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1.1 Defi nición y propiedades básicas

En matemáticas una transformada es un mecanismo que convierte un tipo de problema en otro tipo, presu-
miblemente más fácil de resolver. La estrategia es resolver el problema transformado, después transformar 
de regreso para obtener la solución del problema original. En el caso de la transformada de Laplace, los 
problemas con valores iniciales con frecuencia son convertidos en problemas algebraicos, un proceso 
ilustrado de la siguiente manera:

problema con valores iniciales

⇓
problema algebraico

⇓
solución del problema algebraico

⇓
solución del problema con valores iniciales.

1

C A P Í T U L O 1

La transformada 
de Laplace

LA SERIE DE FOURIER DE UNA
FUNCION CONVERGENCIA DE UN
SERIE DE FOURIER SERIE DE FO
EN COSENOS EN SENOS INTEGRA

DEFINICIÓN 1.1  Transformada de Laplace

La transformada de Laplace �[f ] de f es una función defi nida por

�

para todo s tal que esta integral converja.

∫ ∞

0

e−stf (t) dt,[f ](s) =



2   CAPÍTULO 1   La transformada de Laplace

La transformada de Laplace convierte una función f en una nueva función llamada �[f ]. Con frecuen-
cia t es la variable independiente para f y s para la variable independiente de �[f ]. Así, f (t) es la función 
f evaluada en t, y �[f ](s) es la función �[f ] evaluada en s.

Es necesario convenir en usar letras minúsculas para la función de la transformada de Laplace, y su 
letra mayúscula para la función que resulta. En esta notación,

y así sucesivamente.

EJEMPLO 1.1

Sea f (t) = eat, siendo a cualquier número real. Entonces

siempre que a − s < 0, o s > a. La transformada de Laplace de f (t) = eat es F(s) = 1/(s − a), defi nida 
por s > a. ■

EJEMPLO 1.2

Sea g(t) = sen(t). Entonces

G(s) está defi nida para todo s > 0. ■

Una transformada de Laplace pocas veces es calculada directamente refi riéndose a la defi nición e 
integrando. En lugar de ello se utilizan las tablas de transformadas de Laplace de las funciones de uso 
frecuente (como la tabla 1.1) o algún software. También existen métodos útiles para encontrar la transfor-
mada de Laplace de funciones desplazadas o trasladadas, funciones escalonadas, pulsos y otras funciones 
que aparecen en las aplicaciones.

La transformada de Laplace es lineal, saca factores constantes, y la transformada de una suma de 
funciones es la suma de las transformadas de esas funciones.

F = L[f ], G = L[g], H = L[h],

L[f ](s) = F(s) =
∫ ∞

0

e−steat dt =
∫ ∞

0

e(a−s)t dt

= lim
k→∞

∫ k

0

e(a−s)t dt = lim
k→∞

[
1

a − s
e(a−s)t

]k

0

= lim
k→∞

[
1

a − s
e(a−s)k −

1

a − s

]

= −
1

a − s
=

1

s − a

L[g](s) = G(s) =
∫ ∞

0

e−st sen(t) dt

= lim
k→∞

∫ k

0

e−st sen(t) dt

= lim
k→∞

[
−

e−ks cos k + se−ks sen k − 1

s2 + 1

]
=

1

s2 + 1
.

� � �

�

�

lím lím

lím

lím

lím



TABLA 1.1 Tabla de transformadas de Laplace de funciones

 f (t) F(s) = �[f (t)](s)

1. 1

2. t

3. tn(n = 1, 2, 3, · · · )

4.
1

√
t

5. eat

6. teat

7. tneat

8.
1

a − b
(eat − ebt )

9.
1

a − b
(aeat − bebt )

10.
(c − b)eat + (a − c)ebt + (b − a)ect

(a − b)(b − c)(c − a)

11. sen(at)

12. cos(at)

13. 1 − cos(at)

14. at − sen(at)

15. sen(at) − at cos(at)

16 sen(at) + at cos(at)

17. t sen(at)

18. t cos(at)

19.
cos(at) − cos(bt)

(b − a)(b + a)

20. eat sen(bt)

21. eat cos(bt)

22. senh(at)

23. cosh(at)

24. sen(at)cosh(at) − cos(at)senh(at)

25. sen(at)senh(at)

1

s

1

s2

n!
sn+1

√
π

s

1

s − a

1

(s − a)2

n!
(s − a)n+1

1

(s − a)(s − b)

s

(s − a)(s − b)

1

(s − a)(s − b)(s − c)

a

s2 + a2

s

s2 + a2

a2

s(s2 + a2)

a3

s2(s2 + a2)

2a3

(s2 + a2)2

2as2

(s2 + a2)2

2as

(s2 + a2)2

(s2 − a2)

(s2 + a2)2

s

(s2 + a2)(s2 + b2)

b

(s − a)2 + b2

s − a

(s − a)2 + b2

a

s2 − a2

s

s2 − a2

4a3

s4 + 4a4

2a2s

s4 + 4a4

1.1 Defi nición y propiedades básicas   3
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4   CAPÍTULO 1   La transformada de Laplace

TABLA 1.1 (continuación)

 f (t) F(s) = �[f (t)](s)

26. senh(at) − sen(at)

27. cosh(at) − cos(at)

28.
1

√
πt

eat (1 + 2at)

29. J0(at)

30. Jn(at)

31. J0(2
√

at )

32.
1

t
sen(at)

33.
2

t
[1 − cos(at)]

34.
2

t
[1 − cosh(at)]

35.
1

√
πt

− aea2t erfc

(
a
√

t

)

36.
1

√
πt

+ aea2t erf

(
a

√
t

)

37. ea2t erf(a
√

t )

38. ea2t erfc(a
√

t )

39. erfc

(
a

2
√

t

)

40.
1

√
πt

e−a2/4t

41.
1

√
π(t + a)

42.
1

πt
sen(2a

√
t )

43. f

(
t

a

)

44. ebt/af

(
t

a

)

45. δǫ(t)

46. δ(t − a)

47. Ln(t)

(Polinomio de Laguerre)

2a3

s4 − a4

2a2s

s4 − a4

s

(s − a)3/2

1√
s2 + a2

1

an

(√
s2 + a2 − s

)n

√
s2 + a2

1

s
e−a/s

tan−1
( a

s

)

ln

(
s2 + a2

s2

)

ln

(
s2 − a2

s2

)

1
√

s + a

√
s

s − a2

a
√

s(s − a2)

1
√

s (
√

s + a)

1

s
e−a

√
s

1
√

s
e−a

√
s

1
√

s
easerfc(

√
as )

erf

(
a

√
s

)

aF(as)

aF (as − b)

e−ǫs (1 − e−ǫs )

ǫs

e−as

1

s

(
s − 1

s

)n

erfc



1.1 Defi nición y propiedades básicas   5

TABLA 1.1 (continuación)

 f (t) F(s) = �[f (t)](s)

52. onda serrucho

(1 − s)n

sn+1/2

(1 − s)n

sn+3/2

1

as2

[
1 − e−as

1 + e−as

](
=

1

as2
tanh

( as

2

))

1

s
tanh

( as

2

)

1

as2
−

e−as

s(1 − e−as )

Fórmulas operacionales

 f (t) F(s)

af (t) + bg(t)

f ′(t)

f (n)(t)
∫ t

0
f (τ) dτ

tf (t)

tnf (t)

1

t
f (t)

eatf (t)

f (t − a)H(t − a)

f (t + τ) = f (t)

(periódica)

aF(s) + bG(s)

sF (s) − f (0+)

snF(s) − sn−1f (0) − · · · − f (n−1)(0)

1

s
F (s)

−F ′(s)

(−1)nF (n)(s)
∫ ∞

s
F(σ) dσ

F(s − a)

e−asF(s)

1

1 − e−τs

∫ τ

0
e−stf (t) dt

51. onda cuadrada

48.
n!

(2n)!
√

πt
H2n(t)

(Polinomio de Hermite)

49.
−n!

√
π(2n + 1)!

H2n+1(t)

(Polinomio de Hermite)

50. onda triangular

t
1

2aa 4a3a

f (t)

t

1

2aa 4a3a
1

f (t)

t
1

2aa

f (t)
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Suponga que �[f ](s) y �[g](s) están defi nidas para s > a, y α y β son números reales. Entonces

para s > a.

Prueba Por hipótesis, �∞
0  e−stf (t) dt y �∞

0  e−stg(t) dt convergen para s > a. Entonces

para s > a. ■

Esta conclusión se extiende para cualquier suma fi nita:

para todo s tal que cada Fj(s) esté defi nida.
No toda función tiene una transformada de Laplace, ya que �∞

0  e−st f (t) dt puede no converger para 
cualquier valor real de s. Considere condiciones sobre f para asegurar que f tiene una transformada de 
Laplace.

Una condición necesaria obvia es que �k
0 e−st f (t) dt tiene que estar defi nida para todo k > 0, ya que 

�[ f ](s) = �∞
0  e−st f (t) dt. Para que esto suceda, es sufi ciente que f sea continua a pedazos en [0, k] para 

todo número k positivo. Defi niremos este concepto en términos generales ya que también aparece en otros 
contextos.

TEOREMA 1.1 Linealidad de la transformada de Laplace

[αf + βg](s) = αF(s) + βG(s)�

[αf + βg](s) =
∫ ∞

0

e−st (αf (t) + βg(t)) dt

= α

∫ ∞

0

e−stf (t) dt + β

∫ ∞

0

e−stg(t) dt = αF(s) + βG(s)

�

[α1f1 + · · · + αnfn](s) = α1F1(s) + · · · + αnFn(s),�

DEFINICIÓN 1.2  Continuidad a pedazos

f es continua a pedazos en [a, b] si hay puntos

tal que f es continua en cada intervalo abierto (a, t1), (tj−1, tj) y (tn, b) y todos los límites laterales 
siguientes son fi nitos:

a < t1 < t2 < · · · < tn < b

lim
t→a+

f (t), lim
t→tj −

f (t), lim
t→tj +

f (t), and lim
t→b−

f (t).lím lím lím límy

Esto signifi ca que f es continua en [a, b] excepto quizá en un número fi nito de puntos, en cada uno de 
los cuales f tiene límites laterales fi nitos en todo el intervalo. Las únicas discontinuidades que una función 
continua a pedazos f puede tener en [a, b] son un número fi nito de saltos de discontinuidades (huecos de 
anchura fi nita en la gráfi ca). La fi gura 1.1 muestra discontinuidades de saltos típicos en una gráfi ca.

Por ejemplo, sea

f (t) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t2 para 0 ≤ t ≤ 2

2 en t = 2

1 para 2 < t ≤ 3

−1 para 3 < t ≤ 4



Entonces f es continua [0, 4] excepto en 2 y 3, donde f tiene un salto de discontinuidad. En la fi gura 1.2 se 
muestra la gráfi ca de esta función.

Si f es continua a pedazos en [0, k], entonces e−st f (t) también lo es y �k
0 e

−st f (t) dt existe.
La existencia de �k

0 e
−stf (t) dt para todo k positivo no asegura la existencia de límk→∞ �k

0 e
−st f (t) dt. 

Por ejemplo, f (t) = et2 es continua en todo intervalo [0, k], pero �∞
0  e

−st et2 dt diverge para todo valor real 
de s. Así, para la convergencia de �0

∞ e−st f (t) dt, es necesaria otra condición sobre f . La forma de esta 
integral sugiere una condición que es sufi ciente. Si, para algunos números M y b, se tiene | f (t)| ≤ Mebt, 
entonces

Pero

converge (a M/(s − b)) si b − s < 0, o s > b. Entonces, por comparación, �∞
0  e

−st | f (t)| dt también con-
verge si s > b, de donde �∞

0  e
−st f (t) dt converge si s > b.

Este camino de razonamiento sugiere un conjunto de condiciones que son sufi cientes para que una 
función tenga una transformada de Laplace.

1.1 Defi nición y propiedades básicas   7

FIGURA 1.1 Una función con 
discontinuidades de saltos en t1 y t2.

FIGURA 1.2 

y (t)

t
t1 t2

4

3

2

1

1
0 1 2 3 4

y(t)

t

f (t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

t2

2

1

−1

e−st |f (t)| ≤ Me(b−s)t para s ≥ b.

∫ ∞

0

Me(b−s)t dt

TEOREMA 1.2 Existencia de �[ f ]

Suponga que f es continua a pedazos en [0, k] para todo k positivo. También que existen números M y b,
tales que |f (t)| ≤ Mebt para t ≥ 0. Entonces �∞

0  e
−st f (t) dt converge para s > b, por tanto �[ f ](s) está 

defi nida para s > b. ■

Muchas funciones satisfacen estas condiciones, incluyendo las polinomiales, sen(at), cos(at), eat y 
otras.

Las condiciones del teorema son sufi cientes, pero no necesarias para que una función tenga una 
transformada de Laplace. Por ejemplo, considere  f (t) = t−1/2 para t > 0. Esta función no es continua a 

si 0 ≤  t < 2

si t = 2

si 2 < t ≤ 3

si 3 < t ≤ 4
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pedazos en ningún [0, k] ya que límt→0+ t−1/2 = ∞. Sin embargo, �k
0 e

−st t−1/2 dt existe para todo k y s > 0
positivos. Más aún,

en donde usó el hecho (encontrado en algunas tablas de integración usuales) que �∞
0  e

−z2 dz = π/2.
Ahora revise el diagrama de fl ujo que aparece al inicio de este capítulo. El primer paso en la resolu-

ción de este tipo de problemas es tomar la transformada de Laplace de una función. El fi nal del diagrama 
de fl ujo sugiere que en algún punto debe poder regresar por otro camino. Después de encontrar alguna 
función G(s), necesita obtener una función g cuya transformada de Laplace sea G. Este es el proceso de 
tomar una transformada de Laplace inversa.

[f ](s) =
∫ ∞

0

e−st t−1/2 dt = 2

∫ ∞

0

e−sx2

dx (sea x = t1/2)

=
2

√
s

∫ ∞

0

e−z2

dz (sea z = x
√

s)

=
√

π

s
,

DEFINICIÓN 1.3  Función G

Dada una función G, una función g tal que �[g] = G se llama una transformada inversa de Laplace 
de G.

En este caso

g = �−1[G].

Por ejemplo,

y

El proceso inverso es ambiguo ya que, dada G, puede haber muchas funciones cuya transformada 
de Laplace sea G. Por ejemplo, sabe que la transformada de Laplace de e−t es 1/(s+1) para s > −1. Sin 
embargo, si cambia f (t) sólo en un punto, haciendo

entonces �∞
0  e

−st f (t) dt = �∞
0  e

−st h(t) dt y h tienen la misma transformada de Laplace que f . En tal caso, 
¿cuál es la transformada inversa de Laplace de 1/(s + 1)?

Una respuesta la da el teorema de Lerch, el cual establece que dos funciones continuas que tienen la 
misma transformada de Laplace deben ser iguales.

�

−1

[
1

s − a

]
(t) = eat

−1

[
1

s2 + 1

]
(t) = sen(t).

h(t) =

{
e−t para t �= 3

0 para t = 3,

�

�

TEOREMA 1.3 Lerch

Sean f y g continuas en [0, ∞) y suponga que �[f ] = �[g]. Entonces f = g. ■



En vista de esto, resuelva parcialmente la ambigüedad al tomar la transformada inversa de Laplace 
aceptando que, dada F(s), busca una f continua cuya transformada de Laplace sea F. Si no hay una función 
transformada inversa continua, entonces debe tomar ciertos acuerdos para decidir a cuál de las candidatas 
posibles llamará �−1[F]. Ya en aplicaciones el contexto hace frecuentemente esta elección obvia.

Debido a la linealidad de la transformada de Laplace, su inversa también es lineal.

Si �−1[F] = f y �−1[G] = g, y α y β son números reales, entonces

�−1[αF + βG] = α f + βg. ■

Si usa la tabla 1.1 para encontrar �[f ], busque f en la columna izquierda y lea �[f ] de la columna 
derecha. Para �−1[F], busque F en la columna derecha y relaciónela con f en la izquierda.

TEOREMA 1.4 

En cada uno de los problemas del 1 al 10, use la linealidad de la 
transformada de Laplace y la tabla 1.1 para encontrar la trans-
formada de Laplace de la función.

 1. 2 senh(t) − 4

 2. cos(t) − sen(t)

 3. 4t sen(2t)

 4. t2 − 3t + 5

 5. t − cos(5t)

 6. 2t2e−3t − 4t + 1

 7. (t + 4)2

 8. 3e−t + sen(6t)

 9. t3 − 3t + cos(4t)

10. −3 cos(2t) + 5 sen(4t)

En cada uno de los problemas del 11 al 18, use la linealidad de la
transformada inversa de Laplace y la tabla 1.1 para encontrar 
la transformada inversa de Laplace (continua) de la función.

Suponga que f (t) está defi nida para todo t ≥ 0. Entonces f es 
periódica con periodo T si f (t + T ) = f (t) para todo t ≥ 0. 
Por ejemplo, sen(t) tiene periodo 2π. En los problemas 19–22, 
suponga que f tiene periodo T .

19. Pruebe que

20. Pruebe que

21. Para los problems 19 y 20, pruebe que

22.  Use la serie geométrica 
∑∞

n = 0
 rn = 1/(1 − r) para |r| < 1, 

junto al resultado del problema 21, para probar que

En cada uno de los problemas del 23 al 30, se da una función 
periódica, algunas veces con una gráfi ca. Encuentre �[f ], usan-
do el resultado del problema 22.

SECCIÓN 1.1 PROBLEMAS

11.
−2

s + 16

12.
4s

s2 − 14

13.
2s − 5

s2 + 16

14.
3s + 17

s2 − 7

15.
3

s − 7
+

1

s2

16.
5

(s + 7)2

17.
1

s − 4
−

6

(s − 4)2

18.
2

s4

[
1

s
−

3

s2
+

4

s6

]

[f ](s) =
∞∑

n=0

∫ (n+1)T

nT
e−stf (t) dt.

∫ (n+1)T

nT
e−stf (t) dt = e−nsT

∫ T

0
e−stf (t) dt.

[f ](s) =

[ ∞∑

n=0

e−nsT

]∫ T

0
e−stf (t) dt.

[f ](s) =
1

1 − e−sT

∫ T

0
e−stf (t) dt.

�

�

�

1.1 Defi nición y propiedades básicas   9
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1.2  Solución de problemas con valores iniciales usando 
la transformada de Laplace

La transformada de Laplace es una herramienta poderosa para resolver cierto tipo de problemas con 
valores iniciales. La técnica depende del siguiente hecho acerca de la transformada de Laplace de una 
derivada.

23. f tiene periodo 6 y

24.  f (t) = |E sen(ωt)|, con E y ω constantes positivas. (Aquí 
f tiene periodo π/ω).

25. f tiene la gráfi ca de la fi gura 1.3.

FIGURA 1.3 

26. f tiene la gráfi ca de la fi gura 1.4.

FIGURA 1.4 

27. f tiene la gráfi ca de la fi gura 1.5.

FIGURA 1.5 

28. f tiene la gráfi ca de la fi gura 1.6.

FIGURA 1.6 

29. f tiene la gráfi ca de la fi gura 1.7.

FIGURA 1.7 

30. f tiene la gráfi ca de la fi gura 1.8.

FIGURA 1.8 

f (t) =

{
5 para 0 < t ≤ 3

0 para 3 < t ≤ 6

5

0 5 10 30 35 55 60

f (t)

t

2

0 6 12

f (t)

t

E

f (t)

t
2π

ω

3π

ω

π

ω

E sin(ωt)

3

0 2 8 10 16 18

f (t)

t

h

2aa 3a 4a 5a 6a 7a

f (t)

t

h

2aa 3a 4a 5a 6a

f (t)

t

TEOREMA 1.5 Transformada de Laplace de una derivada

Sea f continua en [0, ∞) y suponga que f ′ es continua a pedazos en [0, k] para todo k positivo. Suponga 
también que límk→∞ e−skf (k) = 0 si s > 0. Entonces

 �[  f ′](s) = sF(s) − f (0). (1.1)

Esto es, la transformada de Laplace de la derivada de f es s veces la transformada de Laplace de f en 
s, menos f en cero.

E sen(ωt)



Prueba Empiece con una integración por partes, con u = e−st y dν = f ′(t) dt . Para k > 0,

Tome el límite conforme k → ∞ y use la suposición que e−skf (k) → 0 para obtener

Si f tiene una discontinuidad de salto en 0 (por ejemplo, como ocurre, si f es una fuerza electromotriz 
que es encendida en el tiempo cero), entonces esta conclusión puede corregirse para obtener

donde

es el límite lateral por la derecha de f (t) en 0.
Para problemas que involucran ecuaciones diferenciales de segundo orden o mayor, necesita una 

versión del teorema para derivadas superiores. f (j) denota la j-ésima derivada de f .
Denotamos f (0) = f .

∫ k

0

e−stf ′(t) dt = [e−stf (t)]k0 −
∫ k

0

−se−stf (t) dt

= e−skf (k) − f (0) + s

∫ k

0

e−stf (t) dt.

[f ′](s) = lim
k→∞

[
e−skf (k) − f (0) + s

∫ k

0

e−stf (t) dt

]

= −f (0) + s

∫ ∞

0

e−stf (t) dt = −f (0) + sF (s).

[f ′](s) = sF (s) − f (0+),

f (0+) = lim
t→0+

f (t)

TEOREMA 1.6 Transformada de Laplace de una derivada superior

Suponga que f, f ′, · · · , f n−1 son continuas en [0, 1), y f (n) es continua a pedazos en [0, k] para todo k posi-
tivo. También que límk→∞ e−skf (j)(k) = 0 para s > 0 y para j = 1, 2, . . . , n − 1. Entonces

(1.2)

El caso de la segunda derivada (n = 2) aparece con tanta frecuencia que conviene ponerla por sepa-
rado. Bajo las condiciones del teorema,

(1.3)

Ahora está listo para usar la transformada de Laplace para resolver ciertos problemas con valores 
iniciales.

EJEMPLO 1.3

Resolver y ′ − 4y = 1; y(0) = 1.
Ya sabe cómo resolver este problema, pero use la transformada de Laplace para ilustrar la técnica. 

Escriba �[y](s) = Y(s). Tomamos la transformada de Laplace de la ecuación diferencial, usando la linea-
lidad de � y la ecuación (1.1), con y(t) en lugar de f (t):

[f (n)](s) = snF(s) − sn−1f (0) − sn−2f ′(0) − · · · − sf (n−2)(0) − f (n−1)(0).

[f ′′](s) = s2F(s) − sf (0) − f ′(0).

�

�

�

�

[y′ − 4y](s) = L[y′](s) − 4L[y](s)

= (sY (s) − y(0)) − 4Y (s) = L[1](s) =
1

s
.

�

1.2 Solución de problemas con valores iniciales usando la transformada de Laplace   11
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Aquí use el hecho (de la tabla 1.1) que �[1](s) = 1/s para s > 0. Como y (0) = 1, ahora tiene

En este punto debe resolver un problema algebraico para Y(s), obteniendo

(observe el diagrama de fl ujo del inicio de este capítulo). La solución del problema con valores ini-
ciales es

De la entrada 5 de la tabla 1.1, con a = 4,

Y de la entrada 8, con a = 0 y b = 4,

La solución del problema con valores iniciales es

Una característica de esta técnica de la transformada de Laplace es que el valor inicial dado en el 
problema es incorporado naturalmente en el proceso de solución a través de la ecuación (1.1). No necesita 
encontrar la solución general primero, y después resolver para que la constante satisfaga la condición 
inicial.

EJEMPLO 1.4

Resolver

Aplique � a la ecuación diferencial para obtener �[y′′] + 4�[y′] + 3�[y] = �[et].
Ahora

y

Por tanto,

(s − 4)Y (s) = y(0) +
1

s
= 1 +

1

s
.

Y (s) =
1

(s − 4)
+

1

s(s − 4)

y = L
−1[Y ] = L

−1

[
1

s − 4

]
+ L

−1

[
1

s(s − 4)

]
.

L
−1

[
1

s − 4

]
= e4t .

L
−1

[
1

s(s − 4)

]
=

1

−4
(e0t − e4t ) =

1

4
(e4t − 1).

y(t) = e4t +
1

4
(e4t − 1)

=
5

4
e4t −

1

4
.

y′′ + 4y′ + 3y = et ; y(0) = 0, y′(0) = 2.

L[y′′] = s2Y − sy(0) − y′(0) = s2Y − 2

L[y′] = sY − y(0) = sY.

s2Y − 2 + 4sY + 3Y =
1

s − 1
.

� �

�

�

�

�

�

■



Resuelva para Y obteniendo

La solución es la transformada inversa de Laplace de esta función. Algunos software pueden encontrar 
esta inversa. Si quiere usar la tabla 1.1, debe aplicar una descomposición en fracciones parciales para 
escribir Y(s) como una suma de funciones más simples. Escriba

Esta ecuación se satisface sólo si, para todo s,

Ahora elija valores de s para simplifi car la tarea de determinar A, B y C. Sea s = 1 para obtener 8A = 1, 
así A = 1

8. Sea s = −1 para obtener −4B = −3, de manera que B = 3
4. Elija s = −3 para obtener 

8C = −7, así C = − 78. Entonces

Ahora lea de la tabla 1.1 que

De nuevo, la transformada de Laplace ha convertido un problema con valores iniciales en un proble-
ma algebraico, incorporando las condiciones iniciales en las manipulaciones algebraicas. Una vez que 
obtiene Y(s), el problema se convierte en uno de invertir la función transformada para obtener y(t).

La ecuación (1.1) tiene una consecuencia interesante que será útil más adelante. Bajo las condiciones 
del teorema, sabe que

Suponga que f (t) está defi nida por una integral, a saber

Ahora f (0) = 0 y, suponiendo la continuidad de g, f ′(t) = g(t). Entonces

Esto signifi ca que

(1.4)

permite aplicar la transformada de Laplace de una función defi nida por una integral. Use esta ecuación 
más adelante al trabajar con circuitos que tienen fuerzas electromotrices discontinuas.

Hasta aquí se ha ilustrado una técnica de la transformada de Laplace para resolver problemas con 
valores iniciales con coefi cientes constantes. Sin embargo, es posible solucionar los problemas de estos 
ejemplos por otros medios. En las siguientes tres secciones aparece la herramienta necesaria para aplicar 
la transformada de Laplace a problemas que desafían los métodos anteriores.

Y (s) =
2s − 1

(s − 1)(s2 + 4s + 3)
.

Y (s) =
2s − 1

(s − 1)(s2 + 4s + 3)

=
2s − 1

(s − 1)(s + 1)(s + 3)
=

A

s − 1
+

B

s + 1
+

C

s + 3
.

A(s + 1)(s + 3) + B(s − 1)(s + 3) + C(s − 1)(s + 1) = 2s − 1.

Y (s) =
1

8

1

s − 1
+

3

4

1

s + 1
−

7

8

1

s + 3
.

y(t) =
1

8
et +

3

4
e−t −

7

8
e−3t .

L[f ′] = sL[f ] − f (0).

f (t) =
∫ t

0

g(τ) dτ.

L[f ′] = L[g] = sL

[∫ t

0

g(τ) dτ

]
.

L

[∫ t

0

g(τ) dτ

]
=

1

s
L[g],

�

� � �

� �

■
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1.3 Teoremas de corrimiento y la función de Heaviside

Una motivación para desarrollar la transformada de Laplace es extender la clase de problemas que pue-
de resolver. Los métodos de los capítulos 1 y 2 apuntan principalmente a problemas que conciernen a 
funciones continuas. Pero muchos modelos matemáticos tratan con procesos discontinuos (por ejemplo, 
prender y apagar un circuito). Para esto la transformada de Laplace es efectiva, pero debe aprender más 
acerca de la representación de funciones discontinuas y aplicarles tanto la transformada de Laplace como 
su inversa.

1.3.1 El primer teorema de corrimiento

La transformada de Laplace de eat f (t) es sólo la transformada de Laplace de f (t), recorrida a unidades 
a la derecha. Esto se logra reemplazando s por s − a en F(s) para obtener F(s − a).

En cada uno de los problemas del 1 al 10, use la transformada 
de Laplace para resolver el problema con valores iniciales.

1. y ′ + 4y = 1; y(0) = −3

2. y ′ − 9y = t ; y(0) = 5

3. y ′ + 4y = cos(t); y(0) = 0

4. y ′ + 2y = e−t ; y(0) = 1

5. y ′ − 2y = 1 − t ; y(0) = 4

6. y ′′ + y = 1; y(0) = 6, y ′(0) = 0

7. y ′′ − 4y ′ + 4y = cos(t); y(0) = 1, y ′(0) = −1

8. y ′′ + 9y = t2; y(0) = y ′(0) = 0

9. y ′′ + 16y = 1 + t ; y(0) = −2, y ′(0) = 1

10. y ′′ − 5y ′ + 6y = e−t ; y(0) = 0, y ′(0) = 2

11.  Suponga que f satisface las hipótesis del teorema 1.5, 
excepto para la discontinuidad de salto en 0. Pruebe que 
�[f ′](s) = sF(s) − f (0+), donde f (0+) = límt→0+ f (t).

12.  Suponga que f satisface las hipótesis del teorema 1.5 para 
la discontinuidad de salto en un número c positivo. Pruebe 
que

�[f ′](s) = sF(s) − f (0) − e−cs [f (c+) − f (c−)],

 donde f (c−) = límt→c− f (t).

13.  Suponga que g es continua a pedazos en [0, k] para todo 
k > 0, y que existen números, M, b y a tales que |g(t)| 
≤ Mebt para t ≥ a. Sea �[G] = g. Pruebe que

SECCIÓN 1.2 PROBLEMAS

L

[∫ t

0
g(w) dw

]
(s) =

1

s
G(s) −

1

s

∫ a

0
g(w) dw.�

Sea �[ f ](s) = F(s) para s > b ≥ 0. Sea a cualquier número. Entonces

�[eat f (t)](s) = F(s − a)   para s > a + b

Prueba Calcule

para s − a > b, o s > a + b. ■

TEOREMA 1.7 Primer teorema de corrimiento, o corrimiento en la variable s

L[eatf (t)](s) =
∫ ∞

0

eate−stf (s) ds

=
∫ ∞

0

e−(s−a)tf (t) dt = F(s − a)

�



EJEMPLO 1.5

Sabe por la tabla 1.1 que �[cos(bt)] = s/(s2 + b2). Para la transformada de Laplace de eat cos(bt), reem-
place s con s − a para obtener

EJEMPLO 1.6

Como �[t3] = 6/s4, entonces

El primer teorema de corrimiento sugiere una fórmula correspondiente para la transformada inversa 
de Laplace: si �[f ] = F, entonces

�−1[F(s − a)] = eat f (t ).

Algunas veces es conveniente escribir este resultado como

 �−1[F(s − a)] = eat�−1[F(s)]. (1.5)

EJEMPLO 1.7

Suponga que quiere calcular

Manipule el cociente a una forma en la cual sea aplicable al teorema del corrimiento. Complete el cuadra-
do en el denominador para escribir

Piense en el cociente de la derecha como una función de s + 2:

Esto signifi ca que debe elegir

Ahora el teorema del corrimiento dice que

L[eat cos(bt)](s) =
s − a

(s − a)2 + b2
.

L[t3e7t ](s) =
6

(s − 7)4
.

L
−1

[
4

s2 + 4s + 20

]
.

4

s2 + 4s + 20
=

4

(s + 2)2 + 16
.

F (s + 2) =
4

(s + 2)2 + 16
.

F(s) =
4

s2 + 16
.

L[e−2t sen(4t)] = F(s − (−2)) = F(s + 2) =
4

(s + 2)2 + 16

■

■

�

�

�

�
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16   CAPÍTULO 1   La transformada de Laplace

y por tanto,

EJEMPLO 1.8

Calcule

De nuevo, empiece con una manipulación para escribir la expresión como una función de s − a para 
algún a:

si elige

Ahora aplique la ecuación (1.5) (en la segunda línea) para escribir

1.3.2 La función de Heaviside y los pulsos

Ahora conviene establecer los cimientos para resolver ciertos problemas con valores iniciales que tengan 
funciones de fuerza con discontinuidades. Para hacer esto utilice la función de Heaviside.

Recuerde que f tiene una discontinuidad de salto en a si límt→a− f (t) y límt→a− f (t) ambos existen y 
son fi nitos, pero distintos. La fi gura 1.9 muestra un salto de discontinuidad típico. La magnitud del salto 
de discontinuidad es el “ancho del hueco” en la gráfi ca en a. Este ancho es

Las funciones con saltos de discontinuidades pueden tratarse efi cientemente utilizando la función esca-
lonada unitaria o función de Heaviside.

L
−1

[
4

(s + 2)2 + 16

]
= e−2t sen(4t).� ■

L
−1

[
3s − 1

s2 − 6s + 2

]
.�

3s − 1

s2 − 6s + 2
=

3s − 1

(s − 3)2 − 7

=
3(s − 3)

(s − 3)2 − 7
+

8

(s − 3)2 − 7
= G(s − 3) + K(s − 3)

G(s) =
3s

s2 − 7
y K(s) =

8

s2 − 7
.

L
−1

[
3s − 1

s2 − 6s + 2

]
= L

−1[G(s − 3)] + L
−1[K(s − 3)]

= e3t
L

−1[G(s)] + e3t
L

−1[K(s)]

= e3t
L

−1

[
3s

s2 − 7

]
+ e3t

L
−1

[
8

s2 − 7

]

= 3e3t
L

−1

[
s

s2 − 7

]
+ 8e3t

L
−1

[
1

s2 − 7

]

= 3e3t cosh(
√

7t) +
8

√
7
e3t senh(

√
7t).

∣∣∣∣ lim
t→a−

f (t) − lim
t→a−

f (t)

∣∣∣∣ .lím lím

� � �

� �

� �

� �

( ) ( )
■



Oliver Heaviside (1850-1925) fue un ingeniero electricista inglés que hizo mucho por introducir la 
transformada de Laplace en la práctica ingenieril. En la fi gura 1.10 aparece la gráfi ca de H. Tiene un salto 
de discontinuidad de magnitud 1 en 0.

Es posible pensar en la función de Heaviside como una función de interruptor, “prendida” cuando t ≥ 
0, donde H(t) = 1, y “apagada” cuando t < 0, donde H(t) = 0. Es útil para lograr una variedad de efectos, 
incluyendo funciones de interruptor prendido y apagado en tiempos distintos, funciones de corrimientos 
a lo largo del eje y funciones combinadas con pulsos.

Para empezar este programa, si a es cualquier número, entonces H(t − a) es la función de Heaviside 
corrida a unidades a la derecha, como se muestra en la fi gura 1.11, como

H(t − a) modela una señal plana de magnitud 1, prendida hasta el tiempo t = a y después apagada.
Puede usar H(t − a) para lograr el efecto de mantener una función g apagada hasta el tiempo t = a, 

en dicho tiempo prenderla. En particular,

DEFINICIÓN 1.4  Función de Heaviside

La función de Heaviside H está defi nida por

FIGURA 1.9 

y

a
x

Magnitude of the jump

     discontinuity at a

H(t) =

{
0 si t < 0

1 si t ≥ 0.

H(t − a) =

{
0 si t < a

1 si t ≥ a.

y

x

1

H(t � a)

a
t

(0, 1)

H(t − a)g(t) =

{
0 si t < a

g(t) si t ≥ a.
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FIGURA 1.10 La función de 
Heaviside H(t).

FIGURA 1.11 Una función Heaviside 
recorrida.

Tamaño de la discontinuidad 
de salto en a.



18   CAPÍTULO 1   La transformada de Laplace

es cero hasta el tiempo t = a, en dicho tiempo es encendida g(t). Para ver un caso específi co, sea 
g(t) = cos(t) para todo t. Entonces

En la fi gura 1.12 se muestran las gráfi cas de cos(t) y H(t − π)cos(t) por comparación.
La función de Heaviside también sirve para describir un pulso.

FIGURA 1.12 Comparación de y = cos(t) y y = H(t − π) cos(t).

y y

t t

�1.0

�0.5

�2 2 4

π

6 10 128 4

π

6 10 1280

0.5

1.0
y � H(t � π)cos(t)y � cos(t)

H(t − π)g(t) = H(t − π) cos(t) =
{

0 si t < π

cos(t) si t ≥ π.

DEFINICIÓN 1.5  Pulso

Un pulso es una función de la forma

en donde a < b y k es un número real distinto de cero.

k[H(t − a) − H(t − b)],

En la fi gura 1.13 aparece la gráfi ca de esta función pulso. Tiene valor 0 si t < a (donde H(t − a) 
= H(t − b) = 0), valor 1 si a ≤ t < b (donde H(t − a) = 1 y H(t − b) = 0) y valor 0 si t ≥ b (donde 
H(t − a) = H(t − b) = 1).

Multiplicar una función g por este pulso tiene el efecto de dejar apagada g(t) hasta el tiempo a. Enton-
ces la función es encendida hasta el tiempo b, cuando es nuevamente apagada. Por ejemplo, sea g(t) = et. 
Entonces

La fi gura 1.14 muestra la gráfi ca de esta función.
Ahora considere las funciones de corrimiento de la forma H(t − a)g(t − a). Si t < a, la g(t − a) 

H(t − a) = 0 ya que H(t − a) = 0. Si t ≥ a, entonces H(t − a) = 1 y H(t − a)g(t − a) = g(t − a), que es 
g(t) con un corrimiento de a unidades a la derecha. Así la gráfi ca de H(t − a)g(t − a) es cero a lo largo del 
eje horizontal hasta t = a, y para t ≥ a es la gráfi ca de g(t) para t ≥ 0, con un corrimiento de a unidades a 
la derecha empezando en a en lugar de 0.

[H(t − 1) − H(t − 2)]et =

⎧
⎪⎨
⎪⎩

0 si t < 1

et si 1 ≤ t < 2

0 si t ≥ 2.



EJEMPLO 1.9

Considere g(t) = t 2 y a = 2. La fi gura 1.15 compara la gráfi ca de g con la gráfi ca de H(t−2) g(t − 2). La 
gráfi ca de g es una parábola familiar. La gráfi ca de H(t − 2)g(t − 2) es cero hasta el tiempo 2, entonces 
tiene la forma de la gráfi ca de t 2 para t ≥ 0, pero con un corrimiento de 2 unidades a la derecha empezando 
en t = 2. ■

Es importante entender la diferencia entre g(t), H(t − a)g(t) y H(t − a)g(t − a). La fi gura 1.16 mues-
tra las gráfi cas de estas tres funciones para g(t) = t 2 y a = 3.

1.3.3 El segundo teorema de corrimiento

Algunas veces a H(t − a)g(t − a) se le conoce como una función de corrimiento, a pesar de ser más que 
eso ya que su gráfi ca también es cero para t < a. El segundo teorema de corrimiento trata con la transfor-
mada de Laplace de tal función.

FIGURA 1.13 Función pulso H(t − a) − H(t − b).

t
a b

1
1

0

2

3

4

5

6

7

8

0.5 1.0 1.5 2.0 2.5 3.0
t

f (t)

FIGURA 1.14 Gráfi ca de 
f (t) = [H(t − 1) − H(t − 2)]et.

2
tt

y y

FIGURA 1.15 Comparación de 
y = t 2 y y = (t − 2)2H(t − 2).

3
tt

y y

3
t

y

FIGURA 1.16 Comparación de y = t 2, y = t 2H(t − 3), y y = (t − 3)2H(t − 3).
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20   CAPÍTULO 1   La transformada de Laplace

Sea �[f ](s) = F(s) para s > b. Entonces

�[H(t − a)f (t − a)](s) = e−asF(s)

para s > b.

Esto es, obtiene la transformada de Laplace de H(t − a)f (t − a) multiplicando la transformada de 
Laplace de f (t) por e−as.

Prueba Proceda a partir de la defi nición,

ya que H(t − a) = 0 para t < a, y H(t − a) = 1 para t ≥ a. Ahora w = t − a en la última integral para 
obtener

EJEMPLO 1.10

Suponga que quiere la transformada de Laplace de H(t − a). Escriba esto como H(t − a) f (t − a), con f (t) = 1 
para todo t. Como F(s) = 1/s (de la tabla 1.1 o por cálculo directo a partir de la defi nición), entonces

�[H(t − a)](s) = e−as�[1](s) =

EJEMPLO 1.11

Calcule �[g], donde g(t) = 0 para 0 ≤ t < 2 y g(t) = t 2 + 1 para t ≥ 2.
Como g(t) es cero hasta el tiempo t = 2, y entonces es t 2 + 1, debe escribir g(t) = H(t − 2)(t 2 + 1).
Para aplicar el segundo teorema de corrimiento, debe escribir g(t) como una función, o quizá una 

suma de funciones, de la forma f (t − 2)H(t − 2). Es necesario escribir t 2 + 1 como una suma de funciones 
de t − 2. Una manera de hacer esto es desarrollar t 2 + 1 en una serie de Taylor alrededor de 2. En este caso 
logra el mismo resultado por manipulación algebraica:

t 2 + 1 = (t − 2 + 2)2 + 1 = (t − 2)2 + 4(t − 2) + 5.

Entonces

 g(t) = (t 2 + 1)H(t − 2)
= (t − 2)2H(t − 2) + 4(t − 2)H(t − 2) + 5H(t − 2).

TEOREMA 1.8 Segundo teorema de corrimiento o corrimiento en la variable t

L[H(t − a)f (t − a)](s) =
∫ ∞

0

e−stH(t − a)f (t − a) dt

=
∫ ∞

a

e−stf (t − a) dt

L[H(t − a)f (t − a)](s) =
∫ ∞

0

e−s(a+w)f (w) dw

= e−as

∫ ∞

0

e−swf (w) dw = e−asF(s).

1

s
e−as .

�

�

■



Ahora aplique el segundo teorema de corrimiento:

Como es usual, cualquier fórmula para la transformada de Laplace de una clase de funciones también 
puede leerse como una fórmula para una transformada inversa de Laplace. La versión inversa del segundo 
teorema de corrimiento es:

 �−1[e−asF(s)](t) = H(t − a)f (t − a). (1.6)

Esto permite calcular la transformada inversa de Laplace de una función transformada conocida mul-
tiplicada por una exponencial e−as.

EJEMPLO 1.12

Calcule

La presencia del factor exponencial sugiere el uso de la ecuación (1.6). Concéntrese en encontrar

Se puede leer esta inversa directamente en la tabla 1.1 y es f (t) = cos(2t). Por tanto,

Ahora está preparado para resolver ciertos problemas con valores iniciales en los que aparecen fun-
ciones de fuerza discontinuas.

EJEMPLO 1.13

Resolver el problema con valor inicial

en donde

Debido a la discontinuidad en f, no se pueden aplicar los métodos normales de solución de ecuaciones 
de segundo orden.

Primero reconozca que

L[g] = L[(t − 2)2H(t − 2)] + 4L[(t − 2)H(t − 2)] + 5L[H(t − 2)]
= e−2s

L[t2] + 4e−2s
L[t] + 5e−2s

L[1]

= e−2s

[
2

s3
+

4

s2
+

5

s

]
.

L
−1

[
se−3s

s2 + 4

]
.

L
−1

[
s

s2 + 4

]
.

L
−1

[
se−3s

s2 + 4

]
(t) = H(t − 3) cos(2(t − 3)).

�

�

�

�

y′′ + 4y = f (t); y(0) = y′(0) = 0,

f (t) =

{
0 para t < 3

t para t ≥ 3

f (t) = H(t − 3)t.
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22   CAPÍTULO 1   La transformada de Laplace

Aplique la transformada de Laplace a la ecuación diferencial para obtener

en la cual ha insertado las condiciones iniciales y(0) = y′(0) = 0.
Para utilizar el segundo teorema del corrimiento para calcular �[H(t − 3)t ], escriba

Ahora tiene

La transformada de la solución es

La solución está al alcance. Debe aplicar la transformada inversa de Laplace de Y(s). Para hacer esto, 
primero use una descomposición en fracciones parciales para escribir

Cada término es una exponencial por una función cuya transformada de Laplace es conocida, aplique la 
ecuación (1.6) para escribir

Debido al factor H(t − 3) en cada término, esta solución es cero hasta el tiempo t = 3 y debe escribir

o, combinando términos,

En la fi gura 1.17 se muestra la gráfi ca de esta solución. ■

En este ejemplo es interesante observar que la solución es diferenciable donde quiera, a pesar de que 
la función f que aparece en la ecuación diferencial tiene una discontinuidad de salto en 3. Este comporta-
miento es típico de los problemas con valores iniciales que tienen una función de fuerza discontinua. Si 
la ecuación diferencial tiene orden n y ϕ es una solución, entonces ϕ y sus primeras n − 1 derivadas serán 
continuas, mientras que la n-ésima derivada tendrá discontinuidades de salto donde las tenga f , y estas dis-
continuidades de salto coincidirán en magnitud con las discontinuidades de salto de f correspondientes.

L[y′′] + L[y] = s2Y (s) − sy(0) − y′(0) + 4Y (s)

= (s2 + 4)Y (s) = L[H(t − 3)t],

L[H(t − 3)t] = L[H(t − 3)(t − 3 + 3)]
= L[H(t − 3)(t − 3)] + 3L[H(t − 3)]

= e−3s
L[t] + 3e−3s

L[1] =
1

s2
e−3s +

3

s
e−3s .

(s2 + 4)Y =
1

s2
e−3s +

3

s
e−3s .

Y (s) =
3s + 1

s2(s2 + 4)
e−3s .

3s + 1

s2(s2 + 4)
e−3s =

3

4

1

s
e−3s −

3

4

s

s2 + 4
e−3s +

1

4

1

s2
e−3s −

1

4

1

s2 + 4
e−3s .

y(t) =
3

4
H(t − 3) −

3

4
H(t − 3) cos(2(t − 3))

+
1

4
H(t − 3)(t − 3) −

1

4
H(t − 3)

1

2
sen(2(t − 3)).

� �

�

� �

� �

� �

y(t) =

{
0 para t < 3

3

4
−

3

4
cos(2(t − 3)) +

1

4
(t − 3) −

1

8
sen(2(t − 3)) para t ≥ 3.

y(t) =

{
0 para t < 3

1

8
[2t − 6 cos(2(t − 3)) − sen(2(t − 3))] para t ≥ 3.



Con frecuencia necesitará escribir una función que tiene varias discontinuidades de salto en términos 
de las funciones de Heaviside para usar los teoremas de corrimiento. Aquí hay un ejemplo.

EJEMPLO 1.14

Sea

En la fi gura 1.18 se muestra una gráfi ca de f. Hay discontinuidades de saltos de magnitud 1 en t = 2 y 
magnitud 6 en t = 3.

Piense que f (t) está formada por dos partes distintas de cero, la parte que es t − 1 en [2, 3) y la parte 
que es −4 en [3, ∞). Quiere prender t − 1 en el tiempo 2 y apagarla en el tiempo 3, después prenderla −4 
en el tiempo 3 y dejarla prendida.

El primer efecto se consigue multiplicando la función pulso H(t −2)−H(t −3) por t − 1. El segundo 
multiplicando H(t − 3) por 4. Por tanto,

f (t) = [H(t − 2) − H(t − 3)](t − 1) − 4H(t − 3).

Como verifi cación, esto da f (t) = 0 si t < 2 ya que todas las funciones de Heaviside de corrimiento son 
cero para t < 2. Para 2 ≤  t < 3, H(t − 2) = 1 pero H(t − 3) = 0 de manera que f (t) = t − 1. Y para t ≥ 3,
H(t − 2) = H(t − 3) = 1, así f (t) = −4. ■

1.3.4 Análisis de circuitos eléctricos

La función de Heaviside es importante en muchos tipos de problemas, incluyendo el análisis de circuitos 
eléctricos, donde habrá interruptores que pueden prender y apagar. Aquí hay dos ejemplos.

EJEMPLO 1.15

Suponga que el condensador en el circuito de la fi gura 1.19 tiene inicialmente una carga de cero y que no 
hay corriente inicial. En el tiempo t = 2 segundos, el interruptor pasa de la posición B a A, se mantiene ahí 
por 1 segundo y regresa a B. Quiere el voltaje de salida Esalida en el condensador.

y

t

2.5

2.0

1.5

1.0

0.5

0 2 4 6 8

FIGURA 1.17 Solución de

y′′ + 4y =

{
0 si 0 ≤ t < 3

t si t ≤ 3
; (y(0) = y′(0) = 0).

f (t) =

⎧
⎪⎨
⎪⎩

0 si t < 2

t − 1 si 2 ≤ t < 3

−4 si t ≥ 3.

1.3 Teoremas de corrimiento y la función de Heaviside   23



24   CAPÍTULO 1   La transformada de Laplace

Del circuito del diagrama, la función de fuerza es cero hasta t = 2, después tiene valor de 10 volts 
hasta t = 3, y después es cero nuevamente. Así E es la función pulso

Por la ley de voltaje de Kirchhoff,

o

250 000q′(t) + 106q (t) = E(t).

Quiere encontrar q sujeta a la condición inicial q(0) = 0. Aplique la transformada de Laplace a la ecuación 
diferencial, incorporando la condición inicial, para escribir

250 000[s Q(t) − q(0)] + 106 Q (t) = 250 000s Q + 106 Q = �[E(t)].

 Ahora

Ahora, la siguiente ecuación para Q:

o

Use una descomposición en fracciones parciales para escribir

Por el segundo teorema de corrimiento,

1

2

�1

�2

�3

�4

2 3 4 5
t

10 V

10�6 FBA

250,000 �

Eout

FIGURA 1.18 Solución de
fi

f (t) =

⎧
⎪⎨
⎪⎩

0 si t < 2

t − 1 si 2 ≤ t < 3

−4 si t ≥ 3

.

FIGURA 1.19

E(t) = 10[H(t − 2) − H(t − 3)].

Ri(t) +
1

C
q(t) = E(t),

L[E(t)](s) = 10L[H(t − 2)](s) − 10L[H(t − 3)](s)

=
10

s
e−2s −

10

s
e−3s .

2.5(105)sQ(s) + 106Q(s) =
10

s
e−2s −

10

s
e−3s

Q(s) = 4(10−5)
1

s(s + 4)
e−2s − 4(10)−5 1

s(s + 4)
e−3s .

Q(s) = 10−5

[
1

s
e−2s −

1

s + 4
e−2s

]
− 10−5

[
1

s
e−3s −

1

s + 4
e−3s

]
.

L
−1

[
1

s
e−2s

]
(t) = H(t − 2)

�

�

� �
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y

donde f (t) = �−1[1/(s + 4)] = e−4t . Así

Los otros dos términos en Q(s) son tratados similarmente, y obtiene

Por último, como el voltaje de salida es Esalida(t) = 106q(t),

En las fi guras 1.20 y 1.21 están grafi cados los voltajes de entrada y salida. ■

EJEMPLO 1.16

El circuito de la fi gura 1.22 tiene intercambiados la resistencia y el condensador del circuito del ejemplo 
anterior. Quiere saber el voltaje de salida i(t)R en cualquier tiempo.

La ecuación diferencial del ejemplo anterior se aplica a este circuito, pero ahora está interesado en la 
corriente. Como i = q′, entonces

E(t)

t
1

0 2 3

2

10

t

10

8

6

4

2

0 2 4 6 8

Eout(t)

FIGURA 1.20 Voltaje de entrada 
para el circuito de la fi gura 1.19.

FIGURA 1.21 Voltaje de salida 
para el circuito de la fi gura 1.19.

L
−1

[
1

s + 4
e−2s

]
= H(t − 2)f (t − 2),

L
−1

[
1

s + 4
e−2s

]
= H(t − 2)e−4(t−2).

q(t) = 10−5[H(t − 2) − H(t − 2)e−4(t−2)] − 10−5[H(t − 3) − H(t − 3)e−4(t−3)]

= 10−5H(t − 2)[1 − e−4(t−2)] − 10−5H(t − 3)[1 − e−4(t−3)].

Eout(t) = 10H(t − 2)[1 − e−4(t−2)] − 10H(t − 3)[1 − e−4(t−3)].

�

�

10�6 F

2.5 � 10 5 �
10 V

BA E out

FIGURA 1.22 

(2.5)(105)i(t) + 106q(t) = E(t); i(0) = q(0) = 0.
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26   CAPÍTULO 1   La transformada de Laplace

La estrategia de eliminar q diferenciando y usando i = q′ no se puede aplicar aquí, ya que E(t) no es 
diferenciable. Para eliminar q(t) en este caso, escriba 

Ahora tiene que resolver el siguiente problema para la corriente:

Ésta no es una ecuación diferencial. Sin embargo, ya tiene los medios para resolverla. Tome la transfor-
mada de Laplace de la ecuación, usando la ecuación (1.4), para obtener

Aquí I = �[i]. Resuelva para I (s) para obtener

Tome la transformada inversa de Laplace para obtener

En las fi guras 1.23 y 1.24 aparecen las gráfi cas de los voltajes de entrada y salida. ■

10

1
2

0 2 3

E (t)

t

t

10

5

0 1 2 3 4 5 6

�5

�10

Eout(t)

FIGURA 1.23 Voltaje de entrada 
para el circuito de la fi gura 1.22.

FIGURA 1.24 Voltaje de salida 
para el circuito de la fi gura 1.22.

q(t) =
∫ t

0

i(τ) dτ + q(0) =
∫ t

0

i(τ ) dτ.

(2.5)(105)i(t) + 106

∫ t

0

i(τ ) dτ = E(t); i(0) = 0.

(2.5)(105)I (s) + 106 1

s
I (s) = L[E](s)

= 10
1

s
e−2s − 10

1

s
e−3s .

I (s) = 4(10−5)
1

s + 4
e−2s − 4(10−5)

1

s + 4
e−3s .

i(t) = 4(10−5)H(t − 2)e−4(t−2) − 4(10−5)H(t − 3)e−4(t−3).

En cada uno de los problemas del 1 al 15, encuentre la transfor-
mada de Laplace de la función.

1. (t3 − 3t + 2)e−2t

2. e−3t (t − 2)

SECCIÓN 1.3 PROBLEMAS

3. f (t) =
{

1 para 0 ≤ t < 7

cos(t) para t ≥ 7

4. e4t [t − cos(t)]

�

 Esalida



En cada uno de los problemas del 16 al 25, encuentre la trans-
formada inversa de Laplace de la función.

26.  Determine �[e−2t �t
0 e2w cos(3w) dw]. Sugerencia: Use el 

primer teorema de corrimiento.

En cada uno de los problemas del 27 al 32, resuelva el problema 
con valores iniciales usando la transformada de Laplace.

33.  Calcule y grafi que el voltaje de salida en el circuito de la 
fi gura 1.19, suponiendo que en el tiempo cero el condensa-
dor está cargado con un potencial de 5 volts y el apagador 
se abre en 0 y se cierra 5 segundos después.

34.  Calcule y grafi que el voltaje de salida en el circuito RL de 
la fi gura 1.25 si la corriente inicialmente es cero y

35.  Resuelva para la corriente en el circuito RL del problema 
34 si la corriente inicialmente es cero y E(t) =

16.
1

s2 + 4s + 12

17.
1

s2 − 4s + 5

18.
1

s3
e−5s

19.
se−2s

s2 + 9

20.
3

s + 2
e−4s

5. f (t) =
{

t para 0 ≤ t < 3

1 − 3t para t ≥ 3

6. f (t) =
{

2t − sen(t) para 0 ≤ t < π

0 para t ≥ π

7. e−t [1 − t2 + sen(t)]

8. f (t) =
{

t2 para 0 ≤ t < 2

1 − t − 3t2 para t ≥ 2

9. f (t) =
{

cos(t) para 0 ≤ t < 2π

2 − sen(t) para t ≥ 2π

10. f (t) =

⎧
⎨
⎩

−4 para 0 ≤ t < 1

0 para 1 ≤ t < 3

e−t para t ≥ 3

11. te−2t cos(3t)

12. et [1 − cosh(t)]

13. f (t) =
{
t − 2 para 0 ≤ t < 16

−1 para t ≥ 16

14. f (t) =
{

1 − cos(2t) para 0 ≤ t < 3π

0 para t ≥ 3π

15. e−5t (t4 + 2t2 + t)

21.
1

s2 + 6s + 7

22.
s − 4

s2 − 8s + 10

23.
s + 2

s2 + 6s + 1

24.
1

(s − 5)3
e−s

25.
1

s(s2 + 16)
e−21s

27. y′′ + 4y = f (t); y(0) = 1, y′(0) = 0, con f (t) ={
0 para 0 ≤ t < 4

3 para t ≥ 4

28. y′′ − 2y′ − 3y = f (t); y(0) = 1, y′(0) = 0, con

f (t) =
{

0 para 0 ≤ t < 4

12 para t ≥ 4

29. y(3) − 8y = g(t); y(0) = y′(0) = y′′(0) = 0, con

g(t) =

{
0 para 0 ≤ t < 6

2 para t ≥ 6

30. y′′ + 5y′ + 6y = f (t); y(0) = y′(0) = 0, con

f (t) =
{
−2 para 0 ≤ t < 3

0 para t ≥ 3

31. y(3) − y′′ + 4y′ − 4y = f (t); y(0) = y′(0) = 0,

y′′(0) = 1, con f (t) =

{
1 para 0 ≤ t < 5

2 para t ≥ 5

32. y′′ − 4y′ + 4y = f (t); y(0) = −2, y′(0) = 1, con

f (t) =
{

t para 0 ≤ t < 3

t + 2 para t ≥ 3

E(t) =

{
0 para 0 ≤ t < 5

2 para t ≥ 5.

L

R

E(t)

FIGURA 1.25 

{
k para 0 ≤ t < 5

0 para t ≥ 5.

1.3 Teoremas de corrimiento y la función de Heaviside   27



28   CAPÍTULO 1   La transformada de Laplace

1.4 Convolución

En general la transformada de Laplace del producto de dos funciones no es el producto de sus transfor-
madas. Sin embargo, hay un tipo especial de producto, denotado por f  ∗ g, llamado la convolución de f 
con g. La convolución tiene la característica de que la transformada de f ∗ g es el producto de las transfor-
madas de f y g. Este hecho se llama el teorema de convolución.

36.  Encuentre la corriente en el circuito RL del problema 34 si 
la corriente es cero inicialmente y E(t) =

37.  Escriba la función grafi cada en la fi gura 1.26 en términos 
de la función de Heaviside y encuentre su transformada de 
Laplace.

38.  Escriba la función grafi cada en la fi gura 1.27 en términos 
de la función de Heaviside y encuentre su transformada de 
Laplace.

39.  Escriba la función grafi cada en la fi gura 1.28 en términos 
de la función de Heaviside y encuentre su transformada de 
Laplace.

40.  Resuelva para la corriente en el circuito RL de la fi gura 1.29 
si la corriente es cero inicialmente, E(t) tiene periodo 4 y

  Sugerencia: Vea el problema 22 de la sección 1.1 para la 
transformada de Laplace de una función periódica. Debe 
encontrar que I (s) = F(s)/(1 + e−2s) para alguna F(s). Use 
una serie geométrica para escribir

  para escribir I (s) como una serie infi nita, después tome la 
transformada inversa término a término usando el teorema 
del corrimiento.

  Grafi que la corriente para 0 ≤ t < 8.

{
0 para 0 ≤ t < 4

Ae−t para t ≥ 4.

a
t

b

K

f (t)

FIGURA 1.26 

a
t

b c

M

f (t)

N

FIGURA 1.27 

a
t

b c

h

f (t)

FIGURA 1.28 

L

RE(t)

FIGURA 1.29 

E(t) =
{

10 para 0 ≤ t < 2

0 para 2 ≤ t < 4

1

1 + e−2s
=

∞∑

n=0

(−1)ne−2ns

DEFINICIÓN 1.6  Convolución

Si f y g están defi nidas en [0, ∞), entonces la convolución f ∗ g de f con g es la función defi nida por

para t ≥ 0.

(f ∗ g)(t) =
∫ t

0

f (t − τ)g(τ ) dτ



Si f ∗ g está defi nida, entonces

Prueba Sean F = �[f ] y G = �[g]. Entonces

en la cual cambia la variable de integración a τ y pone F(s) dentro de la integral. Ahora recuerde que

Sustituya esto en la integral para F(s)G(s) para obtener

(1.7)

Pero, de la defi nición de la transformada de Laplace,

Sustituya esto en la ecuación (1.7) para obtener

Recuerde ahora que H(t − τ) = 0 si 0 ≤ t < τ, mientras H(t − τ) = 1 si t ≥ τ. Por tanto,

La fi gura 1.30 muestra el plano tτ. La última integración es sobre la región sombreada, que consiste 
de los puntos (t, τ ) que satisfacen 0 ≤ τ < ∞. Invierta el orden de integración para escribir

TEOREMA 1.9 Teorema de convolución

L[f ∗ g] = L[f ]L[g]

F(s)G(s) = F(s)

∫ ∞

0

e−stg(t) dt =
∫ ∞

0

F(s)e−sτg(τ) dτ,

e−sτF(s) = L[H(t − τ)f (t − τ)](s).

F (s)G(s) =
∫ ∞

0

L[H(t − τ)f (t − τ)](s)g(τ ) dτ.

L[H(t − τ)f (t − τ)] =
∫ ∞

0

e−stH(t − τ)f (t − τ) dt.

F (s)G(s) =
∫ ∞

0

[∫ ∞

0

e−stH(t − τ)f (t − τ) dt

]
g(τ) dτ

=
∫ ∞

0

∫ ∞

0

e−stg(τ)H(t − τ)f (t − τ) dt dτ.

F (s)G(s) =
∫ ∞

0

∫ ∞

τ

e−stg(τ)f (t − τ) dt dτ.

F (s)G(s) =
∫ ∞

0

∫ t

0

e−stg(τ)f (t − τ) dτ

=
∫ ∞

0

e−st

[∫ t

0

g(τ)f (t − τ) dτ

]
dt

=
∫ ∞

0

e−st (f ∗ g)(t) dt = L[f ∗ g](s).

�

�

�

�

�
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30   CAPÍTULO 1   La transformada de Laplace

Por tanto,

como quería probar. ■

La versión inversa del teorema de convolución es útil cuando quiere encontrar la transformada inversa 
de una función que es un producto, y conoce la transformada inversa de cada factor.

τ

t

t � τ

FIGURA 1.30 

F(s)G(s) = L[f ∗ g](s),

Sean �−1[F] = f y �−1[G] = g. Entonces

EJEMPLO 1.17

Calcule

Puede hacer esto de distintas maneras (una tabla, un programa, una descomposición en fracciones parcia-
les). Pero también si escribe

Ahora

Por tanto,

La operación de convolución es conmutativa.

TEOREMA 1.10 

�

L
−1[FG] = f ∗ g.�

L
−1

[
1

s(s − 4)2

]
.

L
−1

[
1

s(s − 4)2

]
= L

−1

[
1

s

1

(s − 4)2

]
= L

−1[F(s)G(s)].

L
−1

[
1

s

]
= 1 = f (t) y L

−1

[
1

(s − 4)2

]
= te4t = g(t).

L
−1

[
1

s(s − 4)2

]
= f (t) ∗ g(t) = 1 ∗ te4t

=
∫ t

0

τe4τ dτ =
1

4
te4t −

1

16
e4t +

1

16
. ■

�

� �

� �

�

�



Si f  ∗ g está defi nida, entonces también lo está g ∗  f  y f  ∗ g = g ∗ f.

Prueba Sea z = t − τ en la integral que defi ne la convolución para obtener

La conmutatividad puede tener una importancia práctica, ya que, en casos específi cos, la integral que 
defi ne a g ∗ f puede ser más fácil de evaluar que la integral que defi ne a f ∗ g.

Algunas veces la convolución permite escribir soluciones de problemas que están formulados en 
términos muy generales.

EJEMPLO 1.18

Resuelva el problema

Aplique la transformada de Laplace, inserte los valores iniciales, para obtener

Entonces

así

Use una descomposición en fracciones parciales

Entonces

Ésta es la solución, para cualquier función f que tiene una convolución con e4t y e−2t. ■

También se usa la convolución para resolver cierto tipo de ecuaciones integrales, en donde la función 
a ser determinada aparece en una integral. Vio un caso de éstos en el ejemplo 1.16 al resolverlo para la 
corriente.

TEOREMA 1.11 

(f ∗ g)(t) =
∫ t

0

f (t − τ)g(τ ) dτ

=
∫ 0

t

f (z)g(t − z)(−1) dz =
∫ t

0

f (z)g(t − z) dz = (g ∗ f )(t).

y′′ − 2y′ − 8y = f (t); y(0) = 1, y′(0) = 0.

L[y′′ − 2y′ − 8y](s) = (s2Y (s) − s) − 2(sY (s) − 1) − 8Y (s) = L[f ](s) = F(s).

(s2 − 2s − 8)Y (s) − s + 2 = F(s),

Y (s) =
1

s2 − 2s − 8
F(s) +

s − 2

s2 − 2s − 8
.

Y (s) =
1

6

1

s − 4
F(s) −

1

6

1

s + 2
F(s) +

1

3

1

s − 4
+

2

3

1

s + 2
.

y(t) =
1

6
e4t ∗ f (t) −

1

6
e−2t ∗ f (t) +

1

3
e4t +

2

3
e−2t .

�

1.4 Convolución   31

�



32   CAPÍTULO 1   La transformada de Laplace

EJEMPLO 1.19

Determine f tal que

Reconocemos la integral de la derecha como la convolución de f  con e−t . Entonces la ecuación tiene la 
forma

Tomando la transformada de Laplace de esta ecuación llegamos a

Entonces

y a partir de esto fácilmente invertimos para obtener

f (t) = 2t2 +
∫ t

0

f (t − τ)e−τ dτ.

f (t) = 2t2 + (f ∗ e−t )(t).

F (s) =
4

s3
+ F(s)

1

s + 1
.

F (s) =
4

s3
+

4

s4
,

f (t) = 2t2 +
2

3
t3. ■

En cada uno de los problemas del 1 al 8, use el teorema de 
convolución para calcular la transformada inversa de Laplace 
de la función (aun si funciona otro método). Siempre, a y b son 
constantes positivas. En cada uno de los problemas del 9 al 16, use el teorema de 

convolución para escribir una fórmula para la solución del pro-
blema con valores iniciales en términos de f (t).

 9.  y′′ − 5y′ + 6y = f (t); y(0) = y′(0) = 0

10.  y′′ + 10y′ + 24y = f (t); y(0) = 1, y′(0) = 0

11.  y′′ − 8y′ + 12y = f (t); y(0) = −3, y′(0) = 2

12.  y′′ − 4y′ − 5y = f (t); y(0) = 2, y′(0) = 1

13.  y′′ + 9y = f (t); y(0) = −1, y′(0) = 1

14.  y′′ − k2y = f (t); y(0) = 2, y′(0) = −4

15.  y(3) − y′′ − 4y′ + 4y = f (t); y(0) = y′(0) = 1, y′′(0) = 0

16.  y(4) − 11y′′ + 18y = f (t); y(0) = y′(0) = y′′(0) = 
y(3)(0) = 0

SECCIÓN 1.4 PROBLEMAS

1.
1

(s2 + 4)(s2 − 4)

2.
1

s2 + 16
e−2s

3.
s

(s2 + a2)(s2 + b2)

4.
s2

(s − 3)(s2 + 5)

5.
1

s(s2 + a2)2

6.
1

s4(s − 5)

7.
1

s(s + 2)
e−4s

8.
2

s3(s2 + 5)



1.5 Impulsos unitarios y la función delta de Dirac

Algunas veces encontrará el concepto de impulso, el cual debe ser entendido intuitivamente como una 
fuerza de magnitud grande aplicada sobre un instante de tiempo. Enseguida se modela un impulso. Para 
cualquier número positivo ǫ, considere el pulso δǫ defi nido por

Como se muestra en la fi gura 1.31, éste es un pulso de magnitud 1/ǫ y duración ǫ. Haciendo que se aproxi-
me a cero, obtiene pulsos de magnitud cada vez mayor en intervalos de tiempo cada vez más cortos.

La función delta de Dirac se interpreta como un pulso de “magnitud infi nito” sobre una duración 
“infi nitamente corta” y se defi ne como

Ésta no es en realidad una función en el sentido convencional, sino un objeto más general llamado distri-
bución. No obstante, por razones históricas se continúa refi riéndose a ella como la función delta. Se llama 
así en honor del premio Nobel de física P.A.M. Dirac. La función delta con corrimiento δ(t − a) es cero 
excepto para t = a, donde tiene su pico infi nito.

Es posible definir la transformada de Laplace de la función delta de la siguiente manera. Empie-
ce con

En cada uno de los problemas del 17 al 23, resuelva la ecuación 
integral.

17. f (t) = −1 + �t
0  f (t − α)e−3 dα

18. f (t) = −t + �t
0  f (t − α) sen(α) dα

19. f (t) = e−t + �t
0  f (t − α) dα

20.  f (t) = −1 + t − 2 �t
0  f (t − α) sen(α) dα

21. f (t) = 3 + �t
0  f (α) cos[2(t − α)] dα

22. f (t) = cos(t) + e−2t �t
0  f (α)e2α dα

23. f (t) = e−3t [et − 3 �t
0  f (α)e3α dα]

24.   Use el teorema de convolución para obtener la fórmula 
�[�t

0  f (w) dw](s) = (1/s)F (s). ¿Qué hipótesis se necesitan 
para f (t)?

25.  Pruebe, por ejemplo, que en general f ∗ 1 � f , donde 1 
denota la función que es idénticamente 1 para todo t. Suge-
rencia: Considere f (t) = cos(t).

26.  Use el terorema de convolución para determinar la transfor-
mada de Laplace de e−2t �t

0 e2w cos(3w) dw.

27. Use el teorema de convolución para probar que

L
−1

[
1

s2
F(s)

]
(t) =

∫ t

0

∫ w

0
f (α) dα dw.�

δǫ(t) =
1

ǫ
[H(t) − H(t − ǫ)].

δ(t) = lim
ǫ→0+

δǫ(t).

δǫ(t − a) =
1

ǫ
[H(t − a) − H(t − a − ǫ)].

t
0

1
�

�

FIGURA 1.31 Gráfi ca de 
δǫ(t − a).
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34   CAPÍTULO 1   La transformada de Laplace

Entonces

Esto sugiere que es necesario defi nir

En particular, eligiendo a = 0

Así, la función delta tiene la transformada de Laplace igual a 1.
El siguiente resultado se llama la propiedad de fi ltrado de la función delta. Si en el tiempo a, una 

señal (función) es golpeada por un impulso, multiplicándola por δ(t − a), y la señal resultante es sumada 
sobre todos los tiempos positivos integrándola de cero a infi nito, entonces obtiene exactamente el valor 
de la señal f (a).

L[δǫ(t − a)] =
1

ǫ

[
1

s
e−as −

1

s
e−(a+ǫ)s

]
=

e−as(1 − e−ǫs)

ǫs
.

L[δ(t − a)] = lim
ǫ→0+

e−as(1 − e−ǫs)

ǫs
= e−as .

L[δ(t)] = 1.

TEOREMA 1.12 Propiedad de fi ltrado

Sea a > 0 y f integrable en [0, ∞) y continua en a. Entonces

Prueba Primero calcule

Por el teorema del valor medio para integrales, existe algún tǫ entre a y a + ǫ tal que

Entonces

Como ǫ → 0+, a + ǫ → a, así tǫ → a y, por la continuidad, f (tǫ) → f (a). Entonces

como quería probar. ■

�

�

�

∫ ∞

0

f (t)δ(t − a) dt = f (a).

∫ ∞

0

f (t)δǫ(t − a) dt =
∫ ∞

0

1

ǫ
[H(t − a) − H(t − a − ǫ)]f (t) dt

=
1

ǫ

∫ a+ǫ

a

f (t) dt.

∫ a+ǫ

a

f (t) dt = ǫf (tǫ).

∫ ∞

0

f (t)δǫ(t − a) dt = f (tǫ).

lim
ǫ→0+

∫ ∞

0

f (t)δǫ(t − a) dt =
∫ ∞

0

f (t) lim
ǫ→0+

δǫ(t − a) dt

=
∫ ∞

0

f (t)δ(t − a) dt = lim
ǫ→0+

f (tǫ) = f (a),

lím lím

lím

lím



Si aplica la propiedad de fi ltrado para f (t) = e−st, obtiene

que es consistente con la defi nición de la transformada de Laplace de la función delta. Más aún, si cambia 
la notación en la propiedad de fi ltrado y la escribe como

entonces reconocerá la convolución de f con δ y leerá la última ecuación como

Por tanto, la función delta actúa como una identidad para el “producto” defi nido por la convolución de 
dos funciones.

Aquí hay un ejemplo de un problema con valor en la frontera que involucra la función delta.

EJEMPLO 1.20

Resolver

Aplique la transformada de Laplace a la ecuación diferencial para obtener

entonces

Para encontrar la transformada inversa de la función de la derecha, primero escriba

Ahora use ambos teoremas de corrimiento.Ya que �−1[1/(s2 +1)] = sen(t), un corrimiento en la variable 
s da

Ahora, un corrimiento en la variable t para obtener

En la fi gura 1.32 se muestra la gráfi ca de esta solución. La solución es diferenciable para t > 0, excep-
to que y′(t) tiene un salto de discontinuidad de magnitud 1 en t = 3. La magnitud del salto es el coefi ciente 
de δ(t − 3) en la ecuación diferencial. ■

∫ ∞

0

e−stδ(t − a) dt = e−as,

∫ ∞

0

f (τ)δ(τ − t) dτ = f (t),

f ∗ δ = f.

y′′ + 2y′ + 2y = δ(t − 3); y(0) = y′(0) = 0.

s2Y (s) + 2sY (s) + 2Y (s) = e−3s,

Y (s) =
e−3s

s2 + 2s + 2
.

Y (s) =
1

(s + 1)2 + 1
e−3s .

L
−1

[
1

(s + 1)2 + 1

]
= e−t sen(t).

y(t) = H(t − 3)e−(t−3) sen(t − 3).

�
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La función delta puede usarse para estudiar el comportamiento de un circuito que ha sido sometido a 
transitorios. Éstos son generados durante el prendido y apagado, y los voltajes altos de entrada asociados 
con ellos crean una corriente excesiva en los componentes, dañando el circuito. Los transitorios también 
pueden ser dañinos ya que contienen un espectro de frecuencias amplio. La introducción de un transitorio 
en un circuito puede tener el efecto de forzar al circuito con un rango de frecuencias. Si hay una de éstas 
cerca de la frecuencia natural del sistema, habrá resonancia, por lo que se producen oscilaciones sufi cien-
temente grandes para dañar el sistema.

Por esta razón, antes de construir un circuito, algunas veces los ingenieros usan la función delta para 
modelar un transitorio y estudiar sus efectos en el circuito.

EJEMPLO 1.21

Suponga que, en el circuito de la fi gura 1.33, la corriente y la carga en el condensador son cero en el tiem-
po cero. Quiere determinar la respuesta del voltaje de salida a un transitorio modelado por δ(t).

El voltaje de salida es q(t)/C, de esta manera determinará q(t). Por la ley de voltaje de Kirchhoff,

Como i = q′,

Las condiciones iniciales son q(0) = q′(0) = 0.
Aplique la transformada de Laplace a la ecuación diferencial y use las condiciones iniciales para 

obtener

t

0.30
0.25
0.20

0.10
0.05

0 2 4 6 8 10

0.15

y(t)

FIGURA 1.32 Gráfi ca de

y(t) =

{
0 si 0 ≤ t < 3

e−(t−3) sen(t − 3) si t ≥ 3
.

Li′ + Ri +
1

C
q = i′ + 10i + 100q = δ(t).

1 H 10 �
0.01 FE in(t) � δ (t)

FIGURA 1.33 

q ′′ + 10q ′ + 100q = δ(t).

s2Q(s) + 10sQ(s) + 100Q(s) = 1.

Eentrada (t) = δ(t)



Entonces

Para invertir esto usando el teorema del corrimiento, complete el cuadrado

Como

entonces

El voltaje de salida es

En la fi gura 1.34 se muestra una gráfi ca de esta salida. La salida del circuito muestra oscilaciones amorti-
guadas a su frecuencia natural, aunque no fue forzada explícitamente por oscilaciones de esta frecuencia. 
Si lo desea, puede obtener la corriente por i(t) = q′(t). ■

Q(s) =
1

s2 + 10s + 100
.

Q(s) =
1

(s + 5)2 + 75
.

L
−1

[
1

(s2 + 75)

]
=

1

5
√

3
sen(5

√
3t),

q(t) = L
−1

[
1

(s + 5)2 + 75

]
=

1

5
√

3
e−5t sen(5

√
3t).

1

C
q(t) = 100q(t) =

20
√

3
e−5t sen(5

√
3t).

�

�

En cada uno de los problemas del 1 al 5, resuelva el problema 
con valores iniciales y grafi que la solución.

1. y′′ + 5y′ + 6y = 3δ(t − 2) − 4δ(t − 5); y(0) = y′(0) = 0

2. y′′ − 4y′ + 13y = 4δ(t − 3); y(0) = y′(0) = 0

3. y(3) + 4y′′ + 5y′ + 2y = 6δ(t); y(0) = y′(0) = y′′(0) = 0

4. y′′ + 16y′ = 12δ(t − 5π/8); y(0) = 3, y′(0) = 0.

5.  y′′ + 5y′ + 6y = Bδ(t); y(0) = 3, y′(0) = 0. Llame a la 
solución ϕ. ¿Qué son ϕ(0) y ϕ′(0)? Usando esta informa-

SECCIÓN 1.5 PROBLEMAS

t

5

4

3

2

1

0

0.5

1.0 1.5 2.0 2.5 3.0
�1

Eout(t)

FIGURA 1.34 Salida del 
circuito de la fi gura 1.32.
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1.6 Solución de la transformada de Laplace de sistemas

La transformada de Laplace puede usarse para resolver sistemas de ecuaciones que involucren derivadas 
e integrales.

EJEMPLO 1.22

Consideremos el sistema de ecuaciones diferenciales y condiciones iniciales para las funciones x y y:

Empiece por aplicar la transformada de Laplace de las ecuaciones diferenciales, incorporando las 
condiciones iniciales. Obtiene

ción, ¿qué fenómeno físico modela la función delta de 
Dirac?

6.  Suponga que f no es continua en a, pero límt→a+ f (t) = 
f (a+) es fi nita. Probar que �∞

0   f (t)δ(t − a) dt = f (a+).

7. Evalúe �∞∞
0  

 (sen(t)/t)δ(t − π/6)dt .

8. Evalúe �2
0  

 t2δ(t − 3)dt .

9. Evalúe �∞
0  

 f (t)δ(t − 2)dt , donde

10.  Algunas veces es conveniente considerar a δ(t) como la 
derivada de la función de Heaviside H(t). Use las defi nicio-
nes de la derivada, de la función de Heaviside, y de la fun-
ción delta (como el límite de δǫ) para dar una justifi cación 
heurística para esto.

11.  Use la idea H′(t) = δ(t) del problema 10 para determinar el 
voltaje de salida del circuito del ejemplo 1.16 derivando la 
ecuación pertinente para obtener una ecuación en i en lugar 
de escribir el cambio como una integral.

12.  Si H′(t) = δ(t), entonces �[H′(t)](s) = 1. Pruebe que no 
todas las reglas operacionales para la transformada de 
Laplace son compatibles con esta expresión. Sugerencia: 

Verifi que para ver si [H′(t)](s) = s�[H(t)](s) − H(0+).

13. Evalúe δ(t − a) ∗ f (t).

14.  Un objeto de masa m es atado al extremo inferior de un 
resorte de módulo k. Suponga que no existe oscilación. 
Obtenga y resuelva una ecuación de movimiento para la 
posición del objeto en el tiempo t > 0, suponiendo que, en 
el tiempo cero el objeto es empujado hacia abajo desde la 
posición de equilibrio con una velocidad inicial v0. ¿En qué 
momento deja el objeto la posición de equilibrio?

15.  Suponga que un objeto de masa m está atado al extremo 
inferior de un resorte de módulo k. Suponga que no exis-
te oscilación. Resuelva la ecuación de movimiento para 
la posición del objeto en cualquier tiempo t ≥ 0 si, en el 
tiempo cero, el peso es empujado hacia abajo con una fuer-
za mv0. ¿Cómo es la posición del objeto del problema 14 
comparada con la del objeto en este problema para cual-
quier tiempo positivo?

16.  Un peso de 2 libras es atado al extremo inferior de un resor-
te, estirándolo 8

3 pulgadas. Se deja que el peso alcance su 
posición de equilibrio. En algún tiempo posterior, que se 
llama tiempo cero, el peso se empuja hacia abajo con una 
fuerza de 1

4 de libra (un impulso). Suponga que no hay 
amortiguamiento en el sistema. Determine la velocidad con 
la cual el peso deja la posición de equilibrio así como la 
frecuencia y la magnitud de las oscilaciones resultantes.

f (t) =

⎧
⎪⎨
⎪⎩

t para 0 ≤ t < 2

t2 para t > 2

5 para t = 2.

x′′ − 2x′ + 3y′ + 2y = 4,

2y′ − x′ + 3y = 0,

x(0) = x′(0) = y(0) = 0.

s2X − 2sX + 3sY + 2Y =
4

s
,

2sY − sX + 3Y = 0.



Resuelva estas ecuaciones para X(s) y Y(s) y obtendrá

Una descomposición en fracciones parciales produce

y

Aplicando la transformada inversa, obtiene la solución

y

El análisis de sistemas mecánicos y eléctricos que tienen varios componentes pueden encauzarse  a 
sistemas de ecuaciones diferenciales, las cuales pueden resolverse usando la transformada de Laplace.

EJEMPLO 1.23

Consideramos el sistema masa/resorte de la fi gura 1.35. Sea x1 = x2 = 0 en la posición de equilibrio, don-
de los pesos están en reposo. Elija la dirección de la derecha como positiva y suponga que los pesos están 
en las posiciones x1(t) y x2(t) en el tiempo t.

Aplicando dos veces la ley de Hooke, la fuerza recuperada en m1 es

y en m2 es

Por la segunda ley del movimiento de Newton,

X(s) =
4s + 6

s2(s + 2)(s − 1)
y Y (s) =

2

s(s + 2)(s − 1)
.

X(s) = −
7

2

1

s
− 3

1

s2
+

1

6

1

s + 2
+

10

3

1

s − 1

Y (s) = −
1

s
+

1

3

1

s + 2
+

2

3

1

s − 1
.

x(t) = −
7

2
− 3t +

1

6
e−2t +

10

3
et

y(t) = −1 +
1

3
e−2t +

2

3
et .

−k1x1 + k2(x2 − x1)

m1 m 2k1 k 2 k 3

−k2(x2 − x1) − k3x2.

m1x
′′
1 = −(k1 + k2)x1 + k2x2 + f1(t)

FIGURA 1.35 

■
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y

Estas ecuaciones aceptan que el amortiguamiento es despreciable, pero permiten que las funciones de 
fuerza actúen en cada masa.

Como un ejemplo específi co, suponga m1 = m2 = 1 y k1 = k3 = 4 mientras k2 = 5
2

. Suponga que 
f2(t) = 0, de manera que ninguna fuerza de impulso externa actúe en la segunda masa, mientras que una
fuerza de magnitud f1(t) = 2[1 − H(t − 3)] actúa en la primera. Ésta pega a la primera masa con 
una fuerza de magnitud constante 2 durante los primeros 3 segundos, después se apaga. Ahora el sistema 
de ecuaciones para las funciones de desplazamiento es

Si las masas están inicialmente en reposo en la posición de equilibrio, entonces

Aplique la transformada de Laplace a cada ecuación del sistema para obtener

Resuelva esto para obtener

y

Como preparación para aplicar la transformada inversa de Laplace, use una descomposición en fracciones 
parciales para escribir

y

m2x
′′
2 = k2x1 − (k2 + k3)x2 + f2(t).

x′′
1 = −

13

2
x1 +

5

2
x2 + 2[1 − H(t − 3)],

x′′
2 =

5

2
x1 −

13

2
x2.

x1(0) = x2(0) = x′
1(0) = x′

2(0) = 0.

s2X1 = −
13

2
X1 +

5

2
X2 +

2(1 − e−3s)

s
,

s2X2 =
5

2
X1 −

13

2
X2.

X1(s) =
2

(s2 + 9)(s2 + 4)

(
s2 +

13

2

)
1

s
(1 − e−3s)

X2(s) =
5

(s2 + 9)(s2 + 4)

1

s
(1 − e−3s).

X1(s) =
13

36

1

s
−

1

4

s

s2 + 4
−

1

9

s

s2 + 9
−

13

36

1

s
e−3s +

1

4

s

s2 + 4
e−3s +

1

9

s

s2 + 9
e−3s

X2(s) =
5

36

1

s
−

1

4

s

s2 + 4
+

1

9

s

s2 + 9
−

5

36

1

s
e−3s +

1

4

s

s2 + 4
e−3s −

1

9

s

s2 + 9
e−3s



Ahora es rutina aplicar la transformada inversa de Laplace para obtener la solución

EJEMPLO 1.24

En el circuito de la fi gura 1.36, suponga que el interruptor está cerrado en el tiempo cero. Desea conocer 
la corriente en cada vuelta. Suponga que las corrientes en ambos ciclos y las cargas en los condensadores 
inicialmente son cero. Aplique las leyes de Kirchhoff a cada ciclo para obtener

Como i = q′, escriba q(t) = �t
0 i(wwτ)dτ + q(0). Aplique las dos ecuaciones de circuitos y obtendrá

Ponga q1(0) = q2(0) = 0 en este sistema para obtener

x1(t) =
13

36
−

1

4
cos(2t) −

1

9
cos(3t)

+
[
−

13

36
+

1

4
cos(2(t − 3)) −

1

9
cos(3(t − 3))

]
H(t − 3),

x2(t) =
5

36
−

1

4
cos(2t) + 1

9
cos(3t)

+
[
−

5

36
+

1

4
cos(2(t − 3)) −

1

9
cos(3(t − 3))

]
H(t − 3). ■

40i1 + 120

∫ t

0

[i1(τ ) − i2(τ )] dτ + 120[q1(0) − q2(0)] = 10

60i2 + 120

∫ t

0

i2(τ )dτ + 120q2(0) = 120

∫ t

0

[i1(τ ) − i2(τ )] dτ + 120[q1(0) − q2(0)].

40i1 + 120(q1 − q2) = 10

60i2 + 120q2 = 120(q1 − q2).

40i1 + 120

∫ t

0

[i1(τ ) − i2(τ )] dτ = 10

60i2 + 120

∫ t

0

i2(τ ) dτ = 120

∫ t

0

[i1(τ ) − i2(τ )] dτ.

40 � 60 �

10 V

F1
120 F1

120

FIGURA 1.36 
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Aplique la transformada de Laplace a cada ecuación para obtener

Después de algunos rearreglos, tendrá

Resuelva esto para obtener

y

Ahora use la transformada inversa de Laplace para encontrar la solución

40I1 +
120

s
I1 −

120

s
I2 =

10

s

60I2 +
120

s
I2 =

120

s
I1 −

120

s
I2.

(s + 3)I1 − 3I2 =
1

4

2I1 − (s + 4)I2 = 0.

I1(s) =
s + 4

4(s + 1)(s + 6)
=

3

20

1

s + 1
+

1

10

1

s + 6

I2(s) =
1

2(s + 1)(s + 6)
=

1

10

1

s + 1
−

1

10

1

s + 6

i1(t) =
3

20
e−t +

1

10
e−6t , i2(t) =

1

10
e−t −

1

10
e−6t . ■

En cada uno de los problemas del 1 al 10, use la transformada 
de Laplace para resolver el problema con valores iniciales para 
el sistema.

 1. x′ − 2y′ = 1, x′ + y − x = 0; x(0) = y(0) = 0

 2. 2x′ − 3y + y′ = 0, x′ + y′ = t ; x(0) = y(0) = 0

 3. x′ + 2y′ − y = 1, 2x′ + y = 0; x(0) = y(0) = 0

 4. x′ + y′ − x = cos(2t ), x′ + 2y′ = 0; x(0) = y(0) = 0

 5. 3x′ − y = 2t, x′ + y′ − y = 0; x(0) = y(0) = 0

 6. x′ + 4y′ − y = 0, x′ + 2y = e−t; x(0) = y(0) = 0

 7. x′ + 2x − y′ = 0, x′ + y + x = t2; x(0) = y(0) = 0

 8. x′ + 4x − y = 0, x′ + y′ = t ; x(0) = y(0) = 0

 9. x′ + y′ + x − y = 0, x′ + 2y′ + x = 1; x(0) = y(0) = 0

10. x′ + 2y′ − x = 0, 4x′ + 3y′ + y = −6; x(0) = y(0) = 0

11. Use la transformada de Laplace para resolver el sistema

12.  Encuentre las corrientes en el circuito de la fi gura 1.37, 
suponiendo que las corrientes y las cargas son cero inicial-
mente y que E(t) = 2H(t − 4) − H(t − 5).

SECCIÓN 1.6 PROBLEMAS

2 � 1 �

i2i1

5 H 4 �

3 �

E(t)

FIGURA 1.37 

y′
1 − 2y′

2 + 3y1 =0

y1 − 4y′
2 + 3y′

3 =t,

y1 − 2y′
2 + 3y′

3 = − 1; y1(0) = y2(0) = y3(0) = 0.

= 0

= t,

= −1 1 2 3



13.  Encuentre las corrientes en el circuito de la fi gura 1.37 si las 
corrientes y las cargas inicialmente son cero y E(t) = 1 − 
H(t − 4) sen(2(t − 4)).

14.  Encuentre las funciones de desplazamiento de las masas 
en el sistema de la fi gura 1.38. Desprecie el amortigua-
miento y suponga que los desplazamientos y las velocida-
des son cero inicialmente, y que las fuerzas externas son 
f1(t) = 2 y f2(t) = 0.

15.  Encuentre las funciones de desplazamiento en el sistema 
de la fi gura 1.38 si f1(t) = 1 − H(t − 2) y f2(t) = 0. Supon-
ga que los desplazamientos y las velocidades iniciales son 
cero.

16.  Considere el sistema de la fi gura 1.39. Sea M sometida a 
una fuerza de impulso periódica f (t) = Asen(ωt). Las masas 
están inicialmente en reposo en la posición de equilibrio.

  (a) Obtenga y resuelva el problema con valores iniciales 
para las fuerzas de desplazamiento.

  (b) Pruebe que, si m y k2 son elegidos de manera que 
ω =

√
k2/m, entonces la masa m cancela las vibraciones 

forzadas de M. En este caso m es una vibración absor-
bente.

17.  Dos objetos de masas m1 y m2 están atados en los extremos 
opuestos de un resorte teniendo una constante de resorte k 
(fi gura 1.40). Se coloca todo el aparato sobre una mesa muy 

barnizada. Pruebe que, si se estira y suelta desde el reposo, 
las masas oscilan una con respecto a la otra con periodo

18.  Resuelva para las corrientes en el circuito de la fi gura 1.41 
si E(t) = 5H(t − 2) y las corrientes iniciales son cero.

19.  Resuelva para las corrientes en el circuito de la fi gura 1.41 
si E(t) = 5δ(t − 1).

20.  Como se muestra en la fi gura 1.42, dos tanques están conec-
tados por una serie de tuberías.  El tanque 1 contiene inicial-
mente 60 galones de salmuera en el cual disuelven 11 libras 
de sal. El tanque 2 contiene inicialmente 7 libras de sal 
disuelta en 18 galones de salmuera. Empezando en el tiem-
po cero, la mezcla contiene 16 de libra de sal para cada galón 
de agua que es bombeado en el tanque 1 a una razón de 2 
galones por minuto, mientras las soluciones de agua salada 
se intercambian entre los dos tanques y también salen del 
tanque 2 en las razones que se muestran en el diagrama. 
Cuatro minutos después del tiempo cero, se vierte sal en el 
tanque 2 a razón de 11 libras por minuto por un periodo de 
2 minutos. Determine la cantidad de sal en cada tanque para 
cualquier tiempo t ≥ 0.

k3  3

m2  1

m1  1

k2  2

k1  6

FIGURA 1.38 

M

y1
c1

m

y2

k
1

k
2

FIGURA 1.39 

2π

√
m1m2

k(m1 + m2)
.

m1 k
m2

FIGURA 1.40 

i2i1
10 �

10 �
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1.7 Ecuaciones diferenciales con coefi cientes polinomiales

Algunas veces la transformada de Laplace puede ser usada para resolver ecuaciones diferenciales lineales 
que tienen polinomios como coefi cientes. Para esto es necesario que la transformada de Laplace de tf (t) 
sea el negativo de la derivada de la transformada de Laplace de f (t).

21.  Dos tanques están conectados por una serie de tuberías 
como se muestra en la fi gura 1.43. El tanque 1 contiene 
inicialmente 200 galones de salmuera en donde se disuel-
ven 10 libras de sal. El tanque 2 contiene inicialmente 5 
libras de sal disueltas en 100 galones de agua. Empezando 
en el tiempo cero, se bombea agua pura en el tanque 1 a 
razón de 3 galones por minuto, mientras las soluciones de 
salmuera se intercambian entre los tanques en las razones 
que se muestran en el diagrama. Tres minutos después del 
tiempo cero, 5 libras de sal son descargadas en el tanque 2. 
Determine la cantidad de sal en cada tanque para cualquier 
tiempo t ≥ 0.

