Pruebe que este potencial

f)= iKax/gLog (ZZ — ia\/§> ,

modela un flujo irrotacional alrededor del cilindro 4x2 +
4(y — a)? = a? con una frontera plana a lo largo del eje y.
Dibuje algunas curvas equipotenciales y lineas de corriente
para este flujo.

Use el teorema de Blasius para probar que la fuerza por
unidad de anchura en el cilindro en el problema 10 tiene
componente vertical 2\/§n,oaK2, con p la densidad cons-
tante del fluido.






Respuestas y soluciones a
problemas seleccionados

CAPITULO 1

Seccion 1.1
1 1 16s 1 s 2 8 16 6 3 K

1. — 3. 5. —o———— 1. =+=4+— 9. ——=+—— 11. —2¢7'®
s—1 s+1 (s2+4)? s 2425 s3+s2+ s s s2+s2+16 ¢
5
5
13. 2C05(4t) -3 sen(4t) 15. 3¢’ 4+t 17. " —6te™ 23, m
25. De la gréfica, f(r) =0si0<r <5y f(1)=5si5<tr <10 y f(r) =0si 10< ¢ < 25. Mds atn,
—5s 1 —5s
S(t+25) = f(r), asi que f es periddica de periodo T =25. Por tanto £[f](s) = ((—%))
E 1
27. %1—7/ 29. f(1)=hsiO<t <ayf(t)=0sia<rt<2a. Misain, f(t+2a) = f(1), asi que f es periddica
K w —e ms/w
h
de periodo 2a, y L =
periodo 2a. ¥ LIfI() = <o
Seccion 1.2
Ly=;— 'fe*‘“ 3. y=—te ¥+ Lcos()+5sen(r) 5. y=—;+3ir+ e

7. y=2e* — Bre? + L cos() — £ sen(r) 9. y_—+—t——cos(4t)+ sen(4t)

Seccion 1.3

6 3 2 1 s
. ———————+ " 3 —(1-e" cos(7)e ™ — sen(7)e” "
(s+2)* (s+2)2+s+2 s( ¢ )+s2—|—1 (De (Me
1 11 4 1 2 1 K 2 s 1
5, — — =3s _ =35 7. _ 9, = _ —27s
2 5 52° s+1 (s—|—1)3+(s+l)2—|—1 s2+1+< s24+1 S2+1>e
52 +4s—5 1 2 (1 15 24 4 1
1. — ===+ =)™ 15, 17. ¢* sen(t
(s> +4s+13)? §2 s <s2 s )e (s+5)° * (s+5)3 * (s+5)? e sen(?)

19. cos(3(r—2))H(t—2) 21. %e"” senh(+/21)  23. e ¥ cosh(2+/21) — ﬁe”” senh(2+/21)

25. L[1—cos(4(t—21))]H(1—21) 27. y =cos(2r)+ 3[1 —cos(2(r —4))]H(t — 4)

29, y= [—z + 5270 + L= (=0 cos(V/3(t — 4)) |H(t — 6)

3oy=—3 +12 sel— 3 3 cos(21) — fsen(2r) +[—5 + ge’ S+ % cos(2(1—5)) — L sen(2(1 —5))|H(t — 5)

k k
33. E, =5 +10[(1 —e = H(t—5)] 35. i(t) = E(l —e My E(l — e Ry g (1 — 5)

37. £[KH(t—a)—KH(t—Db)](s) = geﬂ” — ?eibx
39.£[h(%)H(z—a)+h<cc:; ; )H(t—b) h( )H(t—c)]
_h e h(c—a) e h e
“h—a s (c—bb-a) 2 Tc-b s

Seccion 1.4
cos(at) — cos(bt)
(b—a)(b+a)

, tsen(at)

1. [senh(2r) —sen(20)] 3. sib* #a’; T si b? = a?

R1
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5. ai[l —cos(at)]— ZLI sen(at) 7. (% - %6_2“‘4)) H(t—4) 9. y(t) =e¥ % f(t) — e* * (1)
11, y(1) = 3% x f(1) — 1% * f(1) + 2 —5¢* 13, y(1) = %sen(3t) * f(r) — cos(3r) + % sen(31)
15. y(r) = §e — %ez’ — %e 2 —e Tx f(1) + ze Loy f(6)+ %efz’ xf(r)y 17. f(r) = %efz’ — %

19. f(f) =cosh(r) 21 f(t)=3+2+/15¢"2sen(v/151/2) 23. f(t) = te 2 4 37

Seccién 1.5
1 y=3[e 272 —¢B3EDNH(t —2) —4[e207) —e B3I H(t—5) 3. y=6(e —e+te™)
5. o() = (B+9)e ¥ — (B+6)e™™; ¢(0)=3,¢'(0)=B 7.3/ 9. 4

11. E = 10e *"DH(t —2) —10e 0~V H(t—3) 13. Osit<a; f(t—a)sit>a

15. y(t)—\/7v0 sen<\/§t>

Seccioén 1.6
L x()=—-242"2—1,y(1) =—14€">—1 3. x() =5+ 31— 3, y(1) = -3+ 3¥*
5. x(=2-2"+ 1P+ 1t y()=—3*+1+3 7. x(z) = e" cos(t)+t—1,y(t) =e'sen(t) +1> —t
9. x(t)=1—e"" Zte*',y(t) =l—e"
1L y () =le+ie—1—t,y,(t)=—12—1e,y()=—Lte'+ 17— 1t
13. iy() =3 (1 ! ’”2) e 92 —cos(2(1—4)) + 5 sen(2(1 —4)|H(t —4), y
(1) = —e*’/z—i— <[e” o _ cos(2(t—4)) — 4sen(2(z—4))]H(t—4)
15. x, () =2 — L cos(2t) £ c0s(31) — [ — 5 c0s(2(1 —2)) — s cos(3(r —2)) | H(t —2), y
X(1) == — = cos(2t) + cos(SI) [ % cos(2(t—2))+ % cos(3(r — 2))] H(t—2)
17. myy{ = k(y2 y1)s mayyy = —k(y; = 1); ¥1(0) =1 (0) = y5(0) = 0; y,(0) = d. Entonces (m;s* + k)Y, —k¥, =0y
(mys* +k)Y, — kY| = m,ds. Remplazar Y, con 5 s

v B kd
1(8) = mys[s? +k((my +my)/mim,)]

. P nyny,
oscilar con periodo 27 | ————.
k(m, +m,)

19. il—[ e T4 2 3 e~V H(1—1), 12—[——6 =D 4 e DS H(t—1)

21. xl([) — Q100 +e—31/50 +3[e—(1 3)/100 _ p=3(1— 3)/50]H(Z _3)’
xz(t) = e~ 100 _ ,=31/50 + [26—(t—3)/100 + 36—30—3)/50][_10 _ 3)

ool'_c\lu‘

Y, en la segunda ecuacion para obtener

. El término cuadrético en el denominador indica que los objetos van a

Seccién 1.7
1L.y=—1+ce™™ 3. y=7* 5. y=ct’e™ 7T.y=4 9. y=3t%/2
CAPITULO 2

Seccién 2.1
1. A continuacién se muestran las graficas de la segunda, tercera y cuarta suma parcial.

y y
25+ 25
20 20~
1.5+ L5 =
1.0~ 1O
0.5 0.5

| L | [ A L | L | N

0 05 1.0 15 20 25 30 0 05 10 15 20 25 30

n=2 n=3
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25

1.5

0.5

| | | | | |
0 05 1.0 15 20 25 30

n=4

Seccion 2.2

1 2 (=) 16 o 1
1. 4 3. p= senh(m) + = senh() nzl 711 cos(nmx) 5. - Z 7

n n —

13 s 16 nmx 4 nmx 3 2 1
7. = 1y (—) = (—) 9. 24 2
3 +r§( ) |:n27r2 s ) e PR

n=1

1 sen((2n — 1)x)

o0

sen((2n — 1)x)

1 = (=Dn
11. - sen(3) + 6sen(3) Z L cos (m> 13. Los coeficientes de Fourier de f y de g son los mismos.
3 = n?n? -9 3

Seccion 2.3

1 (1 2 6 2
1. Laserie de Fourier es m +nzl {E |:4 sen <?> — sen (%)] + ) |:cos (?) — cos (%) + 2(—1)":| +
18 nmw nwx s 1 2nmw ni n 6 2nmw nm
m sen (T)} COS (T>+’; {E |:4COS (T) + cos (T) — 15(—1) j| — m |:sen (T) + sen (T>:|

18 nmw n nwx 3 . . . .
- = [cos (—) — (=1 ] sen (—), estoconvergea 5 six =30six = —3,a2xsi -3 <x < —2,a—-2si
n3x3 3 3 2

x=—2,aOsi—2<x<1,a%six=1,yax25i1<x<3.

o0 2

3.8 /3. La serie de Fouri 1 h(3) — 2cosh(3) + Y _(—1)" { senh(3) I dd=3e)
. ead, =nmw . La Sserie de rourier €s — sen — 4 COS — sen

" 3 1+a2  3(1+a2)3

n=1

2 _ 0 2 _
M} cos (Ofnx)-i-Z(—l)” {senh(3) |: 6ay, n 4o (ay; 3)j| B 8a;, cosh(3) } sen(ax): esto con-

(1 +ap)? — 1+a2  3(140a})? (1 +ap)?
verge a 18 cosh(3) six = -3 0x = 3yax2e_x si—3 <x < 3.
6+72 on (=" a2 2 2
5. —1—67t +2;(n2) cos(nx)-f-;l;l (n_3+r_l) (1—(—1)”)—{—%(—1)” sen(nx);estoconvergea%(7‘[2—}-2)
parax:yrox:—n,axzsi—n<x<0,alsix=0ya2510<x<n.
4. 2 —1
7. —Z sen (2n )mx ;convergea —1si—4 <x <0,a0six=—-4,004,yalsi0<x <4
T 2n — 1 4
l—e™™ 21— (=)™
9. — —————— cos(nx); converge a e~ ¥l para —7 < x < 7.
= nﬂ; T (nx) g p <x<
12. —7%12

Seccion 2.4

1. Serie en cosenos: 4 (esta funcién es su propio desarrollo de Fourier en cosenos ), que converge a 4 para) < x < 3; serie
(0.¢]

16 1 2n — Dmx .
ensenos:—Z sen ,queconvergeaOsix =0ox =3yadparal <x <3
S 2n —1 3

R3
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11.

13.

Respuestas y soluciones a problemas seleccionados
1 2 (=)'2n—1 2n — 1
. Serie en cosenos: —cos(x)—— Z (=17 @n ) cos (2n )x ,queconvergealsi0 <x <mox = 2n,a—%
2 2n—-3)2n+1) 2
2 & 1)"'@2n —1 2n—1 i
six = m,yacos(x)sim < x < 2;serieensenos: — Z (=1)" @n ) sen (2n )x —— Z " sen(nx),
2n—=3)2n+1) 2 T = 1
queconvergeaOsiOfx <TOX :27t,a—% six _n,yacos(x) sim <x <2m
4 H” 8 o [(=1)"
. Serie en cosenos: —+— ( ) cos (E),que converge.a\x2 para0 < x < 2;serie en senos: — — Z =D
3 2 n? 2 b4 n

n=1

2(1 = (="

nmwx 2
sen (—), que converge a x“ para0) <x <2yaQparax =2
n3n? 2

3

. 1 ac 2nm 12 2nm 6 n nmwx
. Serie en cosenos: — + —sen| — |+ —5—=cos|— )| — =0+ (—=1")|cos (—), que converge a x
2 o Lnm 3 n272 n2m2 3

o0
. . . . 12 2nmw 4 2nmw
510§x52,a151x=2,ya2—x512<x53;serleensenos:E —gsen| — | - —cos| —
oo Lnem 3

+—(—1)"]sen(”7”) queconvergeaxsi0 <x <2,alsix=2a2—xsi2<x<3,yalsix=3
nm

. 5 16 a1 niw 4 niw nwx 5 . .
. Serie en cosenos: — + — — COS (—) — ——sen (—) cos (—), que convergeax-si0 <x < l,yalsi
6 2 = n? 4 n3x 4 4
1 <4 . i 16 (nn) . 64 ( <n7t) 1) 2(=D" (nrrx)
<X ; serie en senos: ———sen | — cos({— ) —1)— sen { —— ), que converge a
- 1 n2m? 4 n33 4 nmw 4 q €
n—=

x2si0§x§l,alsil <x<4yalOsix=4

Sean g(x) = 3 (f(x) + f(—x)) y h(x) = 5(f(x) — f(—x)). Entonces g es pary h es impar y f(x) = g(x) + h(x).
1 T
2 4

Seccion 2.5

3.

0 n n+1
. . 1 (=" —1 (=D
(a) La serie de Fourier de f en [—m, ] es —m + Z ————cos(nx) + —
4 et n? n
alOpara—7 <x <0,axpara0 <x <m,ya %(f(0—|—) + f(0-)),00,enx = 0.
(b) f es continua, por tanto, continua a pedazos en [—, 7r]. Por el teorema 2.5, su serie de Fourier puede integrarse
término a término para llegar a la integral de la suma de la serie de Fourier.

si—7<x<0
(c) Primero, f f@®)dt =

sen (nx)i| . Esta serie converge

2x2 si0<x <m

. . . . . . 1 1
Esta funcién estd representada por la serie obtenida al integrar la serie de Fourier de —m a x para obtener: an +-om?+

n n+l
E |:(1)—2 en(nx) + (St (—cos(nx) + (—1) ):|
n n n

wn
n=1

(_ )n+1

1
. (@) Para —m <x <m,xsen(x) =m — En cos(x) + 2w Z —_1 cos(nx).

=2
(b) f es continua con primera y segunda derlvadas contmuas en [—m,w]y f(—m) = f(m). El teorema 2.6 nos da
n

1
x cos(x) + sen(x) = En sen(x) + 27 Z n sen(nx) para —mw < X < 7.

1 o0
(c) La serie de Fourier de x cos(x) + sen(x) en [—m, 7] es Err sen(x) + Z 2n(—=1)"n - sen(nx).
2 _
Seccion 2.6 "=
2 1 7
3. Sugerencia: Escriba la definicién de f(x + p) y use la periodicidad de f. 5. 1— = Y — cos (nrrx - 3)
b4 n

7.

n=1

oo
16+ Z \/l—l—nznzcos(——f—tan 1(n7'r) 9. ;Z

2. T n 3 2 1 2n—Dnx 7w n
;Z; (nnx+5(—1) ) B+ oy cos +3U= (=D )>

n=1



Respuestas y soluciones a problemas seleccionados

o0

15. i) Z 120(= )" 110 — n?)7 1200(=1)" g
o 1 =
h n2[100n2 + (10 — n?)?] n[100n2 + (10 — n2)2]

sen(nt)
=1

Seccion 2.7

n=—00,n#0 n=—00,n#0
. o0 o0
5 1+ 3i 3 U entmixpz 5 12 D 1 Qn—N)wix
: - 2 12
2 7 ne— oo n£0 2n —1 2 7 ne— om0 2n —1)

o0 . 00
S P N Y I CO

n
n=—00,n7#0

2nmw i . . . .
— isen <T> } eNTix/6, fy g tiene la misma frecuencia espectral pero diferente fase espectral.

CAPITULO 3

Seccion 3.1
1 [oo 2sen(mw)  2cos(mrw)
“ »

Tw?
0si|x| > .

T T
i|sen(a)x)dw, queconvergea—; six =—m,axpara—w < x < n,aE six=mya

/2
3. / <—(1 — cos(rrw))) sen(wx) dw, que converge a —% six=—-m,a—1si—7 <x<0,ax=0six=0,alsi
0 Tw

0<x<n,a%six:7r,ya05i|x|>71.

o0

1

5. [ —3[400a) cos(100w) + (20000u)2 — 4) sen(100w)] cos(wx) dw, que converge a %2 i —100 < x < 100, a 5000
Tw

0
six ==£100ya0si|x| > 100.

o0
7. / ﬁ [— sen(rw) sen(2w w) cos(wx) — cos(wrw) sen(2wr w) sen(wx)] dw, que converge a sen(x) si —37 < x <
0 nw(w—

myalOsix < —3morx > m.

(0,¢]
9. / ——  cos(wx) dw, que converge a el para todo real x.
0 m(l+w?)

Seccion 3.2
o0

1. Integral en senos: /

4
—3[1060 sen(10w) — (SOa)2 — 1) cos(10w) — 1] sen(wx) dw;
0 Tw

o0
integral en cosenos: —3[10w cos(10w)— (50cu2 — 1)sen(10w)] cos(wx) dw; ambas integrales convergen a x2
Tw

0
para0 <x < 10,250 six = 10,y a0 parax > 10.

o0

o0
3. Integral ensenos: / —[14-cos(w)—2 cos(4w)] sen(wx) dw; integral en cosenos: / —[2sen(4w)—sen(w)] cos(wx) dw;
0 Tw 0 Tw

. 3
ambas integrales convergen a 1 para0 < x < 1,a - parax = l,a2paral <x <4,al parax =4,ya0parax > 4.
La integral en cosenos converge a 1 en x = 0, mientras la integral en senos converge a 0 en x = 0.

o0 4
5. Integralen senos:/ {—[1 + (1 = 2m) cos(mw) — 2cos(Brw)] + — sen(rra))]} sen(wx) dw; integral en cosenos:
0 Tw Tw

o0 4
/ {—[(27r — I)sen(rw) + 2sen(3rw)] + —2[cos(rrw) — 1]} cos(wx) dw; ambas integrales convergen a 1 +2x
0 Tw Tw

para0 < x < m,to %(3 +27) parax =m,a2paraw < x < 3mw,al parax = 3w,y a0 parax > 3x. La integral en
senos converge a 0 para x = 0, mientras la integral en cosenos converge a 1 para x = 0.
®° . © 92 (24?2
sen(wx) dw; integral en cosenos: —
4 4+ o* o 7 \4+w*

convergen a e ¥ cos(x) parax > 0. La integral en cosenos converge a | para x = 0, y la integral en senos converge a 0
para x = 0.

2

7. Integral en senos: /

— ) cos(wx) dw; ambas integrales
0

RS
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o0 o0
9. integral en senos: / —1[1 — cos(cw)] sen(wx) dw; integral en cosenos: f — sen(cw) cos(wx) dw; ambas inte-
0 Tw 0 Tw

grales convergen a k para0 < x < ¢, a %k para x = ¢,y a0 para x > c. La integral en cosenos converge a k para
x = 0, y la integral en senos a 0 para x = 0.

o0 o
11. Para todo x, / e~ ? cos(wx)dw = y / e “sen(wx)dw =
0 0

1+ x2 14+ x2°

Seccion 3.3

-8 €'Y dw; que converge a xe ! para todo real x.

a)2)2 + 40)2)2 ((1 - w2)2 + 4a)2)2

3. i/ (%) 'Y dw; que converge a sen(rrx) para —5 < x < 5,y a0 para |x| > 5.
w= — 7T

(1 2>2 3

: o0 — 2

1 ’—/ 2w @
T J—oco _

1 j .
5. — / [ —sen(w) + e~ ' ——— cos(w) + l—[a) cos(w) — sen(w)]} e'®* dw; que converge a x para—1 <
l w? + 1 w?

x<1,a 2(l +e 1)parax =1,a %(—l —I—eil) parax = —l,yae*‘x| para |x| > 1.

1 o0 2 2) — 1- 2 :
7. — |:— cos(mw/2) +isen(7ra)/ ) - + wsen(rw/2) 2 cos (J'rw/Z):| e'®* dw; que converge acos(x)
27 w?—1 w?—1 w?—1 w? —1
para0 < x < m/2,asen(x) para —m/2 < x < 0, a0 para |x| > 7/2,a % ax = O,a—% enx = —m/2,ya0en
x =m/2.
2i 10 _ . 4 : 24
9. —l[cos(a)) —1] 1L ——e Xigen(w) 13. — ¢ (IHHOk/4 45 7o—lol 17, Qi
w w 1+4iow 16 + w?
2 . .
19. 18,/ Ze=87 41 21 H(t 4 2)e= 106301 23, H(1)[2e~ 3 — 2]
b1
Seccion 3.4
26 j 5
1. 7i[H(—0)e® — H(w)e 3] 3. i 5. 12 1 g0 D23, 303 9 fryre
Q+iw)? 3+iw
1
1 31— 208 g 4+3) - L1 - 20D | H@ -3 —4”[ ]
e LR IR LIS 9+(z+2)2 MCEEE
25
17. 37 19. —[SOa) sen(5w) + 20w cos(Sw) — 4sen(Sw)], tc =0, tg = 3
_ et cos(dw) —1 | 4 w _4sen(4w) 4
21. e “*sen(4 - + cos(4w) — 1 + e =21 = =
¢ (w)a)z—f—l w? +1 l([e () ]w2+1 ¢ w? +1 ¢ R=3

2 1 4
23. — = [—80” sen(2w) — 4w cos(2m) + 2 sen(2w)] + 2i — [8w” cos(20) — 4w sen(2w)], tc =0, 1g = 3
w w

Seccion 3.5

L fe@) = ——, fy@) = —2

-wa 1+ z’fsw_1+a)2
~ 1 [sen(K(l —w)) sen(K(l+ w))

3 fC(w)_E[ l-w I+ow ]
(@) = 10} _|:cos(K(1+a))) cos(K(l—a)))]
fsw_wz—l_Z 1+w l—w

. 1 1 !
S. fC(w)=_|:]+((]+w)2 +1+(1_a))21|
l+o I—o

1+(1+0)? 1+(1-w)?

7. Las condiciones suficientes son: f”y f 3 continuas en [0, 00); f ) continua a pedazos en [0, L] para todo L positivo; y

f@) =0, /(1) > 0, f'(t) = 0,y f® (1) — 0conforme r — oo. Las necesarias son/ | f () dt y/ | £ ()| dt
0

1
fs(w )—

convergente.
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Seccion 3.6

K 2 ) 2
1. —[1—(=D)"]paran=1,2,... 3. -—=+ (=" (—3 - n_) paran =1,2,...
n n n n
(=D"*nsen(am) ) ) N _
5. — 55— paran = 1,2,... si a no es un entero; si @ = m, es un entero positivo, entonces fs(n) =
a?—n
0 sin #m
/2 sin=m
n ~ 722 sin=0
7. = [1—(-D"e "]paran=1,2,... 9. fc(n)= )
ot (D" —11/n?  sin=1,2,...

~ 1 4 ~ 6 2 (372 6\ .
11. fC(O):Zn afC(n):n_4+(_1) <n—2—n—4 sin=1,2,....

13, -2

3 3 [1 — (=1)"]cos(ar) paran =0, 1,2, ..., sia no es un entero.
ac—n

o T
15. Escriba f/g(n) = / £ (x) sen(nx) dx e integrando por partes.
0

Seccion 3.7
5 5 5

L D[u](0) = Y cos(j) ~ —0.23582, Dul(1) = Y cos(j)e ™"4/3 ~ 29369 — 0.42794i, D[u] (2) = Y _ cos(j)e” 2"/3 ~
j=0 j=0 j=0

5 5
013292 — 1.6579 x 1072, D[u](3) = »_cos(j)e ™ ~ 9.6238 x 1072, Dul(4) = Y cos(jle /3 ~
Jj=0 Jj=0

%

5 5
0.13292 + 1.6579 x 1072, Dul(—1) = Y cos(j)e™ /3 ~ 2.9369 + 0.42794i, D[ul(-2) = Y cos(j)e*™ /3 ~
j=0 j=0

5 5
0.13292 + 1.6579 x 1072, Dlul(=3) = Y cos(j)e™ ~ 9.6238 x 1072, D[ul(—4) = »_ cos(j)e*™ /3 ~

j=0 j=0
0.13292 — 1.6579 x 10~2i
5 5
1 1 g
3. D[u](0) = Z — =245, D[u](l) = Z —— ¢T3 2 0.81667 — 0.40415i, D[u](2) ~ 0.65 — 0.17321i, D[u](3) ~
Al P

0.61667, D[ul(4) ~ 0.65 + 0.17321i, D[u](—1) ~ 0.81667 + 0.40415i, D[ul(—2) ~ 0.65 + 0.17321i, D[u](—3) ~ 0.61667,
Dul(+4) ~ 0.65 — 0.17321i

5. D[u](0) = 55,D(u](1) ~ —6.0 + 31.177i, D[u](2) ~ —14.0 + 10.392i, D[u](3) = 15, Dlu](4) ~ —14.0 — 10.392i,
Dlul(—1) ~ —6.0 — 31.177i, Dlu](=2) ~ —14.0 — 10.392i, D[u](—=3) ~ —15, D{u](—4) ~ —14.0 + 10.392i

5 5
7. La inversa es {uj}5_, donde ug = ¢ » (1 +D* ~ —13333 +0.16667i, u = ¢ y (1 + ™" ~ —042703

k=0 k=0
+0.54904i, up ~ —1.6346 x 1072 + 0.561i, u3 ~ 0.33333 + 0.5i, us ~ 0.84968 + 0.27233i, y us ~ 1.5937 — 2.049i
6 6
1 ‘ o
9. up = - D e~ 010348 + 14751 x 10721, uy = 5 Y e KePTRT ~0.93331 — 0.29609i, up & —9.4163 x
k=0 k=0

1072 + 8.8785 x 1072i, uz ~ —2.3947 x 1072 + 6.2482 x 1072i, uy =~ 43074 x 1073 + 5.1899 x 10~2i,
us ~2.5788 x 1072 + 4.3852 x 1072i, ug ~ 5.1222 x 1072 + 3.4325 x 1072}

11. ug ~ —0.1039, u; ~ 0.42051 + 0.29456i, up ~ 0.13143 + 3.1205 x 1072,
uz ~ 0.13143 — 3.1205 x 1072, uy ~ 0.42051 — 0.29456i

1 sen(2) ki cos(2) — 1

12 :
13. Los coeficientes de Fourier son dj, = 5/(; cos(é)e_”k’§ d¢ = BT > 2 1

. Para la aproximacion

127
TDF, elija N = 128, y aproxime a d, por fj = llﬁ Z cos(j/64)e_"i-/k/64.
j=0

Entonces
do = 1 sen(2) ~ 0.45465, fo ~ 0.46017
d; ~ —5.1259 x 1072 — 0.2508i y f; ~ —4.5737 x 10™2 — 0.25075i
dy ~ —1.1816 x 1072 — 0.11562i y f» ~ —6.2931 x 1073 — 0.11553i
dy ~ —5.1767 x 1073 —7.5984 x 1072i y f3 ~ 3.4589 x 10~% — 7.5849 x 1072
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d_1 ~ —5.1259 x 1072 + 02508/ y f_| ~ —4.5737 x 1072 4 0.25075i
d_p~ —1.1816 x 1072 + 0.11562i, f_» ~ —6.2931 x 1073 4 0.11553i,
d_3 ~ —5.1767 x 1073 +7.5984 x 1072, f_3 ~ 3.4589 x 10~% +7.5849 x 102

127

1 1 i\ i
sik #0,ydy = 3 La aproximacién TDF es f, = 8 Z (L> e TiIk/64

1+1
22k "ok j128

Abhora, d, —/ g2 2kE g — 57k

dg = §, fo ~ 0.32944

dy ~5.0661 x 1072 4 0.15915i, f] ~ 4.6765 x 1072 + 0.15912i

dy ~ 1.2665 x 1072 4+7.9577 x 1072, f> ~ 8.7691 x 1073 +7.9514 x 10~2

d3 ~5.629 x 1073 +5.3052 x 1072, f3 ~ 1.7329 x 1073 +5.2956 x 102
d_1 ~5.0661 x 1072 — 0.15915i, f_1 ~ 4.6765 x 1072 — 0.15912i
d_n ~ 1.2665 x 1072 —7.9577 x 1072i, f_» ~ 8.7691 x 1073 —7.9514 x 10~2
d_3~5.629 x 1073 —5.3052 x 1072}, f_3 ~ 1.7329 x 1073 — 5.2956 x 102

Seccion 3.8

1.