2

5 lb3 gal/min3 gal/min

4 gal/min2 gal/min 1 gal/min

1

FIGURA 1.43 

TEOREMA 1.13 

Sea �[f ](s) = F(s) para s > b y suponga que F es derivable. Entonces

para s > b.

Prueba Derive bajo el signo de la integral para calcular

y esto es equivalente a la conclusión del teorema. ■

Aplicando este resultado n veces, se llega al siguiente.

L[tf (t)](s) = −F ′(s)

F ′(s) =
d

ds

∫ ∞

0

e−stf (t) dt =
∫ ∞

0

d

ds
(e−stf (t)) dt

=
∫ ∞

0

−te−stf (t) dt =
∫ ∞

0

e−st [−tf (t)] dt

= L[−tf (t)](s),

�

�

COROLARIO 1.1 

Sea �[f ](s) = F(s) para s > b y sea n un entero positivo. Suponga que F es derivable n veces. Entonces, 
para s > b,

L[tnf (t)](s) = (−1)n
dn

dsn
F(s).�



EJEMPLO 1.25

Considere el problema

Si escribe esta ecuación diferencial en la forma y′′ + p(t)y′ + q(t)y = 0, entonces debe elegir p(t) = 
(4t −2)/t, la cual no está defi nida en t = 0, donde está dada la condición inicial. Este problema no es del 
tipo para los que hay teorema de existencia/unicidad. Más aún, sólo hay una condición inicial. Sin embar-
go, busque funciones que satisfagan el problema como fue formulado.

Aplique la transformada de Laplace a la ecuación diferencial y obtiene

Calcule los primeros tres términos como sigue. Primero,

ya que y(0) = 1 y y′(0), aunque desconocido, es constante y tiene derivada cero. Después,

Por último,

Por tanto, la transformada de una ecuación diferencial es

Entonces

Esta es una ecuación diferencial lineal de primer orden, y encontrará un factor de integración. Primero 
calcule

Entonces

ty′′ + (4t − 2)y′ − 4y = 0; y(0) = 1.

L[ty′′] + 4L[ty′′] − 2L[y′] − 4L[y] = 0.

L[ty′′] = −
d

ds
L[y′] = −

d

ds
[s2Y − sy(0) − y′(0)]

= −2sY − s2Y ′ + 1

L[ty′] = −
d

ds
[y′]

= −
d

ds
[sY − y(0)] = −Y − sY ′.

L[y′] = sY − y(0) = sY − 1.

−2sY ′ − s2Y + 1 − 4Y − 4sY ′ − 2sY + 2 − 4Y = 0.

Y ′ +
4s + 8

s(s + 4)
Y =

3

s(s + 4)
.

∫
4s + 8

s(s + 4)
ds = ln[s2(s + 4)2].

eln[(s2(s+4)2] = s2(s + 4)2

�

�

�

�

� �

�
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es un factor de integración. Si multiplica la ecuación diferencial por este factor obtiene

o

Integre para obtener

Entonces

Aplique la transformada inversa de Laplace, para obtener

Esta función satisface la ecuación diferencial y la condición y(0) = 1 para cualquier número real C. Este 
problema no tiene una solución única. ■

Cuando aplica la transformada de Laplace a una ecuación diferencial con coefi ciente constante 
y′′ + Ay′ + By = f (t), obtiene una expresión algebraica para Y. En este ejemplo, donde aparecen poli-
nomios como coefi cientes, obtiene una ecuación diferencial para Y ya que el proceso de calcular la 
transformada de tky(t) involucra derivar Y(s).

En el ejemplo siguiente, necesitará el siguiente hecho.

s2(s + 4)2Y ′ + (4s + 8)s(s + 4)Y = 3s(s + 4),

[s2(s + 4)2Y ]′ = 3s(s + 4).

s2(s + 4)2Y = s3 + 6s2 + C.

Y (s) =
s

(s + 4)2
+

6

(s + 4)2
+

C

s2(s + 4)2
.

y(t) = e−4t + 2te−4t +
C

32
[−1 + 2t + e−4t + 2te−4t ].

TEOREMA 1.14

Sea f continua a pedazos en [0, k] para todo número k positivo, y suponga que existen números M y b tales 
que |f (t)| ≤ Mebt para t ≥ 0. Sea �[f ] = F. Entonces

Prueba Escriba

conforme s → ∞. ■

Este resultado permitirá resolver el siguiente problema con valores iniciales.

lim
s→∞

F(s) = 0.

|F(s)| =
∣∣∣∣
∫ ∞

0

e−stf (t) dt

∣∣∣∣ ≤
∫ ∞

0

e−stMebt dt

=
M

b − s
e−(s−b)t

]∞

0

=
M

s − b
→ 0

lím



EJEMPLO 1.26

Suponga que quiere resolver

A diferencia del ejemplo anterior, este problema satisface las hipótesis del teorema de existencia/uni-  
cidad.

Aplique la transformada de Laplace a la ecuación diferencial para obtener

Ahora y(0) = y′(0) = 0 y

Por tanto, tenemos que

o

Ésta es una ecuación diferencial lineal de primer orden para Y. Para encontrar un factor de integración, 
primero calcule

La exponencial de esta función, o

es un factor de integración. Multiplique la ecuación diferencial por esta función para obtener

Entonces

así

y′′ + 2ty′ − 4y = 1; y(0) = y′(0) = 0.

s2Y (s) − sy(0) − y′(0) + 2L[ty′](s) − 4Y (s) =
1

s
.

L[ty′](s) = −
d

ds
[L[y′](s)]

= −
d

ds
[sY (s) − y(0)] = −Y (s) − sY ′(s).

s2Y (s) − 2Y (s) − 2sY ′(s) − 4Y (s) =
1

s
,

Y ′ +
(

3

s
−

s

2

)
Y = −

1

2s2
.

∫ (
3

s
−

s

2

)
ds = 3 ln(s) −

1

4
s2.

s3e−s2/4,

(s3e−s2/4Y )′ = −
1

2
se−s2/4.

s3e−s2/4Y = e−s2/4 + C

Y(s) =
1

s3
+

C

s3
es2/4.

�

�

�
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48   CAPÍTULO 1   La transformada de Laplace

No tiene ninguna otra condición inicial para determinar C. Sin embargo, para tener líms→∞ Y (s) = 0, debe 
elegir C = 0. Entonces Y (s) = 1/s3 así

y(t) =
1

2
t2. ■

Use la transformada de Laplace para resolver cada uno de los 
problemas del 1 al 10.

1. t 2y′ − 2y = 2

2. y′′ + 4ty′ − 4y = 0; y(0) = 0, y′(0) = −7

3. y′′ − 16ty′ + 32y = 14; y(0) = y′(0) = 0

4. y′′ + 8ty′ − 8y = 0; y(0) = 0, y′(0) = −4

 5. ty′′ + (t − 1)y′ + y = 0; y(0) = 0

 6. y′′ + 2ty′ − 4y = 6; y(0) = 0, y′(0) = 0

 7. y′′ + 8ty′ = 0; y(0) = 4, y′(0) = 0

 8. y′′ − 4ty′ + 4y = 0; y(0) = 0, y′(0) = 10

 9. y′′ − 8ty′ + 16y = 3; y(0) = 0, y′(0) = 0

10. (1 − t)y′′ + ty′ − y = 0, y(0) = 3, y′(0) = −1

SECCIÓN 1.7 PROBLEMAS



2.1 ¿Por qué las series de Fourier?

Una serie de Fourier es la representación de una función como una serie de constantes multiplicadas por 
funciones seno y/o coseno de diferentes frecuencias. Para mostrar el interés que tienen esas series, se le 
presenta un problema del tipo que llevó a Fourier a considerarlas.

Considere una barra delgada de longitud π, de sección transversal de densidad constante y uniforme. 
Sea u (x, t) la temperatura en el tiempo t en la sección transversal de la barra en x, para 0 ≤ x ≤ π. La 
ecuación en derivadas parciales que satisface u es:

(2.1)

en donde k es una constante que depende del material de la barra. Suponga que los extremos izquierdo y 
derecho de la barra se mantienen a temperatura cero

(2.2)

y que la temperatura a lo largo de la barra en el tiempo t = 0 está especifi cada por

(2.3)

Intuitivamente, la ecuación de calor junto con la distribución de la temperatura inicial a lo largo de la 
barra y la información de que los extremos se mantienen a cero grados durante todo el tiempo, son sufi cien-
tes para determinar la distribución de la temperatura u(x, t) a lo largo de la barra en cualquier tiempo.

Mediante un proceso que ahora lleva su nombre y que desarrollará cuando estudie las ecuaciones 
en derivadas parciales, Fourier encontró que las funciones que satisfacen la ecuación de calor (2.1) y las 
condiciones en los extremos de la barra, las ecuaciones (2.2), tienen la forma

(2.4)

en donde n puede ser cualquier entero positivo y bn cualquier número real. Debe usar estas funciones para en-
contrar una que también satisfaga la condición (2.3).

49

C A P Í T U L O 2
Series de Fourier

LA SERIE DE FOURIER DE UNA
FUNCION CONVERGENCIA DE UN
SERIE DE FOURIER SERIE DE FO
EN COSENOS EN SENOS INTEGRA

∂u

∂t
= k

∂2u

∂x 2 para 0 < x < π , t > 0,

u(0, t ) = u(π , t ) = 0 para t > 0,

u(x, 0) = f (x) = x(π − x).

un(x, t) = bn sen(nx)e −kn2t ,
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Los fenómenos periódicos han fascinado por mucho tiempo a la humanidad. Nuestros ancestros conocían 
la recurrencia de las fases de la Luna y de ciertos planetas, las mareas de los lagos y los océanos y los 
ciclos del agua. El cálculo y la ley de gravitación de Isaac Newton permitieron explicar la periodicidad 
de las mareas, pero fue Joseph Fourier y sus sucesores quienes desarrollaron el análisis de Fourier que 
ha tenido aplicaciones más profundas en el estudio de los fenómenos naturales y en el análisis de señales 
y datos.

Una simple elección del entero positivo n0 y la constante bn0
 no funciona. Si u(x, t) = bn0

 sen(n0x)e−kn2
0t, 

entonces necesita

una imposibilidad. Un polinomio no puede ser igual a una constante multiplicada por una función seno en 
[0, π] (o en cualquier intervalo no trivial).

Lo siguiente es intentar una suma fi nita de funciones de la forma (2.4),

(2.5)

Tal función seguirá satisfaciendo la ecuación de calor y las condiciones (2.2). Para satisfacer la condición 
(2.3), debe elegir N y b′

ns de manera que:

Pero esto también es imposible. Una suma fi nita de múltiplos constantes de las funciones seno no puede 
ser igual a un polinomio en [0, π].

u(x, 0) = x(π − x) = bn0 sen(n0x) para 0 ≤ x ≤ π,

u(x, t) =
N∑

n=1

bn sen(nx)e−kn2t .

u(x, 0) = x(π − x) =
N∑

n=1

bn sen(nx) para 0 ≤ x ≤ π.

bn0



En este punto Fourier tuvo una inspiración brillante. Como ninguna suma fi nita de funciones (2.4) 
puede ser una solución, entonces intentó con una serie infi nita:

(2.6)

Esta función satisfará la ecuación de calor así como las condiciones u(x, 0) = u(π, 0) = 0. Para satisfacer 
la condición (2.3) debe escoger las b′

ns de manera que:

(2.7)

Esto es muy diferente que intentar representar el polinomio x(π − x) por la suma trigonométrica fi nita 
(2.5). Fourier afi rmaba que la ecuación (2.7) es válida para 0 ≤ x ≤ π si los coefi cientes se eligen como:

Sustituyendo estos coefi cientes en la solución propuesta (2.6), Fourier afi rmaba que la solución a este 
problema de conducción de calor con la temperatura inicial dada es

La afi rmación que

fue demasiado radical para que la aceptaran los contemporáneos de Fourier; las matemáticas de ese tiem-
po no eran adecuadas para probar este tipo de aseveraciones. Ésta fue la falta de rigor que motivó a la Aca-
demia a rechazar la publicación del artículo, pero las implicaciones no fueron olvidadas por los colegas de 
Fourier. No hay nada particular en x(π − x) como una distribución de temperatura inicial y pueden usarse 
diferentes funciones. Lo que realmente afi rmaba Fourier era que para una extensa clase de funciones f, los 
coefi cientes bn pueden elegirse de manera que f (x) = 

∑∞
n=1 bn sen(nx) en [0, π].

Con el tiempo, esta afi rmación y otras aún más generales sobre estas series propuestas por Fourier 
fueron probadas. Ahora sigue un análisis de las ideas de Fourier y algunas de sus ramifi caciones.

u(x, t) =
∞∑

n=1

bn sen(nx)e−kn2t .

u(x, 0) = x(π − x) =
∞∑

n=1

bn sen(nx) para 0 ≤ x ≤ π.

bn = 2

π

∫ π

0
x(π − x) sen(nx) dx = 4

π

1 − (−1)n

n3 .

u(x, t) = 4

π

∞∑

n=1

1 − (−1)n

n3
sen(nx)e−kn2t .

∞∑

n=1

4

π

1 − (−1)n

n3 sen(nx) = x(π − x) para 0 ≤ x ≤ π

1.  En el mismo conjunto de ejes, haga una gráfi ca de x (π − x) 
y 
∑

5
n=1(4/π)([1 − (−1)n]/n3) sen(nx) para 0 ≤ x ≤ π. Repi-

ta esto para las sumas parciales 
∑

10
n=1(4/π)([1 − (−1)n]/n3) 

sen(nx) y 
∑

20
n=1(4/π)([1 − (−1)n]/n3) sen(nx). Esto permiti-

rá ver la exactitud de la intuición de Fourier al afi rmar que 
x(π − x) puede representarse correctamente por 

∑
∞
n=1(4/π)

([1 − (−1)n]/n3) sen(nx) en este intervalo.

2.  Pruebe que un polinomio no puede ser un múltiplo constante 
de sen(nx) en [0, π] para cualquier entero positivo n. Suge-
rencia: una manera es aplicar la inducción sobre el grado del 
polinomio.

3.  Pruebe que un polinomio no puede ser igual a una suma de 
la forma 

∑
n
j=0 cj sen( jx) para 0 ≤ x ≤ π, donde las c′

j son 
números reales.

SECCIÓN 2.1 PROBLEMAS
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2.2 La serie de Fourier de una función

Sea f (x) defi nida para −L ≤ x ≤ L. Por el momento, suponga sólo que �L
−L f (x) dx existe. Quiere explorar 

la posibilidad de elegir números a0, a1, . . ., b1, b2, . . . tales que

(2.8)

para −L ≤ x ≤ L. Algunas veces esto es pedir demasiado, pero se puede lograr bajo ciertas condiciones 
sobre f . Sin embargo, para empezar, acepte el mejor de los mundos y suponga por el momento que la ecua-
ción (2.8) es cierta. ¿Qué dice esto acerca de la elección de los coefi cientes? Hay un mecanismo ingenioso 
para contestar esta pregunta, que era conocido por Fourier y otros de su época. Necesita el siguiente lema 
elemental.

Sea n y m enteros no negativos. Entonces
1.

2. Si n � m, entonces

3. Si n � 0, entonces

El lema se prueba integrando directamente.
Ahora, para encontrar a0, integre la serie (2.8) término a término (suponiendo por ahora que puede 

hacerlo):

Todas las integrales de la derecha valen cero, excepto, posiblemente, la primera, y esta ecuación se 
reduce a:

Por tanto,

f (x) = 1

2
a0 +

∞

n=1

an cos
nπx

L
+ bn sen

nπx

L

LEMA 2.1

L

−L
cos

nπx

L
sen

mπx

L
dx = 0.

L

−L
cos

nπx

L
cos

mπx

L
dx =

L

−L
sen

nπx

L
sen

mπx

L
dx = 0.

L

−L
f (x) dx = 1

2
a0

L

−L
dx

+
∞

n=1

an

L

−L
cos

nπx

L
dx + bn

L

−L
sen

nπx

L
dx.

L

−L
f (x) dx = La 0.

a0 = 1

L

L

−L
f (x) dx.

L

−L
cos2 nπx

L
dx =

L

−L
sen2 nπx

L
dx = L. ■



Ahora, determine ak para cualquier entero positivo k. Multiplique la ecuación (2.8) por cos(kπx/L) e 
integre cada término de la serie resultante para obtener

Por el lema, todas las integrales de la derecha son cero excepto la �L
−L cos(kπx/L) cos(kπx/L)dx, que 

aparece cuando n = k, y esta integral es igual a L. El lado derecho de esta ecuación se reduce a un solo 
término y la ecuación se convierte en:

de donde

Para encontrar bk, regrese a la ecuación (2.8). Esta vez multiplique la ecuación por sen(kπx/L) e integre 
cada término para obtener

Nuevamente, por el lema, todos los términos de la derecha son cero a excepción de la �L
−L sen(nπx/L) 

sen(kπx/L)dx cuando n = k, y esta ecuación se reduce a

Por tanto,

Ha “encontrado” los coefi cientes en el desarrollo en la serie trigonométrica (2.8). Por supuesto, este 
análisis es débil debido al intercambio de las series y las integrales, lo que no siempre está justifi cado. Sin 
embargo, este argumento señala cómo pueden elegirse las constantes, al menos bajo ciertas condiciones, 
y sugiere la siguiente defi nición.

∫ L

−L

f (x) cos

(
kπx

L

)
dx = 1

2
a0

∫ L

−L

cos

(
kπx

L

)
dx

+
∞∑

n=1

an

∫ L

−L

cos
(nπx

L

)
cos

(
kπx

L

)
dx + bn

∫ L

−L

sen
(nπx

L

)
cos

(
kπx

L

)
dx.

∫ L

−L

f (x) cos

(
kπx

L

)
dx = akL,

ak = 1

L

∫ L

−L

f (x) cos

(
kπx

L

)
dx.

∫ L

−L

f (x) sen

(
kπx

L

)
dx = 1

2
a0

∫ L

−L

sen

(
kπx

L

)
dx

+
∞∑

n=1

an

∫ L

−L

cos
(nπx

L

)
sen

(
kπx

L

)
dx + bn

∫ L

−L

sen
(nπx

L

)
sen

(
kπx

L

)
dx.

∫ L

−L

f (x) sen

(
kπx

L

)
dx = bkL.

bk = 1

L

∫ L

−L

f (x) sen

(
kπx

L

)
dx.

DEFINICIÓN 2.1  Serie y coefi cientes de Fourier

Sea f una función Riemann integrable en [−L, L].

1. Los números

an = 1

L

∫ L

−L

f (x) cos
(nπx

L

)
dx, para n = 0, 1, 2, . . .

2.2 La serie de Fourier de una función   53
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EJEMPLO 2.1

Sea f (x) = x para −π ≤ x ≤ π. Escriba la serie de Fourier de f en [−π, π]. Los coefi cientes son

y

ya que cos(nπ) = (−1)n si n es un entero. La serie de Fourier de x en [−π, π] es

En este ejemplo, el término constante y los coefi cientes de los cosenos son todos cero y la serie de Fourier 
tiene sólo términos en senos. ■

EJEMPLO 2.2

Sea

 y

 son los coefi cientes de Fourier de f en [−L, L].

2. La serie

es la serie de Fourier de f en [−L, L] cuando las constantes son los coefi cientes de Fourier de f 
en [−L, L].

bn = 1

L

∫ L

−L

f (x) sen
(nπx

L

)
dx para n = 1, 2, 3, . . .

1

2
a0 +

∞∑

n=1

an cos
(nπx

L

)
+ bn sen

(nπx

L

)

a0 = 1

π

π

−π

x dx = 0,

an = 1

π

π

−π

x cos(nx) dx

= 1

n2π
cos(nx) + x

nπ
sen(nx)

π

−π

= 0,

bn = 1

π

π

−π

x sen(nx) dx

= 1

n2π
sen(nx) − x

nπ
cos(nx)

π

−π

= −2

n
cos(nπ) = 2

n
(−1)n+1,

∞

n=1

2

n
(−1)n+1 sen(nx) = 2 sen(x) − sen(2x) + 2

3
sen(3x) − 1

2
sen(4x) + 2

5
sen(5x) − · · · .

f (x) =
{

0 para −3 ≤ x ≤ 0

x para 0 ≤ x ≤ 3
.

 0 ≤ x ≤ 3



Aquí L = 3 y los coefi cientes de Fourier son

y

La serie de Fourier de f en [−3, 3] es

Aunque f (x) sea bastante sencilla, �L
−L f (x) cos(nπx/L) dx y �L

−L f (x) sen(nπx/L) dx pueden requerir de 
mucho trabajo si se calculan a mano. Se recomienda ampliamente el uso de un paquete de software para 
evaluar integrales defi nidas. 

En estos ejemplos, escriba la serie de Fourier de f, pero no le pida que sea igual a f (x). Para la mayoría 
de las x no es obvio cuál es la suma de la serie de Fourier. Sin embargo, en algunos casos es evidente que 
la serie no es igual a f (x). Considere nuevamente f (x) = x en [−π, π] en el ejemplo 2.1. En x = π y en 
x = −π, cada término de la serie de Fourier es cero, aunque f (π) = π y f (−π) = −π. Así que, incluso para 
funciones muy sencillas, puede haber puntos donde la serie de Fourier no converja a f (x). Más adelante 
determine la suma de la serie de Fourier de una función; mientras no lo haga, no sabrá la relación entre la 
serie de Fourier y la función misma.

2.2.1 Funciones pares e impares

Algunas veces ahorrará trabajo en el cálculo de los coefi cientes de Fourier, si observa las propiedades 
especiales de f (x).

a0 = 1

3

∫ 3

−3
f (x) dx = 1

3

∫ 3

0
x dx = 3

2
,

an = 1

3

∫ 3

−3
f (x) cos

(nπx

3

)
dx

= 1

3

∫ 3

0
x cos

(nπx

3

)
dx

= 3

n2π2 cos
(nπx

3

)
+ x

nπ
sen

(nπx

3

)]3

0

= 3

n2π2
[(−1)n − 1],

bn = 1

3

∫ 3

−3
f (x) sen

(nπx

3

)
dx = 1

3

∫ 3

0
x sen

(nπx

3

)
dx

= 3

n2π2 sen
(nπx

3

)
− x

nπ
cos

(nπx

3

)]3

0

= 3

nπ
(−1)n+1.

3

4
+

∞∑

n=1

(
3

n2π2 [(−1)n − 1] cos
(nπx

3

)
+ 3

nπ
(−1)n+1 sen

(nπx

3

))
. ■
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Por ejemplo, x2, x4, cos(nπx/L), y e−|x| son funciones pares en cualquier intervalo [−L, L]. En la fi gura 
2.1 se muestran las gráfi cas de y = x2 y y = cos(5πx/3). La gráfi ca de tales funciones para −L ≤ x ≤ 0 es 
la refl exión a lo largo del eje y de la gráfi ca para 0 ≤ x ≤ L (fi gura 2.2).

Las funciones x, x3, x5 y sen(nπx/L) son funciones impares en cualquier intervalo [−L, L]. En la fi gu-
ra 2.3 se muestran las gráfi cas de y = x, y = x3 y y = sen(5πx/2). La gráfi ca de una función impar para 
−L ≤ x ≤ 0 es la refl exión a lo largo del eje vertical y después a lo largo del eje horizontal de la gráfi ca 
para 0 ≤ x ≤ L (fi gura 2.4). Si f es impar, entonces f (0) = 0, ya que

Por supuesto, la mayoría de las funciones no son ni par ni impar. Por ejemplo f (x) = ex no es ni par 
ni impar en ningún intervalo [−L, L].

DEFINICIÓN 2.2  

Función par:

f es una función par en [−L, L] si f (−x) = f (x) para −L ≤ x ≤ L.

Función impar:

f es una función impar en [−L, L] si f (−x) = −f (x) para −L ≤ x ≤ L.

f (−0) = f (0) = −f (0).

FIGURA 2.1 Gráfi cas de las 
funciones pares y � x2 y 
y = cos(5πx/3).

FIGURA 2.2 Gráfi ca de una función 
par típica, simétrica respecto al eje y. 
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FIGURA 2.3 Gráfi cas de las 
funciones impares y = x , y = x3 y 
y = sen (5πx/2).

FIGURA 2.4 Gráfi ca de una función 
impar típica, simétrica respecto al origen.



Las funciones pares e impares se comportan igual que los enteros pares e impares bajo la multipli-
cación:

 par · par = par,
 impar · impar = par,
y

par · impar = impar.

Por ejemplo, x2 cos(nπx/L) es una función par (producto de dos funciones pares); x2 sen(nπx/L) es impar 
(producto de una función par con una función impar); y x3 sen(nπx/L) es par (producto de dos funciones 
impares).

Ahora recuerde del cálculo que

y

Estas integrales se sugieren en las fi guras 2.2 y 2.4. En la fi gura 2.4, f es impar en [−L, L], y el área acotada 
por la gráfi ca y el eje horizontal para −L ≤ x ≤ 0 es exactamente el negativo de la acotada por la gráfi ca y 
el eje horizontal para 0 ≤ x ≤ L. Esto hace que f L−L

  f (x)dx = 0. En la fi gura 2.2, donde f es par, el área a 
la izquierda del eje vertical, para −L ≤ x ≤ 0, es igual a la de la derecha, para 0 ≤ x ≤ L, así f L−L

  f (x)dx= 
2 f L0 f (x)dx.

Una ramifi cación de estas ideas para los coefi cientes de Fourier es que si f es una función par o impar, 
entonces se puede ver inmediatamente que algunos coefi cientes de Fourier son cero y no necesita efectuar 
explícitamente la integración. Esto aparece en el ejemplo 2.1 con f (x) = x, que es una función impar en 
[−π, π]. Aquí todos los coefi cientes del coseno son cero, ya que x cos(nx) es una función impar.

EJEMPLO 2.3

Encontrará la serie de Fourier de f (x) = x4 en [−1, 1]. Como f es una función par, x4 sen(nπx) es impar y 
sabe de inmediato que los coefi cientes del seno bn son cero. Para los otros coefi cientes, calcule

y

La serie de Fourier de x4 en [−1, 1] es

∫ L

−L

f (x) dx = 0 si f es impar en [−L, L]

∫ L

−L

f (x) dx = 2
∫ L

0
f (x) dx si f es par en [−L, L].

a0 =
∫ 1

−1
x4 dx = 2

∫ 1

0
x4 dx = 2

5

1

5
+

∞∑

n=1

8
n2π2 − 6

π4n4
(−1)n cos(nπx).

an =
∫ 1

−1
x4 cos(nπx) dx

= 2
∫ 1

0
x4 cos(nπx) dx = 8

n2π2 − 6

π4n4 (−1)n.
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Para considerar nuevamente el problema de la convergencia, observe que en este ejemplo, f (0) = 0, 
pero la serie de Fourier en x = 0 es

No está claro que la suma de esta serie sea 0.

EJEMPLO 2.4

Sea f (x) = x3 para −4 ≤ x ≤ 4. Como f es impar en [−4, 4], los coefi cientes de Fourier de los cosenos son 
todos cero. Los coefi cientes de Fourier de los senos son

La serie de Fourier de x3 en [−4, 4] es

Más adelante usará estos argumentos. Por ahora éste es un resumen de las conclusiones: Si f es 
par en [−L, L], entonces su serie de Fourier en este intervalo es

(2.9)

en donde

(2.10)

Si f es impar en [−L, L], entonces su serie de Fourier en este intervalo es

(2.11)

donde

(2.12)

1

5
+

∞∑

n=1

8
n2π2 − 6

π4n4 (−1)n.

bn = 1

4

∫ 4

−4
x3 sen

(nπx

4

)
dx

= 1

2

∫ 4

0
x3 sen

(nπx

4

)
dx = (−1)n+1128

n2π2 − 6

n3π3 .

∞∑

n=1

(−1)n+1128
n2π2 − 6

n3π3 sen
(nπx

4

)
.

1

2
a0 +

∞∑

n=1

an cos
(nπx

L

)
,

an = 2

L

∫ L

0
f (x) cos

(nπx

L

)
dx para n = 0, 1, 2, . . . .

∞∑

n=1

bn sen
(nπx

L

)
,

bn = 2

L

∫ L

0
f (x) sen

(nπx

L

)
dx para n = 1, 2, . . . .

En los problemas del 1 al 12, encuentre la serie de Fourier de la 
función en el intervalo.

1. f (x) = 4, −3 ≤ x ≤ 3

2.  f (x) = −x, −1 ≤ x ≤ 1

3.  f (x) = cosh(πx), −1 ≤ x ≤ 1

4. f (x) = 1 − |x| , −2 ≤ x ≤ 2

5. f (x) =
 −4 para −π ≤ x ≤ 0

    4 para 0 < x ≤ π

SECCIÓN 2.2 PROBLEMAS

{

■



2.3 Convergencia de series de Fourier

Poder escribir los coefi cientes de Fourier de una función f en un intervalo [−L, L] es una cosa. Esto requie-
re sólo de la existencia de �L

−L
  f (x) cos(nπx/L) dx y �L

−L  f (x) sen(nπx/L) dx. Es completamente otro asunto 
determinar si la serie de Fourier resultante converge a f (x), o incluso, si siquiera converge. Las sutilezas 
de esta pregunta fueron dramatizadas en 1873 cuando el matemático francés Paul Du Bois-Reymond dio 
un ejemplo de una función continua en (−π, π), pero cuya serie de Fourier no convergía en ningún punto 
de este intervalo.

Sin embargo, la utilidad obvia de las series de Fourier para resolver ecuaciones diferenciales parciales 
produjo en el siglo XIX un esfuerzo intensivo para determinar sus propiedades de convergencia. Alrededor 
de 1829, Peter Gustav Lejeune-Dirichlet dio condiciones sufi cientes sobre la función f para la convergen-
cia de la serie de Fourier de f. De hecho, el teorema de Dirichlet dio la suma de la serie de Fourier en cada 
punto, tanto si la suma era f (x) como si no lo era.

Esta sección está dedicada a las condiciones sobre una función que permite determinar la suma de su 
serie de Fourier en un intervalo. Estas condiciones se centran en el concepto de continuidad a pedazos.

6. f (x) = sen(2x),  −π ≤ x ≤ π

7. f (x) = x2 − x + 3, −2 ≤ x ≤ 2

8. f (x) =
 −x para −5 ≤ x < 0

  1 + x2 para 0 ≤ x ≤ 5

9. f (x) =
 1 para −π ≤ x < 0

  2 para 0 ≤ x ≤ π

10.   f (x) = cos(x/2) − sen(x), −π ≤ x ≤ π

11.  f (x) = cos(x), −3 ≤ x ≤ 3

12.  f (x) =
 1 − x para −1 ≤ x ≤ 0

  0 para 0 < x ≤ 1

13.   Suponga que f y g son integrables en [−L, L] y que f (x) = g(x) 
excepto para x = x0, un punto dado en el intervalo. ¿Cómo 
están relacionadas las series de Fourier de f y g? ¿Qué sugie-
re esto acerca de la relación entre una función y su serie de 
Fourier en un intervalo?

14.   Pruebe que �L
−L f (x)dx = 0 si f es impar en [−L, L].

15.   Pruebe que �L−L f (x)dx = 2�L
0
  f (x)dx si f es par en [−L, L].

{

{

{

DEFINICIÓN 2.3  Función continua a pedazos

Sea f (x) defi nida en [a, b], excepto quizá en un número fi nito de puntos. Entonces f es continua a 
pedazos en [a, b] si

1. f es continua en [a, b] excepto quizá en un número fi nito de puntos.

2. Ambos límx→a�  f (x) y límx→b−  f (x) existen y son fi nitos.

3.  Si x0 está en (a, b) y f no es continua en x0, entonces límx→x0� f (x) y límx→x0− f (x) existen 
y son fi nitos.

Las fi guras 2.5 y 2.6 muestran gráfi cas de funciones continuas a pedazos típicas. En los puntos de 
discontinuidad (suponga un número fi nito), la función debe tener límites laterales fi nitos. Esto signifi ca 
que en el peor de los casos, la gráfi ca tiene a lo más un salto en una discontinuidad. Los puntos donde esto 
sucede se llaman discontinuidades de salto de la función.

Ahora un ejemplo de una función simple que no es continua a pedazos. Sea

2.3 Convergencia de series de Fourier   59

f (x) =
{

0 para x = 0

1/x para 0 < x ≤ 1
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Entonces f es continua en (0, 1] y discontinua en 0. Sin embargo, límx→0� f (x) = �, de manera que la 
discontinuidad no es un salto fi nito y f no es continua a pedazos en [0, 1].

EJEMPLO 2.5

Sea

En la fi gura 2.7 se muestra la gráfi ca de f . Esta función es discontinua en −π, y

f también es discontinua en 1, en el interior de [−π, π], y

Finalmente, f es discontinua en 2, y

En cada punto de discontinuidad en el interior del intervalo, la función tiene límites laterales fi nitos de 
ambos lados. En el punto de discontinuidad del extremo −π, la función tiene límite fi nito desde dentro 
del intervalo. En este ejemplo, el otro extremo no es tema de discusión ya que ahí f es continua por la 
izquierda. Por tanto, f es continua a pedazos en [−π, π]. ■

Use la siguiente notación para los límites por la izquierda y por la derecha de una función en un 
punto:

f (x) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

5 para x = −π

x para −π < x < 1

1 − x2 para 1 ≤ x < 2

4 para 2 ≤ x ≤ π

lim
x→−π+

f (x) = −π.lím

lim
x→1−

f (x) = 1 y lim
x→1+

f (x) = 0.lím lím

��

y

x
� 1

1

4
5

2

FIGURA 2.7 Gráfi ca de la función 
del ejemplo 2.5.

lim
x→2−

f (x) = −3 y lim
x→2+

f (x) = 4.lím lím

f (x0+) = lim
x→x0+

f (x) y f (x0−) = lim
x→x0−

f (x).lím lím

y

x

FIGURA 2.5 Una función continua 
a pedazos.

FIGURA 2.6 Gráfi ca de una función 
continua a pedazos típica.

y

x



En el ejemplo 2.5,

f (1−) = 1  y  f (1�) = 0

y

f (2−) = −3  y  f (2�) = 4.

En los extremos de un intervalo puede seguir usando esta notación excepto en el extremo izquierdo, 
donde sólo debe considerar el límite derecho (desde dentro del intervalo) y en el extremo derecho use sólo 
el límite izquierdo (nuevamente tome el límite desde dentro del intervalo) De nuevo, haciendo referencia 
al ejemplo 2.5,

f (−π�) = −π y f (π−) = 4.

DEFINICIÓN 2.4  Función suave a pedazos

f es suave a pedazos en [a, b] si f y f � son continuas a pedazos en [a, b].

Una función suave a pedazos es, por tanto, una que es continua, excepto quizá para un número fi nito de 
discontinuidades de salto y tiene derivada continua en todos lados, excepto en un número fi nito de puntos 
donde la derivada puede no existir, pero debe tener límites laterales fi nitos.

EJEMPLO 2.6

Sea

La fi gura 2.8 muestra la gráfi ca de f. La función es continua, excepto para un número fi nito de discontinui-
dades de salto en 1 y 2. Por tanto, f es continua a pedazos en [−4, 3]. La derivada de f es:

La derivada es continua en [−4, 3] excepto en los puntos de discontinuidad 1 y 2 de f, donde f �(x) no 
existe. Sin embargo, en estos puntos f �(x) tiene límites laterales fi nitos. Así f � es continua a pedazos en 
[−4, 3], de manera que f es suave a pedazos. ■

Como lo sugiere la fi gura 2.8, una función suave a pedazos es aquella que tiene tangente continua en todos 
lados, excepto en un número fi nito de puntos.

Ahora aparece el primer teorema de convergencia.

f (x) =

⎧
⎪⎪⎨
⎪⎪⎩

1 para −4 ≤ x < 1

−2x para 1 ≤ x < 2

9e−x para 2 ≤ x ≤ 3

f ′(x) =

⎧
⎪⎪⎨
⎪⎪⎩

0 para −4 < x < 1

−2 para 1 < x < 2

−9e−x para 2 < x < 3
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Sea f suave a pedazos en [−L, L]. Entonces, para −L < x < L, la serie de Fourier de f en [−L, L] 
converge a

Esto signifi ca que en cada punto entre −L y L, la función converge al promedio de sus límites iz-
quierdo y derecho. Si f es continua en x, entonces, estos límites izquierdo y derecho son iguales a f (x), 
entonces, la serie de Fourier converge al valor de la función en x. Si f tiene una discontinuidad de salto 
en x; entonces, la serie de Fourier no puede converger a f (x), pero convergirá al punto medio entre los 
extremos del hueco en la gráfi ca en x (fi gura 2.9).

�4 �3 �2 �1 1 2 3 4

y

x

�4

�3

�2

�1

11

FIGURA 2.8 Gráfi ca de

f (x) =

⎧
⎪⎨
⎪⎩

1 para −4 ≤ x < 1

−2x para 1 ≤ x < 2

9e−x para 2 ≤ x ≤ 3

TEOREMA 2.1 Convergencia de series de Fourier

1
2 (f (x+) + f (x−)) .

y

x
f (x�)

f (x�)

x

L�L

( (x�) f ( �))1
2

FIGURA 2.9 Convergencia de una serie 
de Fourier en una discontinuidad de salto.

f (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

5 sen(x) para −2π ≤ x < −π/2

4 para x = −π/2

x2 para −π/2 < x < 2

8 cos(x) para 2 ≤ x < π

4x para π ≤ x ≤ 2π

EJEMPLO 2.7

Sea

■



En la fi gura 2.10 se da la gráfi ca de f . Como f es suave a pedazos en [−2π, 2π], puede determinar la suma 
de su serie de Fourier en este intervalo. Aplicando el teorema, no tiene que calcular esta serie de Fourier. 
Podría hacerlo, pero no es necesario para determinar la suma de la serie de Fourier.

Para −2π < x < −π/2, f es continua y la serie de Fourier converge a f (x) = 5 sen(x).
En x = −π/2, f tiene una discontinuidad de salto y la serie de Fourier convergirá al promedio de los 

límites izquierdo y derecho de f (x) en −π/2. Calcule

y

Así, en x = −π/2, la serie de Fourier de f converge a

En (−π/2, 2) la función es continua, entonces la serie de Fourier converge a x2 para −π/2 < x < 2.
En x = 2 la función tiene otra discontinuidad de salto. Calcule

y
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FIGURA 2.10 Gráfi ca de

f (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

5 sen(x) para −2π ≤ x < −π/2

4 para x = −π/2

x2 para −π/2 < x < 2

8 cos(x) para 2 ≤ x < π

4x para π ≤ x ≤ 2π

.

1

2

(
π2

4
− 5

)
.
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f (−π/2−) = lim
x→−π/2−

f (x) = lim
x→−π/2−

5 sen(x) = 5 sen(−π/2) = −5lím lím

f (−π/2+) = lim
x→−π/2+

f (x) = lim
x→−π/2+

x2 = π2

4
.lím lím

f (2−) = lim
x→2−

x2 = 4lím

f (2+) = lim
x→2+

8 cos(x) = 8 cos(2).lím
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En x = 2 la serie de Fourier converge a

En (2, π), f es continua. En cada x con 2 < x < π, la serie de Fourier converge a f (x) = 8 cos(x).
En x = π, f tiene una discontinuidad de salto. Calcule

y

En x = π la serie de Fourier de f converge a

Finalmente, en (π, 2π), f es continua y la serie de Fourier converge a f (x) = 4x.
Estas conclusiones pueden resumirse:

La fi gura 2.11 muestra la gráfi ca de la suma de esta serie de Fourier, que difi ere de la función misma en 
(−2π, 2π) en las discontinuidades de salto, donde la serie converge al promedio de los límites izquierdo 
y derecho. ■

(4 + 8 cos(2)) .

(4π − 8) .

La serie de Fourier converge a

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5 sen(x) para −2π < x < −π

2

1

2

(
π2

4
− 5

)
para x = −π

2

x2 para − π

2
< x < 2

1

2
(4 + 8 cos(2)) para x = 2

8 cos(x) para 2 < x < π

1

2
(4π − 8) para x = π

4x para π < x < 2π
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FIGURA 2.11 Gráfi ca de la serie de 
Fourier de la función de la fi gura 2.10.

f (π−) = lim
x→π−

8 cos(x) = 8 cos(π) = −8lím

f (π+) = lim
x→π+

4x = 4π.lím

1

2

1

2



Si f es suave a pedazos en [−L, L] y continua en [−L, L]; entonces, la serie de Fourier converge a 
f (x) para −L < x < L.

EJEMPLO 2.8

Sea

Entonces f es continua en [−2, 2] (fi gura 2.12). f es diferenciable excepto en x = 1, donde f ' (x) tiene lími-
tes izquierdo y derecho fi nitos, de manera que f es suave a pedazos. Para −2 < x < 2, la serie de Fourier 
de f converge a f (x). En este ejemplo, la serie de Fourier es una representación exacta de la función en 
(−2, 2). ■

f (x) =
{

x para −2 ≤ x ≤ 1

2 − x2 para 1 < x ≤ 2

2.3.1 Convergencia en los extremos

El teorema 2.1 no hace referencia a la convergencia de una serie de Fourier en los extremos del intervalo. 
Aquí hay una sutileza que conviene discutir ahora.

El problema está en que aunque la función f que interesa puede estar defi nida sólo en [−L, L], su 
serie de Fourier

(2.13)

está defi nida para todo real x para los cuales la serie converge. Más aún, la serie de Fourier es periódica, 
de periodo 2L. El valor de la serie no cambia si reemplaza x por x � 2L. ¿Cómo reconciliar la representa-
ción de una función que está defi nida sólo en un intervalo con una función que es periódica y puede estar 
defi nida en toda la recta real?

La reconciliación se da en una extensión periódica de f sobre la recta real. Tome la gráfica de 
f (x) en [−L, L) y reprodúzcala en intervalos sucesivos de longitud 2L. Esto define una nueva fun-
ción, fp, que coincide con f (x) para −L ≤ x < L y tiene periodo 2L. En la figura 2.13 se ilustra este 
procedimiento para la función f (x) = x2 para −2 ≤ x < 2. Esta gráfica se repite para 2 ≤ x < 6, 

�2 �1 1 2

�2.0
�1.5
�1.0

0.5
1.0

y

x

FIGURA 2.12 Gráfi ca de

f (x) =
{

x para −2 ≤ x ≤ 1

2 − x2 para 1 < x ≤ 2

1

2
a0 +

∞∑

n=1

an cos
(nπx

L

)
+ bn sen

(nπx

L

)
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6 ≤ x < 10, . . . , −6 ≤ x < −2, −10 ≤ x < −6, y así sucesivamente. La razón por la que se usa el 
intervalo semiabierto [−L, L) en esta extensión es que si fp debe tener periodo 2L, entonces

para todo x. Pero esto requiere que f (−L) = f (−L � 2L) = f (L), de manera que una vez defi nida fp(−L), 
fp(L) debe tener este mismo valor.

Si hace esta extensión, entonces el teorema de convergencia se aplica a fp(x) en todo x. En particular 
en −L, la serie converge a

que es

Análogamente, en L, la serie de Fourier converge a

que es

La serie de Fourier converge al mismo valor en L y en −L. Esto se puede ver directamente en la serie 
(2.13). Si x = L, todos los términos en senos son sen(nπ), que desaparecen, y los términos en cosenos son 
cos(nπ). Así la serie en x = L es

En x = −L, nuevamente todos los términos en senos desaparecen, y como cos(−nπ) = cos(nπ), la serie 
en x = −L también es

�6� �2 20 4 6 8 10

2
3
4

y

x

FIGURA 2.13 Parte de la extensión 
periódica, de periodo 4, de f (x) = x2 

para −2 ≤ x < 2.

fp(x + 2L) = fp(x)

1

2

(
fp(−L−) + fp(−L+)

)
,

1

2

(
f (L−) + f (−L+)

)
.

1

2

(
fp(L−) + fp(L+)

)
,

1

2

(
f (L−) + f (−L+)

)
.

1

2
a0 +

∑

n=1

an cos(nπ).

1

2
a0 +

∑

n=1

an cos(nπ).



2.3.2 Un segundo teorema de convergencia

Un segundo teorema de convergencia puede enunciarse en términos de las derivadas laterales.

DEFINICIÓN 2.5  Derivada derecha

Suponga que f (x) está defi nida al menos para c < x < c � r para algún número positivo r. Suponga 
que f (c�) es fi nito; entonces, la derivada derecha de f en c es

si este límite existe y es fi nito. ■

DEFINICIÓN 2.6  Derivada izquierda

Suponga que f (x) está defi nida al menos para c − r < x < c para algún número positivo r. Suponga 
que f (c−) es fi nito; entonces, la derivada izquierda de f en c es

si este límite existe y es fi nito.

Si f �(c) existe, entonces f es continua en c, de manera que f (c−) = f (c�) = f (c), y en este caso la 
derivada izquierda y derecha son iguales a f �(c). Sin embargo, la fi gura 2.14 muestra la importancia de 
las derivadas izquierda y derecha cuando f tiene una discontinuidad de salto en c. La derivada izquierda es la 
pendiente de la gráfi ca en x = c si tapa la parte de la gráfi ca a la derecha de c y se queda sólo con la izquierda. 
La derivada derecha es la pendiente en c si tapa la parte izquierda y se queda sólo con la derecha.

(c) = lim
h→0+

f (c + h) − f (c+)

h
,

(c) = lim
h→0−

f (c + h) − f (c−)

h
,

y

x
x0 Pendiente 

Pendiente 

FIGURA 2.14 Derivadas laterales 
como pendientes por la derecha y por 
la izquierda.
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EJEMPLO 2.9

Sea

Entonces f es continua en (−π, π) excepto en 1, donde hay una discontinuidad de salto (fi gura 2.15). Más 
aún, f es diferenciable excepto en este punto de discontinuidad. Ciertamente,

A partir de la gráfi ca y las pendientes de los pedazos izquierdo y derecho en x = 1, esperaría que la derivada 
izquierda en x = 1 fuera 1 y la derivada derecha fuera 2. Verifi que esto a partir de la defi nición. Primero,

y

Usando las derivadas laterales enuncie el siguiente teorema de convergencia.

�4 2 4

�2

2

4

6

8

10

y

x

FIGURA 2.15 Gráfi ca de

para − π < x < 1

para 1 ≤ x < π

f ′(x) =
{

1 para −π < x < 1

2x para 1 < x < π

(0) = lim
h→0−

f (1 + h) − f (1−)

h

= lim
h→0−

1 + (1 + h) − 2

h
= lim

h→0−
h

h
= 1,

(c) = lim
h→0+

f (1 + h) − f (1+)

h

= lim
h→0+

(1 + h)2 − 1

h
= lim

h→0+
(2 + h) = 2.

TEOREMA 2.2 

Sea f continua a pedazos en [−L, L]. Entonces,

1.  Si −L < x < L y f tiene derivada izquierda y derecha en x, entonces la serie de Fourier de f en [−L, L] 
converge en x a

1

2
(f (x+) + f (x−)) .

■

lím

lím lím

lím

lím lím

f (x) =
{

1 + x

x2

para − π < x < 1

para 1 ≤ x < π
f (x) =

{
1 + x

x2

f
L

f
R

f ′
L

f ′
R



2.  Si f�f
R (−L) y f�f

L (L) existen, entonces en ambos L y −L, la serie de Fourier de f en [−L, L] converge  
a

Como con el primer teorema de convergencia, no necesita calcular la serie de Fourier para determinar su 
suma.

EJEMPLO 2.10

Sea

Quiere determinar la suma de la serie de Fourier de f en [−2, 2]. En la fi gura 2.16 se muestra la gráfi ca 
de f .

f es continua a pedazos, siendo continua excepto para las discontinuidades de salto en 1 y 2.
Para −2 < x < 1, f es continua, y la serie de Fourier converge a f (x) = e−x .
Para 1 < x < 2, f también es continua y la serie de Fourier converge a f (x) = −2x2.
En la discontinuidad de salto x = 1, existen las derivadas izquierda y derecha (−e−1 y −4, respectiva-

mente). Determine esto a partir de los límites en las defi niciones, pero estas derivadas son claras si observa 
la gráfi ca de f a la derecha y a la izquierda del 1. Por tanto, la serie de Fourier converge en x = 1 a

que es

1

2
(f (−L+) + f (L−)) .

f (x) =

⎧
⎪⎪⎨
⎪⎪⎩

1

2
(f (1−) + f (1+)) ,

1

2

(
e−1 − 2

)
.

�1�2 1 2

�8

�6

�4

�2

2

4

6

8

y

x

FIGURA 2.16 Gráfi ca de
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para −2 ≤ x < 1

para 1 ≤ x < 2

para x = 2

.−2x2

e−x

4

f (x) =

⎧
⎪⎪⎨
⎪⎪⎩

para −2 ≤ x < 1

para 1 ≤ x < 2

para x = 2

−2x2

e−x

4

■
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Esto incluye todos los puntos en (−2, 2). Ahora considere los extremos. La derivada izquierda de f en 2 es 
−8 y la derivada derecha en −2 es −e2. Por tanto, en ambos 2 y en −2, la serie de Fourier converge a

La fi gura 2.17 muestra la gráfi ca de la serie de Fourier en [−2, 2], y puede compararse con la grá-
fi ca de f. Las dos gráfi cas coinciden excepto en los puntos extremos y en la discontinuidad de salto. El 
hecho de que f (2) = 9 no afecta la convergencia de la serie de Fourier de f (x) en x = 2. ■

1

2
(f (2−) + f (−2+)) = 1

2

(
−8 + e2

)
.

Se pide precaución al aplicar el segundo teorema de convergencia. Las derivadas izquierda y de-
recha de una función en un punto son importantes sólo para verifi car que las hipótesis del teorema se 
satisfacen en una discontinuidad de salto de la función. Sin embargo, estas derivadas no afectan el valor 
al que converge la serie de Fourier en un punto. Ese valor involucra los límites izquierdo y derecho de 
la función.

2.3.3 Sumas parciales de la serie de Fourier

Las afi rmaciones de Fourier sobre sus series eran contrarias a la intuición en el sentido de que funciones 
tales como polinomios y exponenciales no parecieran ser candidatos para ser representados por series de 
senos y cosenos. Es ilustrativo ver gráfi cas de sumas parciales de algunas series de Fourier que convergen 
a la gráfi ca de la función.

EJEMPLO 2.11

Sea f (x) = x para −π ≤ x ≤ π. En el ejemplo 2.1 vio que la serie de Fourier es

�1

�8

�6

�4

�2

2

4

6

8

y

x

FIGURA 2.17 Gráfi ca de la serie 
de Fourier de la función de la 
fi gura 2.16.

∞∑

n=1

2

n
(−1)n+1 sen(nx).



Puede aplicar cualquier teorema de convergencia para probar que esta serie converge a

Las fi guras 2.18(a), (b) y (c) muestran, respectivamente, la cuarta, décima y vigésima sumas parciales de 
esta serie y sugieren cómo se aproximan cada vez más a f (x) = x en (−π, π) conforme se incluyen más 
términos. ■

EJEMPLO 2.12

Sea f (x) = ex para −1 ≤ x ≤ 1. La serie de Fourier de f en [−1, 1] es

Esta serie converge a

Las fi guras 2.19(a) y (b) muestran la décima y trigésima sumas parciales de esta serie, comparadas con la 
gráfi ca de f. ■

y

x
�2

�3
�
�1

�1

1
2
3

�3 321

FIGURA 1.18(a) Cuarta suma
parcial de la serie de Fourier

S4(x) =
∑4

n=1
2(−1)n+1

n sen(nx) de
f (x) = x en −π ≤ x ≤ π .

y

x
�2

�3
�
�1

�1

1
2
3

�3 321

FIGURA 1.18(b) Décima suma
parcial de la serie de Fourier de
f (x) = x en [−π, π ].

y

x
�2

�3
�
�1

�1

1
2
3

�3 321

FIGURA 1.18(c) Vigésima suma
parcial de la serie de Fourier de
f (x) = x en [−π, π ].

{
x

0

1

2

(
e − e−1

)
+

(
e − e−1

) ∞∑

n=1

(
(−1)n

1 + n2π2 cos(nπx) − nπ
(−1)n

1 + n2π2 sen(nπx)

)
.

{
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FIGURA 2.18(a) Cuarta suma FIGURA 2.18(b) Décima suma

FIGURA 2.18(c) Vigésima suma

1

2

ex para −1 < x < 1

para x = 1 y para x = −(e + e−1)

para −π < x < π

para x = π y para x = −π

1.
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EJEMPLO 2.13

Sea f (x) = sen(x) para −1 ≤ x ≤ 1. La serie de Fourier de f en [−1, 1] es

Esta serie converge a

Las fi guras 2.20 (a) y (b) muestran sumas parciales de esta serie comparadas con la gráfi ca de f. ■

2.3.4 El fenómeno de Gibbs

En 1881 el experimento de Michelson-Morley revolucionó la física y ayudó a allanar el camino para la 
teoría general de la relatividad de Einstein. En un experimento brillante usando su propia adaptación del 
interferómetro, Michelson y Morley probaron por mediciones cuidadosas que el postulado “éter” que los 
físicos de ese tiempo creían que llenaba todo el espacio, no tenía efecto sobre la velocidad de la luz vista 
desde distintas direcciones.

y

x
�0.5

0.5

1.0

2.0

1.5

2.5

�1.0 1.00.5

FIGURA 2.19(a) Décima suma 
parcial de la serie de Fourier de 
f (x) = ex en [−1, 1].

y

x
�0.5

0.5

1.0

2.0
1.5

2.5

�1.0 1.00.5

FIGURA 2.19(b) Trigésima suma 
parcial de la serie de Fourier de 
f (x) = ex en [−1, 1].

∞∑

n=1

2
nπ sen(1)(−1)n+1

n2π2 − 1
sen(nπx).

{

�0.8

�0.6

�0.4
�0.2
0

0.2

0.4

0.6

0.8

�1.0

�0.8

�0.6

�0.4

� 0.2 0.4 0.6 0.8 1.0
x

y

FIGURA 2.20(a) Cuarta suma 
parcial de la serie de Fourier de 
f (x) = sen(x) para −1 < x < 1.

para −1 < x < 1

para x = 1 y para x = −1

sen(x)

0



Algunos años después, Michelson probó un aparato mecánico que había inventado para calcular los 
coefi cientes de Fourier y para construir una función a partir de sus coefi cientes de Fourier. En una prueba 
usó 80 coefi cientes de Fourier para la función f (x) = x para −π ≤ x ≤ π. La máquina respondió con una 
gráfi ca que tenía saltos inesperados en los extremos π y −π. Al principio Michelson supuso que había 
algún problema con su máquina. Sin embargo, con el tiempo, se encontró que este comportamiento es 
característico de la serie de Fourier en las discontinuidades de salto de la función. Éste se conoce como 
el fenómeno de Gibbs, debido al matemático de Yale, Josiah Willard Gibbs, quien fue el primero que lo 
defi nió y explicó satisfactoriamente. El fenómeno fue advertido por el matemático inglés Wilbraham unos 
60 años antes, quien sin embargo no pudo analizarlo.

Para ilustrar el fenómeno, considere la función defi nida por

La fi gura 2.21 muestra la gráfi ca de esta función, cuya serie de Fourier es

Por cualquiera de los teoremas de convergencia, esta serie converge a f (x) para −π < x < π. Hay una 
discontinuidad de salto en 0, pero

�0.8
�0.6
�0.4

0.2
0.4
0.6

0.8

�1.0

�0.8

�0.6

�0.4

� 0.2 0.4 0.6 0.8 1.0
x

y

FIGURA 2.20(b) Décima suma parcial de 
la función f (x) = sen(x) para −1 ≤ x ≤ 1.

f (x) =

⎧
⎪⎪⎨
⎪⎪⎩

∞∑

n=1

1

2n − 1
sen((2n − 1)x).

1

2
(f (0+) + f (0−)) = 1

2

(
−π

4
+ π

4

)
= 0 = f (0).

y

x
�

��

�

4
�

4
�

FIGURA 2.21 Función que ilustra el 
fenómeno de Gibbs.
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para −π ≤ x < 0

para x = 0

para 0 < x ≤ π

−π/4

0

π/4
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La N-ésima suma parcial de esta serie de Fourier es

y la fi gura 2.22 muestra las gráfi cas de S5(x), S14(x) y S22(x). Cada una de estas sumas parciales muestra un 
pico cerca del cero. Intuitivamente, como la suma parcial se acerca a f (x) conforme N → ∞, puede esperar 
que estos picos se achaten y se hagan pequeños conforme N crece. Pero no es así. En cambio, los picos 
mantienen la misma altura, pero se mueven más cerca del eje y conforme N crece. Las sumas parciales sí 
tienen como límite a la función, pero no exactamente como los matemáticos esperaban.

Como otro ejemplo, considere

SN (x) =
N∑

n=1

1

2n − 1
sen((2n − 1)x),

0.2

0.4

0.8

0.6

3.02.51.50.5 1.00 2.0

y

x

S22(x)

S5(x)

S14(x)

FIGURA 2.22 Las sumas parciales 
(para 0 ≤ x ≤ π/4) muestran el 
fenómeno de Gibbs para la función de 
la fi gura 2.21.
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FIGURA 2.23 Cuarta, décima y vigésimoquinta 
sumas parciales de la serie de Fourier de

f (x) =
{

para −2 ≤ x < 0

para 0 ≤ x ≤ 22 − x

0

f (x) =
{

2 − x

para −2 ≤ x < 0

para 0 ≤ x ≤ 2

0

2.

2.



Esta función tiene una discontinuidad de salto en 0, y serie de Fourier

La fi gura 2.23 muestra la cuarta, décima y vigésimoquinta sumas parciales de esta serie. Nuevamente el 
fenómeno de Gibbs aparece en la discontinuidad de salto. Gibbs mostró que este comportamiento sucede 
en la serie de Fourier de una función en todo punto donde tiene una discontinuidad de salto.

1

2
+

∞∑

n=1

(
2

n2π2
(1 − (−1)n)) cos

(nπx

2

)
+ 2

nπ
sen

(nπx

2

))
.

2.4 Series de Fourier en senos y cosenos

Si f (x) está defi nida en [−L, L], puede escribir su serie de Fourier. Los coefi cientes de esta serie están 
completamente determinados por la función y el intervalo.

Ahora probará que si f (x) está defi nida en el semiintervalo [0, L], entonces, tiene una elección y puede 
escribir una serie que tenga sólo cosenos o sólo senos para representar a f (x) en este semiintervalo.

En cada uno de los problemas del 1 al 10 use un teorema de 
convergencia para determinar la suma de la serie de Fourier de la 
función en el intervalo. Verifi que que las hipótesis del teorema 
utilizado se satisfacen, suponga los hechos familiares del cálcu-
lo acerca de las funciones continuas y diferenciables. No es ne-
cesario escribir la serie para hacer esto.

Después, encuentre la serie de Fourier de la función y 
la gráfi ca de f para N = 5, 10, 15, 25, dibuje la gráfi ca de la 
N-ésima suma parcial de la serie junto con la función en el in-
tervalo. Indique cualquier lugar, en esta gráfi ca, donde aparezca 
el fenómeno de Gibbs.

SECCIÓN 2.3 PROBLEMAS

1. f (x) =

⎧
⎪⎨
⎪⎩

8. f (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 para −1 ≤ x <
1

2

1 para
1

2
≤ x ≤ 3

4

2 para
3

4
< x ≤ 1

9. f (x) = e−|x| para −π ≤ x ≤ π

6. f (x) =
{

cos(x) para −2 ≤ x < 0

sen(x) para 0 ≤ x ≤ 2

16. Sea f (x) = x2/2 para −π ≤ x ≤ π . Encuentre la se-
rie de Fourier de f (x) y evalúela en un valor apropiado
de x para encontrar la suma de la serie

∑∞
n=1 1/n2.

11.
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−1 para −4 ≤ x < 0

para 0 ≤ x ≤ 4
7. f (x) =

{

1

para −4 ≤ x ≤ −2

para −2 < x ≤ 2

para 2 < x ≤ 4

10. f (x) =

⎧
⎪⎪⎨
⎪⎪⎩

1 + x2

−2

0

17. Use la serie de Fourier del problema 1
serie

∑∞
n=1(−1)n/n2.

1para sumar la

2. f (x) = x2 para −2 ≤ x ≤ 2

3. f (x) = x2e−x para −3 ≤ x ≤ 3

para −3 ≤ x < −2

para −2 ≤ x < 1

para 1 ≤ x ≤ 3

2x

0

x2

5. f (x) =
{

x2 para −π ≤ x ≤ 0

2 para 0 < x ≤ π

para −π ≤ x ≤ 1

para 1 < x ≤ π
4. f (x) =

{
2x − 2

3

12.
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2.4.1 La serie de Fourier en cosenos de una función

Sea f integrable en [0, L]. Quiere desarrollar a f (x) en una serie de funciones cosenos.
Ya tiene los medios para hacerlo. La fi gura 2.24 muestra una gráfi ca de una f típica. Doble esta gráfi ca 

a lo largo del eje y para obtener una función fe defi nida para −L ≤ x ≤ L:

fe es una función par,

y coincide con f en [0, L],

Llame a fe la extensión par de f para [−L, L].

EJEMPLO 2.14

Sea f (x) = ex para 0 ≤ x ≤ 2. Entonces

Aquí pone fe(−x) = f (x) = e−x para 0 < x ≤ 2, lo que signifi ca fe(x) = e-x  para −2 < x < 0. En la fi gura 
2.25 se da la gráfi ca de fe. ■

Debido a que fe es una función par en [−L, L], su serie de Fourier en [−L, L] es

(2.14)

en donde

(2.15)

como fe(x) = f (x) para 0 ≤ x ≤ L. Llame a la serie (2.14) la serie de Fourier en cosenos de f en [0, L]. Los 
coefi cientes (2.15) son los coefi cientes de Fourier en cosenos de f en [0, L].

Se introdujo la extensión par fe sólo para poder utilizar el trabajo previo para obtener una serie que 
contenga sólo cosenos. Para encontrar la serie de Fourier en cosenos, sólo use la ecuación (2.14) para 
calcular los coefi cientes sin defi nir fe.

fe(x) =
{

fe(−x) = f (x),

fe(x) = f (x) para 0 ≤ x ≤ L.

fe(x) =
{

ex para 0 ≤ x ≤ 2

e−x para −2 ≤ x < 0
.

1

2
a0 +

∞∑

n=1

an cos
(nπx

L

)
,

an = 2

L

∫ L

0
fe(x) cos

(nπx

L

)
dx = 2

L

∫ L

0
f (x) cos

(nπx

L

)
dx,

y

x

f

L�L

FIGURA 2.24 Extensión par de 
f para [−L, L].

y

x
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0 � x � 2
y � e�x

�2 x � 0

FIGURA 2.25 

para 0 ≤ x ≤ L

para −L ≤ x < 0f (−x)

f (x)



Otra razón para tener fe es que puede usar los teoremas de convergencia de Fourier para escribir un teore-
ma de convergencia para la serie en cosenos.

Sea f continua a pedazos en [0, L]. Entonces,

1.  Si 0 < x < L, y f tiene derivadas izquierda y derecha en x, entonces en x la serie de Fourier en 
cosenos para f (x) en [0, L] converge a

2.  Si f tiene derivada derecha en 0, entonces la serie de Fourier en cosenos para f (x) en [0, L] con-
verge a f (0�).

3.  Si f tiene derivada izquierda en L, entonces la serie de Fourier en cosenos para f (x) en [0, L] con-
verge a f (L−). ■

Las conclusiones (2) y (3) se siguen del teorema 2.2, aplicado a fe. Considere primero x = 0. La serie 
de Fourier de fe converge en 0 a

Pero

y

entonces en 0 la serie converge a

Un argumento similar prueba la conclusión (3).

EJEMPLO 2.15

Sea f (x) = e2x para 0 ≤ x ≤ 1. Escriba la serie de Fourier en cosenos de f . Calcule

y

El desarrollo en cosenos de f es

TEOREMA 2.3 Convergencia de la serie de Fourier en cosenos

1

2
(f (x−) + f (x+)) .

1

2
(fe(0−) + fe(0+)).

fe(0+) = f (0+)

fe(0−) = f (0+),

1

2
(f (0+) + f (0+)) = f (0+).

a0 = 2
∫ 1

0
e2x dx = e2 − 1

an = 2
∫ 1

0
e2x cos(nπx) dx

= 4
e2(−1)n − 1

4 + n2π2
.

1

2
(e2 − 1) +

∞∑

n=1

4
e2(−1)n − 1

4 + n2π2 cos(nπx).
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Esta serie converge a

Así esta serie en cosenos converge a e2x para 0 ≤ x ≤ 1. Las fi guras 2.26 (a) y (b) muestran la gráfi ca de f 
comparada con la quinta y décima sumas parciales del desarrollo en cosenos, respectivamente. ■

⎧
⎪⎪⎨
⎪⎪⎩

e2x para 0 < x < 1

1 para x = 0

e2 para x = 1

0.20 0.4 0.6 0.8

1

2

3

4

5

6

7

y

x

FIGURA 2.26(b) Décima suma parcial del desarrollo 
en cosenos de e2x en [0, 1].
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y
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FIGURA 2.26(a) Quinta suma parcial del desarrollo 
en cosenos de e2x en [0, 1].

2.4.2 La serie de Fourier en senos de una función

Duplique la estrategia que acaba de usar para escribir una serie en cosenos, excepto que ahora extienda f 
a una función impar fo sobre [−L, L], puede escribir una serie de Fourier en senos para f (x) en [0, L]. En 
particular, si f (x) está defi nida en [0, L], sea

Entonces fo es una función impar, y fo(x) = f (x) para 0 ≤ x ≤ L. Esta es la extensión impar de f en 
[−L, L]. Por ejemplo, si f (x) = e2x para 0 ≤ x ≤ 1, sea

Esto corresponde a doblar la gráfi ca de f sobre el eje vertical y después sobre el eje horizontal (fi gura 
2.27).

Ahora escriba la serie de Fourier de fo(x) en [−L, L]. Por la ecuación (2.11) y (2.12), la serie de 
Fourier de fo es

(2.16)

fo(x) =
{

fo(x) =
{

∞∑

n=1

bn sen
(nπx

L

)

para 0 ≤ x ≤ L

para −L ≤ x < 0−f (−x)

f (x)

para 0 ≤ x ≤ 1

para −1 ≤ x < 0−e−2x

e2x



con coefi cientes

(2.17)

Llame a la serie (2.16) la serie de Fourier en senos de f en [0, L]. Los coefi cientes dados por la ecua-
ción (2.17) son los coefi cientes de Fourier en senos de f en [0, L]. Como con la serie en cosenos, no nece-
sita hacer la extensión explícita a fo para escribir la serie de Fourier en senos para f en [0, L].

Nuevamente, como con el desarrollo en cosenos, escriba un teorema de convergencia para la serie en 
senos usando el teorema de convergencia para la serie de Fourier.

y

x

f

L�L

FIGURA 2.27 Extensión impar de f en [−L, L].

bn = 2

L

∫ L

0
fo(x) sen

(nπx

L

)
dx = 2

L

∫ L

0
f (x) sen

(nπx

L

)
dx.

Sea f continua a pedazos en [0, L]. Entonces,

1.  Si 0 < x < L, y f tiene derivadas izquierda y derecha en x, entonces la serie de Fourier en senos 
para f (x) en [0, L] converge en x

2.  En 0 y en L, la serie de Fourier en senos para f (x) en [0, L] converge a 0. ■

La conclusión (2) es directa, ya que cada término de la serie en senos (2.16) es cero para x = 0 y para 
x = L.

EJEMPLO 2.16

Sea f (x) = e2x para 0 ≤ x ≤ 1. Escriba la serie de Fourier en senos de f en [0, 1]. Los coefi cientes 
son

La serie en senos es

Esta serie converge a e2x para 0 < x < 1, y a cero para x = 0 y para x = 1. Las fi guras 2.28 (a) y (b) mues-
tran las gráfi cas de la décima y la cuadragésima sumas parciales de esta serie. ■

TEOREMA 2.4 Convergencia de la serie de Fourier en senos

1

2
(f (x−) + f (x+)).

bn = 2
∫ 1

0
e2x sen(nπx) dx

= 2
nπ(1 − (−1)ne2)

4 + n2π2 .

∞∑

n=1

2
nπ(1 − (−1)ne2)

4 + n2π2
sen(nπx).
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2.5 Integración y diferenciación de series de Fourier

En esta sección se abordan más de cerca los coefi cientes de Fourier y se considera la diferenciación e 
integración de series de Fourier término a término.

Generalmente la diferenciación de series de Fourier término a término lleva a resultados absurdos aun 
para funciones que tengan un comportamiento extremadamente bueno. Considere por ejemplo, f (x) = x para 
−π ≤ x ≤ π. La serie de Fourier es

0

2

4

6

8

0.2 0.4 0.6 0.8 1.0
x

y

FIGURA 2.28(b) Cuadragésima suma parcial del 
desarrollo en senos de e2x en [0, 1].
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5
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7

0.2 0.4 0.6 0.8 1.0
x

y

FIGURA 2.28(a) Décima suma parcial del desarrollo 
en senos de e2x en [0, 1].

∞∑

n=1

2

n
(−1)n+1 sen(nx),

En cada problema del 1 al 10, escriba la serie de Fourier en co-
senos y la serie de Fourier en senos de la función en el intervalo. 
Determine la suma de cada serie.

11.  Sea f (x) defi nida en [−L, L]. Pruebe que f puede escribir-
se como la suma de una función par y una impar en este 
intervalo.

12.  Encuentre todas las funciones defi nidas en [−L, L] que son 
al mismo tiempo par e impar.

13.  Encuentre la suma de la serie 
∑

�
n=1(−1)n/(4n2 −1). Suge-

rencia: Desarrolle sen(x) en una serie en cosenos en [0, π] 
y elija un valor apropiado de x.

SECCIÓN 2.4 PROBLEMAS

4. f (x) = 2x para 0 ≤ x ≤ 1

5. f (x) = x2 para 0 ≤ x ≤ 2

6. f (x) = e−x para 0 ≤ x ≤ 1

8. f (x) =

⎧
⎪⎨
⎪⎩

10. f (x) = 1 − x3 para 0 ≤ x ≤ 2

9. f (x) =
{

x2 para 0 ≤ x < 1

1 para 1 ≤ x ≤ 4

para 0 ≤ x < 1

para 1 ≤ x ≤ 3

para 3 < x ≤ 5−1

1

0

1. f (x) = 4, 0 ≤ x ≤ 3

3. f (x) =
{

para 0 ≤ x < π

para π ≤ x ≤ 2πcos(x)

0

2. f (x) =
{

para 0 ≤ x ≤ 1

para 1 < x ≤ 2−1

1

7. f (x) =
{

para 0 ≤ x ≤ 2

para 2 < x ≤ 3

{

2 − x

x



que converge a x para −π < x < π. Por supuesto, f ′(x) = 1 para −π < x < π, de manera que f es suave a 
pedazos. Sin embargo, si diferencia la serie de Fourier término a término, tiene

la cual ni siquiera converge en (−π, π). La derivada término a término de esta serie de Fourier no está 
relacionada con la derivada de f (x).

La integración de la serie de Fourier tiene mejores expectativas.

∞∑

n=1

2(−1)n+1 cos(nx),

TEOREMA 2.5 Integración de series de Fourier

Sea f continua a pedazos en [−L, L], con serie de Fourier

Entonces, para cualquier x con −L ≤ x ≤ L,

En esta ecuación, la expresión de la derecha es exactamente lo que obtiene integrando la serie de 
Fourier término a término, de −L a x. Esto signifi ca que para cualquier función continua a pedazos, 
puede integrar f de −L a x integrando su serie de Fourier término a término. Esto se satisface aunque la 
serie de Fourier no converja a f (x) en esta x en particular (por ejemplo, f puede tener una discontinuidad 
de salto en x).

Prueba Defi na

para −L ≤ x ≤ L. Entonces F es continua en [−L, L] y F(L) = F(−L) = La0/2. Más aún, F ′(x) = f (x) − 
1
2a0 en todo punto de [−L, L] donde f es continua. Así F es continua a pedazos en [−L, L]. Por tanto, la 
serie de Fourier de F(x) converge a F(x) en [−L, L]:

(2.18)

use letras mayúsculas para los coefi cientes de Fourier de F y letras minúsculas para los de f. Ahora calcule 
las A�n y B�n para n = 1, 2, . . . integrando por partes. Primero,

1

2
a0 +

∞∑

n=1

an cos
(nπx

L

)
+ bn sen

(nπx

L

)
.

∫ x

−L

f (t) dt = 1

2
a0(x + L) + L

π

∞∑

n=1

1

n

[
an sen

(nπx

L

)
− bn

(
cos

(nπx

L

)
− (−1)n

)]
.

F (x) =
∫ x

−L

f (t) dt − 1

2
a0x

F(x) = 1

2
A0 +

∞∑

n=1

An cos
(nπx

L

)
+ Bn sen

(nπx

L

)
,

An = 1

L

∫ L

−L

F(t) cos

(
nπt

L

)
dt

= 1

L

[
F(t)

L

nπ
sen

(
nπt

L

)]L

−L

− 1

L

∫ L

−L

L

nπ
sen

(
nπt

L

)
F ′(t) dt

= − 1

nπ

∫ L

−L

(
f (t) − 1

2
a0

)
sen

(
nπt

L

)
dt

= − 1

nπ

∫ L

−L

f (t) sen

(
nπt

L

)
dt + 1

2nπ
a0

∫ L

−L

sen

(
nπt

L

)
dt

= − L

nπ
bn,
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82   CAPÍTULO 2   Series de Fourier

en donde bn es el coefi ciente del seno en la serie de Fourier de f en [−L, L]. Análogamente,

Por tanto, la serie de Fourier de F es

para −L ≤ x ≤ L. Ahora debe determinar A0. Pero

Esto da

Sustituyendo estas expresiones para A0, An y Bn en la serie (2.18), obtiene la conclusión del teorema. ■

EJEMPLO 2.17

Sea f (x) = x para −π ≤ x ≤ π. Esta función es continua en [−π, π], y su serie de Fourier es

Ha visto que si diferencia esta serie término a término, obtiene algo sin sentido. Sin embargo, puede inte-
grarla término a término y obtener para cualquier x en [−π, π],

Bn = 1

L

∫ L

−L

F(t) sen

(
nπt

L

)
dt

= 1

L

[
F(t)

(
− L

nπ
cos

(
nπt

L

))]L

−L

− 1

L

∫ L

−L

F ′(t)

(
− L

nπ

)
cos

(
nπt

L

)
dt

= 1

nπ

∫ L

−L

(
f (t) − 1

2
a0

)
cos

(
nπt

L

)
dt

= 1

nπ

∫ L

−L

f (t) cos

(
nπt

L

)
dt − 1

2nπ
a0

∫ L

−L

cos

(
nπt

L

)
dt

= L

nπ
an.

(
−bn cos

(nπx

L

)
+ an sen

(nπx

L

))

= 1

2
A0 − L

nπ

∞∑

n=1

∞∑

n=1

2

n
(−1)n+1 sen(nx).

∫ x

−π

t

A0 = La0 + 2L

nπ

∞∑

n=1

(
−1
n

)
bn(−1)n.

F (x) = 1

2
A0 + L

nπ

∞∑

n=1

(
−1
n

)

F(L) = L

2
a0 = 1

2
A0 − L

nπ

∞∑

n=1

bn(−1)n.

(
−1
n

)

dt = 1

2
(x2 − π2)

=
∞∑

n=1

2

n
(−1)n+1

∫ x

−π

sen(nt) dt

bn cos(nπ)
(
−1
n

)

π

π

π

π



Con condiciones más fuertes sobre f, puede obtener un resultado diferenciando término a término 
para la serie de Fourier.

=
∞∑

n=1

2

n
(−1)n+1

[
−1

n
cos(nx) + 1

n
cos(nπ)

]

=
∞∑

n=1

2

n2
(−1)n

[
cos(nx) − (−1)n

]
.

TEOREMA 2.6 Diferenciación de la serie de Fourier

Sea f continua en [−L, L] y suponga que f (L) = f (−L). Sea f ′ continua a pedazos en [−L, L]. Entonces 
f (x) es igual a su serie de Fourier para −L ≤ x ≤ L,

y, en cada punto en (−L, L) donde f �(x) existe,

Queda la prueba de este resultado al alumno. La idea es escribir la serie de Fourier de f �(x), observan-
do que esta serie de Fourier converge a f �(x) siempre que f �(x) exista. Use integración por partes, como en 
la prueba del teorema 2.5, para relacionar los coefi cientes de Fourier de f �(x) con aquellos de f (x).

EJEMPLO 2.18

Sea f (x) = x2 para −2 ≤ x ≤ 2. Se satisfacen las hipótesis del teorema 2.6. La serie de Fourier de f en 
[−2, 2] es

con la igualdad entre f (x) y su serie de Fourier. Como f �(x) = 2x es continua, y existe f �(x) = 2 en todo 
el intervalo, entonces para −2 < x < 2,

Por ejemplo, poniendo x = 1, obtenemos

o

Algunas veces se pueden manipular las series de Fourier para calcular sumas de series como ésta. ■

f (x) = 1

2
a0 +

∞∑

n=1

an cos
(nπx

L

)
+ bn sen

(nπx

L

)
,

f ′(x) =
∞∑

n=1

nπ

L

(
−nan sen

(πx

L

)
+ bn cos

(nπx

L

))
.

f (x) = 4

3
+ 16

π2

∞∑

n=1

(−1)n

n2 cos
(nπx

2

)
,

f ′(x) = 2x = 8

π

∞∑

n=1

(−1)n+1

n
sen

(nπx

2

)
.

8

π

∞∑

n=1

(−1)n+1

n
sen

(nπ

2

)
= 2,

∞∑

n=1

(−1)n+1

n
sen

(nπ

2

)
= π

4
.
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84   CAPÍTULO 2   Series de Fourier

Éstas son las condiciones bajo las cuales puede diferenciar o integrar una serie de Fourier término a 
término. Ahora considere condiciones sufi cientes para que una serie de Fourier converja uniformemente. 
Primero, obtenga un conjunto de desigualdades importantes para los coefi cientes de Fourier, llamadas 
desigualdades de Bessel.

Sea f integrable en [0, L]. Entonces

1. Los coefi cientes de la serie de Fourier en senos de f en [0, L] satisfacen

2. Los coefi cientes de la serie de Fourier en cosenos de f en [0, L] satisfacen

3. Si f es integrable en [−L, L], entonces los coefi cientes de Fourier de f en [−L, L] satisfacen

En particular, la suma de los cuadrados de los coefi cientes (senos, cosenos o serie de Fourier) de 
f converge. Ahora se prueba (1), que es notablemente más sencilla que las otras dos desigualdades pero 
contiene la idea del argumento.

Prueba Como ∫ L0 f (x)dx existe, puede calcular los coefi cientes de la serie de Fourier en senos y escribir 
la serie

donde

La N-ésima suma parcial de esta serie es

Ahora considere

TEOREMA 2.7 Desigualdades de Bessel

∞∑

n=1

b2
n ≤ 2

L

∫ L

−L

f (x)2 dx.

1

2
a2

0 +
∞∑

n=1

a2
n ≤ 2

L

∫ L

0
f (x)2 dx.

1

2
a2

0 +
∞∑

n=1

(a2
n + b2

n) ≤ 1

L

∫ L

−L

f (x)2 dx.

∞∑

n=1

bn sen
(nπx

L

)
,

bn = 2

L

∫ L

0
f (x) sen

(nπx

L

)
dx.

SN (x) =
N∑

n=1

bn sen
(nπx

L

)
.

0 ≤
∫ L

0
(f (x) − SN (x))2 dx

=
∫ L

0
f (x)2 dx − 2

∫ L

0
f (x)SN (x) dx +

∫ L

0
SN (x)2 dx

=
∫ L

0
f (x)2 dx − 2

∫ L

0
f (x)

(
N∑

n=1

bn sen
(nπx

L

))
dx

+
∫ L

0

(
N∑

n=1

bn sen
(nπx

L

))(
N∑

m=1

bm sen
(mπx

L

))
dx

■



en la que ha usado el hecho que

Por tanto,

o

Como el lado derecho es independiente de N, puede hacer N → � para obtener

resultando la conclusión (1). Las conclusiones (2) y (3) tienen pruebas semejantes. ■

EJEMPLO 2.19

Use la desigualdad de Bessel para obtener una cota superior para una serie infi nita. Sea f (x) = x2 para 
−π ≤ x ≤ π. La serie de Fourier de f converge a f (x) para todo x en [−π, π]:

Aquí a0 = 2π2/3, an = 4(−1)n/n2 y bn = 0 (x2 es una función par). Por la desigualdad de Bessel (3) del 
teorema 2.7,

Entonces

así

lo que aproximadamente es 1.0823232. ■

=
∫ L

0
f (x)2 dx − 2

N∑

n=1

bn

∫ L

0
f (x) sen

(nπx

L

)
dx

+
N∑

n=1

N∑

m=1

bnbm

∫ L

0
sen

(nπx

L

)
sen

(mπx

L

)
dx

=
∫ L

0
f (x)2 dx −

N∑

n=1

bn(Lbn) +
N∑

n=1

bnbn

L

2
,

∫ L

0
sen

(nπx

L

)
sen

(mπx

L

)
dx =

{

0 ≤
∫ L

0
f (x)2 dx − L

N∑

n=1

b2
n + L

2

N∑

n=1

b2
n,

N∑

n=1

b2
n ≤ 2

L

∫ L

0
f (x)2 dx.

∞∑

n=1

b2
n ≤ 2

L

∫ L

0
f (x)2 dx,

x2 = 1

3
π2 +

∞∑

n=1

4
(−1)n

n2 cos(nx).

1

2

(
2π2

3

)2

+
∞∑

n=1

(
4(−1)n

n2

)2

≤ 1

π

∫ π

−π

x4 dx = 2

5
π4.

16
∞∑

n=1

1

n4
≤

(
2

5
− 2

9

)
π4 = 8π4

45
,

∞∑

n=1

1

n4 ≤ π4

90
,
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Usando la desigualdad de Bessel para los coefi cientes en el desarrollo de Fourier en [−L, L], puede 
probar un resultado acerca de la convergencia uniforme de la serie de Fourier.

TEOREMA 2.8 Convergencia uniforme y absoluta de la serie de Fourier

Sea f continua en [−L, L] y sea f ′ continua a pedazos. Suponga que f (−L) = f (L). Entonces, la serie de 
Fourier de f en [−L, L] converge absoluta y uniformemente a f (x) en [−L, L].■

Prueba Denote los coefi cientes de Fourier de f con letras minúsculas y aquellos de f � con  mayúsculas. 
Entonces

Para enteros positivos n, integre por partes, como en la prueba del teorema 2.5, que

Ahora

y análogamente,

Entonces

Por tanto,

de donde

Ahora ��
n=1(1/n2) converge, y  ��

n=1(A2
n + B2

n) converge, debido a la aplicación de la desigualdad de Bes-
sel a los coefi cientes de Fourier de f �. Así, por comparación, ��

n=1 (|an| + |bn|) también converge.
Pero, para −L ≤ x ≤ L,

Por un teorema de Weierstrass, éste implica que la serie de Fourier de f converge uniformemente en [−L, L]. 
Más aún, la convergencia es absoluta, ya que la serie de los valores absolutos de los términos de la serie, 
converge. Finalmente, por el teorema de convergencia de Fourier, la serie de Fourier de f converge a f (x) 
en [−L, L]. Esto completa la prueba.■

A0 = 1

L

∫ L

−L

f ′(ξ) dξ =

An = nπ

L
bn y Bn = −nπ

L
an.

0 ≤
(

|An| − 1

n

)2

= A2
n − 2

n
|An| + 1

n2

0 ≤ B2
n − 2

n
|Bn| + 1

n2 .

1

n
|An| + 1

n
|Bn| ≤ 1

2

(
A2

n + B2
n

)
+ 1

n2 .

π

L
|an| + π

L
|bn| ≤ 1

2

(
A2

n + B2
n

)
+ 1

n2 ;

|an| + |bn| ≤ L

2π

(
A2

n + B2
n

)
+ L

π

1

n2 .

∣∣∣an cos
(nπx

L

)
+ bn sen

(nπx

L

)∣∣∣ ≤ |an| + |bn| .

i i li l i d i d if

(f (L) − f (−L)) = 0.



EJEMPLO 2.20

Sea f (x) = e−|x| para −1 ≤ x ≤ 1. Entonces

f es continua en [−1, 1], y

f no tiene derivada en x = 0, ya que es un pico de la gráfi ca (fi gura 2.29). Así f � es continua a pedazos en 
[−1, 1]. Finalmente, f (1) = f (−1) = e−1. Por tanto, la serie de Fourier de f converge uniforme y absolu-
tamente a f (x) en [−1, 1]:

para −1 ≤ x ≤ 1.
Puede integrar esta serie término a término. Por ejemplo,

Ésta es una ecuación correcta, pero no es una serie de Fourier (el lado derecho del término polinomial 
en x). Algunas veces integrará una serie de Fourier término a término, y el resultado puede ser una 
serie convergente, pero no necesariamente una serie de Fourier.
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f (x) =
{

ex para −1 ≤ x < 0

e−x para 0 ≤ x ≤ 1
.

f ′(x) =
{

−e−x para 0 < x ≤ 1

ex para −1 ≤ x < 0
.

f (x) = 1 − e−1 + 2
∞∑

n=1

1 − e−1(−1)n

1 + π2n2
cos(nπx)

∫ x

−1
f (t) dt =

∫ x

−1
(1 − e−1) dt + 2

∞∑

n=1

1 − e−1(−1)n

1 + π2n2

∫ x

−1
cos(nπt) dt

= (1 − e−1)(x + 1) + 2
∞∑

n=1

1 − e−1(−1)n

1 + π2n2

1

nπ
sen(nπx).

�1.0 �0.5 0.50 1.0

0.2

0.4

0.6

1.0

y

x

FIGURA 2.29 Gráfi ca de

f (x) =
{

ex para −1 ≤ x < 0

e−x para 0 ≤ x ≤ 1
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También puede diferenciar la serie de Fourier para f (x) término a término en cualquier punto en (−1, 1)
en donde existe f �(x). Así puede diferenciar término a término para −1 < x < 0 y para 0 < x < 1. Para 
tales x,

Esta sección concluye con el teorema de Parseval. Recuerde que la desigualdad de Bessel para 
los coefi cientes de Fourier en [−L, L] requiere sólo del cálculo de dichos coefi cientes. Si además impone 
condiciones de continuidad en la función, como en el teorema 2.8, entonces la desigualdad de Bessel 
se convierte en igualdad.

f ′(x) = −2
∞∑

n=1

1 − e−1(−1)n

1 + π2n2
nπ sen(nπx).

Sea f continua en [−L, L] y sea f � continua a pedazos. Suponga que f (−L) = f (L). Entonces los coefi cien-
tes de Fourier de f en [−L, L] satisfacen

Prueba La serie de Fourier de f en [−L, L] converge a f (x) en cada punto de este intervalo:

Entonces

Puede integrar término a término esta serie de Fourier, y la multiplicación de la serie por la función con-
tinua f (x) no cambia esto. Por tanto,

Recordando las fórmulas integrales para los coefi cientes de Fourier, esta ecuación puede escribirse como

y esto es equivalente a la conclusión del teorema. ■

EJEMPLO 2.21

El teorema de Parseval tiene varias aplicaciones en la deducción de otras propiedades de la serie de 
Fourier. Más tarde se enfrentará con ellas cuando estudie la completez de conjuntos de funciones propias. 
Sin embargo, una aplicación inmediata es la obtención de sumas de ciertas series infi nitas. Para ilustrar, 
los coefi cientes de Fourier de cos(x/2) en [−π, π] son

TEOREMA 2.9 Parseval

1

2
a2

0 +
∞∑

n=1

(a2
n + b2

n) = 1

L

∫ L

−L

f (x)2 dx.

f (x) = 1

2
a0 +

∞∑

n=1

an cos
(nπx

L

)
+ bn sen

(nπx

L

)
.

f (x)2 = 1

2
a0f (x) +

∞∑

n=1

anf (x) cos
(nπx

L

)
+ bnf (x) sen

(nπx

L

)
.

∫ L

−L

f (x)2 dx = 1

2
a0

∫ L

−L

f (x) dx

+
∞∑

n=1

an

∫ L

−L

f (x) cos
(nπx

L

)
dx + bn

∫ L

−L

f (x) sen
(nπx

L

)
dx.

∫ L

−L

f (x)2 dx = 1

2
a0La0 +

∞∑

n=1

(anLan + bnLbn),

a0 = 1

π

∫ π

−π

cos
(x

2

)
dx = 4

π

■

■



y

Por el teorema de Parseval,

Entonces,

an = 1

π

∫ π

−π

cos
(x

2

)
cos(nx) dx = − 4

π

(−1)n

4n2 − 1
.

1

2

(
4

π

)2

+
∞∑

n=1

(
4

π

(−1)n

4n2 − 1

)2

= 1

π

∫ π

−π

cos2
(x

2

)
dx = 1.

∞∑

n=1

1

(4n2 − 1)2
= π2 − 8

16
.

2.6 La forma de ángulo fase de la serie de Fourier

Una función es periódica con periodo p si f (x � p) = f (x) para todo x real. Si una función tiene un perio-
do, dicha función tiene muchos periodos. Por ejemplo, cos(x) tiene periodos 2π, 4π, 6π,−2π,−4π, y de 
hecho, 2nπ para cualquier entero n. El periodo positivo mínimo de una función se llama periodo funda-
mental. El periodo fundamental de sen(x) y cos(x) es 2π.

Si f tiene periodo p, entonces para cualquier x, y cualquier entero n,

1.  Pruebe el teorema 2.6. Puede formularse un argumento 
usando la discusión que sigue al enunciado del teorema.

2.  Sea f (x) = |x| para −1 ≤ x ≤ 1.

 (a) Escriba la serie de Fourier para f (x) en [−1, 1].

  (b) Pruebe que esta serie puede diferenciarse término a 
término para llegar al desarrollo de Fourier de f�(x) en 
[−1, 1].

  (c) Determine f �(x) y escriba su serie de Fourier en [−1, 1]. 
Compare esta serie con la obtenida en (b).

  (a) Escriba la serie de Fourier de f (x) en [−π, π] y pruebe 
que esta serie converge a f (x) en (−π, π).

  (b) Pruebe que esta serie se puede integrar término a tér-
mino.

  (c) Use los resultados de (a) y (b) para obtener un desarrollo 
en serie trigonométrica para  �x−π f (t)dt en [−π, π].

4.  Sea f (x) = x2 para −3 ≤ x ≤ 3.

 (a) Escriba la serie de Fourier para f (x) en [−3, 3].

  (b) Pruebe que esta serie se puede diferenciar término a 
término y utilice este hecho para obtener el desarrollo de 
Fourier de 2x en [−3, 3].

  (c) Escriba la serie de Fourier de 2x en [−3, 3] calculando los 
coefi cientes de Fourier y compare el resultado con el de (b).

5.  Sea f (x) = x sen(x) para −π ≤ x ≤ π.

 (a) Escriba la serie de Fourier para f (x) en [−π, π].

  (b) Pruebe que esta serie se puede diferenciar término a 
término y utilice este hecho para obtener el desarrollo de 
Fourier de sen(x) � x cos(x) en [−π, π].

  (c) Escriba la serie de Fourier de sen(x) � x cos(x) en [−π, π] 
calculando los coefi cientes de Fourier y compare el resultado 
con el de (b).

SECCIÓN 2.5 PROBLEMAS

3. Sea f (x) =
{

0 para −π ≤ x ≤ 0

x para 0 < x ≤ π.

f (x + np) = f (x).

2.6 La forma de ángulo fase de la serie de Fourier   89

■



90   CAPÍTULO 2   Series de Fourier

Por ejemplo,

La gráfi ca de f (x) periódica se repite sobre todo intervalo de longitud p (fi gura 2.30). Esto signifi ca 
que sólo necesita especifi car f (x) en un intervalo de longitud p, en [−p/2, p/2), para determinar f (x) para 
todo x. Estas especifi caciones de los valores de la función pueden hacerse en cualquier intervalo [α, α � p) de 
longitud p. Como f (α � p) = f (α), la función debe tener el mismo valor en los extremos de este intervalo. 
Esta es la razón por la cual especifi ca los valores en el intervalo semiabierto [α, α � p), ya que f (α � p) 
está determinada una vez que f (α) está defi nida.

EJEMPLO 2.22

Sea g(x) = 2x para −1 ≤ x < 1, y suponga que g tiene periodo 2. Entonces, la gráfi ca de g en [−1, 1) se 
repite para cubrir toda la recta real, como en la fi gura 2.31. Basta conocer el periodo y los valores de la 
función en [−1, 1), para determinar la función para todo x.

Como un ejemplo específi co, suponga que quiere conocer g( 7
2 ). Como g tiene periodo 2, g(x � 2n) = 

g(x) para cualquier x y cualquier entero n. Entonces

Análogamente,

Si f tiene periodo p y es integrable, entonces calcule sus coefi cientes de Fourier en [−p/2, p/2] y es-
criba la serie de Fourier

Aquí L = p/2, entonces nπx/L = 2nπx/p en la discusión anterior de la serie de Fourier en [−L, L]. Los 
coefi cientes de Fourier son

cos
(π

6

)
= cos

(π

6
+ 2π

)
= cos

(π

6
+ 4π

)
= cos

(π

6
+ 6π

)
= · · ·

= cos
(π

6
− 2π

)
= cos

(π

6
− 4π

)
= · · · .

g(48.3) = g(0.3 + 2(24)) = g(0.3) = 0.6.