11.

. Laserie de Fourier complejaes Z

1
. La serie de Fourier compleja es — +

oo .
La serie de Fourier compleja es 2 + Z lk TR asi Sl()( ) = 1.0207 4 1.6653 x 10716}, Aproximadamente
k=—00,k#0

10( )~ ﬁzlﬂ Ve K8 quees1.0552 + 10~ 14;;

0.003452.

16; _ (1.0552 — 2.0983 x 10~16j)| =

3 [—l il GNP C e l] ik Entonces S1o(%) = 1.0672—3.4694
el 2 I R R ' g7 == '

1 127
10~ 18;. Aproximadamente S10(3) ~ 155 > Vie™ /8 quevale 1.0428 + 3.8025x 107153 [1.0672 — 3.4694 x 107 18;—

128 Pl

> 301 +i2k27t2—3
4722 4 733

(1.0428 + 3.8025 x 1071570.002440

: 1
)ezkmt ¥ S10(3) = =7.2901 x 107 +

k=—00,k0
1 127
1.0408 x 10~!7;. Aproximadamente 510( )~ e 2V /2 que vale 3.4826 x 1073 + 9.1593 x 10~164;
k=0
’—7.2901 % 1074 +1.0408 x 10~ 17 — (3.4826 x 103 +9.1593 x 10—161')’

~ 0.004212.

. 0.14386 — 0.12455i 9. —6.5056 x 1073 —2.191 x 1073}

En las graficas asociadas con los problemas 11 y 13, enla serie 1 los puntos son los valores verdaderos calculados
a partir de la transformada, y en la serie dos los puntos son las aproximaciones de la TDF. En todos los casos las
aproximaciones se pueden mejorar eligiendo N grande.

A 2w sen(2w) + cos(2w) — w sen(w) — cos(w) 2w cosw) — sen(2w) — w cos(w) + sen(w)
flw) = 3 + i 5 . Nota: en la
w 10}

suma de la ecuacion (3.24), 11 < j < 20yaque f(¢) es cero fuera del intervalo [1, 2). Genere la siguiente tabla usando
L =4:

k fks4) TOF /4 |fk/a)| [DF fi4)]
1 1.3845 — 0.5673i 1.3764 — 0.5714i  1.4962 1.4903
2 1.0579 — 1.0421i 1.0445 — 1.048i 1.485 1.4796
3 0.5761 — 1.3488i 0.5558 — 1.3521i  1.4667 1.4619
4 0.2068 — 1.4404i —.0573 —1.4372i  1.4406 1.4383
5 —0.5162—1.3098; —0.5453 —1.2959i 1.4078 1.406
6 —0.9483 —0.9865i —0.9749 —0.9602i  1.3684 1.3684
7 —1.2108 —0.5325; —1.2288 —0.4945i  1.3227 1.3247
8 —1.2708 —0.0295i —1.2751 4 .0170i 1.2711 1.2752
9 —1.132340.4386i —1.1194+0.4866i 1.2143 1.2206
10 —0.8329 +0.7966i —0.8026 4+ 0.8393;  1.1525 1.1613
11 —0.4359 +0.9953i —0.3909 + 1.0258;  1.0866 1.0978
12 —0.0166 + 1.0168i 0.0374 +1.0299i  1.0169 1.0306
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Las graficas siguentes comparan las (a) partes reales, (b) las partes imaginarias y (c) los valores absolutos, de f (k/4) y las aproxi-

maciones TDF.

20—
1.5
1.0 -
0.5

05
—-1.0 —

—1.5

13. f(w) =

sen(w) n icos(w) —1

4 5 6 7 8 9

(a)

14
12
1.0~
0.8 —
0.6 —
04—

10 11 12

TDF

15

1.0—
TDF ~

05 \

~»

—0.5—
—1.0—

—15+

BN T I I B B B
1 234567 8 9101112

(b)

1

w

k f(k/4)

1 0.9896 —0.1244i
2 0.9589 —0.2448i
3 0.9089 - 0.3577i
4 0.8415-0.4597i
5 0.7592 -0.5477i
6 0.6650 —0.6195i
7 0.5623 -0.6733i
8 0.4546-0.7081i
9 0.3458 —0.7236i
10 0.2394 —0.7205i
11 0.1388 —0.6997i
12 0.0470 — 0.6633i

(©)

TDF f(k/4)

1.0686 — 0.1318i
1.035 - 0.25925i
0.98047 — 0.37821i
0.90716 — 0.48489i
0.81791 - 0.57604i
0.71616 — 0.64909i
0.60574 — 0.70222i
0.49076 — 0.73447i
0.37537 - 0.74574i
0.26362 - 0.73678i
0.15924 - 0.70914i
0.0655 — 0.66506i

2 3 4 5 6 7 8 9 1011 12

.Con L = 4 obtiene la siguiente tabla (con j sumando de 0 a 10 en la ecuacién (3.24)):

|[Fso| |TOF fksa)|

0.99739 1.0767
0.98965 1.067
0.97675 1.0509
0.95888 1.0286
0.93614 1.0004
0.90885 0.96654
0.87722 0.92738
0.84147 0.88334
0.80198 0.83488
0.75923 0.78252
0.71333 0.7268
0.66496 0.66828
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Las gréficas siguientes comparan (a) las partes reales, (b) las partes imaginarias y (c) los valores absolutos, de f (k/4) y las aproxi-
maciones TDF.

1.2 —
1.0 —
TDF ol
0.8 — —=0.1 —
f -02
—0.4 |
04—
=05
0.2 —06 -
—-0.7 —
ol L 11 ol 1
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
(@) (b)
1.2 — TDE
1.0 —
0.8 f
0.6 —
04—
02
| | | | | | | | | | |
1 2 3 4 5 6 7 8 9 10 11 12
(©)
o . o
. 4 2n — 1)mt
15. La serie de Fourier de f es Z #(—1 + (=M mit/2 o Z o Dx sen(( " 3 ) )
n=—00,n#0 n=1
N oo nmt N n i
Entonces Sy (f) = Z — (1= (=D")sen (T).LaN—ésimasumadeCesﬁroesaN(t) = ZN (l - ‘ND —
= ——
N n i N n 2 nmt
_ A T 1\ nmit/2 — A s R R nrr
o (f) = ZN(I %)) D=1 e 0 0y @) Zl<1 ) =« 1))sen( 2 )
n=— =
Las gréficas estdn dibujadas para N = 5, 10, 25.
1.0 — LO
0.5 0.5+
) -2
| | 0 | L, I I l L, ¢
-1 1 2 -1 0 1 2
/Ceshro ——0.5 ——0.5
1.0 ——1.0
or
Fourier N=5 N=10
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1.0 |~
0.5
-2
| | | L,
-1 0 1 2
0.5+
——1.0
N=25
N i ) N )
17. Sy = Y — ((=1)" —cos(ur/2)) ™" =" = (cos(nm/2) — (~1)") sen(nt), o () =
nmw nmw
n=—N,n#0 n=1
N n i ; N n 2
Z (1 - ‘ND — ((=D" = cos(nm/2)) "™ = Z (1 - ‘ND E(cos(nﬂ/Z) — (=" sen(nmwr)
n=—N,n# n=1
Las gréficas estdn dibujadas para N = 5, 10, 25.
LO - 1.0 -
0.5 05
-1.0 -0.5 -1.0 -0.5
' ' ' L> ¢ | | | L,
0 0.5 1.0 0 0.5 1.0
-05+ —0.5 -
1.0+ 1.0+
N= 5 N= 10
1.0+
05+
-1.0 -0.5
| | | L,
0 0.5 1.0
05+
—1.0+—
N=25

N .

17 11— (=1 1 7 :

19. Sy =7+ 3 (5# n # (1 — 3D S - 1))) it
n=—N,n#0

N
17 1— (=" 2 5
= T+ E # cos(nmt) — — (—5 + 3(—1)”) sen(nmt),

N
_ 17 n 11—-(=D" i 1 n, ! n nmit
o=+ L (15D 3 e (13 e g ) e

N
17 n I—(=D" 2 5 n
+T+ng_l(1—‘ﬁ‘) [WCOS(FZTH‘)—E —5+3(—1) sen(nit)
Las gréficas estdn dibujadas para N = 5, 10, 25 (ver siguiente pagina).

R11
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— 7_
. 6_
LL 5_
— 4 41—
L3 —3
) —2
| | i | L,y | ' | L,
-10 —05 0 0.5 1.0 10 05 0 05 10
N=5 N=10
7_
6_
5_
4_
3_
-2
| | 'C | L,
~10  —05 05 1.0
N=25

N

N

2L Sy =1+ Y # BED" —1) 2 =14y ;—j (B3(=1)" — 1) sen(nmt/2), oy (1) =

n=—N,n#0

1+ i ;—j (1 - ‘%D (3(—1)" — 1) sen(n71/2)
n=1

N

n=1

-2
Suma parcial filtrada de Hamming: Hy (f) = 1 + Z —(0.54 + 0.46cos(tn/N)) (3(—1)” — 1) sen(nmt/2)
nmw

n=1

N

2
Suma parcial filtrada de Gauss: Gy (1) = 1 + Y ——e~“""*/N* (3(—1)" — 1) sen(n1/2)
nm

n=1

Las gréficas estdn dibujadas para N = 5, 10, 25, cona = % en el filtro de Gauss.

4r- Fourier 4 Fourier
3 3L
R 27 Gauss 21 \ Gauss
Cesaro A L Cesro
| | | | | | |
-2\ -1 0 1 2 -2 -1 0 1 >
\ -2 N -2+
H 3 .
amming =5 Hamming N=10
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Fourier
4 L
3 /
Gauss
2 102
Cesaro 1+
L] | L,
-2 -1 0 1 2
—1
\ -2
Hamming N=25

Seccion 3.9

1. Espectro de potencias de y(7) = 4 sen(80rt) — sen(207t)

104
103
102
10!
100
10!

1072

10-3 L
0 50 100 150 200 250 300 350 400 450 500

3. Espectro de potencias de y(f) = 3 cos(907xt) — sen(30rz)

104
103
102
10!
100
10!
1072

10-3 | | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500




R14

Respuestas y soluciones a problemas seleccionados

5. Seiial corrupta de y(#) = cos(307t) + cos(707t) 4 cos(140mt)

0

5 10 15 20 25 30 35 40 45 50

Componentes de la frecuencia de la sefial corrupta

160 —
140 —
120 —
100 —
80 [+
60
40 =
20 =

0

50 100 150 200 250 300 350 400 450 500

7. Seiial corrupta de y(¢) = cos(20xt) + sen(1407¢) 4 cos(240mt)

5 10 15 20 25 30 35 40 45 50
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Componentes de la frecuencia de la sefial corrupta

150

100 —

I I | | I | | | | |
0 50 100 150 200 250 300 350 400 450 500

CAPITULO 4

Seccion 4.1

3
3. Se ilustra para P3(x). Por la fomula de Rodrigues, P3(x) = —— —((x2
233! dx3

1
. . 3 k
5. Por ejemplo, con n = 3 tiene [E] =1y kZ(:)(—l) SK1G — )16 = 2k)!x

64 553 L
83Hah” T 8anant T2t Tt T W

1 1
DY) = 25 (12063 =72x0) = 2 (557 -3w).

(6 — 2k)! 3ok _

R15

7. Sustituya Q(x) = P,(x)u(x) en la ecuacion de Legendre. Después de las cancelaciones debido a que P,(x) es una solucién, obtiene

N _ P

7 P, 2x ’ / i
u +2— - u' =0.Seav = u’ para escribir
Py 1—x2

In(v(x)) = —21n(Py (x)) — In(1 — x2), asf v(x) = IREES)
3 _

0(x) = P,(x)u(x).
72 —10

v'( X
. Integre para obtener
v(x) Pu(x) 1—x2

. Entonces M(X) = / md}(ﬁ
- —

—1127% + 7% + 1008 1

12 1
13. Para —1 < x < 1, sen(mx/2) = X+ 168 5(5x3 — 3x) + 660
T

T4

En la gréfica, la suma de estos términos es indistinguible de la funcién.

1.0+

05—

—1.0 —0.5 0 0.5 1.0
—0.5—

—1.0~

(63x7 — 70x3 4+ 15x) + - --.
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15. Para —1 < x < 1, sen®(x) = [—lcos(l) sen(1) + %] [—% cos(1) sen(1) + % -7 cosz(l)] §(3x2 -
+ [%COS(I) sen(1l) — 533—25 +% 82(1)} é(35x4 —30x2 + 3) + --- En la grdfica, la suma de estos términos es
indistinguible de la funcién.
y
0.7+
0.6 —
0.5+
04—
03+
02+
0.1+
| | | L,y
1.0 0.5 0 0.5 1.0
17. Para—1 <x<Oypara0<x < 1, f(x) —éx . ——(5 3_3x) + El(63x —70x3 +15x) +--- La siguiente grafica

muestra la funcién y la suma de estos tres termlnos del desarrollo de Founer-Legendre.

y

1.0~
0.5

—1.0 —0.5 0 0.5 1.0

Observe que en el 13 y 15, s6lo los primeros tres términos del desarrollo de la funcién propia se aproxima tanto a la funcién que
las dos gréficas son virtualmente indistinguibles. En el 17, es claro que debemos agregar mds términos del desarrollo de la funcién
propia para tener una aproximacion razonable de f (x).

Seccion 4.2
1. Seay = xJ,(bx€) y calcule y' = ax®~ 1 J,,(bx¢) + x@bex 1 J! (bx€) y
Y = a(a—1)x92J,(bx®) + [2ax® L bexc~1 —|—x“bc(c - l)xc72]J (bx€) +x9b2c? 2cfzJ”(bxc) Sustituya esto en
la ecuacién diferencial y simplifique para obtener ¢ 2ya— 2{(bxc)z‘l”(bxc) +bxCJ)(bx¢) + [(bx€)% —v21J, (bxS)} = 0.
3. y=0c J1/3(x )+ 02J71/3(x 5. y=c1x 113/4(2x2) + cpx 1./,3/4(2)62)
7. y= clx4J3/4(2x3) + 02x4J_3/4(2x3) 9. y= clx_2.11/2(3x3) + ch_21_1/2(3x3)
1L y1 = 1 3(VX) + a¥3(Vx) 130 y =1 Ja2x!/3) + e ¥4 (2x1/3)
15. y= 61x2/3J1/2(X) + 02x2/3L1/2(X)
17. Sustituya esto en la ecuacion diferencial y use el hecho que Jj,3(z) satisface z Jl/% + ZJl//3 + <z2 _ %) Ji3=0.
19. y=cixh(x) +cx¥a(x) 21y = c1x2 N (V/x) + c2x2 Y2 (/)
29. (a)Lasuma delos primeros cinco términos del desarrollo de Fourier - Besseles &~ 1.67411.J,(5.135x) — 0.77750J,(8.417x) +

0.8281J2(11.620x) — 0.6201J,(14.796x) + 0.6281J,(17.960x). A partir de las graficas de x de los primeros cinco tér-
minos de este desarrollo, se deben incluir més términos para conseguir una precision razonable.
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(c) La suma de los primeros cinco términos del desarrollo de Fourier-Bessel es 0.85529/,(5.135x) — 0.21338/,(8.417x)
+ 0.35122J,(11.620x) — 0.20338J,(14.796x) + 0.025800/,(17.960x). Como indican las graficas, se necesitan mds términos para
aproximar la funcién con la suma parcial del desarrollo de Fourier-Bessel.

y
y
1.0 04 |-
0.8 —
03—
0.6 —
0.2 -
04—
02 0.1 —
| | | | L, | | | | L,y
0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
(a) (c)
Seccién 4.3
_ 2
1. Problema regular en [0, L]; valores propios ( rr) paran = 1,2, ...; funciones propias multiplos constantes

11.

13.

distintos de cero sen 2n—1 3. Regularen [0, 4]; n—ln 2'cos n—ln
isti 7L TX . Regular , 4] > 1) > 4x

. Periédico en [—3m, 37]; O es un valor propio con funcién propia 1; paran = 1,2, ..., %nz es un valor propio con

funcién propia a, cos(nx/3) + by, sen(nx/3), no ambos a, y by, cero

. Regular en [0, 1]; los valores propios son soluciones positivas de tan(v/A) = %\/X Hay infinidad de tales soluciones, de

las cuales las primeras cuatro son aproximadamente 0.43, 10.84, 40.47 y 89.82. Las funciones propias correspondientes
al valor propio A, tienen la forma 24/A cos(v/A,x) 4 sen(+/Ax).

. Regular en [0, 7]; 1 —{—n2 paran =1,2,...; e *sen(nx) paran =1,2, ...
3 i’l2772 —1 ni
Regular en [1, e°]; 1 + paran=1,2,...; x sen(Tln(x)>paran=1,2,...

o
2
Para0<x < 1,1—x = Z — sen(nmx). Se compara la décima suma parcial de la serie con la gréfica de la funcioén.
nmw
n=1

1.0 =

04—
02
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o0
4 V2 2) =2 2) —
15. El desarrollo es Z — V2cos(u/2) — V2 sen(n/2)
i 2n — 1
n=
2<x<4,ya0six=2.Secomparala décima suma parcial de la serie con la gréfica de la funcién.

D" 2n — 1 ,
=D cos(n8 nx).Esteconvergea—lpara0<x<2ylpara

y
1.0

05

0 | | | Ly

05—

—1.0—

(=D"

o
17. Para —37 < x < 37, x> = 37 + 36 Z 2 cos(nx/3). Se compara la décima suma parcial de la serie con la grafica de
n=1

la funcion.

80 —

60 —

40 -

20—

. . . 1 —1
19. Las funciones propias normalizadas son ¢,(x) = — cos ( i T x). Ahora, (f - ¢p) =

V2
4 1 2n—1 4-D"+@n—Dr | & 4(—=D)" + 2n — D \?
/0 x(4—x)ﬁcos< o nx)dx = —128V2 ST ;((128\5) A on 17 )
o) 2
e A2 N2 512 4(—1)”+(2n_1)n) 512 _
Sfef=fox (@4 —x)7dx =3 "’Z( 7320 — 1)3 = 15(128v2)2 960

n=1

Seccion 4.4

3. Elintervalo en donde o7 3(7) es distinto de cero es ajeno al intervalo en donde o_, ;(7) es distinto de cero, de manera que o 3()o_5,1(7)
es idénticamente cero, asi f_"; 013(H)0o_21(t) dt = 0. La gréfica de o, 3(f) y 0_5,1(f) se muestra a continuacidn.
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5. Una gréfica de ¥(2t — 3) se muestra abajo.

0.5

| | | | | | | | ¢
-3 -2-10 1 3 4 5

—0.5—

. . el 3nm nmw 6 nw 3nm
7. La serie de Fourier de f (f) en [—16, 16] es Z o —2sen e + sen (7) i sen (?> — 2sen Te

n=1
+ sen (’%T))] cos <n1_7161> + [—% (— cos(nm) + 2 cos (ZWTH) —cos (’%T)) + % (COS (%) - 2c0s (311_;{>

t
+ cos (%))] sen ( %) La siguiente grafica compara la funcién con la décimoquinta suma parcial de su serie de

Fourier.

> niw nm 3nm nit
9. La serie de Fourier de f(¢) en [—16, 16] es Z P —14sen (7) — 8sen (T> + 16sen 5 cos 6
1

n=
1 n nmw nmw 3nm niwt L. ) .
+ — |3(—=1)" +2cos (7) + 3+ 8cos (T) — 16cos = sen T3 . Lasiguiente grafica compara la funcién
niw

con la décimoquinta suma parcial de su serie de Fourier.
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CAPITULO 5

Seccién 5.1
32 2.2 32 2 222
1. Calcule ax—z = —nL—]; sen(nmwx /L) cos(nmct/L)y 3—? = _nJLr_Zc

?y 1 Py 1
3. Calcule ax—i =S [aren+ @ —en]y ﬁ - 5c2[f”<x e+ £ (x —en).
3z (9% 9%z
5. El problema para esta funcién de desplazamiento z(x, y, ) es — = ¢ Y] + Py
X y

sen(nmwx /L) cos(nmct/L).

o2 ) para0 <x <a,0 <y < b,

0
z(x,y,O):f(x,y),a—j(x,y,O):Opara0<x <a,0<y<b,
20,y,1) =z(a,y,t) = z2(x,0,1) = z(x, b, 1) = 0.

Seccion 5.2

X 16(=1" n — Drx n — Drct X 2=
1. y(x,t) = n;l an D3m3e sen < 5 ) sen ( 5 ) +n§1 P sen(nmx) sen(nmct)
> 108 (2n — Drx 2(2n — Dt
3. y(x,l)=n2=:l(2n_1)4ﬂ4 sen( 3 )sen( 3 >
> 24 it (2n — 1)x
5. y(x, 1) _,; m(—1) sen (T) cos ((2n - 1)J§t)
s -32 n — Drx 3(2n — Dt
7. y(x, 1) = ,; n )3 sen ( 3 )cos ( 5 )

+ i L sen (E> [cos (E> — Cos (Eﬂ sen <3n7rt)
= nln? 2 4 2 2

9, Sea Y(x,1) = y(x,t) + h(x) y sustituya en el problema para elegir h(x) = $x3 - gx‘ El problema para Y se vuelve
vy 9%y
arr T ox2’

Y©0,1)=Y2,t) =0,

1 4 3y
Y(x,0) = §x3 — 5% 50 0) = 0.

9
o0
32 3t
Encontramos que Y (x, 1) = r; T (—1)" sen (?) cos (nn;/— ), y entonces y(x,1) = Y (x,1) — h(x).
11. Sea Y (x,1) = y(x, t) + h(x) y elija h(x) = cos(x) — 1. El problema para Y es
2y 9%y
a2 9x2’

Y(,1) = Y2, 1) =0,

aY
Y(x,0) =cos(x) — 1, 5(){,0) =0.

) » > 16 1 n — Dx n — Dt
Este problema tiene solucién Y (x, ) = — 3 sen cos ,y en-
o 2n —D[2n — 1) —4] 2 2
tonces y(x,t) = Y(x,t) + 1 — cos(x).

o0
1 t ¢ 24 (L
1. st = e Y3 s (M) [ pmmeos (37 ) 41m (57 ) om0 = 32 [7 s (7 ey
n=l1 n

rn=/4(BL2 +n272c2) — A2L2
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15 La solucid | término de fi i 64 ( 2 1 1 )sen(nﬂx)
. (a) La solucién con el término de fuerza es yy (x, 1) = Z B\2i—13 9@2n—-D[2n—1)2—16] 4
32n — )mt 1
0S (%) + %—Z[COS(T[X) —1].
R y > 128 @2n — rx 32n — Dt
(b) Sin el término de fuerza, la solucidn es y(x, 1) = ,; B0n 1) sen 7 cos — )

Ambas soluciones estdn dibujadas juntas para los tiempos t = 0.5, 0.6, 4.9 y 9.8, use los mismos ejes para permitir la comparacion.

- t=49

27 =05

1 1=0.6

0 T T T T T T T T T T T T T T T T T T T 1
10 1 2 3 4
b X

—1 1
i t=9.8

21

17. y;; =025paraj =1,2,...,19
Vi, =0.08438,y;, =0.05 para j =2,3,...,19
Vi3 =0.13634, y, 3 =0.077149, y, ; = 0.075 para j =3 4,...,19
V14 =0.17608, y, , = 0.10786, y; , = 0.10013, y; , = 0.1 para j =4,5,...,19
v1.5 =0.20055, y, s = 0.14235, y; 5 = 0.12574, y, s = 0.12501
¥;s =0.125 para j =5,6,...,19

19. Seda Yjx para j = 1,2,...,9, primero para k = —1, después k =0, 1, ...,5.
¥j—1:0.08075,0.127,0.14475, 0.14, 0.11875, 0.087, 0.05075, 0.016, —0.01125
¥j0:0.081,0.128,0.147,0.144,0.125, 0.096, 0.063, 0.032, 0.009
¥;1:0.079125, 0.1735, 0.14788, 0.147, 0.13063, 0.10475, 0.075375, 0.0485, 0.030125
¥;2:0.0057813,00.2115, 0.77078, 0.14903, 0.13567, 0.11328, 0.087906, 0.065531, 0.050516
¥j3: —0.055066, 0.27160, 1.3199, 0.18908, 0.14015, 0.12162, 0.10062, 0.083022, 0.068688
vj4: —0.092055, 0.3768, 1.7328, 0.29675, 0.14653, 0.12981, 0.11355, 0.10072, 0.083463
¥j5:—0.093987,0.53745,1.9712, 0.48652, 0.16125, 0.13803, 0.12669, 0.11814, 0.0941

Seccion 5.3

—1 sen(ww)

1. 1) = _— 12wt)d 3. 1) = 4wt)d
y(x, 1) /O - (25 n a)z) cos(wx) cos(12wt)dw y(x,1) /0 sen(wx) sen(4wt)dw