1

2
a0 +

∞∑

n=1

(
an cos

(
2nπx

p

)
+ bn sen

(
2nπx

p

))
.

an = 2

p

∫ p/2

−p/2
f (x) cos

(
2nπx

p

)
dx para n = 0, 1, 2, . . .

y

p

x

�
p

2

p

2

FIGURA 2.30 Gráfi ca de una función 
periódica con periodo fundamental p.

y

x

�2

�1 1

2

FIGURA 2.31 
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g

(
7

2

)
= g

(
−1

2
+ 4

)
= g

(
1

2

)
= 2

(−1

2

)
= −1.

−



y

De hecho, debido a la periodicidad, podría escoger cualquier número conveniente α y escribir

(2.19)

y

(2.20)

Una vez calculados los coefi cientes, puede usar un teorema de convergencia para determinar en dónde 
esta serie representa f (x).

EJEMPLO 2.23

La función f que se muestra en la fi gura 2.32 tiene periodo fundamental 6, y

Esta función se llama onda cuadrada. Su serie de Fourier en [−3, 3] es

Esta serie converge a 0 para −3 < x < 0, a 1 para 0 < x < 3, y a 1
2 en x = 0 y x = ±3. Debido a la perio-

dicidad, esta serie también converge a f (x) en (−6,−3) y a (3, 6), en (−6,−9) y a (6, 9), y así sucesiva-
mente. ■

A veces

Ahora la serie de Fourier de f en [−p/2, p/2] es

(2.21)

bn = 2

p

∫ p/2

−p/2
f (x) sen

(
2nπx

p

)
dx para n = 1, 2, . . . .

an = 2

p

∫ α+p

α

f (x) cos

(
2nπx

p

)
dx para n = 0, 1, 2, . . .

bn = 2

p

∫ α+p

α

f (x) sen

(
2nπx

p

)
dx para n = 1, 2, . . . .

f (x) =
{

0 para −3 ≤ x < 0

1 para 0 ≤ x < 3
.

1

2
+

∞∑

n=1

1

nπ
(1 − (−1)n) sen

(nπx

3

)
.

ω0 = 2π

p
.

1

2
a0 +

∞∑

n=1

(an cos(nω0x) + bn sen(ω0x)) ,

y

x
�3�6�9 3 6 9

FIGURA 1.35 Onda cuadrada: f (x) =
{

0 para −3 ≤ x < 0

1 para 0 ≤ x < 3
,

y f tiene periodo.
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FIGURA 2.32 



92   CAPÍTULO 2   Series de Fourier

donde

y

Algunas veces es conveniente escribir la serie de Fourier (2.21) de una forma diferente. Busque nú-
meros cn y 	n tales que

Para resolver estas constantes, escriba la última ecuación como

Una manera de satisfacer esta ecuación es tener

y

Resuelva ésta para cn y 	n. Primero eleve al cuadrado ambas ecuaciones y las suma para obtener

entonces

(2.22)

Ahora, escriba

así

suponiendo que an � 0. Los números cn y 	n permiten escribir la forma de ángulo fase de la serie de 
Fourier (2.21).

an = 2

p

∫ p/2

−p/2
f (x) cos(nω0x) dx para n = 0, 1, 2, . . .

bn = 2

p

∫ p/2

−p/2
f (x) sen(nω0x) dx para n = 1, 2, . . . .

an cos(nω0x) + bn sen(nω0x) = cn cos(nω0x + δn).

an cos(nω0x) + bn sen(nω0x) = cn cos(nω0x) cos(δn) − cn sen(nω0x) sen(δn).

cn cos(δn) = an

cn sen(δn) = −bn.

c2
n = a2

n + b2
n,

cn =
√

a2
n + b2

n.

cn sen(δn)

cn cos(δn)
= tan(δn) = −bn

an

,

δn = tan−1
(

DEFINICIÓN 2.7  Forma de ángulo fase

Sea f con periodo fundamental p. Entonces la forma de ángulo fase de la serie de Fourier (2.21) de f es

1

2
a0 +

∞∑

n=1

cn cos(nω0x + δn),

en donde ω0 = 2π/p, cn =
√

a2
n + b2

n, y δn = tan−1(−bn/an) para n = 1, 2, . . .

bn

an

)
,

−



La forma de ángulo fase de la serie de Fourier también es llamada forma armónica. Esta expresión 
exhibe la composición de una función periódica (que satisface ciertas condiciones de continuidad) como 
una superposición de ondas coseno. El término cos(nω0x � δn) es la n-ésima armónica de f, cn es la 
n-ésima amplitud armónica, y δn es el n-ésimo ángulo fase de f.

EJEMPLO 2.24

Suponga que f tiene periodo fundamental p = 3, y

Como f tiene periodo fundamental 3, defi niendo f (x) en cualquier intervalo [a, b) de longitud 3 determina 
f (x) para todo x. Por ejemplo,

(observe que f (5) = f (−1 � 6) = f (−1 � (2 · 3) = f (−1) = 4), y

En la fi gura 2.33 se muestra la gráfi ca de f.
Hay que tener cuidado si quiere escribir una expresión algebraica para  f (x) en un intervalo diferente. 

Por ejemplo, en el intervalo simétrico 3
2 )−3

2 ,[  alrededor del origen,

Para encontrar los coefi cientes de Fourier de f, es conveniente usar las ecuaciones (2.19) y (2.20) con 
α = 0, como f está dada explícitamente en [0, 3). Calcule

y

f (x) = x2 para 0 ≤ x < 3.

f (−1) = f (−1 + 3) = f (2) = 4,

f (5) = f (2 + 3) = f (2) = 22 = 4,

f (7) = f (1 + 6) = f (1) = 1.

f (x) =
{

a0 = 2

3

∫ 3

0
x2 dx = 6,

an = 2

3

∫ 3

0
x2 cos

(
2nπx

3

)
dx = 9

n2π2

bn = 2

3

∫ 3

0
x2 sen

(
2nπx

3

)
dx = − 9

nπ
.

y

x
30 6 9 12�3�6

FIGURA 2.33 Gráfi ca de f (x) = x2 para 0 ≤ x < 3, 
con f (x � 3) = f (x) para todo x.
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para 0 ≤ x < 3
2

(x + 3)2

x2

≤ x < 0para 3
2

−
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La serie de Fourier de f es

(2.23)

Puede pensar en ésta como la serie de Fourier de f en el intervalo simétrico 3
2 , 3

2 ]−[  alrededor del origen. 
Por el teorema de convergencia de Fourier, esta serie converge a

Para la forma de ángulo fase o forma armónica de esta serie de Fourier, calcule

y

Como 
0 = 2π/3, la forma de ángulo fase de la serie (2.23) es

El espectro de amplitud de una función periódica f es una gráfi ca de los valores de n
0 en el eje hori-
zontal versus cn/2 en el eje vertical, para n = 1, 2, . . .  Así el espectro de amplitud consiste en los puntos 
(n
0, cn/2) para n = 1, 2, . . . También es usual incluir el punto (0, |a0|) en el eje vertical. La fi gura 2.34 
muestra el espectro de amplitud para la función del ejemplo 2.24, consiste en los puntos (0, 3) y, para 
n = 1, 2, . . . ,

Esta gráfi ca permite visualizar la magnitud de las armónicas de las cuales está compuesta la función perió-
dica y esclarecer cuáles armónicas dominan en la función. Esto es útil en el análisis de señales, en donde 
la función es la señal.

3 +
∞∑

n=1

9

nπ

(
1

nπ
cos

(
2nπx

3

)
− sen

(
2nπx

3

))
.

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
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√

a2
n + b2

n = 9

n2π2

√
1 + n2π2 para n = 1, 2, . . .

δn = tan−1
(

−−9/nπ

9/n2π2

)
= tan−1(nπ).

3 +
∞∑

n=1

9

n2π2

√
1 + n2π2 cos

(
2nπx

3
+ tan−1(nπ)

)
.

(
2nπ

3
,

9

2n2π2

√
1 + n2π2

)
.
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FIGURA 2.34 Espectro de amplitud para la función 
de la fi gura 2.33.
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1.  Sean f y g con periodo p. Pruebe que αf � βg tiene periodo 
p para cualquier constante α y β.

2.  Sea f con periodo p y sean α y β constantes positivas. Pruebe 
que g(t) = f (αt) tiene periodo p/α y que h(t) = f (t/β) tiene 
periodo βp.

3.  Sea f (x) diferenciable y con periodo p. Pruebe que f�(x) tie-
ne periodo p.

4.  Suponga que f tiene periodo p. Pruebe que, para cualquier 
número real α,

En cada problema del 5 al 9, encuentre la forma del ángulo fase 
de la serie de Fourier de la función. Trace algunos puntos del 
espectro de amplitud de la función.

9.  f (x) = cos(πx) para 0 ≤ x < 1 y f (x) = f (x � 1) para todo x.

En cada problema del 10 al 14, encuentre la forma del ángulo 
fase de la serie de Fourier de la función, se da una parte de su 
gráfi ca en el diagrama indicado. Trace algunos puntos del es-
pectro de amplitud de la función.

10. Figura 2.35

11. Figura 2.36

12. Figura 2.37

13. Figura 2.38

14. Figura 2.39

SECCIÓN 2.6 PROBLEMAS

∫ α+p

α
f (x) dx =

∫ p

0
f (x) dx =

∫ p/2

−p/2
f (x) dx.

7. f (x) = 3x2 para 0 ≤ x < 4 y f (x + 4) = f (x)

para todo x.

y

k

x
20 4 6�2�4�6

FIGURA 2.35 
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x
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1
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FIGURA 2.36
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x
�1�2 1 2 3

f (t)

t

FIGURA 2.37

y

x
�1�3�5 1

2
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3 5
FIGURA 2.38

y

x
�1�2 1

1
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FIGURA 2.39
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5. f (x) = x para 0 ≤ x < 2 y f (x + 2) = f (x) para
todo x.

6. f (x) =

⎧
⎪⎨
⎪⎩

8. f (x) =

⎧
⎪⎨
⎪⎩

para 0 ≤ x < 1

para 1 ≤ x < 2

para todo x.f (x + 2)

1

0

para 0 ≤ x < 3

para 3 ≤ x < 4

para todo x.f (x + 4)

1 + x

2



2.7 Serie de Fourier compleja y el espectro de frecuencia

Muchas veces es conveniente trabajar en términos de los números complejos, aunque las cantidades de 
interés sean reales. Por ejemplo, los ingenieros eléctricos con frecuencia usan ecuaciones que tienen can-
tidades complejas para calcular corrientes, teniendo presente al fi nal que la corriente es la parte real de 
una cierta expresión compleja.

Estudie la serie de Fourier en este escenario. Más tarde, la serie de Fourier compleja y sus coefi cientes 
darán un punto de partida natural para el desarrollo de la transformada de Fourier discreta.

2.7.1 Revisión de los números complejos

Dado un número complejo a � bi, su conjugado es a + bi  = a − bi. Si identifi ca a � bi con el punto 
(a, b) en el plano, entonces a − bi es (a,−b), la refl exión de (a, b) a lo largo del eje horizontal (real) 
(fi gura 2.42).

El conjugado de un producto es el producto de los conjugados:

para cualesquiera números complejos z y w.
La magnitud, o módulo, de a � bi es |a � bi| = 

√
a2 + b2,  la distancia del origen a (a, b). Es útil 

observar que

Si denota al número complejo como z, esta ecuación es

Introduzca las coordenadas polares x = r cos(�), y = r sen(�) para escribir

por la fórmula de Euler. Entonces r = |z| y � es llamado un argumento de z. Es el ángulo entre la parte 
positiva del eje x y el punto (x, y), o x � iy, en el plano (fi gura 2.43). El argumento está determinado den-

15.   Determine la representación en serie de Fourier de la co-
rriente en estado estacionario en el circuito de la fi gura 
2.40 si

16.   Determine la representación en serie de Fourier de la co-
rriente en estado estacionario en el circuito que se muestra 
en la fi gura 2.41 si E(t) = |10 sen(800πt)|. Sugerencia: pri-
mero muestre que

E(t) =
{

10 H

E(t)

100 �

10�2 Fi

FIGURA 2.40 

E(t) = 20

π

[
1 − 2

∞∑

n=1

cos(1600nπt)

4n2 − 1

]
.

500 �

i 5 HE(t)

0.2 F	F

FIGURA 2.41 

zw =

(a + bi)(a + bi) = a2 + b2 = |a + bi|2 .

zz = |z|2 .

z = x + iy = r[cos(θ) + i sen(θ)] = reiθ ,

para −π ≤ t < π

para todo t

100t (π2 − t2)

E(t + 2π)

z w

.
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tro de múltiplos enteros de 2π. Por ejemplo, |2 � 2i| = 
√

8  y los argumentos de 2 � 2i son los ángulos 
π/4 � 2nπ, con n cualquier entero (fi gura 2.44). Así, escriba

Esta es la forma polar de 2 � 2i. De hecho puede escribir 2 � 2i = 
√

8 ei(π/4�2nπ), pero no contribuye 
en nada a la forma polar de 2 � 2i, ya que

y

Si usa dos veces la fórmula de Euler, escriba

y

Resuelva estas ecuaciones para sen(x) y cos(x) para escribir

(2.24) 

Finalmente, use el hecho de que si x es un número real, entonces eix = e−ix . Esto es cierto porque

2.7.2 Serie de Fourier compleja

Use estas ideas para formular la serie de Fourier de una función en términos complejos. Sea f una función 
de variable real, periódica con periodo fundamental p. Suponga que f es integrable en [−p/2, p/2]. Como 
hizo con la forma del ángulo fase de una serie de Fourier, escriba la serie de Fourier de f (x) en este inter-
valo como

x

y

(a, b)

(a, b)

FIGURA 2.42 Conjugado 
complejo como una refl exión a lo 
largo del eje horizontal.

x

y

2 2 i � 
8 i/4�

4
�


8
 


FIGURA 2.44 Forma polar de 
2 � 2i.

x�

y

r (a, b)
a  i � i�

FIGURA 2.43 Forma polar de un 
número complejo.

2 + 2i =
√

8eiπ/4.

e2nπi = cos(2nπ) + i sen(2nπ) = 1.

eix = cos(x) + i sen(x)

e−ix = cos(x) − i sen(x).

cos(x) = 1

2

(
eix + e−ix

)
y sen(x) = 1

2i

(
eix − e−ix

)
.

eix = cos(x) + i sen(x) = cos(x) − i sen(x) = e−ix .

1

2
a0 +

∞∑

n=1

[an cos(nω0x) + bn sen(nω0x)],
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con 
0 = 2π/p. Use las ecuaciones (2.24) para escribir esta serie como

(2.25)

En la serie (2.25), sea

y para cada entero positivo n,

Entonces la serie (2.25) llega a ser

(2.26)

Ahora considere los coefi cientes. Primero,

Y, para n = 1, 2, . . . ,

Entonces

Ponga estos resultados en la serie (2.26) para obtener

1

2
a0 +

∞∑

n=1

[
an

1

2

(
einω0x + e−inω0x

)
+ bn

1

2i

(
einω0x − e−inω0x

)]

= 1

2
a0 +

∞∑

n=1

[
1

2
(an − ibn)e

inω0x + 1

2
(an + ibn)e

−inω0x

]
.

dn = 1

2
(an − ibn).

d0 +
∞∑

n=1

[dne
inω0x + dne

−inω0x] = d0 +
∞∑

n=1

dne
inω0x +

∞∑

n=1

dne
−inω0x .

d0 = 1

2
a0 = 1

p

∫ p/2

−p/2
f (t) dt.

dn = 1

2
(an − ibn)

= 1

2

2

p

∫ p/2

−p/2
f (t) cos(nω0t) dt − i

2

2

p

∫ p/2

−p/2
f (t) sen(nω0t) dt

= 1

p

∫ p/2

−p/2
f (t)[cos(nω0t) − i sen(nω0t)] dt

= 1

p

∫ p/2

−p/2
f (t)e−inω0t dt.

dn = 1

p

∫ p/2

−p/2
f (t)e−inω0t dt = 1

p

∫ p/2

−p/2
f (t)einω0t dt = d−n.

= d0 +
∞∑

n=−∞,n �=0

dne
inω0x =

∞∑

n=−∞
dne

inω0x .

d0 = 1

2
a0

1

2

d0 +
∞∑

n=1

dne
inω0x +

∞∑

n=1

dne
−inω0x

d0 +
∞∑

n=1

dne
inω0x +

∞∑

n=1

d−ne
−inω0x=
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Ha encontrado esta expresión rearreglando los términos en la serie de Fourier de una función
periódica f . Esto sugiere la siguiente defi nición.

En la fórmula para dn, la integración se puede llevar a cabo sobre cualquier intervalo de longitud p, 
debido a la periodicidad de f. Así, para cualquier número real α,

Como la serie de Fourier compleja es sólo otra forma de escribir la serie de Fourier, los teoremas de 
convergencia (2.1) y (2.2) se aplican sin necesidad de ninguna adaptación.

Sea f periódica con periodo fundamental p. Sea f suave a pedazos en [−p/2, p/2]. Entonces, en cada x la 
serie de Fourier compleja converge a 1

2 (f (x�) � f (x−)). ■

El espectro de amplitud de la serie de Fourier compleja de una función periódica es la gráfi ca de los 
puntos (n
0, |dn|), en donde |dn| es la magnitud del coefi ciente complejo dn. Algunas veces este espectro de 
amplitud es llamado también espectro de frecuencia.

EJEMPLO 2.25

Calcule la serie de Fourier compleja de la rectifi cación de onda completa de E sen(λt), en donde E y λ son 
constantes positivas. Observe que aquí la variable es t y no x.

Esto signifi ca que quiere la serie de Fourier compleja de |E sen(λt)|, cuya gráfi ca se muestra en la 
fi gura 2.45. Esta función tiene periodo fundamental π/λ (aunque E sen(λt) tiene periodo 2π/λ). En este 
ejemplo, 
0 = 2π/(π/λ) = 2λ. Los coefi cientes de Fourier complejos son

TEOREMA 2.10 

DEFINICIÓN 2.8  Serie de Fourier compleja

Sea f con periodo fundamental p. Sea 
0 = 2π/p. Entonces la serie de Fourier compleja de f es

donde

para n = 0, ±1, ±2, . . . Los números dn son los coefi cientes de Fourier complejos de f.

∞∑

n=−∞
dne

inω0x,

dn = 1

p

∫ p/2

−p/2
f (t)e−inω0t dt

dn = 1

p

∫ α+p

α

f (t)e−inω0t dt.

dn = λ

π

∫ π/λ

0
|E sen(λt)| e−2nλit dt

= Eλ

π

∫ π/λ

0
sen(λt)e−2nλit dt.
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Cuando n = 0, 

Cuando n � 0, la integración se simplifi ca poniendo el término seno en forma exponencial:

Ahora

y

Por tanto,

Cuando n = 0, esto también da un valor correcto para d0. La serie de Fourier compleja de |E sen(λt)| es

El espectro de amplitud es un trazo de los puntos

En la fi gura 2.46 se muestra una parte de este trazo. ■

y

E

t
0 3�

�
��
�

2�2
�

�
�

FIGURA 2.45 Gráfi ca de 
|E sen(λt)|.

d0 = Eλ

π

∫ π/λ

0
sen(λt) dt = 2E

π
.

dn = Eλ

π

∫ π/λ

0

1

2i

(
eλit − e−λit

)
e−2nλit dt

= Eλ

2iπ

∫ π/λ

0
e(1−2n)λit dt − Eλ

2iπ

∫ π/λ

0
e−(1+2n)λit dt

= Eλ

2iπ

[
1

(1 − 2n)λi
e(1−2n)λit

]π/λ

0
+ Eλ

2iπ

[
1

(1 + 2n)λi
e−(1+2n)λit

]π/λ

0

= − E

2π

[
e(1−2n)πi

1 − 2n
− 1

1 − 2n
+ e−(1+2n)πi

1 + 2n
− 1

1 + 2n

]
.

e(1−2n)πi = cos((1 − 2n)π) + i sen((1 − 2n)π)

= (−1)1−2n = −1

e−(1+2n)πi = cos((1 + 2n)π) − i sen((1 + 2n)π)

= (−1)1+2n = −1.

dn = − E

2π

[ −1

1 − 2n
− 1

1 − 2n
+ −1

1 + 2n
+ −1

1 + 2n

]

= −2E

π

1

4n2 − 1
.

−2
E

π

∞∑

n=−∞

1

4n2 − 1
e2nλit .

(
2nλ,

∣∣∣∣
2E

(4n2 − 1)π

∣∣∣∣
)

.
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4� �2�2��4��6� 6�
n 0�0


dnd 


3�
2E

15�
2E

FIGURA 2.46 Espectro de 
amplitud de |E sen(λt)|.

En cada problema del 1 al 7 escriba la serie de Fourier compleja 
de f , determine a qué converge esta serie y trace algunos puntos 
del espectro de frecuencia. Tenga en mente que para especifi car 
una función de periodo p, es sufi ciente defi nir f (P) en cualquier 
intervalo de longitud p.

1. f tiene periodo 3 y f (x) = 2x para 0 ≤ x < 3

2. f tiene periodo 2 y f (x) = x2 para 0 ≤ x < 2

8.  Sea f la función periódica, parte de cuya gráfi ca se muestra 
en la fi gura 2.47. Encuentre la serie de Fourier compleja de f 
y trace algunos puntos de su espectro de amplitud.

El siguiente problema involucra el espectro de fase de f, que 
es un trazo de los puntos (�n, n
0) para n = 0, 1, 2, . . . Aquí 
�n = tan−1(−bn/an) es el n-ésimo ángulo fase de f.

9.  Las gráfi cas de las fi guras 2.48 y 2.49 defi nen dos funcio-
nes periódicas f y g, respectivamente. Calcule la serie de 
Fourier compleja de cada función. Determine una relación 
entre los espectros de amplitud de estas funciones y tam-
bién entre sus espectros de fase.

SECCIÓN 2.7 PROBLEMAS

3. f tiene periodo 4 y f (x) =
{

0 para 0 ≤ x < 1

1 para 1 ≤ x < 4

4. f tiene periodo 6 y f (x) = 1 − x para 0 ≤ x < 6

y

x
�8 �4 4 8

8

12

FIGURA 2.47 

f (t)

t
�2 2

5

10 14

FIGURA 2.48 

g(t)

t
4

5

12 16

FIGURA 2.49 

5. f tiene periodo 4 yf (x) =
{

6. f tiene periodo 5 y f (x) = e−x para 0 ≤ x < 5

para 0 ≤ x < 1

para 1 ≤ x < 2

para 0 ≤ x < 2

para 2 ≤ x < 4

{
−1

2

7. f tiene periodo 2 yf (x) =
{

2 − x

x
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3.1 La integral de Fourier

Si f (x) está defi nida en un intervalo [−L, L], puede representarla, al menos en la “mayoría” de los puntos 
en este intervalo por una serie de Fourier. Si f es periódica, entonces puede representarla por su serie de 
Fourier en intervalos a lo largo de toda la recta real.

Ahora suponga que f (x) está defi nida para todo x pero no es periódica. Entonces, no es posible repre-
sentar a f (x) por una serie de Fourier sobre toda la recta. Sin embargo, sí puede escribir una representación 
en términos de senos y cosenos usando una integral en lugar de una sumatoria. Para ver cómo se hace esto, 
suponga que f es absolutamente integrable, lo que signifi ca que �∞

−∞ | f (x)| dx converge y que f es suave 
a pedazos en todo intervalo [−L, L]. Escriba la serie de Fourier de f en un intervalo arbitrario [−L, L], 
incluyendo las fórmulas integrales de los coefi cientes:

Quiere hacer que L → ∞ para obtener una representación de f (x) sobre toda la recta. Para ver a qué límite 
tiende esta serie de Fourier, si lo hay, sea

y

103

C A P Í T U L O 3
La integral de Fourier 
y las transformadas 
de Fourier

LA SERIE DE FOURIER DE UNA
FUNCION CONVERGENCIA DE UN
SERIE DE FOURIER SERIE DE FO
EN COSENOS EN SENOS INTEGRA

1

2L

∫ L

−L

f (ξ) dξ +
∞∑

n=1

[(
1

L

∫ L

−L

f (ξ) cos

(
nπξ

L

)
dξ

)
cos

(nπx

L

)

+
(

1

L

∫ L

−L

f (ξ) sen

(
nπξ

L

)
dξ

)
sen

(nπx

L

)]
.

ωn = nπ

L

ωn − ωn−1 = π

L
= 	ω.

2
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Entonces la serie de Fourier en [−L, L] puede escribirse como

(3.1)

Ahora L → ∞, lo que implica que 
ω → 0. En la última expresión,

debido a que, por hipótesis, �L
−L f (ξ)dξ converge. Los otros términos en la expresión (3.1) se parecen a 

una suma de Riemann para una integral defi nida, y asegura que cuando L → ∞ y 
ω → 0, esta expresión 
tiende al límite

Esta es la integral de Fourier de f en la recta real. Bajo las hipótesis hechas acerca de f, esta integral 
converge a

en cada x. En particular, si f es continua en x, entonces esta integral converge a f (x).
Frecuentemente esta integral de Fourier se escribe

(3.2)

en donde los coefi cientes de la integral de Fourier de f son

y

Esta representación en integral de Fourier de f (x) es enteramente análoga a la serie de Fourier en 
un intervalo reemplazando con �∞

0  · · · dω a �∞
n	1 si se tienen coefi cientes con fórmulas integrales. Estos 

coefi cientes son funciones de ω, que es la variable de integración en la integral de Fourier (3.2).

f (ξ) sen(ωnξ) dξ

)
sen(ωnx)

]
	ω.

1

2π

(∫ L

−L

f (ξ) dξ

)
	ω → 0

1

π

∫ ∞

0

[(∫ ∞

−∞
f (ξ) cos(ωξ) dξ

)
cos(ωx)

+
(∫ ∞

−∞
f (ξ) sen(ωξ) dξ

)
sen(ωx)

]
dω.

1

2
(f (x−) + f (x+))

∫ ∞

0
[Aω cos(ωx) + Bω sen(ωx)] dω,

Aω = 1

π

∫ ∞

−∞
f (ξ) cos(ωξ) dξ

Bω = 1

π

∫ ∞

−∞
f (ξ) sen(ωξ) dξ.

+
(

1

L

∫ L

−L

f

1

2π

(∫ L

−L

f (ξ) dξ

)
	ω + 1

π

∞∑

n=1

[ (
1

L

∫ L

−L

f (ξ) cos(ωnξ) dξ

)
cos(ωnx)
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EJEMPLO 3.1

Sea

La fi gura 3.1 es la gráfi ca de f . Por supuesto f es suave a pedazos y �∞
−∞ |f (x)| dx converge. Los coefi cien-

tes de Fourier de f son

y

La integral de Fourier de f es

Debido a que f es suave a pedazos, ésta converge a 1
2 ( (f (x+) + f (x−)) para todo x. Más explícita-

mente,

Hay otra expresión para la integral de Fourier de una función que algunas veces resulta más conve-
niente. Escriba

(3.3)

Por supuesto, esta integral tiene las mismas propiedades de convergencia que la expresión integral (3.2), 
ya que sólo es un rearreglo de esa integral.

FIGURA 3.1 

x
�1 1

y

f (x) =
{

1 para −1 ≤ x ≤ 1

0 para |x| > 1

f (x) =
{

1 para −1 ≤ x ≤ 1

0 para |x| > 1

Aω = 1

π

∫ 1

−1
cos(ωξ) dξ = 2 sen(ω)

πω

Bω = 1

π

∫ 1

−1

∫ ∞

0

2 sen(ω)

πω
cos(ωx) dω.

∫ ∞

0

2 sen(ω)

πω
cos(ωx) dω =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 para −1 < x < 1

1

2
para x = ±1

0 para |x| > 1

∫ ∞

0
[Aω cos(ωx) + Bω sen(ωx)] dω =

∫ ∞

0

[(
1

π

∫ ∞

−∞
f (ξ) cos(ωξ) dξ

)
cos(ωx)

+
(

1

π

∫ ∞

−∞
f (ξ) sen(ωξ) dξ

)
sen(ωx)

]
dω

= 1

π

∫ ∞

0

∫ ∞

−∞
f (ξ)[cos(ωξ) cos(ωx) + sen(ωξ) sen(ωx)] dξ dω

= 1

π

∫ ∞

0

∫ ∞

−∞
f (ξ) cos(ω(ξ − x)) dξ dω.

3.1 La integral de Fourier

sen(ωξ) dξ = 0.
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3.2 Integrales de Fourier en cosenos y senos

Si f es suave a pedazos en la semirecta [0, ∞) y �∞
0   | f (ξ)| dξ converge, entonces puede escribir la inte-

gral de Fourier en cosenos o en senos para f que es completamente análoga a los desarrollos en senos y 
cosenos de una función en un intervalo [0, L].

Para escribir una integral en cosenos, extienda f a una función par fe defi nida en toda la recta real 
haciendo

Esto refl eja la gráfi ca para x ≥ 0 en el eje vertical. Debido a que fe es una función par, su integral de 
Fourier sólo tiene términos en cosenos. Como fe(x) 	 f (x) para x ≥ 0, se puede defi nir esta integral 
en cosenos como la integral de Fourier en cosenos de f en [0, ∞).

El coefi ciente de fe en su desarrollo integral de Fourier es

y esto es

Esto sugiere la siguiente defi nición.

En cada problema del 1 al 10, desarrolle la función en una inte-
gral de Fourier y determine a qué converge esta integral.

SECCIÓN 3.1 PROBLEMAS

4. f (x) =

⎧
⎪⎨
⎪⎩

sen(x) para −4 ≤ x ≤ 0

cos(x) para 0 < x ≤ 4

0 para |x| > 4

5. f (x) =
{

x2 para −100 ≤ x ≤ 100

0 para |x| > 100

1. f (x) =
{

x

0

2. f (x) =
{

k

0

3. f (x) =

⎧
⎪⎨
⎪⎩

−1

1

0

6. f (x) =
{

|x| para −π ≤ x ≤ 2π

0 para x < −π y para x > 2π

7. f (x) =
{

sen(x) para −3π ≤ x ≤ π

0 para x < −3π y para x > π

8. f (x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1

2

1

0

9. f (x) = e−|x|

10. f (x) = xe−|4x|

11. Pruebe que la integral de Fourier de f puede escribirse
como

lim
ω→∞

1

π

∫ ∞

−∞
f (t)

sen(ω(t − x))

t − x
dt.

fe(x) =
{

f (x) para x ≥ 0

f (−x) para x < 0

1

π

∫ ∞

−∞
fe(ξ) cos(ωξ) dξ

2

π

∫ ∞

0
f (ξ) cos(ωξ) dξ.

lím

0

0

para −π ≤ x ≤ π

para |x| > π

para −10 ≤ x ≤ 10

para |x| > 10 para −5 ≤ x < 1

para 1 ≤ x ≤ 5

para |x| > 5

para −π ≤ x ≤ 2π

para x < −π y para x > 2π

para −100 ≤ x ≤ 100

para |x| > 100

para −π ≤ x ≤ 0

para 0 < x ≤ π

para |x| > π
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Al aplicar el teorema de convergencia del desarrollo integral de fe, encuentre que si f es continua a pedazos 
en cada intervalo [0, L], entonces su desarrollo integral en cosenos converge a 1

2 (f (x+) + f (x−)) para 
cada x > 0 y a f (0) para x 	 0. En particular, en cualquier x positiva, en el cual f es continua, la integral 
en cosenos converge a f (x).

Al extender f a una función impar fo, de manera semejante a como lo hizo con las series, obtiene una 
integral de Fourier para fo la cual sólo tiene términos en senos. Debido a que fo(x) 	 f (x) para x ≥ 0, esto 
da una integral en senos para f en [0, ∞).

DEFINICIÓN 3.1  Integral de Fourier en cosenos

Sea f defi nida en [0, ∞) y �∞
0  |f (ξ)| dξ convergente. La integral de Fourier en cosenos de f es

en donde

∫ ∞

0
Aω cos(ωx) dω,

Aω = 2

π

∫ ∞

0
f (ξ) cos(ωξ) dξ.

DEFINICIÓN 3.2  Integral de Fourier en senos

Sea f defi nida en [0, ∞) y �∞
0   | f (ξ)| dξ convergente. La integral de Fourier en senos de f es

en donde,

∫ ∞

0
Aω sen(ωx) dω,

Aω = 2

π

∫ ∞

0
f (ξ) sen(ωξ) dξ.

Si f es suave a pedazos en todo intervalo [0, L], entonces esta integral converge a 12 (f (x+) + f (x−)) 
en (0, ∞). Así como con la serie de Fourier en senos en un intervalo acotado, esta integral de Fourier en 
senos converge a 0 en x 	 0.

EJEMPLO 3.2 Integrales de Laplace

Sea f (x) 	 e−kx para x ≥ 0, con k una constante positiva. Entonces f es continuamente diferenciable en 
cualquier intervalo [0, L], y

Para la integral de Fourier en cosenos, calcule los coefi cientes

∫ ∞

0
e−kx dx = 1

k
.

Aω = 2

π

∫ ∞

0
e−kξ cos(ωξ) dξ = 2

π

k

k2 + ω2 .

3.2 Integrales de Fourier en cosenos y senos
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La representación de la integral de Fourier en cosenos de f converge a e−kx para x ≥ 0:

Para la integral en senos, calcule

La integral en senos converge a e−kx para x > 0 y a 0 para x 	 0:

A estas representaciones en integrales se les llama las integrales de Laplace ya que Aω es 2/π veces 
la transformada de Laplace de sen(kx), mientras Bω es 2/π veces la transformada de Laplace de 
cos(kx). ■

e−kx = 2k

π

∫ ∞

0

1

k2 + ω2 cos(ωx) dω.

Bω = 2

π

∫ ∞

0
e−kξ sen(kξ) dξ = 2

π

ω

k2 + ω2 .

e−kx = 2

π

∫ ∞

0

ω

k2 + ω2 sen(ωx) dω para x > 0.

En cada problema del 1 al 10, encuentre las representaciones en 
integral de Fourier en senos y en integral de Fourier en cosenos 
de la función. Determine a qué converge cada integral.

10. f (x) 	 e−2x cos(x) para x ≥ 0

11.  Use las integrales de Laplace para calcular la integral 
de Fourier en cosenos de f (x) 	 1/(1 + x2) y la integral de 
Fourier en senos de g(x) 	 x/(1 + x2).

 SECCIÓN 3.2 PROBLEMAS

7. f (x) = e−x cos(x) para x ≥ 0

8. f (x) = xe−3x

9. f (x) =
{

k para 0 ≤ x ≤ c

0 para x > c

en donde k es constante y c es una constante positiva.

3.3 La integral de Fourier compleja y la transformada de Fourier

Algunas veces es conveniente tener una forma compleja de la integral de Fourier. Esta situación
compleja proveerá una plataforma natural a partir de la cual se desarrollará la transformada de
Fourier.

Suponga que f es suave a pedazos en cada intervalo [−L, L], y que �∞
−∞ | f (x)| dx converge. Entonces, 

en cualquier x,

1

2
(f (x+) + f (x−)) = 1

π

∫ ∞

0

∫ ∞

−∞
f (ξ) cos(ω(ξ − x)) dξ dω,

0

2

0

0

1. f (x) =
{

x2

0

3. f (x) =

⎧
⎪⎨
⎪⎩

1

2

0

para 0 ≤ x ≤ π

para π < x ≤ 3π

para x > 3π

cosh(x)

2x + 1

para 0 ≤ x ≤ 2π

para x > 2π

sen(x)

4. f (x) =
{

5. f (x) =

⎧
⎪⎨
⎪⎩

2. f (x) =
{

para 0 ≤ x ≤ 1

para 1 < x ≤ 2

para x > 2

6. f (x) =

⎧
⎪⎨
⎪⎩

x + 1

x

0

para 0 ≤ x ≤ 5

para x > 5

para 0 ≤ x ≤ 10

para x > 10

para 0 ≤ x ≤ 1

para 1 < x ≤ 4

para x > 4

para x ≥ 0

para 0 ≤ x ≤ c

para x > c
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por la expresión (3.3). Introduzca la forma exponencial compleja de la función coseno en esta expresión 
para escribir

En la primera integral de la última línea, reemplace ω 	 −w para obtener

Ahora escriba nuevamente la variable de integración en la última integral como ω y combine estas dos 
integrales para escribir

(3.4)

Esta es la representación en integral de Fourier compleja de f en la recta real. Si hace Cω 	 �∞
−∞ 

f (t)e−iωt dt, entonces esta integral es

Llame Cω al coefi ciente de la integral de Fourier compleja de f .

EJEMPLO 3.3

Sea f (x) 	 e−a|x| para todo real x, con a una constante positiva. Calcule la representación en integral de 
Fourier compleja de f. Primero, tiene 

Más aún,

Ahora calcule

1

2
(f (x+) + f (x−)) = 1

π

∫ ∞

0

∫ ∞

−∞
f (ξ)

1

2

(
eiω(ξ−x) + e−iω(ξ−x)

)
dξ dω

= 1

2π

∫ ∞

0

∫ ∞

−∞
f (ξ)eiω(ξ−x) dξ dω + 1

2π

∫ ∞

0

∫ ∞

−∞
f (ξ)e−iω(ξ−x) dξ dω.

1

2
(f (x+) + f (x−))

= 1

2π

∫ 0

−∞

∫ ∞

−∞
f (ξ)e−iw(ξ−x) dξ dw + 1

2π

∫ ∞

0

∫ ∞

−∞
f (ξ)e−iω(ξ−x) dξ dω.

1

2
(f (x+) + f (x−)) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
f (ξ)e−iω(ξ−x) dξ dω.

1

2
(f (x+) + f (x−)) = 1

2π

∫ ∞

−∞
Cωeiωx dω.

f (x) =
{

e−ax para x ≥ 0

eax para x < 0
.

∫ ∞

−∞
f (x) dx =

∫ 0

−∞
eax dx +

∫ ∞

0
e−ax dx = 2

a
.

Cω =
∫ ∞

−∞
e−a|t |e−iωt dt

=
∫ 0

−∞
eate−iωt dt +

∫ ∞

0
e−ate−iωt dt

=
∫ 0

−∞
e(a−iω)t dt +

∫ ∞

0
e−(a+iω)t dt

=
[

1

a − iω
e(a−iω)t

]0

−∞
+

[ −1

a + iω
e−(a+iω)t

]∞

0

=
(

1

a + iω
+ 1

a − iω

)
= 2a

a2 + ω2 .

3.3 La integral de Fourier compleja y la transformada de Fourier
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La representación en integral de Fourier compleja de f es

La expresión de la derecha de la ecuación (3.4) conduce de forma natural a la transformada
de Fourier. Para enfatizar cierto término, escriba la ecuación (3.4) como

(3.5)

El término dentro del paréntesis es la transformada de Fourier de f.

e−a|x| = a

π

∫ ∞

−∞

1

a2 + ω2
eiωx dω.

1

2
(f (x+) + f (x−)) = 1

2π

∫ ∞

−∞

(∫ ∞

−∞
f (ξ)e−iωξ dξ

)
eiωx dω.

DEFINICIÓN 3.3  Transformada de Fourier

Suponga que �∞
−∞ | f (x)| dx converge. Entonces la transformada de Fourier de f se defi ne como la 

función

F[f ](ω) =
∫ ∞

−∞
f (t)e−iωt dt.

Así la transformada de Fourier de f es el coefi ciente Cω en la representación en integral de Fourier 
compleja de f .

� convierte una función f en una nueva función llamada �[f ]. Debido a que la transformada se usa 
en el análisis de señales, se usa t (para denotar el tiempo) como la variable de f , y ω como la variable de la 
función transformada �[f ]. El valor de la función �[f ] en ω es �[f ](ω), y este número se calcula para una 
ω dada, evaluando la integral � ∞−∞ f (t)e−iωt dt. Si quiere mantener la atención sobre la variable t, algunas 
veces escribirá �[f ] como �[f (t)].

Los ingenieros se refi eren a la variable ω en la función transformada como la frecuencia de la señal f. 
Más adelante se discute cómo se usan la transformada de Fourier y la versión truncada llamada la trans-
formada de Fourier ventaneada, para determinar la información del contenido de la frecuencia de una 
señal.

Como puede ser incómodo usar el símbolo �[f (t)] en los cálculos, algunas veces se escribe la trans-
formada de Fourier de f como  f̂. En esta notación,

EJEMPLO 3.4

Sea a una constante positiva. Entonces

Esto se sigue inmediatamente del ejemplo 3.3, donde calculó el coefi ciente integral de Fourier Cω de e−a|t |.
Este coefi ciente es la transformada de Fourier de f. ■

F[f ](ω) = f̂ (ω).

F

[
e−a|t |

]
(ω) = 2a

a2 + ω2 .

■
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EJEMPLO 3.5

Sean a y k números positivos, y sea

Esta función pulso puede escribirse en términos de la función de Heaviside como

y en la fi gura 3.2 aparece su gráfi ca. La transformada de Fourier de f es

De nuevo también puede escribir

o

Debido a la ecuación (3.5), la representación en integral de Fourier de f es

Si f es continua, y f � es continua a pedazos en todo el intervalo [−L, L], entonces la integral de Fourier 
de f representa a f :

(3.6)

Por tanto, puede usar la ecuación (3.6) como una transformada inversa de Fourier, recuperando a f a partir 
de  f̂ . Esto es importante porque, en las aplicaciones, se usa la transformada de Fourier para cambiar un 
problema que involucra a f de una forma a otra supuestamente más fácil, que se resuelve para  f̂ (ω). Debe 
tener alguna manera de recuperar la f (t) que quiere, y la ecuación (3.6) es el vehículo que se usa frecuen-
temente. Escriba �−1[  f̂ ] 	 f si �[f] 	  f̂ .

Como es de esperarse de cualquier transformada integral, � es lineal:

f (t) =
{

k para −a ≤ t < a

0 para t < −a y para t ≥ a

f (t) = k[H(t + a) − H(t − a)],

f̂ (ω) =
∫ ∞

−∞
f (t)e−iωt dt

=
∫ a

−a

ke−iωt dt =
[−k

iω
e−iωt

]a

−a

= − k

iω

[
e−iωa − eiωa

]
= 2k

ω
sen(aω).

FIGURA 3.2 

f (t)

t

k

Función pulso:
f (t) = k[H(t+ a)- H(t - a)]

2a a

F[f ](ω) = 2k

ω
sen(aω),

F[f (t)](ω) = 2k

ω
sen(aω).

f (t) = 1

2π

∫ ∞

−∞
f̂ (ω)eiωt dω.

1

2π

∫ ∞

−∞
f̂ (ω)eiωt dω.

F[αf + βg] = αF[f ] + βF[g].

■

3.3 La integral de Fourier compleja y la transformada de Fourier
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Se dice que la integral que defi ne la transformada y la integral (3.6) que da su inversa, constituyen un par 
de transformadas para la transformada de Fourier. Bajo ciertas condiciones de f ,

EJEMPLO 3.6

Sea

Entonces f es continua y absolutamente integrable y f � es continua a pedazos. Calcule

Este es el coefi ciente de Fourier Cω en el desarrollo de Fourier complejo de f (t).
Si quiere regresar, entonces por la ecuación (3.6),

Puede verifi car esto integrando explícitamente. Use un paquete de software para obtener

en donde

Esta expresión es igual a 1 − |t| para −1 ≤ t ≤ 1 y 0 para t > 1 y para t < −1 verificando el resul-
tado. ■

En el contexto de la transformada de Fourier, el espectro de amplitud frecuentemente se interpreta 
como la gráfi ca de |  f̂ (ω)|. Esto es en la misma forma en la que se usó este término en relación con la serie 
de Fourier.

f̂ (ω) =
∫ ∞

−∞
f (t)e−iωt dt y f (t) = 1

2π

∫ ∞

−∞
f̂ (ω)eiωt dt.

f (t) =
{

f̂ (ω) =
∫ ∞

−∞
f (t)e−iωt dt

=
∫ 1

−1
(1 − |t |)e−iωt dt = 2(1 − cos(ω))

ω2 .

f (t) = 1

2π

∫ ∞

−∞
f̂ (ω)eiωt dω

= 1

π

∫ ∞

−∞

(1 − cos(ω))

ω2 eiωt dω.

1

π

∫ ∞

−∞

(1 − cos(ω))

ω2 eiωt dω

= πt signo (t + 1) + π signo (t + 1) + πt signo (t − 1)

−π signo (t − 1) − 2 signo (t) ,

signo(ω) =

⎧
⎪⎪⎨
⎪⎪⎩

1 para ω > 0

0 para ω = 0

−1 para ω < 0

0

para −1 ≤ t ≤ 1

para t > 1 y para t < −1

1 − |t |

(t),
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EJEMPLO 3.7

Si f (t) 	 H(t)e−at entonces  f̂ (ω) 	 1/(a + iω), de donde

La fi gura 3.3 muestra la gráfi ca de |  f̂ (ω)|. Esta gráfi ca es el espectro de amplitud de f . ■

EJEMPLO 3.8

El espectro de amplitud de la función f del ejemplo 3.5 es la gráfi ca de

que se muestra en la fi gura 3.4. ■

Ahora algunas de las propiedades importantes y reglas computacionales para la transformada de 
Fourier. Para cada regla también se establece la versión para la transformada inversa. En lo que sigue, 
suponga que �∞

−∞ | f (t)| dt converge y para la versión de la inversa, que f es continua y f � continua a peda-
zos en cada [−L, L].

∣∣f̂ (ω)
∣∣ = 1√

a2 + ω2
.

FIGURA 3.3 Gráfi ca de

�

�� f ( )�

1
a

ω
f ( ) =          

2k sen (a )

ωf ( )

ωω

| |

| |
ω

FIGURA 3.4 

|f̂ (ω)| = 1√
a2+ω2

, con

f (t) = H(t)e−αt .

∣∣f̂ (ω)
∣∣ = 2k

∣∣∣∣
sen(aω)

ω

∣∣∣∣ ,

TEOREMA 3.1 Corrimiento del tiempo

Si t0 es un número real entonces

Esto es, si corre el tiempo hacia atrás t0 unidades y reemplaza f (t) por f (t − t0), entonces la transfor-
mada de Fourier de esta función recorrida es la transformada de Fourier de f , multiplicada por el factor 
exponencial e−iωt0.

Prueba

F[f (t − t0)](ω) =
∫ ∞

−∞
f (t − t0)e

−iωt dt

= e−iωt0

∫ ∞

−∞
f (t − t0)e

−iω(t−t0) dt.

F[f (t − t0)](ω) = e−iωt0 f̂ (ω). ■

3.3 La integral de Fourier compleja y la transformada de Fourier
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Sea u 	 t − t0 para escribir

EJEMPLO 3.9

Suponga que quiere la transformada de Fourier del pulso de amplitud 6 que se enciende en el tiempo 3 y 
se apaga en el tiempo 7. Esta es la función

que se muestra en la fi gura 3.5. Por supuesto, puede calcular  ĝ(ω) integrando. Pero también observe que 
el punto medio del pulso (esto es, de la parte distinta de cero) ocurre cuando t 	 5. Corra la gráfi ca 5 uni-
dades a la izquierda para centrar el pulso en cero (fi gura 3.6). Si llama f a este pulso recorrido, entonces 
f (t) 	 g(t + 5). Corriendo f cinco unidades a la derecha regresa a g:

La clave de esto, es que por el ejemplo 3.5 ya conocía que la transformada de Fourier de f :

Por el teorema del corrimiento del tiempo,

La versión inversa del teorema del corrimiento del tiempo es

(3.7)

EJEMPLO 3.10

Suponga que quiere

F[f (t − t0)](ω) = e−iωt0

∫ ∞

−∞
f (u)e−iωu du = e−iωt0 f̂ (ω).

g(t) =
{

0 para t < 3 y para t ≥ 7

6 para 3 ≤ t < 7
,

g(t) = f (t − 5).

F[f (t)](ω) = 12
sen(2ω)

ω
.

F[g(t)](ω) = F[f (t − 5)](ω) = 12e−5iω sen(2ω)

ω
.

F−1[e−iωt0

F−1
[

e2iω

5 + iω

]
.

g(t)

t
3 7

6

t

g(t)

–2 2

6

0.2

0.6

1.0

�1 0�2

y

t

FIGURA 3.5 

g(x) =

⎧
⎪⎨
⎪⎩

6 para 3 ≤ t < 7

0 para t < 3

y para t ≥ 7

FIGURA 3.6 La función 
de la fi gura 3.5 corre cinco 
unidades a la izquierda.

FIGURA 3.7 Gráfi ca de 
H(t + 2)e−5(t+2).

■

F(ω)](t) = f (t − t0).



115

La presencia del factor exponencial sugiere la versión inversa del teorema del corrimiento del tiempo. En 
la ecuación (3.7), ponga t0 	 −2 para escribir

donde

Por tanto,

En la fi gura 3.7 se muestra la gráfi ca de la función. ■

El siguiente resultado recuerda al teorema del primer corrimiento para la transformada de Laplace.

F−1
[

e2iω

5 + iω

]
= f (t − (−2)) = f (t + 2),

f (t) = F−1
[

1

5 + iω

]
= H(t)e−5t .

F−1
[

e2iω

5 + iω

]
= f (t + 2) = H(t + 2)e−5(t+2).

TEOREMA 3.2 Corrimiento de frecuencia

Si ω0 es cualquier número real, entonces

Prueba

La versión inversa del teorema del corrimiento de frecuencia es

F[eiω0

(ω) =
∫ ∞

−∞
eiω0tf (t)e−iωt dt

=
∫ ∞

−∞
f (t)e−i(ω−ω0)t dt = f̂ (ω − ω0).

F−1[f̂ (ω − ω0)(t) = eiω0tf (t).

TEOREMA 3.3 Escala

Si a es un número real distinto de cero, entonces

Esto se puede probar calculando directamente a partir de la defi nición. La versión para la transforma-
da inversa de este resultado es

Esta conclusión se conoce como el teorema de escala debido a que no queremos la transformada de 
f (t), si no de f (at), en donde a puede pensarse como un factor de escala. El teorema dice que podemos 
calcular la transformada de la función escalada reemplazando ω por ω/a en la transformada de la función 
original, y dividiendo entre la magnitud del factor de escala.

F[f (at)](ω)] = 1

|a| f̂
(ω

a

)
.

F−1
[
f̂
(ω

a

)]
(t) = |a| f (at).

■
tf (t)] = f̂ (ω − ω0).

F[eiω0tf (t)]

3.3 La integral de Fourier compleja y la transformada de Fourier
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EJEMPLO 3.11

Sabe del ejemplo 3.6 que si

entonces

Sea

Entonces

f (t) =
{

1 − |t | para −1 ≤ t ≤ 1

0 para t > 1 y para t < −1

f̂ (ω) = 2
1 − cos(ω)

ω2 .

0

ĝ(ω) = F[f (7t)](ω) = 1

7
f̂
(ω

7

)

= 2

7

1 − cos(ω/7)

(ω/7)2 = 14
1 − cos(ω/7)

ω2 .

TEOREMA 3.4 Inversión del tiempo

Este resultado es llamado inversión del tiempo porque reemplaza t por −t en f (t) para obtener f (−t). 
La transformada de esta nueva función se obtiene simplemente reemplazando ω por −ω en la transforma-
da de f (t). Esta conclusión se sigue inmediatamente del teorema de escala, poniendo a 	 −1. La versión 
inversa de la inversión del tiempo es

F[f (−t)](ω) = f̂ (−ω).

F−1[f̂ (−ω)](t) = f (−t).

TEOREMA 3.5 Simetría

Para entender esta conclusión empiece con f (t) y tome su transformada de Fourier  f̂ (ω). Reemplace ω 
por t y tome la transformada de la función  f̂ (t). La propiedad de simetría de la transformada de Fourier 
establece que la transformada de  f̂ (t) es sólo la función original f (t) con −ω en lugar de t, y después esta 
nueva función multiplicada por 2π.

EJEMPLO 3.12

Sea

F[f̂ (t)](ω) = 2πf (−ω).

f (t) =
{

■

1 − |7t | para − 1

7
≤ t ≤ 1

7

para t >
1

7
y para t <

g(t) = f (7t) =

⎧
⎪⎪⎨
⎪⎪⎩ −1

7

para −2 ≤ t ≤ 2

para t > 2 y para t < −2

{
4 − t2

0
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En la fi gura 3.8 se muestra la gráfi ca de f . La transformada de Fourier de f es

En este ejemplo, f (−t) 	 f (t), así que intercambiando −ω por ω no habrá ninguna diferencia en  f̂ (ω), y 
puede ver que éste es el caso. ■

f̂ (ω) =
∫ ∞

−∞
f (t)e−iωt dω =

∫ 2

−2
(4 − t2)e−iωt dt

= 4
sen(2ω) − 2ω cos(2ω)

ω3 .

0

1

2

3

4

�4 �3 �2 �1 1 2 3 4
x

f (t)

FIGURA 3.8 

f (x) =
{

TEOREMA 3.6 Modulación

Si ω0 es un número real, entonces

y

Prueba Ponga cos(ωt) 	 1
2  (eiω0t + e−iω0t) y use la linealidad de � y el teorema del corrimiento de fre-

cuencia para obtener

De manera semejante se obtiene la segunda conclusión, usando sen(ω0t) 	 (1/2i)(eiω0t − e−iω0t).

F[f (t) cos(ω0t)](ω) = 1
2

[
f̂ (ω + ω0) + f̂ (ω − ω0)

]

F[f (t) sen(ω0t)](ω) = 1
2 i

[
f̂ (ω + ω0) − f̂ (ω − ω0)

]
.

F[f (t) cos(ω0t)](ω) = F
[ 1

2eiω0tf (t) + 1
2e−iω0tf (t)

]
(ω)

■

■

para −2 ≤ t ≤ 2

para |t | > 2

4 − t2

0

1

2

1

2

1

2

1

2

= 1
2F[eiω0tf (t)](ω) + 1

2F[e−iω0tf (t)](ω)

= 1
2 f̂ (ω − ω0) + 1

2 f̂ (ω + ω0).

1

2

1

2
1

2

1

2

3.3 La integral de Fourier compleja y la transformada de Fourier



CAPÍTULO 3   La integral de Fourier y las transformadas de Fourier118

3.4 Propiedades adicionales y aplicaciones de la transformada de Fourier

3.4.1 La transformada de Fourier de una derivada

Para usar la transformada de Fourier en la solución de ecuaciones diferenciales, es necesaria una expre-
sión que nos relacione la transformada de f � con la de f . El siguiente teorema proporciona dicha relación 
para derivadas de cualquier orden y se llama la regla operacional para la transformada de Fourier. Algo 
similar surge para cualquier transformada integral cuando se piensa usar en conexión con ecuaciones 
diferenciales.

En cada problema del 1 al 8, encuentre la integral de Fourier 
compleja de la función y determine a qué converge esta inte-
gral.

 en donde k es una constante positiva.

En cada problema del 9 al 18, encuentre la transformada de 
Fourier de la función y dibuje el espectro de amplitud. Siempre 
que aparezca k es una constante positiva. Para algunos de los 
problemas se usarán uno o más de los teoremas de esta sección 
junto con las siguientes transformadas, que puede aceptar:

y

11. f (t) = 5[H(t − 3) − H(t − 11)]

12. f (t) = 5e−3(t−5)2

13. f (t) = H(t − k)e−t/4

14. f (t) = H(t − k)t2

15. f (t) = 1/(1 + t2)

16. f (t) = 3H(t − 2)e−3t

17. f (t) = 3e−4|t+2|

18. f (t) = H(t − 3)e−2t

En cada problema del 19 al 24, encuentre la transformada inver-
sa de Fourier de la función.

19.

20.

21.

22.

23.

  Sugerencia: Factorice el denominador y use fracciones par-
ciales.

24.

SECCIÓN 3.3 PROBLEMAS

para −1 ≤ x ≤ 1

para |x| > 1

7. f (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

8. f (x) = x2

F[e−a|t |](ω) = 2a

a2 + ω2
, F[e−at2 ](ω) =

√
π

a
e−ω2/4a,

F

[
1

a2 + t2

]
(ω) = π

a
e−a|ω|.

para 0 ≤ t ≤ 1

para −1 ≤ t < 0

para |t | > 1

9e−(ω+4)2/32

e(20−4ω)i

3 − (5 − ω)i

e(2ω−6)i

5 − (3 − ω)i

10 sen(3ω)

ω + π

1 + iω

6 − ω2 + 5iω

10(4 + iω)

9 − ω2 + 8iω

0

para 0 ≤ x ≤ π

2

para − π

2
≤ x < 0

para |x| >
π

2

8. f (x) = x2e−3|x|

cos(x)

sen(x)

0

0

1

9. f (t) =

⎧
⎪⎨
⎪⎩

10. f (t) =
{

−1

sen(t)

1

0

−1

2. f (x) =
{

3. f (x) =
{

4. f (x) =
{

5. f (x) =
{

6. f (x) =

⎧
⎪⎨
⎪⎩

1. f (x) = xe−|x|

sen(πx)

0

0

para 0 ≤ x ≤ k

para −k ≤ x < 0

para |x| > k,

|x|
0

x

e−|x|

1 − x

0

para −2 ≤ x ≤ 2

para |x| > 2

para −1 ≤ x ≤ 1

para |x| > 1

para −5 ≤ x ≤ 5

para |x| > 5

para −k ≤ t ≤ k

para |t | > k,
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Recuerde que la k-ésima derivada de f se denota como f (k). Como una conveniencia use k = 0 en este 
símbolo, bajo el entendido que f (0) = f .

Sea n un entero positivo. Suponga que f (n−1) es continua y f (n) es continua a pedazos en cada intervalo 
[−L, L]. Considere que �∞

−∞ | f (n−1)(t) dt converge. Asuma

para k = 0, 1, . . . , n − 1. Entonces

Prueba Empiece con la primera derivada. Integrando por partes, tiene

Ahora e−iωt = cos(ωt) − i sen(ωt) tiene magnitud 1, y por hipótesis,

Por tanto,

La conclusión para derivadas de orden superior se obtiene por inducción sobre n y el hecho de que

La hipótesis de que f sea continua en la regla operacional puede relajarse para permitir un número 
fi nito de saltos de discontinuidad, si añade términos apropiados en la conclusión. Enseguida se enuncia 
este resultado para la transformada de f �.

TEOREMA 3.7 Diferenciación respecto a la variable tiempo

lim
t→∞

f (k)(t) = lim
t→−∞

f (k)(t) = 0

F[f (n)(t)](ω) = (iω)nf̂ (ω).

F[f ′](ω) =
∫ ∞

−∞
f ′(t)e−iωt dt

=
[
f (t)e−iωt

]∞

−∞
−

∫ ∞

−∞
f (t)(−iω)e−iωt dt.

lim
t→∞

f (t) = lim
t→−∞

f (t) = 0.

F[f (n)(t)](ω) = iω

∫ ∞

−∞
f (t)e−iωt dt = iωf̂ (ω).

f ′(t) = d

dt
f (n−1)(t).

TEOREMA 3.8 

Suponga que f es continua en la recta real, excepto para las discontinuidades de salto en t1, . . . , tM. Sea f �
continua a pedazos en todo [−L, L]. Asuma que �∞

−∞ | f (t)| dt converge, y que

Entonces

lim
t→∞

f (t) = lim
t→−∞

f (t) = 0.

F[f ′](ω) = iωf̂ (ω) −
M∑

j=1

[f (tj+) − f (tj−)]e−itj ω.

lím lím

lím lím

lím lím

■

■

■

3.4 Propiedades adicionales y aplicaciones de la transformada de Fourier
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Cada término f (tj+) − f (tj−) es la diferencia entre los límites laterales de f (t) en la discontinuidad de 
salto tj. En la fi gura 3.9 se muestra el tamaño del salto entre los límites de la gráfi ca y este punto.

Prueba Primero suponga que f tiene una sola discontinuidad de salto en t1. En el caso de más disconti-
nuidades, el argumento sigue la misma línea pero incluye más cálculos de los que aparecen enseguida.

Integrando por partes:

Aquí hay un ejemplo del uso de la regla operacional en la resolución de una ecuación diferencial.

EJEMPLO 3.13

Resolver

en donde H es la función de Heaviside. Así, la ecuación diferencial es

Aplique la transformada de Fourier a la ecuación diferencial para obtener

f (t)

t

f (tj�)

tj

f (tj�)

FIGURA 3.9 La función f 
tiene una discontinuidad de 
salto en tj.

F[f ′](ω) =
∫ ∞

−∞
f ′(t)e−iωt dt

=
∫ t1

−∞
f ′(t)e−iωt dt +

∫ ∞

t1

f ′(t)e−iωt dt

=
[
f (t)e−iωt

]t1

−∞
−

∫ t1

−∞
f (t)(−iω)e−iωt dt

+
[
f (t)e−iωt

]∞
t1

− (−iω)

∫ ∞

t1

f (t)e−iωt dt

= f (t1−)e−it1ω − f (t1+)e−it1ω + iω

∫ ∞

−∞
f (t)e−iωt dt

= iωf̂ (ω) − [f (t1+) − f (t1−)]e−it1ω.

y′ − 4y = H(t)e−4t ,

y′ − 4y =
{

e−4t para t ≥ 0

0 para t < 0

F[y′](ω) − 4ŷ(ω) = F[H(t)e−4t ](ω).
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Use el teorema 3.7 y que F[H(t)e−4t](ω) 	 
1

4 + iω  
para escribir esta ecuación como

Resuelva para ŷ(ω) para obtener

La solución es

cuya gráfi ca aparece en la fi gura 3.10.
La transformada inversa que acaba de obtener puede deducirse de varias maneras. Puede usar una 

tabla de transformadas de Fourier o un paquete de software que contenga esta transformada. También se 
sigue del ejemplo 3.4 que

y elija a 	 4. ■

En esta solución no hay constante arbitraria debido a que la transformada de Fourier regresó la única 
solución que es continua y acotada para todo t real. El acotamiento se supuso cuando usamos la transfor-
mada debido al requerimiento de convergencia de �∞

−∞ |y(t)| dt.

3.4.2 Diferenciación respecto a la variable de frecuencia

La variable ω usada para la transformada de Fourier es la frecuencia de f (t), ya que aparece en la expo-
nencial compleja eiωt, que es cos(ωt)+i sen(ωt). En este contexto, la diferenciación de  f̂ (ω) respecto a 
ω es llamada diferenciación respecto a la variable de frecuencia. Ahora se relacionan las derivadas de 
 f̂ (ω) y f (t).

t
�2

�0.12

�0.08

�0.04

�4 2 4

FIGURA 3.10 

y(t) = − 1
8 e−4|t |.

iωŷ(ω) − 4ŷ(ω) = 1

4 + iω
.

ŷ(ω) = −1

16 + ω2 .

y(t) = F−1
[ −1

16 + ω2

]
(t) = −1

8
e−4|t |,

F

[
e−a|t |

]
(ω) = 2a

a2 + ω2

TEOREMA 3.9 Diferenciación respecto a la variable de frecuencia

Sea n un entero positivo. Sea f continua a pedazos en [−L, L] para todo número positivo L, y suponga que  
�∞

−∞ |tnf (t)| dt converge. Entonces

F[tnf (t)](ω) = in
dn

dωn
f̂ (ω).

3.4 Propiedades adicionales y aplicaciones de la transformada de Fourier
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En particular, bajo las condiciones del teorema,

Prueba Pruebe el teorema para n 	 1. El argumento para n mayor es similar. Aplique la regla de Leibniz 
para la diferenciación bajo la integral para escribir

EJEMPLO 3.14

Suponga que quiere calcular �[t2e−5|t |]. Del ejemplo 3.4 recuerde que

Por el teorema de diferenciación respecto a la variable de frecuencia,

3.4.3 La transformada de Fourier de una integral

Lo siguiente permite aplicar la transformada a una función defi nida mediante una integral.

F[tf (t)](ω) = i
d

dω
f̂ (ω) y F[t2f (t)](ω) = − d2

dω2 f̂ (ω).

d

dω
f̂ (ω) = d

dω

∫ ∞

−∞
f (t)e−iωt dt =

∫ ∞

−∞

∂

∂ω

[
f (t)e−iωt

]
dt

=
∫ ∞

−∞
f (t)(−it)e−iωt dt = −i

∫ ∞

−∞
[tf (t)]e−iωt dt

= −iF[tf (t)](ω).

F[e−5|t |](ω) = 10

25 + ω2 .

F[t2e−5|t |](ω) = i2 d2

dω2

[
10

25 + ω2

]
= 20

25 − 3ω2

(25 + ω2)3 .

TEOREMA 3.10 

Sea f continua a pedazos en todo intervalo [−L, L]. Suponga que  �∞
−∞ |f (t)| dt converge. Admita que 

 f̂ (0) 	 0. Entonces

Prueba Sea g(t) 	  �t−∞ f (�)d�. Entonces g�(t) 	 f (t) para cualquier t en donde f es continua, y g(t) → 
0 conforme t →−∞. Más aún,

Por tanto, aplique el teorema 3.7 a g para obtener

Esto es equivalente a la conclusión a probar. ■

F

[∫ t

−∞
f (τ) dτ

]
(ω) = 1

iω
f̂ (ω).

lim
t→∞

g(t) =
∫ ∞

−∞
f (τ) dτ = f̂ (0) = 0.

f̂ (ω) = F[f (t)](ω) = F[g′(t)](ω)

= iωF[g(t)](ω) = iωF

[∫ t

−∞
f (τ) dτ

]
(ω).

■

■

lím
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3.4.4 Convolución

Hay muchas transformadas defi nidas por integrales y es común tener una operación de convolución
para tal transformación. Enseguida se analiza la convolución para la transformada de Fourier.

En esta defi nición, se escribió (f ∗ g)(t) para enfatizar. Sin embargo, la convolución es una función 
denotada como f ∗ g, de manera que puede escribir f ∗ g(t) para indicar f ∗ g evaluada en t.

Suponga que f tiene una convolución con g. Entonces,

1. Conmutatividad de la convolución. g tiene una convolución con f , y f ∗ g 	 g ∗ f .
2.  Linealidad. Si f y g tienen convoluciones con h, y � y β son números reales, entonces �f + βg 

también tiene una convolución con h, y

Prueba Para (1), sea z 	 t − τ y se escribe

La conclusión (2) se sigue de las propiedades elementales de las integrales, debido a que las integrales 
involucradas convergen. ■

Ahora está listo para los resultados principales en convolución.

DEFINICIÓN 3.4  Convolución

Sean f y g funciones defi nidas en la recta real. Entonces f tiene una convolución con g si

1.  �b
a  f (t)dt y �b

a  g(t) dt existen para todo intervalo [a, b].
2. Para todo número t real,

converge. En este caso, la convolución f ∗ g de f con g es la función dada por

∫ ∞

−∞
|f (t − τ)g(τ )| dτ

(f ∗ g)(t) =
∫ ∞

−∞
f (t − τ)g(τ ) dτ.

TEOREMA 3.11 

(αf + βg) ∗ h = α(f ∗ h) + β(g ∗ h).

f ∗ g(t) =
∫ ∞

−∞
f (t − τ)g(τ ) dτ

=
∫ −∞

∞
f (z)g(t − z)(−1) dz =

∫ ∞

−∞
g(t − z)f (z) dz = g ∗ f (t).

Suponga que f y g son acotadas y continuas en la recta real y que  �∞
−∞ | f (t)| dt y �∞

−∞ |g(t)| dt convergen. 
Entonces,

TEOREMA 3.12 

3.4 Propiedades adicionales y aplicaciones de la transformada de Fourier
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1.

2. Convolución en el tiempo

3. Convolución en la frecuencia

La primera conclusión es que la integral, sobre la recta real, de la convolución de f con g, es igual al 
producto de las integrales de f  y de g sobre la recta.

La convolución en el tiempo establece que la transformada de Fourier de una convolución es el pro-
ducto de las transformadas de las funciones. Se puede expresar esta fórmula como

Esto es, la transformada de Fourier de la convolución en el tiempo de f con g, es igual al producto de la 
transformada de f por la transformada de g. Esto tiene la versión inversa importante

La transformada inversa de Fourier del producto de dos funciones transformadas es igual a la convolución 
de estas funciones. Algunas veces esto es útil para evaluar una transformada inversa de Fourier. Si quiere 
�−1[h(ω)] y puede factorizar h(ω) en  f̂ (ω)  ĝ(ω), un producto de transformadas de dos funciones conoci-
das, entonces la transformada inversa de h es la convolución de estas funciones conocidas.

Se puede expresar la convolución en la frecuencia como

La transformada de Fourier del producto de dos funciones es igual a ( 1
2π

) veces la convolución de la 
transformada de estas funciones.

La versión inversa de la convolución en la frecuencia es

Prueba Para (1), escriba

suponiendo que es válido el intercambio en el orden de integración. Ahora

∫ ∞

−∞
f ∗ g(t) dt =

∫ ∞

−∞
f (t) dt

∫ ∞

−∞
g(t) dt.

f̂ ∗ g(ω) = f̂ (ω)ĝ(ω).

̂f (t)g(t)(ω) = 1

2π
(f̂ ∗ ĝ)(ω).

F[f ∗ g](ω) = f̂ (ω)ĝ(ω).

F−1 [f̂ (ω)ĝ(ω)
]
(t) = f ∗ g(t).

F[f (t)g(t)](ω) = 1

2π
(f̂ ∗ ĝ )(ω).

F−1[f̂ (ω) ∗ ĝ(ω)](t) = 2πf (t)g(t).

∫ ∞

−∞
f ∗ g(t) dt =

∫ ∞

−∞

(∫ ∞

−∞
f (t − τ)g(τ ) dτ

)
dt

=
∫ ∞

−∞

(∫ ∞

−∞
f (t − τ)g(τ ) dt

)
dτ =

∫ ∞

−∞

(∫ ∞

−∞
f (t − τ) dt

)
g(τ) dτ,

∫ ∞

−∞
f (t − τ) dt =

∫ ∞

−∞
f (t) dt
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para cualquier número τ real. Por tanto,

Para (2), empiece haciendo F(t) = e−iωt  f (t) y G(t) 	 e−iωtg(t) para t real y ω. Entonces,

Ahora, identifi que a la integral dentro del paréntesis grande de la última línea como la convolución de F 
con G. Entonces, por (1) de este teorema aplicado a F y G,

Queda la conclusión (3) al alumno. ■

EJEMPLO 3.15

Suponga que quiere calcular

Identifi que el problema como el cálculo de la transformada inversa de un producto de funciones cuya 
transformada individual conoce:

y

La versión inversa de la conclusión (2) dice que

∫ ∞

−∞
f ∗ g(t) dt =

∫ ∞

−∞

(∫ ∞

−∞
f (t) dt

)
g(τ) dτ

=
∫ ∞

−∞
f (t) dt

∫ ∞

−∞
g(τ) dτ =

∫ ∞

−∞
f (t) dt

∫ ∞

−∞
g(t) dt.

f̂ ∗ g(ω) =
∫ ∞

−∞
f ∗ g(t)e−iωt dt

=
∫ ∞

−∞

(∫ ∞

−∞
f (t − τ)g(τ ) dτ

)
e−iωt dt

=
∫ ∞

−∞

(∫ ∞

−∞
e−iωtf (t − τ)g(τ ) dτ

)
dt

=
∫ ∞

−∞

(∫ ∞

−∞
e−iω(t−τ)f (t − τ)e−iωτg(τ) dτ

)
dt.

f̂ ∗ g(ω) =
∫ ∞

−∞
F ∗ G(t) dt =

∫ ∞

−∞
F(t) dt

∫ ∞

−∞
G(t) dt

=
∫ ∞

−∞
f (t)e−iωt dt

∫ ∞

−∞
g(t)e−iωt dt = f̂ (ω)ĝ(ω).

F−1
[

1

(4 + ω2)(9 + ω2)

]
.

1

4 + ω2
= F

(
1

4
e−2|t |

)
= f̂ (ω) con f (t) = 1

4
e−2|t |,

1

9 + ω2 = F
(

1

6
e−3|t |

)
= ĝ(ω) con g(t) = 1

6
e−3|t |.

F−1
[

1

(4 + ω2)(9 + ω2)

]
(t) = F−1[f̂ (ω)ĝ(ω)](t) = f ∗ g(t)

= 1

4
e−2|t | ∗ 1

6
e−3|t | = 1

24

∫ ∞

−∞
e−2|t−τ |e−3|τ | dτ.

3.4 Propiedades adicionales y aplicaciones de la transformada de Fourier
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Debe tener cuidado al evaluar esta integral debido al valor absoluto en los exponentes. Primero, si t > 0, 
entonces

Si t < 0, entonces

Finalmente, calcule

Por tanto,

3.4.5 Filtrado y la función delta de Dirac

La función delta de Dirac es un pulso de magnitud infi nita que tiene duración infi nitamente corta. Una 
manera de describir matemáticamente tal objeto es formar un pulso corto

como se muestra en la fi gura 3.11, y tomar el límite conforme el ancho del pulso tiende a cero:

En el sentido estándar, ésta no es una función, sino que es un objeto llamado distribución. Las distribucio-
nes son generalizaciones del concepto de función. Por esta razón, muchos teoremas no pueden aplicarse 
a δ(t).

24[f ∗ g(t)] =
∫ 0

−∞
e−2|t−τ |e−3|τ | dτ +

∫ t

0
e−2|t−τ |e−3|τ | dτ +

∫ ∞

t

e−2|t−τ |e−3|τ | dτ

=
∫ 0

−∞
e−2(t−τ)e3τ dτ +

∫ t

0
e−2(t−τ)e−3τ dτ +

∫ ∞

t

e−2(τ−t)e−3τ dτ

= 6

5
e−2t − 4

5
e−3t .

24[f ∗ g(t)] =
∫ t

−∞
e−2|t−τ |e−3|τ | dτ +

∫ 0

t

e−2|t−τ |e−3|τ | dτ +
∫ ∞

0
e−2|t−τ |e−3|τ | dτ

=
∫ t

−∞
e−2(t−τ)e3τ dτ +

∫ 0

t

e2(t−τ)e3τ dτ +
∫ ∞

0
e2(t−τ)e−3τ dτ

= −4

5
e3t + 6

5
e2t .

24[f ∗ g](0) =
∫ ∞

−∞
e−2|τ |e−3|τ | dτ = 2

5
.

F−1
[

1

(4 + ω2)(9 + ω2)

]
(t) = 1

24

(
6

5
e−2|t | − 4

5
e−3|t |

)

= 1

20
e−2|t | − 1

30
e−3|t |.

δ(t) = lim
a→0

1

2a
[H(t + a) − H(t − a)].

t

y(t)

�a a

2a
1

FIGURA 3.11 

y = 1
2a

[H(t + a) − H(t − a)].

1

2a
[H(t + a) − H(t − a)],

■

lím
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Sin embargo, hay algunas manipulaciones formales que producen resultados útiles. Primero, si calcula la 
transformada de Fourier del pulso, obtiene

Intercambiando el límite con la transformada, resulta

Esto lo lleva a considerar que la transformada de Fourier de la función delta es la función que es idénti-
camente 1.

Más aún, poniendo 	(t) formalmente en una convolución, resulta

y

lo que siguiere que

La función delta se comporta como la identidad bajo la convolución.
La siguiente propiedad de fi ltrado permite recuperar el valor de una función “sumando” sus valores 

cuando le pega con una función delta trasladada.

F[H(t + a) − H(t − a)] =
∫ a

−a

e−iωt dt = − 1

iω
e−iωt

]a

−a

= 1

iω

(
eiaω − e−iaω

)
= 2

sen(aω)

ω
.

F[δ(t)](ω) = F
[

lim
a→0

1

2a
[H(t + a) − H(t − a)]

]
(ω)

= lim
a→0

1

2a
F[H(t + a) − H(t − a)](ω)

= lim
a→0

sen(aω)

aω
= 1.

F[δ ∗ f ] = F[δ]F[f ] = F[f ]

F[f ∗ δ] = F[f ]F[δ] = F[f ],

δ ∗ f = f ∗ δ = f.

Si f tiene una transformada de Fourier y es continua en t0, entonces

Este resultado puede ser modifi cado para permitir un salto de discontinuidad de f en t0. En este caso 
tiene

3.4.6 La transformada de Fourier ventaneada

Suponga que f es una señal. Esto signifi ca que f es una función defi nida sobre la recta real y tiene energía 
fi nita �∞

−∞ | f (t)|2 dt.

TEOREMA 3.13 Filtrado

∫ ∞

−∞
f (t) δ(t − t0) dt = f (t0).

∫ ∞

−∞
f (t)δ(t − t0) dt = 1

2
(f (t0+) + f (t0−)).

lím

lím

lím

3.4 Propiedades adicionales y aplicaciones de la transformada de Fourier
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Al analizar f (t), algunas veces querrá localizar su contenido de frecuencia respecto a la variable 
tiempo. Ya se ha mencionado que  f̂ (ω) contiene información acerca de las frecuencias de la señal. Sin 
embargo,  f̂ (ω) no particulariza la información para intervalos de tiempo específi cos, ya que

y esta integración es sobre todo tiempo. Así, la imagen obtenida no contiene información sobre tiempos 
específi cos, sino que sólo permite calcular el espectro de amplitud total |  f̂ (ω)| . Si piensa en f (t) como 
una pieza de música tocada en cierto tiempo, tendrá que esperar hasta que toda la pieza sea interpretada 
antes de calcular este espectro de amplitud. Sin embargo, puede obtener una imagen del contenido de 
frecuencia de f (t) dentro de intervalos de tiempo dados ventaneando la función antes de aplicar la trans-
formada de Fourier.

Para hacer esto, primero necesita una función ventana g, que es una función que toma valores dis-
tintos de cero sólo en algún intervalo cerrado, usualmente en [0, T ] o en [−T, T ]. Las fi guras 3.12 y 
3.13 muestran gráfi cas típicas de tales funciones, una en [0, T ] y la otra en [−T, T ]. El intervalo se 
llama el soporte de g, y en este caso en el que estamos trabajando con intervalos cerrados, decimos que g 
tiene soporte compacto. La función g vale cero fuera de este intervalo soporte.Ventaneamos una función 
f con g haciendo el producto g(t) f (t), el cual vale cero fuera de [−T, T ].

EJEMPLO 3.16

Considere la función ventana

con soporte compacto [−4, 4]. En la fi gura 3.14(a) aparece la gráfi ca de esta función, incluyendo los seg-
mentos verticales en t 	 ±4 para resaltar este intervalo. En la fi gura 3.14(b) se muestra f (t) 	 t sen(t). Para 
ventanear f con g, forme el producto g(t) f (t), que se muestra en la fi gura 3.14(c). Esta función ventaneada 
vale cero fuera del soporte de g. Para esta elección de g, la ventana tiene el efecto de prender la señal f (t) 
en el tiempo −4 y apagarla en t 	 4. ■

La transformada de Fourier ventaneada (respecto a la elección de g) es

f̂ (ω) =
∫ ∞

−∞
f (t)e−iωt dt

t

g(t)

T
t

g(t)

T�T

FIGURA 3.12 Función 
ventana típica con soporte 
compacto [0, T ].

FIGURA 3.13 Función ventana 
típica con soporte compacto [−T, T ].

g(t) =
{

1 para −4 ≤ t ≤ 4

0 para |t | > 4
,

Fven[f ](ω) = f̂ven(ω) =
∫ ∞

−∞
f (t)g(t)e−iωt dt

=
∫ T

−T

f (t)g(t)e−iωt dt.
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EJEMPLO 3.17

Sea f (t) = 6e−| t |. Entonces,

Usar la función ventana

La fi gura 3.15 muestra la gráfi ca de la función ventaneada g(t) f (t). La transformada de Fourier ventanea-
da de f es

0

0.2

0.4

0.6

0.8

1.0

�6 �4 �2 2 4 6
t

g(t)

�10

�5

5

10

�10 �5

5 10
t

f (t)

FIGURA 3.14(a) Función ventana FIGURA 3.14(b) f (t) = t sen(t).

�3

�2

�1

1

�6

�4

�2 2 4 6
t

g(t) f (t)

FIGURA 3.14(c) f ventana con g.

g(t) =
{

1 para |t | ≤ 4

0 para |t | > 4

f̂ (ω) =
∫ ∞

−∞
6e−|t |e−iωt dt = 12

1 + ω2 .

g(t) =
{

1 para −2 ≤ t ≤ 2

0 para |t | > 2

f̂ven(ω) =
∫ ∞

−∞
6e−|t |g(t)e−iωt dt

=
∫ 2

−2
6e−|t |e−iωt dt

= 12
−2e−2 cos2(ω) + e−2 + e−2ω sen(2ω) + 1

1 + ω2 .

3.4 Propiedades adicionales y aplicaciones de la transformada de Fourier

4.

2.
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Esto da el contenido de frecuencia de la señal f en el intervalo de tiempo −2 � t ≤ 2. ■

Con frecuencia usamos una función ventana recorrida. Suponga que el soporte de g es [−T, T ]. Si 
t0 > 0, entonces la gráfi ca de g(t − t0) es la gráfi ca de g(t) recorrida a la derecha t0 unidades. Ahora

Las fi guras 3.16(a) hasta (d) ilustran este proceso. En este caso, tome la transformada de Fourier de la 
señal ventaneada recorrida

Esto da el contenido de frecuencia de la señal en el intervalo de tiempo [t0 − T, t0 + T ].
Algunas veces, los ingenieros se refi eren al proceso de ventanear como la localización de tiempo-

frecuencia. Si g es la función ventana, el centro de g se defi ne como el punto

420�2�4
x

g(t) f (t)

0.2

0.4

0.6

0.8

1.0

FIGURA 3.15 f (t) = 6e−| t | ventana con

g(t) =
{

1 para |t | ≤ 2

0 para |t | > 2

f (t)g(t − t0) =
{

f̂ven,t0(ω) = F[f (t)g(t − t0)](ω)

=
∫ t0+T

t0−T

f (t)g(t − t0)e
−iωt dt.

tC =
∫ ∞
−∞ t |g(t)|2 dt
∫ ∞
−∞ |g(t)|2 dt

.

T�T
t

g(t)

t0 � T t0 � T
t

FIGURA 3.16(a) Una función 
ventana g en [−T, T ].

FIGURA 3.16(b) Función ventana 
recorrida g(t − t0).

0

f (t)g(t − t0) para t0 −T ≤ t ≤ t0 + T

para t < t0 −T y para t > t0 + T
.

2.
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El número

es el radio de la función ventana. El ancho de la función ventana es 2tR y se conoce como la duración RMS 
de la ventana. En esta terminología se supone que todas las integrales involucradas convergen.

Cuando trabaja con la transformada de Fourier de la función ventana, entonces se aplica la termino-
logía similar:

y

El ancho de  ĝ es 2ωR, un número conocido como el ancho de banda RMS de la función ventana.

3.4.7 El teorema de muestreo de Shannon

La enunciación del teorema de muestreo de Shannon afi rma que una señal de banda limitada puede recons-
truirse a partir de ciertos valores muestrales.

Una señal f es de banda limitada si su transformada de Fourier  f̂  tiene soporte compacto (tiene valo-
res distintos de cero sólo en un intervalo cerrado de longitud fi nita). Esto signifi ca que, para algún L,

Usualmente se elige L de manera que sea el menor número que cumple con esta condición. En este 
caso, L es el ancho de banda de la señal. El contenido total de frecuencia de dicha señal f está en la 
banda [−L, L].

Ahora hay que probar que se puede reconstruir una señal de banda limitada a partir de valores mues-
trales tomados en tiempos apropiados. Empiece con la integral para la transformada inversa de Fourier, 
suponiendo que recupera f (t) para todo t real a partir de su transformada:

 t0 � T  t0 � T

f

g

t
t0 � T t0 � T

t

FIGURA 3.16(c) Señal típica f (t). FIGURA 3.16(d) g(t − t0)f (t).

tR =
(∫ ∞

−∞(t − tC)2 |g(t)|2 dt
∫ ∞
−∞ |g(t)|2 dt

)1/2

centro de ĝ = ωC =
∫ ∞
−∞ ω |ĝ(ω)|2 dω
∫ ∞
−∞ |ĝ(ω)|2 dω

radio de ĝ = ωR =
(∫ ∞

−∞(ω − ωC)2 |ĝ(ω)|2 dω
∫ ∞
−∞ |ĝ(ω)|2 dω

)1/2

.

f̂ (ω) = 0 si |ω| > L.

f (t) = 1

2π

∫ ∞

−∞
f̂ (ω)eiωt dω.

3.4 Propiedades adicionales y aplicaciones de la transformada de Fourier
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Debido a que f es de banda limitada,

(3.8)

Por el momento deje esto en espera y escriba la serie de Fourier compleja para  f̂ (ω) en [−L, L]:

(3.9)

donde

Comparando cn con f (t) en la ecuación (3.8), concluye que

Sustituya en la ecuación (3.9) para obtener

Como n toma todos los valores enteros en esta sumatoria, puede reemplazar n con −n para escribir

Ahora sustituya esta serie por  f̂ (ω) en la ecuación (3.8) para obtener

Intercambie la sumatoria y la integral para obtener

(3.10)

Esto signifi ca que se conoce f (t) para todo tiempo t si sólo los valores de la función f (nπ/L) están deter-
minados para todo valor entero de n. Un ingeniero puede reconstruir una señal f (t) mediante el muestreo 
en los tiempos 0, ±π/L, ±2π/L, . . . Una vez conocidos los valores de f (t) para esos tiempos, entonces la 
ecuación (3.10) reconstruye toda la señal. Esta es la manera en la que los ingenieros convierten señales 
digitales en señales analógicas, con aplicaciones en la tecnología tales como la utilizada en los discos 
compactos.

f (t) = 1

2π

∫ L

−L

f̂ (ω)eiωt dω.

f̂ (ω) =
∞∑

n=−∞
cne

nπiω/L

cn = 1

2L

∫ L

−L

f̂ (ω)e−nπiω/L dω.

L

f̂ (ω) =
∞∑

n=−∞

π

L
f
(
−nπ

L

)
enπiω/L.

f̂ (ω) = π

L

∞∑

n=−∞
f
(nπ

L

)
e−nπiω/L.

f (t) = 1

2π

π

L

∫

−

f (t) = 1

2L

∞∑

n=−∞
f
(nπ

L

) ∫ L

−L

eiω(t−nπ/L) dω

= 1

2L

∞∑

n=−∞
f
(nπ

L

) 1

i(t − nπ/L)

[
eiω(t−nπ/L)

]L

−L

= 1

2L

∞∑

n=−∞
f
(nπ

L

) 1

i(t − nπ/L)

(
ei(Lt−nπ) − e−i(Lt−nπ)

)

=
∞∑

n=−∞
f
(nπ

L

) 1

Lt − nπ

1

2i

(
ei(Lt−nπ) − e−i(Lt−nπ)

)

=
∞∑

n=−∞
f
(nπ

L

) sen(Lt − nπ)

Lt − nπ
.

cn = π

L
f
(− )

.
nπ

∞∑

n=−∞
f
(nπ

L

)
e−nπiω/Leiωt dω.

π

π
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La ecuación (3.10) se conoce como el teorema de muestreo de Shannon. Lo volverá a encontrar cuan-
do estudie onduletas. En el caso L = π, el teorema de muestreo tiene la forma simple

(3.11)

3.4.8 Filtros de paso bajo y ancho de banda

Considere una señal f, no necesariamente de banda limitada. Sin embargo, suponga que la señal tiene 
energía limitada, así

es fi nita. Tales funciones son llamadas cuadrados integrables, y también las encontrará más adelante con 
los desarrollos en onduletas.

El espectro de f está dado por su transformada de Fourier

Si f no es de banda limitada, reemplace f con una señal de banda limitada fω0
 con ancho de banda que no 

exceda un número positivo ω0 aplicando un fi ltro de paso bajo que elimina de  f̂ (ω) las frecuencias fuera 
del rango [−ω0, ω0]. Esto es, sea

Esto defi ne la transformada de la función fω0
 a partir de la cual se recupera fω0

 mediante la transformada 
inversa de Fourier:

El proceso de aplicar un fi ltro de paso bajo se traduce matemáticamente al multiplicar por una función 
apropiada (esencialmente del tipo ventana). Defi na la función característica �I  de un intervalo I por

Ahora observe que

(3.12)

o, más brevemente,

En este contexto, �[−ω0, ω0] es llamada la función de transferencia. Se muestra su gráfi ca en la fi gura 3.17. 
La transformada inversa de Fourier de la función de transferencia es

cuya gráfi ca aparece en la fi gura 3.18. En el caso en que ω0 = π, esta es la función, que evaluada en t − n 
en lugar de en t, aparece en la fórmula de muestreo de Shannon (3.11) que reconstruye f (t) a partir de los 
valores de muestreo f (n) en los enteros. Por esta razón sen(ω0t) / πt es llamada la función de muestreo de 
Shannon.

f (t) =
∞∑

n=−∞
f (n)

sen(π(t − n))

π(t − n)

∫ ∞

−∞
|f (t)|2 dt

f̂ (ω) =
∫ ∞

−∞
f (t)e−iωt dt.

f̂ω0(ω) =
{

fω0(t) = 1

2π

∫ ∞

−∞
f̂ω0(ω)eiωt dω = 1

2π

∫ ω0

−ω0

f̂ω0(ω)eiωt dω.

χ

f̂ω0(ω) = χ[−ω0,ω0](ω)f̂ (ω),

f̂ω0 = χ[−ω0,ω0]f̂ .

F−1[χ[−ω0,ω0]](t) = 1

2π

∫ ω0

−ω0

eiωt dω = sen(ω0t)

πt
,

0

para −ω0 ≤ ω ≤ ω0

para |ω| > ω0

f̂ (ω)

(t) =
{

1 si t está en I

0 si t es un número real que no está en I

3.4 Propiedades adicionales y aplicaciones de la transformada de Fourier

I
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Ahora recuerde el teorema 3.12 (2) y (3) de la sección 3.4.4, el fi ltrado analógico en la variable de 
tiempo t se hace por convolución. Si ϕ(t) es la función fi ltro, entonces el efecto de fi ltrar una función f por 
ϕ es una nueva función g defi nida por

Aplicando la transformada de Fourier de esta ecuación, tiene

Por tanto, fi ltra en la variable de frecuencia tomando el producto de la transformada de Fourier de la fun-
ción fi ltro con la transformada de la función fi ltrada.

Ahora formule la ecuación (3.12) como

Esto da el filtrado de paso bajo de f como la convolución de la función de muestreo de Shannon 
con f .

En el fi ltrado de paso bajo, produce, a partir de la señal f, una nueva señal fω0
, que es de banda limi-

tada. Esto es, fi ltre las frecuencias de la señal fuera de [−ω0, ω0]. En una clase de fi ltrado semejante, lla-
mado fi ltrado en paso de banda, se busca fi ltrar los efectos de la señal fuera de un ancho de banda dado. 
Una señal de banda limitada f puede descomponerse en una suma de señales, cada una de las cuales lleva 
el contenido de información de f dentro de cierta banda de frecuencia dada. Para ver cómo se hace esto, 
sea f una señal de banda limitada con ancho de banda �. Considere una sucesión fi nita de frecuencias 
crecientes

Para j 	 1, . . . , N, defi na una función fi ltro de ancho de banda βj por medio de su función de transferen-
cia:

La gráfi ca de esta función de transferencia, que es una suma de funciones características de intervalos de 
frecuencia, se muestra en la fi gura 3.19. La función fi ltro de ancho de banda βj(t), que fi ltra el contenido 

la función de muestreo de Shannon.

t

�[��0, �0]

�0��0

1

�0.2

0.2

0.4

0.6

0.8

2 4 6�6 �4 �2
t

FIGURA 3.17 Gráfi ca de �[−ω0,ω0]. FIGURA 3.18 Gráfi ca de sen(ω0t) / πt 
para ω0 	 2.7.

g(t) = (ϕ ∗ f )(t) =
∫ ∞

−∞
ϕ(ξ)f (t − ξ) dξ.

ĝ(ω) = ϕ̂(ω)f̂ (ω).

fω0(t) =
(

sen(ω0t)

πt
∗ f (t)

)
.

0 < ω1 < ω2 < · · · < ωN = �.

β̂j = χ[−ωj ,−ωj−1] + χ[ωj−1,ωj ].
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de frecuencia de f (t) fuera del rango de frecuencia [ωj−1, ωj], se obtiene aplicando la transformada de 
Fourier inversa de  β̂j (ω). Obtenga

cuya gráfi ca se muestra en la fi gura 3.20.
Ahora defi na las funciones

y, para j 	 1, 2, . . . , N, 

Entonces, para j 	 1, 2, . . . , N, cada fj (t) lleva el contenido de la señal f (t) en el rango de frecuencia 
ωj−1 ≤ ω ≤ ωj , mientras f0(t) lleva el contenido en [0, ω0], que es el rango de baja frecuencia de f (t). Más 
aún,

(3.13)

dando la descomposición de la señal en componentes que llevan la información de la señal para intervalos 
de frecuencia específi cos.

t
��j �j��j�1 �j�1

1

�0.15

�0.1

�0.05

0.05

0.1

0.15

5 10�10 �5
t

FIGURA 3.19 �[−ωj,−ωj −1] + �[ωj−1, ωj]
.

FIGURA 3.20 FIGURA 2.24 βj (t) = sen(ωj t)−sen(ωj−1t)

πt

con ωj = 2.2 y ωj−1 = 1.7.

βj (t) = sen(ωj t) − sen(ωj−1t)

πt
,

f0(t) =
(

sen(ω0t)

πt
∗ f

)
(t)

fj (t) = (βj ∗ f )(t)

f (t) = f0(t) + f1(t) + f2(t) + · · · + fN (t),

En cada problema del 1 al 8, determine la transformada de 
Fourier de la función.

En cada uno de los problemas 9, 10 y 11, use la convolución para 
encontrar la transformada inversa de Fourier de la función.

SECCIÓN 3.4 PROBLEMAS

1.
t

9 + t2

2. 3te−9t2

3. 26H(t)te−2t

4. H(t − 3)(t − 3)e−4t

5.
d

dt
[H(t)e−3t ]

6. t[H(t + 1) − H(t − 1)]

7.
5e3it

t2 − 4t + 13

8. H(t − 3)e−2t

9.
1

(1 + iω)2

10.
1

(1 + iω)(2 + iω)

3.4 Propiedades adicionales y aplicaciones de la transformada de Fourier
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3.5 Transformadas de Fourier en cosenos y senos

En la sección 3.3 apareció la manera en que la representación en integral de Fourier de una función sugiere 
su transformada de Fourier. Ahora se probará cómo las integrales de Fourier en cosenos y senos de una 
función sugieren las transformadas en cosenos y en senos.

Suponga que f (t) es suave a pedazos en cada intervalo [0, L] y �∞
0   | f (t)| dt converge. Entonces para 

cada t en donde f es continua,

donde

Con base en estas dos ecuaciones, se genera la siguiente.

En cada uno de los problemas 12, 13 y 14, encuentre la transfor-
mada inversa de Fourier de la función.

15.

16.  El contenido de potencia de una señal f(t) está defi nido 
como �∞

−∞ | f (t)|2 dt, suponiendo que esta integral converge. 
Determine el contenido de potencia de H(t)e−2t.

17.  Determine el contenido de potencia de (1/t) sen(3t). Suge-
rencia: use el resultado del problema 15.

18. Use la transformada de Fourier para resolver

En cada uno de los problemas del 19 al 24, calcule la trans-
formada de Fourier ventaneada de la función dada f, usando 
la función ventana g. También calcule el centro y el ancho de 
banda RMS de la función ventana.

19.

20.

21.

22.

23.

24.

11.
sen(3ω)

ω(2 + iω)

12.
6e4iω sen(2ω)

9 + ω2

13. e−3|ω+4| cos(2ω + 8)

14. e−ω2/9 sen(8ω)

Pruebe la siguiente forma del teorema de Parseval:
∫ ∞

−∞
|f (t)|2 dt = 1

2π

∫ ∞

−∞

∣∣f̂ (ω)
∣∣2 dω.

y′′ + 6y′ + 5y = δ(t − 3).

f (t) = t2, g(t) =
{

1 para −5 ≤ t ≤ 5

0 para |t | > 5

f (t) = cos(at),

g(t) =
{

1 para −4π ≤ t ≤ 4π

0 para |t | > 4π

f (t) = e−t ,

g(t) =
{

1 para 0 ≤ t ≤ 4

0 para t < 0 y para t > 4

f (t) = et sen(πt), g(t) =
{

1 para −1 ≤ t ≤ 1

0 para |t | > 1

f (t) = (t + 2)2, g(t) =
{

1 para −2 ≤ t ≤ 2

0 para |t | > 2

f (t) = H(t − π),

g(t) =
{

1 para 3π ≤ t ≤ 5π

0 para t < 3π y para t > 5π

f (t) =
∫ ∞

0
aω cos(ωt) dω,

aω = 2

π

∫ ∞

0
f (t) cos(ωt) dt.

DEFINICIÓN 3.5  Transformada de Fourier en cosenos

La transformada de Fourier en cosenos de f está defi nida por

(3.14)

Con frecuencia denotará �c[f ](ω) =  f̂C(ω).

Fc[f ](ω) =
∫ ∞

0
f (t) cos(ωt) dt.
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Observe que

y que

(3.15)

Las integrales en las expresiones (3.14) y (3.15) forman el par de transformadas para la transformada de 
Fourier en cosenos. La última permite recuperar, bajo ciertas circunstancias, f (t) a partir de  f̂C (ω).

EJEMPLO 3.18

Sea K un número positivo y sea

La transformada de Fourier de f es

La transformada de Fourier en senos se defi ne de manera análoga.

f̂C(ω) = π

2
aω

f (t) = 2

π

∫ ∞

0
f̂C(ω) cos(ωt) dω.

f (t) =
{

1 para 0 ≤ t ≤ K

0 para t > K

f̂C(ω) =
∫ ∞

0
f (t) cos(ωt) dt

=
∫ K

0
cos(ωt) dt = sen(Kω)

ω
.

También denote esto como  f̂S(ω).
Si f es continua para t > 0, entonces la representación en integral de Fourier en senos es

donde 

Como

entonces

y ésta es la manera en la que recupera f (t) a partir de  f̂S (ω).

DEFINICIÓN 3.6  Transformada de Fourier en senos

La transformada de Fourier en senos de f está defi nida por

(ωt) dt.

f (t) =
∫ ∞

0
bω sen(ωt) dω,

bω = 2

π

∫ ∞

0
f (t) sen(ωt) dt.

f̂S(ω) = π

2
bω

f (t) = 2

π

∫ ∞

0
f̂S(ω) sen(ωt) dω,

■

Fc[f ](ω) =
∫ ∞

0
f (t)sen

3.5 Transformadas de Fourier en cosenos y senos
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EJEMPLO 3.19

Con la función f del ejemplo 3.18,

Ambas transformadas son lineales:

y

siempre que todas estas transformadas estén defi nidas.
Las siguientes reglas operacionales juegan un papel clave cuando se usan estas transformadas para 

resolver ecuaciones diferenciales.

f̂S(ω) =
∫ ∞

0
f (t) sen(ωt) dt

=
∫ K

0
sen(ωt) dt = 1

ω
[1 − cos(Kω)].

FC[αf + βg] = αFC[f ] + βFC[g]

FS[αf + βg] = αFS[f ] + βFS[g],

TEOREMA 3.14 Reglas operacionales

Sean f  y f � continuas en todo [0, L], y sea �∞
0  | f (t)| dt convergente. Suponga f (t) → 0 y f �(t) → 0 cuando 

t → ∞. Asuma que f � es continua a pedazos en cualquier intervalo [0, L]. Entonces,

1.

y

2.

El teorema se prueba integrando por partes dos veces para cada regla y los detalles se dejan al estu-
diante.

La fórmula operacional determinará qué transformada usar para resolver un problema dado. Si bus-
ca una función f (t), para 0 ≤ t < ∞, y se especifi ca f (0), entonces puede considerar la transformada de 
Fourier en senos. Si la información dada es acerca de f �(0), entonces la transformada en cosenos es la 
apropiada. Cuando resuelva ecuaciones diferenciales parciales, encontrará ejemplos donde está involu-
crada esta estrategia.

FC[f ′′(t)](ω) = −ω2f̂C(ω) − f ′(0)

FS[f ′′(t)](ω) = −ω2f̂S(ω) + ωf (0).

En cada uno de los problemas del 1 al 6, determine la transfor-
mada de Fourier en cosenos y la transformada de Fourier en 
senos de la función.

 con K cualquier número positivo

SECCIÓN 3.5 PROBLEMAS

3. f (t) =
{

6. f (t) =
{

4. f (t) =

⎧
⎪⎨
⎪⎩

1 para 0 ≤ t < K

−1 para K ≤ t < 2K

0 para t ≥ 2K

5. f (t) = e−t cos(t)

■

1. f (t) = e−t

2. f (t) = te−at , con a cualquier número positivo

para 0 ≤ t ≤ K

para t > K

cos(t)

0
para K ≤ t < 2K

para 0 ≤ t < K y para t ≥ 2K

senh(t)

0
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3.6 Las transformadas fi nitas de Fourier en senos y cosenos

La transformada de Fourier, la transformada en cosenos y la transformada en senos, están motivadas por 
las representaciones integrales respectivas de una función. Si emplea la misma estrategia de razonamien-
to, pero usando las series de Fourier en cosenos y en senos en lugar de integrales, obtiene las llamadas 
transformadas fi nitas.

Suponga que f es suave a pedazos en [0, π].

7.  Pruebe que bajo condiciones apropiadas de f y sus derivadas,

�S[ f (4)(t)](ω) 	 ω4  f̂S(ω) − ω3 f (0) + ωf � (0).

  Sugerencia: Considere condiciones que permitan la aplica-
ción de la fórmula operacional de ( f �(t))�.

8.  Pruebe que bajo condiciones apropiadas de f y sus deri-
vadas,

�C[ f (4)(t)](ω) 	 ω4  f̂C(ω) + ω2 f �(0) − f (3)(0).

Si f es continua en x en [0, π], entonces f (x) tiene la representación en serie de Fourier en cosenos

donde

Entonces

una expresión de tipo inversión con la cual puede recuperar f (x) a partir de la transformada fi nita de 
Fourier en cosenos de f .

De manera semejante, defi na una transformada fi nita en senos.

DEFINICIÓN 3.7  Transformada fi nita de Fourier en cosenos

La transformada fi nita de Fourier en cosenos de f está defi nida por

para n 	 0, 1, 2, . . . .

C[f ](n) = f̃C(n) =
∫ π

0
f (x) cos(nx) dx

f (x) = 1

2
a0 +

∞∑

n=1

an cos(nx),

an = 2

π

∫ π

0
f (x) cos(nx) dx = 2

π
f̃C(n).

f (x) = 1

π
f̃C(0) + 2

π

∞∑

n=1

f̃C(n) cos(nx),

DEFINICIÓN 3.8  Transformada fi nita de Fourier en senos

La transformada de Fourier fi nita en senos de f está defi nida por

para n 	 1, 2, . . . .

S[f ](n) = f̃S(n) =
∫ π

0
f (x) sen(nx) dx

3.6 Las transformadas fi nitas de Fourier en senos y cosenos
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Para 0 < x < π, si f es continua en x, entonces la representación en serie de Fourier en senos es

una fórmula de inversión para la transformada fi nita en senos.

EJEMPLO 3.20

Sea f (x) 	 x2 para 0 ≤ x ≤ π. Para la transformada fi nita en cosenos, calcule

y, para n 	 1, 2, . . . ,

Para la transformada fi nita en senos, calcule

Aquí están las reglas operacionales fundamentales para estas transformadas.

f (x) = 2

π

∞∑

n=1

f̃S(n) sen(nx),

f̃C(0) =
∫ π

0
x2 dx = 1

3
π3

f̃C(n) =
∫ π

0
x2 cos(nx) dx = 2π

(−1)n

n2 .

f̃S(n) =
∫ π

0
x2 sen(nx) dx = (−1)n[2 − n2π2] − 2

n3
.

TEOREMA 3.15 Reglas operacionales

Sean f y f � continuas en [0, π] y sea f � continua a pedazos. Entonces,

1. 

para n 	 1, 2, . . . , y

2. 

para n 	 1, 2, . . . . ■

Las aplicaciones de estas transformadas fi nitas aparecerán cuando se discutan las ecuaciones diferen-
ciales parciales.

C[f ′′](n) = −n2f̃C(n) − f ′(0) + (−1)nf ′(π),

S[f ′′](n) = −n2f̃S(n) + nf (0) − n(−1)nf (π)

En los problemas del 1 al 7, encuentre la transformada fi nita de 
Fourier en senos de la función.

1. K (cualquier constante)

2. x

3. x2

4. x5

5. sen(ax)

6. cos(ax)

7. e−x

En cada problema del 8 al 14, encuentre la transformada fi nita 
de Fourier en cosenos de la función.

SECCIÓN 3.6 PROBLEMAS

8. f (x) =

⎧
⎨
⎩

1 para 0 ≤ x < 1
2

−1 para 1
2 ≤ x ≤ π

■
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3.7 La transformada discreta de Fourier

Si f tiene periodo p, su serie de Fourier compleja es

Aquí ω0 	 2π/p y los coefi cientes de Fourier complejos están dados por

en donde, debido a la periodicidad de f , � puede ser cualquier número. Si sustituye el valor de ω0, la serie 
de Fourier compleja de f es

Bajo ciertas condiciones de f , esta serie converge a 1
2  ( f (t+) + f (t−)) en cualquier número t.

Escoja � 	 0 en la fórmula para los coefi cientes, así

Para motivar la defi nición de la transformada de Fourier discreta, suponga que quiere aproximar dk. Una 
manera de hacerlo es subdividir [0, p] en N subintervalos de longitud igual p/N y elegir un punto tj en cada 
[jp/N, (j + 1)p/N] para j 	 0, 1, . . . , N − 1. Ahora aproxime dk con la suma de Riemann:

(3.16)

La transformada de Fourier de N puntos es una regla que actúa en una sucesión dada de N números 
complejos y produce una sucesión infi nita de números complejos, uno para cada entero k (aunque con 
repeticiones periódicas, como verá más adelante). La transformada es defi nida de manera que, excepto 

 9. x

10. x2

11. x3

12. cosh(ax)

13. sen(ax)

14. e−x

15.  Suponga que f es continua en [0, π] y f � es continua a peda-
zos. Pruebe que

 para n 	 1, 2, . . . .

16.  Sean f continua y f � continua a pedazos en [0, π]. Pruebe 
que

 para n 	 0, 1, 2, . . . .

(f̃ ′)C(n) = nf̃S(n) − f (0) + (−1)nf (π)

(f̃ ′)S(n) = −nf̃C(n)

∞∑

k=−∞
dke

ikω0t .

dk = 1

p

∫ α+p

α

f (t)e−ikω0t dt,

∞∑

k=−∞
dke

2πikt/p.

dk = 1

p

∫ p

0
f (t)e−2πikt/p dt para k = 0, ±1, ±2, . . . .

dk ≈ 1

p

N−1∑

j=0

f
(
tj
)
e−2πiktj /p p

N

= 1

N

N−1∑

j=0

f
(
tj
)
e−2πikj/N .

c

3.7 La transformada discreta de Fourier
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por el factor 1/N , la suma de aproximación (3.16) es exactamente la transformada de Fourier discreta de 
N puntos de los números f (t0), f (t1), . . . , f (tN−1).

Para simplifi car la notación, se usa una convención utilizada con la transformada de Laplace y se 
denota la transformada discreta de Fourier de N puntos de una sucesión u por U (con minúscula para la 
sucesión dada de N números y mayúscula de la misma letra para su transformada discreta de Fourier de N 
puntos). En esta notación, si u 	  {uj}

N
j	0
−1 , entonces

También se abrevia la frase “transformada discreta de Fourier “ por TDF.

EJEMPLO 3.21

Considere la sucesión constante u 	 {c}N
j	0
−1 , en donde c es un número complejo. La TDF de N puntos 

está dada por

Ahora recuerde que la suma de una serie geométrica es

(3.17)

Aplicando esto a Uk, tiene

debido a que, para cualquier entero k,

Para cualquier entero positivo N, la TDF de N puntos de una sucesión constante de N números es una 
sucesión infi nita de ceros. De una manera más simple, la TDF de N puntos de una sucesión constante es 
cero. ■

DEFINICIÓN 3.9  Transformada discreta de Fourier de N puntos

Sea N un entero positivo. Sea u 	 {uj}
N
j	0
−1 una sucesión de N números complejos. Entonces la N 

transformada discreta de Fourier de N puntos de u es la sucesión �[u] defi nida por

para k 	 0, ±1, ±2, . . . .

D[u](k) =
N−1∑

j=0

uj e
−2πijk/N

Uk =
N−1∑

j=0

uj e
−2πijk/N .

Uk =
N−1∑

j=0

ce−2πijk/N = c

N−1∑

j=0

(
e−2πik/N

)j

.

N−1∑

j=0

rj = 1 − rN

1 − r
.

Uk = c
1 −

(
e−2πik/N

)N

1 − e−2πik/N

= c
1 − e−2πik

1 − e−2πik/N
= 0 para k = 0, ±1, ±2, . . .

e−2πik = cos(2πk) − i sen(2πk) = 1.
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EJEMPLO 3.22

Sean a un número complejo y N un entero positivo. Para evitar trivialidades suponga que a no es un entero 
múltiplo de π. Encuentre la TDF de N puntos de la sucesión u = {sen(ja)}N

j	0
−1. Denotando esta transfor-

mada por la letra mayúscula, tiene

Usando el hecho de que

para escribir

Usando la ecuación (3.17) en cada suma

(3.18)

ya que e−2πik = 1.
Para hacer el ejemplo más explícito, suponga que N 	 5 y a 	 

√
2.  Entonces la sucesión dada u es

El k-ésimo término de la TDF de 5 puntos U es

Por ejemplo,

Uk =
N−1∑

j=0

sen(ja)e−2πijk/N .

sen(ja) = 1

2i

(
eija − e−ija

)

Uk = 1

2i

N−1∑

j=0

eijae−2πijk/N − 1

2i

N−1∑

j=0

e−ijae−2πijk/N

= 1

2i

N−1∑

j=0

(
eia−2πik/N

)j

− 1

2i

N−1∑

j=0

(
e−ia−2πik/N

)j

.

Uk = 1

2i

1 −
(
eia−2πik/N

)N

1 − eia−2πik/N
− 1

2i

1 −
(
e−ia−2πik/N

)N

1 − e−ia−2πik/N

= 1

2i

1 − eiaNe−2πik

1 − eia−2πik/N
− 1

2i

1 − e−iaNe−2πik

1 − e−ia−2πik/N

= 1

2i

1 − eiaN

1 − eia−2πik/N
− 1

2i

1 − e−iaN

1 − e−ia−2πik/N
,

√
2

Uk = 1

2i

1 − e5i
√

2

1 − ei
√

2−2πik/5
− 1

2i

1 − e−5i
√

2

1 − e−i
√

2−2πik/5
.

sen

u0 = 0, u1 = sen , u2 = sen 2
√

2), u3 = sen 3
√

2) 4
√

2, u4 = sen .
))))( ( ((

4
√

2

U0 = 1

2i

1 − e5i
√

2

1 − ei
√

2
− 1

2i

1 − e−5i
√

2

1 − e−i
√

2

U1 = 1

2i

1 − e5i
√

2

1 − ei
√

2−2πi/5
− 1

2i

1 − e−5i
√

2

1 − e−i
√

2−2πi/5

+ sen
√

2 − sen 5
√

2
)( )( )(

,
2 − 2 cos

= √
2

( )

3.7 La transformada discreta de Fourier
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y

Enseguida se desarrollan algunas propiedades de esta transformada.

3.7.1 Linealidad y periodicidad

Si u 	 {uj}N
j	0
−1 y υ 	 {υj}

N
j	0
−1 son sucesiones de números complejos y a y b son números complejos, 

entonces

La linealidad de la TDF de N puntos es la propiedad:

Esto se sigue inmediatamente de la defi nición de la transformada, ya que

Ahora se probará que la TDF de N puntos es periódica de periodo N. Esto signifi ca que si la sucesión dada 
es u 	 {uj}

N
j	0
−1 , entonces para cualquier entero k,

Esto se puede ver en la TDF calculada en el ejemplo 3.22. En la ecuación (3.18), reemplace k por k + N. 
En este ejemplo, este cambio aparece sólo en el término eia−2πik/N en el denominador. Pero, si k es reem-
plazada por k + N en esta exponencial, no hay cambios, ya que

El argumento en general procede como sigue:

ya que e−2πijk = 1.

3.7.2 La TDF inversa de N puntos

Suponga que tiene una TDF de N puntos

de una sucesión {uj}
N
j	0
−1 de N números. Afi rme que

(3.19)

U2 = 1

2i

1 − e5i
√

2

1 − ei
√

2−4πi/5
− 1

2i

1 − e−5i
√

2

1 − e−i
√

2−4πi/5
. ■

D[au + bv](k) = aUk + bVk.

D[au + bv](k) =
N−1∑

j=0

(auj + bvj )e
−2πijk/N

= a

N−1∑

j=0

uj e
−2πijk/N + b

N−1∑

j=0

vj e
−2πijk/N = aUk + bVk.

Uk+N = Uk.

Uk+N =
N−1∑

j=0

uj e
−2πij (k+N)/N

=
N−1∑

j=0

uj e
−2πijk/Ne−2πijk =

N−1∑

j=0

uj e
−2πijk/N = Uk,

au + bv =
{
auj + bvj

}N=1
j=0 .

Uk =
N−1∑

j=0

uj e
−2πijk/N

uj = 1

N

N−1∑

k=0

Uke
2πijk/N para j = 0, 1, . . . , N − 1.

eia−2πi(k+N)/N = eiae−2πike−2πi = eiae−2πik = eia−2πik.
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Porque esta expresión recupera la sucesión de N puntos original a partir de su transformada discreta, la 
ecuación (3.19) es llamada la transformada discreta de Fourier inversa de N puntos.

Para verifi car la ecuación (3.19), es conveniente poner W = e−2πi/N. Entonces

Ahora escriba

(3.20)

En la última sumatoria, observe que

Para j dada, si r � j, entonces por la ecuación (3.17) para la suma fi nita de una serie geométrica,

debido a que (W(r−j))N = e−2πi(r−j) = 1 y Wr−j = e−2πi(r−j)/N  � 1. Pero si r � j , entonces

Por tanto, en la última suma doble de la ecuación (3.20), hay que retener sólo el término cuando r 	 j en 
la sumatoria respecto a r, obteniendo

y verifi cando la ecuación (3.19).

3.7.3 TDF aproximación de los coefi cientes de Fourier

Esta sección empieza defi niendo la TDF de N puntos de manera que las sumas de Riemann, que aproxi-
man los coefi cientes de Fourier de una función periódica, fueran 1/N veces la TDF de N puntos de la suce-
sión de los valores de la función en los puntos de partición del intervalo. Ahora observará más de cerca la 
idea de aproximar los coefi cientes de Fourier mediante una transformada de Fourier discreta con la idea 
de muestrar sumas parciales de la serie de Fourier. Esta aproximación también permite la utilización de 
software de TDF para la aproximación de los coefi cientes de Fourier.

Considere un ejemplo específi co, f (t) 	 sen(t) para 0 ≤ t < 4, entendiendo que f se extiende sobre 
toda la recta real con periodo 4. En la fi gura 3.21 se muestra una parte de la gráfi ca de f . Con p 	 4, los 
coefi cientes de Fourier son

(3.21)

para k 	 0, �1, �2, . . . .

WN = 1 y W−1 = e2πi/N .

1

N

N−1∑

k=0

Uke
2πijk/N = 1

N

N−1∑

k=0

UkW
−jk

= 1

N

N−1∑

k=0

(
N−1∑

r=0

ure
−2πirk/N

)
W−jk = 1

N

N−1∑

k=0

N−1∑

r=0

urW
rkW−jk

= 1

N

N−1∑

r=0

ur

N−1∑

k=0

W rkW−jk.

W rkW−jk = e−2πirk/Ne2πijk/N = e−2π

N−1∑

k=0

W rkW−jk =
N−1∑

k=0

W (r−j)k =
N−1∑

k=0

(W r−j )k = 1 − (W r−j )N

1 − W r−j
= 0

N−1∑

k=0

W rkW−jk =
N−1∑

k=0

W jkW−jk =
N−1∑

k=0

1 = N.

1

N

N−1∑

r=0

ur

N−1∑

k=0

W rkW−jk = 1

N
uj

N−1∑

k=0

W jkW−jk = 1

N
ujN = uj ,

dk = 1

4

∫ 4

0
sen(ξ)e−2πikξ/4 dξ = 1

4

∫ 4

0
sen(ξ)e−πikξ/2 dξ

= cos(4) − 1

π2k2 − 4
+ 1

2
i
πk sen(4)

π2k2 − 4
.

(r−j)k/N = W (r−j)k.

3.7 La transformada discreta de Fourier
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Sea ahora N un entero positivo y subdivida [0, 4] en N subintervalos de igual longitud 4/N. Estos 
subintervalos son [4j/N, 4( j + 1)/N] para j 	 0, 1, . . . , N − 1. Construya N números evaluando f (t) en el 
extremo izquierdo de cada subintervalo. Estos puntos son 4j/N, así obtiene la sucesión de N puntos

Forme la TDF de N puntos de esta sucesión:

Entonces

es una suma de Riemann para la integral que defi ne dk. La pregunta es: ¿Hasta qué punto (1/N)Uk aproxi-
ma a dk? En este ejemplo, hay una expresión explícita (3.21) para dk. Se evaluará explícitamente (1/N)Uk, 
usando a 	 4/N en la TDF de {sen( ja)}N

j	0
−1 determinada en el ejemplo 3.22. Esto nos da

Ahora calcule el término exponencial en el denominador usando la aproximación

para |x| << 1. Entonces

u =
{

sen

(
4j

N

)}N−1

j=0
.

Uk =
N−1∑

j=0

sen

(
4j

N

)
e−2πijk/4 =

N−1∑

j=0

sen

(
4j

N

)
e−πijk/2.

1

N
Uk = 1

N

N−1∑

j=0

sen

(
4j

N

)
e−πijk/2

1

N
Uk = 1

N

[
1

2i

1 − e4i

1 − e4i/N−2kπi/N
− 1

2i

1 − e−4i

1 − e−4i/N−2kπi/N

]
.

ex ≈ 1 + x

1

N
Uk ≈ 1

N

[
1

2i

1 − e4i

1 − [1 + (4i/N − 2kπi/N ] − 1

2i

1 − e−4i

1 − [1 + (−4i/N − 2kπi/N ]

]

= −1

4

[
1 − e4i

−2 + kπ
− 1 − e−4i

2 + kπ

]

= −1

4

1

π2k2 − 4

[
4 − πk(e4i − e−4i) − 2(e4i + e−4i)

]

�0.6
�0.4
�0.2

0.2
0.4
0.6
0.8

1

2 4�8 �6 6 8 10 12
t

FIGURA 3.21 f (t) = sen(t) para 
0 ≤ t < 4, extendida periódicamente 
sobre la recta real.
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La aproximación ex � 1 + x ha conducido a una expresión aproximada para (1/N)Uk que es exactamente 
igual a dk. Sin embargo, esta aproximación no puede ser válida para todo k. Primero, la aproximación usada 
para ex supone que |x| < 1, y segundo, la TDF de N puntos es periódica de periodo N, así Uk+N = Uk, mientras 
no existe tal periodicidad en las dk.

En general, es muy difícil obtener una estimación en tamaños relativos de |k| y N para que (1/N)Uk 
aproxime a dk dentro de cierta tolerancia y que valga para una clase razonable de funciones. Sin embargo, 
para muchas aplicaciones científi cas y de ingeniería, la regla empírica |k| ≤ N/8 ha resultado efectiva.

= −1

4

1

π2k2 − 4
[4 − 2πki sen(4) − 4 cos(4)]

= cos(4) − 1

π2k2 − 4
+ 1

2
i
πk sen(4)

π2k2 − 4
.

3.8 Series de Fourier muestrales

En la subsección anterior, se discutió la aproximación de los coefi cientes de Fourier de una función 
periódica f . Esto se hizo aproximando los términos de una transformada discreta de Fourier de N puntos 
formada por el muestreo de f (t) en N puntos de [0, p]. Ahora se discute el uso de una TDF inversa para 
aproximar las sumas parciales muestreadas de la serie de Fourier de una función periódica (esto es, sumas 
parciales evaluadas en los puntos elegidos).

Considere la suma parcial

Subdivida [0, p] en N subintervalos y elija los puntos muestreados tj = jp/N para j = 0, 1, . . . , N − 1. 

En cada problema del 1 al 6, calcule �[u](k) para k = 0, ±1, . . . ,
±4 para la sucesión dada u.

1. {cos(j )}5
j=0

2. {eij}5
j=0

3. {1/(j + 1)}5
j=0

4. {1/(j + 1)2}5
j=0

5. {j 2}5
j=0

6. {cos(j ) − sen(j )}4
j=0

En cada problema del 7 al 12, se da una sucesión {Uk}N
k=0. 

Determine la transformada inversa de Fourier discreta de N pun-
tos de esta sucesión.

7. Uk = (1 + i)k, N = 6

8. Uk = i−k, N = 5

9. Uk = e−ik, N = 7

10. Uk = k2, N = 5

11. Uk = cos(k), N = 5

12. Uk = ln(k + 1), N = 6

En cada problema del 13 al 16, calcule los primeros siete coefi -
cientes de Fourier complejos d0, d±1, d±2 y d±3 de f (véase la 
sección 2.7). Después use la TDF para aproximar estos coefi -
cientes con N = 128.

13. f (t) = cos(t) para 0 ≤ t ≤ 2, f  tiene periodo 2

14. f (t) = e−t para 0 ≤ t < 3, f  tiene periodo 3

15. f (t) = t2 para 0 ≤ t < 1, f  tiene periodo 1

16. f (t) = te2t para 0 ≤ t < 4, f  tiene periodo 4

SECCIÓN 3.7 PROBLEMAS

SM(t) =
M∑

k=−M

dke
2πikt/p.

3.8 Series de Fourier muestrales
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Forme la sucesión de N puntos u = {f (jp/N}N
j =  0

−1 y aproxime

donde

Para tener |k| ≤ N/8, como se mencionó al fi nal de la subsección anterior, requiere que M ≤ N/8. Así,

En particular, si muestrea la suma parcial en los puntos de la partición jp/N, entonces

Probará que la suma de la derecha es una TDF inversa de N puntos para una sucesión particular de N puntos, 
que ahora serán determinados. Explore la periodicidad de la TDF de N puntos, esto es, Uk+N 	 Uk para todo 
entero k. Escriba

(3.22)

En esta sumatoria, use los 2M + 1 números

Como M < N/8, debe llenar con otros valores para obtener una sucesión de N puntos. Una manera de hacer 
esto es llenar los otros lugares con ceros. Así

Entonces la M-ésima suma parcial de la serie de Fourier de f , muestreada en jp/N, está aproximada por

dk ≈ 1

N
Uk,

Uk =
N−1∑

j=0

f

(
jp

N

)
e−2πijk/N

SM(t) ≈
M∑

k=−M

1

N
Uke

2πikt/p.

SM

(
jp

N

)
≈ 1

N

M∑

k=−M

Uke
2πijk/N .

SM

(
jp

N

)
≈ 1

N

−1∑

k=−M

Uke
2πijk/N + 1

N

M∑

k=0

Uke
2πijk/N

= 1

N

M∑

k=1

U−ke
−2πijk/N + 1

N

M∑

k=0

Uke
2πijk/N

= 1

N

M∑

k=1

U−k+Ne2πij (−k+N)/N + 1

N

M∑

k=0

Uke
2πijk/N

= 1

N

N−1∑

k=N−M

Uke
2πijk/N + 1

N

M∑

k=0

Uke
2πijk/N .

UN−M , . . . , UN−1, U0, . . . , UM .

Vk =

⎧
⎪⎪⎨
⎪⎪⎩

Uk para k = 0, 1, . . . , M

0 para k = M + 1, . . . , N − M − 1

Uk para k = N − M, . . . , N − 1

SM

(
jp

N

)
≈ 1

N

N−1∑

k=0

Vke
2πijk/N .
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EJEMPLO 3.23

Sea f (t) 	 t para 0 ≤ t < 2, y extienda f sobre toda la recta real con periodo 2. En la fi gura 3.22 se muestra 
una parte de la gráfi ca de f .

Los coefi cientes de Fourier de f son

y la serie de Fourier compleja es

Esto converge a t en 0 < t < 2 y en las extensiones periódicas de este intervalo. La M-ésima suma 
parcial es

Para ser específi cos, se elije N 	 27 	 128 y M 	 10, de manera que M ≤ N/8. Muestreando suma parcial 
en los puntos jp/N 	 j/64 para j 	 0, 1, . . . , 127. Entonces

La TDF de 128 puntos de u tiene k-ésimo término

Defi na

dk = 1

2

∫ 2

0
te−2πikt/2 dt =

⎧
⎪⎨
⎪⎩

i

πk
para k �= 0

1 para k = 0

.

1 +
∞∑

k=−∞,k �=0

i

πk
eπikt .

SM(t) = 1 +
M∑

k=−M,k �=0

i

πk
eπikt .

u =
{
f

(
jp

N

)}N−1

j=0
=

{
j

64

}127

j=0
.

Uk =
127∑

j=0

j

64
e−πijk/64.

Vk =

⎧
⎪⎪⎨
⎪⎪⎩

Uk para k = 0, 1, . . . , 10

0 para k = 11, . . . , 117

Uk para k = 118, . . . , 127

.

20�2�4 4 6 8

0.5

1.0

2.0

t

FIGURA 3.22 f (t) 	 t para 0 ≤ t < 2, 
extendida periódicamente sobre la recta 
real.
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Entonces

(3.23)

Para entender esta discusión de la aproximación de sumas parciales muestreadas de una serie de 
Fourier, vale la pena ver los números que se obtienen en un ejemplo. Haga los cálculos S10(

1
2 ), y después 

la aproximación (3.23) con j 	 32.
Primero,

Ahora debe calcular las Vk. Para esto, necesita los números

Ahora calcule

S10

(
jp

N

)
= S10

(
j

64

)
= 1 +

10∑

k=−10,k �=0

i

πk
eπijk/64

≈ 1

128

127∑

k=0

Vke
πijk/64.

S10

(
1

2

)
= 1 +

10∑

k=−10,k �=0

i

πk
eπik/2 =

U0 =
127∑

j=0

j

64
= 127, U1 =

127∑

j=0

j

64
e−πij/64 = −1.0 + 40.735i,

U2 =
127∑

j=0

j

64
e−πij/32 = −1.0 + 20.355i, U3 = −1.0 + 13.557i,

U10 = −1.0 + 3.9922i, U118 = −1.0 − 3.9922i, U119 = −1.0 − 4.4532i,

U120 = −1.0 − 5.0273i, U121 = −1.0 − 5.7631i, U122 = −1.0 − 6.7415i,

U123 = −1.0 − 8.1078i, U124 = −1.0 − 10.153i, U125 = −1.0 − 13.557i,

U126 = −1.0 − 20.355i, U127 = −1.0 − 40.735i.

127∑

k=0

Vke
πik/2 = 127 + (−1.0 + 40.735i)eπi/2 + (−1.0 + 20.355i) eπi

+ (−1.0 + 13.557i) e3πi/2 + (−1.0 + 10.153i) e2πi + (−1.0 + 8.1078i) e5πi/2

+ (−1.0 + 6.7415i) e3πi + (−1.0 + 5.7631i) e7πi/2 + (−1.0 + 5.0273i) e4πi

+ (−1.0 + 4.4532i) e9πi/2 + (−1.0 + 3.9922i) e5πi

+ (−1.0 − 3.9922i) e118πi/2 + (−1.0 − 4.4532i) e119πi/2

+ (−1.0 − 5.0273i) e120πi/2 + (−1.0 − 5.7631i) e121πi/2

+ (−1.0 − 6.7415i) e122πi/2 + (−1.0 − 8.1078i) e123πi/2

+ (−1.0 − 10.153i) e124πi/2 + (−1.0 − 13.557i) e125πi/2

+ (−1.0 − 20.355i) e126πi/2 + (−1.0 − 40.735i) e127πi/2

= 61.04832.

U4 = −1.0 + 10.153i,

U7 = −1.0 + 5.7631i,

U5 = −1.0 + 8.1078i,

U8 = −1.0 + 5.0273i,

U6 = −1.0 + 6.7415i,

U9 = −1.0 + 4.4532i,

.0.45847.
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Entonces

Esto da la aproximación 0.47694 de la TDF de 128 puntos de la suma parcial muestreada S10(
1
2 ), cuyo 

valor calculado  es 0.45847. La diferencia es 0.0185. La suma de la serie de Fourier compleja en t 	    es 
f ( 1

2 ) 	 0.50000.
En la práctica, obtendrá mayor exactitud usando N muy grandes (haciendo M mayor) y una rutina de 

software para hacer los cálculos. ■

3.8.1 Aproximación de una transformada de Fourier por una TDF de N puntos

Aquí aprenderá cómo puede usar la transformada discreta de Fourier para aproximar la transformada de 
Fourier de una función, bajo ciertas condiciones. Suponga, para empezar, que  f̂ (ω) puede ser aproximada 
con una tolerancia aceptable por una integral en un intervalo fi nito:

Aquí aparece la longitud del intervalo como 2πL por una razón que se revelará por sí misma muy pronto. 
Subdivida [0, 2πL] en N subintervalos de longitud 2πL/N y elija los puntos de la partición ξj 	 2πjL/N 
para j 	 0, 1, . . . , N. Entonces, puede aproximar la integral de la derecha por una suma de Riemann, 
obteniendo

La suma de la derecha está muy cercana a la forma de una TDF. Si pone ω 	 k/L, con k cualquier entero, 
entonces tiene

(3.24)

Esto da   f̂ (k/L), la transformada de Fourier de f muestreada en los puntos k/L, aproximados por 2πL/N 
veces la TDF de N puntos de la sucesión

Como observó antes, la TDF es periódica de periodo N, mientras que  f̂ (k/L) no lo es, así que nuevamente 
aplique la restricción de que |k| ≤ N/8.

1

128

127∑

k=0

Vke
πijk/64 =

f̂ (ω) =
∫ ∞

−∞
f (ξ)e−iωξ dξ ≈

∫ 2πL

0
f (ξ)e−iωξ dξ.

f̂ (ω) ≈
N−1∑

j=0

f

(
2πjL

N

)
e−2πijLω/N

(
2πL

N

)

= 2πL

N

N−1∑

j=0

f

(
2πjL

N

)
e−2πijLω/N .

f̂

{
f

(
2πjL

N

)}N−1

j=0
.

≈ 2πL

N

N−1∑

j=0

f

(
2πjL

N

)
e−2πijk/N .

k
L

1
2

3.8 Series de Fourier muestrales

0.4764
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EJEMPLO 3.24

Se probará la aproximación (3.24) para un caso sencillo. Sea

Entonces f tiene transformada de Fourier

Elija L 	 1, N 	 27 	 128 y k 	 3 (teniendo en cuenta que quiere |k| ≤ N/8). Ahora k/L 	 3 y

Por comparación,

Suponga que intenta con N grande, algo así como N 	 29 	 512. Ahora

una mejor aproximación que la obtenida con N 	 128. ■

EJEMPLO 3.25

Continúe con el ejemplo anterior. Ahí el énfasis era detallar la idea de la aproximación de un valor de 
 f̂ (ω). Ahora use la misma función, pero llevando a cabo la aproximación en sufi cientes puntos para esbo-
zar las gráfi cas aproximadas de Re[  f̂ (ω)], Im[  f̂ (ω)] y |  f̂ (ω)|. Usando L 	 4 y N 	 28 	 256, obtiene la 
aproximación

f (t) =
{

e−t para t ≥ 0

0 para t < 0

f̂ (ω) =
∫ ∞

−∞
f (ξ)e−iωξ dξ

=
∫ ∞

0
e−ξ e−iωξ dξ = 1 − iω

1 + ω2
.

f̂ (k/L) = f̂ (3) ≈ 2π

128

127∑

j=0

e−πj/64e−6πij/128

= π

64

127∑

j=0

e−πj/64e−3πij/64 = 0.12451 − 0.29884i.

f̂ (3) = 1 − 3i

10
= 0.1 − 0.3i.

f̂ (3) ≈ 2π

512

511∑

j=0

e−2πj/512e−6πij/512

= π

256

511∑

j=0

e−πj/256e−3πij/256 = 0.10595 − 0.2994i,

f̂

(
k

4

)
≈ π

32

255∑

j=0

e−πj/32e−πijk/128.
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Tendrá |k| ≤ N/8 	 32, aunque sólo calcule valores aproximados de  f̂ (k/4) para k 	 1, . . . , 13. Como 
en este ejemplo puede calcular exactamente  f̂ (ω), estos valores están incluidos en la tabla para permitir 
comparaciones.

La parte real de  f̂ (ω) está, en este esquema, aproximada consistentemente con un error de alrededor 
de 0.05, mientras que la parte imaginaria está aproximada en muchos casos con un error de alrededor de 
0.002. Se puede mejorar la exactitud eligiendo N más grande.

En las fi guras 3.23, 3.24 y 3.25, los valores aproximados de Re[  ̂f (ω)], Im[  ̂f (ω)] y |  ̂f (ω)|, respectiva-
mente, son comparados con los valores obtenidos de la expresión exacta para  f̂ (ω). Los puntos redondos 
representan los valores aproximados, y los cuadrados sombreados son los valores reales. En la fi gura 3.24 
la aproximación está sufi cientemente cercana de manera que los puntos son indistinguibles (dentro de la 
resolución del diagrama). ■

(k = 1) f̂ ( 1
4 )

(k = 2) f̂ ( 1
2 )

(k = 3) f̂ ( 3
4 )

(k = 4) f̂ (1)

(k = 5) f̂ ( 5
4 )

(k = 6) f̂ ( 3
2 )

(k = 7) f̂ ( 7
4 )

(k = 8) f̂ (2)

(k = 9) f̂ ( 9
4 )

(k = 10) f̂ ( 5
2 )

(k = 11) f̂ ( 11
4 )

(k = 12) f̂ (3)

(k = 13) f̂ ( 13
4 )

0
1

0.2

0.4

0.6

0.8

1.0

1.2

2 3 4 5 6 7
k

8 9 10 11 12 13

FIGURA 3.23  Comparación de la 
aproximación de la TDF de Re[  f̂ (ω)] 
con valores reales para

f (t) =
{

e−t para t ≥ 0

0 para t < 0
.

3.8 Series de Fourier muestrales

0.99107 − 0.23509i 0.94118 − 0.23529i

0.84989 − 0.3996i 0.8 − 0.4i

0.68989 − 0.4794i 0.64 − 0.48i

0.54989 − 0.4992i 0.5 − 0.5i

0.44013 − 0.4868i 0.39024 − 0.4878i

0.35758 − 0.46033i 0.3077 − 0.4615i

0.29605 − 0.42936i 0.24615 − 0.43077i

0.24989 − 0.39839i 0.2 − 0.4i

0.21484 − 0.36933i 0.16495 − 0.37113i

0.18782 − 0.34282i 0.13793 − 0.34483i

0.16668 − 0.31896i 0.11679 − 0.32117i

0.14989 − 0.29759i 0.1 − 0.3i

0.13638 − 0.27847i 0.086486 − 0.28108i

prox. TDF de f̂ (ω) f̂ (ω)a
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Hasta aquí la discusión se ha centrado en funciones f para las cuales  f̂ (ω) puede ser aproximada 
por una integral  �0

2πL f (ξ)e−iωξ dξ. Puede extender esta idea al caso que  f̂ (ω) sea aproximada por una

integral �πL
−πL f (ξ)e−iωξ dξ sobre un intervalo simétrico de longitud 2πL:

Entonces,

�0.6
1

0

2 3 4 5 6 7 8 9 10 11 12 13

�0.1

�0.2

�0.3

�0.4

�0.5

k

FIGURA 3.24 Comparación de la 
aproximación de la TDF de Im[  f̂ (ω)] 
con valores reales para

f (t) =
{

e−t para t ≥ 0

0 para t < 0
.

f̂ (ω) ≈
∫ πL

−πL

f (ξ)e−iωξ dξ.

f̂

(
k

L

)
≈

∫ πL

−πL

f (ξ)e−ikξ/L dξ

=
∫ 0

−πL

f (ξ)e−ikξ/L dξ +
∫ πL

0
f (ξ)e−ikξ/L dξ.

1

1.2

2 3 4 5 6 7 8 9 10 11 12 13

1.0

0.8

0.6

0.4

0.2

0 k

FIGURA 3.25 Comparación de la 
aproximación de la TDF de |  f̂ (ω)| con 
valores reales para

f (t) =
{

e−t para t ≥ 0

0 para t < 0
.
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Haciendo � 	 ξ + 2πL en la primera integral de la última línea, tiene

como e−2πik 	 1 si k es un entero. Se escribe ξ para � como la variable de integración, obteniendo

Ahora se defi ne

(3.25)

Entonces

Finalmente, aproximando la última integral por una suma de Riemann, subdividiendo [0, L] en N subin-
tervalos y eligiendo tj 	 jL/N para j 	 0, 1, . . . , N − 1. Entonces

Como antes, suponga al usar esta aproximación que |k| ≤ N/8. Esto aproxima  f̂ (k/L) con un múltiplo 
constante de la TDF de N puntos de la sucesión

en donde los puntos de la sucesión son obtenidos a partir de la función g manufacturada a partir de f de 
acuerdo con la ecuación (3.25).

3.8.2 Filtrado

Una señal periódica f (t), de periodo 2L, usualmente es fi ltrada con el propósito de cancelar o disminuir 
ciertos efectos no deseados o quizá para enfatizar ciertos efectos que uno quiere estudiar. Suponga que 
f (t) tiene una serie de Fourier compleja

donde

f̂

(
k

L

)
≈

∫ 2πL

πL

f (ζ − 2πL)e−ik(ζ−2πL)/L dζ +
∫ πL

0
f (ξ)e−ikξ/L dξ

=
∫ 2πL

πL

f (ζ − 2πL)e−ikζ/L dζ +
∫ πL

0
f (ξ)e−ikξ/L dξ,

f̂

(
k

L

)
=

∫ 2πL

πL

f (ξ − 2πL)e−ikξ/L dξ +
∫ πL

0
f (ξ)e−ikξ/L dξ.

g(t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f̂

(
k

L

)
≈

∫ 2πL

0
g(ξ)e−ikξ/L dξ

=
∫ L

0
g(2πt)e−2πikt/L(2π) dt (sea ξ = 2πt)

= 2π

∫ L

0
g(2πt)e−2πikt/L.

f̂

(
k

L

)
≈ 2πL

N

N−1∑

j=0

g

(
2πjL

N

)
e−2πijk/N .

{
g

(
2πjL

N

)}N−1

j=0

∞∑

n=−∞
dne

nπit/L,

dn = 1

2L

∫ L

−L

f (t)e−nπit/L dt.

f (t)

1

2
(f (πL) + f (−πL)) para t = πL

f (t − 2πL)

para 0 ≤ t < πL

para πL < t ≤

3.8 Series de Fourier muestrales
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Considere la N-ésima suma parcial

Una suma parcial fi ltrada de la serie de Fourier de f es una suma de la forma

(3.26)

en donde la función fi ltro Z es una función par continua en [−1, 1]. En aplicaciones particulares el objetivo 
es elegir Z para que sirva para propósitos específi cos. A manera de introducción, se ilustra el fi ltrado para 
un fi ltro que es la base del estudio de todo el tema de la convergencia de las series de Fourier.

En el siglo XIX, hubo un esfuerzo intenso por entender las sutilezas de la convergencia de la serie 
de Fourier. Un ejemplo desarrollado por Du Bois Reymond probó que es posible que la serie de Fourier de 
una función continua diverja en todo punto. En el curso del estudio de la convergencia, se observó que 
en muchos casos la sucesión de los promedios de las sumas parciales de una serie de Fourier se comporta 
mejor que la misma sucesión de sumas parciales. Esto lleva a la consideración de los promedios de las 
sumas parciales:

La cantidad �N (t) es llamada la N-ésima suma de Cesàro de f, en honor del matemático italiano que 
estudió sus propiedades. Se encontró que si las sumas parciales de la serie de Fourier se aproximan a un 
límite particular en t, entonces �N (t) debe aproximarse al mismo límite conforme N → ∞, pero no inver-
samente. Es posible que las sumas de Cesàro tengan un límite para algún t, pero que la serie de Fourier 
diverja ahí. Fue Fejér, el prodigio de 19 años, quien probó que si f es periódica de periodo 2π, y �2π

0 f (t)dt 
existe, entonces �N (t) → f (t) donde f sea continua. Este es un resultado más fuerte que vale para las sumas 
parciales de la serie de Fourier.

Con esto como antecedente, escriba

Queda como ejercicio para el estudiante probar que los términos en esta suma doble pueden rearreglarse 
para escribir

Esta es de la forma de la ecuación (3.26) con la función fi ltro de Cesàro

La sucesión

es llamada la sucesión de factores fi ltrantes del fi ltro de

SN (t) =
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j=−N
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)
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]
.
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(
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dne
πint/L.

Z(t) = 1 − |t | para −1 ≤ t ≤ 1.
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)}N

n=−N
=

{
1 −
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N

∣∣∣
}N

n=−N

Cesàro.
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Un efecto del fi ltro de Cesàro es amortiguar el fenómeno de Gibbs, que se ve en la convergencia de la serie 
de Fourier de una función en el punto de discontinuidad. Un ejemplo que exhibe el fenómeno de Gibbs 
muy claramente es el siguiente, considere

con extensión periódica a la recta real. La fi gura 3.26 muestra la gráfi ca de esta extensión periódica. Sus 
coefi cientes de Fourier complejos son

y

La N-ésima suma parcial de esta serie es

Si N es impar, entonces

La N-ésima suma de Cesàro (con L 	 π) es

Esto puede escribirse como

La fi gura 3.27 muestra las gráfi cas de S10(t) y �10(t), y la fi gura 3.28 muestra las gráfi cas de S20(t) y 
�20(t). En las sumas parciales SN (t), el fenómeno de Gibbs se puede apreciar claramente cerca de t 	 0,
donde f tiene una discontinuidad de salto. Aunque SN (t) → f (t) para 0 < t < π y para −π < t < 0, las 
gráfi cas de SN (t) tienen picos relativamente altos cerca de cero, que permanecen a una altura casi constan-
te aunque N crezca (si bien estos picos se mueven hacia el eje vertical conforme N crece). Sin embargo, 
este fenómeno no se ve en las gráfi cas de �N (t), que acelera y “suaviza” la convergencia de la serie de 
Fourier.

f (t) =
{

−1 para −π ≤ t < 0

1 para 0 ≤ t < π
,
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0
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f (t + 2π) = f (t) para todo t .real

para 0 ≤ t < π
, y

para −π ≤ t < 0

3.8 Series de Fourier muestrales
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El fi ltro de Cesàro también amortigua los efectos de los términos de frecuencias altas en la serie de 
Fourier, ya que el factor fi ltrante de Cesàro 1 − |n/N| tiende a cero conforme n se incrementa hacia N. Este 
efecto también se ve en las gráfi cas de las sumas de Cesàro.

En el análisis de señales se utilizan muchos fi ltros. Dos de los más comunes son los fi ltros de Ham-
ming y de Gauss. El fi ltro de Hamming, llamado así en honor de Richard Hamming, que fue por muchos 
años el científi co e investigador en jefe de los Laboratorios Bell, está dado por

La N-ésima suma parcial fi ltrada de la serie de Fourier compleja de f , usando el fi ltro de Hamming es

Otro fi ltro que se usa frecuentemente para el ruido de fondo en una señal es el fi ltro de Gauss, llamado así 
en honor del matemático y científi co del siglo XIX, Carl Friedrich Gauss, está dado por

en donde a es una constante positiva. La suma parcial fi ltrada con Gauss de la serie de Fourier compleja 
de f es

También se aplica el fi ltrado en las transformadas de Fourier. La transformada de Fourier fi ltrada de  
f , usando la función fi ltro Z(t), es

Si esta integral es aproximada mediante una integral sobre un intervalo fi nito,

entonces es una práctica usual, aproximar la integral de la derecha usando la TDF. Los fi ltros de Cesàro, 
Hamming y Gauss para esta integral son, respectivamente,
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FIGURA 3.27 S10(t) y �10(t) para la 
función de la fi gura 3.26.

FIGURA 3.28 S20(t) y �20(t) para la 
función de la fi gura 3.26.
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y

Z(t) = e−a(πt/L)2
(Gauss).

En cada problema del 1 al 6, se da una función que tiene periodo 
p. Calcule la serie de Fourier compleja de la función y después 
la décima suma parcial de esta serie en el punto indicado t0. 
Después, usando N 	 128, calcule la aproximación de la TDF 
de esta suma parcial en el punto. Aproxime la diferencia entre 
f10(t0) y la aproximación de la TDF.

En cada problema del 7 al 10, haga la aproximación de la TDF 
de la transformada de Fourier de f en el punto dado, usando 
N 	 512 y el valor dado de L.

7.

8.

9.

10.

En cada problema del 11 al 14, use la TDF para aproximar 
las gráfi cas de Re[ f̂ (ω)], Im[ f̂ (ω)] y | f̂ (ω)| para 0 ≤ ω ≤ 3, 
usando N 	 256. Para estas funciones,  f̂ (ω) puede ser calcu-
lado exactamente. Dibuje la gráfi ca de cada aproximación de 
Re[  f̂ (ω)], Im[  f̂ (ω)] y | f̂ (ω)|  en el mismo conjunto de ejes 
junto con la función misma.

11. f (t) 	 t [H(t − 1) − H(t − 2)]

12. f (t) 	 2e−4|t |

13. f (t) 	 H(t) − H(t − 1)

14. f (t) 	 et [H(t) − H(t − 2)]

En cada problema del 15 al 19, dibuje la gráfi ca de la función, 
la quinta suma parcial de su serie de Fourier en el intervalo 
y la quinta suma de Cesàro, usando el mismo conjunto de 
ejes. Repita este proceso para la décima y la vigésimoquinta 
sumas parciales. Observe en particular las gráfi cas de los pun-
tos de discontinuidad de la función, donde aparece el fenómeno 
de Gibbs en la suma parcial de la serie de Fourier pero es fi ltra-
do a partir de la suma de Cesàro.

15.

16.

17.

18.

19.

20.

  Dibuje la quinta suma parcial de la serie de Fourier para 
f (t) en [−2, 2], junto con la quinta suma de Cesàro, la quinta 
suma parcial fi ltrada con Hamming y la quinta suma parcial 
fi ltrada con Gauss en el mismo conjunto de ejes. Repita esto 
para la décima suma y la vigésimoquinta suma.

21.

  Dibujar la quinta suma parcial de la serie de Fourier para 
f (t) en [−π, π], junto con la quinta suma de Cesàro, la quin-
ta suma parcial fi ltrada con Hamming y la quinta suma par-
cial fi ltrada con Gauss en el mismo conjunto de ejes. Repita 
esto para la décima y la vigésimoquinta sumas.

SECCIÓN 3.8 PROBLEMAS

1. f (t) = 1 + t para 0 ≤ t < 2, p = 2, t0 = 1
8

2. f (t) = t2 para 0 ≤ t < 1, p = 1, t0 = 1
2

3. f (t) = cos(t) para 0 ≤ t < 2, p = 2, t0 = 1
8

4. f (t) = e−t para 0 ≤ t < 4, p = 4, t0 = 1
4

5. f (t) = t3 para 0 ≤ t < 1, p = 1, t0 = 1
4

6. f (t) = t sen(t) para 0 < t ≤ 4, p = 4, t0 = 1
8

f (t) =
{

e−4t

0

L = 3; f̂ (4)

f (t) =
{

1

−1

Sea f (t) =
{

1 para 0 ≤ t < 2

−1 para −2 ≤ t < 0

Sea f (t) =
{

2 + t para 0 ≤ t < 2

t para −2 ≤ t < 0

f (t) =
{

para t ≥ 0

para t < 0
,

L = 6, f̂ (2)

cos(2t)

0

f (t) =
{

L = 3, f̂ (12)

te−2t

0

para t ≥ 0

para t < 0
,

f (t) =
{

L = 4, f̂ (4)

t2 cos(t)

0

f (t) =
{

para −1 ≤ t < 0

para 0 < t < 1

2 + t

7

f (t) =
{

para −3 ≤ t < 1

para 1 ≤ t < 3cos(t)

e−t

f (t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−1

0

1

f (t) =
{

2 + t

t2
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para −2 ≤ t < 1

para 1 ≤ t < 2

para t ≥ 0

para t < 0

para t ≥ 0

para t < 0
,

para −1 ≤ t < − 1
2

para − 1
2 ≤ t < 1

2

para 1
2 ≤ t < 1

−1
2

para 0 ≤ t < 2

para −2 ≤ t < 0

para 0 ≤ t < 2, p = 2, t0 = 1
8

para 0 ≤ t < 1, p = 1, t0 = 1
2

para 0 ≤ t < 2, p = 2, t0 = 1
8

para 0 ≤ t < 4, p = 4, t0 = 1
4

para 0 ≤ t < 1, p = 1, t0 = 1
4
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3.9 La transformada rápida de Fourier

La transformada de Fourier discreta es una herramienta poderosa para aproximar coefi cientes de Fourier, 
sumas parciales de la serie de Fourier y transformadas de Fourier. Sin embargo, tal herramienta solamente 
es útil si hay técnicas de cálculo efi cientes para llevar a cabo el gran número de cálculos involucrados en 
las aplicaciones típicas. Aquí es donde aparece la transformada rápida de Fourier o TRF. La TRF no es 
en sí una transformación, es más bien un procedimiento efi ciente para calcular las transformadas de 
Fourier discretas. Su impacto, en ingeniería y en ciencias, ha sido profundo en los últimos 35 años ya que 
convierte a la TDF en una herramienta práctica.

En 1965, apareció por primera vez formalmente la TRF en un artículo de cinco páginas, “An Algo-
rithm for the Machine Calculation of Complex Fourier Coeffi cients”, por James W. Cooley de la IBM y 
John W. Tukey de la Universidad de Princeton. El catalizador detrás de la preparación y la publicación 
del artículo fue Richard Garwin, un físico que fue consultado por las agencias federales en asuntos que 
involucraban armas y políticas de defensa. Garwin sabía que Tukey había desarrollado un algoritmo para 
calcular las transformadas de Fourier, una herramienta que Garwin necesitaba para su propio trabajo. 
Cuando Garwin llevó las ideas de Tukey al centro de cómputo de investigación de la IBM en Yorktown 
Heights, con el propósito de que fueran programados, James Cooley fue asignado para ayudarle. Debido 
a la importancia de un método efi ciente para calcular las transformadas de Fourier, rápidamente se difun-
dió la noticia sobre el programa de Cooley, y fue tan grande la demanda que motivó la escritura del 
artículo Cooley-Tukey.

Después de la publicación del artículo se encontró que algunos de los conceptos fundamentales del 
método, o similares a él, ya habían aparecido en otros contextos. El mismo Tukey ha contado que Phillip 
Rudnick, del Instituto Oceanográfi co Scripps, había reportado la programación de un caso especial del 
algoritmo, usando las ideas del artículo de G. D. Danielson y Cornelius Lanczos. Lanczos, un físico-mate-
mático húngaro, cuya carrera abarcó muchas áreas, había desarrollado las ideas esenciales alrededor de 
1938 y los años subsecuentes, cuando estaba trabajando en problemas de métodos numéricos y el análisis 
de Fourier. Mucho antes, Gauss había descubierto esencialmente el análisis de Fourier discreto calculando 
la órbita de Pallas, pero por supuesto no había computadoras en la era napoleónica.

En la actualidad la TRF se ha convertido en una parte estándar de cierto software de instrumentación. 
Por ejemplo, FT-NMR, que son las siglas para Transformada de Fourier-Resonancia magnética nuclear 
(Fourier Transform-Nuclear Magnetic Resonance, usa la TRF como parte de su sistema de análisis de 
datos.

La razón para este uso extendido es la efi ciencia de la TRF, que se puede ilustrar mediante un ejem-
plo simple. Se puede demostrar que, si N es una potencia entera positiva de 2, entonces  f̂(k/L) dada por 
la ecuación (3.24), se puede calcular con no más de 4N log2(N) operaciones aritméticas. Si se calculan 
simplemente todas las sumas y productos que intervienen en el cálculo de  f̂(k/L), se deben realizar N − 1
sumas y N + 1 multiplicaciones, cada una duplicada N veces para obtener las aproximaciones en N pun-
tos. Esto es un total de

N(N − 1) + N(N + 1) 	 2N 2

operaciones. Suponga, para ser específi cos, N 	 220 	 1 048 576. Ahora, 2N 2 	 2.1990(1012). Si la 
computadora que se utiliza realiza un millón de operaciones por segundo, este cálculo requerirá alrede-
dor de 2 199 023 segundos, o casi 25.45 días de tiempo de computadora. Puesto que un proyecto dado 
podría requerir el cálculo de la transformada de Fourier de muchas funciones, esto es intolerable en 
términos de tiempo y dinero.

En contraste, si N 	 2n, entonces

4N log2(N) 	 2n+2 log2(2n) 	 n2n+2.

Con n 	 20, resultan 83 886 080 operaciones. A un millón de operaciones por segundo, esto tomará un 
poco menos de 84 segundos, una mejora muy sustancial sobre los 25.45 días.
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El desarrollo es válido sólo en [−1, 1], pero es instructivo ver cómo las sumas parciales del desarrollo de 
Fourier-Legendre no tienen relación en general fuera de este intervalo.

3.9.1 Uso de la TRF en el análisis de densidades de potencia espectral de señales

La TRF se utiliza rutinariamente para mostrar gráfi cas de densidades de potencia espectral de señales. Por 
ejemplo, considere la señal relativamente simple

f (t) = sen(2π(50)t) + 2 sen(2π(120)t) + sen(2π(175)t) + sen(2π(210)t).

f (t) está escrita de esta manera para identifi car fácilmente las frecuencias de los componentes. Escribiendo 
sen(100πt) como sen(2π(50)t), aparece de inmediato que esta función tiene una frecuencia igual a 50. La 
fi gura 3.29 muestra una gráfi ca de la densidad de potencia espectral versus la frecuencia en Hz.

¿En dónde está la TRF aquí? Está en el software que produjo la gráfi ca. Para este ejemplo, la gráfi ca se 
dibujó usando MATLAB y una TRF con N 	 210 	 1024. Usando el mismo programa y la elección de N, 
la fi gura 3.30 muestra la gráfi ca de la densidad de potencia espectral de

g(t) 	 cos(2π(25)t) + cos(2π(80)t) + cos(2π(125)t) + cos(2π(240)t) + cos(2π(315)t).

En ambas gráfi cas los picos aparecen en las frecuencias primarias de la función.
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FIGURA 3.29 Gráfi ca TRF de la densidad de potencia 
espectral de y 	 sen(100πt) + 2 sen(240πt) + sen(350πt) 
+ sen(420πt).
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FIGURA 3.30 Gráfi ca TRF de la densidad de potencia 
espectral de y 	 cos(50πt) + cos(160πt) + cos(250πt) 
+ cos(480πt) + cos(630πt).
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3.9.2 Filtrando ruido de una señal

Algunas veces se usa la TRF para fi ltrar ruidos de una señal. Ya se ha discutido el fi ltrado, pero la TRF es 
la herramienta que lo lleva a cabo. Para ilustrar, considere la señal

f (t) 	 sen(2π(25)t) + sen(2π(80)t) + sen(2π(125)t) + sen(2π(240)t) + sen(2π(315)t).

Esta es una señal sencilla. Sin embargo, la señal mostrada en la fi gura 3.31 está más cercana a la realidad 
y se obtuvo de la gráfi ca de f (t) introduciendo un ruido aleatorio de media cero. Si no conoce la señal 
original f (t), será muy difícil identifi car a partir de la fi gura 3.31 los componentes principales de la fre-
cuencia de f (t) debido al efecto del ruido. Sin embargo, la transformada de Fourier ordena las frecuencias. 
La densidad de potencia espectral de la señal ruidosa de la fi gura 3.31 se muestra en la fi gura 3.32, donde 
las cinco frecuencias principales pueden ser identifi cadas fácilmente. Esta gráfi ca en particular no da las 
amplitudes correctamente, pero las frecuencias se mantienen muy bien. La fi gura 3.32 se hizo usando la 
TRF vía MATLAB, con N 	 29 	 512.
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FIGURA 3.31 Una porción de la señal y 	 sen(50πt) 
+ sen(160πt) + sen(250πt) + sen(480πt) + sen(630πt) 
corrompida por un ruido aleatorio de media cero.
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FIGURA 3.32 Cálculo TRF de la densidad de potencia 
espectral de la señal de la fi gura 3.31.
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3.9.3 Análisis de las mareas en la bahía del Morro

Se usará la TDF y la TRF para analizar un conjunto de datos de la marea, investigando las correlaciones 
entre las mareas altas y bajas y las posiciones relativas del Sol, la Tierra y la Luna.

Las fuerzas que causan las mareas eran de gran interés para Isaac Newton, puesto que él luchaba por 
entender el mundo que lo rodeaba y dedicó un espacio considerable en el Principia a este tópico. En un 
punto, Newton requirió de tablas nuevas de las posiciones lunares del astrónomo real Flamsteed, quien, 
debido a una agenda ocupada junto con una enemistad personal con Newton, no divulgaba. Newton 
respondió ejerciendo presión tanto profesional como política sobre Flamsteed, a través de sus contac-
tos en la corte, fi nalmente forzaron a Flamsteed a publicar a sus expensas. Años más tarde, Flamsteed 
recuperó las copias sobrantes de su libro y está reportado que dejándose llevar por la ira contra Newton 
quemó todas las copias.

Fue un triunfo de la teoría de la gravitación de Newton, aplicada al sistema compuesto por la Tierra, 
la Luna y el Sol lo que permitió a Newton explicar dos de las mareas principales que ocurren cada día. 
También fue capaz de explicar por qué las mareas tienen dos veces al mes máximo y mínimo y por qué los 
extremos son mayores cuando la Luna está más lejos del plano ecuatorial de la Tierra. La órbita elíptica 
de la Luna respecto a la Tierra también contribuye para la variación mensual en las mareas altas como 
resultado del cambio en la distancia entre la Tierra y la Luna durante el mes.

La Bahía de Morro está cerca de San Luis Obispo en California. Se ha acumulado una gran cantidad 
de datos de cómo el océano Pacífi co entra y sale de la bahía y las mareas bañan la costa. La fi gura 3.33 
muestra una curva dibujada con estos datos dando las alturas de la marea hora a hora en mayo de 1993. 
Se analizarán estos datos para determinar las fuerzas primarias que causan estas variaciones en la marea. 
Antes de llevar a cabo este análisis son necesarios algunos prerrequisitos.

La duración de un día solar es de 24 horas. Este es el tiempo que tarda la Tierra en dar una vuelta 
alrededor del Sol. El día lunar es 50 minutos más largo que éste. La Tierra tarda aproximadamente 24.8 
horas en girar una vez en relación con la Luna debido a que la Luna viaja en la dirección de la rotación 
de la Tierra (fi gura 3.34).

El Sol ejerce sus fuerzas de marea primarias sobre un punto de la Tierra dos veces durante el día, y 
la Luna dos veces cada periodo de 24 horas y 50 minutos. Es más o menos claro por qué la marea debería 
tener un máximo local en un determinado lugar cuando, ya sea el Sol o la Luna, está casi arriba de ese 
punto. Sin embargo, no es tan obvio que la marea también se eleva en un punto cuando alguno de estos 
cuerpos están en el lado opuesto de la Tierra, como puede observarse. Newton fue capaz de mostrar que 
cuando el sistema Tierra/Luna viaja alrededor de su centro de masa (que siempre está en el interior de la 
Tierra), la Luna ejerce una fuerza hacia afuera en el lado opuesto de la Tierra. Lo mismo es cierto para el 
sistema Tierra/Sol. Por lo que, tanto el Sol como la Luna causan dos mareas diariamente.
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FIGURA 3.33 Perfi l de la marea en la Bahía del 
Morro hora a hora en mayo de 1993.
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Las fuerzas de marea son proporcionales al producto de las masas de los cuerpos involucrados e 
inversamente proporcionales al cubo de la distancia entre ellos. Esto nos permite determinar las fuerzas 
de marea relativas de la Luna y del Sol sobre la Tierra y sus aguas. Como el Sol tiene una masa aproxima-
damente de 27(106) veces la de la Luna y está 390 veces más lejos de la Tierra de lo que la Luna está de la 
Tierra, la infl uencia del Sol en las mareas de la Tierra es únicamente 0.46 veces la infl uencia de la Luna.

Las mareas semidiarias (dos veces al día) causadas por el Sol y la Luna no varían únicamente entre 
los mismos máximos y mínimos diarios. Otras fuerzas cambian las amplitudes de estos máximos y míni-
mos. Estas fuerzas son periódicas y son responsables de los pulsos que parecen estar presentes en la fi gura 
3.33. Autoridades en mareas afi rman que en realidad hay aproximadamente 390 mareas signifi cativamen-
te medibles. Dependiendo de la aplicación de los datos, usualmente únicamente de siete a 12 de éstas se 
utilizan para calcular las tablas de marea alta y baja. El resto de esta discusión se centrará en tres de las 
fuerzas más contribuyentes.

Primero, conforme la Luna orbita a la Tierra, la distancia entre ellas cambia de aproximadamente 
222 000 millas en el perigeo a 253 000 millas en el apogeo. Con la ley de la proporción inversa del cubo 
de las distancias, las diferencias de estas fuerzas es signifi cativa. El tiempo entre el perigeo y el apogeo es 
aproximadamente de 27.55 días.

Además, como la Luna le gana al Sol aproximadamente 50 minutos cada día, si los tres cuerpos están 
en conjunción en algún momento, entonces estarán en cuadratura aproximadamente siete días después. 
Las mareas semidiarias tendrán amplitudes máximas cuando todo esté alineado y mínimas cuando el 
ángulo Tierra/Luna/Sol sea de 90 grados. El cambio entre estas mareas máxima y mínima nuevamente es 
periódica, con un periodo de 14.76 días, la mitad del tiempo que tarda la Luna en dar la vuelta alrededor 
de la Tierra.

La última fuerza de mareas es la resultante del hecho de que la órbita de la Luna está inclinada aproxi-
madamente 5 grados respecto al plano que contiene la órbita de la Tierra alrededor del Sol. El resultado de 
esta desviación puede notarse observando la posición de la Luna en el cielo durante un periodo de un mes. 
Conforme la Luna gira sobre su órbita, estará arriba del hemisferio norte durante un tiempo, ayudando a 
crear mareas altas en esa región, después se moverá hacia el sur, y mientras está en el hemisferio sur, hay 
poca variación en las mareas del norte. La Luna tarda 13.66 días en moverse de su punto más al norte a 
su punto más al sur.

Los periodos principales resultantes de estas fuerzas son el periodo semidiario del Sol de 12 horas; el 
periodo semidiario de la Luna de 12 horas, 50 minutos, 14 segundos; un periodo diario lunar-solar de 23 
horas, 56 minutos, 4 segundos; y un periodo diario lunar de 25 horas, 49 minutos, 10 segundos.

Ahora considere los datos reales utilizados para generar la gráfi ca de la fi gura 3.33. Aplique la TRF 
para calcular la TDF de este conjunto de 720 puntos de datos, tome sus valores absolutos y dibuje los 
puntos resultantes. Este resultado es el espectro de amplitud de la fi gura 3.35. Las unidades a lo largo del 
eje horizontal (frecuencia) son ciclos por 720 horas.

Empezando por el lado derecho del espectro de amplitud en la fi gura 3.35 y moviéndose hacia la 
izquierda. El primer lugar en el que ve un punto alto es aproximadamente en 60, lo que indica un término 
en los datos a una frecuencia de 60/720, o 1/12 ciclos por hora. Equivalentemente, este punto denota la 
presencia de una fuerza que se siente aproximadamente cada 12 horas. Esta es la fuerza solar semidiaria.

El siguiente punto alto en el espectro de amplitud ocurre inmediatamente a la izquierda del primero, 
en 58. La altura de este dato indica que este es el mayor contribuyente a las mareas. Ocurre cada 720/58, 

Sol

Luna Tierra

t = 24 hr

t = 24 hr 50 min

t = 0

FIGURA 3.34 
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o 12.4 horas. Esta es la marea lunar semidiaria. También, hay otra actividad de amplitud pequeña cerca de 
este punto que se comentará en un momento.

Continuando hacia la izquierda en la fi gura 3.35, hay una gran contribución aproximadamente en 30, 
indicando una fuerza con una frecuencia de 30/720, o 1/24, es decir, un periodo de aproximadamente 24 
horas. Este es el periodo diario lunar-solar. 

El único otro término signifi cativo está en 28, indicando una frecuencia de 28/720. Esto se traduce en 
un periodo de 25.7 horas e indica el periodo diario lunar.

Así que se han tomado en cuenta todos los periodos dominantes y no hay ninguna otra información 
signifi cativa en el espectro de amplitud, excepto por el que se notó previamente en la región alrededor de 
58. Como el día lunar no es un múltiplo exacto de una hora y las muestras de datos se tomaron cada hora, 
algunos de los datos asociados con las fuerzas de marea de la Luna se movieron hacia puntos adyacentes. 
Esto también deforma las amplitudes, afectando nuestra habilidad para determinar con precisión la razón 
Sol/Luna de las fuerzas. El mismo argumento puede aplicarse para algunos de los datos cerca de 28.

No hay otra información discernible en el espectro de amplitud, porque todas las otras fuerzas tienen 
periodos mayores que un mes, y esto es mayor que el tiempo en que se tomaron los datos de las mareas.

Es interesante especular en lo que Newton podría haber pensado de esta verifi cación gráfi ca de su 
teoría. Dada su personalidad, es posible que no se hubiera impresionado, habiendo resuelto todo esto por 
sí mismo con su cálculo.
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FIGURA 3.35 Espectro de la marea de la Bahía del Morro.

En cada uno de los problemas del 1 al 4, utilice un paquete de 
software con la TRF para hacer la gráfi ca del espectro de poten-
cia de la función. Use N 	 210.

1. y(t) 	 4 sen(80πt) − sen(20πt)

2. y(t) 	 2 cos(40πt) + sen(90πt)

3. y(t) 	 3 cos(90πt) − sen(30πt)

4. y(t) 	 cos(220πt) + cos(70πt)

En cada uno de los problemas del 5 al 8, corrompa la señal con 
un ruido aleatorio de media cero y utilice la TRF para dibujar el 
espectro de densidad de potencia para identifi car las frecuencias 
componentes de la señal original.

5. y(t) 	 cos(30πt) + cos(70πt) + cos(140πt)

6. y(t) 	 sen(60πt) + 4 sen(130πt) + sen(2405πt)

7. y(t) 	 cos(20πt) + sen(140πt) + cos(240πt)

8.  y(t) 	 sen(30πt) + 3 sen(40πt) + sen(130πt)+ sen(196πt) + 
sen(220πt)

SECCIÓN 3.9 PROBLEMAS

3.9 La transformada rápida de Fourier





Una función es llamada especial cuando tiene alguna característica distintiva por lo cual vale la pena 
determinar y recordar sus propiedades y su comportamiento. Quizá los ejemplos más familiares de fun-
ciones especiales son sen(kx) y cos(kx), que son soluciones de una ecuación diferencial importante, y′′ + 
k2y = 0 y también aparecen en muchos otros contextos.

La motivación primordial para estudiar ciertas funciones especiales es que aparecen en la resolución de 
ecuaciones diferenciales ordinarias y parciales que modelan muchos fenómenos físicos, y son las series 
de Fourier elementos necesarios en el equipo de herramientas de cualquiera que desee entender y trabajar 
con tales modelos.

El análisis inicia con los polinomios de Legendre y las funciones de Bessel. Éstas son importantes 
por sí mismas, pero también forman un modelo de cómo aproximar funciones especiales y los tipos de 
propiedades a buscar. Siguiendo éstas, se desarrolla parte de la teoría de Sturm-Liouville, la cual propor-
cionará un patrón para estudiar ciertos aspectos de las funciones especiales en general, por ejemplo, los 
desarrollos con las funciones características, de las cuales las series de Fourier son un caso especial. El 
capítulo termina con una breve introducción a las onduletas, como desarrollos ortogonales.

4.1 Polinomios de Legendre

Hay muchos acercamientos distintos a los polinomios de Legendre. Aquí se inicia con la ecuación dife-
rencial de Legendre

(4.1)

en donde −1 ≤ x ≤ 1 y λ es un número real. Esta ecuación tiene la forma equivalente

la cual se aplica en la solución de la distribución de temperatura en estado estacionario sobre una esfera 
sólida.
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LA SERIE DE FOURIER DE UNA
FUNCION CONVERGENCIA DE UN
SERIE DE FOURIER SERIE DE FO
EN COSENOS EN SENOS INTEGRA

(1 − x2)y′′ − 2xy′ + λy = 0

[(1 − x2)y′]′ + λy = 0,
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Busque valores de λ para los cuales la ecuación de Legendre tenga soluciones no triviales. Escriba la 
ecuación de Legendre como

concluya que 0 es un punto ordinario. Por tanto, existen soluciones en series de potencias

Sustituya esta serie en la ecuación diferencial para obtener

En la primera sumatoria, recorra los índices para escribir la última ecuación como

Ahora combine los términos para n ≥ 2 bajo una sumatoria, escribiendo separadamente los términos n = 0 
y n = 1:

El coefi ciente de cada potencia de x debe ser cero, así

(4.2)

(4.3)

y, para n = 2, 3, . . . ,

para los cuales la relación recursiva es

(4.4)

A partir de la ecuación (4.2) 

A partir de la ecuación (4.4),

y así sucesivamente. Cada coefi ciente de índice par a2n es un múltiplo de a0 que involucra a n y a λ. Aquí 
se ha usado la notación factorial, en donde n! es el producto de los enteros de 1 a n, si n es un entero posi-
tivo. Por ejemplo, 6! = 720. Por convención, 0! = 1.

y′′ − 2x

1 − x2 y′ + λ

1 − x2 y = 0,

y(x) =
∞∑

n=0

anx
n.

∞∑

n=2

ann(n − 1)anx
n−2 −

∞∑

n=2

n(n − 1)anx
n −

∞∑

n=1

2nanx
n +

∞∑

n=0

λanx
n = 0.

∞∑

n=0

(n + 2)(n + 1)an+2x
n −

∞∑

n=2

n(n − 1)anx
n −

∞∑

n=1

2nanx
n +

∞∑

n=0

λanx
n = 0.

2a2 + λa0 = 0,

6a3 − 2a1 + λa1 = 0,

(n + 1)(n + 2)an+2 − [n(n + 1) − λ]an = 0

a2 = −λ

2
a0.

a4 = 6 − λ

3 · 4
a2 = −λ

2

6 − λ

3 · 4
a0 = −λ(6 − λ)

4! a0,

a6 = 20 − λ

5 · 6
a4 = −λ(6 − λ)(20 − λ)

6! a0,

an+2 = n(n + 1) − λ

(n + 1)(n + 2)
an para n = 2, 3, . . . .

2a2 + 6a3x − 2a1x + λa0 + λa1x +
∞∑

n=2

[(n + 2)(n + 1)an+2 − (n2 + n − λ)an]xn = 0.
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De la ecuación (4.3),

Entonces, por la relación recursiva (4.4),

y así sucesivamente. Cada coefi ciente de índice impar a2n+1 es un múltiplo de a1, donde también están 
involucrados n y λ.

De esta manera, escriba la solución

Las dos series en los paréntesis grandes son linealmente independientes, una contiene sólo potencias pares 
de x, y la otra sólo potencias impares. Escriba

y

La solución general de la ecuación diferencial de Legendre es

en donde a0 y a1 son constantes arbitrarias. Algunas soluciones particulares son:

con λ = 0 y a1 = 0,

con λ = 2 y a0 = 0,

con λ = 6 y a1 = 0,

con λ = 12 y a0 = 0,

con λ = 20 y a1 = 0,

y así sucesivamente.

4.1 Polinomios de Legendre

a3 = 2 − λ

6
a1 = 2 − λ

3! a1.

a5 = 12 − λ

4 · 5
a3 = (2 − λ)(12 − λ)

5! a1,

a7 = 30 − λ

6 · 7
a5 = (2 − λ)(12 − λ)(30 − λ)

7! a1,

y(x) =
∞∑

n=0

anx
n = a0

(
1 − λ

2
x2 − λ(6 − λ)

4! x4 − λ(6 − λ)(20 − λ)

6! x6 + · · ·
)

+ a1

(
x + 2 − λ

3! x3 + (2 − λ)(12 − λ)

5! x5 + (2 − λ)(12 − λ)(30 − λ)

7! x7 + · · ·
)

.

ye(x) = 1 − λ

2
x2 − λ(6 − λ)

4! x4 − λ(6 − λ)(20 − λ)

6! x6 + · · ·

yo(x) = x + 2 − λ

3! x3 + (2 − λ)(12 − λ)

5! x5 + (2 − λ)(12 − λ)(30 − λ)

7! x7 + · · · .

y(x) = a0ye(x) + a1yo(x),

y(x) = a0.

y(x) = a1x.

y(x) = a0(1 − 3x2).

y(x) = a1

(
x − 5

3x3
)

.5
3

y(x) = a0

(
1 − 10x2 + 35

3 x4
)

,5
3
3
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Los valores de λ para los cuales las soluciones son polinomios (series fi nitas) son λ = n(n + 1) para 
n = 0, 1, 2, 3, . . . Esto no debe sorprenderle ya que la relación recursiva (4.4) contiene n(n + 1) − λ en 
su numerador. Si para algún entero no negativo N elige λ = N(N + 1), entonces a N + 2 = 0; así también 
aN + 4 = aN + 6 = · · · = 0, y uno de ye(x) o yo(x) contendrá sólo un número fi nito de términos distintos de 
cero, así que es un polinomio.

Estas soluciones polinomiales de la ecuación diferencial de Legendre tienen muchas aplicaciones, 
por ejemplo, en astronomía, análisis de conducción de calor y en aproximaciones de las soluciones de las 
ecuaciones f (x) = 0. Para estandarizar y tabular estas soluciones polinomiales, para cada λ = n(n + 1) se 
eligen a0 o a1 de manera que la solución polinomial tenga el valor 1 en x = 1. Los polinomios resultantes 
son llamados los polinomios de Legendre y se denotan usualmente por Pn(x). Los primeros seis polino-
mios de Legendre son

En la fi gura 4.1 se dan algunas de las gráfi cas de estos polinomios. Pn(x) es de grado n, y sólo contie-
ne potencias pares de x si n es par, y sólo potencias impares si n es impar. Aunque estos polinomios 
están defi nidos para todo x real, el intervalo importante para la ecuación diferencial de Legendre es 
−1 < x < 1.

También será útil, tener en mente que si q(x) es cualquier solución polinomial de la ecuación de 
Legendre con λ = n(n + 1), entonces q(x) debe ser un múltiplo constante de Pn(x).

4.1.1 Una función generadora para los polinomios de Legendre

Muchas propiedades de los polinomios de Legendre se pueden deducir usando una función generadora, 
concepto que se desarrolla ahora. Sea

Si L(x, t) es desarrollada en una serie de potencias en potencias de t, entonces el coefi ciente de tn es exac-
tamente el n-ésimo polinomio de Legendre.

P3(x)
P1(x)

P4(x)

P2(x)

P0(x)
y

x
�1 1

FIGURA 4.1 Los primeros cinco 
polinomios de Legendre.

L(x, t) = 1√
1 − 2xt + t2

.

P0(x) = 1, P1(x) = x, P2(x) = 1
2 (3x2 − 1), P3(x) = 1

2 (5x3 − 3x),

P4(x) = 1
8 (35x4 − 30x2 + 3), P5(x) = 1

8 (63x5 − 70x3 + 15x).

1

2

1

21

28

1

28
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Enseguida un argumento que sugiere por qué esto es cierto. Escriba la serie de Maclaurin de 
(1 − w)−1/2:

para −1 < w < 1. Ponga w = 2xt − t2 para obtener

Ahora desarrolle cada una de estas potencias de 2xt − t2 y agrupe el coefi ciente de cada potencia de t en 
la expresión resultante:

La función generadora provee una manera efi ciente de obtener muchas propiedades de los polinomios 
de Legendre. Empiece a usarla para probar que

para n = 0, 1, 2, . . . Primero, haciendo x = 1

Pero, para −1 < t < 1,

Como 1/(1 − t) tiene sólo un desarrollo de Maclaurin, los coefi cientes de estas dos series deben coincidir, 
así cada Pn(1) = 1.

4.1 Polinomios de Legendre

TEOREMA 4.1 Función generadora para los polinomios de Legendre

1√
1−w

= 1+ 1

2
w+ 3

8
w2 + 15

48
w3 + 105

384
w4 + 945

3840
w5 +· · ·

1√
1−2xt + t2

= 1+ 1

2
2xt − t2 + 3

8
2xt − t2 2 + 15

48
2xt − t2 3

+ 105

384
2xt − t2 4 + 945

3840
2xt − t2 5 +· · ·

1√
1−2xt + t2

= 1+ xt − 1

2
t2 + 3

2
x2t2 − 3

2
xt 3 + 3

8
t4 + 5

2
x3t3 − 15

4
x2t4

+ 15

= P0(x) + P1(x)t + P2(x)t2 + P3(x)t3 + P4(x)t4 + P5(x)t5 +· · · .

8
xt 5 − 5

16
t6 + 35

8
x4t4 − 35

4
x3t5 + 105

16
x2t6 − 35

16
xt 7

+ 35

128
t8 + 63

8
x5t5 − 315

16
x4t6 + 315

16
x3t7 − 315

32
x2t8 + 315

128
xt 9 − 63

256
t10 +· · ·

= 1+ xt + −1

2
+ 3

2
x2 t2 + −3

2
x + 5

2
x3 t3

+ 3

8
− 15

4
x2 + 35

8
x4 t4 + 15

8
x − 35

4
x3 + 63

8
x5 t5

Pn(1) = 1 y Pn(−1) = (−1)n

L(1, t) = 1√
1 − 2t + t2

= 1√
(1 − t)2

= 1

1 − t
=

∞∑

n=0

Pn(1)tn.

Pero, para −1 < t < 1,
1

1 − t
=

∞∑

n=0

tn.

L(x, t) =
∞∑

n=0

Pn(x)tn.
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Análogamente,

Pero, para −1 < t < 1,

así Pn(−1) = (−1)n.

4.1.2 Una relación recursiva para los polinomios de Legendre

Use la función generadora para obtener una relación recursiva para los polinomios de Legendre.

L(−1, t) = 1√
1 + 2t + t2

= 1√
(1 + t)2

= 1

1 + t
=

∞∑

n=0

Pn(−1)tn.

Para cualquier entero positivo n,

(4.5)

Prueba Empiece diferenciando la función generadora respecto a t:

Ahora observe que

Al sustituir L(x, t) = �
∞
n=0

 Pn(x)tn en la última ecuación obtiene

Lleve a cabo las multiplicaciones para escribir

Rearregle estas series para tener potencias iguales de t en cada sumatoria:

Combinando las sumatorias desde n = 2, escribiendo los términos para n = 0 y n = 1 separadamente:

TEOREMA 4.2 Relación recursiva para los polinomios de Legendre

1

1 + t
=

∞∑

n=0

(−1)ntn,

(n + 1)Pn+1(x) − (2n + 1)xPn(x) + nPn−1(x) = 0.

∂L(x, t)

∂t
= −1

2
(1 − 2xt + t2)−3/2(−2x + 2t) = x − t

(1 − 2xt + t2)3/2 .

(1 − 2xt + t2)
∂L(x, t)

∂t
− (x − t)L(x, t) = 0.

(1 − 2xt + t2)

∞∑

n=1

nPn(x)tn−1 − (x − t)

∞∑

n=0

Pn(x)tn = 0.

∞∑

n=1

nPn(x)tn−1 −
∞∑

n=1

2nxPn(x)tn +
∞∑

n=1

nPn(x)tn+1 −
∞∑

n=0

xPn(x)tn +
∞∑

n=0

Pn(x)tn+1 = 0.

∞∑

n=0

(n + 1)Pn+1(x)tn −
∞∑

n=1

2nxPn(x)tn +
∞∑

n=2

(n − 1)Pn−1(x)tn

−
∞∑

n=0

xPn(x)tn +
∞∑

n=1

Pn−1(x)tn = 0.

P1(x) + 2P2(x)t − 2xP1(x)t − xP0(x) − xP1(x)t + P0(x)t

+
∞∑

n=2

[
(n + 1)Pn+1(x) − 2nxPn(x) + (n − 1)Pn−1(x) − xPn(x) + Pn−1(x)

]
tn = 0.
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Para que esta serie de potencias en t sea cero para todo t en algún intervalo alrededor del 0, el coefi ciente 
de t n debe ser cero para n = 0, 1, 2, . . . Entonces

y, para n = 2, 3, . . . ,

Esto da

y, para n = 2, 3, . . . ,

Como esta ecuación también es válida para n = 1, establece la relación recursiva para todos los enteros 
positivos. ■

Después, necesitará conocer el coefi ciente de xn en Pn(x). Se usará la relación recursiva para deducir 
una fórmula para este número.

4.1 Polinomios de Legendre

P1(x) − xP0(x) = 0,

2P2(x) − 2xP1(x) − xP1(x) + P0(x) = 0,

(n + 1)Pn+1(x) − 2nxPn(x) + (n − 1)Pn−1(x) − xPn(x) + Pn−1(x) = 0.

P1(x) = xP0(x),

P2(x) = 1
2 (3xP1(x) − P0(x))

(n + 1)Pn+1(x) − (2n + 1)xPn(x) + nPn−1(x) = 0.

Para n = 1, 2, . . . , sea An el coefi ciente de xn en Pn(x). Entonces

Por ejemplo,

como lo puede verifi car de las expresiones explícitas obtenidas con anterioridad para P1(x), P2(x) y 
P3(x).

Prueba En la relación recursiva (4.5), la mayor potencia de x que aparece es xn+1, y este término aparece 
en Pn+1(x) y en xPn(x). Así el coefi ciente de xn+1 en la relación recursiva es

Esto debe ser igual a cero (porque el otro lado de la ecuación recursiva es cero). Por tanto,

TEOREMA 4.3

An = 1 · 3 · · · · · (2n − 1)

n! .

A1 = 1, A2 = 1 · 3

2! = 3

2
, y A3 = 1 · 3 · 5

3! = 5

2
,

(n + 1)An+1 − (2n + 1)An.

An+1 = 2n + 1

n + 1
An,



CAPÍTULO 4   Funciones especiales, desarrollos ortogonales y onduletas174

y esto se satisface para n = 0, 1, 2, . . . Ahora puede trabajar hacia atrás:

Pero A0 = 1 como P0(x) = 1, entonces

(4.6)

para n = 0, 1, 2, . . . La conclusión del teorema simplemente establece esta conclusión en términos de An 
en lugar de An+1. ■

4.1.3 Ortogonalidad de los polinomios de Legendre

Probaremos lo siguiente.

Si n y m son enteros no negativos, entonces

(4.7)

Esta relación con la integral se llama la ortogonalidad de los polinomios de Legendre en [−1, 1]. Esta 
clase de comportamiento apareció con las funciones

1, cos(x), cos(2x), . . . , sen(x), sen(2x), . . .

en el intervalo [−π, π]. La integral, de −π a π, del producto de dos de estas funciones (distintas) es cero. 
Debido a esta propiedad, es posible encontrar los coefi cientes de Fourier de una función (recuerde el argu-
mento dado en la sección 2.2). Perseguirá una idea semejante para los polinomios de Legendre después 
de establecer la ecuación (4.7).

Prueba Empiece con el hecho de que Pn(x) es una solución de la ecuación de Legendre (4.1) para λ = 
n(n + 1). En particular, si n y m son enteros no negativos distintos, entonces

y

Multiplique la primera ecuación por Pm(x) y la segunda por Pn(x) y reste las ecuaciones resultantes para 
obtener

An+1 = 2n + 1

n + 1
An = 2n + 1

n + 1

2(n − 1) + 1

(n − 1) + 1
An−1

= 2n + 1

n + 1

2n − 1

n
An−1

= 2n + 1

n + 1

2n − 1

n

2(n − 2) + 1

(n − 2) + 1
An−2

= 2n + 1

n + 1

2n − 1

n

2n − 3

n − 1
An−2 = · · · = 2n + 1

n + 1

2n − 1

n

2n − 3

n − 1
· · · 3

2
A0.

An+1 = 1 · 3 · 5 · · · · (2n − 1)(2n + 1)

(n + 1)!

TEOREMA 4.4 Ortogonalidad de los polinomios de Legendre en [−1, 1]

∫ 1

−1
Pn(x)Pm(x) dx = 0 si n �= m.

[(1 − x2)P ′
n(x)]′ + n(n + 1)Pn(x) = 0

[(1 − x2)P ′
m(x)]′ + m(m + 1)Pm(x) = 0.

[(1 − x2)P ′
n(x)]′Pm(x) − [(1 − x2)P ′

m(x)]′Pn(x) + [n(n + 1) − m(m + 1)]Pn(x)Pm(x) = 0.
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Integre esta ecuación:

Como n � m, la ecuación (4.7) será probada al demostrar que el lado izquierdo de la última ecuación es 
cero. Pero, integrando por partes el lado izquierdo,

y la ortogonalidad de los polinomios de Legendre en [−1, 1] está probada. ■

4.1.4 Series Fourier-Legendre

Suponga que f (x) está defi nida para −1 ≤ x ≤ 1. Explore la posibilidad de desarrollar f (x) en una serie de 
polinomios de Legendre:

(4.8)

Una situación semejante apareció en la sección 2.2, excepto que ahí se quería desarrollar una función defi -
nida en [−π, π] en una serie de senos y cosenos. Aplique el mismo razonamiento que entonces condujo al 
éxito. Elija un entero no negativo m y multiplique el desarrollo propuesto por Pm(x), y después integre la 
ecuación resultante, intercambie la serie y la integral:

Debido a la ecuación (4.7), todos los términos en la sumatoria de la derecha son cero, excepto cuando 
n = m. La ecuación anterior se reduce a

Entonces

(4.9)

Tomando como guía la serie de Fourier, el desarrollo de  �
∞
n=0 cnPn(x) será la serie de Fourier-Legen-

dre, o desarrollo de f (x), cuando los coefi cientes son elegidos de acuerdo con la ecuación (4.9). Los cn 
serán los coefi cientes de Fourier-Legendre de f .