% w? =1
o0 1 2 cos — S 1 S 2
5. y(x, 1) = /O [(—3nwe_2 cos(a;)+ (Z);en(w)) cos(wx) + (—3ﬂwe_2 wcoe(c;))++wzsen(w)> sen(wx)] sen(3wt)dw

22 — wsen(w) — 2 cos(w)
7. y(x,t):/ - ~

sen(wx) cos(3wt) dw
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— 5 sen(wx) sen(2wt) dw
Tw w” —1

9. y(x,z):foo 1 sen(rw/2) —sen(5Srw/2)

© 3
11 y(x, 1) = / —— [16w cos (w) — 12w cos(w) + 1202 sen(w) cos2(w) — 3w? sen(w) — 8 sen(w) cos?(w)
Jog TT (V)
+ 2sen(w) + 2w] sen(wx) sen(14wt) dw

13. y(x,r)=A1+(1—A)(z—%)H(z_i‘)

C

Secciéon 5.4

1. Las caracteristicas son rectas x —t = k1, x +t = kp;
X+t

y(x, 1) = %[(x—z)2+(x+z)2]+%/ —£dé = x>+ 1> —xt
x—t
3. Las caracteristicas son x — 7t = ky, x + 7t = kp;

y(x,t) = % [cos(mw(x —T7t)) +cos(m(x +Tt))] +1t —x 0.3

4
L
3

5. Las caracteristicas son x — 14t = ky, x + 14t = kp;
y(x,t) — % I:ex—14l‘ +ex+14t] 4 oxt
7. y(x,t) =x + % (e_x+4t - e_x_4’) + %xt2 + %t?’
9. y(x, 1) = x2 + 6412 — x + 5 (sen(2(x + 81)) — sen(2(x — 81))) + 15r*x
11. y(x, 1) = L [cosh(x — 31) + cosh(x + 31)] + 1 + Jxr*

En cada uno del 13, 15 y 17, las graficas muestran una progresién del movimiento conforme a la suma de las ondas hacia adelante y
hacia atras.
13.

u u
Lo 0.6 -
0.4 H
05
02
= R 1t [ e
-4 =21 0 2 4 \ oI
05 ——0.4
——0.6
——1.0
2
) 2)
u u
06 02
—0.4
oo 0.4 -
| I I l . | | | l N
-4 -2 0 2 4 -4 =210 2 4
—0.2 7+ 02
—0.4
—04
—0.6

(3) “)
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0.4
02—
| |
-4 =2 |0 2
——0.2
——0.4
®)
u u
LOf
0.8 -
0.8
0.6 —
0.6 —
04 0.4
02l 0.2+
| | | |
-4 =2 0 2 -4 -2 0
(D 2
u u
0.7+ 0.5
0or 0.4
0.5
0.4 037
0.3 02
02+
o1l 0.1 —
| | | |
-4 -2 0 2 -4 -2 0
3) 4
u u
0.5 0.5
0.4 0.4
0.3 0.3
02+ 02+
0.1 0.1+
| | | L1 1
-4 -2 0 2 -8 —6 -4 -2 0

(6)
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17.
u u
| | | |
—4 -2 o0 > 4 ' L0 : L x
—4 -2 | 2 4
05 ——0.4
-1.0+ B
——0.8
-1.5+ B
-12+
2.0+ B
—1.6 —
1
(D ?)
u u
| | | Ly | | | L
—4 -2 0 2 4 —4 -2 0 2 4
-02F -02
—04 - —04—
0.6 — —-0.6 —
—-0.8 — -0.8 —
—-1.0— -1.0
3) 4
Seccion 5.5 .
2 (o xJ(2.405x) dx 0.1057
1. Encuentre que (aproximadamente) a; = fo o ) =2 =0.78442,a, = 0.04112,a3 = —8.1366,

[J1(2.405)12 0.2695

a, = —375.2, as = —6470.9. La quinta suma parcial de la serie da la aproximacién z(r; 1) & 0.78442J,(2.405r) cos(2.4051)
+ 0.04112J4(5.520r) c0s(5.520r) — 8.1366J (8.654r) cos(8.6541) — 375.2Jy(11.792r) cos(11.792f) — 6470.9J,(14.931r)
cos(14.931y).

La siguiente grafica muestra z(7; t) en distintos tiempos.

4000 — =

2000 — /l‘ =03
0.2 04 -0.6— 0.8 1.0

—2000

—4000
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3. Aproximadamente, z(7; 1) & 1.2534J(2.405r)cos(2.405¢) — 0.88824.J(5.520r)c0s(5.5201) — 24.89J,(8.654r)cos(8.6541) —
1133.6J0(11.792r) cos(11.792f) — 19523J(14.931r) cos(14.9317).
La siguiente grifica muestra z(7; ¢) en los tiempos seleccionados.

t=15
15,000 (< 1 =27
10,000 -
5,000 = 0.4 0.8
0 | | ! i L,
0.2 0.6 1.0
—5,000 -
~10,000 |~
=009
—15000 CA_ s
—20,000 FNC; = 42

Seccion 5.6
1. Calcule

%ao(r) = % /;7;(4 —r?)sen2 (9) do = % (4 — r2)

T -7

42 (7
oy (r) = / sen? (A) cos(nB)do = § 4 — 2 < 1 ) . )
sin =

T

452 7
Bn(r) = / sen? (0) sen(nf) do = 0.

T —7

o0

2 I 2 (1 , ) .
Ast, ,0,1) = —_— 1- N/ dé ) Jo| = t
si, 2(r.6.1) ];[Jl(m)]z (fo E(1— 1) Jo(jok§) 5) 0 ( 5ok ) cosCjoxt)

oo

+ 3 v /1 §E° = DL(jub)ds ) 1 <lj2kr> c0s(26) cos(jzkt)
= U3G2012 \Jo ?

o0

el /1 §Jp(pqg€) d8)Jg (11 r) sen(jpgt)

= PipalTp1Gpg) P Jo =77 277 r

~ 1.1081Jp(1.2025r) cos(2.40483¢) — 0.13975J9(2.760r) cos(5.52008¢)
+ 0.4555J(4.3270r) cos(8.65373t) — 0.02105Jy(5.8960r) cos(11.7915¢)
+ 0.01165J0(7.4655r) cos(14.43092t) + - - - — 2.9777J5(2.5675r) cos(26) cos(5.1356¢)
— 1.4035J,(4.2085r) cos(20) cos(8.41724t) — 1.1405J,(5.8100r) cos(20) cos(11.6198¢)
— 0.83271J,(7.398r) cos(20) cos(14.7960¢t) — - - - .

o0
+ Z sen(pb)
p=1

Seccion 5.7
o0

_1ynt+1,2
L z2(x,y, 1) = % 3 [MT” n g[(—l)" - 1]} sen (%) sen(y) cos (%\/rﬂ +4z>

n=1
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3. z(x,y,t)ZZZ{ 16 i|cos<(2n;1)x>sen<(2m;1)x>

T Lr2en - Dem — DY @en— D2+ 2m — 1)2

X sen <\/(2n - 124+ C2m - 1)%)

CAPITULO 6

Seccion 6.1

3 92
1. 81: _ka—u para0 <x < L,t > 0; u(0, t)_—(L ty=0parat > 0;u(x,0) = f(x)paraQ <x < L.
ou 8%u
3. Ezkﬁ para0 < x <L,t>O;a(O,t):Oyu(L,t):ﬁ(t)parat20;u(x,0)=f(x)para0§x§L.
X

Seccion 6.2

En estas soluciones, exp(A) = eA.

o0 2 2.2
8L 2n — Dmx —2n — 1)*m~kt
1. u(x,t) = E o~ 1F3 sen( 7 >exp< 2 )
n=1

o]

—16L 2n—1 —32n —1)27%
3. u(x,t):Z 5 sen<(n )ﬂx)exp (2n 2)7[
o 2n — Da[2n — 1)* — 4] L L
5. u(x,t) = %n2—§: icos(nx)e_4"2t 7. u(x,t) = ( )—I—Z 12 —e 0" cos (E) enT/18
o 30 on? 36+n2n2 6
o 2.2
4B 2n — N)mx —(2n — 1)*m“kt
9. 1) = = -
u(x,t) nX_:l = D sen < 7L )exp ( 12 >
11. Sustituya e*¥ +Pty(x, 1) en la ecuacién diferencial parcial y resuelva para « y f de manera que v, = kv,,. Obtiene
a=—A/2y B =k(B— A2/4).

13. Seau(x,t) = 3% 9y (x, t). Entonces vy = vyy, v(0,1) = v(4,1) =0y v(x,0) = 3% Entonces v(x, 1) =

O\I'—‘

o0 12 n
1 — 1 2.2
Z <2n7r #> sen (ruij) eT/16 g gréficas de la solucién se muestran para los tiempos t = 0.003,

— 144 + n2n?2
0.02,0.08 y 1.3.
u u
400 |- AL
200 -
0 ' ' L L x 0 | | | L,y
1 2 3 4 1 2 3 4

—200 = -2+
—400 —4H
—600 |- el
~800 |- gL

t=0.003 t=0.02



Respuestas y soluciones a problemas seleccionados

u u

10 0.0016 -

0.0014 |
0.8~ 0.0012 |-
0.6 1 0.0010 [+

0.0008 [~
04 - 0.0006 [

0.0004 -
0.21= 0.0002 |

N 0 T R
0 1 2 3 4
1=0.08 t=13

15. Sea u(x, 1) = v(x, H)+f (x) y elijaf (x) = 3x +2 para tener v, = 16v,,, v(0, 1) = v(1, 1) = 0y v(x, 0) = x2 — f(x).
(4n27r2(—1)" +2(=1)1—2— 2n2712>

o0
Entonces v(x,t) = Z 2
n=1

sen(nmx)e=107 y y(x, £) = v(x, £) 4+ 3x + 2.

n33

Las graficas de la solucién se muestran para los tiempos ¢ = 0.005, 0.009 y 0.01.

u u
50 50+
45+ 4.5
40— 40
3.5+
30 35
25+ 3.0
20 25+
1.5 1 | | | L > x 20 k= I | | | [
0 02 04 06 08 1.0 0 02 04 06 08 1.0
t=0.005 t=10.009
u
50
45+
40+
35+
3.0
25
20k l | | | | X

0 02 04 06 0.8 1.0
t=0.01

R27
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17. Sea u(x, 1) = e~A'w(x, ). Entonces w, = 4w,,, w(0, 1) = w(9, 1) = 0y w(x, 0) = 3x. Obtenga

&, 54(—1)n ! NIUXN  _4n2721/81
wx, 1) = Z o sen (T) e - Las graficas comparan las soluciones en los tiempos ¢ = 0.008, 0.04
n=1

y0.6parad =1 1y3.

u
_1 u
25 | A=i~ A=l
7 20 |-
20 AL
15 A=l
B AZ3 ~
15 A
10 - 10 =
5+ S
| | | | . | | | | .
0 2 4 6 8 0 2 4 6 8
t=0.008 1=0.04
u
A=1
S
10
8_
6 A=/1
4_
A=3
2 =
| | | | .
0 2 4 6 8
t=0.6

o o

1 1—(=D" 4 1—(=D"

19. u(x,t) = E [Q% (—1 +4n?t + e*4”2t)] sen(nx) + p E <%> Sen(nx)e’4”2t. Las graficas
n=1 n=1

comparan las soluciones con y sin el término fuente, para los tiempos r = 0.8, 0.4 y 1.3.

u u
0.25 —
Con fuente 0.5
0.20 04—
0.15 03
Sin fuente
0.10 — 02+
0.05 ~ 0.1 —
| | | | | | X | | | | | |
0 05 1.0 15 20 25 3.0 0 05 1.0 15 20 25 3.0

t=0.8 t=04



21, u(x, 1) =

n=1

0.30 —
0.25 —
0.20 —
0.15—

0.10 —

0.05 7

oo

50 1—(cos5)(—

Respuestas y soluciones a problemas seleccionados

0 0.5

n"

n373 n?x2 —25

1.5 20 25

t=1.3

3.0

(<25 +n?x%t 25677125 ) sen (257

s 4(=1D" +2 NIXN\ 272425 . . .
+ Z —250 ———=— ) sen (T) e VT2 Las gréficas comparan las soluciones con y sin el término fuente,
n=1

n373

para los tiempos ¢ = 0.7, 1.5, 2.6 y 4.2.

u / Sin fuente
12 —
10— Con fuente
8 -
6 -
4 —
2 —
| | | |
0 1 2 3 4 5
t=0.7
u
/Sin fuente
5 —
4 —
3 Con fuente
2 -
1 -
| | | | |
0 1 2 3 4 5
t=2.6

/ Sin fuente

Con fuente

X
0 2 3 4 5
t=1.5
3
2 Sin fuente
1 /Con fuente
0 | | | L,

2 3 4 5

1=42

R29



R30

23.

25.

27.