Como con la serie de Fourier, debe plantear la pregunta de la convergencia de la serie de Fourier-
Legendre de una función. Esto se hace en el siguiente teorema, que es semejante en forma al teorema 
de convergencia de Fourier. Como verá más adelante, esto no es una coincidencia.

4.1 Polinomios de Legendre

∫ 1

−1
[(1 − x2)P ′

n(x)]′Pm(x) dx −
∫ 1

−1
[(1 − x2)P ′

m(x)]′Pn(x) dx

= [m(m + 1) − n(n + 1)]
∫ 1

−1
Pn(x)Pm(x) dx.

∫ 1

−1
[(1 − x2)P ′

n(x)]′Pm(x) dx −
∫ 1

−1
[(1 − x2)P ′

m(x)]′Pn(x) dx

=
[
(1 − x2)P ′

n(x)Pm(x)
]1

−1
−

∫ 1

−1
(1 − x2)P ′

n(x)P ′
m(x) dx

−[(1 − x2)P ′
m(x)Pn(x)]1

−1 +
∫ 1

−1
(1 − x2)P ′

n(x)P ′
m(x) dx = 0,

f (x) =
∞∑

n=0

cnPn(x).

∫ 1

−1
f (x)Pm(x) dx =

∞∑

n=0

cn

∫ 1

−1
Pn(x)Pm(x) dx.

∫ 1

−1
f (x)Pm(x) dx = cm

∫ 1

−1
P 2

m(x) dx.

cm =
∫ 1
−1 f (x)Pm(x) dx
∫ 1
−1 P 2

m(x) dx
.
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Sea f suave a pedazos en [−1, 1]. Entonces, para −1 < x < 1,

si los c′
n son los coefi cientes de Fourier-Legendre de f . ■

Esto signifi ca que bajo las condiciones en f, el desarrollo de Fourier-Legendre de f (x) converge al 
promedio de los límites laterales de f (x) en x, para −1 < x < 1. Esto es a mitad del camino entre el hueco 
en los extremos de la gráfi ca en x si f (x) tiene una discontinuidad de salto ahí (fi gura 4.2). Este compor-
tamiento lo vio antes con la convergencia de la serie (trigonométrica) de Fourier. Si f es continua en x, 
entonces f (x+) = f (x−) = f (x) y la serie de Fourier-Legendre converge a f (x).

Como un caso especial de los desarrollos de Fourier-Legendre generales, cualquier polinomio q(x) es 
una combinación lineal de polinomios de Legendre. En el caso de un polinomio, esta combinación lineal 
se puede obtener resolviendo para xn en términos de Pn(x) y escribiendo cada potencia de x en q(x) en 
términos de los polinomios de Legendre.

Por ejemplo, sea

Empiece con

y después resuelva para x2 en P2(x):

así

Entonces

Ahora puede probar el resultado, quizá sorprendente, que todo polinomio de Legendre es ortogonal 
a todo polinomio de grado menor.

TEOREMA 4.5

∞∑

n=0

cnPn(x) = 1
2 (f (x+) + f (x−)) ,

y

x
x0

( f (x0
�) � f (x0

�))1
2

FIGURA 4.2 Convergencia de un 
desarrollo de Fourier-Legendre en una 
discontinuidad de salto de la función.

q(x) = −4 + 2x + 9x2.

x = P1(x)

P2(x) = 3
2x2 − 1

2 ,

x2 = 2
3P2(x) + 1

3 = 2
3P2(x) + 1

3P0(x).

−4 + 2x + 9x2 = −4P0(x) + 2P1(x) + 9
( 2

3P2(x) + 1
3P0(x)

)

= −P0(x) + 2P1(x) + 6P2(x).

3
2

1
2

2
3

1
3

1
3

2
3

2
3

1
3

1
2
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Sea q(x) un polinomio de grado m, y sea n > m. Entonces

�■

Prueba Escriba

Entonces

como para 0 ≤ k ≤ m < n, �1
−1 Pk(x)Pn(x) dx = 0. ■

Este resultado será de utilidad muy pronto para obtener información acerca de los ceros de los poli-
nomios de Legendre.

4.1.5 Cálculo de los coefi cientes de Fourier-Legendre

La ecuación (4.9) para los coefi cientes de Fourier-Legendre de f  tiene �1
−1 P

2
n (x) dx en el denominador. Se 

deducirá una expresión sencilla para esta integral.

4.1 Polinomios de Legendre

TEOREMA 4.6

Si n es un entero no negativo, entonces

�■

Prueba Como antes, denote el coefi ciente de xn en Pn(x) como An. También denote

El término de mayor grado en Pn(x) es Anxn, mientras el término de mayor grado en Pn−1(x) es An−1xn−1. 
Esto signifi ca que todos los términos involucrados xn se cancelan en el polinomio

y así q(x) tiene grado al menos n − 1. Escriba

Entonces

TEOREMA 4.7

∫ 1

−1
q(x)Pn(x) dx = 0.

q(x) = c0P0(x) + c1P1(x) + · · · + cmPm(x).

∫ 1

−1
q(x)Pn(x) dx =

m∑

k=0

ck

∫ 1

−1
Pk(x)Pn(x) dx = 0,

∫ 1

−1
P 2

n (x) dx = 2

2n + 1
.

pn =
∫ 1

−1
P 2

n (x) dx.

q(x) = Pn(x) − An

An−1
xPn−1,

Pn(x) = q(x) + An

An−1
xPn−1(x).

pn =
∫ 1

−1
Pn(x)Pn(x) dx =

∫ 1

−1
Pn(x)

(
q(x) + An

An−1
xPn−1(x)

)
dx

= An

An−1

∫ 1

−1
xPn(x)Pn−1(x) dx,
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ya que �1
−1 q(x)Pn(x) dx = 0. Ahora según la relación recursiva (4.5) escriba

Entonces

así

Como �1
−1 Pn+1(x)Pn−1(x) dx = 0, queda

Usando el valor antes obtenido para An,

Ahora trabaje hacia atrás:

y así sucesivamente. Por inducción,

lo que prueba el teorema. ■

Esto signifi ca que el coefi ciente de Fourier-Legendre de f es

EJEMPLO 4.1

Sea f (x) = cos(πx/2) para −1 ≤ x ≤ 1. Entonces f y f ′ son continuas en [−1, 1], así el desarrollo de 
Fourier-Legendre de f converge a cos(πx /2) para −1 < x < 1. Los coefi cientes son

xPn(x) = n + 1

2n + 1
Pn+1(x) + n

2n + 1
Pn−1(x).

xPn(x)Pn−1(x) = n + 1

2n + 1
Pn+1(x)Pn−1(x) + n

2n + 1
P 2

n−1(x),

pn = An

An−1

∫ 1

−1
xPn(x)Pn−1(x) dx

= An

An−1

[
n + 1

2n + 1

∫ 1

−1
Pn+1(x)Pn−1(x) dx + n

2n + 1

∫ 1

−1
P 2

n−1(x) dx

]
.

pn = An

An−1

n

2n + 1

∫ 1

−1
P 2

n−1 dx = An

An−1

n

2n + 1
pn−1.

pn = 1 · 3 · 5 · · · · (2n − 3) · (2n − 1)

n!
(n − 1)!

1 · 3 · 5 · · · · · (2n − 3)

n

2n + 1
pn−1 = 2n − 1

2n + 1
pn−1.

p1 = 1

3
p0 = 1

3

∫ 1

−1
P0(x)2 dx = 1

3

∫ 1

−1
dx = 2

3
,

p2 = 3

5
p1 = 3

5

2

3
= 2

5
, p3 = 5

7
p2 = 2

7
, p4 = 7

9
p3 = 2

9
,

pn = 2

2n + 1
,

cn =
∫ 1
−1 f (x)Pn(x) dx
∫ 1
−1 P 2

n (x) dx
= 2n + 1

2

∫ 1

−1
f (x)Pn(x) dx.

EMPLO 3 1

cn = 2n + 1

2

∫ 1

−1
cos

(πx

2

)
Pn(x) dx.
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Debido a que cos(x /2) es una función par, cos(πx /2)Pn(x) es una función impar para n impar. Esto signifi ca 
que cn = 0 si n es impar. Sólo necesita calcular los coefi cientes de índice par. Algunos de éstos son

Entonces, para −1 < x < 1,

Aunque en este ejemplo, f (x) es lo sufi cientemente simple para calcular exactamente algunos coefi cientes de 
Fourier-Legendre, en una aplicación típica usaría un paquete de software para calcular los coefi cientes. Los 
términos calculados dan la aproximación

4.1 Polinomios de Legendre

c0 = 1

2

∫ 1

−1
cos

(πx

2

)
dx = 2

π
,

c2 = 5

2

∫ 1

−1
cos

(πx

2

) 1

2
(3x2 − 1) dx = 10

π2 − 12

π3
,

c4 = 9

2

∫ 1

−1
cos

(πx

2

) 1

8

(
35x4 − 30x2 + 3

)
dx = 18

π4 + 1680 − 180π2

π5
.

La fi gura 4.3 muestra la gráfi ca de cos(πx /2) y los tres primeros términos distintos de cero de su desarrollo 
de Fourier-Legendre. Esta serie concuerda muy bien con cos(πx /2) para −1 < x < 1, pero las dos diver-
gen una de la otra fuera de este intervalo. Esto enfatiza el hecho de que el desarrollo Fourier-Legendre es 
sólo para −1 ≤ x ≤ 1. ■

4.1.6 Los ceros de los polinomios de Legendre

P0(x) = 1 y no tiene ceros, mientras que P1(x) = x tiene exactamente un cero, a saber x = 0. P2(x) = 1
2  

(3x2 − 1) tiene dos ceros reales, ±1/�
_
3. P3(x) tiene tres ceros reales, a saber 0 y ±�

_
3/5. Después de n = 3, 

y

x

�2
�4 4

�2 2

0

�4
�6

�8

�10
�12
�14

�16

cos
(πx

2

)
= 2

π
+ 10

π2 − 12

π3 P2(x) + 18
π4 + 1680 − 180π2

π5
P4(x) + · · ·

= 2

π
+ 5

π2 − 12

π3 (3x2 − 1) + 9

4

π4 + 1680 − 180π2

π5

(
35x4 − 30x2 + 3

)
+ · · · .

FIGURA 4.3 Comparación de cos(πx /2) 
con una suma parcial de una serie en el 
desarrollo en polinomios de Legendre.

cos(πx/2) ≈ 0.63662 − 0.34355(3x2 − 1) +
0.

0.0064724
(
35x4 − 30x2 + 3

)
+ · · ·

= 22653x4 + · · · .99959 − 1.2248x2 + 0.
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encontrar los ceros de los polinomios de Legendre rápidamente se vuelve complicado. Por ejemplo, P4(x) 
tiene cuatro ceros reales, y son

Estos son aproximadamente ±0.8611 y ±0.3400.
Cada Pn(x) recién examinado tiene n raíces reales, todas están en el intervalo (−1, 1). Se probará que 

esto es cierto para todos los polinomios de Legendre. Esto incluye P0(x), que por supuesto no tiene raíces. 
La prueba de esta aseveración se basa en la ortogonalidad de los polinomios de Legendre.

± 1

35

√(
525 + 70

√
30

)
y ± 1

35

√(
525 − 70

√
30

)
.

TEOREMA 4.8 Los ceros de Pn(x)

Sea n un entero positivo. Entonces Pn(x) tiene n raíces reales y distintas, todas en (−1, 1). ■

Prueba Primero probará que si Pn(x) tiene una raíz real x0 en (−1, 1), entonces esta raíz debe ser simple 
(es decir, no repetida). Suponga que x0 es una raíz repetida. Entonces Pn(x0) = P ′

n (x0) = 0. Entonces Pn(x) 
es una solución del problema con valor inicial

Pero este problema tiene una solución única, y la función trivial y(x) = 0 es una solución. Esto implica 
que Pn(x) es la función cero en un intervalo que contiene a x0, y esto es falso. Así Pn(x) no puede tener una 
raíz repetida en (−1, 1).

Ahora suponga que n es un entero positivo. Entonces Pn(x) y P0(x) son ortogonales en [−1, 1], así

Por tanto, Pn(x) no puede ser estrictamente positivo o estrictamente negativo en (−1, 1), ya que debe cam-
biar de signo en este intervalo. Como Pn(x) es continuo, debe existir algún x1 en (−1, 1) con Pn(x1) = 0. 
Hasta aquí, esto da un cero real en este intervalo.

Sean x1, . . . , xm todos los ceros de Pn(x) en (−1, 1), con −1 < x1 < · · · < xm < 1. Entonces 1 ≤ m 
≤ n. Suponga que m < n. Entonces el polinomio

tiene grado menor que n, y es ortogonal a Pn(x):

Pero q(x) y Pn(x) cambian de signo exactamente en los mismos puntos en (−1, 1), a saber en x1, . . . , 
xm. Por tanto, q(x) y Pn(x) son ambos del mismo signo en cada intervalo (−1, x1), (x1, x2), . . . , (xm, 1) o 
de signo opuesto en cada uno de estos intervalos. Esto signifi ca que q(x)Pn(x) es estrictamente positiva 
o estrictamente negativa en (−1, 1) excepto en un número fi nito de puntos x1, . . . , xm donde este producto 
vale cero. Pero entonces la �1

−1 q(x)Pn(x) dx debe ser o positiva o negativa, lo cual es una contradicción.

Se concluye que m = n, de donde Pn(x) tiene n ceros simples en (−1, 1). ■

Si se remite a las gráfi cas de P0(x) hasta P4(x) en la fi gura 4.1, verá que cada uno de estos polinomios 
de Legendre cruza el eje x exactamente n veces entre −1 y 1.

((1 − x2)y′)′ + n(n + 1)y = 0; y(x0) = y′(x0) = 0.

∫ 1

−1
Pn(x)P0(x) dx =

∫ 1

−1
Pn(x) dx = 0.

q(x) = (x − x1)(x − x2) · · · (x − xm)

∫ 1

−1
q(x)Pn(x) dx = 0.
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4.1.7 Fórmulas de la derivada y la integral para Pn(x)

Se deducirán dos fórmulas adicionales para Pn(x) que algunas veces son utilizadas para analizar más 
ampliamente los polinomios de Legendre. La primera da el n-ésimo polinomio de Legendre en términos 
de la n-ésima derivada de (x2 − 1)n.

4.1 Polinomios de Legendre

Para n = 0, 1, 2, . . . ,

En este enunciado, se entiende que la derivada de orden cero de una función es la misma función. Así, 
cuando n = 0, la fórmula propuesta da

para n = 1 da

y para n = 2, da

Prueba Sea w = (x2 − 1)n. Entonces

Entonces

Si se deriva esta ecuación k + 1 veces, es un ejercicio rutinario verifi car que obtiene

Haciendo k = n, obtiene

La cantidad entre corchetes en esta ecuación es

que es la misma que

TEOREMA 4.9 Fórmula de Rodrigues

Para n = 0, 1, 2, . . . ,
Pn(x) = 1

2nn!
dn

dxn
((x2 − 1)n).

1

200!
d0

dx0 ((x2 − 1)0) = (x2 − 1)0 = 1 = P0(x).

1

2(1!)
d

dx
(x2 − 1) = 1

2
(2x) = x = P1(x),

1

22(2!)
d2

dx2 ((x2 − 1)2) = 1

8
(12x2 − 4) = 3

2
x2 − 1

2
= P2(x).

w′ = n(x2 − 1)n−1(2x).

(x2 − 1)w′ − 2nxw = 0.

(x2 − 1)
dk+2w

dxk+2 − (2n − 2k − 2)x
dk+1w

dxk+1

− [2n + (2n − 2) + · · · + (2n − 2(k − 1)) + 2n − 2k)] dkw

dxk
= 0.

(x2 − 1)
dn+2w

dxn+2 + 2x
dn+1w

dxn+1

− [2n + (2n − 2) + · · · + (2n − 2(n − 1)) + (2n − 2n)] dnw

dxn
= 0.

2n + (2n − 2) + · · · + 2,

2(1 + 2 + · · · + n).
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Pero esta cantidad es igual a n(n + 1). (Recuerde que 
∑n

j=1 j = 1
2n(n + 1)). Por tanto,

Multiplicando esta ecuación por −1,

Pero esto signifi ca que dnw/dxn es una solución de la ecuación de Legendre con λ = n(n + 1). Más aún, 
la derivación repetida del polinomio (x2 − 1)n produce un polinomio. Por tanto, la solución polinomial 
dnw/dxn debe ser una constante múltiplo de Pn(x):

(4.10) 

Ahora, el término de mayor grado en (x2 − 1)n es x2n, y la n-ésima derivada de x2n es

Por tanto, el coefi ciente de la mayor potencia de x en dnw/dxn es 2n(2n − 1) · · · (n + 1). El término de 
mayor orden en cPn(x) es cAn, donde An es el coefi ciente de xn en Pn(x). Sabe que An, de donde la ecuación 
(4.10) da

Entonces

Pero ahora la ecuación (4.10) se convierte en

que es equivalente a la fórmula de Rodrigues. ■

Ahora deducirá una fórmula para la integral de Pn(x).

Para n = 0, 1, 2, . . . ,

Por ejemplo, con n = 0 obtiene

TEOREMA 4.10

(x2 − 1)
dn+2w

dxn+2 + 2x
dn+1w

dxn+1 − n(n + 1)
dnw

dxn
= 0.

(1 − x2)
dn+2w

dxn+2
− 2x

dn+1w

dxn+1
+ n(n + 1)

dnw

dxn
= 0.

dnw

dxn
= cPn(x).

2n(2n − 1) · · · (n + 1)xn.

2n(2n − 1) · · · (n + 1) = cAn = c
1 · 3 · 5 · · · (2n − 1)

n! .

c = n!(n + 1) · · · (2n − 1)(2n)

1 · 3 · 5 · · · · · (2n − 1)
= (2n)!

1 · 3 · 5 · · · · · (2n − 1)

= 2 · 4 · 6 · · · · · 2n = 2nn!.

dn

dxn
(x2 − 1)n = 2nn!Pn(x),

Pn(x) = 1

π

∫ π

0

(
x +

√
x2 − 1 cos(θ)

)n

dθ.

1

π

∫ π

0
dθ = 1 = P0(x).
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Con n = 1 obtiene

y con n = 2 obtiene

Prueba Sea

La estrategia detrás de la prueba es determinar que Qn satisface la misma relación recursiva que los 
polinomios de Legendre. Como Q0 = P0 y Q1 = P1, esto implicará que Qn = Pn para todo entero no 
negativo n. Prosiga:

Después de un cálculo directo pero largo, encuentre que 

Integre la segunda integral por partes, con u = 
(
x +

√
x2 − 1 cos(θ)

)n
 y dν = �

_
x2 − 1 cos(θ) dθ para 

obtener

completando la prueba. ■

4.1 Polinomios de Legendre

1

π

∫ π

0

(
x +

√
x2 − 1 cos(θ)

)
dθ = x = P1(x),

1

π

∫ π

0

(
x +

√
x2 − 1 cos(θ)

)2
dθ

= 1

π

∫ π

0

(
x2 + 2x

√
x2 − 1 cos(θ) + (x2 − 1) cos2(θ)

)
dθ

= 3

2
x2 − 1

2
= P2(x).

Qn(x) = 1

π

∫ π

0

(
x +

√
x2 − 1 cos(θ)

)n

dθ.

(n + 1)Qn+1(x) − (2n + 1)xQn(x) + nQn−1(x)

= n + 1

π

∫ π

0

(
x +

√
x2 − 1 cos(θ)

)n+1
dθ

− 2n + 1

π

∫ π

0
x
(
x +

√
x2 − 1 cos(θ)

)n

dθ

+ n

π

∫ π

0

(
x +

√
x2 − 1 cos(θ)

)n−1
dθ.

(n + 1)Qn+1(x) − (2n + 1)xQn(x) + nQn−1(x)

= n

π

∫ π

0

(
x +

√
x2 − 1 cos(θ)

)n−1
(1 − x2) sen2(θ) dθ

+ 1

π

∫ π

0

(
x +

√
x2 − 1 cos(θ)

)n √
x2 − 1 cos(θ) dθ.

(n + 1)Qn+1(x) − (2n + 1)xQn(x) + nQn−1(x)

= n

π

∫ π

0

(
x +

√
x2 − 1 cos(θ)

)n−1
(1 − x2) sen2(θ) dθ

+
[

1

π

(
x +

√
x2 − 1 cos(θ)

)n √
x2 − 1 sen(θ)

]π

0

− 1

π

∫ π

0

√
x2 − 1 sen(θ)n

(
x +

√
x2 − 1 cos(θ)

)n−1 √
x2 − 1(− sen(θ)) dθ

= 0,
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1.  Para n = 0, 1, 3, 4, 5, verifi que por sustitución que Pn(x) es 
una solución de la ecuación de Legendre correspondiente a 
λ = n(n + 1).

2.  Use la relación recursiva (teorema 4.2) y la lista de P0(x), 
. . . , P5(x) dada con anterioridad para determinar P6(x) hasta 
P10(x). Dibuje las gráfi cas de estas funciones y observe la 
localización de sus ceros en [−1, 1].

3.  Use la fórmula de Rodrigues para obtener P1(x) hasta 
P5(x).

4. Use el teorema 4.10 para obtener P3(x), P4(x) y P5(x).
5. Puede probarse que

Use esta fórmula para generar P0(x) hasta P5(x). El símbolo 
[n/2] denota el máximo entero menor que n/2.

6. Pruebe que

Sugerencia: Escriba x2 − 1 = (x − 1)(x + 1) en la fórmula 
de Rodrigues.

7.  Sea n un entero no negativo. Use la reducción de orden y 
el hecho de que Pn(x) es una solución de la ecuación de 
Legendre con λ = n (n + 1) para obtener una segunda solu-
ción linealmente independiente:

8. Use el resultado del problema 7 para probar que

y

para −1 < x < 1.

9.  El potencial gravitacional en un punto P: (x, y, z) debido a 
una unidad de masa en (x0, y0, z0) es

  Para algunos propósitos (tales como en astronomía) esto es 
conveniente para desarrollar ϕ(x, y, z) en potencias de r o 

1/r, donde r = �
_
x2 + y2 + z2. Para hacer esto, introduzca el 

ángulo mostrado en la fi gura 4.4. Sea d = �
_
x 2

0
 + y 2

0
 + z 2

0
 y 

R = �
_
(x − x0)2 + 
_
(y − y0)2 +

_
 (z − z0)2.

(a) Use la ley de los cosenos para escribir

(b) A partir de la discusión de la función generadora para los 
polinomios de Legendre, recuerde que, si 1/ �

_
1 − 2at + t2 

es desarrollado en serie alrededor de 0, converge para | t | < 1, 
entonces el coefi ciente de tn es Pn(a).

(c) Si r < d, sean a = cos(θ) y t = r/d para obtener

(d) Si r > d, pruebe que

10. Pruebe que

11. Sea n un entero no negativo. Pruebe que

12.  Desarrolle cada uno de los siguientes polinomios en una 
serie de polinomios de Legendre:

(a) 1 + 2x − x2

(b) 2x + x2 − 5x3

(c) 2 − x2 + 4x4

En cada problema del 13 al 18, encuentre los primeros cinco 
coefi cientes del desarrollo de Fourier-Legendre de la función. 
Dibuje la gráfi ca de la función y la suma de los primeros cinco 
términos de este desarrollo en el mismo conjunto de ejes, para 
−3 ≤ x ≤ 3.

SECCIÓN 4.1 PROBLEMAS

ϕ(x, y, z) = 1

d
√

1 − 2(r/d) cos(θ) + (r/d)2
.

Pn(x) =
[n/2]∑

k=0

(−1)k
(2n − 2k)!

2nk!(n − k)!(n − 2k)!x
n−2k .

Pn(x) =
n∑

k=0

n!
k!(n − k)!

dk

dxk
[(x + 1)n] dn−k

dxn−k
[(x − 1)n].

Qn(x) = Pn(x)

∫
1

[Pn(x)]2(1 − x2)
dx.

Q0(x) = −1

2
ln

(
1 + x

1 − x

)
,

Q1(x) = 1 − x

2
ln

(
1 + x

1 − x

)
,

Q2(x) = 1

4
(3x2 − 1) ln

(
1 + x

1 − x

)
− 3

2
x

ϕ(x, y, z) = 1√
(x − x0)2 + (y − y0)2 + (z − z0)2

.

ϕ(r) =
∞∑

n=0

1

dn+1
Pn(cos(θ))rn.

ϕ(r) = 1

r

∞∑

n=0

dnPn(cos(θ))r−n.

P2n+1(0) = 0 y P2n(0) = (−1)n
(2n)!

22n(n!)2
.

�
(x0, y0, z0)

P : (x, y, z)

(0, 0, 0) d

R
r

FIGURA 4.4

�
∑

n=0

(

1

2n+1

)

Pn

(

1

2

)

=
1
√
3
.
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4. 2 Funciones de Bessel

Ahora se desarrollará la segunda clase de función especial usada para introducir el tópico general de fun-
ciones especiales.

La ecuación diferencial de segundo orden

es llamada la ecuación de Bessel de orden �. Así el término orden aquí se usa en dos sentidos, la ecuación 
diferencial es de segundo orden, pero por tradición se dice que la ecuación tiene orden v para referirse al 
parámetro v que aparece en el coefi ciente de y.

Mediante el método de Frobenius se puede encontrar una solución en serie

en donde c0 es una constante distinta de cero y v ≥ 0. Esta solución es válida en algún intervalo (0, R), 
que depende de �.

Será útil escribir esta solución en términos de la función gamma que se desarrolla ahora.

4.2.1 La función gamma

Para x > 0, la función gamma Ŵ está defi nida por

Esta integral converge para todo x > 0. La función gamma tiene una historia fascinante y muchas propie-
dades interesantes. Para este caso, la más útil es la siguiente:

El desarrollo es válido sólo en [−1, 1], pero es instructivo ver 
cómo las sumas parciales del desarrollo de Fourier-Legendre no 
tienen relación en general fuera de este intervalo.

13. f (x) = sen(πx/2)
14. f (x) = e−x

15. f (x) = sen2(x)

16. f (x) = cos(x) − sen(x)

17. 
 

18. f (x) = (x + 1) cos(x)

f (x) =
{

−1 para −1 ≤ x ≤ 0

1 para 0 < x ≤ 1

Si x > 0, entonces

Prueba Si 0 < a < b, entonces integre por partes, con u = tx y dν = e−t dt, para obtener

Tome el límite de esta ecuación conforme a → 0+ y b → ∞ para obtener

x2y′′ + xy′ + (x2 − ν2)y = 0

y(x) = c0

∞∑

n=0

(−1)n

22nn!(1 + ν)(2 + ν) · · · (n + ν)
x2n+ν,

Ŵ(x) =
∫ ∞

0
tx−1e−t dt.

TEOREMA 4.11 Propiedad factorial de la función gamma

Ŵ(x + 1) = xŴ(x).

∫ b

a

txe−t dt =
[
tx(−e−t )

]b
a

−
∫ b

a

xtx−1(−1)e−t dt

= −bxe−b + axe−a + x

∫ b

a

tx−1e−t dt.

∫ ∞

0
txe−t dt = Ŵ(x + 1) = x

∫ ∞

0
tx−1e−t dt = xŴ(x).

4.2 Funciones de Bessel
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La razón por la cual ésta se llama propiedad factorial puede verse haciendo x = n, un entero positivo. 
Repitiendo la aplicación del teorema, obtiene

Pero

de manera que

para cualquier entero positivo n. Esta es la razón para el término propiedad factorial de la función 
gamma.

Es posible extender �(x) a valores negativos (pero no enteros) de x usando la propiedad factorial. Para 
x > 0, escriba

(4.11)

Si −1 < x < 0, entonces x + 1 > 0 así Ŵ(x + 1) está defi nida y use el lado derecho de la ecuación (4.11) 
para defi nir Ŵ(x).

Una vez que ha extendido Ŵ(x) a −1 < x < 0, puede permitir −2 < x < −1. Entonces −1 < x + 1 < 
0 de manera que Ŵ(x + 1) ha sido defi nida y puede usar nuevamente la ecuación (4.11) para defi nir Ŵ(x). 
En este camino puede avanzar hacia la izquierda a lo largo de la recta real, defi niendo Ŵ(x) en (−n−1,−n) 
en cuanto ha sido defi nida en el intervalo (−n, −n + 1) inmediatamente para la derecha.

Por ejemplo,

y

La fi gura 4.5(a) muestra una gráfi ca de y = Ŵ(x) para 0 < x < 5. En las fi guras 4.5(b), (c) y (d) se dan 
las gráfi cas para −1 < x < 0, −2 < x < −1, y −3 < x < −2, respectivamente

Ŵ(n + 1) = nŴ(n) = nŴ((n − 1) + 1) = n(n − 1)Ŵ(n − 1)

= n(n − 1)Ŵ((n − 2) + 1) = n(n − 1)(n − 2)Ŵ(n − 2)

= · · · = n(n − 1)(n − 2) · · · (2)(1)Ŵ(1) = n!Ŵ(1).

Ŵ(1) =
∫ ∞

0
e−t dt = 1,

Ŵ(n + 1) = n!

Ŵ(x) = 1

x
Ŵ(x + 1).

Ŵ

(
−1

2

)
= 1

− 1
2

Ŵ

(
−1

2
+ 1

)
= −2Ŵ

(
1

2

)
,

Ŵ

(
−3

2

)
= 1

− 3
2

Ŵ

(
−3

2
+ 1

)
= −2

3
Ŵ

(
−1

2

)
= 4

3
Ŵ

(
1

2

)
.
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FIGURA 4.5(a) Ŵ(x) para 0 < x < 5. FIGURA 4.5(b) Ŵ(x) para −1 < x < 0.
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4.2.2 Funciones de Bessel de la primera clase y soluciones de la ecuación de Bessel

Ahora regrese a la solución de Frobenius y(x) de la ecuación de Bessel dada arriba. Parte del denominador 
en esta solución es

en la cual suponga que � ≥ 0. Ahora use la propiedad factorial de la función gamma para escribir

Por tanto,

y escriba la solución como

Es habitual elegir

para obtener la solución denotaremos como J�(x):

J� es llamada una función de Bessel de la primera clase de orden �. La serie que defi ne J�(x) converge 
para todo x.

Debido a que la ecuación de Bessel es de segundo orden (como una ecuación diferencial), es necesa-
ria una segunda solución, linealmente independiente de J� , para escribir la solución general. La ecuación 
indicial de la ecuación de Bessel es r2 − �2 = 0, con raíces ±�. La clave radica en la diferencia, 2�, entre 
estas raíces. Omitiendo los detalles del análisis, aquí están las conclusiones.

10

20

30

40

–2.0 –1.8 –1.6 –1.4 –1.2 –1.0
x

y

�20

�15

�10

�5.0

�3.0 �2.8 �2.6 �2.4 �2.2 �2.0
x

y

FIGURA 4.5(c) Ŵ(x) para −2 < x < −1. FIGURA 4.5(d) Ŵ(x) para −3 < x < −2.

(1 + ν)(2 + ν) · · · (n + ν),

Ŵ(n + ν + 1) = (n + ν)Ŵ(n + ν) = (n + ν)(n + ν − 1)Ŵ(n + ν − 1)

Por tanto,
(1 + ν)(2 + ν) · · · (n + ν) = Ŵ(n + ν + 1)

Ŵ(ν + 1)

y(x) = c0

∞∑

n=0

(−1)nŴ(ν + 1)

22nn!Ŵ(n + ν + 1)
x2n+ν .

c0 = 1

2νŴ(ν + 1)
.

Jν(x) =
∞∑

n=0

(−1)n

22n+νn!Ŵ(n + ν + 1)
x2n+ν .

4.2 Funciones de Bessel

= · · · = (n + ν)(n + ν − 1) · · · (n + ν − (n − 1))Ŵ(n + ν − (n − 1))

= (1 + ν)(2 + ν) · · · (n − 1 + ν)(n + ν)Ŵ(ν + 1).
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1.  Si 2� no es un entero, entonces J� y J−� son linealmente independientes (ninguna es un múltiplo 
constante de la otra), y la solución general de la ecuación de Bessel de orden � es

con a y b constantes arbitrarias.
2.  Si 2� es un entero positivo impar, por ejemplo 2� = 2n + 1, entonces � = n + 12 para algún entero 

positivo n. En este caso, J� y J−� siguen siendo linealmente independientes. Se puede probar que 
en este caso Jn+1/2(x) y J−n−1/2(x) pueden expresarse en forma cerrada como una suma fi nita de 
términos que involucran raíces cuadradas, senos y cosenos. Por ejemplo, manipulando la serie 
para J�(x), se encuentra que

y

En este caso, la solución general de la ecuación de Bessel de orden � es

con a y b constantes arbitrarias.

3.  2� es un entero pero no es de la forma n + 12 para cualquier entero positivo n. En este caso, J�(x) 
y J−�(x) son soluciones de la ecuación de Bessel, pero son linealmente dependientes. Uno puede 
verifi car a partir de la serie que en este caso,

En este caso debe construir una segunda solución de la ecuación de Bessel, linealmente indepen-
diente de J�(x). Esto conduce a las funciones de Bessel de segunda clase.

4.2.3 Funciones de Bessel de segunda clase

Otra solución para la ecuación de Bessel para el caso � = 0. Era

en donde

En lugar de usar esta solución como está escrita, es habitual usar una combinación lineal de y2(x) y 
J0(x), la cual, por supuesto, será una solución. Esta combinación se denota como Y0(x) y está defi nida para 
x > 0 por

donde γ es la constante de Euler, defi nida por

y(x) = aJν(x) + bJ−ν(x),

J1/2(x) =
√

2

πx
sen(x), J−1/2(x) =

√
2

πx
cos(x), J3/2(x) =

√
2

πx

[
sen(x)

x
− cos(x)

]
,

y

J−3/2(x) =
√

2

πx

[
− sen(x) − cos(x)

x

]
.

y(x) = aJn+1/2(x) + bJ−n−1/2(x),

J−ν(x) = (−1)νJν(x).

y2(x) = J0(x) ln(x) +
∞∑

n=1

(−1)n+1

22n(n!)2
∅(n)x2n,

∅(n) = 1 + 1

2
+ · · · + 1

n
.

Y0(x) = 2

π

[
y2(x) + (γ − ln(2))J0(x)

]
,

γ = lím
n→∞

(∅(n) − ln(n)) = 0.577215664901533 . . . .
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J0 y Y0 son linealmente independientes debido al término ln(x) en Y0(x), y por tanto, la solución gene-
ral de la ecuación de Bessel de orden cero es

con a y b constantes arbitrarias. Y0 es llamada función de Bessel de segunda clase de orden cero. Con la 
elección hecha para las constantes en la defi nición de Y0, esta función también se llama función de Neu-
mann de orden cero.

Si � es un entero positivo, a saber � = n, en una deducción semejante a la de Y0(x), pero con más 
detalles en los cálculos llega a la segunda solución

Esto coincide con Y0(x) si n = 0, con la advertencia que en este caso no aparece la última sumatoria.
La solución general de la ecuación de Bessel de orden un entero positivo n es por tanto

Hasta aquí, Y�(x) para � un entero no negativo. No es necesaria esta función de Bessel de segunda 
clase para la solución general de la ecuación de Bessel en otros casos. Sin embargo, es posible extender 
esta defi nición de Y�(x) para incluir todos los valores reales de � haciendo

Para cualquier entero no negativo n, muestre que

Y� es función de orden � de Neumann-Bessel. Esta función es linealmente independiente de J�(x) para x > 0, 
y permite escribir la solución general de la ecuación de Bessel de orden � en todos los casos como

En las fi guras 4.6 y 4.7 se muestran las gráfi cas de algunas funciones de Bessel de ambas clases.

y(x) = aJ0(x) + bY0(x),

Yn(x) = 2

π

[
Jn(x)

[
ln

(x

2

)
+ γ

]
+

∞∑

k=1

(−1)k+1[∅(k) + ∅(k + 1)]
22k+n+1k!(k + n)! x2k+n

]

− 2

π

n−1∑

k=0

(n − k − 1)!
22k−n+1k! x2k−n.

y(x) = aJn(x) + bYn(x).

Yν(x) = 1

sen(νπ)
[Jν(x) cos(νπ) − J−ν(x)].

Yn(x) = lím
ν→n

Yν(x).

y(x) = aJν(x) + bYν(x).

y

x

0.2

1 3

1.0 y � J0(x)

y � J1(x)

y � J2(x)

y

x

0.2

51

0.4

y � Y1(x)y � Y0(x)

y � Y2(x)

FIGURA 4.6 Funciones de Bessel de la 
primera clase.

FIGURA 4.7 Funciones de Bessel de la 
segunda clase.

4.2 Funciones de Bessel
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Es interesante observar que las soluciones de la ecuación de Bessel ilustran todos los casos del teo-
rema de Frobenius. El caso 1 ocurre si 2� no es un entero, el caso 2 si � = 0, el caso 3 sin término loga-
ritmo si � = n + 12 para algún entero no negativo n, y el caso 3 con un término logaritmo si � es un entero 
positivo.

En las aplicaciones y los modelos de sistemas físicos, la ecuación de Bessel aparece en forma dis-
frazada, requiriendo de un cambio de variables para escribir la solución en términos de las funciones de 
Bessel.

EJEMPLO 4.2

Considere la ecuación diferencial

Sea y = x2u y calcule

Sustituya éstos en la ecuación diferencial para obtener

Agrupe términos para escribir

Divida entre 9x2 para obtener

que es la ecuación de Bessel de orden � = 13. Como 2� no es un entero, la solución general para u es

Por tanto, la ecuación diferencial original tiene solución general

para x > 0. ■

Si a, b, y c son constantes y n es cualquier entero no negativo, entonces, es rutinario probar que 
xaJ�(bxc) y xaY�(bxc) son las soluciones de la ecuación diferencial general

(4.12)

EJEMPLO 4.3

Considere la ecuación diferencial

9x2y′′ − 27xy′ + (9x2 + 35)y = 0.

y′ = 2xu + x2u′, y′′ = 2u + 4xu′ + x2u′′.

18x2u + 36x3u′ + 9x4u′′ − 54x2u − 27x3u′ + 9x4u + 35x2u = 0.

9x4u′′ + 9x3u′ + (9x4 − x2)u = 0.

x2u′′ + xu′ +
(
x2 − 1

9

)
u = 0,

u(x) = aJ1/3(x) + bJ−1/3(x).

y(x) = ax2J1/3(x) + bx2J−1/3(x)

y′′ −
(

2a − 1

x

)
y′ +

(
b2c2x2c−2 + a2 − ν2c2

x2

)
y = 0.

y′′ −
(

2
√

3 − 1

x

)
y′ +

(
784x6 − 61

x2

)
y = 0.

1
9
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Para encajar esto dentro del esquema de la ecuación (4.12), debe elegir claramente a = 
√

3. Debido al 
término x6, intente poner 2c − 2 = 6, así c = 4. Ahora debe elegir b y � de manera que

de donde b = 7, y

Esta ecuación se satisface por � = 2. Por tanto, la solución general de la ecuación diferencial es

para x > 0. Aquí c1 y c2 son constantes arbitrarias. ■

4.2.4 Funciones de Bessel modifi cadas

Algunas veces un modelo de un fenómeno físico requerirá una función de Bessel modifi cada para su solu-
ción. Se probará cómo se obtienen éstas. Empiece con la solución general

de la función de Bessel de orden cero

Sea k = i. Entonces

es la solución general de

para x > 0. Ésta es una ecuación de Bessel modifi cada de orden cero, y J0(ix) es una ecuación de Bessel 
modifi cada de primera clase de orden cero. Usualmente se denota

Normalmente no se usa Y0(ix), pero se elige la segunda solución como

para x > 0. Aquí γ es la constante de Euler. K0 es una función de Bessel modifi cada de segunda clase de 
orden cero. La fi gura 4.8 muestra las gráfi cas de I0(x) y K0(x).

784 = b2c2 = 16b2,

y � K0(x)

y � I0(x)

y

x
0 3

1

5

a2 − ν2c2 = 3 − 16ν2 = −61.

y(x) = c1x
√

3J2

(
7x4

)
+ c2x

√
3Y2(7x4),

y(x) = c1J0(kx) + c2Y0(kx)

y′′ + 1

x
y′ + k2y = 0.

y(x) = c1J0(ix) + c2Y0(ix)

y′′ + 1

x
y′ − y = 0

I0(x) = J0(ix) = 1 + 1

22 x2 + 1

2242 x4 + 1

224262 x6 + · · · .

K0(x) = [ln(2) − γ ]I0(x) − I0(x) ln(x) + 1

4
x2 + · · ·

FIGURA 4.8 Funciones de Bessel 
modifi cadas.
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La solución general de

es por tanto

para x > 0. La solución general de

(4.13)

es

(4.14)

para x > 0.
Por un cálculo rutinario usando el desarrollo en serie, encuentre que

para cualquier constante distinta de cero α.
Con frecuencia se tiene interés en el comportamiento de una función cuando la variable toma valores 

extremadamente grandes. Esto se llama el comportamiento asintótico, y se abordará más adelante con 
cierto detalle, en general, para las funciones de Bessel. Sin embargo, con sólo algunos renglones de traba-
jo es posible tener alguna idea de cómo I0(x) se comporta para x grande. Empiece con

en donde cI0(x) es una solución para cualquier constante c. Bajo el cambio de variables y = ux−1/2, esta 
ecuación se transforma en

con solución u(x) = c
√

xI0(x) para x > 0 y c cualquier constante. Siga transformándola haciendo 
u = νex, obteniendo

con solución ν(x) = c
√

xe−xI0(x). Como está interesado en el comportamiento de las soluciones para x 
grande, intente una solución en serie de esta ecuación diferencial para ν de la forma

Sustituya en la ecuación diferencial y agrupe los términos para obtener

y′′ + 1

x
y′ − y = 0

y(x) = c1I0(x) + c2K0(x)

y′′ + 1

x
y′ − b2y = 0

es
y(x) = c1I0(bx) + c2K0(bx)

y′′ + 1

x
y′ − y = 0,

u′′ =
(

1 − 1

4x2

)
u,

v′′ + 2v′ + 1

4x2 v = 0,

v(x) = 1 + c1
1

x
+ c2

1

x2 + c3
1

x2 + · · · .

(
−2c1 + 1

4

)
1

x2 +
(

2c1 − 4c2 + 1

4
c1

)
1

x3

+
(

6c2 − 6c3 + 1

4
c2

)
1

x4
+

(
12c3 − 8c4 + 1

4
c3

)
1

x5
+ · · · = 0.

∫
xI0(αx) dx = x

α
I ′

0(αx) + C
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Cada coefi ciente debe hacerse cero, así

y así sucesivamente. Entonces

y el patrón es claro:

Entonces, para alguna constante c,

La serie de la derecha diverge, pero la suma de los primeros N términos se aproxima a I0(x) tanto como 
quiere, para x sufi cientemente grande. Esto se llama desarrollo asintótico de I0(x). Por un análisis, que no 
llevará a cabo, se puede probar que c = 1/

√
2π .

Estos resultados, acerca de las funciones modifi cadas de Bessel, serán aplicados brevemente a una des-
cripción de los efectos en la superfi cie del fl uido de una corriente alterna a través de una sección circular 
transversal de un alambre.

4.2.5 Algunas aplicaciones de las funciones de Bessel

Las funciones de Bessel aparecen en distintos contextos. Aquí se discutirán algunas de estas situaciones.

La longitud crítica de una barra vertical Considere una barra elástica delgada de densidad uniforme 
y sección circular transversal, sujeta en una posición vertical como en la fi gura 4.9. Si la barra es sufi -
cientemente larga y el extremo superior se desplaza y se mantiene en esa posición hasta que la barra 
está en reposo, la barra quedará inclinada o desplazada cuando se suelte. Tal longitud se conoce como 
una longitud inestable. En algunas longitudes más cortas, sin embargo, la barra volverá a la posición 
vertical cuando se suelte, después de algunas oscilaciones pequeñas. Estas longitudes se conocen como 
longitudes estables para la barra. Nos gustaría determinar la longitud crítica LC, el punto de transición 
de estable a inestable.

Suponga que la barra tiene longitud L y peso w por unidad de longitud. Sea a el radio de su sección 
transversal circular y E el módulo de Young para el material de la barra (ésta es la razón de la fatiga del 

−2c1 + 1

4
= 0,

2c1 − 4c2 + 1

4
c1 = 0,

6c2 − 6c3 + 1

4
c2 = 0,

12c3 − 8c4 + 1

4
c3 = 0,

c1 = 1

8
,

c2 = 9

16
c1 = 9

16

1

8
= 32

2 · 82 ,

c3 = 25

24
c2 = 25

24

32

2 · 82
= 3252

3!83
,

c4 = 49

32
c3 = 49

32

3252

3!83 = 325272

4!84 ,

v(x) = 1 + 1

8

1

x
+ 32

2 · 82

1

x2 + 3252

3!83

1

x3 + 325272

4!84

1

x4 + · · · .

I0(x) = c
ex

√
x

(
1 + 1

8

1

x
+ 32

2 · 82

1

x2 + 3252

3!83

1

x3 + 325272

4!84

1

x4 + · · ·
)

.
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esfuerzo correspondiente por el alargamiento o la compresión lineal). El momento de inercia alrededor 
de un diámetro es I = πa4/4. Asuma que la barra está en equilibrio y después se desplaza ligeramente 
desde la vertical, como en la fi gura 4.10. El eje x es vertical a lo largo de la posición original de la barra, 
con la parte positiva hacia abajo y el origen en el extremo superior de la barra en equilibrio. Sean P(x, y) y 
Q(ξ, η) puntos en la barra desplazada, como se muestra. El momento alrededor de P del peso de un ele-
mento w
x en Q es w 
x[y(ξ) − y(x)]. Al integrar esta expresión obtiene el momento alrededor de P del 
peso de la barra arriba de P. Suponga a partir de la teoría de la elasticidad que este momento alrededor de 
P es EIy′′(x). Debido a que la parte de la barra arriba de P está en equilibrio, entonces

Diferencie esta ecuación respecto a x:

Entonces

Sea u = y′ para obtener la ecuación diferencial de segundo orden

Compare esta ecuación con la ecuación (4.12). Necesita

Esto lo lleva a elegir

La solución general para u(x) es

Como no hay momento de torsión en el extremo superior de la barra,

x
Q (ξ, η)
P (x, y)

(L, 0)

(0, 0)

FIGURA 4.9 FIGURA 4.10

EIy′′(x) =
∫ x

0
w[y(ξ) − y(x)] dξ.

EIy(3)(x) = w[y(x) − y(x)] −
∫ x

0
wy′(x) dξ = −wxy′(x).

y(3)(x) + w

EI
xy′(x) = 0.

u′′ + w

EI
xu = 0.

2a − 1 = 0, a2 − ν2c = 0, 2c − 2 = 1, b2c2 = w

EI
.

a = 1

2
, c = 3

2
, ν = 1

3
, b = 2

3

√
w

EI
.

u(x) = y′(x) = c1
√

xJ1/3

(
2

3

√
w

EI
x3/2

)
+ c2

√
xJ−1/3

(
2

3

√
w

EI
x3/2

)
.

y′′(0) = 0.

y
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Queda al estudiante probar que esta condición requiere c1 = 0. Entonces

Como el extremo inferior de la barra está sujeto verticalmente, y′(L) = 0, así 

Debido a que c2 debe ser distinto de cero para evitar una solución trivial, necesita

La longitud crítica LC es el menor número positivo que puede ser sustituido para L en esta ecuación. 
A partir de una tabla de las funciones de Bessel, encuentre que el menor número positivo α tal que 
J−1/3(α) = 0 es aproximadamente 1.8663. Por tanto,

así

Corriente alterna en un alambre Analizará la corriente alterna en un alambre de sección transversal 
circular culminando en una descripción matemática del efecto superfi cial (a frecuencias altas, la mayor 
parte de la corriente fl uye a través de una capa delgada en la superfi cie del alambre).

Empiece con los principios generales de Ampère y Faraday, llamados así en su honor. La ley de 
Ampère establece que la integral de línea de una fuerza magnética alrededor de una curva cerrada (circui-
to), es igual a 4π veces la integral de la corriente eléctrica a través del circuito. La ley de Faraday establece 
que la integral de línea de la fuerza eléctrica alrededor de un circuito cerrado, es igual al negativo de la 
derivada respecto al tiempo de la inducción magnética a través del circuito.

Usará estas leyes para determinar la densidad de la corriente en el radio r en un alambre de sección 
transversal circular y radio a. Sean ρ la resistencia específi ca del alambre, μ su permeabilidad, y x(r, t) y 
H(r, t) la densidad de la corriente y la intensidad magnética, respectivamente, en el radio r y el tiempo t.

Para empezar, aplique la ley de Ampère a un círculo de radio r que tiene su eje a lo largo del eje del 
alambre. Obtiene

o

(4.15)

Entonces

así

(4.16)

y′(x) = c2
√

xJ−1/3

(
2

3

√
w

EI
x3/2

)
.

c2
√

LJ−1/3

(
2

3

√
w

EI
L3/2

)
= 0.

J−1/3

(
2

3

√
w

EI
L3/2

)
= 0.

2

3

√
w

EI
L

3/2
C ≈ 1.8663,

LC ≈ 1.9863

(
EI

w

)1/3

.

2πrH = 4π

∫ r

0
x(2πξ) dξ,

rH = 4π

∫ r

0
xξ dξ.

∂

∂r
(rH) = 4πxr,

1

r

∂

∂r
(rH) = 4πx(r, t).
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Ahora aplique la ley de Faraday al circuito rectangular de la fi gura 4.11, teniendo un lado de longitud 
L a lo largo del eje del cilindro. Obtiene

Diferencie esta ecuación respecto a r para obtener

(4.17)

Quiere usar las ecuaciones (4.16) y (4.17) para eliminar H. Primero multiplique la ecuación (4.17) por r 
para obtener

Diferencie respecto a r:

en el cual sustituye de la ecuación (4.16) en los siguientes dos últimos pasos. Entonces

(4.18)

La idea es resolver esta ecuación diferencial parcial para x(r, t), después obtener H(r, t) a partir de la ecua-
ción (4.15). Para hacer esto, suponga que la corriente a través del alambre es una corriente alterna dada por 
C cos(ωt), con C constante. Así el periodo de la corriente es 2π/ω. Es conveniente escribir z(r, t) = x(r, t) 
+ iy(r, t), así x(r, t) = Re(z(r, t)), y pensar en la corriente como la parte real de la exponencial compleja 
Ceiωt . La ecuación diferencial (4.18), con z en lugar de x, es

(4.19)

Para resolver esta ecuación, intente una solución de la forma

Sustituya esta solución propuesta en la ecuación (4.19) para obtener

Divida entre eiωt y lleve a cabo las diferenciaciones para obtener

donde

L

r

FIGURA 4.11

ρLx(0, t) − ρLx(r, t) = − ∂

∂t

∫ r

0
μLH(ξ, t) dξ.

ρ
∂x

∂r
= μ

∂H

∂t
.

ρr
∂x

∂r
= μr

∂H

∂t
.

ρ
∂

∂r

(
r

∂x

∂r

)
= μ

∂

∂r

(
r

∂H

∂t

)
= μ

∂

∂t

(
∂

∂r
(rH)

)
= μ

∂

∂t
(4πxr) = 4πμr

∂x

∂t
,

ρ
∂

∂r

(
r

∂x

∂r

)
= 4πμr

∂x

∂t
.

ρ
∂

∂r

(
r
∂z

∂r

)
= 4πμr

∂z

∂t
.

z(r, t) = f (r)eiωt .

ρ
∂

∂r

(
rf ′(r)eiωt

)
= 4πμrf (r)iωeiωt .

f ′′(r) + 1

r
f ′(r) − b2f (r) = 0,

b2 = 4πμω

ρ
i.
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Comparando esta ecuación con la ecuación (4.13), escriba la solución general para f (r) en términos de las 
funciones de Bessel modifi cadas:

donde

Debido al término logaritmo en K0(r), el cual tiene límite infi nito conforme r → 0 (centro del alambre), 
elija c2 = 0. Así f (r) tiene la forma

y

Para determinar la constante, use el hecho que (la parte real de) Ceiωt es la corriente total, así, usando la 
ecuación (4.14),

Entonces

y

Entonces x(r, t) = Re(z(r, t)), y queda para que el estudiante pruebe que

Puede usar la solución de z(r, t) para modelar el efecto superfi cial. Toda la corriente fl uye a través del 
cilindro de radio r dentro del alambre (y con el mismo eje central que el alambre) es la parte real de

y algunos cálculos muestran que ésta es la parte real de

Por tanto,

Cuando la frecuencia ω es grande, entonces la magnitud de b es grande, y puede usar el desarrollo asintó-
tico de I0(x) dada en la sección 4.2.4 para escribir

f (r) = c1I0(br) + c2K0(br),

b =
√

4πμω

ρ

1 + i√
2

.

f (r) = c1I0(br)

z(r, t) = c1I0(br)eiωt .

i

C = 2πc1

∫ a

0
rI0(br) dr = 2πac1

b
I ′

0(ba).

c1 = bC

2πa

1

I ′
0(ba)

z(r, t) = bC

2πa

1

I ′
0(ba)

I0(br)eiωt .

H(r, t) = Re

(
2C

aI ′
0(ba)

I0(br)eiωt

)
.

b

2πaI ′
0(ba)

Ceiωt

∫ r

0
I0(br)2πr dr,

rI ′
0(br)

aI ′
0(ba)

Ceiωt .

la corriente en el cilindro de radio r

la corriente total en el alambre
= r

a

I ′
0(br)

I ′
0(ba)

.

r

a

I ′
0(br)

I ′
0(ba)

≈ r

a

ebr

√
br

√
ba

eba
=

√
r

a
e−b(a−r).
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Para cualquier r, con 0 < r < a, puede hacer r
a
e− −  tan pequeño como quiera tomando la frecuencia 

ω sufi cientemente grande. Esto signifi ca que para frecuencias grandes la mayor parte de la corriente está 
fl uyendo cerca de la superfi cie exterior del alambre. Éste es el efecto superfi cial.

4.2.6 Una función generadora para Jn(x)

Ahora de regreso al desarrollo de las propiedades generales de las funciones de Bessel. Para los polino-
mios de Legendre, se elabora una función generadora L(x, t) con la propiedad que

En forma similar, ahora construirá una función generadora para las funciones de Bessel de orden entero 
de la primera clase.

L(x, t) =
∞∑

n=0

Pn(x)tn.

(4.20)

Para entender por qué la ecuación (4.20) es cierta, empiece con el desarrollo familiar de Maclaurin de 
la función exponencial para escribir

Para ilustrar la idea, busque el coefi ciente de t4 en este producto. Obtiene t4 cuando x4t4/244! de la izquier-
da está multiplicado por 1 de la derecha, y cuando x5t5/255! está multiplicado por −x/2t de la derecha, 
y cuando x6t6/266! está multiplicado por x2/222!t2 de la derecha, y así sucesivamente. De esta manera 
encuentre que el coefi ciente de t4 en este producto es

Ahora compare esta serie con

Un razonamiento semejante establece que el coefi ciente de tn en la ecuación (4.20) es Jn(x) para cualquier 
entero no negativo n. Para enteros negativos, puede usar el hecho de que

TEOREMA 4.12 Función generadora para las funciones de Bessel

ex(t−1/t)/2 =
∞∑

n=−∞
Jn(x)tn.

ex(t−1/t)/2 = ext/2e−x/2t

1

244!x
4 − 1

265!x
5 + 1

282!6!x
6 − 1

2103!7!x
7 + · · · =

∞∑

n=0

(−1)n

22n+4n!(n + 4)!x
2n+4.

J4(x) =
∞∑

n=0

(−1)n

22n+4n!Ŵ(n + 4 + 1)
x2n+4 =

∞∑

n=0

(−1)n

22n+4n!(n + 4)!x
2n+4.

J−n(x) = (−1)nJn(x).

=
( ∞∑

m=0

1

m!

(
xt

2

)m
)( ∞∑

k=0

1

k! (−1)k
( x

2t

)k
)

(
1 + xt

2
+ 1

2!
x2t2

22
+ 1

3!
x3t3

23
+ · · ·

)(
1 − x

2t
+ 1

2!
x2

22t2
− 1

3!
x3

23t3
+ · · ·

)
.
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4.2.7 Una fórmula integral para Jn(x)

Usando la función generadora, es posible deducir una fórmula integral para Jn(x) cuando n es un entero 
no negativo.

Si n es un entero no negativo, entonces

■

Prueba Empiece con el hecho de que

Como J−n(x) = (−1)nJn(x),

(4.21)

Ahora sea

Entonces

y

Por tanto, la ecuación (4.21) se convierte en

La parte real del lado izquierdo de esta ecuación debe ser igual a la parte real del lado derecho, y similar-
mente para las partes imaginarias:

(4.22)

TEOREMA 4.13 Integral de Bessel

Jn(x) = 1

π

∫ π

0
cos(nθ − x sen(θ)) dθ.

ext/2e−x/2t =
∞∑

n=−∞
Jn(x)tn.

ext/2e−x/2t = ex(t−1/t)/2 =
−1∑

n=−∞
Jn(x)tn + J0(x) +

∞∑

n=1

Jn(x)tn

=
∞∑

n=1

(−1)nJn(x)t−n + J0(x) +
∞∑

n=1

Jn(x)tn

= J0(x) +
∞∑

n=1

Jn(x)

(
tn + (−1)n

1

tn

)

= J0(x) +
∞∑

n=1

J2n(x)

(
t2n + 1

t2n

)
+

∞∑

n=1

J2n−1(x)

(
t2n−1 − 1

t2n−1

)
.

t = eiθ = cos(θ) + i sen(θ).

Entonces
t2n + 1

t2n
= e2inθ + e−2inθ = 2 cos(2nθ)

y

t2n−1 − 1

t2n−1 = ei(2n−1)θ − e−i(2n−1)

ex(t−1/t)/2 = eix sen(θ)

= cos(x sen(θ)) + i sen(x sen(θ))

= J0(x) + 2
∞∑

n=1

J2n(x) cos(2nθ) + 2i

∞∑

n=1

J2n−1(x) sen((2n − 1)θ).

cos(x sen(θ)) = J0(x) + 2
∞∑

n=1

J2n(x) cos(2nθ)

4.2 Funciones de Bessel

θ = 2i sen((2n − 1)θ).

0
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y

(4.23)

Ahora reconocer que las series de la derecha en las ecuaciones (4.22) y (4.23) son series de Fourier. 
Enfocándose, por el momento en la ecuación (4.22), su serie de Fourier es por consiguiente 

Como conoce los coefi cientes en un desarrollo de Fourier, concluye que

(4.24)

y

(4.25)

Similarmente, a partir de la ecuación (4.23), 

de manera que los coefi cientes de Fourier son

(4.26)

y

(4.27)

Sumando las ecuaciones (4.24) y (4.27), tiene

Así

Para completar la prueba, sólo debe observar que cos(kθ − x sen(θ)) es una función par, de donde �π

−π = 
2�π

0, así

sen(x sen(θ)) = 2
∞∑

n=1

J2n−1(x) sen((2n − 1)θ).

cos(x sen(θ)) = 1

2
a0 +

∞∑

k=1

ak cos(kθ) + bk sen(kθ)

= J0(x) + 2
∞∑

n=1

J2n(x) cos(2nθ).

ak = 1

π

∫ π

−π

cos(x sen(θ)) cos(kθ) dθ =
{

0 si k es impar

2Jk(x) si k es par

bk = 1

π

∫ π

−π

cos(x sen(θ)) sen(kθ) dθ = 0 para k = 1, 2, 3, . . . .

sen(x sen(θ)) = 1

2
A0 +

∞∑

k=1

Ak cos(kθ) + Bk sen(kθ)

= 2
∞∑

n=1

J2n−1(x) sen((2n − 1)θ),

Ak = 1

π

∫ π

−π

sen(x sen(θ)) cos(kθ) dθ = 0 para k = 0, 1, 2, . . .

Bk = 1

π

∫ π

−π

sen(x sen(θ)) sen(kθ) dθ =
{

0 si k es par

2Jk(x) si k es impar
.

1

π

∫ π

−π

cos(x sen(θ)) cos(kθ) dθ + 1

π

∫ π

−π

sen(x sen(θ)) sen(kθ) dθ

= 1

π

∫ π

−π

cos(kθ − x sen(θ)) dθ =
{

2Jk(x) si k es par

2Jk(x) si k es impar
.

Jk(x) = 1

2π

∫ π

−π

cos(kθ − x sen(θ)) dθ para k = 0, 1, 2, 3, . . . .

Jk(x) = 1

π

∫ π

0
cos(kθ − x sen(θ)) dθ para k = 0, 1, 2, 3, . . . .

0

0
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4.2.8 Una relación recursiva para Jv(x)

Deducirá tres relaciones de tipo recursivo que involucran las funciones de Bessel de primera clase. Esto 
provee información acerca de la función o su derivada en términos de funciones del mismo tipo, pero de 
índice menor. Empezamos con dos relaciones que involucran derivadas.

Si ν es un número real, entonces

(4.28)

Prueba Empiece con el caso que ν no es un entero negativo. Por cálculo directo,

Ahora extienda este resultado al caso que ν es un entero negativo, a saber ν = −m con m un entero 
positivo, usando el hecho de que

Queda este detalle al estudiante. ■

TEOREMA 4.14

4.2 Funciones de Bessel

Si ν es un número real, entonces

�  (4.29)

La verifi cación de esta relación es semejante a la usada en la ecuación (4.28).
Mediante estas dos fórmulas recursivas que involucran derivadas, puede deducir la siguiente relación 

entre las funciones de Bessel de primera clase de órdenes diferentes.

TEOREMA 4.15

TEOREMA 4.16

Sea ν un número real. Entonces para x > 0,

(4.30)

Prueba Efectúe las diferenciaciones en las ecuaciones (4.28) y (4.29) para escribir

d

dx
(xνJν(x)) = xνJν−1(x).

d

dx
(xνJν(x)) = d

dx

[
xν

∞∑

n=0

(−1)n

22n+νn!Ŵ(n + ν + 1)
x2n+ν

]

= d

dx

[ ∞∑

n=0

(−1)n

22n+νn!Ŵ(n + ν + 1)
x2n+2ν

]

=
∞∑

n=0

(−1)n2(n + ν)

22n+νn!(n + ν)Ŵ(n + ν)
x2n+2ν−1

= xν

∞∑

n=0

(−1)n

22n+ν−1n!Ŵ(n + ν)
x2n+ν−1 = xνJν−1(x).

J−m(x) = (−1)mJm(x).

d

dx
(x−νJν(x)) = −x−νJν+1(x).

2ν

x
Jν(x) = Jν+1(x) + Jν−1(x).

xνJ ′
ν(x) + νxν−1Jν(x) = xνJν−1(x)
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y

Multiplique la primera ecuación por x−ν y la segunda por xν para obtener

y

Restando la segunda de estas ecuaciones de la primera, obtiene la conclusión del teorema. ■

EJEMPLO 4.4

Previamente se afi rmó que

resultados obtenidos directamente de la serie infi nita para estas funciones de Bessel. Poniendo ν = 1
2 en 

la ecuación (4.30), obtiene

Entonces

Entonces, poniendo ν = 3
2 en la ecuación (4.30), obtiene

Entonces

Este proceso puede continuarse indefi nidamente. El punto es que ésta es una mejor manera de generar las 
funciones de Bessel Jn+1/2(x) que refi riéndose cada vez a la serie infi nita. ■

x−νJ ′
ν(x) − νx−ν−1Jν(x) = −xνJν+1(x).

J ′
ν(x) + ν

x
Jν(x) = Jν−1(x)

J ′
ν(x) − ν

x
Jν(x) = −Jν+1(x).

J1/2(x) =
√

2

πx
sen(x), J−1/2(x) =

√
2

πx
cos(x),

1

x
J1/2(x) = J3/2(x) + J−1/2(x).

J3/2(x) = 1

x
J1/2(x) − J−1/2(x)

= 1

x

√
2

πx
sen(x) −

√
2

πx
cos(x)

=
√

2

πx

(
1

x
sen(x) − cos(x)

)
.

3

x
J3/2(x) = J5/2(x) + J1/2(x).

J5/2(x) = −J1/2(x) + 3

x
J3/2(x)

= −
√

2

πx
sen(x) + 3

x

√
2

πx

(
1

x
sen(x) − cos(x)

)

=
√

2

πx

[
− sen(x) + 3

x2 sen(x) − 3

x
cos(x)

]
.
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4.2.9 Ceros de Jv(x)

En varias de las aplicaciones revisadas se ha visto que algunas veces es necesario saber dónde Jν(x) = 0. 
Tales puntos son los ceros de Jν(x). Probará que Jν(x) tiene un número infi nito de ceros simples positivos 
y también obtendrá estimaciones para sus localizaciones.

Como punto inicial, recuerde de la ecuación (4.12) que y = Jν(kx) es una solución de

Sea k > 1. Ahora ponga u(x) = 
√

kxJν(kx). Sustituya éste en la ecuación de Bessel para obtener

(4.31)

La intuición dicta que, conforme x crece, el término 
(
ν2 − 1

4

)
/x2 ejerce menos infl uencia en esta ecuación para 

u, la cual empieza a verse más como u′′ + k2u = 0, con soluciones en seno y coseno. Esto sugiere que para x 
grande, Jν(kx) está aproximada por una función trigonométrica, dividida entre 

√
kx. Debido a que tal función 

tiene un número infi nito de ceros positivos, lo mismo Jν(kx).
Para explotar esta intuición, considere la ecuación

(4.32)

Ésta tiene solución υ(x) = sen(x − α), con α cualquier número positivo. Multiplique la ecuación (4.31) 
por υ y la ecuación (4.32) por u y reste para obtener

Escriba esta ecuación como

Ahora calcule

Aplique a la última integral, el teorema del valor medio para integrales. Existe algún número τ entre α y 
α + π tal que

Ahora sen(x − α) > 0 para α < x < α + π. Más aún, puede elegir α sufi cientemente grande (dependiendo 
de ν y k) que

4.2 Funciones de Bessel

x2y′′ + y′ +
(
k2x2 − ν2

)
y = 0.

obtener

u′′(x) +
(

k2 −
ν2 − 1

4

x2

)
u(x) = 0.

v′′(x) + v(x) = 0.

uv′′ − vu′′ =
(

k2 −
ν2 − 1

4

x2

)
uv − uv.

(uv′ − vu′)′ =
(

k2 − 1 −
ν2 − 1

4

x2

)
uv.

∫ α+π

α

(uv′ − vu′)′ dx

= u(α + π)v′(α + π) − u(α)v′(α) − v(α + π)u′(α + π) + v(α)u′(α)

= −u(α + π) − u(α)

=
∫ α+π

α

(
k2 − 1 −

ν2 − 1
4

x2

)
u(x)v(x) dx.

−u(α + π) − u(α) = u(τ)

∫ α+π

α

(
k2 − 1 −

ν2 − 1
4

x2

)
sen(x − α) dx.

k2 − 1 −
ν2 − 1

4

x2 > 0
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para α ≤ x ≤ α + π. Por tanto, la integral de la derecha en la última ecuación es positiva. Entonces u(α + π), 
u(α) y u(τ) no pueden ser todas del mismo signo. Como u es continua, u debe tener un cero en algún 
sitio entre α y α + π. Como u(x) = 

√
kxJν(kx), esto prueba que Jν(kx) tiene al menos un cero entre α y 

α + π.
En general, si α es cualquier número sufi cientemente grande y k > 1, entonces Jν(x) tiene un cero 

entre α y α + kπ.
Ahora es posible establecer un resultado general sobre los ceros positivos de las funciones de Bessel 

de la primera clase.

Sea k > 1 y ν un número real. Entonces, para α sufi cientemente grande, existe un cero de Jν(x) entre α + 
knπ y α + k(n + 1)π para n = 0, 1, 2, . . . Más aún, cada cero es simple.

Prueba El argumento, dado antes del teorema prueba que para cualquier número sufi cientemente grande 
(dependiendo de ν y la seleccionada k > 1), existe un cero de Jν(x) en el intervalo de ese número a ese 
número más kπ. Así existe un cero entre α y α + kπ, y entonces entre (α + kπ) y (α + (k + 1)π), y así 
sucesivamente.

Más aún, cada cero es simple. Porque si un cero β tiene multiplicidad mayor que 1, entonces Jν(β) = 
J ′

ν (β) = 0. Pero entonces Jν(x) es una solución del problema con valor inicial

Debido a que la solución de este problema es única, y la función cero es una solución, esto implicará que 
Jν(x) = 0 para x > 0, una contradicción. Por tanto, cada cero es simple. ■

El teorema implica ordenar los ceros positivos de Jν(x) en una sucesión creciente

así que límn→∞ jn = ∞.
Se puede probar que para ν > −1, Jν(x) no tiene ceros complejos.
Probará que Jν no tiene ceros positivos comunes con Jν+1 o Jν−1. Sin embargo, puede afi rmar que 

ambos Jν−1 y Jν+1 tienen al menos un cero entre cualquier par de ceros positivos de Jν. Éste es el lema 
de entrelazado enunciado como el teorema 4.18, y signifi ca que las gráfi cas de estas tres funciones se 
entrelazan entre ellas, como se puede ver en la fi gura 4.12 para J7(x), J8(x) y J9(x). Primero necesita lo 
siguiente.

TEOREMA 4.17 Ceros de Jv(x)

x2y′′ + y′ +
(
k2x2 − ν2

)
y = 0; y(β) = y′(β) = 0.

j1 < j2 < j3 < · · · ,

5 10 15 20 25 30 35

0.3

0.2

0.1

0

�0.1

�0.2

x

y
J8(x)

J9(x)J7(x)

FIGURA 4.12 Entrelazado de J7(x), J8(x) 
y J9(x).
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Sea ν un número real. Entonces, excepto posiblemente para x = 0, Jν no tiene un cero en común ni con 
Jν−1 ni con Jν+1. ■

Prueba Recuerde de la prueba del teorema 4.16 que

Si β � 0 y Jν(β) = Jν−1(β) = 0, entonces también J ′
ν (β) = 0. Pero entonces β debe ser un cero de multi-

plicidad al menos 2 para Jν, una contradicción.
Un uso similar de la relación

prueba que Jν tampoco puede compartir un cero con Jν+1. ■

4.2 Funciones de Bessel

LEMA 4.1

Sea ν cualquier número real. Sean a y b ceros positivos distintos de Jν. Entonces Jν−1 y Jν+1 cada uno tiene 
al menos un cero entre a y b.

Prueba Sea f (x) = xνJν(x). Entonces f (a) = f (b) = 0. Debido a que f es diferenciable en todos los puntos 
entre a y b, por el teorema de Rolle, existe algún c entre a y b en donde f ′ (c) = 0. Pero

de manera que f ′(c) = 0 implica que Jν−1(c) = 0.
Un razonamiento análogo, aplicado a g(x) = x−νJν(x), y usando la relación

probó que Jν+1 tiene un cero entre a y b. ■

La tabla siguiente da los primeros cinco ceros positivos de Jν(x) para ν = 0, 1, 2, 3, 4. Aquí los núme-
ros están redondeados al tercer lugar decimal. La propiedad de entrelazamiento de funciones de Bessel 
de índices sucesivos puede notarse observando hacia abajo las columnas. Por ejemplo, el segundo cero 
positivo de J2(x) cae entre el segundo cero positivo de J1(x) y J3(x).

4.2.10 Desarrollos de Fourier-Bessel

Tomando como guía los polinomios de Legendre, podría sospechar que las funciones de Bessel son orto-
gonales en algún intervalo. No lo son.

Sin embargo, sea ν cualquier número positivo. Sabe que Jν tiene una infi nidad de ceros positivos, los 
cuales puede ordenar en una sucesión ascendente

TEOREMA 4.18 Lema de entrelazado

J ′
ν(x) + ν

x
Jν(x) = Jν−1(x).

J ′
ν(x) − ν

x
Jν(x) = Jν+1(x)

f ′(x) = d

dx
(xνJν(x)) = xνJν−1(x),

d

dx
(x−νJν(x)) = −x−νJν+1(x),

j1 < j2 < j3 < · · · .

j1 j2 j3 j4 j5

J0(x) 2.405 5.520 8.654 11.792 14.931

J1(x) 3.832 7.016 10.173 13.323 16.470

J2(x) 5.135 8.417 11.620 14.796 17.960

J3(x) 6.379 9.760 13.017 16.224 19.410

J4(x) 7.586 11.064 14.373 17.616 20.827
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Para cada  jn puede considerar la función 
√

xJν(jnx) para 0 ≤ x ≤ 1 (así jnx varía de 0 a jn). Estas funciones 
son ortogonales en [0, 1], en el sentido de que la integral del producto de cualesquiera de estas funciones en 
[0, 1], es cero.

Sea ν ≥ 0. Entonces las funciones 
√

xJν(jnx), para n = 1, 2, 3, . . . , son ortogonales en [0, 1] en el sentido 
que

Éste es el mismo sentido de la ortogonalidad de los polinomios de Legendre en [−1, 1] y la ortogo-
nalidad de las funciones

en [−π, π].

Prueba Nuevamente invocando la ecuación (4.12), u(x) = Jν( jnx) satisface

Y v(x) = Jν(jmx) satisface

Multiplique la primera ecuación por v y la segunda por u y reste las ecuaciones resultantes para obtener

Esta ecuación se puede escribir

Divida entre x:

Escriba esta ecuación como

Entonces

Como jn � jm, esto prueba la ortogonalidad de estas funciones en [0, 1]. ■

Como es usual, siempre que hay una relación de ortogonalidad debe intentar los desarrollos tipo 
Fourier. Sea f defi nida en [0, 1]. ¿Cómo debe elegir los coefi cientes para tener un desarrollo

TEOREMA 4.19 Ortogonalidad

∫ 1

0
xJν(jnx)Jν(jmx) dx = 0 si n �= m.

1, cos(x), cos(2x), . . . , sen(x), sen(2x), . . .

x2u′′ + xu′ + (j2
nx2 − ν2)u = 0.

x2v′′ + xv′ + (j2
mx2 − ν2)v = 0.

x2u′′v + xu′v + (j2
nx2 − ν2)uv − x2v′′u − xv′u − (j2

mx2 − ν2)uv = 0.

x2(u′′v − uv′′) + x(u′v − uv′) = (j2
m − j2

n )x2uv.

Dividimos entre x:
x(u′′v − uv′′) + (u′v − uv′) = (j2

m − j2
n )xuv.

Escribimos esta ecuación como
[x(u′v − uv′)]′ = (j2

m − j2
n )xuv.

∫ 1

0
[x(u′v − uv′)]′dx = [x(u′v − uv′)]1

0

= J ′
ν(jn)Jν(jm) − Jν(jn)J

′
ν(jm) = 0

= (j2
m − j2

n )

∫ 1

0
xJν(jnx)Jν(jmx) dx.

tener un desarrollo

f (x) =
∞∑

n=1

anJν(jnx)?
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Use ahora una estrategia familiar, multiplique esta ecuación por xJν( jkx) e integre para obtener

La serie infi nita de las integrales se ha colapsado en un solo término debido a la ortogonalidad. Entonces

Estos números son los coefi cientes de Fourier-Bessel de f. Cuando estos números son usados en la serie, 
la 

∑∞
n=1 anJν(jnx) se llama desarrollo de Fourier-Bessel, o la serie de Fourier-Bessel, de f en términos de 

las funciones 
√

xJν(jnx).
Algunas veces se adopta un punto de vista diferente. Es común decir que las funciones Jν( jnx) son 

ortogonales en [0, 1] respecto a la función de peso ρ(x) = x. Esto signifi ca simplemente que la integral 
del producto de cualesquiera dos de estas funciones, y también multiplicada por ρ(x), es cero sobre el 
intervalo [0, 1]:

Ésta es la misma integral que ya se tenía para ortogonalidad, pero la integral está colocada en el contexto 
de la función de peso ρ(x), un punto de vista que notará en breve con la teoría de Sturm-Liouville. Poner 
ρ(x) = x en esta integral tiene el mismo efecto que poner un factor 

√
x  con cada Jν( jnx).

Como con los desarrollos de Fourier y de Fourier-Legendre, el hecho de que puede calcular los 
coefi cientes y escribir la serie no signifi ca que esté relacionada con la función de alguna manera en par-
ticular. El siguiente teorema de convergencia trata este tema.

4.2 Funciones de Bessel

p ∫ 1

0
xf (x)Jν(jkx) dx =

∞∑

n=1

an

∫ 1

0
xJν(jnx)Jν(jkx) dx = ak

∫ 1

0
xJ 2

ν (jkx) dx.

Entonces

ak =
∫ 1

0 xf (x)Jν(jkx) dx
∫ 1

0 xJ 2
ν (jkx) dx

.

∫ 1

0
ρ(x)Jν(jnx)Jν(jmx) dx = 0 si n �= m.

Sea f suave a pedazos en [0, 1]. Entonces, para 0 < x < 1,

donde an es el n-ésimo coefi ciente de Fourier-Bessel de f . ■

Enseguida un ejemplo de un desarrollo de Fourier-Bessel antes de aprender más acerca de los coefi -
cientes.

4.2.11 Coefi cientes de Fourier-Bessel

La integral �1
0 xJ 

2
ν
 (jkx) dx aparece en el denominador de la expresión para los coefi cientes de Fourier-

Bessel de cualquier función, de manera que es útil evaluar esta integral.

TEOREMA 4.20 Convergencia de la serie de Fourier-Bessel

∞∑

n=1

anJν(jnx) = 1

2
(f (x+) + f (x−)),

TEOREMA 4.21

Si ν ≥ 0, entonces

Observe aquí la importancia de que Jν y Jν+1 no puedan tener un cero positivo en común. Sabiendo que 
Jν(jk) = 0 implica que Jν+1(jk) � 0.

∫ 1

0
xJ 2

ν (jkx) dx = 1

2
J 2

ν+1(jk).
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Prueba A partir de la discusión anterior,

donde u(x) = Jν(jkx). Multiplique esta ecuación por 2u′ (x) para obtener

Puede escribir esta ecuación como

Ahora integre, teniendo en mente que u(1) = 0:

Entonces

Ahora en general

Entonces

así

Por tanto,

En vista de esta conclusión, el coefi ciente de Fourier-Bessel de f es

La serie de Fourier-Bessel aparecerá más adelante al resolver la ecuación de calor para cierto tipo 
de regiones. Entonces enfrentará la tarea de desarrollar la función de temperatura inicial en una serie de 
Fourier-Bessel. También verá un desarrollo de Fourier-Bessel cuando estudie las maneras normales 
de vibración en una membrana circular.

Generalmente, los coefi cientes de Fourier-Bessel son complicados de calcular debido a que las fun-
ciones de Bessel son difíciles de evaluar en puntos particulares, e incluso sus ceros deben ser aproximados. 
Sin embargo, con el poder computacional moderno frecuentemente hará aproximaciones con cualquier 
grado de exactitud que necesite.

x2u′′ + xu′ + (j2
k x2 − ν2)u = 0,

2x2u′u′′ + 2x(u′)2 + 2(j2
k x2 − ν2)uu′ = 0.

[x2(u′)2 + (j2
k x2 − ν2)u2]′ − 2j2

k xu2 = 0.

0 =
∫ 1

0
[x2(u′)2 + (j2

k x2 − ν2)u2]′ dx − 2j2
k

∫ 1

0
xu2 dx

= [x2(u′)2 + (j2
k x2 − ν2)u2]1

0 − 2j2
k

∫ 1

0
xu2 dx

= (u′(1))2 − 2j2
k

∫ 1

0
xu2 dx

= j2
k [J ′

k(jk)]2 − 2j2
k

∫ 1

0
x[Jν(jkx)]2 dx.

∫ 1

0
xJ 2

ν (jkx) dx = 1

2
[J ′

ν(jk)]2.

J ′
ν(x) − ν

x
Jν(x) = −Jν+1(x).

J ′
ν(jk) − ν

jk

Jν(jk) = −Jν+1(jk)

J ′
ν(jk) = −Jν+1(jk).

∫ 1

0
xJ 2

ν (jkx) dx = 1

2
[Jν+1(jk)]2.

an = 2

[Jν+1(jk)]2

∫ 1

0
xf (x)Jν(jnx) dx.
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EJEMPLO 4.5

Sea f (x) = x(1 − x) para 0 ≤ x ≤ 1. Como f es continua con una derivada continua, su serie de Fourier-
Bessel convergirá a f (x) en (0, 1):

donde

Calcule a1 hasta a4, usando ocho lugares decimales en los primeros cuatro ceros de J1(x):

Pese a que estas integraciones son aproximaciones, calcule:

y

Entonces, para 0 < x < 1.

La fi gura 4.13 muestra una gráfi ca de x(1 − x) y una gráfi ca de esta suma de cuatro términos de las funcio-
nes de Bessel en [0, 1]. La gráfi ca está dibujada en [−1, 3

2 ] para enfatizar que fuera de [0, 1], no se puede 

4.2 Funciones de Bessel

x(1 − x) =
∞∑

n=1

anJ1(jnx) para 0 < x < 1,

an = 2

[J2(jn)]2

∫ 1

0
x2(1 − x)J1(jnx) dx.

j1 = 3.83170597, j2 = 7.01558667, j3 = 10.17346814, j4 = 13.32369194.

a1 = 2

[J2(3.83170597)]2

∫ 1

0
x2(1 − x)J1(3.83170597x) dx

= 12.32930609
∫ 1

0
x2(1 − x)J1(3.83170597x) dx = 0.45221702,

a2 = 2

[J2(7.01558667)]2

∫ 1

0
x2(1 − x)J1(7.01558667x) dx

= 22.20508362
∫ 1

0
x2(1 − x)J1(7.01558667x) dx = −0.03151859,

a3 = 2

[J2(10.17346814)]2

∫ 1

0
x2(1 − x)J1(10.17346814x) dx

= 32.07568554
∫ 1

0
x2(1 − x)J1(10.17346814x) dx = 0.03201789,

a4 = 2

[J2(13.32369194)]2

∫ 1

0
x2(1 − x)J1(13.32369194x) dx

= 41.94557796
∫ 1

0
x2(1 − x)J1(13.32369194x) dx = −0.00768864.

x(1 − x) ≈ 0.45221702J1(3.83170597x) − 0.03151859J1(7.01558667x)

+ 0.03201789J1(10.17346814x) − 0.00768864J1(13.32369194x)

= −0.00768864.

94
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1. Pruebe que xaJν(bxc) es una solución de

En cada uno de los problemas 2 al 9, escriba la solución general 
de la ecuación diferencial en términos de las funciones xaJν(bxc) 
y xaJ−ν(bxc).

10.  Use el cambio de variables by =          para transformar la 
ecuación diferencial

en la ecuación diferencial

Use el resultado del problema 1 para encontrar la solución 
general de esta ecuación diferencial en términos de las fun-
ciones de Bessel, y use esta solución para resolver la ecuación 
diferencial original. Suponga que b es una constante positiva.

En cada uno de los problemas del 11 al 16, use el cambio de 
variables dado para transformar la ecuación diferencial en una, 
cuya solución general puede escribirse en términos de las fun-
ciones de Bessel. Use ésta para escribir la solución general de la 
ecuación diferencial original.

11. 4x2y′′ + 4xy′ + (x − 9)y = 0; z = 
√

x

12. 4x2y′′ + 4xy′ + (9x3 − 36)y = 0; z = x3/2

13. 9x2y′′ + 9xy′ + (4x2/3 − 16)y = 0; z = 2x1/3

14. 9x2y′′ − 27xy′ + (9x2 + 35)y = 0; u = y/x2

15. 36x2y′′ − 12xy′ + (36x2 + 7)y = 0; u = x−2/3y

16. 4x2y′′ + 8xy′ + (4x2 − 35)y = 0; u = y
√

x

17.  Pruebe que y(x) = 
√

xJ1/3(2kx3/2′3) es una solución de 
y′′ + k2xy = 0.

SECCIÓN 4.2 PROBLEMAS

afi rmar que x(1 − x) está aproximada por la serie de Fourier-Bessel, y de hecho, las gráfi cas divergen una 
de la otra fuera de [0, 1]. La exactitud en [0, 1] puede mejorarse calculando más términos de la serie. ■

0.50�0.5�1.0 1.0 1.5

�2.0

�1.5

�1.0

�0.5

y

x

FIGURA 4.13 Aproximación de x(1 − x) en 
[0, 1] por una serie de Fourier-Bessel.

y′′ −
(

2a − 1

x

)
y′ +

(
b2c2x2c−2 + a2 − ν2c2

x2

)
y = 0.

2. y′′ + 1

3x
y′ +

(
1 + 7

144x2

)
y = 0

4. y′′ − 5

x
y′ +

(
64x6 + 5

x2

)
y = 0

dy

dx
+ by2 = cxm

d2u

dx2
− bcxmu = 0.

3. y′′ + 1

x
y′ +

(
4x2 − 4

9x2

)
y = 0

5. y′′ + 3

x
y′ +

(
16x2 − 5

4x2

)
y = 0

6. y′′ − 3

x
y′ + 9x4y = 0

7. y′′ − 7

x
y′ +

(
36x4 + 175

16x2

)
y = 0

8. y′′ + 1

x
y′ − 1

16x2
y = 0

9. y′′ + 5

x
y′ +

(
81x4 + 7

4x2

)
y = 0

du
dx

1
u
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4.3 Teoría de Sturm-Liouville y desarrollos en funciones propias

4.3.1 El problema de Sturm-Liouville

En esencia, el mismo escenario ha aparecido tres veces:

ecuación diferencial =⇒ soluciones que son ortogonales en [a, b]

 =⇒ desarrollos en series de funciones arbitrarias de esas soluciones

 =⇒ teorema de convergencia para el desarrollo.

Primero las series (trigonométricas) de Fourier, luego polinomios de Legendre y series de Fourier-Legen-
dre, y después funciones de Bessel y desarrollos de Fourier-Bessel.

Esto fuerza la imaginación para pensar que las similitudes en los teoremas de convergencia no son 
pura coincidencia. Ahora se desarrolla una teoría general en la cual estos teoremas de convergencia enca-
jan naturalmente. Esto también ampliará su arsenal de herramientas en preparación para resolver ecuacio-
nes diferenciales parciales.

Considere la ecuación diferencial

(4.33) 

Dado un intervalo (a, b) en que los coefi cientes son continuos, busque valores de λ para los cuales esta 
ecuación tenga soluciones no triviales. Como verá, en algunos casos habrá condiciones en la frontera que 
deben satisfacerse (condiciones específi cas en a y b), y algunas veces no.

En cada uno de los problemas del 18 al 22, escriba la solución 
general de la ecuación diferencial en términos de las funciones 
xaJν(bxc) y xaYν(bxc).

18. 

19. 

20. 

21. 

22. 

23. Pruebe que

24. Pruebe que

25.  Sea α un cero positivo de J0(x). Pruebe que �1
0 J1(αx) dx = 

1/α.
26. Sean u(x) = J0(αx) y v(x) = J0(βx).

(a) Pruebe que xu′′ + u′ + α2xu = 0. Obtiene una ecuación 
diferencial similar para v.

(b) Multiplique la ecuación diferencial para u por v y la 
ecuación diferencial para v por u y reste para probar que

(c) Pruebe a partir de la parte (b) que

Éste es uno de los conjuntos de fórmulas llamadas integra-
les de Lommel.

27. Pruebe que [xI ′
0 (x)]′ = xI0(x).

28.  En cada uno de los incisos (a) al (d), encuentre (aproxima-
damente) los primeros cinco términos en el desarrollo de 
Fourier-Bessel 

∑∞
n=1 anJ1(jnx) de f (x), cada uno está defi -

nido para 0 ≤ x ≤ 1. Compare la gráfi ca de esta función con 
la gráfi ca de la suma de los primeros cinco términos en la 
serie.

(a) f (x) = x

(b) f (x) = e−x

(c) f (x) = xe−x

(d) f (x) = x2e−x

29.  Lleve a cabo el programa del problema 28, sólo que ahora 
use un desarrollo 

∑∞
n=1 anJ2( jnx).

y′′ − 3

x
y′ +

(
4 − 5

x2

)
y = 0

y′′ − 1

x
y′ +

(
1 − 3

x2

)
y = 0

y′′ − 5

x
y′ +

(
1 − 7

x2

)
y = 0

y′′ − 3

x
y′ +

(
1

4x
+ 3

x2

)
y = 0

y′′ − 1

x
y′ +

(
16x2 − 15

x2

)
y = 0

J5/2(x) =
√

2

πx

[(
3

x2
− 1

)
sen(x) − 3

x
cos(x)

]
.

J−5/2(x) =
√

2

πx

[(
3

x2
− 1

)
cos(x) + 3

x
sen(x)

]
.

[x(u′v − v′u)]′ = (β2 − α2)xuv.

(β2 − α2)

∫
xJ0(αx)J0(βx) dx

= x
[
αJ ′

0(αx)J0(βx) − βJ ′
0(βx)J0(αx)

]
.

y′′ + R(x)y′ + (Q(x) + λP (x))y = 0.

4.3 Teoría de Sturm-Liouville y desarrollos en funciones propias
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Primero ponga la ecuación diferencial en una forma estándar conveniente. Multiplique la ecuación 
(4.33) por

para obtener

Como r(x) � 0, esta ecuación tiene las mismas soluciones que la ecuación (4.33). Ahora reconoce que la 
última ecuación puede escribirse como

(4.34)

La ecuación (4.34) es llamada la ecuación diferencial de Sturm-Liouville, o la forma Sturm-Liouville de 
la ecuación (4.33). Suponga que p, q y r y r′ son continuas en [a, b], o al menos en (a, b) y p(x) > 0 y 
r(x) > 0 en (a, b).

EJEMPLO 4.6

La ecuación diferencial de Legendre es

Inmediatamente, escriba ésta en la forma de Sturm-Liouville como

para −1 ≤ x ≤ 1. Correspondientes a los valores λ = n(n + 1), con n = 0, 1, 2, . . . , los polinomios de 
Legendre son soluciones. Como vio en la sección 4.1, también existen soluciones no polinomiales corres-
pondientes a otras elecciones de λ. Sin embargo, estas soluciones no polinomiales no están acotadas en 
[−1, 1]. ■

EJEMPLO 4.7

La ecuación (4.12), con a = 0, c = 1 y b = 
√

λ, puede escribirse

Ésta es la forma de Sturm-Liouville de la ecuación de Bessel. Para λ > 0, esta ecuación tiene soluciones en 
términos de las funciones de Bessel de orden ν de la primera y segunda clase, Jν(

√
λx) y Yν(

√
λx). ■

Ahora tres clases de problemas de Sturm-Liouville.

El problema de Sturm-Liouville regular Si quiere números λ para los cuales existen soluciones no 
triviales de

en un intervalo [a, b]. Estas soluciones deben satisfacer condiciones regulares en la frontera, que tienen 
la forma

A1 y A2 son constantes dadas, no ambas cero, y similarmente para B1 y B2.

r(x) = e
∫

R(x) dx

y′′e
∫

R(x) dx + R(x)y′e
∫

R(x) dx + (Q(x) + λP (x))e
∫

R(x) dxy = 0.

(ry′)′ + (q + λp)y = 0.

(1 − x2)y′′ − 2xy′ + λy = 0.

((1 − x2)y′)′ + λy = 0,

(xy′)′ +
(

λx − ν2

x

)
y = 0.

(ry′)′ + (q + λp)y = 0

A1y(a) + A2y
′(a) = 0, B1y(b) + B2y

′(b) = 0.
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El problema periódico de Sturm-Liouville Ahora suponga r(a) = r(b). Busque números λ y las solucio-
nes no triviales correspondientes de la ecuación de Sturm-Liouville en [a, b] satisfaciendo las condiciones 
periódicas en la frontera 

El problema singular de Sturm-Liouville Busque números λ y las soluciones no triviales correspon-
dientes de la ecuación de Sturm-Liouville en (a, b), sujetas a una de las siguientes tres clases de condicio-
nes en la frontera:

Tipo 1. r (a) = 0 y no hay condiciones en la frontera en a, mientras en b la condición en la 
frontera es

donde B1 y B2 no son cero.
Tipo 2. r (b) = 0 y no hay condiciones en la frontera en b, mientras en a la condición es

con A1 y A2 no son cero.
Tipo 3. r (a) = r (b) = 0, y no hay condiciones en la frontera en a ni en b. En este caso requiere solu-

ciones que sean funciones acotadas en [a, b].

Cada uno de estos problemas es un problema con valor en la frontera, en el que se especifi can cier-
tas condiciones en los extremos de un intervalo, en contraste con un problema con valor inicial, el cual 
especifi ca información acerca de la función y su derivada (en el caso de segundo orden) en un punto. Los 
problemas con valores en la frontera usualmente no tienen soluciones únicas. De hecho, exactamente es 
esta falta de unicidad la que puede ser explotada para resolver muchos problemas importantes.

En cada uno de estos problemas, un número λ para el cual la ecuación diferencial de Sturm-Liouville 
tiene solución no trivial se llama un valor propio del problema. La solución no trivial correspondiente 
se llama una función propia asociada con este valor propio. La función cero no puede ser una función 
propia. Sin embargo, cualquier múltiplo constante distinto de cero de una función propia asociada con un 
valor propio particular también es una función propia para este valor propio. En los modelos matemáticos 
de los problemas en física e ingeniería, los valores propios usualmente tienen algún signifi cado físico. 
Por ejemplo, en el estudio del movimiento de onda los valores propios son frecuencias fundamentales de 
vibración del sistema.

Se considerarán ejemplos de estos géneros de problemas. Los dos primeros serán importantes en el 
análisis de problemas que involucran condiciones de calor y propagación de onda.

EJEMPLO 4.8 Un problema regular

Considere el problema regular

en un intervalo [0, L]. Encontrará los valores propios y las funciones propias considerando casos sobre λ. 
Como se probará más adelante, un problema de Sturm-Liouville no puede tener valores propios comple-
jos, hay tres casos.

Caso 1 λ = 0
Entonces y(x) = cx + d para c y d constantes. Ahora y(0) = d = 0 y y(L) = cL = 0 requieren que c = 0. 
Esto signifi ca que y(x) = cx + d debe ser la solución trivial. En la ausencia de una solución no trivial, λ = 0 
no es un valor propio de este problema.

Caso 2 λ es negativo, λ = −k2 para k > 0.

la frontera
y(a) = y(b), y′(a) = y′(b).

A1y(a) + A2y
′(a) = 0,

y′′ + λy = 0; y(0) = y(L) = 0

4.3 Teoría de Sturm-Liouville y desarrollos en funciones propias

frontera es
B1y(b) + B2y

′(b) = 0,
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Ahora y′′ − k2y = 0 tiene solución general

Como

entonces c2 = −c1, de donde y = 2c1 senh(kx). Pero entonces

Como kL > 0, senh(kL) > 0, de donde c1 = 0. Este caso también nos lleva a la solución trivial, entonces 
este problema de Sturm-Liouville no tiene valores propios negativos.

Caso 3 λ es positivo, λ = k2.
La solución general de y′′ + k2y = 0 es

Ahora

así y(x) = c2 sen(kx). Finalmente, necesita

Para evitar la solución trivial, necesita c2 � 0. Entonces debe elegir k de manera que sen(kL) = 0, lo que 
signifi ca que kL debe ser un entero positivo múltiplo de π, kL = nπ. Entonces

Cada uno de estos números es un valor propio de este problema de Sturm-Liouville. Correspondiente a 
cada n, las funciones propias son

en donde c puede ser cualquier número real distinto de cero. ■

EJEMPLO 4.9 Un problema periódico de Sturm-Liouville

Considere el problema

en un intervalo [−L, L]. Comparando esta ecuación diferencial con la ecuación (4.34), tiene r (x) = 1, así 
r (−L) = r (L), como se requiere para un problema periódico de Sturm-Liouville. Considere casos en λ.

Caso 1 λ = 0
Entonces y = cx + d. Ahora

implica que c = 0. La función constante y = d satisface ambas condiciones en la frontera. Así λ = 0 es un 
valor propio con funciones propias constantes distintas de cero.

Caso 2 λ < 0, λ = −k2.
Ahora

y(x) = c1e
kx + c2e

−kx .

Como
y(0) = c1 + c2 = 0,

y(L) = 2c1 senh(kL) = 0.

y(x) = c1 cos(kx) + c2 sen(kx).

Ahora
y(0) = c1 = 0,

y(L) = c2 sen(kL) = 0.

λn = n2π2

L2
para n = 1, 2, 3, . . . .

yn(x) = c sen
(nπx

L

)
,

y′′ + λy = 0; y(−L) = y(L), y′(−L) = y′(L)

y(−L) = −cL + d = y(L) = cL + d

y(x) = c1e
kx + c2e

−kx .
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Como y(−L) = y(L), entonces

(4.35)

y y′(−L) = y′(L) da (después de dividir entre el factor común k)

(4.36)

Reescriba la ecuación (4.35) como

Esto implica que c1 = c2. Entonces la ecuación (4.36) se convierte en

Pero esto implica que c1 = −c1, de donde c1 = 0. La solución es por tanto trivial, así este problema no 
tiene valor propio negativo.

Caso 3 λ es positivo, λ = k2.
Ahora

Ahora

Pero esto implica que

Ahora,

Entonces

Si sen(kL) � 0, entonces c1 = c2 = 0, obteniendo la solución trivial. Así suponga sen(kL) = 0. Esto requie-
re que kL = nπ para algún entero positivo n. Por tanto, los números

son los valores propios para n = 1, 2, . . . , con las funciones propias correspondientes

con c1 y c2 sin ser cero.
Puede combinar los casos 1 y 3 permitiendo n = 0, de manera que el valor propio λ = 0 tiene las 

funciones propias constantes distintas de cero correspondientes. ■

EJEMPLO 4.10 Las funciones de Bessel como funciones propias de un problema singular

Considere la ecuación de Bessel de orden ν,

c1e
−kL + c2e

kL = c1e
kL + c2e

−kL.

c1e
−kL − c2e

kL = c1e
kL − c2e

−kL.

c1(e
−kL − ekL) = c2(e

−kL − ekL).

c1(e
−kL − ekL) = c1(e

kL − e−kL)

y(x) = c1 cos(kx) + c2 sen(kx).

y(−L) = c1 cos(kL) − c2 sen(kL) = y(L) = c1 cos(kL) + c2 sen(kL).

2c2 sen(kL) = 0.

y′(−L) = kc1 sen(kL) + kc2 cos(kL)

= y′(L) = −kc1 sen(kL) + kc2 cos(kL).

kc1 sen(kL) = 0.

λn = n2π2

L2

yn(x) = c1 cos
(nπx

L

)
+ c2 sen

(nπx

L

)
,

(xy′)′ +
(

λx − ν2

x

)
y = 0,

4.3 Teoría de Sturm-Liouville y desarrollos en funciones propias
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en el intervalo (0, R). Aquí ν es cualquier número real no negativo dado, y R > 0. En el contexto de la 
ecuación diferencial de Sturm-Liouville, r(x) = x, y r(0) = 0, de manera que no hay condiciones de fron-
tera en 0. Sea la condición frontera en R

Si λ > 0, entonces la solución general de la ecuación de Bessel es

Para tener una solución que esté acotada conforme x → 0+, debe elegir c2 = 0. Esto lo lleva a soluciones 
de la forma y = c1Jν(

√
λx). Para satisfacer las condiciones de la frontera en x = R, debe tener

Necesita c1 � 0 para evitar la solución trivial, de manera que debe elegir λ para que Jν(
√

λR) = 0. 
Si j1, j2, . . . son los ceros positivos de Jν(x), entonces 

√
λR pueden ser elegidos como cualquier jn. Esto 

lleva a una sucesión infi nita de valores propios

con funciones propias correspondientes

con c constante pero distinta de cero.
Éste es un ejemplo del problema de Sturm-Liouville singular del tipo 1. ■

EJEMPLO 4.11 Polinomios de Legendre como funciones propias de un problema singular

Considere la ecuación diferencial de Legendre

En el contexto de la teoría de Sturm-Liouville, r(x) = 1 − x2. En el intervalo [−1, 1], tiene r(−1) = r(1) = 0, 
de manera que no hay condiciones de frontera y éste es un problema de Sturm-Liouville singular del tipo 3. 
Quiere soluciones acotadas en este intervalo, de manera que elige λ = n(n+1), con n = 0, 1, 2, . . . . Estos son 
los valores propios de este problema. Las funciones propias correspondientes son constantes distintas de cero 
múltiplos de los polinomios de Legendre Pn(x). ■

Finalmente, aquí hay un problema con condiciones en la frontera más complicadas.

EJEMPLO 4.12

Considere el problema regular

Este problema está defi nido en [0, 1]. Para encontrar los valores y funciones propios, considere casos 
en λ.

y(R) = 0.

y(R) = c1Jν(
√

λR) = 0.

λn = j2
n

R2
,

con funciones propias correspondientes

cJν

(
jnx

R

)
,

((1 − x2)y′)′ + λy = 0.

y′′ + λy = 0; y(0) = 0, 3y(1) + y′(1) = 0.

y(x) = c1Jν(
√

λx) + c2Yν(
√

λx).
√ √
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Caso 1 λ = 0.
Ahora y(x) = cx + d y y(0) = d = 0. Entonces y = cx. Pero de la segunda condición de frontera,

fuerza c = 0, de manera que este caso tiene solamente la solución trivial. Esto signifi ca que 0 no es un 
valor propio de este problema.

Caso 2 λ < 0.
Escriba λ = −k2 con k > 0, de donde y′′ − k2y = 0, con solución general

Ahora y(0) = 0 = c1 + c2, así c2 = −c1 y y(x) = 2c1 senh(kx). Siguiente,

3y(1) + y′(1) = 0 = 6c1 senh(k) + 2c1k cosh(k)

Pero para k > 0, senh(k) y k cosh(k) son positivos, así esta ecuación obliga a c1 = 0 y nuevamente obtiene 
sólo la solución trivial. Este problema no tiene valor propio negativo.

Caso 3 λ > 0, λ = k2.
Ahora y′′ + k2y = 0, con solución general

Entonces y(0) = c1 = 0, así y(x) = c2 sen(kx). La segunda condición de la frontera da

Necesita c2 � 0 para evitar la solución trivial, así busque k tal que

Esto signifi ca que

Esta ecuación no se puede resolver algebraicamente. Sin embargo, la fi gura 4.14 muestra las gráfi cas de 
y = tan(k) y y = −k/3 en el mismo conjunto de ejes. Estas gráfi cas se cortan una infi nidad de veces en 

4.3 Teoría de Sturm-Liouville y desarrollos en funciones propias

3y(1) + y′(1) = 3c + c = 0

y(x) = c1e
kx + c2e

−kx .

y(x) = c1 cos(kx) + c2 sen(kx).

0 = 3c2 sen(k) + kc2 cos(k).

3 sen(k) + k cos(k) = 0.

tan(k) = −k

3
.

y � tan (k)

y � �
k
3

y

k
k1 k2 k3 k4 k5

FIGURA 4.14
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el semiplano k > 0. Sean las k coordenadas de estos puntos de intersección k1, k2, . . . Los números λn = k2
n 

son los valores propios de este problema, con las funciones propias correspondientes c sen(knx) para 
c � 0. ■

4.3.2 El teorema de Sturm-Liouville

Con estos ejemplos como antecedente, he aquí el teorema fundamental de la teoría de Sturm-Liouville.

1.  Cada problema regular y cada problema periódico de Sturm-Liouville tiene un número infi nito 
real de valores propios distintos. Si éstos están etiquetados como λ1, λ2, . . . de manera que λn < 
λn+1, entonces límn→∞ λn = ∞.

2.  Si λn y λm son valores propios distintos de cualquiera de las tres clases de problemas de Sturm-
Liouville defi nidos en un intervalo (a, b), y ϕn y ϕm son las funciones propias correspondientes, 
entonces

3. Todos los valores propios de un problema de Sturm-Liouville son números reales.

4.  Para un problema regular de Sturm-Liouville, cualesquiera dos funciones propias correspondien-
tes a un solo valor propio son múltiplos constantes una de la otra. ■

La conclusión (1) nos asegura la existencia de valores propios, al menos para problemas regulares y 
periódicos. Un problema singular también puede tener una sucesión infi nita de valores propios, como en 
el ejemplo 4.10 con las funciones de Bessel. La conclusión (1) también afi rma que los valores propios “se 
esparcen”, de manera que si se acomodan en orden creciente, crecen sin límite. Por ejemplo, los números 
1−1/n no podrían ser valores propios de un problema de Sturm-Liouville, ya que estos números tienden 
a 1 conforme n→∞.

En (2) se denota f · g = �b
a p(x)f (x)g(x) dx. Este producto punto para funciones tiene muchas de las 

propiedades vistas para el producto punto de vectores. En particular, para funciones f, g y h que son inte-
grables en [a, b],

para cualquier número real α, y

La última propiedad cuenta con la suposición hecha para la ecuación de Sturm-Liouville que p(x) > 0 en 
(a, b). Si f  también es continua en [a, b], entonces f · f = 0 sólo si f es la función cero, como en este caso 
�b

a p(x) f (x)2 dx = 0 puede ser cierto sólo si f (x) = 0 para a ≤ x ≤ b.
Esta analogía entre vectores y funciones es útil en la visualización de ciertos procesos y conceptos, y 

ahora es el momento apropiado para formalizar la terminología.

TEOREMA 4.22

correspondientes, entonces ∫ b

a

p(x)ϕn(x)ϕm(x) dx = 0.

f · g = g · f,

f · (g + h) = f · g + f · h,

(αf ) · g = α(f · g)

para cualquier número real α, y
f · f ≥ 0.
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La defi nición de ortogonalidad está motivada por el hecho de que dos vectores F y G en el espacio 
tridimensional son ortogonales exactamente cuando F · G = 0.

Ahora se puede exponer la conclusión (2): Las funciones propias asociadas con valores propios dis-
tintos son ortogonales en [a, b], con función de peso p(x). La función de peso p es el coefi ciente de λ en 
la ecuación de Sturm-Liouville.

Como se ha visto explícitamente para las series (trigonométricas) de Fourier, las series de Fourier-
Legendre y las series de Fourier-Bessel, esta ortogonalidad de funciones propias es la clave para los 
desarrollos de funciones en series de funciones propias de un problema de Sturm-Liouville. Esto se con-
vertirá en un resultado signifi cativo cuando resuelva ciertas ecuaciones diferenciales parciales al modelar 
fenómenos de onda y de radiación.

La conclusión (3) formula que un problema de Sturm-Liouville puede no tener valores propios com-
plejos. Esto es consistente con el hecho que los valores propios para ciertos problemas tienen signifi cado 
físico, tales como la medición de los modos de vibración de un sistema.

Finalmente, la conclusión (4) se aplica sólo a problemas regulares de Sturm-Liouville. Por ejemplo, el 
problema periódico de Sturm-Liouville del ejemplo 4.9 tiene funciones propias cos(nπx/L) y sen(nπx/L) 
asociadas con el único valor propio n2π2/L2, y estas funciones ciertamente no son múltiplos constantes 
una de la otra.

Se probarán partes del teorema de Sturm-Liouville.

Prueba La prueba de (1) requiere de algún análisis delicado que aquí no se refl ejará. 
Para (2), esencialmente, se reproducen los argumentos hechos previamente para los polinomios de 

Legendre y las funciones de Bessel. Empiece con el hecho que

y

Multiplique la primera ecuación por ϕm y la segunda por ϕn y reste para obtener

Entonces

DEFINICIÓN 4.1  

Sea p continua en [a, b] y p(x) > 0 para a < x < b.

1.  Si f  y g son integrables en [a, b], entonces el producto punto de f con g, respecto a la fun-
ción de peso p, está dado por

2. f y g son ortogonales en [a, b], respecto a la función de peso p, si f · g = 0.

4.3 Teoría de Sturm-Liouville y desarrollos en funciones propias

(rϕ′
n)

′ + (q + λnp)ϕn = 0

(rϕ′
m)′ + (q + λmp)ϕm = 0.

(rϕ′
n)

′ϕm − (rϕ′
m)′ϕn = (λm − λn)pϕnϕm.

∫ b

a

[
(r(x)ϕ′

n(x))′ϕm(x) − (r(x)ϕ′
m(x))′ϕn(x)

]
dx = (λm − λn)

∫ b

a

p(x)ϕn(x)ϕm(x) dx.
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Como λn � λm, la conclusión (2) será probada si demuestra que el lado izquierdo de la última ecuación 
es cero. Integrando por partes:

(4.37)

Para probar que esta cantidad es cero, use las condiciones de la frontera dadas. Suponga primero que tiene 
un problema regular, con condiciones en la frontera

Aplicando las condiciones de la frontera en a para ϕn y ϕm, tiene

y

Como supone que A1 y A2 no son cero en el problema regular, entonces el sistema de ecuaciones alge-
braicas

tiene una solución no trivial (a saber, X = A1, Y = A2). Esto requiere que el determinante de los coefi cien-
tes sea cero:

Usando la condición de la frontera en b, obtiene

Por tanto, el lado derecho de la ecuación (4.37) es cero, probando la relación de ortogonalidad en el caso 
de un problema regular de Sturm-Liouville. La conclusión se prueba similarmente para las otras clases de 
problemas de Sturm-Liouville, aplicando las condiciones de la frontera pertinentes en la ecuación (4.37).

Para probar la conclusión (3), suponga que un problema de Sturm-Liouville tiene un valor propio 
complejo λ = α + iβ. Sea ϕ(x) = u(x) + iv(x) la función propia correspondiente. Ahora

Aplicando el conjugado complejo de esta ecuación, observe que ϕ′(x) = u′(x) + iv′(x) y

∫ b

a
�r�x��′

n�x��
′�m�x�dx−

∫ b

a
�r�x��′

m�x��
′�n�x�dx

= ��m�x�r�x��
′
n�x��

b

a−
∫ b

a
r�x��′

n�x��
′
m�x�dx

− ��n�x�r�x��
′
m�x��

b

a+
∫ b

a
r�x��′

n�x��
′
m�x�dx

= r�b��m�b��
′
n�b�− r�a��m�a��

′
n�a�

− r�b��n�b��
′
m�b�+ r�a��n�a��

′
m�a�

= r�b� ��m�b��
′
n�b�−�n�b��

′
m�b��− r�a� ��m�a��

′
n�a�−�n�a��

′
m�a�� �

A1y(a) + A2y
′(a) = 0, B1y(b) + B2y

′(b) = 0.

A1ϕn(a) + A2ϕ
′
n(a) = 0

A1ϕm(a) + A2ϕ
′
m(a) = 0.

ϕn(a)X + ϕ′
n(a)Y = 0,

ϕm(a)X + ϕ′
m(a)Y = 0

∣∣∣∣∣
ϕn(a) ϕ′

n(a)

ϕm(a) ϕ′
m(a)

∣∣∣∣∣ = ϕn(a)ϕ′
m(a) − ϕm(a)ϕ′

n(a) = 0.

ϕn(b)ϕ′
m(b) − ϕm(b)ϕ′

n(b) = 0.

(rϕ′)′ + (q + λp)ϕ = 0.

ϕ′(x) = u′(x) − iv′(x) =
(
ϕ(x)

)′
.
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Como r(x), p(x) y q(x) son de variable real, estas cantidades son sus propios conjugados, y obtiene

Esto signifi ca que λ– también es un valor propio, con función propia ϕ–. Ahora, si β � 0, entonces λ y λ– son 
valores propios distintos, ahora

Pero entonces

Pero para un problema de Sturm-Liouville, se supone que p(x) > 0 para a < x < b. Por tanto, u(x)2 + 
v(x)2 = 0, así

en [a, b] y ϕ(x) es la solución trivial. Esto contradice que ϕ sea una función propia. Concluya que β = 0, 
así λ es real.

Por último, para probar (4), suponga que λ es un valor propio de un problema regular de Sturm-
Liouville y ϕ y ψ son funciones propias asociadas con λ. Use las condiciones en la frontera en a, y siguiendo 
el razonamiento aplicado en la prueba de (2) muestre que

Pero entonces el Wronskiano de ϕ y ψ se hace cero en a, así ϕ y ψ son linealmente dependientes y uno es 
un múltiplo constante del otro. ■

Ahora posee la maquinaria necesaria para los desarrollos en funciones propias generales.

4.3.3 Desarrollo en funciones propias

En la resolución de ecuaciones diferenciales, con frecuencia encontrará la necesidad de desarrollar una 
función en una serie de soluciones de una ecuación diferencial ordinaria asociada, un problema de Sturm-
Liouville. La serie de Fourier, la serie de Fourier-Legendre y la serie de Fourier-Bessel son ejemplos de 
tales desarrollos. La función a ser desarrollada tendrá algún signifi cado en el problema. Podría ser, por 
ejemplo, una función de temperatura inicial, o el desplazamiento inicial o la velocidad de una onda.

Para crear un contexto unifi cado en donde tales desarrollos en serie puedan ser entendidos, considere 
la analogía con los vectores en el espacio tridimensional. Dado un vector F, siempre encontrará números 
reales a, b y c de manera que

F = ai + bj + ck.

A pesar de que es fácil encontrar las constantes, se sigue un proceso formal para identifi car un patrón. 
Primero,

F · i = ai · i + bj · i + ck · i = a,

ya que

i · i =1 y j · i = k · i = 0.

Análogamente,

b = F · j y c = F · k.

4.3 Teoría de Sturm-Liouville y desarrollos en funciones propias

(rϕ′)′ + (q + λp)ϕ = 0.

∫ b

a

p(x)ϕ(x)ϕ(x) dx = 0.

∫ b

a

p(x)[u(x)2 + v(x)2] dx = 0.

u(x) = v(x) = 0

ϕ(a)ψ ′(a) − ψ(a)ϕ′(a) = 0.
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La ortogonalidad de i, j y k provee un mecanismo adecuado para determinar los coefi cientes en el desa-
rrollo por medio del producto punto.

Más generalmente, suponga que U, V y W son cualesquiera vectores distintos de cero en el espacio 
tridimensional que son mutuamente ortogonales, es decir

U · V = U · W = V · W = 0.

Estos vectores no tienen que ser unitarios y no tienen que estar alineados con los ejes. Sin embargo, 
debido a su ortogonalidad, también es posible escribir fácilmente F en términos de estos tres vectores. 
De hecho, si

F = αU + βV + γW

entonces

F · U = αU · U + βV · U + γW · U = αU · U,

de manera que

Análogamente,

(4.38)

De nuevo, una fórmula simple con producto punto para los coefi cientes.
La idea de expresar un vector como suma de constantes multiplicadas por vectores mutuamente 

ortogonales, con las fórmulas para los coefi cientes, se extiende para escribir las funciones en serie de 
funciones propias de problemas de Sturm-Liouville, con una fórmula semejante a la ecuación (4.38) para 
los coefi cientes. Ya ha visto tres de tales instancias, que se revisan brevemente en el contexto del teorema 
de Sturm-Liouville.

Serie de Fourier El problema de Sturm-Liouville es

(un problema periódico) con valores propios n2π2/L2 para n = 0, 1, 2, . . . y funciones propias

Aquí p(x) = 1 y el producto punto utilizado es

Si f es suave a pedazos en [−L, L], entonces para −L < x < L,

donde

y

α = F · U
U · U

.

β = F · V
V · V

y γ = F · W
W · W

.

y′′ + λy = 0; y(−L) = y(L) = 0

1, cos(πx/L), cos(2πx/L), . . . , sen(πx/L), sen(2πx/L), . . .

f · g =
∫ L

−L

f (x)g(x) dx.

1

2
(f (x+) + f (x−)) = 1

2
a0 +

∞∑

n=1

an cos
(nπx

L

)
+ bn sen

(nπx

L

)
,

an =
∫ L

−L
f (x) cos(nπx/L) dx

∫ L

−L
cos2(nπx/L) dx

= f (x) · cos(nπx/L)

cos(nπx/L) · cos(nπx/L)
para n = 0, 1, 2, . . .

bn =
∫ L

−L
f (x) sen(nπx/L) dx

∫ L

−L
sen2(nπx/L) dx

= f (x) · sen(nπx/L)

sen(nπx/L) · sen(nπx/L)
para m = 1, 2, . . . .n
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Serie de Fourier-Legendre El problema de Sturm-Liouville es

sin condiciones en la frontera en [−1, 1] ya que r(x) = 1 − x2 se anula en estos extremos. Sin embargo, 
busca soluciones acotadas. Los valores propios son n(n + 1) cuyas funciones propias correspondientes son 
los polinomios de Legendre P0(x), P1(x), . . . . Como p(x) = 1, use el producto punto

Si f  es suave a pedazos en [−1, 1], entonces para −1 < x < 1,

donde

Serie de Fourier-Bessel Considere el problema de Sturm-Liouville

con condiciones en la frontera y(1) = 0 en (0, 1). Los valores propios son λ = j2
n para n = 1, 2, . . . , donde 

j1, j2, . . . son los ceros positivos de Jν(x), y las funciones propias son Jν( jnx). En este problema de Sturm-
Liouville, p(x) = x y el producto punto es

Si f es suave a pedazos en [0, 1], entonces para 0 < x < 1 puede escribir la serie

donde

nuevamente se ajusta al patrón visto en las otras clases de desarrollos.
Estos desarrollos son casos especiales de una teoría general de desarrollos en series de funciones 

propias de problemas de Sturm-Liouville.

4.3 Teoría de Sturm-Liouville y desarrollos en funciones propias

((1 − x2)y′)′ + λy = 0,

Sean λ1, λ2, . . . los valores propios de la ecuación diferencial de Sturm-Liouville

en [a, b], con uno de los conjuntos de las condiciones en la frontera especifi cado previamente. Sean ϕ1, 
ϕ2, . . . las funciones propias correspondientes y defi na el producto punto

TEOREMA 4.23 Convergencia de los desarrollos de funciones propias

f · g =
∫ 1

−1
f (x)g(x) dx.

1

2
(f (x+) + f (x−)) =

∞∑

n=0

cnPn(x)

cn =
∫ 1
−1 f (x)Pn(x) dx
∫ 1
−1 P 2

n (x) dx
= f · Pn

Pn · Pn

.

(xy′)′ +
(

λx − ν2

x

)
y = 0

f · g =
∫ 1

0
xf (x)g(x) dx.

1

2
(f (x+) + f (x−)) =

∞∑

n=1

cnJν(jnx),

cn =
∫ 1

0 xf (x)Jν(jnx) dx
∫ 1

0 xJ 2
ν (jnx) dx

= f (x) · Jν(jnx)

Jν(jnx) · Jν(jnx)
,

(ry′)′ + (q + λp)y = 0

f · g =
∫ b

a

p(x)f (x)g(x) dx.
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Sea f suave a pedazos en [a, b]. Entonces, para a < x < b,

donde

Llame a los números

(4.39)

los coefi cientes de Fourier de f respecto a las funciones propias de este problema de Sturm-Liouville. Con 
esta elección de los coefi cientes, 

∑∞
n=1 cnϕn(x) es el desarrollo en funciones propias de f  respecto a estas 

funciones propias.
Si la ecuación diferencial generadora de los valores propios y las funciones propias tienen un nombre 

especial (tal como la ecuación de Legendre, o la ecuación de Bessel), entonces el desarrollo en función 
propia se llama usualmente la serie de Fourier... , por ejemplo, la serie de Fourier-Legendre y la serie de 
Fourier-Bessel.

EJEMPLO 4.13

Considere el problema de Sturm-Liouville

Encuentre de manera rutinaria que los valores propios de este problema son λ = 4n2 para n = 0, 1, 2, . . . 
Correspondiente a λ = 0, puede elegir ϕ0(x) = 1 como una función propia. Correspondiente a λ = 4n2, 
ϕn(x) = cos(2nx) como una función propia. Esto da el conjunto de funciones propias

Debido a que el coefi ciente de λ en la ecuación diferencial es p(x) = 1, y el intervalo es [0, π/2], el 
producto punto para este problema es

Escribirá el desarrollo en funciones propias de f (x) = x2(1 − x) para 0 ≤ x ≤ π/2. Como f  y f ′ son 
continuas, este desarrollo convergirá a x2(1 − x) para 0 < x < π/2. Los coefi cientes en este desarrollo 
son

y, para n = 1, 2, . . . ,

1

2
(f (x+) + f (x−)) =

∞∑

n=1

cnϕn(x),

cn = f · ϕn

ϕn · ϕn

.

f · ϕn

ϕn · ϕn

ϕ0(x) = 1, ϕ1(x) = cos(2x), ϕ2(x) = cos(4x), . . . .

f · g =
∫ π/2

0
f (x)g(x) dx.

c0 = f · 1

1 · 1
=

∫ π/2
0 x2(1 − x) dx

∫ π/2
0 dx

= −(1/64)π4 + (1/24)π3

π/2
= π2

(
1

12
− π

32

)

cn = f · cos(2nx)

cos(2nx) · cos(2nx)

=
∫ π/2

0 x2(1 − x) cos(2nx) dx
∫ π/2

0 cos2(2nx) dx

= − 1

4πn4

(
−4πn2(−1)n + 3π2n2(−1)n − 6(−1)n + 6

)
.

y′′ + λy = 0; y′(0) = y′(π
2
) = 0.
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Por tanto, para 0 < x < π/2,

La fi gura 4.15(a) muestra la quinta suma parcial de esta serie, comparada con f , y la fi gura 4.15(b) muestra 
la décimoquinta suma parcial de este desarrollo. Claramente este desarrollo en función propia está conver-
giendo rápidamente a x2(1 − x) en este intervalo. ■

4.3.4 Aproximación en la media y la desigualdad de Bessel

En ésta y en las siguientes dos secciones se discuten algunas propiedades adicionales de los coefi cientes 
de Fourier, así como algunas sutilezas en la convergencia de la serie de Fourier. Para esta discusión, sean 
ϕ1, ϕ2, . . . funciones propias normalizadas de un problema de Sturm-Liouville en [a, b]. Normaliza-
da signifi ca que cada función propia ϕn ha sido multiplicada por una constante positiva de manera que 
ϕn · ϕn = 1. Esto se puede hacer siempre debido a que un múltiplo constante distinto de cero de una fun-
ción propia es nuevamente una función propia. Ahora tiene

Para estas funciones propias normalizadas, el n-ésimo coefi ciente de Fourier es

(4.40)

Ahora se defi nirá una medida de qué tan bien aproxima una combinación lineal 
∑n

n=1 knϕn a una 
función dada f.

4.3 Teoría de Sturm-Liouville y desarrollos en funciones propias

x2(1 − x) = π2
(

1

12
− π

32

)

− 1

4π

∞∑

n=1

1

n4

(
−4πn2(−1)n + 3π2n2(−1)n − 6(−1)n + 6

)
cos(2nx).
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FIGURA 4.15(a) Quinta suma parcial en el 
ejemplo 4.13.

FIGURA 4.15(b) Décimoquinta suma parcial.

Ahora tenemos

ϕn · ϕm =
∫ b

a

p(x)ϕn(x)ϕm(x) dx =
{

1 si n = m

0 si n �= m
.

cn = f · ϕn

ϕn · ϕn

= f · ϕn.
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IN( f ) es el producto punto de f (x) − 
∑N.

n=1 knϕn (x) con ella misma (con función de peso p). Para 
vectores en R3, el producto punto de un vector V = ai + bj + ck con él mismo es el cuadrado de su lon-
gitud:

V · V = a2 + b2 + c2 = (longitud de V)2.

Esto sugiere que debe defi nir una longitud para funciones mediante

Ahora IN( f ) tiene la interpretación geométrica de ser el (cuadrado de) la longitud de f (x) − 
∑N

n=1 knϕn(x).
Cuanto más pequeña sea esta longitud, mejor aproxima la combinación lineal 

∑N
n=1 knϕn(x) a f (x) 

en [a, b]. Esta aproximación es un promedio sobre todo el intervalo, en contraste a la aproximación en 
un punto particular, de ahí el término “aproximación en la media”. Debe elegir las k′

n para hacer de ∑N
n=1 knϕn(x) la mejor aproximación media posible de f en [a, b], lo que signifi ca hacer la longitud de 

f (x) − 
∑N

n=1 knϕn(x) tan pequeña como sea posible.
Para determinar cómo elegir las k′

n, escriba

DEFINICIÓN 4.2  Mejor aproximación en la media

Sea N un entero positivo y sea f una función integrable en [a, b]. Una combinación lineal

de ϕ1, ϕ2, . . . , ϕN es la mejor aproximación en la media de f en [a, b] si los coefi cientes k1, . . . , kN 
minimizan la cantidad

g · g =
∫ b

a

p(x)g(x)2 dx = (longitud de g)2 .

kn

0 ≤ IN (f ) =
∫ b

a

p(x)

⎛
⎝f (x)2 − 2

N∑

n=1

f (x)ϕn(x) +
(

N∑

n=1

knϕn(x)

)2⎞
⎠ dx

=
∫ b

a

p(x)f (x)2 dx − 2
N∑

n=1

kn

∫ b

a

p(x)f (x)ϕn(x) dx

+
N∑

n=1

N∑

m=1

knkm

∫ b

a

p(x)ϕn(x)ϕm(x) dx

= f · f − 2
N∑

n=1

knf · ϕn +
N∑

n=1

N∑

m=1

knkmϕn · ϕm

= f · f − 2
N∑

n=1

knf · ϕn +
N∑

n=1

k2
nϕn · ϕn

= f · f − 2
N∑

n=1

knf · ϕn +
N∑

n=1

k2
n,
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ya que ϕn · ϕn = 1 para este conjunto normalizado de funciones propias. Ahora sea cn = f · ϕn, el n-ésimo 
coefi ciente de Fourier de f para este conjunto normalizado de funciones propias. Complete el cuadrado 
escribiendo la última desigualdad como

(4.41)

En esta formulación, es obvio que el lado derecho alcanza su mínimo cuando cada kn = cn. Ha probado 
el siguiente.

4.3 Teoría de Sturm-Liouville y desarrollos en funciones propias

Sea  f  integrable en [a, b] y N un entero positivo. Entonces, la combinación lineal 
∑N

n=1 knϕn que es la 
mejor aproximación en la media de f en [a, b] se obtiene poniendo

para n = 1, 2, . . . . ■

Así, para una N dada, la N-ésima suma parcial 
∑N

n=1 (f · ϕn)ϕn de la serie de Fourier 
∑∞

n=1(f · ϕn)ϕn 
de f es la mejor aproximación en la media de f por una combinación lineal de ϕ1, ϕ2, . . . , ϕN.

El argumento principal del teorema tiene otra consecuencia importante. Poniendo kn = cn = f · ϕn en 
la igualdad (4.41) para obtener

o 

Como N puede ser cualquier entero positivo, la serie de los cuadrados de los coefi cientes de Fourier de f 
converge, y la suma de esta serie no puede exceder el producto punto de f con ella misma. Ésta es la des-
igualdad de Bessel y fue probada en la sección 2.5 (teorema 2.7) para series de Fourier trigonométrica.

0 ≤ f · f − 2
N∑

n=1

kncn +
N∑

n=1

k2
n −

n∑

n=1

c2
n +

n∑

n=1

c2
n

= f · f +
N∑

n=1

(cn − kn)
2 −

N∑

n=1

c2
n.

TEOREMA 4.24

Sea f integrable en [a, b]. Entonces la serie de los cuadrados de los coefi cientes de Fourier de f  respecto a 
las funciones propias normalizadas ϕ1, ϕ2, . . . converge. Más aún,

Bajo ciertas circunstancias, la desigualdad puede ser reemplazada por una igualdad. Esto lleva a con-
siderar el concepto de convergencia en la media.

TEOREMA 4.25 Desigualdad de Bessel

kn = f · ϕn

kn cn f ϕn

0 ≤ f · f −
N∑

n=1

(f · ϕn)
2,

o
N∑

n=1

(f · ϕn)
2 ≤ f · f.

∞∑

n=1

(f · ϕn)
2 ≤ f · f.
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4.3.5 Convergencia en la media y el teorema de Parseval

Continuando con el tema de la subsección anterior, suponga que ϕ1, ϕ2, . . . son las funciones propias nor-
malizadas de un problema de Sturm-Liouville en [a, b]. Si f es continua en [a, b] con derivada continua a 
pedazos, entonces para a < x < b,

Esta convergencia se llama convergencia puntual, porque trata con la convergencia de la serie de Fourier 
individualmente en cada x en (a, b). Bajo ciertas circunstancias, esta serie también puede converger uni-
formemente.

Además de estas dos clases de convergencia, en el contexto de los desarrollos en funciones propias 
también se utiliza con frecuencia la convergencia en la media.

La convergencia en la media de una serie de Fourier de f , a f , sucede cuando la longitud de f (x) − ∑N
n=1(f · ϕn)ϕn(x) tiende a cero conforme N tiende a infi nito. Ciertamente, esto pasa si la serie de Fourier 

converge a f , porque entonces f (x) = 
∑∞

n=1 (f · ϕn)ϕn(x), y esto sucede si f es continua con derivada con-
tinua a pedazos.

Para el resto de esta sección, sea C′[a, b] el conjunto de funciones que son continuas en [a, b], con 
derivadas continuas a pedazos en (a, b).

DEFINICIÓN 4.3  Convergencia en la media

Sea f integrable en [a, b]. La serie de Fourier 
∑∞

n=1 (f ·ϕn)ϕn de f , respecto a las funciones propias  
normalizadas ϕ1, ϕ2, . . . , se dice que converge a f en la media en [a, b] si

f (x) =
∞∑

n=1

(f · ϕn)ϕn(x).

TEOREMA 4.26

1.  Si f (x) = 
∑∞

n=1(f · ϕn)ϕn(x) para a < x < b, entonces 
∑∞

n=1 (f · ϕn)ϕn también converge en la 
media a f en [a, b].

2. Si f está en C′ [a, b], entonces 
∑∞

n=1 (f · ϕn)ϕn converge en la media a f en [a, b]. ■

El recíproco de (1) es falso. Es posible que la longitud de f (x) − 
∑N

n=1 (f · ϕn)ϕn(x) tienda a cero con-
forme N → ∞ pero que la serie de Fourier no converja a f (x) en el intervalo. Esto es porque la integral en 
la defi nición de la convergencia media es un proceso de promedios y no se enfoca en el comportamiento 
de la serie de Fourier en ningún punto particular.

Se probará que la convergencia en la media para funciones en C′[a, b] es equivalente a poder convertir 
la desigualdad de Bessel en una igualdad para todas las funciones en esta clase.
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∑∞
n=1( f · ϕn)ϕn converge en la media de f  para toda f en C′[a, b] si, y sólo si

para toda f en C′[a, b].

Prueba A partir de los cálculos hechos en la prueba del teorema 4.24, con kn = f · ϕn,

Por tanto,

si, y sólo si

Al reemplazar la desigualdad con una igualdad en la desigualdad de Bessel llega a la relación de 
Parseval. Ahora puede enunciar una condición bajo la cual esto sucede.

4.3 Teoría de Sturm-Liouville y desarrollos en funciones propias

TEOREMA 4.27

∞∑

n=1

(f · ϕn)
2 = f · f

0 ≤ IN (f ) =
∫ b

a

p(x)

(
f (x) −

N∑

n=1

(f · ϕn)ϕn

)2

dx = f · f −
N∑

n=1

(f · ϕn)
2.

Por tanto,

lim
N→∞

∫ b

a

p(x)

(
f (x) −

N∑

n=1

(f · ϕn)ϕn

)2

dx = 0

si, y sólo si

f · f −
∞∑

n=1

(f · ϕn)
2 = 0.

Si f está en C′[a, b], entonces

Esto se sigue inmediatamente a partir de los dos últimos teoremas. Sabe por el teorema 4.26(2) que si 
f está en C′ [a, b], entonces la serie de Fourier de f converge a f en la media. Entonces, por el teorema 4.27, ∑∞

n=1 (f · ϕn)2 = f · f . Con más esfuerzo, la ecuación de Parseval puede ser probada bajo condiciones 
más débiles sobre f .

4.3.6 Completez de las funciones propias

La completez es un concepto que quizá se entiende mejor en términos de vectores. 
En el espacio tridimensional, el vector k no se puede escribir como una combinación lineal αi + βj, a 

pesar de que los vectores i y j son ortogonales. La razón para esto es que hay otra dirección en el espacio 
tridimensional que es ortogonal al plano de i y j, e i y j no llevan información acerca de la componente 
que un vector puede tener en esta tercera dirección. Los vectores i y j son incompletos en R3. En contraste, 
no existe ningún vector distinto de cero que sea ortogonal a cada uno de i, j y k, así, estos vectores son 
completos en R3. Cualquier vector tridimensional puede escribirse como combinación lineal de i, j y k.

Ahora considere las funciones propias normalizadas ϕ1, ϕ2, . . . Piense que cada ϕj defi ne una di-
rección diferente o eje, en el espacio de funciones en consideración, que en este caso es C′[a, b]. Estas 
funciones propias son completas en C′[a, b] si la única función en C′[a, b] que es ortogonal a toda función 
propia es la función cero. En cambio, si existe una función no trivial f en C′[a, b] que sea ortogonal a toda 
función propia, se dice que las funciones propias son incompletas. En este caso hay otro eje, o dirección, 

COROLARIO 4.1 Teorema de Parseval

∞∑

n=1

(f · ϕn)
2 = f · f.

´
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en C′[a, b] que no está determinado por todas las funciones propias. Una función que tiene una compo-
nente en esta otra dirección posiblemente no pueda ser representada en una serie de las funciones propias 
incompletas.

Por tanto, las funciones propias son completas en el espacio de funciones continuas con derivadas 
continuas a pedazos en (a, b):

Las funciones propias normalizadas ϕ1, ϕ2, . . . son completas en C′[a, b]. ■

Prueba Suponga que las funciones propias no son completas. Entonces, existe alguna función no trivial 
f en C′[a, b] que es ortogonal a cada ϕn. Pero debido a que f es ortogonal a cada ϕn, cada (f, ϕn) = 0, así

Esta contradicción prueba el teorema. ■

EJEMPLO 4.14

Las funciones propias normalizadas del problema de Sturm-Liouville

son

Las constantes se eligen para normalizar a las funciones propias, como

Este conjunto E de las funciones propias es completo en C′[0, π/2]. Esto signifi ca que excepto para 
f (x) ≡ 0, no existe f en C′[a, b] que es ortogonal a cada función propia.

Observe el efecto si quita una función propia. Por ejemplo, el conjunto E1 de funciones propias

está formado quitando f (x) = (2/
√

π) cos (2x) de E. Ahora cos(2x) no tiene desarrollo en términos de E1, 
a pesar que cos(2x) es continua con derivada continua en (0, π/2). Suponga que

entonces

TEOREMA 4.28

f (x) =
∞∑

n=1

(f · ϕn)ϕn(x) = 0 para a < x < b.

y′′ + λy = 0; y′(0) = y′(π/2) = 0

son √
2

π
,

2√
π

cos(2x),
2√
π

cos(4x),
2√
π

cos(6x), . . . .

ϕn · ϕn =
∫ π/2

0
ϕ2

n dx =
∫ π/2

0

4

π
cos2(2nx) dx = 1.

ciones propias √
2

π
,

2√
π

cos(4x),
2√
π

cos(6x), . . . ,

que

cos(2x) =
√

2

π
c0 +

∞∑

n=2

cn

2√
π

cos(2nx),

entonces

c0 =
√

2

π
· cos(2x) = 0
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y, para n = 2, 3, . . . ,

lo que implica que cos(2x) = 0 para 0 < x < π/2. Esto es un absurdo. El conjunto agujereado de funciones 
propias E1, al que se le quitó una función de E, no es completo en C′[0, π/2]. ■

En cada uno de los problemas del 1 al 12, clasifi que los pro-
blemas de Sturm-Liouville como regular, periódico, o singular; 
indique el intervalo relevante; encuentre los valores propios; y, 
para cada valor propio, encuentre una función propia. En algunos 
casos los valores propios pueden ser defi nidos implícitamente por 
una ecuación.

 1. y′′ + λy = 0; y(0) = 0, y′(L) = 0

 2. y′′ + λy = 0; y′(0) = 0, y′(L) = 0

 3. y′′ + λy = 0; y′(0) = y(4) = 0

 4. y′′ + λy = 0; y(0) = y(π), y′(0) = y′(π)

 5. y′′ + λy = 0; y(−3π) = y(3π), y′(−3π) = y′(3π)

 6. y′′ + λy = 0; y(0) = 0, y(π) + 2y′(π) = 0

 7. y′′ + λy = 0; y(0) − 2y′(0) = 0, y′(1) = 0

 8. y′′ + 2y′ + (1 + λ)y = 0; y(0) = y(1) = 0

 9. (e2xy′)′ + λe2xy = 0; y(0) = y(π) = 0

10. (e−6xy′)′ + (1 + λ)e−6xy = 0; y(0) = y(8) = 0

11. (x3y′)′ + λxy = 0; y(1) = y(e3) = 0

12. (x−1y′)′ + (4 + λ)x−3y = 0; y(1) = y(e4) = 0

En cada uno de los problemas del 13 al 18, encuentre el desarro-
llo en funciones propias de la función dada en las funciones pro-
pias del problema de Sturm-Liouville. En cada caso, determine 
a qué converge el desarrollo en funciones propias en el intervalo 
y dibuje la gráfi ca de la función y la suma de los primeros N tér-
minos del desarrollo en funciones propias en el mismo conjunto 

de ejes para el intervalo dado y la N dada. (En el problema 13, 
haga la gráfi ca para L = 1).

13. f (x) = 1 − x para 0 ≤ x ≤ L
 y′′ + λy = 0; y(0) = y(L) = 0; N = 40

14. f (x) = |x| para 0 ≤ x ≤ π

 y′′ + λy = 0; y(0) = y′(π) = 0; N = 30

15.
 

 

 

16. f (x) = sen(2x) para 0 ≤ x ≤ π
 y′′ + λy = 0; y′(0) = y′(π) = 0; N = 30

17. f (x) = x2 para −3π ≤ x ≤ 3π

 y′′ + λy = 0; y(−3π) = y(3π), y′(−3π) = y′(3π);
 N = 10

18.
 

 

 

19.  Escriba la desigualdad de Bessel para la función f (x) = 
x(4 − x) para las funciones propias del problema de Sturm-
Liouville del problema 3.

20.  Escriba la desigualdad de Bessel para la función f (x) = e−x 
para las funciones propias del problema de Sturm-Liouville 
del problema 6.

SECCIÓN 4.3 PROBLEMAS

4.4 Las onduletas

4.4.1 La idea detrás de las onduletas

Los años recientes han visto una explosión tanto en el desarrollo matemático de onduletas como en sus 
aplicaciones, que incluye el análisis de señales, compresión de datos, fi ltrado y electromagnetismo. Aquí 
nuestro propósito es introducir sufi cientes ideas que están detrás de las onduletas para permitir al estudian-
te proseguir con los tratamientos más completos.

Piense en una función defi nida en la recta real como una señal. Si la señal contiene una frecuencia 
fundamental ω0, entonces f es una función periódica con periodo 2π/ω0 y la serie de Fourier de f (t) es una 

y, para n = 2, 3, . . . ,

cn =

f (x) =
{

−1 para 0 ≤ x ≤ 2

1 para 2 < x ≤ 4

y′′ + λy = 0; y′(0) = y(4) = 0; N = 40

f (x) =
{

0 para 0 ≤ x ≤ 1
2

1 para 1
2 < x ≤ 1

y′′ + 2y′ + (1 + λ)y = 0; y(0) = y(1) = 0; N = 30

4.4 Las onduletas

1
2

1
2

cos(2x) · 2√
π

cos(2nx) = 0,
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herramienta para analizar el contenido de frecuencia de la señal. El espectro de amplitud de f consiste de 
un trazo de puntos (nω0, cn/2) en el cual

con a0 y bn los coefi ciente de Fourier de f . Bajo ciertas condiciones sobre f , esto permite representar una 
señal como una serie trigonométrica visualizando las frecuencias naturales

Con frecuencia se modela la señal tomando una suma parcial de la serie de Fourier:

Aunque este proceso ha probado ser útil en muchas instancias, la representación trigonométrica en serie 
de Fourier no siempre es el mejor dispositivo para analizar señales. Primero, puede estar interesado en una 
señal que no es periódica, o aún general, puede tener una señal que está defi nida sobre toda la recta real 
sin periodicidad, y sólo requiere que su energía sea fi nita. Esto signifi ca que �∞

−∞( f (t))2 dt es fi nita o, si 
f (t) es de variable compleja, que �∞

−∞ | f (t)|2 dt es fi nita. Esta integral es el contenido de energía de la señal, 
y las funciones que tienen energía fi nita se dice que son cuadrado integrables. En general, los desarrollos 
de Fourier no son la mejor herramienta para el análisis de tales funciones.

Hay otras desventajas para las series trigonométricas de Fourier. Para una f dada, podría tener que 
elegir N muy grande para modelar f (t) mediante una suma parcial de una serie de Fourier. Finalmente, si 
está interesado en el comportamiento de f (t) en algún intervalo fi nito de tiempo, o cerca de algún tiempo 
en particular, no le es factible aislar esos términos en el desarrollo de Fourier que describen este comporta-
miento, sino que debe tomar toda la serie de Fourier, o toda su suma  parcial, si está modelando la señal.

Para ilustrar lo anterior considere la señal mostrada en la fi gura 4.16. Explícitamente,

cn =
√

a2
n + b2

n,

f (t) = 1

2
a0 +

∞∑

n=1

an cos(nω0t) + bn sen(nω0t).

f (t) ≈ 1

2
a0 +

N∑

n=1

an cos(nω0t) + bn sen(nω0t).

f (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 para 0 ≤ t <
1

4

−1

5
para

1

4
≤ t <

3

8

11

5
para

3

8
≤ t <

1

2

1 para
1

2
≤ t <

3

4

−3 para
3

4
≤ t < 1

−4

5
para 1 ≤ t <

5

4

14

5
para

5

4
≤ t <

11

8

4

5
para

11

8
≤ t <

3

2

0 para t ≥ 3

2
y para t < 0

.
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La serie de Fourier de f en [− 3
2 , 3

2 ] es

donde

y

Esta serie converge muy despacio a la función. La fi gura 4.17(a) muestra la octagésima suma parcial 
de esta serie, y la fi gura 4.17(b) la centésima suma parcial. Aun con este número de términos, esta 
suma parcial no modela muy bien la señal. Además, si está interesado en sólo parte de la señal, no hay 
manera de distinguir los términos de la serie de Fourier que llevan la mayor información acerca de esta 
parte de la señal. Dicho de otra manera, la serie de Fourier no localiza información.

Estas consideraciones sugieren que busque otros conjuntos de funciones ortogonales completas en las 
cuales las funciones cuadrado integrables puedan ser expandidas y que superen algunas de las difi cultades 
recién mencionadas para las series trigonométricas de Fourier. Esta es una motivación primaria para las 
onduletas. La discusión de onduletas comienza desarrollando una onduleta importante en detalle, esta 
construcción servirá después para sugerir algunas de las ideas detrás de las onduletas en general.

4.4.2 Las onduletas de Haar

Construirá un ejemplo que es importante tanto históricamente como para las aplicaciones en nuestros días. 
Las onduletas de Haar fueron las primeras en ser descubiertas (alrededor de 1910) y sirven como modelo 
de una aproximación al desarrollo de otras onduletas.

4.4 Las onduletas

�3

�1.0
t

f (t)

�2

�1

0

1

2

3

�0.5 0.5 1.0 1.5 2.0

FIGURA 4.16 La señal f (t).

y

bn = 1

5nπ

[
−6 cos

(nπ

6

)
+ 5 + 12 cos

(nπ

4

)
− 6 cos

(nπ

3

)
− 20 cos

(nπ

2

)

+ 11 cos

(
2nπ

3

)
+ 18 cos

(
5nπ

6

)
− 10 cos

(
11nπ

12

)
− 4 cos(nπ)

]
.

1

12
+

∞∑

n=1

an cos

(
2nπx

3

)
+ bn sen

(
2nπx

3

)
,

donde
an = − 1

5nπ

[
−6 sen

(nπ

6

)
+ 12 sen

(nπ

4

)
− 6 sen

(nπ

3

)
− 20 sen

(nπ

2

)

+ 11 sen

(
2nπ

3

)
+ 18 sen

(
5nπ

6

)
− 10 sen

(
11nπ

12

)]



CAPÍTULO 4   Funciones especiales, desarrollos ortogonales y onduletas234

Sea L2(R) el conjunto de todas las funciones con valores reales que están defi nidas en toda la recta real 
y son cuadrado integrables. L2(R) tiene la estructura de un espacio vectorial, ya que las combinaciones li-
neales α1 f1 + α2 f2 + · · · + αn  fn de funciones cuadrado integrables son cuadrado integrables. El producto 
punto para las funciones en L2(R) es

Ahora considere la función característica de un intervalo I (o de cualquier conjunto de números en la 
recta real). Esta función se denota por χI y tiene el valor 1 para t en I y cero para t que no esté en I. Esto 
es,

Use la función característica del intervalo unitario semiabierto:

En la fi gura 4.18 se muestra la gráfi ca de χ[0,1).
Se trata de introducir nuevas funciones tanto por escalamiento como por traslación, con el objetivo 

de producir un conjunto ortonormal completo de funciones en L2(R). Recuerde que la gráfi ca de f (t − k) 
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1

1
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x

FIGURA 4.17(a) Octagésima suma 
parcial de la serie de Fourier de la señal.

FIGURA 4.17(b) Centésima suma parcial 
de la serie de Fourier de la señal.

f · g =
∫ ∞

−∞
f (t)g(t) dt.

χI (t) =
{

1 si t está en I

0 si t no está en I
.

χ[0,1)(t) =
{

1 para 0 ≤ t < 1

0 si t < 0 o si t ≥ 1
.

1

1
t

�[0,1]

FIGURA 4.18 χ
[0,1)

χ[0,1)
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es la gráfi ca de f (t) trasladada k unidades a la derecha si k es positiva, y |k| unidades a la izquierda si k es 
negativa. Por ejemplo, la fi gura 4.19(a) muestra la gráfi ca de

La fi gura 4.19(b) es la gráfi ca de f (t  + 5) (gráfi ca de f (t) corrida cinco unidades a la izquierda), y la fi gura 
4.19(c) es la gráfi ca de f (t − 5) (la gráfi ca de f (t) corrida cinco unidades a la derecha). Además, f (kt) es 
un escalamiento de la gráfi ca de f .  f (kt) comprime (si k > 1) o estira (si 0 < k < 1) la gráfi ca de f (t) para 
a ≤ t ≤ b sobre el intervalo [a/k, b/k]. Por ejemplo, la fi gura 4.20(a) muestra una gráfi ca de

La fi gura 4.20(b) muestra la gráfi ca de f (3t), comprimiendo la gráfi ca de la fi gura 4.20(a) a la derecha e 
izquierda, y la fi gura 4.20(c) muestra la gráfi ca de f (t/3), estirando la gráfi ca de la fi gura 4.20(a).

4.4 Las onduletas

f (t) =
{
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.
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FIGURA 4.19(a) FIGURA 4.19(b) f (t + 5).

FIGURA 4.19(c) f (t − 5).
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Sea ϕ(t) = χ[0,1)(t) y defi na

En la fi gura 4.21 se muestra una gráfi ca de ψ.
Después, considere las traslaciones ψ(t − n), en donde n es cualquier entero. Esta es la función

2

�4
t

f (t)

1

0

�1

4�2 2

2

�4
t

f (3t)

1

�2 2 4

�1

0

FIGURA 4.20(a) FIGURA 4.20(b) f (3t).

f (t) =
{

t sen(πt) para −2 ≤ t ≤ 3

0 para t < −2 y para t > 0
.

ψ(t) = ϕ(2t) − ϕ(2t − 1) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 para 0 ≤ t <
1

2

−1 para
1

2
≤ t < 1

0 para t < 0 y para t ≥ 1

.

En ψ .
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f (t/3)
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función
ψ(t − n) = ϕ(2(t − n)) − ϕ(2(t − n) − 1)

= ϕ(2t − 2n) − ϕ(2t − 2n − 1)

=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 para n ≤ t < n + 1

2

−1 para n + 1

2
≤ t < n + 1

0 para t < n y para t ≥ n + 1

.

FIGURA 4.20(c) f (t/3).
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En la fi gura 4.22 se muestra la gráfi ca de ψ(t − n).
Ahora combine la traslación con el escalamiento. Considere la función

en donde m es cualquier entero. Se muestra la gráfi ca de esta función en la fi gura 4.23.
Antes de proseguir, observe que estas funciones de traslación y de escalamiento son ortogonales en 

L2(R).

4.4 Las onduletas
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FIGURA 4.21 
ψ(t) = ϕ(2t) − ϕ(2t − 1), 
con ϕ(t) = χ

[0,1)
.

FIGURA 4.22 
ψ(t − n) = ϕ(2(t − n)) − ϕ(2(t − n) − 1).

FIGURA 4.23 ψ(2t − m) = 
ϕ(2(2t − m)) − ϕ(2(2t − m) − 1).

ψ(2t − m) = ϕ(2(2t − m)) − ϕ(2(2t − m) − 1)

= ϕ(4t − 2m) − ϕ(4t − 2m − 1)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
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1 para
m

2
≤ t <

(m

2

)
+ 1

4

−1 para
(m

2

)
+ 1

4
≤ t <

(m + 1)

2

0 para t <
m

2
y para t ≥ (m + 1)

2

,

1. Para enteros distintos n y m,

y

LEMA 4.2

ψ(t − n) · ψ(t − m) = 0

ψ(2t − n) · ψ(2t − m) = 0.
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2. Para cualesquiera enteros n y m,

Prueba Si n � m, entonces los intervalos [n, n + 1) en los cuales ψ(t − n) toma sus valores distintos 
de cero, y [m, m + 1) en el cual ψ(t − m) toma sus valores distintos de cero, son ajenos. Entonces ψ(t − 
n)ψ(t − m) = 0 para todo t y

Análogamente, para n � m, los intervalos [n/2, (n + 1)/2) y [m/2, (m + 1)/2) en los cuales ψ(2t − 
n) y ψ(2t − m), respectivamente, toman sus valores distintos de cero, son ajenos, así ψ(2t − n) · ψ(2t − 
m) = 0.

Para (2), sean n y m enteros cualesquiera. Si los intervalos en los cuales ψ(t − n) y ψ(2t − m) toman 
valores distintos de cero son ajenos, entonces estas funciones son ortogonales. Hay dos casos en los que 
estos intervalos no son ajenos.

Caso 1 n = m/2
En este caso

Entonces

Caso 2 n + 1/2 = m/2
Ahora

así

Aunque las funciones ψ(t − n) y ψ(2t − m) son ortogonales en L2(R), no forman un conjunto com-
pleto, cuando n y m varían sobre los enteros. Queda para el estudiante encontrar funciones cuadrado in-
tegrables no triviales (esto es, distintas de cero al menos en algún intervalo) que sean ortogonales a todas 
estas funciones trasladadas y escaladas.

Ahora la idea es extender este conjunto de funciones usando factores de escalamiento 2m para m en-
tero, para obtener funciones que tomen valores constantes distintos de cero en los intervalos que puedan 
hacerse más cortos (m positiva) o más largos (m negativa). Sea

ψ(t − n) · ψ(2t − m) = 0.

ψ(t − n) · ψ(t − m) =
∫ ∞

−∞
ψ(t − n)ψ(t − m) dt = 0.

ψ(t − n)ψ(2t − m) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 para n ≤ t < n + 1

4

−1 para n + 1

4
≤ t < n + 1

2

0 para t < n y para t ≥ n + 1

2

.

ψ(t − n) · ψ(2t − m) =
∫ n+1/4

n

dt −
∫ n+1/2

n+1/4
dt = 0.

ψ(t − n)ψ(2t − m) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1 para n + 1

2
≤ t < n + 3

4

1 para n + 3

4
≤ t < n + 1

0 para t < n + 1

2
y para t ≥ n + 3

4

ψ(t − n) · ψ(2t − m) = −
∫ n+3/4

n+1/2
dt +

∫ n+1

n+3/4
dt = 0.

σm,n(t) = ψ(2mt − n)
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para cada entero m y cada entero n. Entonces

La fi gura 4.24 muestra las gráfi cas de σ0,n(t), σ1,n(t), σ2,n(t) y σ3,n(t) en el mismo conjunto de ejes, para 
compararlas. Observe que n determina qué tan lejos sobre el eje t aparece la gráfi ca, mientras que m 
controla el tamaño del intervalo sobre el cual la función es distinta de cero (más corto para m creciente y 
positiva, más largo para |m| creciente pero m negativa). En el dibujo n es un entero positivo, pero n también 
puede elegirse negativo, en cuyo caso las gráfi cas están a la izquierda del eje vertical.

Estas funciones forman un conjunto ortogonal en L2(R).

4.4 Las onduletas

σm,n(t) = ϕ(2m+1t − 2n) − ϕ(2m+1t − 2n − 1)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩
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FIGURA 4.24 σm,n(t) para m = 0, 1, 2, 3.

Si n, m, n′ y m′ son enteros, y (m, n) � (m′, n′), entonces

Se deja al estudiante que pruebe este resultado.
Un último detalle antes de abordar el punto principal. Las σ′

m,n son ortogonales, pero no son ortonor-
males. Esto se arregla fácilmente. Divida cada una de estas funciones entre su longitud, como se defi nió 
por el producto punto en L2(R). Calcule

Esto sugiere que defi na las funciones

Las funciones ψm,n forman un conjunto ortonormal en L2(R). Estas funciones son las onduletas de Haar. 
En la construcción, ϕ es llamada la función de escalamiento, y ψ(t) = ϕ(2t) − ϕ(2t − 1) es la onduleta 
madre. Las gráfi cas de estas onduletas son similares a las gráfi cas de la fi gura 4.24, pero el segmento en 

TEOREMA 4.29

σm,n · σm′,n′ = 0.

(longitud de σm,n)
2 = σm,n · σm,n =

∫ n/2m+1/2m

n/2m

σ 2
m,n(t) dt =

∫ n/2m+1/2m

n/2m

dt = 1

2m
.

ψm,n(t) = 2m/2σm,n(t) = 2m/2
[
ϕ(2m+1t − 2n) − ϕ(2m+1t − 2n − 1)

]

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩
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n
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≤ t <

n

2m
+ 1

2m+1
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n

2m
+ 1

2m+1 ≤ t <
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2m
+ 1

2m

0 para t <
n

2m
y para t ≥ n

2m
+ 1

2m

.
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la altura 1 en la fi gura 4.24 está ahora en la altura 2m/2, y el segmento en la altura −1 en la fi gura 4.24 está 
ahora en la altura −2m/2.

Las onduletas de Haar son completas en L2(R). La idea detrás de esto se puede visualizar como 
sigue. Si f es cuadrado integrable, entonces f (t) puede ser aproximada tan exactamente como desee por 
una función g que tiene soporte compacto (g(t) = 0 fuera de algún intervalo cerrado) y que tiene valores 
constantes en los intervalos semiabiertos de la forma [n/2m, (n + 1)/2m), con n y m enteros. Tales intervalos 
son de longitud 1/2m, los cuales se pueden hacer más largos o más cortos debido a la elección del entero m. 
Por su lado, g puede ser aproximada tanto como quiere por una suma de constantes multiplicadas por las 
onduletas de Haar, las cuales están defi nidas en tales intervalos, con el error en la aproximación tendiendo 
a cero conforme el número de términos en la suma es más grande.

4.4.3 Un desarrollo en onduletas

Suponga que f es una función cuadrado integrable. Puede intentar un desarrollo de f en una serie de las 
onduletas de Haar, que forman un conjunto ortonormal completo en L2(R). Tal desarrollo tiene la forma

La igualdad en esta expresión signifi ca que la serie de la derecha converge en la media a f (t). Esto signifi ca 
que

Los coefi cientes cmn pueden ser encontrados en la forma usual usando la ortonormalidad de las onduletas 
de Haar:

Complete el ejemplo que empezó en la sección 4.5.1, en el cual f es la señal cuya gráfi ca se muestra 
en la fi gura 4.16. Como vio en las fi guras 4.17(a) y (b), debe usar un número muy grande de términos para 
modelar esta señal con la suma parcial de su desarrollo de Fourier en 

g
[− 3

2 , 3
2 ]. Sin embargo, si calcula los 

coefi cientes en el desarrollo de Haar, encuentra que

Para algunos propósitos querrá los desarrollos trigonométricos de Fourier, pero para esta señal las ondu-
letas de Haar proveen un desarrollo muy efi ciente.

4.4.4 El análisis de multirresolución con las onduletas de Haar

El término análisis de multirresolución se refi ere a una sucesión de subespacios cerrados de L2(R) que 
están relacionados con el uso del escalamiento en la defi nición de un conjunto de onduletas. Enseguida se 
analiza lo que signifi ca esto en el contexto de las onduletas de Haar.

Debido a que L2(R) tiene la estructura de un espacio vectorial, se satisfacen las siguientes tres con-
diciones:

1. Las combinaciones lineales 
∑n

j=1 cj  fj de funciones en L2(R) también están en L2(R).
2.  La función cero, θ(t) = 0 para todo t, está en L2(R) y sirve como el vector cero de L2(R). Para 

cualquier función f en L2(R), f + θ = f .
3. Si f está en L2(R), −f , defi nida por (−f )(t) = −f (t), también está en L2(R).

f (t) =
∞∑

m=−∞

∞∑

n=−∞
cmnψm,n(t).

onduletas de Haar:

f · ψm0,n0 =
∞∑

m=−∞

∞∑

n=−∞
cmnψm,n · ψm0,n0 = cm0n0 .

f (t) = ψ0,0(t) +
√

2ψ1,1(t) − 0.6ψ2,1(t) − 0.4
√

2ψ1,2(t) + ψ2,5(t).

Esto significa que

lim
M→∞

∫ ∞

−∞

(
f (t) −

M∑

m=−∞

∞∑

n=−∞
cmnψm,n(t)

)2

dt = 0.´
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Un conjunto S de funciones cuadrado integrables se dice que es un subespacio de L2(R) si S tiene al 
menos una función en él, y siempre que f y g estén en S, entonces f − g está en S. Por ejemplo, el conjunto 
de todos los múltiplos constantes de χ[0,1] forman un subespacio de L2(R).

Un subespacio S es cerrado si las sucesiones convergentes de funciones en S tienen sus funciones 
límite en S. Por ejemplo, el subespacio de todas las funciones continuas cuadrado integrables no es ce-
rrado, ya que un límite (en el sentido de convergencia en la media) de funciones continuas puede no ser 
continuo.

Si un subespacio S no es cerrado, es posible formar el “menor” de los subespacios de L2(R) que con-
tiene a todas las funciones en S, junto con los límites de convergencia de las sucesiones de funciones en 
S. Este subespacio, que puede ser todo L2(R), se llama la cerradura de S, y se denota por 

–
S. 

–
S es cerrado, 

ya que por su construcción tiene todos los límites de sucesiones convergentes de funciones que están en 
este espacio.

Enseguida se probará cómo las onduletas de Haar generan una sucesión de subespacios cerrados de 
L2(R), que puede ser indexada con los enteros de manera que cada uno esté contenido en el siguiente en 
la lista. Los espacios están generados por diferentes escalas de la función de escalamiento ϕ y pueden ser 
pensados como asociados con los diferentes grados de resolución de la señal.

Para empezar a defi nir estos espacios, sea S0 el conjunto de todas las combinaciones lineales de la 
función de escalamiento trasladada. Estas funciones de escalamiento trasladadas tienen la forma ϕ(t − n) 
para n entero, y una función típica en S0 tiene la forma

donde N es un entero positivo, los c′
j son números reales, y cada nj es un entero. Ahora, sea V0 la cerradura 

de S0:

Ahora, sea Sm el espacio de todas las combinaciones lineales de las funciones ϕ(2mt − n), donde n 
varía en los enteros y m es un entero fi jo en la defi nición de Sm. Sea

A partir de la propiedad de escalamiento de la función de escalamiento,

ha encontrado que f (t) está en Vm exactamente cuando f (2t) está en Vm+1, y cada Vm está contenida dentro 
de Vm+1 (escrito Vm ⊂ Vm+1). Así los subespacios cerrados Vm, con m entero, forman una cadena ascen-
dente:

Esta cadena tiene dos propiedades adicionales de importancia. Primero, no hay ninguna función no 
trivial contenida en todo Vm. La intersección de todos los subespacios cerrados Vm consiste sólo de la fun-
ción cero y, fi nalmente, la cadena ascendente termina en L2(R). Esto signifi ca que toda función en L2(R) 
tiene un desarrollo en serie en términos de las funciones de Haar, un hecho ya referido.

Se dice que los espacios Vm forman un análisis de multirresolución de L2(R). Este análisis de multi-
rresolución está generado por la función de escalamiento ϕ.

4.4.5 La construcción general de onduletas y el análisis de multirresolución

Las onduletas de Haar han sido conocidas por cerca de un siglo, junto con la cadena de subespacios que 
forman el análisis de multirresolución de L2(R). Sin embargo, por algún tiempo no se supo cómo se podría 

4.4 Las onduletas

N∑

j=1

cjϕ(t − nj ),

V0 = S0.

Vm = Sm.

ϕ(t) = ϕ(2t) + ϕ(2t − 1),

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · ·
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duplicar esta construcción, para obtener un análisis de multirresolución a partir de funciones de escalamiento 
distintas. Para este fi n sirve la clave de la construcción de Haar para dar una defi nición de una función de 
escalamiento y el análisis de multirresolución asociado.

V0 es un subespacio de V1, el cual contiene funciones ortogonales a toda función en V0. El subespacio 
de V1 que contiene a todas estas funciones es llamado el complemento ortogonal de V0 en V1. Para hacer 
una analogía con los vectores en R3, los múltiplos constantes de k forman un subespacio de R3 que es el 
complemento ortogonal del plano defi nido por i y j. Todo vector en este complemento ortogonal es orto-
gonal a cada combinación lineal ai + bj.

Ahora use la función de escalamiento para producir una onduleta madre ψ, con la propiedad que toda 
función en este complemento ortogonal de V0 en V1 es una combinación lineal de trasladados ψ(t − n). Si 
existe tal onduleta madre, entonces forme la familia de onduletas

para enteros m y n.

4.4.6 Las onduletas de Shannon

Las onduletas de Haar forman un prototipo para las onduletas y el análisis de multirresolución, en parte 
porque fueron las primeras y en parte porque es relativamente fácil trabajar con ellas y visualizarlas. La 
razón por la cual pasaron tantos años antes de encontrar otros ejemplos de función de escalamiento/on-
duleta/análisis de multirresolución es que involucra un análisis bastante pesado. Sin embargo, hay otros 
ejemplos relativamente simples. Uno consiste de las onduletas de Shannon. Para éstas, empiece con la 
transformada de Fourier de una función potencial de escalamiento. Sea

Tomando la transformada inversa de Fourier, obtiene

Esta función aparece en la reconstrucción del teorema de Shannon, que fue probado en la sección 3.4.7 
para funciones de ancho de banda ≤ L. En el caso que L = π, el teorema establece que una señal f cuya 

DEFINICIÓN 4.4  La función de escalamiento y el análisis de multirresolución asociado

Sea ϕ en L2(R). Entonces ϕ es una función de escalamiento con análisis de multirresolución {Vm} si

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · ·
es una cadena ascendente de subespacios cerrados de L2(R) que satisface las condiciones:

1.  Las funciones trasladadas ϕ(t − n), para n entero, son ortonormales, y toda función en V0 
es una combinación lineal de las funciones de esta forma.

2.  No existe ninguna función no trivial que pertenezca a todo Vm (esto es, los V ′
m tienen inter-

sección trivial).
3. f (t) está en Vm exactamente cuando f (2t) está en Vm+1.
4. Toda función en L2(R) puede ser desarrollada en una serie de funciones de los V ′

m.

ψmn = 2m/2ψ(2mt − n)

ϕ̂(ω) = χ[−π,π).

ϕ(t) = sen(πt)

πt
.
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transformada de Fourier f̂ (ω) vale cero fuera del intervalo [−π, π] (esto es, f tiene un ancho de banda 
≤ π) puede ser reconstruida con muestreo sobre sus valores en los enteros. Específi camente,

El espacio V0 en este contexto consiste de las funciones en L2(R) de ancho de banda que no excede π.
Por escalamiento (sea g(t) = f (2t)) considere el espacio V1 de funciones de ancho de banda que no 

excede 2π, y así sucesivamente, formando un análisis de multirresolución. Así ϕ es una función de esca-
lamiento. Ahora necesita una onduleta madre ψ que sea ortogonal a cada ϕ(t − n) para n entero. Por un 
argumento que no se llevará a cabo (pero cuyas conclusiones pueden ser verifi cadas de manera directa), 
obtiene una ψ conveniente a partir de ϕ en este caso haciendo

El contenido de frecuencia de esta función es obtenido de su transformada de Fourier,

donde A consiste de todas las ω en [−2π, −π), junto con todas las ω en (π, 2π]. Esto es, en cada uno de 
estos intervalos, ψ̂(ω) = −e−iω/2, y para ω fuera de estos intervalos, ψ̂(ω) = 0. La fi gura 4.25 muestra la 
gráfi ca de la onduleta madre ψ, y la fi gura 4.26 la gráfi ca de su espectro de amplitud. Esto da el contenido 
de frecuencia de ψ.

Las onduletas de Shannon son las funciones

Queda para el estudiante explorar las propiedades de estas onduletas. En las fi guras 4.27(a) y (b) se dan 
las gráfi cas de ψ10(t) y ψ21(t).

Hay muchas otras familias de onduletas, incluyendo las onduletas de Meyer, las onduletas de Daube-
chies y las onduletas de Stömberg. Éstas requieren mucho trabajo preliminar para sus defi niciones. Dife-
rentes onduletas son construidas para propósitos específi cos, y tienen aplicaciones en áreas como análisis 

4.4 Las onduletas

f (t) =
∞∑

n=−∞
f (n)

sen(π(t − n))

π(t − n)
=

∞∑

n=−∞
f (n)ϕ(t − n).

ψ(t) = ϕ

ψ̂(ω) = −e−iω/2χA(ω),

ψmn(t) = 2m/2ψ(2mt − n)

= 2m/2

π
(
t − 1

2

)
(
sen(2π(2mt − n)) − cos(π(2mt − n))

)
.
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FIGURA 4.25 Onduleta madre de Shannon FIGURA 4.26 Espectro de amplitud de la 
onduleta madre de Shannon.

ψ(t) = sen(2πt) − cos(πt)

π
(
t − 1

2

) .

t − 1

2
− 2ϕ(2t − 1) = sen(2πt) − cos(πt)

π
(
t − 1

2

) .
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de señales, compresión de datos y solución de ecuaciones integrales. Para una aplicación al problema de 
usar el patrón de colores en el iris del ojo como un medio de identifi cación, véase el artículo Iris Recogni-
tion, de John Daugman, aparecido en American Scientist, julio-agosto, 2001, pp. 326-333.

1. Pruebe que σm,n(t) · σm′ ,n (t) = 0 si (m, n) � (m′, n′).

2.  En el mismo sistema de ejes, dibuje la gráfi ca de σ1,1(t) y 
σ1,2(t). Explique a partir de la gráfi ca de estas dos funciones 
por qué son ortogonales.

3.  En el mismo sistema de ejes, dibuje la gráfi ca de σ1,3(t) y 
σ−2,1(t). Explique a partir de la gráfi ca de estas dos funcio-
nes por qué son ortogonales.

4.  En el mismo sistema de ejes, dibuje la gráfi ca de σ2,1(t) y 
σ1,1(t). Explique a partir de la gráfi ca de estas dos funciones 
por qué son ortogonales.

5. Dibuje la gráfi ca de ψ(2t − 3).

6. Dibuje la gráfi ca de ψ(2t + 6).

7.  Sea f (t) = 4σ−3,−2(t) + 6σ−1,1(t). Escriba la serie de Fourier 
f (t) en [−5, 5]. Dibuje la gráfi ca de la quincuagésima suma 
parcial de esta serie en el mismo conjunto de ejes con la 
gráfi ca de f (t).

8.  Sea f (t) = −3σ2,−2(t) + 4σ2,0(t) + 7σ1,−1(t). Escriba la serie 
de Fourier f (t) en [−4, 4]. Dibuje la gráfi ca de la quincua-
gésima suma parcial de esta serie en el mismo conjunto de 
ejes con la gráfi ca de f (t).

9.  Sea f (t) = 3σ−4,−1(t) + 8σ−2,1(t). Escriba la serie de Fourier 
f (t) en [−6, 6]. Dibuje la gráfi ca de la quincuagésima suma 
parcial de esta serie en el mismo conjunto de ejes con la 
gráfi ca de f (t).

10.  Sea f (t) = σ−2,−2(t) + 4σ1,3(t) + 2σ1,−2(t). Escriba la serie 
de Fourier f (t) en [−7, 7]. Dibuje la gráfi ca de la quincua-
gésima suma parcial de esta serie en el mismo conjunto de 
ejes con la gráfi ca de f (t).

SECCIÓN 4.4 PROBLEMAS
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5.1 La ecuación de onda y las condiciones inicial y en la frontera

Las vibraciones en una membrana o un tambor, o las oscilaciones inducidas en una cuerda de guitarra 
o violín, son gobernadas por una ecuación diferencial parcial llamada ecuación de onda. Deducirá esta 
ecuación en una situación sencilla.

Considere una cuerda elástica estirada entre dos clavijas, como en una guitarra. Se trata de describir 
el movimiento de una cuerda a la cual se le da un desplazamiento pequeño y se libera para que vibre en 
un plano.

Coloque la cuerda a lo largo del eje x de 0 a L y suponga que vibra en el plano xy. Busque una función 
y(x, t) tal que en cualquier tiempo t > 0, la gráfi ca de la función y = y(x, t) de x sea la forma de la cuerda 
en ese tiempo. Así, y(x, t) permite tomar un instante de la cuerda en cualquier tiempo, mostrándola como 
una curva en el plano. Por esta razón y(x, t) es llamada la función posición para la cuerda. La fi gura 5.1 
muestra una confi guración típica.

Para empezar un caso sencillo, desprecie las fuerzas de amortiguamiento tales como la resistencia del 
aire y el peso de la cuerda y suponga que la tensión T(x, t) en la cuerda siempre actúa tangencialmente a 
la cuerda y que las partículas individuales de la cuerda se mueven sólo verticalmente. También suponga 
que la masa ρ por unidad de longitud es constante.

Ahora considere un segmento típico de la cuerda entre x y x + 
x y aplique la segunda ley del 
movimiento de Newton para escribir 

 fuerza neta en este segmento debida a la tensión =  aceleración del centro de masa 
del segmento por su masa.

Esta es una ecuación vectorial. Para 
x pequeña, la componente vertical de esta ecuación (fi gura 5.2) da 
aproximadamente
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LA ECUACIÓN DE ONDA Y COND
CIONES INICIALES Y CONDICION
EN LA FRONTERA SERIE DE FOU
SOLUCIONES DE LA ECUACIÓN

T (x + 	x, t) sen(θ + 	θ) − T (x, t) sen(θ) = ρ	x
∂2y

∂t2
(x, t),
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donde –x es el centro de masa del segmento y T(x, t) = ||T(x, t)|| = la magnitud de T. Entonces

Ahora v(x, t) = T(x, t) sen(θ) es la componente vertical de la tensión, así la última ecuación se vuelve

En el límite conforme 
x → 0, también –x → x y la última ecuación se vuelve

(5.1)

La componente horizontal de la tensión es h(x, t) = T (x, t) cos(θ), así

Sustituya ésta en la ecuación (5.1) para obtener

(5.2)

Para calcular el lado izquierdo de esta ecuación, use el hecho de que la componente horizontal de la 
tensión del segmento es cero, de manera que

h(x + 
x, t) − h(x, t) = 0.

Así h es independiente de x y la ecuación (5.2) puede ser escrita como

Haciendo c2 = h/ρ, esta ecuación se escribe frecuentemente

Esta es la ecuación de onda unidimensional (espacio de dimensión 1). Si usa la notación de subíndices 
para las derivadas parciales, en donde

entonces la ecuación de onda es

ytt = c2yxx.

T (x + 	x, t) sen(θ + 	θ) − T (x, t) sen(θ)

	x
= ρ

∂2y

∂t2 (x, t).

v(x + 	x, t) − v(x, t)

	x
= ρ

∂2y

∂t2
(x, t).

∂v

∂x
= ρ

∂2y

∂t2 .

v(x, t) = h(x, t) tan(θ) = h(x, t)
∂y

∂x
.

∂

∂x

(
h

∂y

∂x

)
= ρ

∂2y

∂t2 (x, t).

y

x
0 x L

y(x, t)

y

x
0 x x + ∆x

θ

θ + ∆θ

T
→

(x, t)

T
→

(x + ∆x, t)

y = y(x, t), t fijo

h
∂2y

∂x2 = ρ
∂2y

∂t2 .

∂2y

∂t2 = c2 ∂2y

∂x2 .

yx = ∂y

∂x
y yt = ∂y

∂t

FIGURA 5.1 Perfi l de la 
cuerda en el tiempo t.

FIGURA 5.2
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Esta foto espectacular, tomada por Ensign John Gay de la Constelación U.S.S., muestra una 
nube de onda de choque formada sobre la cola de la nave U.S. Navy F/A-18 Hornet conforme 
rompe la barrera del sonido. La teoría actual es que la densidad de las ondas sonoras genera-
das por el plano acumuladas en un cono en el plano de la cola y una gota en la presión del aire 
causan que el aire húmedo se condense ahí en gotitas de agua. Las ondas de choque no están 
completamente entendidas y sus modelos matemáticos usan técnicas avanzadas de la teoría de 
ecuaciones diferenciales parciales.

Para modelar el movimiento de la cuerda, necesita más que tan sólo la ecuación de onda. Debe incor-
porar información acerca de las restricciones en los extremos de la cuerda y acerca de la velocidad inicial 
y la posición de la cuerda que obviamente infl uirá en el movimiento.

Si los extremos de la cuerda están fi jos, entonces

y(0, t) = y(L, t) = 0 para t ≥ 0.

Estas son las condiciones de la frontera.
Las condiciones iniciales especifi can la posición inicial (en el tiempo cero)

y(x, 0) = f (x) para 0 ≤ x ≤ L

y la velocidad inicial

en donde f y g son funciones dadas que satisfacen ciertas condiciones de compatibilidad. Por ejemplo, si la 
cuerda está fi ja en sus extremos, entonces la función posición inicial debe refl ejar esto satisfaciendo

f (0) = f (L) = 0.

Si la velocidad inicial es cero (la cuerda es soltada desde el reposo), entonces g(x) = 0.

∂y

∂t
(x, 0) = g(x) para 0 < x < L,

5.1 La ecuación de onda y las condiciones inicial y en la frontera
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La ecuación de onda, junto con las condiciones iniciales y de la frontera, constituyen un problema con 
valores en la frontera para la función posición y(x, t) de la cuerda. Éstas dan sufi ciente información para 
determinar de manera única la solución y(x, t).

Si hay una fuerza externa de magnitud F unidades de fuerza por unidad de longitud actuando sobre la 
cuerda en la dirección vertical, entonces este desarrollo puede modifi carse para obtener

Nuevamente, el problema con valores en la frontera consiste de esta ecuación de onda y de las condiciones 
de la frontera e inicial.

En el espacio bidimensional la ecuación de onda es

(5.3)

Esta ecuación gobierna los desplazamientos verticales z(x, y, t) de la membrana cubriendo una región 
específi ca del plano (por ejemplo, las vibraciones de la superfi cie de un tambor).

De nuevo, las condiciones de la frontera e iniciales deben ser dadas para determinar una solución 
única. Típicamente, el marco está fi jo en la frontera (el aro de la superfi cie del tambor), de manera que no 
habrá desplazamiento de los puntos en la frontera:

z(x, y, t) = 0 para (x, y) en la frontera de la región y t > 0.

Más aún, el desplazamiento inicial y la velocidad inicial deben ser dados. Estas condiciones iniciales 
tienen la forma

con f y g dados.
Habrá ocasión de usar la ecuación de onda bidimensional (5.3) expresada en coordenadas polares, así 

que obtendrá esta ecuación. Sea

x = r cos(θ), y = r sen(θ).

Entonces

Sea

z(x, y) = z(r cos(θ), r sen(θ)) = u(r, θ).

Calcule

∂2y

∂t2 = c2 ∂2y

∂x2 + 1

ρ
F.

∂2z

∂t2 = c2
(

∂2z

∂x2 + ∂2z

∂y2

)
.

z(x, y, 0) = f (x, y),
∂z

∂t
(x, y, 0) = g(x, y)

r =
√

x2 + y2 y θ = tan−1(y/x).

∂z

∂x
= ∂u

∂r

∂r

∂x
+ ∂u

∂θ

∂θ

∂x

= x√
x2 + y2

∂u

∂r
− y

x2 + y2

∂u

∂θ

= x

r

∂u

∂r
− y

r2

∂u

∂θ
.

∂x2 ∂t2
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Entonces

Mediante un cálculo semejante, obtenemos

y

Entonces

Por tanto, en coordenadas polares, la ecuación de onda bidimensional (5.3) es

(5.4)

en donde u(r, θ, t) es el desplazamiento vertical de la membrana desde el plano xy en el punto (r, θ) y en 
el tiempo t.

Para el resto de este capítulo resolverá problemas con valores en la frontera involucrando el movimien-
to de onda en una variedad de situaciones, haciendo uso de varias técnicas.

SECCIÓN 5.1 PROBLEMAS

1.  Sea y(x, t) = sen(nπx/L) cos(nπct/L). Pruebe que y satisface 
la ecuación de onda unidimensional para cualquier entero n.

2. Pruebe que  

  satisface la ecuación de onda bidimensional para cuales-
quiera enteros n y m.

3.  Sea f una función de una variable dos veces diferenciable. 
Pruebe que

 satisface la ecuación de onda unidimensional.

4.  Pruebe que y(x, t) = sen(x) cos(ct) +    cos(x) sen(ct)

  satisface la ecuación de onda unidimensional, junto con las 
condiciones en la frontera

 
y las condiciones iniciales

5.  Formule un problema con valores en la frontera (ecuación 
diferencial parcial, condiciones de la frontera e inicial) 
para vibraciones de una membrana rectangular ocupando 
la región 0 ≤ x ≤ a, 0 ≤ y ≤ b si la posición inicial es la 
gráfi ca de z = f (x, y) y la velocidad inicial (en el tiempo 
cero) es g(x, y). La membrana está atada a un marco rígido 
a lo largo de la frontera rectangular de la región.

6.  Formule un problema con valores en la frontera para el 
movimiento de una cuerda elástica de longitud L, atada en 
ambos extremos y soltada desde el reposo con una posición 
inicial dada por f (x). La cuerda vibra en el plano xy. Su 
movimiento es contrarrestado por la resistencia del aire, 
que tiene una fuerza en cada punto de magnitud proporcio-
nal al cuadrado de la velocidad en ese punto.

∂2z

∂x2 = ∂u

∂r

∂

∂x

(x

r

)
− ∂u

∂θ

∂

∂x

( y

r2

)
+ x

r

∂

∂x

(
∂u

∂r

)
− y

r2

∂

∂x

(
∂u

∂θ

)

= y2

r3

∂u

∂r
+ 2xy

r4

∂u

∂θ
+ x2

r2

∂2u

∂r2 − 2xy

r3

∂2u

∂r∂θ
+ y2

r4

∂2u

∂θ2 .

∂z

∂y
= y

r

∂u

∂r
+ x

r2

∂u

∂θ

∂2z

∂y2 = x2

r3

∂u

∂r
− 2xy

r4

∂u

∂θ
+ y2

r2

∂2u

∂r2 + 2xy

r3

∂2u

∂r∂θ
+ x2

r4

∂2u

∂θ2 .

∂2z

∂x2 + ∂2z

∂y2 = ∂2u

∂r2 + 1

r

∂u

∂r
+ 1

r2

∂2u

∂θ2 .

∂2u

∂t2 = c2
(

∂2u

∂r2 + 1

r

∂u

∂r
+ 1

r2

∂2u

∂θ2

)
,

y(x, t) = 1
2 [f (x + ct) + f (x − ct)]

y(0, t) = y(2π, t) = 1

c
sen(ct) para t > 0

y(x, 0) = sen(x),
∂y

∂t
(x, 0) = cos(x) para 0 < x < 2π.

z(x, y, t) = sen(nx) cos(my) cos(
√

n2 + m2ct)
(

1

c

)

1

2

5.1 La ecuación de onda y las condiciones inicial y en la frontera
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5.2 Soluciones de la serie de Fourier de la ecuación de onda

Ahora, problemas que involucran el movimiento de ondas en un intervalo acotado. Primero considere 
el problema cuando hay un desplazamiento inicial, pero sin velocidad inicial (soltar una cuerda desde 
el reposo). Posteriormente, con una velocidad inicial pero sin desplazamiento inicial (dando un impulso 
inicial a la cuerda, pero desde la posición horizontal de reposo). Después, aprenderá cómo combinar éstas 
para permitir una velocidad inicial combinada con un desplazamiento inicial.

5.2.1 Cuerda vibrante con velocidad inicial cero

Considere una cuerda elástica de longitud L, atada en sus extremos en el eje x en x = 0 y x = L. La cuerda 
es desplazada, después soltada desde el reposo para vibrar en el plano xy. Busque la función de desplaza-
miento y(x, t), cuya gráfi ca es una curva en el plano xy que muestra la forma de la cuerda en el tiempo t. 
Si tomara una fotografía de la cuerda en el tiempo t, verá esta curva.

El problema con valores en la frontera para esta función de desplazamiento es

La gráfi ca de f (x) es la posición de la cuerda antes de soltarse.
El método de Fourier, o de separación de variables, consiste en intentar una solución de la forma 

y(x, t) = X(x)T (t). Sustituya esto en la ecuación de onda para obtener

donde T ′ = dT /dt y X ′ = dX/dx. Entonces

El lado izquierdo de esta ecuación depende sólo de x, y el lado derecho sólo de t. Debido a que x y t son 
independientes, puede elegir cualquier t0 que quiera y fi jar el lado derecho de esta ecuación en el valor 
constante T′′(t0)/c2T (t0), mientras varía x en el lado izquierdo. Por tanto, X′′/X debe ser constante para todo 
x en (0, L). Pero entonces T ′′/c2T debe igualar la misma constante para todo t > 0. Se denota esta constante 
por −λ (el signo negativo es de costumbre y conveniente, pero se llega a la misma solución fi nal si sólo 
usa λ). λ es llamada la constante de separación, y ahora tiene

∂2y

∂t2 = c2 ∂2y

∂x2 para 0 < x < L, t > 0,

y(0, t) = y(L, t) = 0 para t ≥ 0,

y(x, 0) = f (x) para 0 ≤ x ≤ L,

∂y

∂t
(x, 0) = 0 para 0 ≤ x ≤ L.

XT ′′ = c2X′′T ,

X′′

X
= T ′′

c2T
.

X′′

X
= T ′′

c2T
= −λ.

CAPÍTULO 5   La ecuación de onda
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Entonces

X′′ + λX = 0 y T′′ + λc2T = 0.

La ecuación de onda se ha separado en dos ecuaciones diferenciales ordinarias.
Ahora considere las condiciones en la frontera. Primero,

y(0, t) = X(0)T (t) = 0

para t ≥ 0. Si T (t) = 0 para todo t ≥ 0, entonces y(x, t) = 0 para 0 ≤ x ≤ L y t ≥ 0. Ésta es ciertamente la 
solución si f (x) = 0, ya que en ausencia de velocidad inicial o fuerza de impulso, y con desplazamiento 
cero, la cuerda permanece estacionaria para todo tiempo. Sin embargo, si T (t) � 0 para cualquier tiempo, 
entonces esta condición de la frontera puede satisfacerse sólo si

X(0) = 0.

Análogamente,

y(L, t) = X(L)T (t) = 0

para t ≥ 0 requiere que

X(L) = 0.

Ahora tiene un problema con valores en la frontera para X:

X′′ + λX = 0; X(0) = X(L) = 0.

Los valores de λ para los cuales este problema tiene soluciones no triviales son los valores propios de este 
problema, y las soluciones no triviales correspondientes para X son las funciones propias. Este problema 
regular de Sturm-Liouville fue resuelto en el ejemplo 4.8, obteniendo los valores propios

Las funciones propias son múltiplos contantes distintos de cero de

para n = 1, 2, . . . En este punto hay, por tanto, una infi nidad de posibilidades para la constante de sepa-
ración y para X(x).

Ahora regrese a T (t). Debido a que la cuerda es soltada desde el reposo,

Esto requiere que T′(0) = 0. El problema que debe resolverse para T es

T′′ + λc2T = 0;  T′(0) = 0.

Sin embargo, sabe que λ puede tomar solamente valores de la forma n2π2/L2, así este problema es real-
mente

λn = n2π2

L2
.

Xn(x) = sen
(nπx

L

)

∂y

∂t
(x, 0) = X(x)T ′(0) = 0.

T ′′ + n2π2c2

L2
T = 0; T ′(0) = 0.

5.2 Soluciones de la serie de Fourier de la ecuación de onda
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La ecuación diferencial para T tiene solución general

Ahora

así b = 0. Por tanto, hay soluciones para T(t) de la forma

para cada entero positivo n, con las constantes cn aún indeterminadas.
Ahora tiene, para n = 1, 2, . . . , funciones

(5.5)

Cada una de estas funciones satisface la ecuación de onda, las condiciones de la frontera y la condición 
inicial yt(x, 0) = 0. Necesita satisfacer la condición y (x, 0) = f (x).