Respuestas y soluciones a problemas seleccionados

128 ndwd ni 3

00 1622 00
27 (—1 n+1 16 2 Zt 9 16n“m<t/9 -9 1= (="
w(x. 1) = Z (=D ( n-m-t + 9e cen (%)—1—21( Z ( (=D )sen (nrrx>e_16n2n2t/9.
n=1

n=1
Las gréficas muestran la solucién con y sin el término fuente, en los tiempos ¢t = 0.05y 0.2, con K = %

0.035
0.030
0.20 |~ 0.025
0.15 — 0.020
0.015
0.010

0.05 -~ 0.005
T R N R R T L N
0 05 10 15 20 25 30 0 05 10 15 20 25 30

t=0.05 r=0.2

0.25 —

/Con fuente

/ Sin fuente

0.10 —

En lo subsiguiente, j =1,2,...,9.

ujo: 0.009, 0.032, 0.063, 0096 0125 0.144
0.147. 0. 128, 0.081

u;,: 0.0125, 0.034, 0.0635, 0.095, 0.1225

0. 14, 0.1415, 0.121, 0.0725

u;,: 0.01475, 0.064125, 0.089, 0.094, 0.1195

0. 136, 0.136, 0.114, 0.0665

u;5: 0.023381, 0.058, 0.084031, 0.099125, 0.11725
0.13188, 0.1305, 0.10763, 0.06175

En lo subsiguiente, j =1,2,...,09.

ujo: 0.098769, 0.19021, 02673 0.32361, 0.35355

0. 35267 0.31779, 0.24721, 0.14079
u;,;:0.096937, 0.18622, 0.26211, 0.31702, 0.34585

0.34417, 0.30887, 0.23825, 0.13220

u;j,: 0.095124, 0.18307, 0.25697, 0.3105, 0.33822

0. 33577 0.30004, 0.22939, 0.12566

u;5: 0.09330, 0.17956, 0.25188, 0.30405, 0.33062

0. 32745 0.29131, 0.22112, 0.12018

Seccion 6.3

11.

1
b4

(x,1) /OO 8 cos(wx) —o’kt g
Culx, )= — —_— wx)e 13)
0 (16 + a)z)

cos(wx)

o0 |:< 8 cos3 (w) — cos(w) + 4w sen(w) cosz(a)) — 2w sen(w)
u(x,t) = / P cos(w)
0

w?

_ (i —2sen(w) cos3 (w) + sen(w) cos(w) + 8w cos? (w) — 8w cos? (w) + w)
T »?

sen(a)x)j| e_wzk’ dw

2 [ 1) 2
cu(x,t) == sen(wx)e ¥ do
(x, 1) JT/() 2ol (wx)
2 (1 - h 2
Lou(x,t) = —/ 1= costhe) sen(wx)e K dw
7 Jo 1)

4 [oo
. u(x,r) = —/ L“ sen(a)x)ef“’zle*tz/2 dw
T Jo (14 w?)

t
u(x,r) = / 2(t — t)erfc < ol ) drt, en donde erfc es la funcién error complementaria.
0 2kt
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Seccién 6.4
> 2 1 2
L. U(rt) = Z m f $2J0(jn.§) dg | Jo(jnr)e™/n";1a quinta suma parcial, con valores aproximados insertados,
1Un 0
n=1
esU(r, 1) ~ 0.8170J(2.405r)e =385 _ 1.1394J0(5.520r)e 30471 +°0.7983 1o (8.654r)e 1489 — 747 Jo(11.792r)e 13904 4
0.6315J9(14.931r)e 22293 Se muestra una grifica de esta funcidn para los tiempos r = 0.003, 0.009, 0.04 y 0.7.

U
0.8 - t = 0.003
0.6 -
t=0.009
0.4
=004
02
=07, | | L,

0 0.2 04 06 08 1.0

00 1 .
2 .
3. U(,t) = Z m (/ EO — SZ)JO(jné;‘) dé) Jo (%r) e_fr%’/ls; la quinta suma parcial, con valores aproxi-
1Un 0
n=1

mados insertados, es U (r, 1) ~ 9.9722.J0(2.405r/3)e > 78/18 _ 1,258 J(5.520r /3)e—30-471/18 1 0.4093 J(8.654r /3)e~74-891/18
0.1889J(11 .792r/3)e_139'04’/18 + 0.1048J(14.93 1r/3)e_222'93’/1 8 Se muestra una gréfica de esta suma parcial para
los tiempos ¢ = 0.003, 0.009, 0.08,y 0.4.

u
7=0.003
_1=0.009
8 —
6 -
1=008" -
4 -
t=0.4\
2 -
L L N,

0 05 10 15 20 25 3.0

Seccion 6.5

L ou(x,y,t)= Z bum sen (?) sen (%) e Pkt donde By = (% + %) 7ty
1

A n=11(m=L
Bnm = —/ / f(x,y)sen(nmwx/L)sen(mry/K)dxdy.
LK Jo Jo

o0

4 8(—pmtl

— ) m sen(x) sen(my)e_(1+m2)t.
o Qm+ D2@2m —1)2

3. ulx,y) =

CAPITULO 7

Seccion 7.1

L V2(f+8) =(f+&xx +(f+8)yy = (frx + fyy) + (gxx + &yy) = V2 f +V2gy VZ(af) = (@f)xx + (@f)yy =
a (frx + fyy) = aV2f.
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a ) P 2x ad 2x y2 —x2
3. Calcule — In =y — =2 .
ve gy N = Y (x2+y2) o2+ y2)2
Similarmente o2 ( 2 ) 22 ) Entonces V2 In(x2 + y2) = 0, siempre que x2 + yZ # 0
— = . X =0, X .
"2 \x2+2 2+ y2)2 Y preq Y

2u  1ou 1 3%

5. Recuerde que, en coordenadas polares, la ecuacién de Laplace es — + — + — —= = 0. Es rutina verificar por
a2 " roar | r2 062

sustitucion que las funciones dadas son arménicas.

Seccion 7.2

1. u(x,y) = sen(mwx) senh(w(y —m))

—1
m
}’l( 1)l’l+l
3. ux,y) = Z 72 senh(4n71) @2n — 1) (2n+1)?

sen(nmx) senh(nwy)

_ 1 s (-DH" -1 1 nmwx nwy

+ m sen(y) senh(x)
o0

7. u(x,y) = nXZ:l cp Sen (W) senh (W), donde ¢, =
2 a Qn — Dmx

asenh[(2n — V)zb)2a] /0 Fx) Sen( 24 )dx‘
o0 n
9. u(x,y) = _—1sen(rry) senh(r(x —4)) + Y 2 (21 i )sen(nny) senh(n7x)
’ senh(4) et senh(4nm) 73n3

Seccion 7.3

o0
Loun®)=1 3. u(r6) = %nz 4 2 (g)n 2(—1)”%2[2 cos(nf) + n sen(n)]
n=

0 —T(_1\n
5. u(r,0) =— senh(rr) -|— : E (%)n %[— cos(nf) — nsen(nd) + e cos(nd) + " n sen(nb)]
n

7. u(r,0) =1+ Z ( ) ( ) [nzyﬂ( 1" sen(nf) — 6(—1)" sen(nh)]

9. En coordenadas polares, el problema es vy (r,0) =0parar <4,U(4,0) =16 cos? (6). Esta tiene solucién U (r, ) =
8+ rz(cos2 6 — %). En coordenadas rectangulares, la solucién es u(x, y) = %(x2 — y2) + 8.

11. En coordenadas polares, la solucién es U (r, 0) = 2 (2 cos? 0 — 1), entonces u(x, y) = x2 - y2.

Seccion 7.4

1 37 3 3
L 2’ T - d§ =9.8696/m;u | —, /3 ) ~ 4.813941647/7,u(0.2, 7 /4) ~ 8.843875590
u<2 ﬂ) 871/(; 5/4 — cos(§ — ) § /" u<4 m/ ) [7,u(0.2,7/4) /7

3. u(d, ) ~ 15525/, u(12, 31/2) ~ 302/, u(8, w/4) ~ 111.56/7, u(7, 0) ~ 248.51 /7

5. Conu(r,6) = " sen(n6). caleuleu(R /2, 7/2) = - sen(u/2) = - fzn il i R" sen(ng) di
. Conu(r,0) =r'"* sen(nf), calcule u b4 —sen nmw sen(n .
27 Jo RZ+ R2/4— R2cos(E —1/2)
2
. . . . . 1 2m sen(n&)
Dividiendo entre las potencias comunes de R y resolviendo paralaintegral, obtiene — — sen(nn/2) = —_—
2n 3 0o S5—4sen(§)

T (E)_/Z”; sy d (,l)n_/z”; (n) d
300\ 2) Ty 5T dence) 8 53(2n ) =)y Txdcos) SH) 94
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Seccion 7.5

4—x 44x
1. u(x,y) = arctan — arctan
T y

3. u(x,y) = X/‘OO< ! - ! )6’75 cos(§) d&
mJo \y2+E-x02 Y +E+x)?

2 /OO (/OO f& sen(wé)dé) sen(wx)e” “dw + ;/OO (/-oo g(&) sen(wé) dé) sen(wy)e” " dw
0 0

7. u(x,y) = Be™ ysen(x)JrZ—i (1 —(=D") (1 — e ™) sen(nx)

n=1

| —

)]para—oo<x<oo,y>0

5. u(x,

=
<
N
II

[\

o
9, Usando unatransformada finita de Fourier en senos en x, obtenga u(x, y) = — Z |:<—— + 6—) e -2

11. u(x, y) 2/00< L ) (@y)e~®* d
. ulx, = — sen(wy)e w
Y 7 Jo 1 + w? Y

13. u(x,y) = /8 A d& = A|: arctan (x_8>+arctan <x—4)]
u(x, —_—
Y 4 ¥+ (E—x)? ™ y y

Seccion 7.6

4(_ l)n+m

1. Vs
ey = ,,X;mZ] nmm? senh (n\/n +m2)
3. u(x,y,z)=22|: 16

i Lm2@n—D@em — 1) senh(2/(2m — )2 + 72(2n — 1)2)

sen(nx) sen(mmy) senh(wv n2 + m2z)

x sen((2n — 1)zx) sen((2m — 1)z) senh(\/(2m — D2+ 7202n — 1)%)}

Py 1

72(2n — l)(2m— 1) 2
n=1m=1 senh (n\/% + 712(2}’1 _ 1)2)

_ —1)2
x sen((2n — 1) x) sen (M) senh (\/% +722n — 1)22)

Seccion 7.7

2, HA
1. u(p,¢) = Z ﬂ

( f (arccos (£)) Pn@)ds) (—) Py (cos())
n=0

2
~2.93484 — 3.7011A (%) Pi(cos(@)) + 1.1111A (%) Py (cos())

—0.53974 (%)3 P3(cos(¢) + 0.3200A (%)4 Pa(cos(¢)) — 0.2120 (%)5 Ps(cos(@)) + - --

3. u(p, ) ~ 6.0784 — 9.8602 (%) Py (cos(¢)) + 5.2360 (%)2 Py (cos())

3 4 5
— 2.4044 (%) P3(cos(¢)) + 1.5080 (%) Py(cos(¢)) — 0.9783 (%) P5(cos(¢)) + - --

1
S. ulp, ) = (TlRl)[ Ry — 1]

Ry —
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Jo APyu—i(@)dx  (4n— DA
R21=1 [Py, (x))2dx  R¥7

o0 1
7. u(p, ) = Za2n—1:02n_1P2n—1(003((ﬂ))»d0ndea2n—l = /0 Pyp—1(x)dx.

o
_ dn — 1
9. u(p, @) = Y azn19™" " Poni(cos(p), donde azy—y =~ / £ (arccos(x)) Py 1 (x) dx.
Seccion 7.8
4
1. Como fol 4cos(mrx)dx = 0, puede existir una solucién. Encuentre u(x, y) = ———————— cos(mwx) cosh(mw (1 —
—1 senh ()
1
3. Como féT cos(3x)dx = foﬂ (6x—3m) dx = 0, puede existir una solucion. Encuentre u(x, y) = Th@) cos(3x) cosh(3(mr—
— T
o0
12 (=" -1
+ — —————Co0s cosh + C.
) 2 o % senh(n) S5 (1) cosh(ny)
2 n my
n“re (=" +6(1 —(=1)
S. 2 sen(nmy) cosh 1—
u(x, y) = Zl ( e g ) (ny) cosh(n (1 — x))
r 2 2
7. u(r,0) = —a0+ - <E) (2cos o — 1)
L[ a2 2y, €]
9. ulx,y)=— In(y* +(§ —x)7)e “'sen(§)d§ +c
27 J 0o
11. u(x,y) = / ag cos(wx)e” Y dw + ¢, con a, = ——/ f(&) cos(wé) d&
0 Tw Jo
CAPITULO 8
Seccion 8.1
L 26—18 3. (1+18) 5 4+228 7.6—i 9. g5 (—1632+2024i)
11 i = (P2 = 1" = 1M = ii% =i, como i™ = 1;i*F2 = ¥ (i%2) = —1; i3 = iM% = —i

13. > —bp2+b+1;2ab—a 17. % +2n7r 19, 7 — tanfl(g) +2nmw 21. w+ 2nmw
23. 24/2[cos(37/4) + i sen(3/4)]  25. /29 [cos(— tan~1(2)) + i sen(— tan*l(g))]

27. /65 [cos(tan_1 (%)) +i sen(tan_1 (%))]
1

Izl

—w

29. Sugerencia: Si|z] = 1,entonces zz =1y

Z_ —_—
1—-zZw

77 — wz Z—w

Z—w‘

Seccion 8.2

1. Circulo de radio 9 con centro (8, —4) 3. Circulo de radio % 65 con centro (0, —%) 5. Eleje real parax <0
7. Larectay=x+2 9. Larecta8x + 10y +27=0 11. El semiplano3x +y +2 >0

13. K es el semiplano cerrado 2x + 8y + 15 > 0; todo punto de K es un punto limite de K, y no hay otros puntos limite;
los puntos frontera de K son aquellos puntos en la recta 2x + 8y + 15 = 0; K es cerrado pero no compacto (ya que K
no es acotado).