Es posible elegir algún n de manera que yn(x, t) sea la solución para alguna elección de cn. Por ejem-
plo, suponga que el desplazamiento inicial es

Ahora elija n = 3 y c3 = 14 para obtener la solución

Esta función satisface la ecuación de onda, las condiciones y(0) = y(L) = 0, la condición inicial y(x, 0) = 
14 sen(3πx/L) y la condición de velocidad inicial cero

Sin embargo, dependiendo de la función de desplazamiento inicial, es posible que no obtenga una n ni 
cn particular simplemente escogiéndolas en la ecuación (5.5). Por ejemplo, si toma incialmente la cuerda 
por la mitad y tiene función de desplazamiento inicial

(5.6)

(como en la fi gura 5.3), entonces nunca podrá satisfacer y(x, 0) = f (x) que es una de las yn. Aún si intenta 
con una combinación lineal fi nita

T ′(0) = nπc

L
b = 0,

Tn(t) = cn cos

(
nπct

L

)

yn(x, t) = cn sen
(nπx

L

)
cos

(
nπct

L

)
.

f (x) = 14 sen

(
3πx

L

)
.

y(x, t) = 14 sen

(
3πx

L

)
cos

(
3πct

L

)
.

∂y

∂t
(x, 0) = 0.

f (x) =

⎧
⎪⎪⎨
⎪⎪⎩

x para 0 ≤ x ≤ L

2

L − x para
L

2
< x ≤ L

,

y(x, t) =
N∑

n=1

yn(x, t)

T (t) = a cos

(
nπct

L

)
+ b sen

(
nπct

L

)

L
2

L
2

L

y

x

y(x, 0) �
x,        0 � x � L

2

L � x, � x � LL
2

x

FIGURA 5.3

x,
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no puede elegir c1, . . . , cN para satisfacer y(x, 0) = f (x) para esta función, ya que f (x) no puede escribirse 
como una suma fi nita de funciones seno.

Por tanto, debe intentar la superposición infi nita

Debemos elegir las cn para satisfacer

¡Podemos hacer esto! Esta serie es el desarrollo de Fourier en senos de f (x) en [0, L]. Así elegimos los 
coefi cientes de Fourier en senos

Con esta elección, obtenemos la solución

(5.7)

Esta estrategia funcionará para cualquier función de desplazamiento inicial f que sea continua con 
derivada continua a pedazos en [0, L] y que satisfaga f (0) = f (L) = 0. Estas condiciones garantizan que 
la serie de Fourier en senos de f (x) en [0, L] converge a f (x) para 0 ≤ x ≤ L.

En circunstancias específi cas, cuando f (x) está dada, por supuesto podemos calcular explícitamente 
los coefi cientes en esta solución. Por ejemplo, si L = π y la función de posición inicial f (x) = x cos (5x/2) 
en [0, π]. entonces el n-ésimo coefi ciente en la solución (5.7) es

La solución para esta función de desplazamiento inicial, y velocidad inicial cero, es

(5.8)

La fi gura 5.4(a) muestra las gráfi cas de esta función (perfi les de la cuerda) en los tiempos t = 0, 0.2, 
0.4, 0.7, 0.9 y 1.3 segundos. La fi gura 5.4(b) muestra los perfi les en los tiempos t = 1.2, 1.9, 3, 3.5, 4.2 y 
4.7. Y la fi gura 5.4(c) muestra las gráfi cas en los tiempos t = 5.1, 5.6, 5.9, 6.4, 7 y 8.3. Estas instantáneas 
se hacen en grupos en el mismo conjunto de ejes para transmitir cierto sentido del movimiento con el 
tiempo.

La solución obtenida por separación de las variables se puede poner en el contexto de la teoría de 
Sturm-Liouville (sección 4.3). El problema para X, a saber,

X′′ + λX = 0; X(0) = X(L) = 0,
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es un problema regular de Sturm-Liouville, y ha encontrado sus valores propios y las funciones propias 
correspondientes. El paso fi nal en la solución es desarrollar la función posición inicial en una serie de 
funciones propias. Para este problema esta serie es el desarrollo de Fourier en senos de f (x) en [0, L].
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FIGURA 5.4(a) Perfi les de las soluciones 
en los tiempos t = 0, 0.2, 0.4, 0.7, 0.9 y 1.3.

FIGURA 5.4(b) Perfi les de la cuerda en los tiempos 
t = 1.2, 1.9, 3, 3.5, 4.2 y 4.7.
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5.2.2 Cuerda vibrante con velocidad inicial dada y desplazamiento inicial cero

Ahora considere el caso en que la cuerda es soltada desde su posición horizontal (desplazamiento inicial 
cero), pero con una velocidad inicial dada en x por g(x). El problema con valores en la frontera para la 
función de desplazamiento es

Empiece como antes, con la separación de las variables. Ponga y(x, t) = X(x)T(t). Como la ecuación 
diferencial parcial y las condiciones en la frontera son las mismas que antes, nuevamente obtiene

X ′′ + λX = 0;   X(0) = X(L) = 0,

con valores propios

y funciones propias constantes múltiplos de

Ahora, sin embargo, el problema para T es diferente y tiene

y(x, 0) = 0 = X(x)T(0),

de manera que T(0) = 0. El problema para T es

FIGURA 5.4(c) Perfi les de la cuerda en los tiempos 
t = 5.1, 5.6, 5.9, 6.4, 7 y 8.3.
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(En el caso de velocidad inicial cero tenía T (0) = 0). La solución general de la ecuación diferencial para 
T es

Como T (0) = a = 0, las soluciones para T (t) son múltiplos constantes de sen(nπct/L). Así, para n = 1, 
2, . . . , tiene las funciones

Cada una de estas funciones satisfacen la ecuación de onda, las condiciones en la frontera y la condi-
ción de desplazamiento inicial cero. Para satisfacer la condición de velocidad inicial yt(x, 0) = g(x), debe 
intentar en general una superposición

Suponga que puede diferenciar esta serie término a término, entonces

Este es el desarrollo de Fourier en senos de g(x) en [0, L]. Elija el todo el coefi ciente de sen(nπx/L) para 
ser el coefi ciente de Fourier en senos de g(x) en [0, L]:

o

La solución es

(5.9)

Por ejemplo, suponga que la cuerda es soltada desde su posición horizontal con una velocidad inicial 
dada por g(x) = x(1 + cos(πx/L)). Calcule

La solución para esta función de velocidad inicial es

(5.10)

Si c = 1 y L = π, obtiene

La fi gura 5.5 muestra las gráfi cas de esta solución (posiciones de la cuerda) en los tiempos t = 0.4, 1.2, 
1.7, 2.6, 3.5 y 4.3.
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5.2.3 Cuerda vibrante con desplazamiento y velocidad inicial

Considere el movimiento de la cuerda con desplazamiento inicial f (x) y velocidad inicial g(x).
Formule dos problemas separados, el primero con desplazamiento inicial f (x) y velocidad inicial cero, 

y el segundo con desplazamiento inicial cero y velocidad inicial g(x). Sabe cómo resolver ambos. Sea 
y1(x, t) la solución del primer problema, y y2(x, t) la solución del segundo. Ahora sea

y(x, t) = y1(x, t) + y2(x, t ).

Entonces y satisface la ecuación de onda y las condiciones en la frontera. Más aún,

y(x, 0) = y1(x, 0) + y2(x, 0) = f (x) + 0 = f (x)

y

Así y(x, t) es la solución para el caso con funciones de desplazamiento inicial y velocidad inicial distintas 
de cero.

Por ejemplo, sea la función de desplazamiento inicial

y la velocidad inicial

La solución de la función de desplazamiento es la suma de la solución y1(x, t) para desplazamiento f (x), 
con velocidad inicial cero, y la solución y2(x, t) con desplazamiento inicial cero y velocidad inicial g(x). 
Para y1(x, t), use la solución (5.7). Primero evalúe
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FIGURA 5.5 Perfi les de la cuerda en los tiempos 

t = 0.4, 1.2, 1.7, 2.6, 3.5 y 4.3.
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Por tanto,

Ya se ha resuelto para y 2(x, t), y se obtiene

La solución con la posición inicial y la velocidad inicial dadas es y(x, t) = y1(x, t) + y2(x, t). Si L = π y 
c = 1, esta solución es

Las gráfi cas de este perfi l de la cuerda se muestran en la fi gura 5.6 para los tiempos t = 0.125, 0.46, 0.93, 
1.9, 2.5, 3.4 y 5.2.

5.2.4 Verifi cación de las soluciones

En las soluciones obtenidas hasta aquí ha tenido que usar una serie infi nita

y determinar los coefi cientes en las yn usando un desarrollo de Fourier. La pregunta ahora es si esta suma 
infi nita es verdaderamente una solución del problema con valores en la frontera.

Para ser específi co, considere el problema con función posición inicial f (x) y velocidad inicial cero. 
Deduzca la solución propuesta

(5.11)
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FIGURA 5.6 Instantes de la cuerda en los  
tiempos t =  , 0.46, 0.93, 1.9, 2.5, 3.4 y 5.2.
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en donde

Ciertamente, y(0, t) = y(L, t) = 0, ya que todo término en la serie para y(x, t) tiende a cero en x = 0 y en 
x = L. Más aún, bajo condiciones razonables sobre f , la serie en senos de Fourier de f (x) converge a f (x) 
en [0, L], así y(x, 0) = f (x).

Sin embargo, no es obvio que y(x, t) satisfaga la ecuación de onda, a pesar de que cada término en la 
serie ciertamente sí. La razón para esta incertidumbre es que no puede justifi car la diferenciación término 
a término de la solución en serie propuesta.

Ahora se demostrará un hecho sobresaliente, el cual tiene también otras ramifi caciones. Probará que 
la serie en la ecuación (5.11) puede ser sumada en forma cerrada. Para hacer esto, primero escriba

La ecuación (5.11) se convierte en

(5.12)

Si la serie de Fourier en senos para f (x) converge a f (x) en [0, L], como normalmente podría esperarse para 
una función que pueda ser una función de desplazamiento de una cuerda, entonces

para 0 ≤ x ≤ L, y la ecuación (5.12) se convierte en

Si f  es doblemente diferenciable, puede usar la regla de la cadena para verifi car directamente que y(x, t) 
dada por esta expresión satisface la ecuación de onda, siempre que f (x + ct) y f (x − ct) estén defi nidas.

Sin embargo, esto presenta una difi cultad, ya que f (x) está defi nida únicamente para 0 ≤ x ≤ L. Pero 
t puede ser cualquier número no negativo, de manera que los números x + ct y x − ct pueden variar sobre 
toda la recta real. Así que, ¿cómo evaluar f (x + ct) y f (x − ct)?

Esta difi cultad puede superarse en dos pasos. Primero, extienda f a una función impar fo defi nida en 
[−L, L] haciendo

Observe que fo(0) = fo(L) = fo(−L) = 0 debido a que los extremos de la cuerda están fi jos.
Ahora extienda fo a una función periódica F de periodo 2L reproduciendo la gráfi ca de fo en intervalos 

sucesivos [L, 3L], [3L, 5L], . . . , [−3L, −L], [−5L, −3L], . . . . La fi gura 5.7(a) exhibe la extensión impar 
de f defi nida en [0, L] a fo defi nida en [−L, L], y la fi gura 5.7(b) muestra la extensión periódica de fo en la 
recta real.

Ahora tenemos

(5.13)

para 0 ≤ x ≤ L y t > 0. Suponga que f es doblemente diferenciable, y que las uniones en los extremos de 
los intervalos donde f  ha sido extendida para producir F son sufi cientemente suaves, entonces F también 
es doblemente diferenciable, y se puede usar directamente la regla de la cadena para verifi car que y(x, t) 
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satisface la ecuación de onda. Esta es una expresión elegante para la solución en términos de la función 
de desplazamiento inicial y el número c, que depende del material que está hecha la cuerda. Es razonable 
que el movimiento deba estar determinado por estas cantidades.

En la práctica, a menudo hay un número fi nito de puntos en [0, L] en donde f  no es diferenciable. 
Por ejemplo, la f (x) dada por la ecuación (5.6) no es diferenciable en L / 2. En tal caso, y(x, t) dada por la 
ecuación (5.13) es la solución en un sentido restringido, debido a que hay puntos aislados en los cuales no 
se satisfacen todas las condiciones del problema con valores en la frontera.

La ecuación (5.13) tiene una interpretación física interesante. Si piensa en F(x) como una onda, 
entonces F(x + ct) es esta onda trasladada ct unidades a la izquierda, y F(x − ct) es la onda trasladada ct 
unidades a la derecha. El movimiento de la cuerda (en este caso con velocidad inicial cero) es la suma de 
dos ondas, una moviéndose a la derecha con velocidad c, la otra a la izquierda con velocidad c, y ambas 
ondas están determinadas por la función de desplazamiento inicial. Habrá más acerca de esto cuando se 
discuta la solución de d’Alembert para el movimiento de una cuerda de longitud infi nita.

5.2.5  Transformación de problemas con valores en la frontera 
que involucran la ecuación de onda

Hay problemas con valores en la frontera que involucran una ecuación de onda para los cuales la separa-
ción de las variables no lleva a la solución. Esto puede ocurrir debido a la forma de la ecuación de onda 
(por ejemplo, puede ser un término externo de fuerza), o debido a las condiciones de la frontera. Se mos-
trará un ejemplo de tal problema y una estrategia para superar la difi cultad.

Considere el problema con valores en la frontera

A es una constante positiva. El término Ax en la ecuación de onda representa una fuerza externa que en x 
tiene magnitud Ax. Ha hecho c = 1 en este problema.

Si pone y(x, t) = X(x)T (t) en la ecuación diferencial parcial, obtiene

XT′′ = X′′ T + Ax,

y no hay manera de separar la dependencia de t en un lado de la ecuación y la dependencia de x en el 
otro.

y f

L
x

�L

FIGURA 4.7(a) Extensión impar
de f en [−L, L].

y

3L2LL
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FIGURA 5.7(a) Extensión impar de f 
en [−L, L].

FIGURA 5.7(b) Extensión periódica F de fo en la recta real.
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Transforme este problema en uno para el cual funcione la separación de las variables. Sea

y(x, t) = Y(x, t) + ψ(x).

La idea es elegir ψ para reducir el problema dado en uno que ya haya resuelto. Sustituya y(x, t) en la ecua-
ción diferencial parcial para obtener

ésta será simplifi cada si elige ψ de manera que

ψ′′ (x) + Ax = 0.

Hay muchas de tales elecciones. Integrando dos veces, obtiene

con C y D constantes, todavía las puede elegir como quiera. Ahora, las condiciones de la frontera. Prime-
ro,

y(0, t) = Y(0, t) + ψ(0) = 0.

ésta sólo será y(0, t) = Y(0, t) si elige

ψ(0) = D = 0.

Ahora,

ésta se reducirá a y(L, t) = Y(L, t) si elige C de manera que

o

Esto signifi ca que

Con esta elección de ψ,

Y(0, t) = Y(L, t) = 0.

Ahora relacione las condiciones iniciales para y con las condiciones iniciales para Y. Primero,

y
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6
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Ahora tiene un problema con valores en la frontera para Y(x, t):

Usando las ecuaciones (5.7) y (5.9), inmediatamente escriba la solución

La solución del problema original es

La fi gura 5.8(a) muestra los instantes de la cuerda en los tiempos t = 0.03, 0.2, 0.5, 0.9, 1.4 y 2.2, 
con c = 1 y L = π. La fi gura 5.8(b) tiene tiempos t = 2.8, 3.7, 4.4, 4.8, 5.3, 6.1 y 6.7, éstas usan L = π y 
c = 1.

5.2.6 Efectos de las condiciones iniciales y las constantes en el movimiento

Usando la separación de las variables, ha obtenido las soluciones en serie de los problemas que involucran 
la vibración de una cuerda en un intervalo acotado. Es interesante examinar los efectos que las constantes, 
que aparecen en el problema, tienen en la solución. Empiece con un ejemplo investigando el efecto de la 
constante c en el movimiento de la cuerda.

FIGURA 5.8(b) Posición en los tiempos 
t = 2.8, 3.7, 4.4, 4.8, 5.3, 6.1 y 6.7.
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FIGURA 5.8(a) Posición de la cuerda en los 
tiempos t = 0.03, 0.2, 0.5, 0.9, 1.4 y 2.2.



263

EJEMPLO 5.1

Considere nuevamente el problema de la ecuación de onda con desplazamiento inicial cero y velocidad 
inicial dada por

La solución obtenida anteriormente, con L = π, es

La fi gura 5.5 muestra las gráfi cas de las posiciones de la cuerda en diferentes tiempos, con c = 1. Ahora 
debe enfocarse en cómo c infl uye en el movimiento. La fi gura 5.9(a) muestra el perfi l de la cuerda en el 
tiempo t = 5.3 segundos, con c = 1.05. Las fi guras 5.9(b) y (c) muestran el perfi l en el mismo tiempo, pero 
con c = 1.1 y c = 1.2, respectivamente. Estas gráfi cas están colocadas en el mismo sistema de ejes para 
comparar con la fi gura 5.9(d). Se invita al estudiante a seleccionar otros tiempos y dibujar la gráfi ca de la 
solución para valores diferentes de c. ■

Ahora, considere un problema en donde los datos iniciales de éste dependen de un parámetro. 

FIGURA 5.9(c) t = 5.3 y c = 1.2.  FIGURA 5.9(d) Perfi l de la cuerda en el tiempo t = 5.3 
para c igual a 1.05, 1.1 y 1.2.

g(x) = x
(

1 + cos
(πx

L

))
.

l ió b id i

y(x, t) = 3

2c
sen(x) sen(ct) +
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n=2

2(−1)n

n2c

1

n2 − 1
sen(nx) sen(nct)
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FIGURA 4.9(a) t = 5.3 y c = 1.05.
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FIGURA 4.9(b) t = 5.3 y c = 1.1.
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FIGURA 5.9(a) t = 5.3 y c = 1.05. FIGURA 5.9(b) t = 5.3 y c = 1.1.
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EJEMPLO 5.2

Considere el problema

en donde ǫ es un número positivo que no es un entero. Es de rutina escribir la solución

Ahora compare las gráfi cas de esta solución en varios tiempos, con distintas elecciones de ǫ. La fi gura 
5.10(a) muestra el perfi l de la cuerda en t = 0.5 para ǫ igual a 0.7, 0.9, 1.5, 4.7 y 9.3. La fi gura 5.10(b) 
muestra las gráfi cas para estos valores de ǫ en t = 1.1, y la fi gura 5.10(c) muestra las gráfi cas en t = 2.8. 
También es posible seguir el movimiento de la cuerda en distintos tiempos para el mismo valor de ǫ. La 
fi gura 5.11(a) muestra los perfi les de la cuerda para ǫ = 0.7 en los tiempos t = 0.5, 1.1 y 2.8. Las fi guras 
5.11(b), (c), (d) y (e) cada una muestra el perfi l de la cuerda para una ǫ dada y para estos tres tiempos. ■

∂2y

∂t2 = 1.44
∂2y

∂x2 para 0 < x < π, t > 0,

y(0, t) = y(π, t) = 0 para t ≥ 0,

y(x, 0) = 0,
∂y

∂t
(x, 0) = sen(ǫx) para 0 < x < π,

y(x, t) = 5

3π

∞∑

n=1

sen(πǫ)(−1)n+1

n2 − ǫ2
sen(nx) sen(1.2nt).
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FIGURA 4.10(a) Perfiles de la cuerda en
t = 0.5 para ǫ igual a 0.7, 0.9, 1.5, 4.7 y 9.3.
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t = 1.1.
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FIGURA 5.10(c) Perfi les de la cuerda en t = 2.8.

FIGURA 5.10(a) Perfi les de la cuerda en 
t = 0.5 para ǫ igual a 0.7, 0.9, 1.5, 4.7 y 9.3.

FIGURA 5.10(b) Perfi les de la cuerda en 
t = 1.1.
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En algunos de los ejercicios siguientes, se le pedirá al alumno que emplee un paquete grafi cador para 
exhibir los perfi les de la cuerda en tiempos diferentes y bajo condiciones diferentes.

5.2.7 Solución numérica de la ecuación de onda

Se describirá un método para aproximar soluciones de la ecuación de onda en un intervalo. La idea subya-
cente es útil también para aproximar soluciones de la ecuación de calor, y tiene que ver con aproximacio-
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FIGURA 4.11(a) Gráficas de la cuerda con
ǫ = 0.7 para los tiempos t = 0.5, 1.1 y 2.8.
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FIGURA 4.11(b) ǫ = 0.9.
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FIGURA 4.11(c) ǫ = 1.5.
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FIGURA 4.11(d) ǫ = 4.7.
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FIGURA 5.11(e) ǫ = 9.3.

FIGURA 5.11(a) Gráfi cas de la cuerda con 
ǫ = 0.7 para los tiempos t = 0.5, 1.1 y 2.8.

FIGURA 5.11(b) ǫ = 0.9.

FIGURA 5.11(c) ǫ = 1.5. FIGURA 5.11(d) ǫ = 4.7.
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nes de diferencias de la derivada. Para entender esta idea, comience con una función f de una sola variable 
que es derivable en x0. Aproxime

y también

donde la aproximación mejora cuando se elige h cada vez más próxima a cero. Si h > 0, éstas son, res-
pectivamente, las aproximaciones por diferencias hacia adelante y hacia atrás de f ′(x0). Si se promedian 
éstas se obtiene

Ésta es la aproximación por diferencias centrada de f ′(x0).
Si f es derivable dos veces en x0, entonces

Al reemplazar 2h por h, puede escribir

Ésta es la aproximación por diferencias centrada de la segunda derivada.
Al aplicar estas ideas a y(x, t), puede tomar incrementos 
x en x y 
t en t y escribir las aproximacio-

nes por diferencias centradas de las segundas derivadas parciales:

y

Éstas las empleará para escribir ecuaciones numéricas de la solución al problema:

La región de interés x, t es la banda 0 ≤ x ≤ L, t ≥ 0. Elija un entero positivo N y sea 
x = L/N. La 
partición [0, L] por puntos xj = j
x, por tanto.

f 0 ≈ 0 + − 0

h

f 0 ≈ 0 − − 0

−h

f 0 ≈ 0 + − 0 −
2h

f 0 ≈ f 0 + − f 0 −
2h

≈ 1

2h
0 +2 − 0

2h
− 0 − 0 −2

2h

= 0 +2 −2 0 + 0 −2

4h2

f 0 ≈ 0 + −2 0 + 0 −
h2

2y
2

≈ + −2 + −
2

2y
2

≈ + −2 + −
2

2y
2

= c2
2y

2

para 0

para 0

para 0

0

0 = = 0 para t ≥ 0

0 = ≤ x ≤

0 = ≤ x ≤

0 <
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N
<
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N
< · · · <

−1

N
<

NL

N
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Elija también un incremento 
t en el tiempo y sea tk = k
t para k = 0, 1, 2,. . .  De este modo forme una 
cuadrícula de puntos (xj , tk), llamados puntos de retícula, sobre la banda x, t, como se muestra en la fi gura 
5.12.

Es conveniente escribir

yj,k = y(xj, tk) = y(j
x, k
t).

Ahora reemplace las derivadas parciales en la ecuación de onda con aproximaciones por diferencias cen-
tradas para obtener

en (xj , yk). Al despejar yj,k+1, se obtiene

(5.14)

En la fi gura 5.13 se muestra que esta ecuación es útil. Las líneas horizontales t = tk
 , dividen la banda 

x, t en las capas de tiempo horizontales 
t unidades. Calcule los valores aproximados yj,k en los puntos 
de retícula (xj , tk). Los puntos (xj , tk+1), (xj−1, tk), (xj , tk), (xj+1, tk) y (xj , tk−1) aparecen como una confi gu-
ración de diamante, con los tres puntos medios en el nivel tk, el último punto en el nivel tk−1 y el primero 
en el nivel tk+1 superior. Si conoce el valor (aproximado) de y(x, t) en cada uno de los últimos cuatro 
puntos (en los niveles tk y tk−1), entonces se conocen todos los términos del lado derecho de la ecuación 
(5.14) y, por consiguiente, se conoce el valor  yj,k+1 (aproximado) en el nivel tk+1. Se pueden obtener tales 
confi guraciones de cinco puntos al despejar siempre el valor de y(x, t) en el nivel más alto, de los valores 
derivados antes en los dos niveles inferiores siguientes.

Este proceso falla en los bordes de la región x, t porque no se puede formar allí esta confi guración de 
diamante de cinco puntos. Sin embargo, la información inicial y de frontera del problema da información 
acerca de y(x, t) en los bordes. En particular:

y(x, 0) = f(x) en cada punto del fondo (t = 0) de la banda, y
y(0, t) = y(L, t) = 0 en los lados izquierdo y derecho de la banda.
Así,

y(0, tk) = y(L, tk) = 0,

o de modo equivalente,

y0,k = yL,k = 0 para k = 0, 1, 2, . . .

y

y(xj, 0) = yj,0 = f (j
x) para j = 1, . . ., N − 1.

y +1 −2y + y −1

2
= c2 yj +1 −2y + yj −1

2

y +1 =
2

yj +1 −2y = yj −1 +2y − y −1

t

x
x � xN � Lx � x0 ∆x

∆t

xj + 1xj

(xj, tk)tk

tk + 1

}

}

FIGURE 17.12 Lattice of points at

which approximations are made.
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(xj, tk+1)
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xj–1 xj xj+1

x

(xj+1, tk)

x � L

(xj, tk–1)

(xj, tk)

FIGURE 17.13 For the wave equation,

approximation of y�xj� tk+1� from preceding

approximations, three at level tk and one at level tk−1.

FIGURA 5.12 Retícula de puntos en 
la que se hacen las aproximaciones.

FIGURA 5.13 Para la ecuación de onda, aproxima-
ción de y(xj , tk+1) de aproximaciones anteriores, tres 
al nivel tk y una al nivel tk+1.
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No se ha usado aún la condición inicial sobre la velocidad. Use la aproximación por diferencias hacia 
atrás de la primera derivada para escribir

(5.15)

Observe que esta ecuación contiene un término yj,−1, que está en la capa debajo del borde del fondo (t = 0) 
de la banda x, t. En realidad no hay tal capa en un sentido natural, pero se crea artifi cialmente por medio de 
la aproximación por diferencias hacia atrás a fi n de usar la información inicial (∂y/∂t)(x, 0) = g(x) para 
0 ≤ x ≤ L . De la ecuación (5.15) despeje yj,−1 para obtener

yj,−1 = yj,0 − g(j
x)
t,

que permite determinar los valores apropiados por completar en esta capa inferior, en términos de valores 
conocidos en el nivel cero y la función de velocidad inicial. Esto proporciona la confi guración de diamante 
de la fi gura 5.14 cuando k = 0.

La estrategia ahora es comenzar a completar los valores de y(x, t) en los puntos de cuadrícula en los 
niveles k = −1 y k = 0. Luego, elabore las capas, usando la ecuación (5.14) para completar los valores 
aproximados de y(x, t) en capas superiores sucesivas. Con la capacidad de cálculo actual, esto se puede 
hacer para un número muy grande de puntos de cuadrícula.

Un punto fi no, el número (c
t/
x)2 tiene un efecto en la estabilidad del método. Si este número es 
menor que 1/2, el método es estable y produce aproximaciones que mejoran cuando se elige a 
x y 
t 
más pequeñas (manteniendo a (c
t/
x)2 < 1/2). Si (c
t/
x)2 < 1/2, las aproximaciones numéricas pue-
den ser inestables, lo que produce resultados poco confi ables.

EJEMPLO 5.3

Considere el problema 

t

t1

t � 0
t–1

xj–1 xj+1
x

(xj, t–1)

(xj, t1)

xj

x � L

FIGURA 5.14 Se debe crear una capa 
t−1 para poner en práctica el esquema de 
la fi gura 5.13 en la capa t1.
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0 = x cos(πx/2), 0 = 1 ≤ x ≤ 1/ 2

0
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La solución exacta es

Se elegirá N = 10, así que 
x = 0.1. Sea 
t = 0.025. Entonces (c
t/
x)2 = (0.025/0.1)2 = 0.0625 < 1/2. 
Las ecuaciones para las aproximaciones son

(5.16)

y

Note que se toma j del 1 a N − 1 = 9 porque j = 0 corresponde al lado izquierdo de la banda x, t, y 
j = N = 10 se refi ere al lado derecho de esta banda, y la información se da en estos lados: y(0, t) = 
y(1, t) = 0.

Primero, calcule los valores yj,−1 en el nivel horizontal inferior:

A continuación, calcule los valores aproximados yj,0:

Ahora mueva sistemáticamente el eje t, un nivel a la vez. Para t = 0.025, coloque k = 0 en la ecuación 
(5.16), se tiene

Los valores calculados son:

A continuación se obtienen los valores aproximados en la capa k = 2 (t = 2(0.025) = 0.05) al escribir 
k = 1 en la ecuación (5.16) y usar

para j = 1, . . . , 9. De este modo, puede formar aproximaciones en los puntos de retícula tan altas como 
se quiera en la banda x, t. ■

= 16
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n=1

−1 n

4n2 −1 2

+ 2

n=1

1

n
sen(nπx) sen(nπt)

cos(nπ/2) −1

nππ

π
sen(nπx) sen(nπt)

y +1 = 0 0625 yj +1 −2y + yj −1 +2y − y −1 para j = 1 9, k = 0 1 2

y 0 = 0 1 para j = 1 9

yj�−1
= yj�0−g�j	x�	t = f�0�1j�−0�025g�0�1j� for j = 1� � � � �9�

y
1�−1

= 0�07377� y
2�−1

= 0�16521� y
3�−1

= 0�24230

y
4�−1

= 0�29861� y
5�−1

= 0�32855� y
6�−1

= 0�35267� y
7�−1

= 0�31779�

y
8�−1

= 0�24721� y
9�−1

= 0�14079�

y
1�0 = 0�09877� y

2�0 = 0�19021� y
3�0 = 0�26730�

y
4�0 = 0�32361� y

5�0 = 0�35355� y
6�0 = 0�35267� y
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y
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yj+1�0−2yj�0+yj−1�0
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y
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En cada uno de los problemas del 1 al 8, resuelva el problema 
con valores en la frontera usando la separación de las variables. 
Dibuje la gráfi ca de algunas de las sumas parciales de la solu-
ción en serie, para los valores seleccionados del tiempo.

 1. 

 2. 

 3. 

 4. 

 5. 

 6. 

 7. 

 donde

 8. 

 9. Resuelva el problema con valores en la frontera

  Dibuje la gráfi ca de algunas de las sumas parciales de la 
solución en serie. Sugerencia: Haciendo y(x, t) = X(x)T (t), 
encuentre que las variables no se separan. Haga Y(x, t) = 
y(x, t) + h(x) y elija h para obtener un problema con valores 
en la frontera que pueda ser resuelto mediante la serie de 
Fourier.

10. Resuelva

  Dibuje la gráfi ca de algunas de las sumas parciales de la 
solución para valores de t.

SECCIÓN 5.2 PROBLEMAS

∂2y

∂t2
= c2 ∂2y

∂x2
para 0 < x < 2, t > 0,

y(0, t) = y(2, t) = 0 para t ≥ 0,

y(x, 0) = 0,
∂y

∂t
(x, 0) = g(x) para 0 ≤ x ≤ 2,

donde g(x) =
{

2x para 0 ≤ x ≤ 1

0 para 1 < x < 2

∂2y

∂t2
= 9

∂2y

∂x2
para 0 < x < 4, t > 0,

y(0, t) = y(4, t) = 0 para t ≥ 0,

y(x, 0) = 2 sen(πx),
∂y

∂t
(x, 0) = 0 para 0 ≤ x ≤ 4

∂2y

∂t2
= 4

∂2y

∂x2
para 0 < x < 3, t > 0,

y(0, t) = y(3, t) = 0 para t ≥ 0,

y(x, 0) = 0,
∂y

∂t
(x, 0) = x(3 − x) para 0 ≤ x ≤ 3

∂2y

∂t2
= 9

∂2y

∂x2
para 0 < x < π, t > 0,

y(0, t) = y(π, t) = 0 para t ≥ 0,

y(x, 0) = sen(x),
∂y

∂t
(x, 0) = 1 para 0 ≤ x ≤ π

∂2y

∂t2
= 8

∂2y

∂x2
para 0 < x < 2π, t > 0,

y(0, t) = y(2π, t) = 0 para t ≥ 0,

y(x, 0) = f (x),
∂y

∂t
(x, 0) = 0 para 0 ≤ x ≤ 2π,

donde

f (x) =
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3x para 0 ≤ x ≤ π

6π − 3x para π < x ≤ 2π
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∂t2
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∂2y

∂x2
para 0 < x < 5, t > 0,

y(0, t) = y(5, t) = 0 para t ≥ 0,
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∂y
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(x, 0) = g(x) para 0 ≤ x ≤ 4,

donde

g(x) =
{

0 para 0 ≤ x < 4

5 − x para 4 ≤ x ≤ 5

∂2y

∂t2
= 9

∂2y

∂x2
para 0 < x < 2, t > 0,

y(0, t) = y(2, t) = 0 para t ≥ 0,

y(x, 0) = x(x − 2),
∂y

∂t
(x, 0) = g(x) para 0 ≤ x ≤ 2,

g(x) =

⎧
⎪⎪⎨
⎪⎪⎩

0 para 0 ≤ x <
1

2
y para 1 < x ≤ 2

3 para
1

2
≤ x ≤ 1

.

2y
2

= 25
2y

2
para 0 0

0 = = 0 para t ≥ 0

0 = sen

y(π, t)

π, t

π π2 0 = − x para 0 ≤ x ≤

∂2y

∂t2
= 3

∂2y

∂x2
+ 2x para 0 < x < 2, t > 0,

y(0, t) = y(2, t) = 0 para t ≥ 0,

y(x, 0) = 0,
∂y

∂t
(x, 0) = 0 para 0 ≤ x ≤ 2.

∂2y

∂t2
= 9

∂2y

∂x2
+ x2 para 0 < x < 4, t > 0,

y(0, t) = y(4, t) = 0 para t ≥ 0,

y(x, 0) = 0,
∂y

∂t
(x, 0) = 0 para 0 ≤ x ≤ 4.

0

3x

0
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11. Resuelva

  Dibuje la gráfi ca de algunas de las sumas de la solución 
para valores seleccionados del tiempo.

12.  Las vibraciones transversales en una vara homogénea de 
longitud π son modeladas por la ecuación diferencial par-
cial

  Aquí u(x, t) es el desplazamiento en el tiempo t de la sec-
ción transversal a través de x perpendicular al eje x, y a2 = 
EI / ρA, donde E es el módulo deYoung, I es el momento de 
inercia de la sección transversal perpendicular al eje x, ρ es 
la constante de densidad, y A el área de la sección trans-
versal, considerada constante.

 (a) Sea u(x, t) = X(x)T (t) para separar las variables.

  (b) Resuelva para los valores de la constante de separación 
y para X y T en el caso de extremos libres:

 para t > 0.

  (c) Resuelva para los valores de la constante de separación 
y para X y T en el caso de extremos apoyados:

 para t > 0.

13. Resuelva la ecuación telegráfi ca

  Aquí A y B son constantes positivas. Las condiciones de la 
frontera son

 u(0, t) = u(L, t) = 0 para t ≥ 0.

 Las condiciones iniciales son

 Suponga que A2L2 < 4(BL2 + c2π2).

14. Considere el problema con valores en la frontera

 (a) Escriba una solución en serie.

  (b) Encuentre una solución en serie cuando se quita el tér-
mino 5x3 de la ecuación de onda.

  (c) Para medir el efecto del término de fuerza en el movi-
miento, dibuje la gráfi ca de la 40-ésima parcial de la solu-
ción para (a) y (b) en el mismo conjunto de ejes en el tiempo 
t = 0.4 segundos. Repita este procedimiento sucesivamente 
para los tiempos t = 0.8, 1.4, 2, 2.5, 3 y 4 segundos.

15. Considere el problema con valores en la frontera

  (a) Escriba una solución en serie.

  (b) Encuentre una solución en serie cuando se quita el tér-
mino cos(πx) de la ecuación de onda.

  (c) Para medir el efecto del término de fuerza en el 
movimiento, dibuje la gráfi ca de la 40-ésima suma parcial 
de la solución para (a) y (b) en el mismo conjunto de ejes en 
el tiempo t = 0.6 segundos. Repita este procedimiento para 
t = 1, 1.4, 2, 3, 5 y 7 segundos.

16. Considere el problema con valores en la frontera

 (a) Escriba una solución en serie.

  (b) Encuentre una solución en serie cuando se quita el tér-
mino e−x de la ecuación de onda.

  (c) Para medir el efecto del término de fuerza en el 
movimiento, dibuje la gráfi ca de la 40-ésima suma parcial 
de la solución para (a) y (b) en el mismo conjunto de ejes en 
el tiempo t = 0.6 segundos. Repita este procedimiento suce-
sivamente para los tiempos t = 1, 1.4, 2, 3, 5 y 7 segundos.

∂2y

∂t2
= 9

∂2y

∂x2
+ 5x3 para 0 < x < 4, t > 0,

y(0, t) = y(4, t) = 0 para t ≥ 0

y(x, 0) = cos(πx),
∂y

∂t
(x, 0) = 0 para 0 ≤ x ≤ 4.

∂2y

∂t2
= ∂2y

∂x2
− cos(x) para 0 < x < 2π, t > 0,

y(0, t) = y(2π, t) = 0 para t ≥ 0,

y(x, 0) = 0,
∂y

∂t
(x, 0) = 0 para 0 ≤ x ≤ 2π.

a2 ∂4u

∂x4
+ ∂2u

∂t2
= 0 para 0 < x < π, t > 0.

∂2u

∂x2
(0, t) = ∂2u

∂x2
(π, t) = ∂3u

∂x3
(0, t) = ∂3u

∂x3
(π, t) = 0

u(0, t) = u(π, t) = ∂2u

∂x2
(0, t) = ∂2u

∂x2
(π, t) = 0

∂2u

∂t2
+ A

∂u

∂t
+ Bu = c2 ∂2u

∂x2
para 0 < x < L, t > 0.

u(x, 0) = f (x),
∂u

∂t
(x, 0) = 0 para 0 ≤ x ≤ L.

∂2y

∂t2
= 9

∂2y

∂x2
− e−x para 0 < x < 4, t > 0,

y(0, t) = y(4, t) = 0 para t ≥ 0

y(x, 0) = sen(πx),
∂y

∂t
(x, 0) = 0 para 0 ≤ x ≤ 4.

5.2 Soluciones de la serie de Fourier de la ecuación de onda\

∂2y

∂t2
= 9

∂2y

∂x2
+ cos(πx) para 0 < x < 4, t > 0,

y(0, t) = y(4, t) = 0 para t ≥ 0

y(x, 0) = x(4 − x),
∂y

∂t
(x, 0) = 0 para 0 ≤ x ≤ 4.
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5.3 Movimiento de onda a lo largo de cuerdas infi nitas y semi-infi nitas

5.3.1 Movimiento de onda a lo largo de una cuerda infi nita

Si están involucradas distancias grandes (tales como con las ondas sonoras en el océano usadas para moni-
torear los cambios de temperaturas), algunas veces el movimiento de onda es modelado por una cuerda 
infi nita, en cuyo caso no existen las condiciones de frontera. Como con las cuerdas fi nitas, considere 
separadamente los casos de velocidad inicial cero y desplazamiento inicial cero.

Velocidad inicial cero Considere el problema con valor inicial

17. Considere el problema

 donde

  Use 
x = 0.1 y 
t = 0.025 para calcular valores aproxi-
mados de y(x, t) en los puntos de retícula en la banda x, 
t, 0 < x < 1, t > 0. Realice los cálculos para cinco capas t (es 
decir, para t = 0 a t = 5(0.025) = 0.125).

18. Considere el problema

  Use 
x = 0.1 y 
t = 0.025 y calcule valores aproximados 
de y(x, t). cinco capas hacia arriba desde t = 0 a t = 0.125.

19. Considere el problema

  Use 
x = 0.1 y 
t = 0.025 y calcule valores aproximados 
de y(x, t), cinco capas hacia arriba desde t = 0 a t = 0.125.

20. Considere el problema

  Use 
x = 0.2 y 
t = 0.025 y calcule valores aproximados  
de y(x, t), cinco capas hacia arriba desde t = 0 a t = 0.125.

21. Considere el problema

  Use 
x = 0.1 y 
t = 0.025 y calcule valores aproximados 
de y(x, t), cinco capas hacia arriba desde t = 0 a t = 0.125.

2y
2

=
2y

2
para 0 < x < 1 0

0 = 1 = 0 t ≥ 0

0 = para 0 ≤ x ≤ 1

0 = 0 para 0

0 para

≤ x ≤ 1

2y
2

=
2y

2
para 0

para

para 0

para 0

< x < 2 0

0 = 2 = 0 t ≥ 0

0 = 0 ≤ x ≤ 2

0 = 1 ≤ x ≤ 2

0 = sen(πx) para 0 ≤ x ≤ 2

0 = 1 para 0 ≤ x ≤ 2

2y
2

=
2y

2
para 0 < x < 1 0

0 = 1 = 0 para t ≥ 0

0 = 1− 2 para 0 ≤ x ≤ 1

0 = x2 para 0 ≤ x ≤ 1

para 0

para0

2y
2

=
2y

2
< x < 2 0

0 = 2 = t ≥ 0

2y
2

=
2y

2
para 0 < x < 1 0

0 = 1 = 0 para t ≥ 0

0 = 0 para 0 ≤ x ≤ 1

0 = cos para 0 ≤ x ≤ 1

∂2y

∂t2 = c2 ∂2y

∂x2 para −∞ < x < ∞, t > 0

y(x, 0) = f (x),
∂y

∂t
(x, 0) = 0 para ∞ < x < ∞.

      x − 1 para 0 ≤ x ≤ 1
2

f (x) = 

{

      1 − x para 1
2

 ≤ x ≤ 1.
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No hay condiciones de frontera, pero puede imponer la condición de que la solución sea una función 
acotada.

Para separar las variables, sea y(x, t) = X(x)T(x) y obtiene, como antes,

X ′′ + λX = 0, T ′′ + λc2T = 0.

Considere los casos sobre λ.

Caso 1 λ = 0
Ahora X(x) = ax + b. Esta es una solución acotada si a = 0. Así λ = 0 es un valor propio, con función 
propia constante cero.

Caso 2 λ < 0
Escriba λ = −ω2 con ω > 0. Entonces X ′′ − ω2X = 0, con solución general

X(x) = aeωx + be−ωx.

Pero eωx no está acotada en (0, ∞), así debe elegir a = 0. Y e−ωx no está acotada en (−∞, 0), así debe 
elegir b = 0, dejando sólo la solución cero. Este problema no tiene valor propio negativo.

Caso 3 λ > 0, λ = ω2 con ω > 0.
Ahora X ′′ + ω2X = 0, con solución general

Xω(x) = a cos(ωx) + b sen(ωx).

Estas funciones son acotadas para todo ω > 0. Así todo número positivo λ = ω2 es un valor propio, con 
función propia correspondiente a cos(ωx) + b sen(ωx) para a y b no ambos cero.

Puede incluir el caso 1 en el caso 3, ya que a cos(ωx) + b sen(ωx) = constante si ω = 0.
Ahora considere la ecuación para T, la cual puede escribir ahora como T ′′ + c2ω2T = 0 para ω ≥ 0. 

Ésta tiene solución general

T(t) = a cos(ωct) + b sen(ωct).

Ahora

así b = 0. Así las soluciones para T son múltiplos constantes de

Tω(t) = cos(ωct).

Para cualquier ω ≥ 0, ahora tiene una función

yω(x, t) = Xω(x)Tω(t) = [aω cos(ωx) + bω sen(ωx)] cos(ωct)

que satisface la ecuación de onda y la condición

Necesita satisfacer la condición y(x, 0) = f (x). Para el problema similar en [0, L], tenía una función yn(x, t) 
para cada entero positivo n, e intentaba una superposición 

∑∞
n=1 yn(x, t). Ahora los valores propios llenan 

toda la recta real no negativa, de manera que reemplaza 
∑∞

n=1 con �∞
0 · · · dω formando la superposición:

(5.17)

∂y

∂t
(x, 0) = 0.

∂y

∂t
(x, 0) = X(t)T ′(0) = X(t)ωcb = 0,

y(x, t) =
∫ ∞

0
yω(x, t) dω =

∫ ∞

0
[aω cos(ωx) + bω sen(ωx)] cos(ωct) dω.

5.3 Movimiento de onda a lo largo de cuerdas infi nitas y semi-infi nitas
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La condición del desplazamiento inicial requiere que

La integral de la izquierda es la representación de Fourier en integral de f (x) para −∞ < x < ∞. Así elige 
las constantes como los coefi cientes de la integral de Fourier:

y

Con esta elección de los coefi cientes, y ciertas condiciones sobre f (ver el teorema de convergencia para 
las integrales de Fourier en la sección 3.1), la ecuación (5.17) es la solución del problema.

EJEMPLO 5.4

Considere el problema

En la fi gura 5.15 se da la gráfi ca de la posición inicial de la cuerda.
Para usar la ecuación (5.17), calcule los coefi cientes de la integral de Fourier:

y

(Para bω no necesitamos llevar a cabo la integración ya que el integrando es una función impar). La solu-
ción es

FIGURA 5.15 Gráfi ca de y = e−|x|.

y(x, 0) =
∫ ∞

0
[aω cos(ωx) + bω sen(ωx)] dω = f (x).

aω = 1

π

∫ ∞

−∞
f (ξ) cos(ωξ) dξ

∂2y

∂t2
= c2 ∂2y

∂x2
para −∞ < x < ∞, t > 0

y(x, 0) = e−|x|,
∂y

∂t
(x, 0) = 0 para ∞ < x < ∞.

bω = 1

π

∫ ∞

−∞
f (ξ) sen(ωξ) dξ.

aω = 1

π

∫ ∞

−∞
e−|ξ | cos(ωξ) dξ = 2

π
(
1 + ω2

)

bω = 1

π

∫ ∞

−∞
e−|ξ | sen(ωξ) dξ = 0.

s
y(x, t) = 2

π

∫ ∞

0

1

1 + ω2 cos(ωx) cos(ωct) dω.

4 62

y

x
�6 �2�4

1.0

0.8

0.6

0.4

0.2

0

■
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La solución (5.17) puede escribirse en una forma más compacta de la siguiente manera. Inserte las 
fórmulas de integración para los coefi cientes:

(5.18)

Desplazamiento inicial cero Suponga ahora que la cuerda es soltada desde una posición horizontal 
(desplazamiento inicial cero), con velocidad inicial g(x). El problema con valor inicial para la función de 
desplazamiento es

Sea y(x, t) = X(x)T(t) y proceda exactamente como en el caso de desplazamiento inicial f (x) y velo-
cidad inicial cero, obteniendo los valores propios λ = ω2 para ω ≥ 0 y funciones propias

Xω(x) = aω cos(ωx) + bω sen(ωx).

Volviendo a T, obtenga, como antes,

T(t) = a cos(ωct) + b sen(ωct).

Sin embargo, este problema difi ere del anterior en la condición inicial sobre T(t). Ahora tiene

y(x, 0) = X(x)T(0) = 0,

así T(0) = 0 y entonces a = 0. Así para cada ω ≥ 0, T(t) es una constante múltiplo de sen(ωct). Esto da 
las funciones

Ahora use la superposición

(5.19)

para satisfacer la condición inicial. Calcule

y(x, t) =
∫ ∞

0
[aω cos(ωx) + bω sen(ωx)] cos(ωct) dω

= 1

π

∫ ∞

0

[(∫ ∞

−∞
f (ξ) cos(ωξ) dξ

)
cos(ωx)

+
(∫ ∞

−∞
f (ξ) sen(ωξ) dξ

)
sen(ωx)

]
cos(ωct) dω

= 1

π

∫ ∞

−∞

∫ ∞

0
[cos(ωξ) cos(ωx) + sen(ωξ) sen(ωx)] f (ξ) cos(ωct) dω dξ

= 1

π

∫ ∞

−∞

∫ ∞

0
cos(ω(ξ − x))f (ξ) cos(ωct) dω dξ.

∂2y

∂t2 = c2 ∂2y

∂x2 para −∞ < x < ∞, t > 0

y(x, 0) = 0,
∂y

∂t
(x, 0) = g(x) para ∞ < x < ∞.

yω(x, t) = [aω cos(ωx) + bω sen(ωx)] sen(ωct).

y(x, t) =
∫ ∞

0
[aω cos(ωx) + bω sen(ωx)] sen(ωct) dω

∂y

∂t
=

∫ ∞

0
[aω cos(ωx) + bω sen(ωx)]ωc cos(ωct) dω.

5.3 Movimiento de onda a lo largo de cuerdas infi nitas y semi-infi nitas
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Necesita

Ésta es una expansión de Fourier en integrales de la función de velocidad inicial. Con condiciones sobre g 
(tales como las dadas en el teorema de convergencia para las integrales de Fourier), elija

y

Entonces

Con estos coefi cientes, la ecuación (5.19) es la solución del problema.

EJEMPLO 5.5

Suponga que el desplazamiento inicial es cero y la velocidad inicial está dada por

En la fi gura 5.16 se muestra la gráfi ca de esta función. Para usar la ecuación (5.19) para escribir la función 
de desplazamiento, calcule los coefi cientes:

∂y

∂t
(x, 0) =

∫ ∞

0
[ωcaω cos(ωx) + ωcbω sen(ωx)] dω = g(x).

ωcaω = 1

π

∫ ∞

−∞
g(ξ) cos(ωξ) dξ

ωcbω = 1

π

∫ ∞

−∞
g(ξ) sen(ωξ) dξ.

aω = 1

πcω

∫ ∞

−∞
g(ξ) cos(ωξ) dξ y bω = 1

πcω

∫ ∞

−∞
g(ξ) sen(ωξ) dξ.

g(x) =
{

ex para 0 ≤ x ≤ 1

0 para x < 0 y para x > 1
.

aω = 1

πcω

∫ ∞

−∞
g(ξ) cos(ωξ) dξ = 1

πcω

∫ 1

0
eξ cos(ωξ) dξ

= 1

πcω

e cos(ω) + eω sen(ω) − 1

1 + ω2

�2 �1 10 2

0.5
1.0
1.5
2.0

3.0
2.5

y

x

FIGURA 4.13

g(x) =
{

ex para 0 ≤ x ≤ 1

0 para x < 0 y para x > 1
.

FIGURA 5.16
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y

La solución es

Como en el caso del movimiento de onda sobre [0, L], la solución de un problema con velocidad ini-
cial distinta de cero y desplazamiento puede obtenerse como la suma de las soluciones de dos problemas, 
en uno de los cuales no hay desplazamiento inicial, y en el otro, la velocidad inicial es cero.

5.3.2 Movimiento de onda a lo largo de una cuerda semi-infi nita

Ahora considere el problema del movimiento de onda a lo largo de una cuerda atada en el origen y estirada 
a lo largo de la parte no negativa del eje x. A diferencia del caso de la cuerda a lo largo de toda la recta, 
ahora existe una condición de frontera, en x = 0. El problema es

De nuevo, busca una solución acotada.
Sea y(x, t) = X(x)T(t) y obtiene

X ′′ + λX = 0, T ′′ + λc2T = 0.

En este problema hay una condición en la frontera:

y(0, t) = X(0)T(t) = 0,

la que implica que X(0) = 0. Empiece por buscar los valores propios λ y las funciones propias correspon-
dientes. Considere los casos sobre λ.

Caso 1 λ = 0
Ahora X(x) = ax + b. Como X(0) = b = 0, entonces X(x) = ax. La cual no está acotada en [0, ∞) a menos 
que a = 0, así λ = 0 no lleva a una solución no trivial y no acotada para X, y 0 no es un valor propio.

Caso 2 λ es negativa.
Ahora escriba λ = −ω2 para obtener X′′ − ω2X = 0. Esto tiene solución general

X(x) = aeωx + be−ωx.

Ahora

X(0) = a + b = 0

lo que implica que b = −a, así que X(x) = 2a senh(ωx). La cual no está acotada en x > 0 a menos que 
a = 0, de manera que este problema no tiene valor propio negativo.

bω = 1

πcω

∫ ∞

−∞
g(ξ) sen(ωξ) dξ = 1

πcω

∫ 1

0
eξ sen(ωξ) dξ

= − 1

πcω

eω cos(ω) − e sen(ω) − ω

1 + ω2

y(x, t) =
∫ ∞

0

(
1

πcω

e cos(ω) + eω sen(ω) − 1

1 + ω2

)
cos(ωx) sen(ωct) dω

−
∫ ∞

0

(
1

πcω

eω cos(ω) − e sen(ω) − ω

1 + ω2

)
sen(ωx) sen(ωct) dω.

∂2y

∂t2 = c2 ∂2y

∂x2 para 0 < x < ∞, t > 0,

y(0, t) = 0 para t ≥ 0,

y(x, 0) = f (x),
∂y

∂t
(x, 0) = g(x) para 0 < x < ∞.

■
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Caso 3 λ es positiva.
Ahora escriba λ = ω2 y obtiene

X(x) = a cos(ωx) + b sen(ωx).

Como X(0) = a = 0, sólo quedan los términos en seno. Así todo número positivo es un valor propio, con 
las funciones propias correspondientes múltiplos constantes distintos de cero de sen(ωx).

Ahora el problema para T es T ′′ + c2ω2T = 0, con solución general

T(t) = a cos(ωct) + b sen(ωct).

En este punto debe aislar el problema en uno con desplazamiento inicial cero o velocidad inicial cero. 
Suponga, para ser específi co, que g(x) = 0. Entonces T ′(0) = 0, así b = 0 y T(t) debe ser un múltiplo 
constante de cos(ωct). Tiene, por tanto, funciones

yω(x, t) = cω sen(ωx) cos(ωct)

para cada ω > 0. Defi na la superposición

Cada una de estas funciones satisface la ecuación de onda y la condición de frontera, así como yt(x, 0) = 0
para x > 0. Para satisfacer la condición en el desplazamiento inicial, debe elegir los coefi cientes de manera 
que

Este es el desarrollo en integral de Fourier en senos de f (x) en [0, ∞), así elija

La solución del problema es

Si el problema tiene desplazamiento inicial cero, y velocidad inicial g(x), entonces un análisis seme-
jante lleva a la solución

donde

EJEMPLO 5.6

Considere el movimiento de onda a lo largo de la semirecta gobernada por el problema:

y(x, t) =
∫ ∞

0
cω sen(ωx) cos(ωct) dω.

y(x, 0) =
∫ ∞

0
cω sen(ωx) dω = f (x).

cω = 2

π

∫ ∞

0
f (ξ) sen(ωξ) dξ.

y(x, t) = 2

π

∫ ∞

0

(∫ ∞

0
f (ξ) sen(ωξ) dξ

)
sen(ωx) cos(ωct) dω.

y(x, t) =
∫ ∞

0
cω sen(ωx) sen(ωct) dω,

cω = 2

πcω

∫ ∞

0
g(ξ) sen(ωξ) dξ.

∂2y

∂t2 = 16
∂2y

∂x2 para x > 0, t > 0,

y(0, t) = 0 para t ≥ 0,

∂y

∂t
(x, 0) = 0, y(x, 0) =

{
sen(πx) para 0 ≤ x ≤ 4

0 para x > 4
.

0
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Aquí, c = 4. Para escribir la solución, sólo necesita calcular los coefi cientes

La solución es

5.3.3 Solución mediante la transformada de Fourier de problemas en dominios 
no acotados

Es útil tener una variedad de herramientas y métodos disponibles para resolver problemas con valores en 
la frontera. Para este fi n, se revisan los problemas de movimiento de onda en la recta y la semirecta y se 
aproxima la solución utilizando una transformada de Fourier.

Primero, vea una breve descripción de lo que está involucrado al usar una transformada.

1.  El rango de los valores para la variable en donde se aplicará la transformada es un factor deter-
minante en la elección de la transformada. Otra es cómo la información dada en el problema con 
valores en la frontera se ajusta en la fórmula operacional para la transformada. Por ejemplo, la 
fórmula operacional para la transformada de Fourier en senos es

  así que debe conocer información sobre f (0) en el problema para hacer uso de esta transformada.

2.  Si la transformada es aplicada respecto a una variable α del problema con valores en la frontera, 
obtiene una ecuación diferencial que involucra a la(s) otra(s) variable(s). Esta ecuación diferencial 
debe ser resuelta sujeta a otra información dada en el problema. Esta solución da la transformada 
de la solución del problema con valores en la frontera original.

3.  Una vez que tiene la transformada de la solución del problema con valores en la frontera, debe 
invertirla para obtener la solución de problema con valores en la frontera.

Finalmente, la transformada de Fourier de una función de variable real frecuentemente es un valor 
complejo. Si la solución es un valor real, entonces, la parte real de la expresión obtenida usando la trans-
formada de Fourier es la solución. Sin embargo, debido a que las expresiones tales como e−iωx frecuente-
mente son más fáciles de manipular que cos(ωx) y sen(ωx), a menudo queda toda la expresión compleja 
como la “solución” extrayendo la parte real cuando necesita los valores numéricos, las gráfi cas u otra 
información.

Como referencia, en resumen (sin condiciones en las funciones) algunos hechos acerca de la transfor-
mada de Fourier y las transformadas de Fourier en senos y cosenos.

Transformada de Fourier

cω = 2

π

∫ ∞

0
f (ξ) sen(ωξ) dξ

= 2

π

∫ 4

0
sen(πξ) sen(ωξ) dξ = 8 sen(ω) cos(ω)

2 cos2(ω) − 1

ω2 − π2 .

y(x, t) =
∫ ∞

0
8 sen(ω) cos(ω)

2 cos2(ω) − 1

ω2 − π2
sen(ωx) cos(4ωt) dω.

FS[f ′′(x)](ω) = −ω2f̂S(ω) + ωf (0),

F[f ](ω) = f̂ (ω) =
∫ ∞

−∞
f (x)e−iωx dx

f (x) = 1

2π

∫ ∞

−∞
f̂ (ω)eiωx dω

F[f ′′](ω) = −ω2f̂ (ω)

■
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Transformada de Fourier en cosenos

Transformada de Fourier en senos

Solución mediante la transformada de Fourier de la ecuación de onda en la recta Considere nueva-
mente el problema

Debido a que x varía sobre toda la recta, puede intentar la transformada de Fourier en la variable x. Para 
hacer esto, transforme y(x, t) como una función de x, dejando t como un parámetro. Primero aplique � a 
la ecuación de onda:

Debido a que está transformando en x, dejando a t sola, tiene

donde ŷ(ω, t) es la transformada de Fourier, respecto a x, de y(x, t). La derivada parcial respecto a t entra 
en la integral respecto a x ya que x y t son independientes.

Para la transformada de Fourier, en x, de ∂2y/∂x2, use la fórmula operacional:

Por tanto, la ecuación de onda transformada es

o

Piense en ella como una ecuación diferencial ordinaria para ŷ(ω, t) en t, con ω considerado como un pará-
metro. La solución general tiene la forma

FC[f ](ω) = f̂C(ω) =
∫ ∞

0
f (x) cos(ωx) dx

f (x) = 2

π

∫ ∞

0
f̂C(ω) cos(ωx) dω

FC[f ′′](ω) = −ω2f̂C(ω) − f ′(0)

FS[f ](ω) = f̂S(ω) =
∫ ∞

0
f (x) sen(ωx) dx

f (x) = 2

π

∫ ∞

0
f̂S(ω) sen(ωx) dω

FS[f ′′](ω) = −ω2f̂S(ω) + ωf (0)

∂2y

∂t2 = c2 ∂2y

∂x2 para −∞ < x < ∞, t > 0

y(x, 0) = f (x),
∂y

∂t
(x, 0) = 0 para −∞ < x < ∞.

F

[
∂2y

∂t2

]
(ω) = c2F

[
∂2y

∂x2

]
(ω).

F

[
∂2y

∂t2

]
(ω) =

∫ ∞

−∞

∂2y

∂t2
(x, t)e−iωx dx = ∂2

∂t2

∫ ∞

−∞
y(x, t)e−iωx dx = ∂2

∂t2
ŷ(ω, t),

F

[
∂2y

∂x2

]
(ω) = −ω2ŷ(ω, t).

∂2

∂t2
ŷ(ω, t) = −c2ω2ŷ(ω, t),

∂2

∂t2 ŷ(ω, t) + c2ω2ŷ(ω, t) = 0.

ŷ(ω, t) = aω cos(ωct) + bω sen(ωct).
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Obtiene los coefi cientes transformando los datos iniciales. Primero,

la transformada de la función posición inicial. Ahora

debido a que la velocidad inicial es cero. Por tanto, bω = 0 y

Ahora sabe la transformada de la solución y(x, t). Invierta ésta para encontrar y(x, t):

(5.20)

La cual es una fórmula integral para la solución, ya que se supone que conoce f̂ (ω) porque fue dada f. Como 
eiωx es un valor complejo, debe tomar la parte real de esta integral para obtener y(x, t). Sin embargo, la 
integral frecuentemente se deja en la forma de la ecuación (5.20) con el sobreentendido que y(x, t) es 
la parte real.

Probará que las soluciones de este problema obtenidas por la transformada de Fourier y la integral de 
Fourier son la misma. Escriba la solución que acaba de obtener por la transformada como

Como la función de desplazamiento toma valores reales, debe tomar la parte real de esta integral, obte-
niendo

Finalmente, este integrando es una función par de ω, de donde

produciendo

Esto coincide con la solución (5.18) obtenida con la integral de Fourier.

ŷ(ω, 0) = aω = F[y(x, 0)](ω) = F[f ](ω) = f̂ (ω),

ωcbω = ∂ŷ

∂t
(ω, 0) = F

[
∂y

∂t
(x, 0)

]
(ω) = F[0](ω) = 0

ŷ(ω, t) = f̂ (ω) cos(ωct).

y(x, t) = 1

2π

∫ ∞

−∞
f̂ (ω) cos(ωct)eiωx dω.

ytr(x, t) = 1

2π

∫ ∞

−∞
f̂ (ω) cos(ωct)eiωx dω

= 1

2π

∫ ∞

−∞

(∫ ∞

−∞
f (ξ)e−iωξ dξ

)
cos(ωct)eiωx dω

= 1

2π

∫ ∞

−∞

∫ ∞

−∞
e−iω(ξ−x) cos(ωct)f (ξ) dω dξ

= 1

2π

∫ ∞

−∞

∫ ∞

−∞
[cos(ω(ξ − x)) − i sen(ω(ξ − x))] cos(ωct)f (ξ) dω dξ.

y(x, t) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
cos(ω(ξ − x)) cos(ωct)f (ξ) dω dξ.

1

2π

∫ ∞

−∞
· · · dω = 2

1

2π

∫ ∞

0
· · · dω = 1

π

∫ ∞

0
· · · dω,

y(x, t) = 1

π

∫ ∞

−∞

∫ ∞

0
cos(ω(ξ − x)) cos(ωct)f (ξ) dω dξ
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EJEMPLO 5.7

Encontrar la función de desplazamiento en la recta real si la velocidad inicial es cero y la función de des-
plazamiento inicial está dada por

Para usar la solución (5.20) debemos calcular

 f̂ (ω) es continua, ya que

La solución puede escribirse como

bajo el entendido que y(x, t) es la parte real de la integral de la derecha. Si explícitamente toma esta parte 
real, entonces

EJEMPLO 5.8

En algunas ocasiones, un uso hábil de la transformada de Fourier puede llevar a una forma cerrada de la 
solución. Considere el problema

Tome la transformada de la ecuación diferencial, obteniendo como en la discusión

con solución general

Ahora use las condiciones iniciales. Con la función posición inicial tiene

f (x) =

⎧
⎪⎪⎨
⎪⎪⎩

cos(x) para − π

2
≤ x ≤ π

2

0 para |x| >
π

2

.

f̂ (ω) =
∫ ∞

−∞
f (ξ)e−iωξ dξ =

∫ π/2

−π/2
cos(ξ)e−iωξ dξ

=

⎧
⎪⎪⎨
⎪⎪⎩

2
cos(πω/2)

1 − ω2 para ω �= 1

π

2
para ω = 1

.

lim
ω→1

2 cos(πω/2)

1 − ω2
= π

2
.

y(x, t) = 1

π

∫ ∞

−∞

cos(πω/2)

1 − ω2 cos(ωct)eiωx dω,

y(x, t) = 1

π

∫ ∞

−∞

cos(πω/2)

1 − ω2
cos(ωx) cos(ωct) dω.

lím

∂2y

∂t2 = 9
∂2y

∂x2 para −∞ < x < ∞, t ≥ 0,

y(x, 0) = 4e−5|x| para −∞ < x < ∞,

∂y

∂t
(x, 0) = 0.

∂2ŷ

∂t2 (ω, t) = −9ω2ŷ(ω, t),

ŷ(ω, t) = aω cos(3ωt) + bω sen(3ωt).

ŷ(ω, 0) = aω = F[y(x, 0)](ω) = F
[
4e−5|x|

]
(ω) = 40

25 + ω2
.

■

0

π

2
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Ahora, usando la velocidad inicial, escriba

así bω = 0. Entonces

Ahora puede escribir la solución en la forma integral como

Sin embargo, en este caso invierta ŷ(ω, t) explícitamente, usando algunos resultados acerca de la transfor-
mada de Fourier. Empiece usando el teorema de convolución para escribir

(5.21)

Necesita calcular la transformada inversa de Fourier de cos(3ωt). Aquí ω es la variable de la función trans-
formada, considerando a t como un parámetro. La variable de la transformada inversa será x. Combinando 
el hecho que �[δ(t)](ω) = 1 de la sección 3.4.5, con el teorema de modulación (teorema 3.6 en la sección 
3.3) para obtener

�[cos(ω0x)] = π[δ(x + ω0) + δ(x − ω0)],

en donde δ es la función delta de Dirac. Por el teorema de simetría (teorema 3.5 de la sección 3.3),

�[π[δ(x + ω0) + δ(x − ω0)]] = 2π cos(ω0ω).

Por tanto,

Ahora ω0 = 3t para obtener

Por tanto, la ecuación 5.21 da

∂ŷ

∂t
(ω, 0) = 3ωbω = F

[
∂y

∂t
(x, 0)

]
(ω) = 0,

ŷ(ω, t) = 40

25 + ω2 cos(3ωt).

y(x, t) = F−1[ŷ(ω, t)](x) = 1

2π

∫ ∞

−∞

40

25 + ω2 cos(3ωt)eiωx dω.

y(x, t) = F−1
[

40

25 + ω2
cos(3ωt)

]

= F−1
[

40

25 + ω2

]
∗ F−1[cos(3ωt)]

= 4e−5|x| ∗ F−1[cos(3ωt)].

F−1[cos(ω0ω)](x) = 1
2 [δ(x + ω0) + δ(x − ω0)].

F−1[cos(3ωt)](x) = 1
2 [δ(x + 3t) + δ(x − 3t)].

y(x, t) = 4e−5|x| ∗ 1
2 [δ(x + 3t) + δ(x − 3t)]

= 2
(
e−5|x| ∗ δ(x + 3t) + e−5|x| ∗ δ(x − 3t)

)

= 2
∫ ∞

−∞
e−5|x−ξ |δ(ξ + 3t) dξ + 2

∫ ∞

−∞
e−5|x−ξ |δ(ξ − 3t) dξ

= 2e−5|x+3t | + 2e−5|x−3t |,

15

1

2

1

2

1

2
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en donde la última línea fue obtenida usando la propiedad de fi ltrado de la función Delta (teorema 3.13 de 
la sección 3.4.5). Esta es la forma cerrada de la solución y es fácil de verifi car directamente. ■

Solución mediante la transformada de la ecuación de onda en una semirecta Usará una transformada 
para resolver un problema de onda en una semirecta, con el extremo izquierdo fi jo en x = 0. Esta vez tome 
el caso de desplazamiento inicial cero, pero una velocidad inicial distinta de cero:

Ahora la transformada de Fourier es inapropiada porque tanto x como t varían solamente sobre los núme-
ros reales no negativos. Puede intentar con la transformada de Fourier en senos o en cosenos en x. La 
fórmula operacional para la transformada en senos requiere el valor de la solución en x = 0, mientras que 
la fórmula para la transformada en cosenos usa el valor de la derivada en el origen. Como hemos dado la 
condición y(0, t) = 0 (el extremo izquierdo fi jo de la cuerda), puede intentar la transformada en senos. 
Sea ŷS(ω, t) la transformada en senos de y(x, t) en la variable x−. Tome la transformada en senos de 
la ecuación de onda. Las derivadas parciales respecto a t pasan a través de la transformada, y use la 
fórmula operacional para la transformada de la segunda derivada respecto a x:

Entonces

Ahora

y

así

Por tanto,

Esta es la transformada en senos de la solución. La solución se obtiene invirtiendo:

∂2y

∂t2 = c2 ∂2y

∂x2 para 0 < x < ∞, t > 0,

y(0, t) = 0 para t ≥ 0,

y(x, 0) = 0,
∂y

∂t
(x, 0) = g(x) para 0 < x < ∞.

∂2ŷS

∂t2
= c2FS

[
∂2y

∂x2

]
= −c2ω2ŷS(ω, t) + ωc2y(0, t) = −c2ω2ŷS(ω, t).

ŷS(ω, t) = aω cos(ωct) + bω sen(ωct).

aω = ŷS(ω, 0) = FS[y(x, 0)](ω) = FS[0](ω) = 0,

∂ŷS

∂t
(ω, 0) = ωcbω = ĝS(ω),

bω = 1

ωc
ĝS(ω).

y(x, t) = F−1
S

[
1

ωc
ĝS(ω) sen(ωct)

]
(x) = 2

π

∫ ∞

0

1

ωc
ĝS(ω) sen(ωx) sen(ωct) dω.

ŷ(ω, t) = 1

ωc
ĝS(ω) sen(ωct).
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EJEMPLO 5.9

Considere el siguiente problema en la semirecta

donde

Si usa la transformada de Fourier en senos, entonces la solución es

Todo lo que se deja para hacer es calcular

llegando a una expresión integral para la solución. ■

En cada problema del 1 al 6, considere la ecuación de onda 

            en la recta para el valor de c dado y las condicio-

nes iniciales dadas y(x, 0) = f (x) y    (x, 0) = g(x). Resuelva el 

problema usando la integral de Fourier y después usando nue-
vamente la transformada de Fourier.

 1. c = 12, f (x) = e−5|x|, g(x) = 0

 2.

 3. c = 4, f (x) = 0,

 4. c = 1, f (x)  

 g(x) = 0

 5. c = 3, f (x) = 0, g(x) = 

 6. c = 2, f (x) = 0,

En cada problema del 7 al 11, considere la ecuación de onda 

2y


t2
= c2


2y


x2
en la semirecta, con y(x, 0) = 0 para x > 0, y para 

el valor dado de c y las condiciones en la frontera dadas y(x, 0) = f (x) 

y 

y


t  
(x, 0) = g(x) para x ≥ 0. Resuelva el problema usando

separación de variables (la integral de Fourier en senos) y des-
pués, nuevamente usando la transformada de Fourier en senos.

SECCIÓN 5.3 PROBLEMAS

∂2y

∂t2 = 25
∂2y

∂x2 para x > 0, t > 0,

y(0, t) = 0 para t ≥ 0,

y(x, 0) = 0,
∂y

∂t
(x, 0) = g(x) para 0 < x < ∞,

g(x) =
{

9 − x2 para 0 ≤ x ≤ 3

0 para x > 3
.

y(x, t) = 2

π

∫ ∞

0

1

5ω
ĝS(ω) sen(ωx) sen(5ωt) dω.

c = 8,f (x) =
{

8 − x para 0 ≤ x ≤ 8

0 para x < 0 y p

g(x) = 0

g(x) =
{

sen(x) para −π ≤ x ≤ π

0 para |x| > π

=
{

2 − |x| para −2 ≤ x ≤ 2

0 para |x| > 2

ĝS(ω) =
∫ ∞

0
g(ξ) sen(ωx) dx

=
∫ 3

0
(9 − x2) sen(ωx) dx

= −8 cos3(ω) + 6 cos(ω) − 24ω sen(ω) cos2(ω) + 6ω sen(ω) + 9ω2 + 2

ω3 ,

{
e−2x para x ≥ 1

0 para x < 1

g(x) =

⎧
⎪⎨
⎪⎩

1 para 0 ≤ x ≤ 2

−1 para −2 ≤ x < 0

0 para x > 2 y para x < −2


2y


t2
= c2


2y


x2 
y


t
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5.4 Características y la solución de d’Alembert

Esta sección involucrará diferenciaciones repetidas con la regla de la cadena, las cuales pueden escribirse 
efi cientemente usando la notación de subíndices para las derivadas parciales. Por ejemplo, ∂u /∂t = ut, 
∂u/∂x = ux, ∂2u /∂t2 = utt, y así sucesivamente. Nuestro objetivo es examinar una perspectiva diferente en 
el problema

Aquí está usando u(x, t) como la función posición porque estará cambiando variables del plano (x, y) al 
plano (ξ, η), y no quiere confundir la función solución con las coordenadas de los puntos.

Este problema con valores en la frontera, que a resuelto mediante la integral de Fourier y después 
usando la transformada de Fourier, se conoce como el problema de Cauchy para la ecuación de onda. 
Ahora una solución que data del siglo XVIII. Las rectas

x − ct = k1, x + ct = k2,

con k1 y k2 cualesquiera constantes reales, se llaman las características de la ecuación de onda. Éstas for-
man dos familias de rectas, una consiste de las rectas paralelas con pendiente 1/c, la otra de rectas parale-
las con pendiente −1/c. La fi gura 5.17 muestra algunas de estas características. Verá que estas rectas están 
estrechamente relacionadas con el movimiento de onda. Sin embargo, el primer uso de ellas será escribir 
una solución explícita de la ecuación de onda en términos de los datos iniciales.

Defi na un cambio de coordenadas

ξ = x − ct, η = x + ct.

Esta transformación es invertible, ya que

 7. c = 3, f (x) = x(1 − x) para 0 ≤ x ≤ 1

 g(x) = 0

 8. c = 3, f (x) = 0, g(x) = 0 para 0 ≤ x < 4

 9. c = 2, f (x) = 0,

10. c = 6, f (x) = −2e−x , g(x) = 0

11. c = 14, f (x) = 0, g(x) = 

Algunas veces la transformada de Laplace es efectiva en la reso-
lución de los problemas con valores en la frontera que involu-
cran a la ecuación de onda. Use la transformada de Laplace para 
resolver lo siguiente.

12. ∂2y ∂t2 = c2 ∂2y ∂x2 para x > 0, t > 0

13.  Resuelva

c = 3, f (x) =
{

x(1 − x) para 0 ≤ x ≤ 1

0 para x > 1

g(x) = 0

c = 3, f (x) = 0, g(x) =

⎧
⎪⎨
⎪⎩

0 para 0 ≤ x < 4

2 para 4 ≤ x ≤ 11

0 para x > 11

g(x) =

⎧
⎪⎪⎨
⎪⎪⎩

cos(x) para
π

2
≤ x ≤ 5π

2

0 para 0 ≤ x <
π

2
y para x >

5π

2

{
x2(3 − x) para 0 ≤ x ≤ 3

0 para x > 3

∂2y

∂t2
= c2 ∂2y

∂x2
para x > 0, t > 0

y(0, t) =
{

sen(2πt) para 0 ≤ t ≤ 1

0 para t > 0

y(x, 0) = ∂y

∂t
(x, 0) = 0 para x > 0

∂2y

∂t2
= c2 ∂2y

∂x2
para x > 0, t > 0

y(0, t) = t para t > 0

y(x, 0) = 0,
∂y

∂t
(x, 0) = A para x > 0

ut t = c2uxx para −∞ < x < ∞, t > 0,

u(x, 0) = f (x), ut (x, 0) = g(x) para −∞ < x < ∞.

x = 1

2
(ξ + η), t = 1

2c
(−ξ + η).

0

0

0

0
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Defi na

U(ξ, η) = u(x(ξ, η), y(ξ, η)).

Calcule las derivadas:

y

utt = −c[Uξξ (−c) + Uξη(c)] + c[Uηξ(−c) + Uηη(c)] = c2Uξξ − 2c2Uξη + c2Uηη.

Entonces

utt − c2uxx = 4c2Uξη.

En estas nuevas coordenadas, la ecuación de onda es

Uξη = 0.

Ésta es llamada la forma canónica de la ecuación de onda, y es una ecuación fácil de resolver. Primero 
la escribimos como

(Uη)ξ = 0.

Esto signifi ca que Uη es independiente de ξ, por decir

Uη = h(η).

Integre para obtener

en donde F(ξ) es la “constante” de integración de la derivada parcial respecto a η. Ahora �h(η)dη es sólo 
otra función de η, la que se escribe como G(η). Así

U(ξ, η) = F(ξ) + G(η),

FIGURA 5.17 Características de la ecuación de 
onda. 

x

x � ct � k1

x � ct � k2

t

ux = Uξ ξx + Uηηx = Uξ + Uη,

uxx = Uξξ ξx + Uξηηx + Uηξ ξx + Uηηηx

= Uξξ + 2Uξη + Uηη

ut = Uξ (−c) + Uη(c)

U(ξ, η) =
∫

h(η) dη + F(ξ),

5.4 Características y la solución de d’Alembert
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donde F y G deben ser funciones de una variable con segunda derivada continua, por lo demás son arbi-
trarias. Se ha mostrado que la solución de utt = c2uxx tiene la forma

 u(x, t) = F(x − ct) + G(x + ct). (5.22)

La ecuación (5.22) se llama la solución de d’Alembert de la ecuación de onda, en honor al matemático 
francés Jean le Rond d’Alembert (1717-1783). Toda solución de utt = c2uxx debe tener esta forma.

Ahora aparece cómo elegir F y G para satisfacer las condiciones iniciales. Primero,

 u(x, 0) = F(x) + G(x) = f (x) (5.23)

y

 ut(x, 0) = −cF ′(x) + cG ′(x) = g(x). (5.24)

Integrando la ecuación (5.24) y rearreglando los términos para obtener

Sume esta ecuación a la ecuación (5.23) para obtener

Por tanto,

(5.25)

Pero entonces, de la ecuación (5.23),

(5.26)

Finalmente, usando las ecuaciones (5.25) y (5.26) para escribir la solución como

o, después de las cancelaciones,

(5.27)

La ecuación (5.27) es la fórmula de d’Alembert para la solución del problema de Cauchy para la ecua-
ción de onda en toda la recta. Es una fórmula explícita para la solución del problema de Cauchy, en 
términos de las funciones posición y velocidad inicial dadas.

EJEMPLO 5.10

Resuelva el problema con valores en la frontera

−F(x) + G(x) = 1

c

∫ x

0
g(ξ) dξ − F(0) + G(0).

2G(x) = f (x) + 1

c

∫ x

0
g(ξ) dξ − F(0) + G(0).

G(x) = 1

2
f (x) + 1

2c

∫ x

0
g(ξ) dξ − 1

2
F(0) + 1

2
G(0).

F (x) = f (x) − G(x) = 1

2
f (x) − 1

2c

∫ x

0
g(ξ) dξ + 1

2
F(0) − 1

2
G(0).

u(x, t) = F(x − ct) + G(x + ct)

= 1

2
f (x − ct) − 1

2c

∫ x−ct

0
g(ξ) dξ + 1

2
F(0) − 1

2
G(0)

+ 1

2
f (x + ct) + 1

2c

∫ x+ct

0
g(ξ) dξ − 1

2
F(0) + 1

2
G(0),

u(x, t) = 1

2
(f (x − ct) + f (x + ct)) + 1

2c

∫ x+ct

x−ct

g(ξ) dξ.

ut t = 4uxx para −∞ < x < ∞, t > 0,

u(x, 0) = e−|x|, ut (x, 0) = cos(4x) para −∞ < x < ∞.
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Por la fórmula de d’Alembert, inmediatamente tiene

5.4.1 Una ecuación de onda no homogénea

Usando las características, escribirá una expresión para la solución del problema no homogéneo:

Este problema se llama no homogéneo debido al término F(x, t), el que supondrá continuo para todo real 
x y t ≥ 0. F(x, t) puede pensarse como un impulso externo o una fuerza de amortiguamiento actuando en 
la cuerda.

Suponga que quiere la solución en (x0, t0). Recuerde que las características de la ecuación de 
onda son líneas rectas en el plano x, t. Hay exactamente dos características que pasan por este punto, 
y éstas son las rectas

x − ct = x0 − ct0 y x + ct = x0 + ct0.

Los segmentos de estas características, junto con el intervalo [x0 − ct0, x0 + ct0], forman un triángulo 
característico 
, que se muestra en la fi gura 5.18. Etiquete los lados de 
 como L, M e I. Como 
 es una 
región en el plano x, t, puede calcular la integral doble de −F(x, t) sobre 
:

Aplicando el teorema de Green a la última integral, con x y t como las variables independientes en lugar 
de x y y. Esto convierte la integral doble en una integral de línea alrededor de la frontera C de 
. Esta 
curva suave a pedazos, que consiste de tres segmentos de recta, está orientada en el sentido contrario al 
movimiento de las manecillas del reloj.

u(x, t) = 1

2

(
e−|x−2t | + e−|x+2t |

)
+ 1

4

∫ x+2t

x−2t

cos(4ξ) dξ

= 1

2

(
e−|x−2t | + e−|x+2t |

)
+ 1

16
[sen(4(x + 2t)) − sen(4(x − 2t))]

= 1

2

(
e−|x−2t | + e−|x+2t |

)
+ 1

8
cos(4x) sen(8t).

ut t = c2uxx + F(x, t) para −∞ < x < ∞, t > 0,

u(x, 0) = f (x), ut (x, 0) = g(x) para −∞ < x < ∞.

−
∫∫

	

F(x, t) dA =
∫∫

	

(c2uxx − ut t ) dA =
∫∫

	

(
∂

∂x
(c2ux) − ∂

∂t
(ut )

)
dA.

x

x � ct � x0 � ct0

x � ct � x0 � ct0

(x0, t0)

x0 � ct0x0 � ct0

t

M L

I

FIGURA 5.18 Triángulo 
característico. 

■
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Por el teorema de Green, obtiene

Ahora evalúe la integral de línea de la derecha en cada uno de los segmentos de C.
En I, t = 0, de donde dt = 0, y x varía de x0 − ct0 a x0 + ct0, así

En L, x + ct = x0 + ct0, de donde dx = −cdt y

Finalmente, en M, x − ct = x0 − ct0, de donde dx = cdt y

M tiene punto inicial (x0, t0) y punto terminal (x0 − ct0, 0) debido a la orientación en sentido contrario al 
movimiento de las manecillas del reloj en la frontera de 
.

Sumando estas dos integrales de línea, obtiene

Entonces

Resuelva esta ecuación para u(x0, t0) para obtener

Se ha usado el subíndice 0 en (x0, t0) para enfocar la atención en el punto en el cual se está evaluando 
la solución. Sin embargo, éste puede ser cualquier punto con x0 real y t0 > 0. Así la solución en un punto 
arbitrario (x, t) es

La solución en (x, t) del problema con el término de fuerza F(x, t) es por tanto la solución de d’Alembert 
para el problema homogéneo (sin término de fuerza), más (1/ 2c) veces la integral doble del término de 
fuerza sobre el triángulo característico teniendo (x, t) como un vértice.

−
∫∫

	

F(x, t) dA =
∮

C

ut dx + c2ux dt.

∫

I

ut dx + c2ux dt =
∫ x0+ct0

x0−ct0

ut (x, 0) dx =
∫ x0+ct0

x0−ct0

g(ξ) dξ.

∫

L

ut dx + c2ux dt =
∫

L

ut (−c) dt + c2ux

(
−1

c

)
dx = −c

∫

L

du

= −c [u(x0, t0) − u(x0 + ct0, 0)] .

∫

M

ut dx + c2ux dt =
∫

L

ut (c) dt + c2ux

(
1

c

)
dx = c

∫

M

du

= c [u(x0 − ct0, 0) − u(x0, t0)] .

−
∫∫

	

F(x, t) dA =
∫ x0+ct0

x0−ct0

g(ξ) dξ

− c [u(x0, t0) − u(x0 + ct0, 0)] + c [u(x0 − ct0, 0) − u(x0, t0)] .

−
∫∫

	

F(x, t) dA =
∫ x0+ct0

x0−ct0

g(ξ) dξ − 2cu(x0, t0) + cu(x0 + ct0, 0) + cu(x0 − ct0, 0)

=
∫ x0+ct0

x0−ct0

g(ξ) dξ − 2cu(x0, t0) + c [f (x0 + ct0) + f (x0 − ct0)] .

p ( 0, 0) p

u(x0, t0) = 1

2
[f (x0 − ct0) + f (x0 + ct0)] + 1

2c

∫ x0+ct0

x0−ct0

g(ξ) dξ + 1

2c

∫∫

	

F(x, t) dA.

p

u(x, t) = 1

2
[f (x − ct) + f (x + ct)] + 1

2c

∫ x+ct

x−ct

g(ξ) dξ + 1

2c

∫∫

	

F(ξ, η) dξ dη.

cu(x0, t0) + c [f (x0 + ct0) + f (x0 − ct0)] .

dη.
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EJEMPLO 5.11

Considere el problema

La solución en cualquier punto x y tiempo t tiene la forma

Todo lo que debe hacer es evaluar las integrales. Primero,

Para la integral doble del término de fuerza, utilice la fi gura 5.19:

La solución es

En el último ejemplo, u(x, t) da la función posición de la cuerda en cualquier tiempo dado t. La gráfi ca 
de u(x, t) en el plano x, t no es una fotografía de la cuerda en cualquier tiempo. Más bien, una imagen de 
la cuerda en el tiempo t es la gráfi ca de los puntos (x, u(x, t)), con t fi ja en el tiempo de interés. La fi gura 
5.20(a) muestra un segmento de la cuerda en el tiempo t = 0.3, tanto para el movimiento de forzado como 
el no forzado. La fi gura 5.20(b) muestra un segmento de la cuerda para t = 0.6, nuevamente para ambos el 
movimiento de forzado y el no forzado.

Este método de características también se puede usar para resolver problemas con valores en la fron-
tera que involucran a la ecuación de onda en un intervalo acotado [0, L]. Sin embargo, es bastante más 
complicado que el de la solución en toda la recta, por lo que queda para un estudio más avanzado de las 
ecuaciones diferenciales parciales.

FIGURA 5.19

ut t = 25uxx + x2t2 para −∞ < x < ∞, t > 0,

u(x, 0) = x cos(x), ut (x, 0) = e−x para −∞ < x < ∞.

u(x, t) = 1

2
[(x − 5t) cos(x − 5t) + (x + 5t) cos(x + 5t)] + 1

10

∫ x+5t

x−5t

e−ξ dξ

+ 1

10

∫∫

	

ξ2η2 dξ dη.

1

10

∫ x+5t

x−5t

e−ξ dξ = − 1

10
e−x−5t + 1

10
e−x+5t .

1

10

∫∫

	

ξ2η2 dξ dη = 1

10

∫ t

0

∫ x+5t−5η

x−5t+5η

ξ2η2 dξ dη

= 1

12
t4x2 + 5

36
t6.

u(x, t) = 1

2
[(x − 5t) cos(x − 5t) + (x + 5t) cos(x + 5t)]

− 1

10
e−x−5t + 1

10
e−x+5t + 1

12
t4x2 + 5

36
t6.

	

(x, t)

x � 5t

(x � 5t � 5
, 
) (x � 5t � 5
, 
)

	 � 5
 � x � 5t 	 � 5
 � x � 5t

x � 5t




■

dη.

dη.
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1

10

∫∫

	

ξ2η2 dξ
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5.4.2 Ondas hacia adelante y hacia atrás

Continuando con el problema de valores en la frontera para la ecuación de onda en toda la recta real, puede 
escribir la fórmula de d’Alembert (5.27) para la solución como

donde

y

Llame a ϕ(x − ct) una onda hacia adelante (o derecha), y β(x + ct) una onda hacia atrás (o izquierda). La 
gráfi ca de ϕ(x − ct) es la gráfi ca de ϕ(x) trasladada ct unidades a la derecha. Es posible, por tanto pensar 
en ϕ(x − ct) como la gráfi ca de ϕ(x) moviéndose a la derecha con velocidad c. La gráfi ca de β(x + ct) es 
la gráfi ca de β(x) trasladada ct unidades a la izquierda. Así β(x + ct) es la gráfi ca de β(x) moviéndose a la 
izquierda con velocidad c. El perfi l de la cuerda en el tiempo t, dado por la gráfi ca de y = u(x, t) como una 
función de x, es la suma de estas ondas hacia adelante y hacia atrás en el tiempo t .

Como un ejemplo de este proceso, considere el problema con valores en la frontera con c = 1,

y g(x) = 0. En la fi gura 5.21(a) se muestra esta función posición inicial. La solución es una suma de una 
onda hacia adelante y una hacia atrás:

FIGURA 5.20(b) t = 0.6.

u(x, 0.3)

x

5

10

15

20

0 4�4 �2 2

u(x, 0.6)

x

30

20

10

0 3�3 �2 �1 21

FIGURA 5.20(a) Perfi l de una cuerda 

forzada y sin forzar en t = 0.3.

u(x, t) = 1

2

(
f (x − ct) − 1

c

∫ x−ct

0
g(ξ) dξ

)

+ 1

2

(
f (x + ct) + 1

c

∫ x+ct

0
g(ξ) dξ

)

= ϕ(x − ct) + β(x + ct),

ϕ(x) = 1

2
f (x) − 1

2c

∫ x

0
g(ξ) dξ

β(x) = 1

2
f (x) + 1

2c

∫ x

0
g(ξ) dξ.

f (x) =
{

4 − x2 para −2 ≤ x ≤ 2

0 para |x| > 2

u(x, t) = ϕ(x + ct) + β(x − ct) = 1
2f (x + t) + 1

2f (x − t).
1

2

1

2

0
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En cualquier tiempo t, el movimiento consiste de la función posición inicial trasladada t unidades a la 
derecha, superpuesta con la función posición inicial trasladada t unidades a la izquierda. Considere el 
movimiento como la función posición inicial (fi gura 5.21(a)) moviéndose simultáneamente hacia la dere-
cha e izquierda. Debido a que f (x) vale cero fuera de [−2, 2], estas ondas hacia adelante y hacia atrás 

0

1

2

3

4

�3 �2 �1 1 2 3
x

u(x, 0)

FIGURA 4.18(a)

f (x) =
{

4 − x2 para −2 ≤ x ≤ 2

0 para |x| > 2
.

0

2

4

6

�4 �2 2 4
x

u(x, )1
3

FIGURA 4.18(b) Superposición de ondas
hacia adelante y hacia atrás en t = 1

3 .

1

2

3

4

5

�4 �2 20 4
x

u(x, 1.2)

FIGURA 4.18(c) t = 1.2.

1

2

3

4

�4 �2 20 4
x

u(x, 1.6)

FIGURA 4.18(d) t = 1.6.

1

2

3

4

�6 �4 �2 2 4 6
x

u(x, 1.8)

0

1

3

4

�6 �4 �2 2 4 6
x

u(x, 2.1)

2

FIGURA 5.21(a) FIGURA 5.21(b) Superposición de ondas

FIGURA 5.21(c) t = 1.2. FIGURA 5.21(d) t = 1.6.

FIGURA 5.21(e) t = 1.8. FIGURA 5.21(f) t = 2.1.
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de hecho se separan y llegan a ser ajenas, una continúa moviéndose hacia la derecha y la otra hacia la 
izquierda en la recta real. En las fi guras 5.21(b) a (h) se muestra este proceso.

0

1

2

3

4

�6 �4 �2 2 4 6
x

u(x, 3)

0

1

2

3

4

�10�8 �6 �4 �2 2 4 6 8 10
x

u(x, 7)

En cada uno de los problemas del 1 al 6, determine las caracte-
rísticas de la ecuación de onda para el problema

utt = c2uxx para −∞ < x < ∞, t > 0,

u(x, 0) = f (x), ut(x, 0) = g(x) para −∞ < x < ∞

para el valor de c dado y escriba la solución de d’Alembert.

 1. c = 1, f (x) = x2, g(x) = −x

 2. c = 4, f (x) = x2 − 2x, g(x) = cos(x)

 3. c = 7, f (x) = cos(πx), g(x) = 1 − x2

 4. c = 5, f (x) = sen(2x), g(x) = x3

 5. c = 14, f (x) = ex, g(x) = x
 6. c = 12, f (x) = −5x + x2, g(x) = 3

En cada uno de los problemas del 7 al 12, resuelva el problema

utt = c2uxx + F(x, t) para −∞ < x < ∞, t > 0,

u(x, 0) = f (x), ut(x, 0) = g(x) para −∞ < x < ∞

para la c, f (x) y g(x) dadas.

 7. c = 4, f (x) = x, g(x) = e−x, F(x, t) = x + t

 8. c = 2, f (x) = sen(x), g(x) = 2x, F(x, t) = 2xt

 9. c = 8, f (x) = x2 − x, g(x) = cos(2x), F(x, t) = xt2

10. c = 4, f (x) = x2, g(x) = xe−x, F(x, t) = x sen(t)

11. c = 3, f (x) = cosh(x), g(x) = 1, F(x, t) = 3xt3

12. c = 7, f (x) = 1 + x, g(x) = sen(x), F(x, t) = x −cos(t)

En cada uno de los problemas 13 al 18, escriba la solución del 
problema

utt = uxx para −∞ < x < ∞, t > 0,

u(x, 0) = f (x), ut(x, 0) = 0 para −∞ < x < ∞

como una suma de una onda hacia adelante y una hacia atrás. 
Dibuje la gráfi ca de la función posición inicial y después la grá-
fi ca de la solución en tiempos seleccionados, probando la solu-
ción como una superposición de ondas hacia adelante y hacia 
atrás moviéndose en direcciones opuestas a lo largo de la recta 
real.