15. M consiste de todos los puntos que pertenecen a la recta y = 7; los puntos limite son puntos de M y puntos en la recta
y = 7; los puntos frontera son x + 7i; M es abierto; M no es compacto.

17. U consiste de todos los puntos x 4 iy con 1 < x < 3; los puntos limite son puntos de U y puntos en la recta x = 1;
los puntos frontera son puntos en las rectas x = 1 y x = 3; U no es abierto ni cerrado; U no es compacto (ni cerrado ni
acotado).

19. W consiste de todo x +iy con x > y2. Estos son puntos (x, y) dentro y a la derecha de la pardbola x = y2. Este conjunto
es abierto, y no compacto. Los puntos limite son todos puntos de W y puntos en la parabola; los puntos frontera son los
puntos en la pardbola.

21 1+2i 23.2-i 25 -1 27.3i

29. Sinespar, asaber n = 2m, entonces j2n — j4m — 1, de manera que {1} es una subsucesion convergente; sin = 2m +1,

entonces i 2" = (%2 = ;2 = —1, asi {—1} es otra subsucesion convergente. Hay otras.
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CAPITULO 9

Seccién 9.1
1. u = x,v =y — I; las ecuaciones de Cauchy-Riemann se satisfacen en todos los puntos; f es diferenciable para todo
complejo z.

3. u =+/x2 4 y2, v = 0; en ninguna parte; en ninguna parte
5. u=0,v= x2 + yz; las ecuaciones de Cauchy-Riemann se satisfacen en (0, 0); en ninguna parte

7. u =1, y/x; en ninguna parte; en ninguna parte 9. u = x2 —y2 v =—2xy;(0,0); en ninguna parte
X
11. u = —4x + 5 7.0 =—4y — — Y 53 las ecuaciones de Cauchy-Rieman se satisfacen en todo z distinto de
xXc+y x“+y

cero; diferenciable para z # 0

Seccion 9.2

1. 2;z4+3il <2 3. 1;]z—143i|<1 5. 2;]z+8i| <2 7. 1;]z+6+2i] <1
9. No; i estd mds cerca de 2i que de 0, de manera que si la serie convergiera a 0 tendrfa que converger a i.

11. cpy1/cn es 2 0 %, dependiendo de si n es impar o par, de manera que c,]/c, no tiene limite. Sin embargo,

o
lim |cpl 1/n =1, de manera que el radio de convergencia es 1 por el criterio de la n-ésima raiz aplicado a E |cn 7" ‘
n— o0
n=0

Seccion 9.3

1. cos(1) +isen(l) 3. cos(3)cosh(2) —isen(3)senh(2) 5. & cos(2) + ied sen(2)
7. $[1 —cos(2)cosh(2)] + 1isen(2)senh(2) 9.7 11. u= 7Y cos(2xy), v = e Y sen(2xy)
sen(x) cos(x) cosh(y) senh(y)
, U=
cos2(x) cosh2(y) + sen?(x) senhz(y) cos2(x) cosh2(y) + sen?(x) senhz(y)

1. N2 /1 \2
15. sen(z)+ cos?(z) = (Z(elz — e‘_lz) + <§(elz + e_’z> =1

13. u =

17. z=1In(2) +1i (% + 2nn), n cualquier entero  19. z = In(2) + (2n + 1)7i, n cualquier entero

Seccion 9.4

n — 1

1. In4) + i, In(4) + %m 3. In(5) + 2n + Di, In(5) + =
+[@n + D +tan~ (= $)1i, In(v/85) + [(7 + tan~! (—2))i

ol arg(2) —arg(w))

. z Z
7. Sugerencia: en formapolar, — = ‘—
w w

Seccion 9.5
L je—@nm+n/2) 3 ~Qurtn/2) 5, Senw+3m/4) [COS (3111(2)) isen (3ln(2)>]
2 2
7. cos (% + %) +isen (% + %) 9. 16e@tD7 [cog(In(4)) — i sen(In(4))]

11. 2 [cos (@) +isen (@)] 13. cos(nz/3) + i sen(nm/3)

2kmi/n

15. Las raices n-ésima de la unidad son w; = e para k = 0,1,...,n — 1. Ahora use el hecho que para z # 1,

n—1 n

7" —1 .
szz . ’ConZ:eZm/n.
k=0 <

R35
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CAPITULO 10

Seccion 10.1

La gréfica de las curvas en los problemas 1, 3, 5, 7 y 9 se muestran abajo.

1. Punto inicial 6 — 2i, punto terminal 2 — 2i; simple y no 3. 1+i,3+ 9i;simple y no cerrado;
cerrado; tangente I''(f) = 2ie'! = —2sen(¢)i + 2 cos(r)j [V(t) = 142ti =i+ 2ij
y y
ol | | | L, x o
2 3 4 5 6 8
7 —
05—
6 —
5 —
—1.0—
4 —
~15 i
. H 1
= | | |
—20 1.0 L5 2.0 2.5

5. 3, 3; cerrado pero no simple; 7. —2 —4i,4 — 16i; simple y no cerrado;
®'(t) = —3sen(t) +5cos(t)i = —3sen(t)i+ 5 cos(t)j V(t)y=1—ti =i—tj
y y
L 1o L
4 —
-2 2 3
_2 —
2+ -4
| | | | | L -6~
-3 -2 -1 0 1 2 3 -8
2 —10—
4T —14}-

9. 1, cos(2) — 2sen(4)i; simple y no cerrado;
I'(t) = —sen(t) — 4 cos(2t)i = — sen(t)i — 4 cos(21)j

y
1.5+
1.0 —

—0.5

| | | | | | [
—-04-02 0 02 04 06 08 /1.0

—05F
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Seccién 10.2
1. 8-2i 3.3(1+i) 5 Y(=13+4i)) 7. —J[cosh(8) - cosh(2)]

9. — 2l (cos(2) +isen(2)) — e(cos(2) —isen(2))] 11. 10+210i 13. Fi 15 3(1+1)

16. 1/4/Z (o cualquier nimero grande)

Seccion 10.3
1.0 3.0 527 7.0 9.0 11. 4mi

Seccion 10.4
1. 3270 3. 2mi(—8+7i) 5. —Znez(cos(l) —isen(l)) 7. wi(6cos(12) —36sen(12))

9. =512 (1 —2i)cos(256) 11. ———391 13. 27

CAPITULO 11
Seccion 11.1

1"
1. Z L22"22”; |z| < oo (esto es, la serie converge para todo complejo z)

|
0 2n)!
o0 1 o0
BN . n.

3. Zm(z—m |z —4i| <17 5. Z(n—{—l)z Dzl < 1

n=0 n=0
7. 3+(0=20)z—-24D)+@—-2+D%zl<oo 9. 63—16i +(=16+2i)z—1—i)+(z—1—1i)%|z| < 00

oo

(=n" N0+,
11. Zm(z-f—l) n+ ,|Z| < o0

2n— M1
13. 1+zz+2( i 12"+1>;|z|<00

1 (2n)! 2n 4+ 1)!
15. Fije z y piense en w como la variable. Defina f(w) = “¥. Entonces " (w) = z"¢*¥. Por la férmula integral
] w n
de Cauchy, f (”)(0) =7 = n_ ¢ ———dw, con I' el circulo unitario alrededor del origen. Entonces SE
2mi Jr wn—H n!
1 etV (7 2 1 z" zw i 7" oW
i - T dw, asf (F) = %[F n!w”_He dw. Entonces 2(:)(11' = 5 Z/ n'w”‘H dw =
n=
1 © 1 Zw
i <Z—’<£)n>e—dw:
wi Jr ‘gt \w w
1 1 .
— / EWH/W) gy Ahora sea w = ¢!f en T para obtener el resultado.
27i JT w
17. El maximo debe alcanzarse en un punto frontera del rectingulo. Considere cada lado. En el lado vertical izquierdo,
x=0y |ez| = |e!Y| = 1. En el lado vertical derecho, 1101y | = ¢ tiene mdximo e. En el lado horizontal inferior,

|eZ| = ¢* paraQ < x < I, con miximo e. En el lado horizontal superior,
|ez| en este rectdngulo es e.

Secciéon 11.2

1 1H" n (_1);1+14n 2n—2
LZ +Z(2)n+l(z—l) paraO<|Z—l|<2 3nzle ;|Z|<OO
1 = 2i
~73 —(z—-1;0<|z—1] < 7.Z—2+7§(+1)‘0<|z|<00 91+—10<|Z_’|<°°

CAPITULO 12
Seccion 12.1

1. Polode orden2 az =0 3. Singularidad esencial en z = 0 5. Polos simples en i y —i, polo de orden 2 en 1
@2n+1)

7. Polo simple en —i, singularidad removible en i 9. Polos simplesen 1, —1,i y —i 11. Polos simples en Tﬂ
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oo
13. f tiene desarrollo de Taylor f(z) = Z an(z — zp)" en algtn disco abierto alrededor de z( y g tiene un desarrollo de

n=0
00

b_
Laurent de la forma g(z) = 1
7 —

+ Z by (z—zp)" enalgiin anillo 0 < |z — zg| < . Entonces fg tiene un desarrollo
n=0

b_ o
de la forma 2-140 + Z cn(z —z0)" enelanillo,y b_jag #0yaqueb_j #0yag = f(z0) #0.
LT%0 n=0
15. Escri _ 3 » g(@) I g@ P
. Escriba h(z) = (z — z9) ¢ (z), donde g es analiticaen zg y ¢(zg) # 0. Entonces —— = — 3 algtn anillo
h(z)  (z=2z0)° q(@)
o0
0 < |z — zg| < r. Ahora g/q es analitica en z(, y asf tiene desarrollo de Taylor g(z)/q(z) = Z cn(z — zo)" en algin

n=0
disco alrededor de zg. Mds ain, cg # 0 ya que g(zg) # 0y g(zg) # 0. Entonces, en algtin anillo alrededor de zg,

22 < -
= Y ez — 20"
h(z)  (z—z0)3 Y; " 0
Seccion 12.2

1. Elresiduoen les %(16 —12i), yen —2i, %(9 + 12i); el valor de la integral es, por tanto 27i.

3.0 5 .27 7.27 9 —wij4 1.0 13. 27 15 (8 — 1)
o o 2
18. Escriba g(z) = Y an(z —20)" y h(z) = Y _ ba(z — 20)", con ag # 0y b3 # 0. Del problema 23, seccién 12.1,
n=0 n=3 ) )
(2) a . > > >
% = 23 dn(z=20)", cond_3 # 0. Escriba g(z) = Zoan (@=20)" = (2 bn(z — Zo)”) Zg dn(z = 20)"
n=— n= n= n=—2:

eiguale el coeficiente de (z —z¢)" de laizquierda con el coeficiente de (z —z()" en el producto de la derecha. Obtiene
ay =d_3b3z,ay =d_3bs+d_2b3,ay =d_3b5+d_obs+d_1b3. Use esto y resuelva para d_; en términos de los

1 1
coeficientes ag, ay, ap, by, ..., by y use el hecho que a, = —'g(”)(zo), by = —'h(") (z0)-
n! n!

Seccion 12.3
1. 27i 3.0
5. cos(3t) 7. 3%e_4t — 3%€2t + %te” 9. %tzg—sr

1L 27/v3 13.27/3 15 lne2Zeen2v2) 17 —m/128 19, :_2(1 +5¢74)

2 167 cen 3 17 cos(/5) + 16 cos(37/5)
' 289 + 168 cos(2r/5) + 136 cos(4r/5) + 32 cos(67r/5)

5

5

e¢]

. 1
23. Res(el® /(2 + 1), i) = —Lie™@, asf/ C;;(fl) dx = 2mi (—Eie*“> — e .
—0Q

25. Con las sustituciones trigonométricas obtendra —4i f dz,conI el

r (@ = pH2? +2(@? + 1z + (@ — p7)
circulo unitario. Los dos polos dentro del disco unitario son z = =+ g%a, y el residuo en cada uno es —i /2«f3. Por tanto,
o

el valor de la integral es 27i(—i/af), 0 27 /af.

2 . . .
27. Por el teorema de Cauchy, fl‘ e % dz = 0, donde I es una trayectoria rectangular. Escriba la integral sobre cada
pedazo de la frontera (empezando abajo y recorriéndola en sentido contrario al movimiento de las manecillas del

R 2 /3 R4i 2 —-R N2 0 Ri 2
reloj), tendré / e ¥ dx—i—/ e (Rti) idt—i—/ e~ WA dx—}—/ e~ TR+ 0 — 0. Sea R — o0. La
—R 0 R B

B
. —_R2 2 9 . . .. .
segunda integral es e R / el e Rt dt, y ésta tiende a cero conforme R — oo. Similarmente, la cuarta integral
0
o . . © 2 g 2Bix
tiene limite cero. La primera y tercera integrales dan e " dx— e " ele dx = 0. Entonces /7 =
—00 —00

[e¢) o0
e / e—)‘2 cos(2Bx)dx + ie_ﬂ2 / e_"2 sen(2fx) dx. La tdltima integral es cero ya que la integral es impar.
—00

—00

oo
2
Finalmente, escriba /7 = 268° / e~ cos(2Bx) dx, ya que este integrando es par. Ahora resuelva la integral.
0
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P2
28. Por el teorema de Cauchy, / e'*" dz = 0. Ahora integre sobre cada pedazo de T, recorriéndola en sentido contrario al
r

30.

R, /A5 i .
movimiento de las manecillas del reloj y empezando con el segmento [0, R]: / e dx + / R Rk d& +
0 0

i(reirr/4)2 l]T/4 _ . . .. - P
e e dr = 0. La segunda integral tiende a cero conforme R — 00, y en el limite la dltima ecuacién se
R
© 2 2 1
e dr = %—(1 + i)zﬁ. Iguale la parte real de cada

: O P V2 oo
convierte en [cos(x®) +isen(x“)]dx = 7(1 +1)
0
lado y la parte imaginaria de cada lado para evaluar las integrales de Fresnel.

1 1
los dobles en E <—(x +./a? - ﬁ2>, pero solamente E (—oz +/a? - /32> estd encerrado por el circulo unitario I'.

—diz 1 [ ; 2 1
Calcule Res | ——————, — | —a + a? - 2)) = ——%____ Entonces / ——df =
((ﬂz2 +20z+ 72 B ( g (o= 0 (et peos(0))?

2ma

(a2 _ ﬂ2)3/2 :

2 1 1 1 b4
——df = / —dz = —4i/ ————— dz. El integrando tiene po-
/0 (@ + Beos(®))? - ( ﬁ( 1))2 iz r (B2 + 20z + p)? £ P
o z

2 1 b4 1
Finalmente, verifique que / —_— do =2 / —— de.
0 (a+ Bcos(9)) 0 (a+ Bcos(d))

CAPITULO 13

Seccion 13.1

1. Las imdgenes estan dadas por los siguientes diagramas.

y v
LD ¢ 2L
Al s (o | A 5
X u
s —e™ —1 1 e’
(a)
y v
D12 ¢ ¢
D’ \l .
X £ u
—1 1 A'y
A
-z B B’
(b)
y v C'// 621
<D C D!
“TB B A’ B,
A 1 1 e
(©)
y v
o N
N 40 ™
) c' D A B

(d)

R39
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5. El sector que consiste de todo w con un argumento en [7/2, 7].
) 1 1 1 1 ) )
7. Sugerencia: Haga z = rei® y obtenga u = S\ + " cos(k), v = s\~ sen(k), donde se localiza la semirecta 6 = k.

9. Todo el plano w sin el origen.

Seccion 13.2

348 —(1+4i)z 16 — 16i + (=7 + 13i)z 4 =751 + 3+ 22i)z
wW=—————————"""" . W = s W =
447 — 2+ 3i)z 4—-8i+(—14+2i)z 21 +4i+ 2+3i)z
_ _Ho 1o 208 2 B, _ 377
7.0=10 9. (u 21) +(v+63) = 3960 11. w—1) +(v+4) =76

13. w = 7 invierte orientacion.

también es una transformacion lineal fraccional.

b dw—b
15. Siw = @t y ad — bc # 0, entonces z = — d
cz+d cw—a

az+b
cz+d

17. Sugerencia: Pruebe que z = tiene una o dos soluciones, dependiendo de si ¢ es 0 no cero. Una traslacién no tiene
punto fijo.

En cada uno de los problemas del 19 al 21, hay muchas soluciones, una de las cuales se da aqui.

1 1 1
19. 2> — > —4-—> —4-—+i=w 21, z—iz—>iz—2-Ti)=w
Z Z b4

Seccion 13.3

En los problemas 1, 3 y 5, hay muchos mapeos que tienen la propiedad pedida. Se da uno de tales mapeos en cada caso.

z+2i ) z—1

- fa Evald L gy = D
7. w=zl3 9. Sugerencia: Evalief(1),f(—1),f(0),yf(c0)y entonces use el resultado que A (=" dt = T )

3242460 —4i(z 41
Lw=2s41—i 3 w= iF2FO g _ ZHGEHD

para enteros positivos m y n.

Seccion 13.4

o0
L ulx,y) = %/_OO %dl, donde u(x, 0) = g(x).

3. u(x,y) = L fh g(xg + Rcos(t), yo + R sen(t))
2 Jo
§ R — (x —x0)* = (v = 30)? }
R? + (x — x0)> 4+ (y — y0)? — 2R(x — xq) cos(t) — 2R(y — yp) sen(r)
1 27 [y cos(t) — rsen(t)](1 — r2)
5. u(rcos(0),rsen(9)) = o /0 152 2rcost —0)
7. e y) = 1 L (1 = j¢]) cos(rt/2)
’ 8 /-1 1+4senZ(nt/2)
4senh(mx/2) cos(my/2)[1 + senz(rrt/Z)] + senh(mrx) sen(wry)[1 — sen(mwt/2)]
|:senh2(rrx/2) +sen?(rry/2) — 2 cosh(rx/2) sen(wy/2) sen(rwt/2) + senz(m/Z)i|

Seccion 13.5

1. Con a = Ke? , las curvas equipotenciales son ¢(x, y) = K[x cos(d) — y sen(d)] = constante. Estas son lineas de la forma
y = cot(f)x + b. Las lineas de corriente son ¥(x, y) = K[y cos(f) + x sen(¢)] = constante, que son lineas y = —tan(d)x + b.
Velocidad = f'(z) = Ke—#. No hay fuente o sumidero.

3. ¢(x, y) = cos(x) cosh(y),¥(x, y) = —sen(x) senh(y). Las curvas equipotenciales son las gréificas de y = cosh—!1(K/ cos(x)), las lineas
de corriente son gréficas de y = senh—!(C/ sen(x)).

5. ¢(x, y) = K1n |z — 29|, ¥(x, ¥) = K arg(z — zo). Las curvas equipotenciales son circulos |z — zo| = r y las lineas de corriente son
rayos que emanan desde z; f c —vdx + udv = 27K, con C el circulo de radio r alrededor de z.
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X ) y . . ., X
7. f(2) =k [x + - +i (y — —)] Las curvas equipotenciales son las griaficas de x + — = ¢, las
P 2442 X212

=d.

lineas de corriente son gréaficas de y — - =
xX“+y

X b
9. Las curvas equipotenciales son las gréaficas de K |:x + ﬁ] ~ arg(z) = c. Las lineas de corriente son graficas
X b4

b 1 ib
de k [y - %} + ——1In|z| = d. Los puntos de estancamiento ocurrren donde f'(z) = k (1 — —2) + 2 0,0
xX*+y 4 Z 2z

ib b?
N A
‘ dkr 16722
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funciones suaves, 61-62
Andlisis complejo, 375-557
funciones, 401-435
integracion, 437-467
mapeos conformes, 517-557
nlimeros, geometria y aritmética de los,
375-399
representacion en serie de funciones, 469-484
singularidades, 485-492
teorema del residuo, 492-516
Andlisis de densidades de potencia espectral, uso
de TRF, 161
Andlisis de Fourier, 49-101, 103-165, 167-211
funciones especiales, 167-211
integral de Fourier, 103-118
series de Fourier, 49-101, 147-159
transformada de Fourier, 108-147, 151-155,
160-165
Andlisis de multirresolucion, 240-242
definicion, 240
funcidn de escalamiento, 242
onduletas, construccion general de, 241-242
onduletas de haar, 240-241
Aproximaciones numéricas, 323-326
ecuacion del calor, soluciones, 323-326
Argumento, 380-382, 499-501
de niimeros complejos, 380-382
principio del, 499-501

C
Caracteristicas de la ecuacion de onda, 286-294
Ceros, 179-180, 203-205, 474-478
aislados, 474-478
funciones de Bessel, 203-205
orden de, 475-476
polinomios de Legendre, 167-185
Circuitos eléctricos, 23-26
Circulacion, flujo de un fluido, 549
Cocientes, polos de, 490-491
Coeficiente de transferencia, 313
Coeficientes, 53-54, 145-147
TFD aproximacién de, 145-147
Fourier, 53-54

Coeficientes polinomiales, resolucién de ecuaciones con,

44-48

Condiciones, 245-249, 262-265, 298-301, 305-308
ecuacion de onda, 245-249, 262-265
ecuacion del calor, 305-308,
frontera, 245-249, 305-308
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teorema, 29-30

transformada de Fourier, 123-126

version inversa, 30
Corrimiento en el tiempo en la transformada de Fourier,

teorema de, 113-115

Cosenos, 75-78, 106-108, 136-137, 139

integral en, 106-108

serie de Fourier en, 75-78

transformada de Fourier en, 136-137, 139
Curva, 437-441, 551
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equivalente, 439-441

funciones coordenadas de una, 437-438

plano complejo, en, 437-441

punto inicial, 437

punto terminal de, 437

simple, 439
Curvas equipotenciales, 551

D
Delta de Dirac, 33-38, 126-127
impulsos unitarios, 33-38
propiedad filtrante, 34-36
transformada de Fourier, 126-127
Derivadas, 67, 118-121, 405-407, 462-464
cotas de, 463-464
de funciones complejas, 405-409
de orden superior, 462-464
derechas e izquierdas, 67
férmula integral de Cauchy para, 462-464
teorema de Liouville, 463-464
transformada de Fourier de, 118-121
Desarrollo de Laurent, 481-484
Desarrollos, 174-177, 205-208, 211-231, 481-484
Fourier-Bessel, 205-207
funcién propia, 211-221, 221-225
Laurent, 481-484
onduletas, 231-234
ortogonalidad, 174-175, 206-207
series de Fourier-Legendre, 175-178
teoria de Sturm-Liouville, 211-221
Desigualdades, nimeros complejos, 379
Desigualdades de Bessel, 84-86
Desplazamiento, 255-258
cero inicial, 255-257
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conduccién del calor, 305-308
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conjunto cerrado, 388-389, 391
conjunto compacto, 397-398
conjuntos acotados, 397
conjuntos de, 383-398
convergencia, 392-394
discos, en, 385
distancia entre, 384-386
ecuacion |z — a| = |z — b|, 384-386
frontera, 389-390
inicial, 437
interior, 387
limite, 391-393
lugar geométrico, 383-398
plano complejo, en el, 383-398
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inicial cero, 250-255
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Notacion

Los siguientes simbolos y notacion se utilizan a lo largo de este texto. Cada simbolo estd acompafiado con
la seccion en la que se define o se usa. Los simbolos usuales, como la notacion para integrales y sumas

no estan incluidas.

L[f] transformada de Laplace de f(1.1)

L[f1(s) transformada de Laplace de f evaluada
ens (1.1)

L-I[F] transformada inversa de Laplace de F'

H(#) funcion Heaviside (1.3.2)

8() funcidn delta de Dirac  (1.5)

f(xo—), f(xo+) limite izquierdo y derecho,
respectivamente, de fen xp (2.3)

S (x0), f'r(xo)  derivada izquierda y derecha,
respectivamente, de fen x, (2.3.2)

Flflof transformada de Fourier de f (3.3)

%-1[f] transformada inversa de Fourier de
f (3.3)

Bvenlf]  transformada de Fourier ventaneada
f (3.4.6)

Bven, »Lf] transformada de Fourier ventaneada
de frecorrida (3.4.6)

Fclflo fe(w) transformada de Fourier en
cosenos de f (3.5)

Fslf]o fAS(a)) transformada de Fourier en senos
def (3.9

Clflo fc(n) transformada finita de Fourier en
cosenode f (3.6)

S[flo fs(n) transformada finita de Fourier en
senode f (3.6)

D[u] transformada discreta de Fourier de
N puntos (TDF) de {u;} (3.7)

oy(f) en el contexto de las series de Fourier,
denota la N-€sima suma de Cesaro de

f (3.8.2)
Z(t) en el contexto filtrado, denota una funcién
filtro (3.8.2)

L2(R) espacio de funciones cuadrado
integrables definidas en la recta real (3.8.2)

P,(x) n-ésimo polinomio de Legendre (4.1)

T,(x) n-ésimo polinomio de Chebyschev
4.4.1)

L,(x) n-ésimo polinomio de Laguerre (4.4.2)
H,(x) n-€simo polinomio de Hermite (4.4.3)
['(x) funcién gamma (4.2.1)

J,(x) funcién de Bessel de la primera clase de
ordenn (4.2.2)

Y,(x) funcién de Bessel de la segunda clase de
ordenn (4.2.3)

y algunas veces se utiliza para denotar la
constante de Euler (4.2.3)

Ip(x), Ko(x) funciones de Bessel modificadas de
primer y segunda clase, respectivamente, de
orden cero (4.2.4)

X017 funcién caracteristica de [0, 1] (4.5.2)

Omn(t) = Y(2mt — n) funciones utilizadas para
construir las onduletas de Haar (4.5.2)

Yma(f) onduletas de Haar (4.5.2)
V2(u) Laplacianodeu (7.1)

Re(z) parterealdez (8.1)

Im(z) parte imaginariade z (8.1)
z complejo conjugado de z (8.1.2)
|zl magnitud (médulo) de z (8.1.2)
arg(z) argumentodez (8.1.5)

Jrf(z)dz integral de una funcién compleja f
sobre una curva I’ (10.2)

Re s(f, zo) residuodef enzy (12.2)
f:D — D+ fesunmapeodeDen D+ (13.1)
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