13. 

14. 

15. 

16. 

17. 

18.

FIGURA 5.21(h) t = 7.FIGURA 5.21(g) t = 3.

SECCIÓN 5.4 PROBLEMAS

f (x) =
{

sen(2x) para −π ≤ x ≤ π

0 para |x| > π

f (x) =
{

1 − |x| para −1 ≤ x ≤ 1

0 para |x| > 1

f (x) =

⎧
⎪⎨
⎪⎩

cos(x) para − π

2
≤ x ≤ π

2

0 para |x| >
π

2

f (x) =
{

1 − x2 para |x| ≤ 1

0 para |x| > 1

f (x) =
{

x2 − x − 2 para −1 ≤ x ≤ 2

0 para x < −1 y para x > 2

f (x) =
{

x3 − x2 − 4x + 4 para −2 ≤ x ≤ 2

0 para |x| > 2

0

0

0

0

0

0
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 5.5 Modos normales de vibración de una membrana circular elástica

Analice el movimiento de una membrana (como la de un tambor) sujetada por un marco circular y puesta 
en movimiento con posición y velocidad iniciales. La posición de reposo de la membrana es en el plano 
xy con el origen en el centro y la membrana tiene un radio R. Usando coordenadas polares, la partícula de 
la membrana en (r, θ) se supone que vibra vertical y perpendicularmente al plano x y, y su desplazamiento 
desde la posición de reposo en el tiempo t es z(r, θ, t).

La ecuación (5.4), da la ecuación de onda para esta función de desplazamiento:

Por el momento suponga que el movimiento de la membrana es simétrico respecto al origen, en cuyo caso 
z sólo depende de r y t . Ahora la ecuación de onda es

Sea el desplazamiento inicial dado por z(r, 0) = f (r), y sea la velocidad inicial

Intente una solución

z(r, t) = F(r)T(θ).

Obtiene, después de cálculos rutinarios,

Si λ > 0, a saber λ = ω2, la ecuación para F es una ecuación de Bessel de orden cero, con solución ge-
neral

Como Y0 (ωr/c) → −∞ conforme r → 0 (el centro de la membrana), elija b = 0. Ahora la ecuación para 
T es

T ′′ + ω2T = 0,

con solución general

T(t) = d cos(ωt) + k sen(ωt).

Tiene, para cada ω > 0, una función

Como la membrana está fi ja en un marco circular,

para t > 0. Esta condición se satisface si J0(ωR/c) = 0. Sean j1, j2, . . . los ceros positivos de J0, con

j1 < j2 < · · · ,

∂2z

∂t2 = c2
(

∂2z

∂r2 + 1

r

∂z

∂r
+ 1

r2

∂2z

∂θ2

)
.

∂2z

∂t2 = c2
(

∂2z

∂r2 + 1

r

∂z

∂r

)
.

∂z

∂t
(r, 0) = g(r).

p

T ′′ + λT = 0 y F ′′ + 1

r
F ′ + λ

c2 F = 0.

F (r) = aJ0

(ω

c
r
)

+ bY0

(ω

c
r
)

.

zω(r, t) = aωJ0

(ω

c
r
)

cos(ωt) + bωJ0

(ω

c
r
)

sen(ωt).

zω(R, t) = aωJ0

(ω

c
R
)

cos(ωt) + bωJ0

(ω

c
R
)

sen(ωt) = 0

5.5 Modos normales de vibración de una membrana circular elástica
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y elija

o

para n = 1, 2, . . . Esto produce los valores propios de este problema:

Ahora tiene

Todas estas funciones satisfacen la condición en la frontera z(R, t) = 0. Para satisfacer las condiciones 
iniciales, se intenta una superposición

(5.28)

Ahora

el desarrollo de Fourier-Bessel de f (r). Sea s = r/R para convertir esta serie en

en donde s varía de 0 a 1. Sabe de la sección 4.3.3 que los coefi cientes en este desarrollo están dados por

para n = 1, 2, . . . .
Ahora debe resolver para las bn. Calcule

Este es el desarrollo de Fourier-Bessel de g(r). Nuevamente, en referencia con la sección 4.3.3, debe elegir

o

para n = 1, 2, . . . Con estos coefi cientes, la ecuación (5.28) es la solución para la función posición de la 
membrana.

ωR

c
= jn

ωn = jnc

R

λn = ω2
n = j2

nc2

R2
.

zn(r, t) = anJ0

(
jnr

R

)
cos

(
jnct

R

)
+ bnJ0

(
jnr

R

)
sen

(
jnct

R

)
.

z(r, t) =
∞∑

n=1

[
anJ0

(
jnr

R

)
cos

(
jnct

R

)
+ bnJ0

(
jnr

R

)
sen

(
jnct

R

)]
.

z(r, 0) = f (r) =
∞∑

n=1

anJ0

(
jnr

R

)
,

f (Rs) =
∞∑

n=1

anJ0(jns),

an = 2

[J1(jn)]2

∫ 1

0
sf (Rs)J0(jns) ds

∂z

∂t
(r, 0) = g(r) =

∞∑

n=1

bn

jnc

R
J0

(
jnr

R

)
.

bn

jnc

R
= 2

[J1(jn)]2

∫ 1

0
sg(Rs)J0(jns) ds,

bn = 2R

cjn[J1(jn)]2

∫ 1

0
sg(Rs)J0(jns) ds
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Los números ωn = jnc/R son las frecuencias de los modos normales de vibración, los cuales tienen 
periodos 2π/ωn = 2πR/jnc. Los modos normales de vibración son las funciones zn(r, t). Frecuentemente 
estas funciones se escriben en la forma ángulo fase como

en donde An y δn son constantes.
El primer modo normal es

Conforme r varía de 0 a R, j1r/R varía de 0 a j1. En cualquier tiempo t, una sección radial a través de la 
membrana toma la forma de la gráfi ca de J0(x) para 0 ≤ x ≤  j1 (fi gura 5.22(a)).

El segundo modo normal es

Ahora conforme r varía de 0 a R, j2r/R varía de 0 a j2, pasando a través de j1 a lo largo del camino. Como 
J0(j2r/R) = 0 cuando j2r/R = j1, este modo tiene un círculo nodal (fi jo en el movimiento) de radio

Una sección a través de la membrana toma la forma de la gráfi ca de J0(x) para 0 ≤ x ≤ j2 (fi gura 
5.22(b)).

Análogamente, el tercer modo normal es

y este modo tiene dos nodos, uno en r = j1R/j3 y el segundo en r = j2R/j3. Ahora la sección radial tiene la 
forma de la gráfi ca de J0(x) para 0 ≤ x ≤  j3 (fi gura 5.22(c)).

En general, el n-ésimo modo normal tiene n − 1 nodos (círculos fi jos en el movimiento de la mem-
brana), sucediendo en j1R/jn, . . . , jn−1R/jn.

En la siguiente sección se retomará este problema, esta vez teniendo la θ dependiente de la función de 
desplazamiento. Esto llevará a una solución involucrando una serie doble de Fourier en senos.

zn(r, t) = AnJ0

(
jnr

R

)
cos(ωnt + δn)

z1(r, t) = A1J0

(
j1r

R

)
cos(ω1t + δ1).

z2(r, t) = A2J0

(
j2r

R

)
cos(ω2t + δ2).

r = j1R

j2
.

z3(r, t) = A3J0

(
j3r

R

)
cos(ω3t + δ3),

J0(x)

j10
x

y � J0(x)

j1 j20
x

j1 j3j20
x

y � J0(x)

FIGURA 5.22(a) Primer 
modo normal.

FIGURA 5.22(b) Segundo 
modo normal.

FIGURA 5.22(c) Tercer modo 
normal.

5.5 Modos normales de vibración de una membrana circular elástica
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5.6 Vibraciones de una membrana circular elástica, vuelta a visitar

Se continúa a partir de la última sección con las vibraciones de una membrana elástica fi ja en un marco 
circular. Ahora, sin embargo, se mantiene la θ dependiente de la función de desplazamiento y consideran-
do toda la ecuación de onda.

para 0 ≤ r < R, −π ≤ θ ≤ π, t > 0. Usaremos las condiciones iniciales

así la membrana es soltada desde el reposo con el desplazamiento inicial dado.
En coordenadas cilíndricas, θ puede ser reemplazada por θ + 2nπ para cualquier entero n, así, tam-

bién, se impondrán las condiciones de periodicidad

para 0 ≤ r < R y t > 0.
Haga z(r, θ, t) = F(r)�(θ)T(r) en la ecuación de onda para obtener

para alguna constante λ ya que el lado izquierdo depende sólo de t, y el lado derecho sólo de r y θ. En-
tonces

T ′′ + λc2T = 0

y

Debido a que el lado izquierdo depende sólo de r y el derecho sólo de θ, y éstos son independientes, 
para alguna constante μ,

Entonces

�′′ + μ� = 0

1. Sean c = R = 1, f (r) = 1 − r y g(r) = 0. Usando el material de 
la sección 4.2 (funciones de Bessel), aproxime los coefi cien-
tes a1 a a5 en la solución dada por la ecuación (5.28) y dibuje 
la gráfi ca de la quinta suma parcial de la solución para una 
selección de tiempos. Escriba los modos (aproximados) nor-
males zn(r, t) = AnJ0 (jnr) cos (ωnt + δn) para n = 1, . . .  5.

2. Repita el problema 1, pero ahora usando f (r) = 1 − r2 y 
g(r) = 0.

3. Repita el problema 1, pero ahora usando f (r) = sen(πr) y 
g(r) = 0.

SECCIÓN 5.5 PROBLEMAS

∂2z

∂t2 = c2
(

∂2z

∂r2 + 1

r

∂z

∂r
+ 1

r2

∂2z

∂θ2

)

z(r, θ, 0) = f (r, θ),
∂z

∂t
(r, θ, 0) = 0,

z(r, −π, t) = z(r, π, t) y
∂z

∂θ
(r, −π, t) = ∂z

∂θ
(r, π, t)

T ′′

c2T
= F ′′ + (1/r)F ′

F
+ 1

r2

�′′

�
= −λ

r2F ′′ + rF ′

F
+ λr2 = −�′′

�
.

r2F ′′ + rF ′

F
+ λr2 = −�′′

�
= μ.
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y

r2F ′′ + rF ′ + (λr2 − μ)F = 0.

Resolviendo estas ecuaciones diferenciales para T(t), F(r) y �(θ), tiene las siguientes condiciones en 
la frontera. Primero, por la periodicidad,

�(−π) = �(π) y �′(−π) = �′(π).

Ahora, debido a que la membrana está fi ja en un marco circular,

F(R) = 0.

Finalmente, debido a que la velocidad inicial de la membrana es cero,

T ′(0) = 0.

El problema para �(θ) es un problema de Sturm-Liouville periódico, que fue resuelto en la sección 
4.3.1 (ejemplo 4.9). Los valores propios son

μn = n2 para n = 0, 1, 2, . . . ,

y las funciones propias son

�n(θ) = an cos(nθ) + bn sen(nθ).

Con μ = n2, el problema para F es

r2F ′′(r) + rF ′(r) + (λr2 − n2)F(r) = 0;  F(R) = 0.

Ha visto (sección 3.2.2) que esta ecuación diferencial tiene solución general

en términos de las funciones de Bessel de orden n del primero y segundo tipo. Debido a que Yn

(√
λr

)
 no 

está acotada conforme r → 0+, elija b = 0 para tener una solución acotada. Esto deja F(r) = a Jn

(√
λr

)
. 

Para encontrar valores admisibles de λ, necesita

Busque satisfacer ésta con a distinta de cero para evitar una solución trivial. Así 
√

λR debe ser uno de los 
ceros positivos de Jn. Sean estos ceros positivos

jn1 < jn2 < · · · ,

con doble índice ya que esta deducción depende de la elección de μ = n2. Entonces

con jnk el k-ésimo cero positivo de Jn(x). Las λnk son los valores propios. Las funciones propias correspon-
dientes son múltiplos distintos de cero de

Con estos valores de λ, el problema para T es

F(r) = aJn(
√

λr) + bYn(
√

λr),

λnk =
j2
nk

R2
,

Jn

(
jnk

R
r

)
para n = 0, 1, 2, . . . y k = 1, 2, . . . .

T ′′ + c2
(

jnk

R

)2

T = 0; T ′(0) = 0

5.6 Vibraciones de una membrana circular elástica, vuelta a visitar

( () )

F(R) = aJn(
√

λR) = 0.
( )
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con soluciones constantes múltiplos de

Ahora puede formar las funciones

para n = 0, 1, 2, . . . y k = 1, 2, . . . Cada una de estas funciones satisface la ecuación de onda y las condi-
ciones en la frontera, junto con la condición de velocidad inicial cero. Para satisfacer la condición que la 
posición inicial está dada por f , escriba una superposición

(5.29)

Ahora necesita

Para ver cómo elegir estos coefi cientes, primero escriba esta ecuación en la forma

Para una r dada, piense en f (r, θ) como una función de θ. La última ecuación es el desarrollo en serie de 
Fourier, en [−π, π], de esta función de θ. Como conoce los coefi cientes en el desarrollo de Fourier de una 
función de θ, puede escribir inmediatamente

y, para n = 1, 2, . . . ,

y

Ahora reconoce que para cada n = 0, 1, 2, . . . , las últimas tres ecuaciones son las expansiones de las 
funciones de r en funciones en series de Bessel, con conjuntos de coefi cientes, a0k, ank y bnk respectiva-
mente. A partir de la sección 4.3.3, conoce los coefi cientes en estas expansiones:

y, para n = 1, 2, . . . ,

Tnk(t) = cos

(
jnk

R
ct

)
.

znk(r, θ, t) = [ank cos(nθ) + bnk sen(nθ)]Jn

(
jnk

R
r

)
cos

(
jnk

R
ct

)

z(r, θ, t) =
∞∑

n=0

∞∑

k=1

[ank cos(nθ) + bnk sen(nθ)]Jn

(
jnk

R
r

)
cos

(
jnk

R
ct

)
.

z(r, θ, 0) = f (r, θ) =
∞∑

n=0

∞∑

k=1

[ank cos(nθ) + bnk sen(nθ)]Jn

(
jnk

R
r

)
.

f (r, θ) =
∞∑

k=1

a0kJ0

(
j0k

R
r

)
+

∞∑

n=1

([ ∞∑

k=1

ankJn

(
jnk

R
r

)]
cos(nθ)

+
[ ∞∑

k=1

bnkJn

(
jnk

R
r

)]
sen(nθ)

)
.

∞∑

k=1

a0kJ0

(
j0k

R
r

)
= 1

2π

∫ π

−π

f (r, θ) dθ = 1

2
α0(r),

∞∑

k=1

ankJn

(
jnk

R
r

)
= 1

π

∫ π

−π

f (r, θ) cos(nθ) dθ = αn(r)

a0k = 1

[J1(j0k)]2

∫ 1

0
ξα0(Rξ)J0(j0kξ) dξ para k = 1, 2, . . . ,

∞∑

k=1

bnkJn

(
jnk

R
r

)
= 1

π

∫ π

−π

f (r, θ) sen(nθ) dθ = βn(r)

ank = 2

[Jn+1(jnk)]2

∫ 1

0
ξαn(Rξ)Jn(jnkξ) dξ para k = 1, 2, . . . ,
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y

La idea en el cálculo de los coefi cientes es primero realizar las integraciones respecto a θ para obtener 
las funciones α0(r), αn(r) y βn(r), escribiéndolas como series de Fourier-Bessel. Obtenga los coefi cientes 
en estas series, que son las ank y las bnk, evaluando las integrales para los coefi cientes en este tipo de ex-
pansión en función propia. En la práctica, éstas son aproximadas debido a que los ceros de las funciones 
de Bessel de orden n sólo pueden ser aproximados.

1.  Aproxime la desviación vertical del centro de una membra-
na de radio 2 para cualquier tiempo t > 0 calculando los tres 
primeros términos no cero de la solución para el caso c = 2 
y el desplazamiento inicial es f(r, θ) = (4 − r2) sen2 (θ), con 
g(r, θ) = θ.

2.  Use la solución dada en la sección para probar el hecho plau-
sible de que el centro de la membrana queda fi jo para todo 
tiempo, si el desplazamiento inicial es una función impar de θ 
(esto es, f (r,−θ) = −f (r, θ)). Sugerencia: La única función de 
Bessel de orden entero que es distinta de cero en r = 0 es J0.

5.7 Vibraciones de una membrana rectangular

Considere una membrana elástica estirada sobre un marco rectangular al que está fi ja. Suponga que el 
marco y el rectángulo que encierra ocupan una región en el plano xy defi nido por 0 ≤ x ≤ L, 0 ≤ y ≤ K. 
Se da un desplazamiento inicial a la membrana y se suelta con una velocidad inicial dada. Busca determi-
nar la función de desplazamiento vertical z(x, y, t). En cualquier tiempo t, la gráfi ca de z = z(x, y, t) para 
0 < x < L, 0 < y < K es una fotografía de la posición de la membrana en ese tiempo. Si tuviera una 
película de esta función conforme pasa el tiempo, tendría una imagen en movimiento de la membrana.

El problema con valores en la frontera para z es

Se resuelve este problema para el caso de velocidad inicial cero, g(x, y) = 0.
Intente una separación de las variables, z(x, y, t) = X(x)Y(y)T (t). Obtiene

XYT ′′ = a2[X ′′YT + XY ′′T ],

o

SECCIÓN 5.6 PROBLEMAS

∂2z

∂t2 = c2
(

∂2z

∂x2 + ∂2z

∂y2

)
para 0 < x < L, 0 < y < K, t > 0,

z(x, 0, t) = z(x, K, t) = 0 para 0 < x < L, t > 0,

z(0, y, t) = y(L, y, t) = 0 para 0 < y < K, t > 0,

z(x, y, 0) = f (x, y) para 0 < x < L, 0 < y < K,

∂z

∂t
(x, y, 0) = g(x, y) para 0 < x < L, 0 < y < K.

y

bnk = 2

[Jn+1(jnk)]2

∫ 1

0
ξβn(Rξ)Jn(jnkξ) dξ para k = 1, 2, . . . .

T ′′

c2T
− Y ′′

Y
= X′′

X
.

a

5.7 Vibraciones de una membrana rectangular

a
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Está imposibilitado para aislar tres variables en diferentes lados de una ecuación. Sin embargo, puede 
argumentar que el lado izquierdo es una función sólo de y y t, y el lado derecho sólo de x, y estas tres 
variables son independientes. Por tanto, para alguna constante λ,

Ahora tiene

En la última ecuación, el lado izquierdo depende sólo de t y el lado derecho sólo de y, así para alguna 
constante μ,

Entonces

Y ′′ + μY =0 y T ′′ + a2(λ + μ)T = 0.

Las variables han sido separadas, con el costo de introducir dos constantes de separación. Ahora use 
las condiciones en la frontera:

z(0, y, t) = X(0)Y (y)T (t) = 0 implica que X(0) = 0.

Análogamente,

X(L) = 0, Y(0) = 0 y Y(K) = 0.

Los dos problemas para X y Y son

X ′′ + λX = 0; X(0) = X(L) = 0

y

Y ′′ + μY = 0; Y(0) = Y(K) = 0.

Éstos tienen soluciones:

y

con n y m variando independientemente sobre los enteros positivos. Ahora el problema para T se convierte 
en

Más aún, debido a la hipótesis de velocidad inicial cero,

así T ′ (0) = 0. Entonces T debe ser un múltiplo constante de

T ′′

c2T
− Y ′′

Y
= X′′

X
= −λ.

X′′ + λX = 0 y
T ′′

c2T
+ λ = Y ′′

Y
.

T ′′

c2T
+ λ = Y ′′

Y
= −μ.

λn = n2π2

L2 , Xn(x) = sen
(nπx

L

)

μm = m2π2

K2
, Ym(x) = sen

(mπy

K

)
,

T ′′ + c2
(

n2π2

L2
+ m2π2

K2

)
T = 0

∂z

∂t
(x, y, 0) = X(x)Y (y)T ′(0) = 0,

cos

⎛
⎝
√

n2

L2 + m2

K2 πct

⎞
⎠ .

a

a2

a2

a2

(y)

πat

CAPÍTULO 5   La ecuación de onda
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Para cada entero positivo n y m, tiene ahora una función

que satisface todas las condiciones del problema, excepto posiblemente la condición inicial z(x, y, 0) = 
f (x, y). Para esto, use una superposición

Debe elegir las constantes para satisfacer

Puede hacer esto explotando el truco usado cuando se introdujo la serie de Fourier. Escoja un entero posi-
tivo m0 y multiplique ambos lados de esta ecuación por sen(m0πy/K) para obtener

Ahora integre 0 a K en la variable y−, dejando los términos en x solos. Obtiene

Por la ortogonalidad de estas funciones seno en [0, K], todas las integrales son cero excepto para el térmi-
no m = m0. La serie en m se colapsa por tanto en un solo término, con

cuando m = m0. Así tiene

El lado izquierdo de esta ecuación es una función de x. Elija cualquier entero positivo n0 y multiplique 
esta ecuación por sen(n0πx/L):

Integre, esta vez, en la variable x:

Todos los términos de la derecha son cero, excepto cuando n = n0, y este término es L / 2. La última ecua-
ción se convierte en

znm(x, y, t) = anm sen
(nπx

L

)
sen

(mπy

K

)
cos

⎛
⎝
√

n2

L2
+ m2

K2
πct

⎞
⎠

z(x, y, t) =
∞∑

n=1

∞∑

m=1

anm sen
(nπx

L

)
sen

(mπy

K

)
cos

⎛
⎝
√

n2

L2 + m2

K2 πct

⎞
⎠ .

z(x, y, 0) = f (x, y) =
∞∑

n=1

∞∑

m=1

anm sen
(nπx

L

)
sen

(mπy

K

)
.

f (x, y) sen
(m0πy

K

)
=

∞∑

n=1

∞∑

m=1

anm sen
(nπx

L

)
sen

(mπy

K

)
sen

(m0πy

K

)
.

∫ K

0
f (x, y) sen

(m0πy

K

)
dy =

∞∑

n=1

∞∑

m=1

anm sen
(nπx

L

) ∫ K

0
sen

(mπy

K

)
sen

(m0πy

K

)
dy.

K

0
sen2 m πy0

K
dy = K

2

∫ K

0
f (x, y) sen

(m0πy

K

)
dy =

∞∑

n=1

K

2
anm0 sen

(nπx

L

)
.

∫ K

0
f (x, y) sen

(n0πx

L

)
sen

(m0πy

K

)
dy =

∞∑

n=1

K

2
anm0 sen

(nπx

L

)
sen

(n0πx

L

)
.

∫ L

0

∫ K

0
f (x, y) sen

(
n0πx

L

)
sen

(m0πy

K

)
dy dx

=
∞∑

n=1

K

2
anm0

∫ L

0
sen

(nπx

L

)
sen

(n0πx

L

)
dx.

∫ L

0

∫ K

0
f (x, y) sen

(n0πx

L

)
sen

(m0πy

K

)
dy dx = K

2

L

2
an0m0 .

πat

πat
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Elimine los subíndices cero, que servían sólo para saber cuáles enteros estaban fi jos, ahora tiene

Con esta elección de los coefi cientes, tiene la solución para la función de desplazamiento.

EJEMPLO 5.12

Suponga que el desplazamiento inicial está dado por

z(x, y, 0) = x(L − x)y(K − y),

y la velocidad inicial es cero. Los coefi cientes en la doble expansión de Fourier son

La solución para la función de desplazamiento es en este caso

1. Resuelva

2. Resuelva

3. Resuelva

anm = 4

LK

∫ L

0

∫ K

0
f (x, y) sen

(nπx

L

)
sen

(mπy

K

)
dy dx.

anm = 4

LK

∫ L

0

∫ K

0
x(L − x)y(K − y) sen

(nπx

L

)
sen

(mπy

K

)
dy dx

= 4

LK

(∫ L

0
x(L − x) sen

(nπx

L

)
dx

)(∫ K

0
y(K − y) sen

(mπy

K

)
dy

)

= 16L2K2

(nmπ2)3 [(−1)n − 1][(−1)m − 1].

z(x, y, t) =
∞∑

n=1

∞∑

m=1

[
16L2K2

(nmπ2)3
[(−1)n − 1][(−1)m − 1] sen

(nπx

L

)
sen

(mπy

K

)
cos

⎛
⎝
√

n2

L2
+ m2

K2
πct

⎞
⎠
⎤
⎦ .
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∂2z

∂t2
= ∂2z

∂x2
+ ∂2z

∂y2
para 0 < x < 2π,

0 < y < 2π, t > 0,

z(x, 0, t) = z(x, 2π, t) = 0 para 0 < x < 2π, t > 0,

z(0, y, t) = z(2π, y, t) = 0 para 0 < y < 2π, t > 0,

z(x, y, 0) = x2 sen(y) para 0 < x < 2π, 0 < y < 2π,

∂z

∂t
(x, y, 0) = 0 para 0 < x < 2π, 0 < y < 2π.

∂2z

∂t2
= 9

(
∂2z

∂x2
+ ∂2z

∂y2

)
para 0 < x < π,

0 < y < π, t > 0,

z(x, 0, t) = z(x, π, t) = 0 para 0 < x < π, t > 0,

z(0, y, t) = z(π, y, t) = 0 para 0 < y < π, t > 0,

z(x, y, 0) = sen(x) cos(y) para 0 < x < π, 0 < y < π,

∂z

∂t
(x, y, 0) = xy para 0 < x < π, 0 < y < π.

∂2z

∂t2
= 4

(
∂2z

∂x2
+ ∂2z

∂y2

)
para 0 < x < 2π,

0 < y < 2π, t > 0,

z(x, 0, t) = z(x, 2π, t) = 0 para 0 < x < 2π, t > 0,

z(0, y, t) = z(2π, y, t) = 0 para 0 < y < 2π, t > 0,

z(x, y, 0) = 0 para 0 < x < 2π, 0 < y < 2π,

∂z

∂t
(x, y, 0) = 1 para 0 < x < 2π, 0 < y < 2π.

■πat



Los fenómenos de calor y radiación con frecuencia son modelados por una ecuación diferencial parcial 
llamada ecuación de calor. Deducirá una versión tridimensional de la ecuación de calor, usando el teore-
ma de divergencia de Gauss. Después, examinará más de cerca la ecuación de calor y la resolverá bajo una 
variedad de condiciones, siguiendo un programa paralelo al que llevó a cabo para la ecuación de onda.

6.1 La ecuación de calor y las condiciones iniciales y de frontera

Sea u(x, y, z, t) la temperatura en el tiempo t y el lugar (x, y, z) en una región en el espacio, u satisface la 
ecuación diferencial parcial

en donde K(x, y, z) es la conductividad térmica del medio, μ(x, y, z) es el calor específi co y ρ(x, y, z) es la 
densidad. El término ∇K · ∇u es el producto punto de los gradientes de K y u. Esta es la ecuación de calor 
en tres variables espaciales y el tiempo.

Si la conductividad térmica del medio es constante, entonces ∇K es el vector cero y el término 
∇K · ∇u = 0. Ahora la ecuación de calor tridimensional es

La ecuación de calor unidimensional es

Esta ecuación se aplica frecuentemente, por ejemplo, a la conducción de calor en una barra delgada o 
alambre cuya longitud es mucho mayor que sus otras dimensiones. Para tener una mejor comprensión de 
lo que está involucrado en la ecuación de calor unidimensional, se desarrollará por separado a partir 
de los principios básicos.
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LA ECUACIÓN DE CALOR Y CONDICIONES 
INICIALES Y EN LA FRONTERA SOLUCIONES 
EN SERIE DE FOURIER DE LA ECUACIÓN DE

μρ
∂u

∂t
= K

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
+ ∇K · ∇u,

μρ
∂u

∂t
= K

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
.

∂u

∂t
= K

μρ

∂2u

∂x2
.
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Considere una barra recta y delgada de densidad constante ρ y área constante A de la sección trans-
versal, colocada a lo largo del eje x desde 0 a L. Suponga que los extremos de la barra están aislados y no 
permiten la pérdida de calor y que la temperatura en la sección transversal de la barra perpendicular al eje 
x en x es una función u(x, t) sólo de x y t. Suponga que el calor específi co μ y la conductividad térmica K 
son constantes.

Considere un segmento típico de la barra entre x = α y x = β, como en la fi gura 6.1. Por la defi nición 
del calor específi co, la razón a la que se acumula la energía calorífi ca en este segmento es

Por la ley de enfriamiento de Newton, la energía calorífi ca fl uye dentro de este segmento del extremo 
caliente al frío en una razón igual a K veces el negativo del gradiente de la temperatura (diferencia en la 
temperatura en los extremos del segmento). Por tanto, la razón neta a la que entra la energía calorífi ca en 
este segmento de la barra en el tiempo t es

Suponga que no se produce energía dentro del segmento. Tal producción podría ocurrir, por ejemplo, si 
hay una radiación o una fuente de calor tal como una reacción química. Éstos también cambiarían la masa 
en el segmento con el tiempo. En ausencia de estos efectos, la razón a la cual se acumula la energía calo-
rífi ca dentro del segmento debe balancear la razón a la que entra en el segmento. Por tanto,

así

Esta ecuación debe ser cierta para todo α y β con 0 ≤ α < β ≤ L. Si el término en el paréntesis en la 
integral fuera distinto de cero en cualquier x0 y t0, entonces por la continuidad podría elegir un intervalo 
(α, β) alrededor de x0 en el cual este término sería estrictamente positivo o estrictamente negativo, en 
todo el intervalo. Pero entonces esta integral de una función positiva o negativa en (α, β) sería positiva o 
negativa respectivamente, lo cual es una contradicción. Concluya que

para 0 < x < L y para t > 0. Esta es la ecuación de calor unidimensional. Frecuentemente se escribe esta 
ecuación diferencial parcial

donde k = K/μρ es una constante positiva que depende del material de la barra. El número k se llama la 
difusividad de la barra.

KA
∂u

∂x
(β, t) − KA

∂u

∂x
(α, t).

∫ β

α

μρA
∂u

∂t
dx.

x

u

0
α β L

u(x, t) = temperatura en la sección

transversal en x en el tiempo t

 FIGURA 6.1

∫ β

α

μρA
∂u

∂t
dx = KA

(
∂u

∂x
(β, t) − ∂u

∂x
(α, t)

)
= KA

∫ β

α

∂2u

∂x2
dx,

∫ β

α

(
μρ

∂u

∂t
− K

∂2u

∂x2

)
dx = 0.

μρ
∂u

∂t
− K

∂2u

∂x2 = 0

∂u

∂t
= k

∂2u

∂x2
,



307

Ciertamente esta ecuación no determina la función temperatura u(x, t) de manera única. Por ejemplo, 
si u(x, t) es una solución, también lo es u(x, t) + c para cualquier número real c. Para la unicidad de la 
solución, esperable en modelos de los fenómenos físicos, necesita las condiciones en la frontera, especi-
fi cando la información en los extremos de la barra en todo tiempo, y las condiciones iniciales, dando la 
temperatura en toda la barra a algún tiempo designado usualmente como el tiempo cero. La ecuación de 
calor, junto con ciertas condiciones iniciales y en la frontera, determina de manera única la distribución 
de la temperatura en toda la barra en todo tiempo posterior.

Por ejemplo, puede tener el problema con valores en la frontera

Este problema modela la distribución de temperatura en una barra de longitud L cuyo extremo izquierdo 
se mantiene a temperatura constante T1 y el extremo derecho a temperatura constante T2 y cuya tempe-
ratura inicial en la sección transversal en x es f (x). Las condiciones en los extremos de la barra son las 
condiciones en la frontera y la temperatura en el tiempo cero es la condición inicial.

Como un segundo ejemplo, considere el problema con valores en la frontera

Este problema modela la distribución de temperatura en una barra que no tiene pérdida de calor por sus 
extremos. Las condiciones dadas en la frontera en este problema se llaman condiciones de aislamiento.

Aún se pueden especifi car otras condiciones en la frontera. Por ejemplo, es posible tener una combi-
nación de temperatura fi ja y condiciones de aislamiento. Si el extremo izquierdo se mantiene a tempera-
tura constante T y el extremo derecho está aislado, entonces

O tener radiación libre (transmisión), en donde la barra pierda calor por radiación desde sus extremos 
en el medio que la rodea, que se supone que se mantiene a temperatura constante T. Ahora el modelo 
consta de la ecuación de calor, la función de la temperatura inicial, y de las condiciones en la frontera.

para t ≥ 0. Aquí A es una constante positiva. Observe que si la barra se mantiene más caliente que el medio 
que la rodea, entonces el fl ujo de calor, medido por ∂u/∂x, debe ser positivo en el extremo izquierdo y 
negativo en el extremo derecho.

Las condiciones en la frontera

se usan si el extremo izquierdo se mantiene a temperatura constante T1 mientras el extremo derecho irradia 
energía calorífi ca en un medio de temperatura constante T2.

∂u

∂t
= k

∂2u

∂x2
para 0 < x < L, t > 0,

u(0, t) = T1, u(L, t) = T2 para t ≥ 0,

u(x, 0) = f (x) para 0 ≤ x ≤ L.

∂u

∂t
= k

∂2u

∂x2 para 0 < x < L, t > 0,

∂u

∂x
(0, t) = ∂u

∂x
(L, t) = 0 para t ≥ 0,

u(x, 0) = f (x) para 0 ≤ x ≤ L.

u(0, t) = T y
∂u

∂x
(L, t) = 0.

∂u

∂x
(0, t) = A[u(0, t) − T ], ∂u

∂x
(L, t) = −A[u(L, t) − T ]

u(0, t) = T1,
∂u

∂x
(L, t) = −A[u(L, t) − T2]

6.1 La ecuación de calor y las condiciones iniciales y de frontera



CAPÍTULO 6   La ecuación de calor308

En el espacio de dos dimensiones, con conductividad térmica constante, la ecuación de calor es

mientras que en el espacio de tres dimensiones es

1.  Formule un problema con valor en la frontera que modele 
condiciones de calor en una barra delgada de longitud L si 
el extremo izquierdo se mantiene a temperatura cero y el 
extremo derecho está aislado. La temperatura inicial en la 
sección transversal en x es f (x).

2.  Formule un problema con valor en la frontera que modele 
condiciones de calor en una barra delgada de longitud L si el 
extremo izquierdo se mantiene a temperatura α(t) y el extre-

mo derecho a temperatura β (t). La temperatura inicial en la 
sección transversal en x es f (x).

3.  Formule un problema con valor en la frontera para la fun-
ción de temperatura en una barra delgada de longitud L si 
el extremo izquierdo se mantiene aislado y el extremo dere-
cho a temperatura β(t). La temperatura inicial en la sección 
transversal en x es f (x).

6.2 Soluciones en serie de Fourier de la ecuación de calor

En esta sección resolverá varios problemas con valores en la frontera que modelan la conducción de calor 
en un intervalo acotado. Para este propósito usará la separación de variables y la serie de Fourier.

6.2.1 Extremos de la barra mantenidos a temperatura cero

Suponga que busca la distribución de la temperatura u(x, t) en una barra delgada, homogénea (densidad 
constante) de longitud L, dado que la temperatura inicial en la barra en el tiempo cero en la sección trans-
versal en x perpendicular al eje x es f (x). Los extremos de la barra son mantenidos a temperatura cero 
durante todo el tiempo.

El problema con valores en la frontera que modela esta distribución de temperatura es

Usará separación de variables. Sustituye u(x, t) = X(x)T(t) en la ecuación de calor para obtener

o

SECCIÓN 6.1 PROBLEMAS

∂u

∂t
= k

(
∂2u

∂x2 + ∂2u

∂y2

)
,

∂u

∂t
= k

(
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

)
.

∂u

∂t
= k

∂2u

∂x2 para 0 < x < L, t > 0,

u(0, t) = u(L, t) = 0 para t ≥ 0,

u(x, 0) = f (x) para 0 ≤ x ≤ L.

XT ′ = kX′′T

T ′

kT
= X′′

X
.
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El lado izquierdo depende sólo del tiempo, y el lado derecho sólo de la posición y estas variables son 
independientes. Por tanto, para alguna constante λ,

Ahora

Si T(t) = 0 para todo t, entonces la función de temperatura tiene el valor constante cero, lo que ocurre si 
la temperatura inicial f (x) = 0 para 0 ≤ x ≤ L. De otra manera, T (t) no podría ser idénticamente cero, de 
manera que debe tener X(0) = 0. Análogamente, u(L, t) = X(L)T (t) = 0 implica que X(L) = 0. El problema 
para X es por tanto

Busque valores de λ (los valores propios) por los cuales este problema tenga soluciones no triviales (las 
funciones propias) para X.

Este problema para X es exactamente el mismo que encuentra para la función que depende del espacio 
en la separación de variables en la ecuación de onda. Ahí encuentre que los valores propios son

para n = 1, 2, . . . , y las funciones propias correspondientes son múltiplos constantes distintos de cero de

El problema para T se convierte en

que tiene solución general

Para n = 1, 2, . . . , ahora tiene funciones

que satisfacen la ecuación de calor en [0, L] y las condiciones en la frontera u(0, t) = u(L, t) = 0. Falta 
encontrar una solución que satisfaga la condición inicial. Puede elegir n y cn de manera que 

sólo si la función de temperatura inicial dada es un múltiplo de esta función seno. No siempre es así. En 
general, debe intentar construir una solución usando la superposición

Ahora necesita

6.2 Soluciones en serie de Fourier de la ecuación de calor

T ′

kT
= X′′

X
= −λ.

u(0, t) = X(0)T (t) = 0.

X′′ + λX = 0; X(0) = X(L) = 0.

λn = n2π2

L2

Xn(x) = sen
(nπx

L

)
.

T ′ + n2π2k

L2
T = 0,

Tn(t) = cne
−n2π2kt/L2

.

un(x, t) = cn sen
(nπx

L

)
e−n2π2kt/L2

un(x, 0) = cn sen
(nπx

L

)
= f (x)

u(x, t) =
∞∑

n=1

cn sen
(nπx

L

)
e−n2π2kt/L2

.

u(x, 0) =
∞∑

n=1

cn sen
(nπx

L

)
= f (x),
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que reconoce como el desarrollo de Fourier en senos de f (x) en [0, L]. Así elige

Con esta elección de los coefi cientes, tiene la solución para la función de distribución de temperatura:

(6.1)

EJEMPLO 6.1

Suponga que la función de temperatura inicial es constante A para 0 < x < L, mientras la temperatura en 
los extremos se mantiene en cero. Para escribir la solución para la función de distribución de temperatura, 
necesita calcular

La solución (6.1) es

Como 1 − (−1)n es cero si n es par, e igual a 2 si n es impar, sólo necesita sumar sobre los enteros impares 
y puede escribir

■

Verifi cación de la solución La función dada por la ecuación (6.1) claramente satisface las condiciones 
en la frontera e inicio del problema. Cada término vale cero en x = 0 y en x = L, y los coefi cientes son 
elegidos de manera que u(x, 0) = f (x). Si puede diferenciar esta serie término a término, también será fácil 
probar que u(x, t) satisface la ecuación de calor, ya que cada término la satisface.

Cuando enfrente este problema con la ecuación de onda, use una identidad trigonométrica para sumar 
la serie. Aquí, debido a la rapidez de decaimiento de la función exponencial en u(x, t), puede probar fácil-
mente que la serie converge uniformemente. Elija cualquier t0 > 0. Entonces, para t ≥ t0,

Debido a que la serie

converge, la serie para u(x, t) converge uniformemente para 0 ≤ x ≤ L y t ≥ t0, por un teorema de Weiers-
trass conocido usualmente como el teorema M de Weierstrass.

Por un argumento análogo, puede probar que la serie obtenida diferenciando u(x, t) término a térmi-
no, una vez respecto a t o dos veces respecto a x, también converge uniformemente. Por tanto, es posible 
diferenciar esta serie término a término, una vez respecto a t y dos veces respecto a x. Como cada término 
en la serie satisface la ecuación de calor, entonces u(x, t) también, verifi cando la solución (6.1).

Considere ahora el problema de la conducción de calor en una barra con extremos aislados.

cn = 2

L

∫ L

0
f (ξ) sen

(
nπξ

L

)
dξ.

u(x, t) = 2

L

∞∑

n=1

(∫ L

0
f (ξ) sen

(
nπξ

L

)
dξ

)
sen

(nπx

L

)
e−n2π2kt/L2

.

cn = 2

L

∫ L

0
A sen

(
nπξ

L

)
dξ = 2A

nπ
[1 − cos(nπ)] = 2A

nπ
[1 − (−1)n].

u(x, t) = 2A

π

∞∑

n=1

1 − (−1)n

n
sen

(nπx

L

)
e−n2π2kt/L2

.

u(x, t) = 4A

π

∞∑

n=1

1

2n − 1
sen

(
(2n − 1)πx

L

)
e−(2n−1)2π2kt/L2

.

∣∣∣∣
1

2n − 1
sen

(
(2n − 1)πx

L

)
e−(2n−1)2π2kt/L2

∣∣∣∣ ≤ 1

2n − 1
e−(2n−1)2π2kt0/L

2
.

∞∑

n=1

1

2n − 1
e−(2n−1)2π2kt0/L

2
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6.2.2 Temperatura en una barra con extremos aislados

Consideramos la conducción de calor en una barra con extremos aislados, aquí no hay pérdida de energía 
por los extremos. Si la temperatura inicial es f (x), la función de temperatura está modelada por el proble-
ma con valores en la frontera

Intente una separación de las variables haciendo u(x, t) = X(x)T(t). Obtenga, como en la subsección 
anterior,

Ahora

implica (excepto en el caso trivial de temperatura cero) que X ′(0) = 0. Análogamente,

implica que X′(L) = 0. Por tanto, el problema para X(x) es

Los valores propios son

para n = 0, 1, 2, . . . , con funciones propias constantes distintas de cero múltiplos de

La ecuación para T es ahora

Cuando n = 0, obtiene

Para n = 1, 2, . . . ,

Ahora tiene funciones

para n = 0, 1, 2, . . . , cada una de las cuales satisface la ecuación de calor y las condiciones de aislamiento 
en la frontera. Para satisfacer la condición inicial, generalmente debe usar una superposición

6.2 Soluciones en serie de Fourier de la ecuación de calor

∂u

∂t
= k

∂2u

∂x2 para 0 < x < L, t > 0,

∂u

∂x
(0, t) = ∂u

∂x
(L, t) = 0 para t > 0,

u(x, 0) = f (x) para 0 ≤ x ≤ L.

X′′ + λX = 0, T ′ + λkT = 0.

∂u

∂x
(0, t) = X′(0)T (t) = 0

∂u

∂x
(L, t) = X′(L)T (t) = 0

X′′ + λX = 0; X′(0) = X′(L) = 0.

λn = n2π2

L2

Xn(x) = cos
(nπx

L

)
.

T ′ + n2π2k

L2 T = 0.

T0(t) = constante.

Tn(t) = cne
−n2π2kt/L2

.

s
un(x, t) = cn cos

(nπx

L

)
e−n2π2kt/L2

u(x, t) = 1

2
c0 +

∞∑

n=1

cn cos
(nπx

L

)
e−n2π2kt/L2

.
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Aquí escriba el término constante (n = 0) como c0 /2 como anticipación a un desarrollo en serie de Fourier 
en cosenos. Realmente necesita

(6.2)

el desarrollo en serie de Fourier en cosenos de f (x) en [0, L] (ésta también es el desarrollo de la función de 
temperatura inicial en la función propia de este problema). Elegimos, por tanto

Con esta elección de coefi cientes, la ecuación (6.2) da la solución a este problema con valores en la fron-
tera.

EJEMPLO 6.2

Suponga que la mitad izquierda de la barra inicialmente está a una temperatura A y la mitad derecha se 
mantiene a temperatura cero. Así

Entonces

y, para n = 1, 2, . . . ,

La solución para esta función de temperatura es

Ahora sen(nπ /2) es cero si n es par. Más aún, si n = 2k − 1 es impar, entonces sen(nπ /2) = (−1)k+1. Por 
tanto, la solución puede escribirse como

■

6.2.3 Distribución de temperatura en una barra con extremos que irradian

Considere una barra delgada, homogénea de longitud L, con el extremo izquierdo mantenido a temperatu-
ra cero, mientras que el extremo derecho irradia energía hacia el medio que la rodea, el cual se mantiene 

u(x, 0) = f (x) = 1

2
c0 +

∞∑

n=1

cn cos
(nπx

L

)
,

cn = 2

L

∫ L

0
f (ξ) cos

(
nπξ

L

)
dξ.

c0 = 2

L

∫ L/2

0
A dξ = A

cn = 2

L

∫ L/2

0
A cos

(
nπξ

L

)
dξ = 2A

nπ
sen

(nπ

2

)
.

u(x, t) = 1

2
A + 2A

π

∞∑

n=1

1

n
sen

(nπ

2

)
cos

(nπx

L

)
e−n2π2kt/L2

.

u(x, t) = 1

2
A + 2A

π

∞∑

n=1

(−1)n+1

2n − 1
cos

(
(2n − 1)πx

L

)
e−(2n−1)2π2kt/L2

.

f (x) =

⎧
⎪⎪⎨
⎪⎪⎩

A para 0 ≤ x ≤ L

2

0 para
L

2
< x ≤ L

.
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a temperatura cero. Si la temperatura inicial en la sección transversal de la barra en x es f (x), entonces la 
distribución de temperatura está modelada por el problema con valores en la frontera

La condición en la frontera en L supone que la energía calorífi ca se irradia desde este extremo a una 
razón proporcional a la temperatura en ese extremo de la barra. El número A es una constante positiva 
llamada el coefi ciente de transferencia.

Sea u(x, t) = X(x)T(t) y obtiene

Como u(0, t) = X(0)T(t) = 0, entonces

La condición en el extremo derecho de la barra implica que

así

El problema para X es, por tanto

Este es un problema regular de Sturm-Liouville, que resolvió en el ejemplo 4.12 para el caso A = 3 
y L = 1, con y(x) en lugar de X(x). Encontrará valores propios y funciones propias en este contexto más 
general siguiendo ese análisis. Consideramos casos sobre λ.

Caso 1 λ = 0
Entonces X(x) = cx + d. Como X(0) = d = 0, entonces X(x) = cx. Pero entonces

implica que c(1 + AL) = 0. Pero 1 + AL > 0, de donde c = 0 y este caso sólo tiene la solución trivial. Por 
tanto, 0 no es un valor propio de este problema.

Caso 2 λ < 0
Escriba λ = −α2 con α > 0. Entonces X ′′  − α2X = 0, con solución general

Ahora

así d = −c. Entonces X(x) = 2c senh(αx). Ahora,

Ahora αL > 0, así 2αc cosh(αL) > 0 y −2Ac senh(αL) < 0, de donde esta ecuación es imposible a menos 
que c = 0. Por tanto, este caso da solamente la solución trivial para X, de manera que este problema no 
tiene valor propio negativo.

6.2 Soluciones en serie de Fourier de la ecuación de calor

∂u

∂t
= k

∂2u

∂x2 para 0 < x < L, t > 0,

u(0, t) = 0,
∂u

∂x
(L, t) = −Au(L, t) para t > 0,

u(x, 0) = f (x) para 0 ≤ x ≤ L.

X′′ + λX = 0, T ′ + λkT = 0.

X(0) = 0.

X′(L) + AX(L) = 0.

X′′ + λX = 0, X(0) = 0, X′(L) + AX(L) = 0.

X′(L) = c = −AX(L) = −AcL

X(x) = ceαx + de−αx .

X′(L) = 2αc cosh(αL) = −AX(L) = −2Ac senh(αL).

X′(L) = −AX(L)T (t),

X(0) = c + d = 0
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Caso 3 λ > 0
Ahora escriba λ = α2 con α > 0. Ahora X ′′  + α2X = 0, de donde

Entonces

así X(x) = d sen(αx). Ahora,

Entonces d = 0 o

Es posible, por tanto, tener una solución no trivial para X si se elige α que satisfaga esta ecuación. Sea 
z = αL para escribir esta condición como

La fi gura 6.2 muestra las gráfi cas de y = tan(z) y y = −z /AL en el plano z, y (con z como el eje horizon-
tal). Estas gráfi cas tienen un número infi nito de puntos de intersección a la derecha del eje vertical. Llame 
z1, z2, . . . , a la coordenada z de estos puntos de intersección, escritos en orden creciente. Como α = z /L, 
entonces

son los valores propios de este problema, para n = 1, 2, . . . Las funciones propias son múltiplos constantes 
distintos de cero de sen(αnx) o sen(znx/L).

Los valores propios aquí son obtenidos como soluciones de una ecuación trascendente que no es 
posible resolver con toda exactitud. Sin embargo, de la fi gura 6.2 es claro que existe un número infi nito de 
valores propios positivos, y éstos pueden ser aproximados tanto como quiera por técnicas numéricas.

Ahora la ecuación para T es

con solución general

z

y

z1 z2 z3

�

2
3�

2
5�

2

y � tan(z)

y � �
z

AL

FIGURA 5.2 Los valores propios del
problema para una barra con un extremo
que irradia.

FIGURA 6.2 Los valores propios del 
problema para una barra con un extremo 
que irradia.

X(x) = c cos(αx) + d sen(αx).

X(0) = c = 0,

X′(L) = dα cos(αL) = −AX(L) = −Ad sen(αL).

tan(αL) = − α

A
.

tan(z) = − 1

AL
z.

λn = α2
n = z2

n

L2

T ′ + z2
nk

L2 T = 0

Tn(t) = cne
−z2

nkt/L2
.
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Para cada entero positivo n, sea

Cada una de estas funciones satisface la ecuación de calor y las condiciones en la frontera. Para satisfacer 
la condición inicial, generalmente debe emplear una superposición

y elegir las cn de manera que

Ésta no es una serie de Fourier en senos. Es, sin embargo, un desarrollo de la función de temperatura ini-
cial en funciones propias del problema de Sturm-Liouville para X. De la sección 4.3.3, elija

La solución es

Si busca calcular valores numéricos de la temperatura en diferentes puntos y tiempos, debe hacer 
aproximaciones. Como ejemplo, suponga A = L = 1 y f (x) = 1 para 0 < x < 1. Use el método de Newton 
para resolver aproximadamente tan(z) = −z obteniendo

z1 ≈ 2.0288, z2 ≈ 4.9132, z3 ≈ 7.9787, z4 ≈ 11.0855.

Usando estos valores, realice las integraciones numéricas para obtener

c1 ≈ 1.9207, c2 ≈ 2.6593, c3 ≈ 4.1457, c4 ≈ 5.6329.

Usando solamente los primeros cuatro términos, tiene la aproximación

Dependiendo de la magnitud de k, estas exponenciales pueden decaer tan rápido que estos pocos primeros 
términos serán sufi cientes para algunas aplicaciones.

6.2.4  Transformaciones de los problemas con valores en la frontera 
que involucran la ecuación de calor

Dependiendo de la ecuación diferencial parcial y de las condiciones en la frontera puede ser imposible 
separar las variables en un problema con valores en la frontera que involucra la ecuación de calor. Aquí 
hay dos ejemplos de estrategias que funcionan para algunos problemas.

6.2 Soluciones en serie de Fourier de la ecuación de calor

,

un(x, t) = Xn(x)Tn(t) = cn sen
(znx

L

)
e−z2

nkt/L2
.

u(x, t) =
∞∑

n=1

cn sen
(znx

L

)
e−z2

nkt/L2

u(x, 0) =
∞∑

n=1

cn sen
(znx

L

)
= f (x).

cn =
∫ L

0 f (ξ) sen(znξ/L) dξ
∫ L

0 sen2(znξ/L) dξ
.

u(x, t) =
∞∑

n=1

(∫ L

0 f (ξ) sen(znξ/L) dξ
∫ L

0 sen2(znξ/L) dξ

)
sen

(znx

L

)
e−z2

nkt/L2
.

u(x, t) ≈ 1.9027 sen(2.0288x)e−4.1160kt + 2.6593 sen(4.9132x)e−24.1395kt

+ 4.1457 sen(7.9787x)e−63.6597kt + 5.6329 sen(11.0855x)e−122.8883kt .
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Condiciones de calor en una barra con extremos a temperaturas diferentes

Considere una barra delgada, homogénea que se extiende de x = 0 a x = L. El extremo izquierdo se man-
tiene a una temperatura constante T1, y el extremo derecho a una temperatura constante T2. La temperatura 
inicial en toda la barra en la sección transversal en x es f (x).

El problema con valores en la frontera que modela esta situación es

Suponga que T1 y T2 no son ambos cero.
Intente una separación de las variables haciendo u(x, t) = X(x)T(t) en la ecuación de calor para obtener

Las variables han sido separadas. Sin embargo, debe satisfacer

Si T1 = 0, esta ecuación se satisface haciendo X(0) = 0. Pero si T1 � 0, entonces T(t) = T1/X(0) = 
constante. Análogamente, u(L, t) = X(L)T(t) = T2, así T(t) = T2/X(L) = constante. Estas condiciones son 
imposibles de satisfacer excepto en los casos triviales (tales que f (x) = 0 y T1 = T2 = 0).

Perturbará la función de distribución de temperatura con la idea de obtener un problema más mane-
jable para la función perturbada. Ponga

Sustituya esto en la ecuación de calor para obtener

Ésta es la ecuación de calor estándar si elige ψ de manera que

Esto signifi ca que ψ debe tener la forma

Ahora

se convierte en la condición más amigable U(0, t) = 0 si ψ(0) = T1. Así elige

d = T1.

Hasta aquí, ψ(x) = cx + T1. Ahora,

llega a ser U(L, t) = 0 si ψ(L) = cL + T1 = T2, de manera que elige

∂u

∂t
= k

∂2u

∂x2 para 0 < x < L, t > 0,

u(0, t) = T1, u(L, t) = T2 para t > 0,

u(x, 0) = f (x) para 0 ≤ x ≤ L.

X′′ + λX = 0, T ′ + λkT = 0.

u(x, t) = U(x, t) + ψ(x).

∂U

∂t
= k

(
∂2U

∂x2 + ψ ′′(x)

)
.

ψ ′′(x) = 0.

ψ(x) = cx + d.

u(0, t) = T1 = U(0, t) + ψ(0)

u(L, t) = T2 = U(L, t) + ψ(L)

c = 1

L
(T2 − T1) .

u(0, t) = X(0)T (t) = T1.
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ψ(x) = 1

L
(T2 − T1)x + T1.

u(x, 0) = f (x) = U(x, 0) + ψ(x)

U(x, 0) = f (x) − ψ(x).

∂U

∂t
= k

∂2U

∂x2 ,

U(0, t) = U(L, t) = 0,

U(x, 0) = f (x) − 1

L
(T2 − T1)x − T1.

∫ L

0

(
f (ξ) − 1

L
(T2 − T1)ξ − T1

)
sen

(
nπξ

L

)
dξ =

∫ L

0

(
1

2
− 1

L
ξ

)
sen

(
nπξ

L

)
dξ

= 1

2
L

1 + (−1)n

nπ
.

u(x, t) =
∞∑

n=1

(
1 + (−1)n

nπ

)
sen

(nπx

L

)
e−n2π2kt/L2 + 1

L
x + 1.

6.2 Soluciones en serie de Fourier de la ecuación de calor

u(x, t) = U(x, t) + 1

L
(T2 − T1)x + T1.

U(x, t) = 2

L

∞∑

n=1

(∫ L

0

[
f (ξ) − 1

L
(T2 − T1)ξ − T1

]
sen

(
nπξ

L

)
dξ

)
sen

(nπx

L

)
e−n2π2kt/L2

.

Entonces sea

Finalmente,

se convierte en la siguiente condición inicial para U:

Ahora tiene el problema con valores en la frontera para U:

Conoce la solución de este problema (ecuación 6.1) y puede escribir inmediatamente

Una vez que obtiene U(x, t), la solución del problema original es

Físicamente puede ver esta solución como una descomposición de la distribución de temperatura en 
una parte transitoria y una parte de estado estacionario. La parte transitoria es U(x, t), que decae a cero 
conforme t crece. El otro término, ψ(x), es igual al límt→∞ u(x, t) y es la parte del estado estacionario. 
Esta parte es independiente del tiempo, representa el valor límite al cual la temperatura se acerca en un 
lapso largo.

Tal descomposición se presenta en muchos sistemas físicos. Por ejemplo, en un circuito eléctrico típi-
co la corriente puede ser escrita como la parte transitoria, la cual decae a cero conforme el tiempo crece, 
y la parte de estado estacionario que es el límite de la función conforme t → ∞.

EJEMPLO 6.3

Suponga, en la discusión anterior, T1 = 1, T2 = 2, y f (x) = 32 para 0 < x < L. Calcule

La solución en este caso es

■
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6.2.5 Una ecuación de calor no homogénea

En esta sección se considera un problema de conducción de calor no homogéneo en un intervalo fi nito:

El término F(x, t) podría representar, por ejemplo, una fuente de calor dentro del medio. Es fácil veri-
fi car que la separación de variables no funciona para esta ecuación de calor. Para intentar otro método, 
regrese al caso más simple donde F(x, t) = 0. En este evento encuentre una solución

en donde bn es el n-ésimo coefi ciente en el desarrollo de Fourier en senos de f (x) en [0, L]. Tomando esto 
como sugerencia, intente una solución del problema de corriente de la forma

(6.3)

El problema es determinar cada Tn(t). La estrategia para lograrlo es obtener una ecuación diferencial para 
Tn(t).

Si t es fi jo, entonces el lado izquierdo de la ecuación (6.3) es una función de x únicamente, y el lado 
derecho es su desarrollo de Fourier en senos en [0, L]. Conoce los coefi cientes en este desarrollo, así

(6.4)

Ahora suponga que para cualquier elección de t ≥ 0, F(x, t), considerada como una función de x, también 
puede desarrollarse en una serie de Fourier en senos en [0, L]:

(6.5)

donde

(6.6)

Este coefi ciente por supuesto puede depender de t.
Diferencie la ecuación (6.4) para obtener

(6.7)

Sustituya ∂u/∂t en la ecuación de calor para obtener

En vista de la ecuación (6.5), esta ecuación se vuelve

(6.8)

∂u

∂t
= k

∂2u

∂x2 + F(x, t) para 0 < x < L, t > 0,

u(0, t) = u(L, t) = 0 para t ≥ 0,

u(x, 0) = f (x) para 0 ≤ x ≤ L.

u(x, t) =
∞∑

n=1

bn sen
(nπx

L

)
e−n2π2kt/L2

,

u(x, t) =
∞∑

n=1

Tn(t) sen
(nπx

L

)
.

Tn(t) = 2

L

∫ L

0
u(ξ, t) sen

(
nπξ

L

)
dξ.

F (x, t) =
∞∑

n=1

Bn(t) sen
(nπx

L

)
,

Bn(t) = 2

L

∫ L

0
F(ξ, t) sen

(
nπξ

L

)
dξ.

T ′
n(t) = 2

L

∫ L

0

∂u

∂t
(ξ, t) sen

(
nπξ

L

)
dξ.

T ′
n(t) = 2k

L

∫ L

0

∂2u

∂x2 (ξ, t) sen

(
nπξ

L

)
dξ + 2

L

∫ L

0
F(ξ, t) sen

(
nπξ

L

)
dξ.

T ′
n(t) = 2k

L

∫ L

0

∂2u

∂x2
(ξ, t) sen

(
nπξ

L

)
dξ + Bn(t).
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Ahora, aplicando dos veces integración por partes en la integral del lado derecho de la ecuación (6.8), 
y utilizando al fi nal las condiciones en la frontera y la ecuación (6.4):

Sustituya en la ecuación (6.8) para obtener

Para n = 1, 2, . . . , ahora tiene una ecuación diferencial ordinaria de primer orden para Tn(t):

Ahora, use la ecuación (6.4) para obtener la condición

el n-ésimo coefi ciente en el desarrollo de Fourier en senos de f (x) en [0, L]. Resuelva la ecuación diferen-
cial para Tn(t) sujeta a esta condición para tener

Finalmente, sustituya en la ecuación (6.3) para obtener la solución

(6.9)

Observe que el último término es la solución del problema si no hay el término F(x, t), mientras que el 
primer término es el efecto del término de la fuente en la solución.

∫ L

0

∂2u

∂x2 (ξ, t) sen

(
nπξ

L

)
dξ =

[
∂u

∂x
(ξ, t) sen

(
nπξ

L

)]L

0
−

∫ L

0

nπ

L

∂u

∂x
(ξ, t) cos

(
nπξ

L

)
dξ

= − nπ

L

∫ L

0

∂u

∂x
(ξ, t) cos

(
nπξ

L

)
dξ

= − nπ

L

[
u(ξ, t) cos

(
nπξ

L

)]L

0

+ nπ

L

∫ L

0
−nπ

L
u(ξ, t) sen

(
nπξ

L

)
dξ

= − n2π2

L2

∫ L

0
u(ξ, t) sen

(
nπξ

L

)
dξ

= − n2π2

L2

L

2
Tn(t) = −n2π2

2L
Tn(t).

T ′
n(t) = −n2π2k

L2 Tn(t) + Bn(t).

T ′
n(t) + n2π2k

L2 Tn(t) = Bn(t).

Tn(0) = 2

L

∫ L

0
u(ξ, 0) sen

(
nπξ

L

)
dξ = 2

L

∫ L

0
f (ξ) sen

(
nπξ

L

)
dξ = bn,

Tn(t) =
∫ t

0
e−n2π2k(t−τ)/L2

Bn(τ ) dτ + bne
−n2π2kt/L2

.

u(x, t) =
∞∑

n=1

(∫ t

0
e−n2π2k(t−τ)/L2

Bn(τ ) dτ

)
sen

(nπx

L

)

+ 2

L

∞∑

n=1

(∫ L

0
f (ξ) sen

(
nπξ

L

)
dξ

)
sen

(nπx

L

)
e−n2π2kt/L2

.

6.2 Soluciones en serie de Fourier de la ecuación de calor
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EJEMPLO 6.4

Resuelva el problema

Como tiene una fórmula para la solución, sólo necesita llevar a cabo las integraciones requeridas. 
Primero calcule

Ahora evalúe

Finalmente, necesita

Ahora puede escribir la solución

El segundo término en la derecha es la solución del problema sin el término xt en la ecuación de calor. 
Denote esta solución “sin fuente” como

La solución con el término de la fuente es

Para medir el efecto en la solución del término xt en la ecuación de calor, las fi guras 6.3(a) a (d) muestran 
las gráfi cas de u(x, t) y u0(x, t) en los tiempos t = 0.3, 0.8, 1.2, y 1.32. Ambas soluciones tienden a cero 
bastante rápidamente conforme el tiempo crece. Esto se muestra en la fi gura 6.4, la cual indica la evolu-
ción de u0(x, t) en esos tiempos, y la fi gura 6.5, que sigue u(x, t). El efecto del término xt es retardar este 
decaimiento. Por supuesto, otros términos F(x, t) podrían tener distintos efectos. ■

∂u

∂t
= 4

∂2u

∂x2
+ xt para 0 < x < π, t > 0,

u(0, t) = u(π, t) = 0 para t ≥ 0,

u(x, 0) = f (x) =

⎧
⎪⎨
⎪⎩

20 para 0 ≤ x ≤ π

4

0 para
π

4
< x ≤ π

.

Bn(t) = 2

π

∫ π

0
ξ t sen (nξ) dξ = 2

(−1)n+1

n
t.

∫ t

0
e−4n2(t−τ)Bn(τ ) dτ =

∫ t

0
2
(−1)n+1

n
τe−4n2(t−τ) dτ

= 1

8
(−1)n+1 −1 + 4n2t + e−4n2t

n5
.

bn = 2

π

∫ π

0
f (ξ) sen (nξ) dξ = 40

π

∫ π/4

0
sen(nξ) dξ = 40

π

1 − cos(nπ/4)

n
.

u(x, t) =
∞∑

n=1

(
1

8
(−1)n+1 −1 + 4n2t + e−4n2t

n5

)
sen (nx)

+
∞∑

n=1

40

π

1 − cos(nπ/4)

n
sen(nx)e−4n2t .

u0(x, t) =
∞∑

n=1

40

π

1 − cos(nπ/4)

n
sen(nx)e−4n2t .

u(x, t) = u0(x, t) +
∞∑

n=1

(
1

8
(−1)n+1 −1 + 4n2t + e−4n2t

n5

)
sen (nx) .
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6.2.6  Efectos de las condiciones en la frontera y las constantes en la conducción de calor

Ha resuelto varios problemas que involucran la conducción de calor en una barra delgada homogénea de 
longitud fi nita. Como sucedió con el movimiento de onda en un intervalo, el poder del cómputo permite 
examinar los efectos de varias constantes o términos que aparecen en estos problemas en el comporta-
miento de las soluciones.

0

0.2

0.4

0.6

0.8
sin

fuente

1.0

1.2

0.5 1.0 1.5 2.0 2.5 3.0
x

u

0

0.1

0.2

0.3

0.4

0.5 1.0 1.5

sin fuente

2.0 2.5 3.0
x

u

FIGURA 6.3(a) Comparación de las soluciones 
con y sin un término fuente para t = 0.3.

FIGURA 6.3(b) t = 0.8.

0
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0.5 1.0 1.5 2.0
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2.5 3.0
x

u

0

0.1

0.2

0.3

0.4

0.5

0.5 1.0 1.5 2.0 2.5 3.0
x

u

sin fuente

FIGURA 6.3(c) t = 1.2. FIGURA 6.3(d) t = 1.32.
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0.8

1.0

0.5 1.0 1.5

t � 0.3

t � 0.8
t � 1.2t � 1.32
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0
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FIGURA 6.4 u0(x, t) en los tiempos t = 0.3, 0.8, 
1.2 y 1.32.

FIGURA 6.5 u(x, t) en los tiempos t = 0.3, 0.8, 1.2 
y 1.32.
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EJEMPLO 6.5

Considere una barra delgada de longitud π, cuya temperatura inicial está dada por f (x) = x2 cos(x/2). 
Suponga que los extremos de la barra se mantienen a temperatura cero. La función temperatura satisface

La solución es

Puede examinar los efectos de la constante de difusividad k en esta solución dibujando las gráfi cas de y = 
u(x, t) para varios tiempos, con elecciones distintas de esta constante. La fi gura 6.6(a) muestra las distribu-
ciones de temperatura en el tiempo t = 0.2, para k tomando los valores 0.3, 0.6, 1.1 y 2.7. La fi gura 6.6(b) 
muestra las distribuciones de temperatura en el tiempo t = 1.2 para estos valores de k. ■

EJEMPLO 6.6

¿Qué diferencia hay en la distribución de temperatura, si los extremos están aislados o se mantienen a 
temperatura cero? Considere una función de temperatura inicial f (x) = x2(π − x), con una barra de longi-
tud π. Sea la difusividad k = 1

4. La solución, si los extremos se mantienen a temperatura cero es

∂u

∂t
= k

∂2u

∂x2 para 0 < x < π, t > 0,

u(0, t) = u(π, t) = 0 para t > 0,

u(x, 0) = x2 cos(x/2) para 0 ≤ x ≤ π.

u(x, t) = 2

π

∞∑

n=1

(∫ π

0
ξ2 cos

(
ξ

2

)
sen (nξ) dξ

)
sen(nx)e−n2kt

= 4

π

∞∑

n=1

(
16πn (−1)n − 64πn3 (−1)n − 48n − 64n3

64n6 − 48n4 + 12n2 − 1

)
sen(nx)e−n2kt .
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FIGURA 6.6(b) Solución en el tiempo t = 1.2 con k = 
0.3, 0.6, 1.1 y 2.7.

FIGURA 6.6(a) Solución en el tiempo t = 0.2 
con k = 0.3, 0.6, 1.1 y 2.7.

u1(x, t) =
∞∑

n=1

(
8 (−1)n+1 − 4

n3

)
sen(nx)e−n2t/4
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La solución si los extremos están aislados es

La fi guras 6.7(a) a (d) comparan estas dos soluciones para valores diferentes del tiempo. La fi gura 6.8(a) 
muestra la evolución de la solución con temperaturas cero en los extremos en diferentes tiempos, y la 
fi gura 6.8(b) muestra esta evolución para la solución con extremos aislados. ■

6.2.7 Aproximación numérica de soluciones

Considere el problema de condución de calor estándar

Una estrategia para calcular una aproximación numérica de la solución es comenzar formando una cua-
drícula sobre la banda x, t, 0 ≤ x ≤ L, t ≥ 0, como se hizo con la ecuación de onda en un intervalo 
acotado.

u2(x, t) = 1

12
π3 +

∞∑

n=1

(
n2π2(−1)n+1 + 6(−1)n − 6

n4

)
cos(nx)e−n2t/4.


u


t
= k


2u


x2
for 0< x < L� t > 0�

u�0� t�= u�L� t�= 0 for t ≥ 0�

u�x�0�= f�x� for 0 ≤ x ≤ L�

para

para

para
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FIGURA 6.7(a) Comparación de la solución 
con extremos aislados, con la solución 
teniendo extremos mantenidos a temperatura 
cero, en el tiempo t = 0.4.

FIGURA 6.7(b) t = 0.9.

FIGURA 6.7(d) t = 3.6.FIGURA 6.7(c) t = 1.5.
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6.2 Soluciones en serie de Fourier de la ecuación de calor
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Elija 
x = L/N, donde N es un entero positivo, y sea xj
 = j
x para j = 0, 1, . . . , N. Asimismo, elija 
t 

positiva. Esto defi ne los puntos de retícula (xj, tk) = (j
x, k
t). Denote u(j
x, k
t) = uij.
Use las aproximaciones por diferencias centradas para las derivadas a fi n de reemplazar la ecuación 

de calor con:

En la ecuación de calor, la derivada parcial en t es de primer orden, así que esta ecuación usa la aproxima-
ción para ∂u/∂t a la izquierda. Resuelva la ecuación para uj,k+1:

Esto permite aproximar los valores solución en los puntos de retícula en el nivel horizontal k + 1 a partir de 
la información en el siguiente nivel inferior, donde ya se han realizado las aproximaciones (fi gura 6.9).

Puesto que está subiendo las capas de puntos de retícula, completando las aproximaciones en cada 
capa desde la capa inferior, debe haber una capa inicial en la que ya se tiene información. Los datos para 
una capa inicial son proporcionados por las condiciones iniciales y de frontera.

(x j, tk+1)

(x j+1, tk)(x j–1, tk) (x j, tk)

x j–1 x j x j+1

tk+1

x

t

tk

FIGURA 6.9 La aproximación de 
u(x, tk+1) se basa en valores aproximados 
en tres puntos en la capa tk.

FIGURA 6.8(b) Evolución de la solución con 
extremos aislados.

FIGURA 6.8(a) Evolución con tiempo 
de la solución con extremos mantenidos a 
temperatura cero.
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=
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(valores en los puntos de retícula en los lados izquierdo y derecho de la banda), y

Estos valores se indican en la fi gura 6.10.

La cantidad k(
t)/(
x)2 debe ser menor que 1/2 para asegurar la estabilidad del método.

EJEMPLO 6.7

Considere el problema

Tiene solución exacta

Para hacer aproximaciones numéricas, se elegirá 
x = 0.1 (N = 10) y 
t = 0.0025. En este ejemplo, 
k = 1 de modo que k(
t)/(
x)2 = 1/4 < 1/2. Se sabe que

Además

Esto inicia la aproximación. Estos valores se completan en los puntos de retícula de nivel mínimo (t = 0) 
de la fi gura 6.11.

Para pasar de una capa horizontal a la siguiente (de acuerdo con la idea de la fi gura 6.9), use

De aquí se va al nivel k = 1 (t = 0.0025), y se obtienen los valores mostrados en la fi gura 6.12. La 
fi gura 6.13 muestra el siguiente nivel, k = 2 o t = 0.005. Y en la fi gura 6.14 se muestra el nivel k = 3 o 
t = 0.0075. Procediendo de esta manera, puede completar los valores aproximados en los puntos de 
retícula en cualquier nivel vertical de la retícula. ■

u � 0

u � 0

u � 0

u � 0

u � 0

u � 0

u � 0

t

x

tk

t2

t1

xj

uj,0 � f ( j∆  x)

uL,0 � f ( L∆  x)

u2,0 � f (2∆  x)u1,0 � f (∆  x)

u0,0 � f (0)

FIGURA 6.10 Los datos de frontera dan valores de u(x, t) en 
los puntos de retícula en la frontera de la banda.

u
0�k = u

10�k = 0�

uj�0 = f�j	x�= j�0�1��1− j�0�1���

uj�k+1
= 0�25�uj+1�k−2uj�k+uj−1�k�+uj�k�

uj�0 = f�xj�= f�j	x��


u


t
=


2u


x2
for 0< x < 1� t > 0�

u�0� t�= u�1� t�= 0�

u�x�0�= x�1−x� for 0< x < 1�

para

para

u�x� t�=
8

�3

�
∑

n=1

1

�2n−1�3
��2n−1��x�e−�2n−1�2�2t�sen

6.2 Soluciones en serie de Fourier de la ecuación de calor
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0
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t x � L

uL, k
u0, k

uj, 0

x
0.09 0.16 0.21 0.24 0.25 0.24 0.21 0.16 0.09 0

FIGURE 18.11 Values of uj�0� u0�k and u1�k are known at lattice boundary points.
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t1 � 0.0025
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FIGURE 18.12 Approximate values at the t1 = 0�0025 level computed from known

values at the t0 = 0 level.
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FIGURE 18.13 Approximate values at the t2 = 0�005 level computed from

approximate values at the t1 = 0�0025 level.
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FIGURE 18.14 Approximate values of the solution u�x� t� at successive t-levels.

FIGURA 6.11 Los valores de uj,0, u0,k y u1, k se conocen en los puntos frontera de la 
retícula.

FIGURA 6.12 Valores aproximados en el nivel t1 = 0.0025 calculados de valores 
conocidos en el nivel t0 = 0.

FIGURA 6.13 Valores aproximados en el nivel t2 = 0.005 calculados de valores 
aproximados en el nivel t1 = 0.0025.

FIGURA 6.14 Valores aproximados de la solución u(x, t) en niveles sucesivos t.
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En los problemas del 1 al 7, escriba una solución del problema 
con valores en la frontera. Dibuje la gráfi ca de la vigésima suma 
parcial de la función de distribución de temperatura en el mismo 
conjunto de ejes para diferentes valores del tiempo.

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8.  Una barra delgada homogénea de longitud L tiene extremos 
aislados y temperatura inicial B, una constante positiva. 
Encuentre la distribución de temperatura en la barra.

9.  Una barra delgada homogénea de longitud L tiene tempe-
ratura inicial igual a la constante B, y el extremo derecho 
(x = L) está aislado, mientras el extremo izquierdo se man-
tiene a temperatura cero. Encuentre la distribución de tem-
peratura en la barra.

10.  Una barra delgada homogénea de difusividad térmica 9 y 
longitud 2 cm y lados aislados tiene su extremo izquierdo 
mantenido a temperatura cero, mientras su extremo derecho 
está perfectamente aislado. La barra tiene una temperatura 
inicial f (x) = x2 para 0 ≤ x ≤ 2. Determine la distribución 
de temperatura en la barra. ¿Qué es límt→∞ u(x, t)?

11. Pruebe que la ecuación diferencial parcial

  puede ser transformada en una ecuación de calor estándar 
eligiendo apropiadamente α y β y haciendo u(x, t) = eαx+βt 
v(x, t).

12. Use la idea del problema 11 para resolver

13. Use la idea del problema 11 para resolver

  Dibuje la gráfi ca de la vigésima suma parcial de la solución 
para tiempos seleccionados.

14. Use la idea del problema 11 para resolver

  Dibuje la gráfi ca de la vigésima suma parcial de la solución 
para tiempos seleccionados.

SECCIÓN 6.2 PROBLEMAS

∂u

∂t
= k

∂2u

∂x2
para 0 < x < L, t > 0

u(0, t) = u(L, t) = 0 para t ≥ 0

u(x, 0) = x(L − x) para 0 ≤ x ≤ L

∂u

∂t
= 4

∂2u

∂x2
para 0 < x < L, t > 0

u(0, t) = u(L, t) = 0 para t ≥ 0

u(x, 0) = x2(L − x) para 0 ≤ x ≤ L

∂u

∂t
= 3

∂2u

∂x2
para 0 < x < L, t > 0

u(0, t) = u(L, t) = 0 para t ≥ 0

u(x, 0) = L

[
1 − cos

(
2πx

L

)]
para 0 ≤ x ≤ L

∂u

∂t
= ∂2u

∂x2
para 0 < x < π, t > 0

∂u

∂x
(0, t) = ∂u

∂x
(π, t) = 0 para t ≥ 0

u(x, 0) = sen(x) para 0 ≤ x ≤ π

∂u

∂t
= 4

∂2u

∂x2
para 0 < x < 2π, t > 0

∂u

∂x
(0, t) = ∂u

∂x
(2π, t) = 0 para t ≥ 0

u(x, 0) = x(2π − x) para 0 ≤ x ≤ 2π

∂u

∂t
= 4

∂2u

∂x2
para 0 < x < 3, t > 0

∂u

∂x
(0, t) = ∂u

∂x
(3, t) = 0 para t ≥ 0

∂u

∂t
= 2

∂2u

∂x2
para 0 < x < 6, t > 0

∂u

∂x
(0, t) = ∂u

∂x
(6, t) = 0 para t ≥ 0

u(x, 0) = e−x para 0 ≤ x ≤ 6

∂u

∂t
= k

(
∂2u

∂x2
+ A

∂u

∂x
+ Bu

)

∂u

∂t
=

(
∂2u

∂x2
+ 4

∂u

∂x
+ 2u

)
para 0 < x < π, t > 0

u(0, t) = u(π, t) = 0 para t ≥ 0

u(x, 0) = x(π − x) para 0 ≤ x ≤ π.

para 0 ≤ x ≤ 4.

∂u

∂t
=

(
∂2u

∂x2
− 6

∂u

∂x

)
para 0 < x < π, t > 0

u(0, t) = u(π, t) = 0 para t ≥ 0

u(x, 0) = x2(π − x) para 0 ≤ x ≤ π.

6.2 Soluciones en serie de Fourier de la ecuación de calor

u(x, 0) = 1

∂u

∂t
=

(
∂2u

∂x2
+ 6

∂u

∂x

)
para 0 < x < 4, t > 0

u(0, t) = u(4, t) = 0 para t ≥ 0

para 0 ≤ x ≤ 4.
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15. Resuelva

  Dibuje la gráfi ca de la vigésima suma parcial de la solución 
para tiempos seleccionados.

16. Resuelva

17. Resuelva

 Aquí A es una constante positiva.

   Elija A = 1
4
 y grafi que la vigésima suma parcial de 

la solución para una selección de tiempos, con el mismo 
conjunto de ejes. Repita esto para los valores A = 1

2
, A = 1 y 

A = 3. Esto da cierto sentido del efecto del término −Au en 
la ecuación de calor en el comportamiento de la distribu-
ción de temperatura.

18. 

  En cada uno de los problemas del 19 al 23, resuelva el pro-
blema

  para la F, k, L y f dadas. En cada uno, elija un valor del 
tiempo y en el mismo conjunto de ejes, dibujar la gráfi ca de 
la vigésima suma parcial de la solución del problema dado, 
junto con la vigésima suma parcial de la solución del pro-
blema sin el término fuente F(x, t). Repita esto para otros 
tiempos. Esto sirve para entender la importancia de F(x, t) 
en el comportamiento de la distribución de la temperatura.

19. k = 4, F(x, t) = t, f (x) = x(π − x), L = π

20. k = 1, F(x, t) = x sen(t ), f (x) = 1, L = 4

21. k = 1, F(x, t) = t cos(x), f (x) = x2(5 − x), L = 5

22. 

23. k = 16, F(x, t) = xt, f (x) = K, L = 3

24.  Enuncie una defi nición de dependencia continua de la solu-
ción en los datos iniciales para el problema.

  Demuestre que este problema depende continuamente de 
los datos iniciales.

25. Encuentre los valores solución aproximados del problema

  Use 
x = 0.1 y 
t = 0.0025. Realice los cálculos para las 
primeras cuatro capas horizontales, incluso la capa t = 0.

26. Encuentre los valores solución aproximados del problema

  Use 
x = 0.2 y 
x = 0.0025. Realice los cálculos para las 
primeras cuatro capas horizontales, incluso la capa t = 0.

27. Encuentre los valores solución aproximados para el problema

  Use 
x = 0.1 y 
t = 0.0025. Realice los cálculos para las 
primeras cuatro capas horizontales, incluso la capa t = 0.

∂u

∂t
= k

∂2u

∂x2
para 0 < x < L, t > 0

u(0, t) = T , u(L, t) = 0 para t ≥ 0

u(x, 0) = x(L − x) para 0 ≤ x ≤ L.


u


t
= 4


2u


x2
−Au for 0< x < 9� t > 0

u�0� t�= u�9� t�= 0 for t ≥ 0

u�x�0�= 0 for 0 ≤ x ≤ 9�

para

para

para


u


t
= 9


2u


x2
for 0< x < L� t > 0

u�0� t�= T�u�L� t�= 0 for t ≥ 0

u�x�0�= 0 for 0 ≤ x ≤ 2��

para

para

para

∂u

∂t
= k

∂2u

∂x2
+ F(x, t) para 0 < x < L, t > 0,

u(0, t) = u(L, t) = 0 para t ≥ 0,

u(x, 0) = f (x) para 0 ≤ x ≤ L

k = 4, F (x, t) =
{

K para 0 ≤ x ≤ 1

0 para 1 < x ≤ 2

f (x) = sen(πx/2), L = 2


y


t
= k


2y


x2
for 0< x < L� t > 0

u�0� t�= u�L� t�= 0 for t > 0

u�x�0�= f�x� for 0< x < L�

para

para

para


u


t
=


2u


x2
for 0< x < 1� t > 0�

u�0� t�= u�1� t�= 0 for t ≥ 0�

u�x�0�= x2�1−x� for 0 ≤ x ≤ 1�

para

para

para


u


t
=


2u


x2
for 0< x < 2� t > 0�

u�0� t�= u�1� t�= 0 for t ≥ 0�

para

para

parasen

u�0� t�= u�1� t�= 0 for t ≥ 0�

para

para

para

u(x, 0) = x2 para 0 ≤ x ≤ 1.

∂u

∂t
= 16

∂2u

∂x2
para 0 < x < 1, t > 0

u(0, t) = 2, u(1, t) = 5 para t ≥ 0

�x
/2

0< x < 1� t > 0�

0 ≤ x ≤ 1��


u


t
=


2u


x2

u�x�0�= x cos��

u�x�0�= 0 ≤ x ≤ 2��x
/2

��
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6.3 Conducción de calor en un medio infi nito

Considere ahora problemas que involucran la ecuación de calor con la variable espacial extendiéndose 
sobre toda la recta real o la semirecta.

6.3.1 Conducción de calor en una barra infi nita

Para una situación en donde la longitud del medio es mucho más grande que las otras dimensiones, algu-
nas veces es conveniente modelar la conducción de calor imaginando que la variable espacial se mueva 
sobre toda la recta real. Considere el problema

No hay condiciones en la frontera, de manera que imponga las condiciones físicamente realistas que las 
soluciones deben ser acotadas.

Separe las variables haciendo u(x, t) = X(x)T(t) para obtener

El problema para X es el mismo al encontrado con la ecuación de onda en una recta, y el mismo análi-
sis produce los valores propios λ = ω2 para ω ≥ 0 y las funciones propias de la forma aω cos(ωx) + bω 
sen(ωx).

El problema para T es T ′ +ω2kT = 0, con solución general de−ω2kt , que está acotada para t ≥ 0.
Ahora tiene, para ω ≥ 0, funciones

que satisfacen la ecuación de calor y están acotadas en la recta real. Para satisfacer la condición inicial, 
intente una superposición de estas funciones sobre todo ω ≥ 0, que toma la forma de una integral:

(6.10)

Necesita

Esta es la integral de Fourier de f (x) en la recta real, que lleva a elegir los coefi cientes

y

EJEMPLO 6.8

Suponga que la función de temperatura inicial es f (x) = e−|x|. Calcule los coefi cientes

∂u

∂t
= k

∂2u

∂x2 para −∞ < x < ∞, t > 0,

u(x, 0) = f (x) para −∞ < x < ∞.

u(x, t) =
∫ ∞

0
[aω cos(ωx) + bω sen(ωx)] e−ω2kt dω.

u(x, 0) =
∫ ∞

0
[aω cos(ω

aω = 1

π

∫ ∞

−∞
f (ξ) cos(ωξ) dξ

bω = 1

π

∫ ∞

−∞
f (ξ) sen(ωξ) dξ.

aω = 1

π

∫ ∞

−∞
e−|ξ | cos(ωξ) dξ = 2

π

1

1 + ω2

6.3 Conducción de calor en un medio infi nito

X′′ + λX = 0, T ′ + λkT = 0.

uω(x, t) = [aω cos( ω) + bω sen(ωx)] e−ω2ktωx

ωx) + bω sen(ωx)] dω = f (x).
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y

La solución para esta distribución de temperatura inicial es

■

La integral (6.10) para la solución algunas veces se escribe en forma más compacta, recordando los 
cálculos en la sección 5.3.1 para las soluciones de la integral de Fourier de la ecuación de onda en toda la 
recta real. Sustituya las integrales para los coefi cientes en la integral para la solución para escribir

Una sola expresión integral para la solución en la recta real Considere nuevamente el problema

Ha resuelto este problema para obtener la doble integral

Como el integrando es una función par en ω, entonces �∞
0 · · · dω = 12 �∞

−∞ · · · dω y esta solución también 
se puede escribir como

Probará cómo esta solución puede ponerse en términos de una sola integral. Necesita lo siguiente.

Para α y β reales, con β � 0,

■

Prueba Sea

LEMA 6.1 

bω = 1

π

∫ ∞

−∞
e−|ξ | sen(ωξ) dξ = 0.

u(x, t) = 2

π

∫ ∞

0

1

1 + ω2 cos(ωx)e−ω2kt dω.

u(x, t) =
∫ ∞

0

[
1

π

∫ ∞

−∞
f (ξ) cos(ωξ) dξ cos(ωx)

+ 1

π

∫ ∞

−∞
f (ξ) sen(ωξ) dξ sen(ωx)

]
e−ω2kt dω

= 1

π

∫ ∞

0

∫ ∞

−∞
[cos(ωξ) cos(ωx) + sen(ωξ) sen(ωx)]f (ξ) dξe−ω2kt dω

= 1

π

∫ ∞

0

∫ ∞

−∞
cos(ω(ξ − x))f (ξ)e−ω2kt dξ dω.

∂u

∂t
= k

∂2u

∂x2 para −∞ < x < ∞, t > 0,

u(x, 0) = f (x) para −∞ < x < ∞.

u(x, t) = 1

π

∫ ∞

0

∫ ∞

−∞
cos(ω(ξ − x))f (ξ)e−ω2kt dξ dω.

u(x, t) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
cos(ω(ξ − x))f (ξ)e−ω2kt dξ dω.

∫ ∞

−∞
e−ζ 2

cos

(
αζ

β

)
dζ =

√
πe−α2/4β2

.

F (x) =
∫ ∞

0
e−ζ 2

cos(xζ ) dζ.
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Uno puede probar que esta integral converge para todo x, como sucede con la integral obtenida al inter-
cambiar d/dx y �∞

0 · · · dζ. Puede por tanto calcular

Integre por partes para obtener

Entonces

y una integración produce

Entonces

Para evaluar la constante A, use

un resultado encontrado en muchas tablas de integración. Por tanto,

Finalmente, sea x = α/β y use el hecho de que el integrando es par respecto a ζ para obtener

■

Ahora sea

Entonces

y

Entonces

La solución de la conducción de calor en la recta real es, por tanto

F ′(x) =
∫ ∞

0
−e−ζ 2

ζ sen(xζ ) dζ.

F ′(x) = −x

2
F(x).

F ′(x)

F (x)
= −x

2

ln|F(x)| = −1

4
x2 + c.

F (x) = Ae−x2/4.

F (0) = A =
∫ ∞

0
e−ζ 2

dζ =
√

π

2
,

∫ ∞

0
e−ζ 2

cos(xζ ) dζ =
√

π

2
e−x2/4.

∫ ∞

−∞
e−ζ 2

cos

(
αζ

β

)
dζ = 2

∫ ∞

0
e−ζ 2

cos

(
αζ

β

)
dζ =

√
πe−α2/4β2

.

ζ =
√

ktω, α = x − ξ, y β =
√

kt.

αζ

β
= ω(x − ξ)

∫ ∞

−∞
e−ζ 2

cos

(
αζ

β

)
dζ =

∫ ∞

−∞
e−ω2kt cos(ω(x − ξ))

√
kt dω =

√
πe−(x−ξ)2/4kt .

∫ ∞

−∞
e−ω2kt cos(ω(x − ξ)) dω =

√
π√
kt

e−(x−ξ)2/4kt .

u(x, t) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
f (ξ) cos(ω(ξ − x))e−ω2kt dξ dω

= 1

2π

∫ ∞

−∞

√
π√
kt

e−(x−ξ)2/4ktf (ξ) dξ.

6.3 Conducción de calor en un medio infi nito
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Después de algunas manipulaciones, esta solución es

Ésta es más simple que la solución anterior en el sentido de que contiene sólo una integral.

6.3.2 Conducción de calor en una barra semi-infi nita

Si considera la conducción de calor en una barra extendida de 0 a infi nito, entonces hay una condición 
de frontera en el extremo izquierdo. Si la temperatura se mantiene en cero en ese extremo, entonces el 
problema es

Haciendo u(x, t) = X(x)T(t), los problemas para X y T son

Si procede como lo hizo para la recta real, obtiene λ = ω2 para ω ≥ 0 y funciones

Pero ahora, también tiene la condición

implicando que

Así debe elegir cada aω = 0, dejando Xω(x) = bω sen(ωx). Las soluciones para T tienen la forma de múlti-
plos constantes de e−ω2kt, de manera que para cada ω > 0 tiene funciones

Cada una de estas funciones satisfacen la ecuación de calor y la condición en la frontera u(0, t) = 0. Para 
satisfacer la condición inicial, escriba una superposición

(6.11)

Ahora la condición inicial requiere que

de manera que elija las bω como los coefi cientes en la integral de Fourier en senos de f (x) en [0, ∞):

Con esta elección de coefi cientes, la función dada por la ecuación (6.11) es la solución del problema.

u(x, t) = 1

2
√

πkt

∫ ∞

−∞
e−(x−ξ)2/4ktf (ξ) dξ.

∂u

∂t
= k

∂2u

∂x2 para 0 < x < ∞, t > 0,

u(0, t) = 0 para t ≥ 0,

u(x, 0) = f (x) para 0 < x < ∞.

X′′ + λX = 0, T ′ + λkT = 0.

Xω(x) = aω cos(ωx) + bω sen(ωx).

u(0, t) = X(0)T (t) = 0,

X(0) = 0.

uω(x, t) = bω sen(ωx)e−ω2kt .

u(x, t) =
∫ ∞

0
bω sen(ωx)e−ω2kt dω.

u(x, 0) =
∫ ∞

0
bω sen(ωx) dω,

bω = 2

π

∫ ∞

0
f (ξ) sen(ωξ) dξ.
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EJEMPLO 6.9

Suponga que la función de la temperatura inicial está dada por

Los coefi cientes en la solución (6.11) son

La solución para esta función de temperatura inicial es

■

6.3.3  Métodos de transformadas integrales para la ecuación de calor 
en un medio infi nito

Como sucedió con la ecuación de onda en un dominio no acotado, se ilustrará el uso de las transformadas 
de Fourier en problemas que involucran la ecuación de calor.

Conducción de calor en la recta Considere nuevamente el problema

que ha resuelto por separación de las variables. Como x varía sobre la recta real, puede intentar el uso de 
la transformada de Fourier en la variable x. Tome la transformada de la ecuación de calor para obtener

Debido a que x y t son independientes, la transformada pasa a través de la derivada parcial respecto a t:

Para la transformada, en la variable x−, de la segunda derivada parcial de u respecto a x, use la fórmula 
operacional:

La transformada de la ecuación de calor es, por tanto

con solución general

f (x) =
{

bω = 2

π

∫ π

0
(π − ξ) sen(ωξ) dξ = 2

π

πω − sen(πω)

ω2 .

u(x, t) = 2

π

∫ ∞

0

(
πω − sen(πω)

ω2

)
sen(ωx)e−ω2kt dω.

∂u

∂t
= k

∂2u

∂x2 para −∞ < x < ∞, t > 0,

u(x, 0) = f (x) para −∞ < x < ∞,

F

[
∂u

∂t

]
= kF

[
∂2u

∂x2

]
.

F

[
∂u

∂t

]
(ω) =

∫ ∞

−∞

∂u(ξ, t)

∂t
e−iωξ dξ = ∂

∂t

∫ ∞

−∞
u(ξ, t)e−iωξ dξ = ∂

∂t
û(ω, t).

F

[
∂2u

∂x2

]
(ω) = −ω2û(ω, t).

∂

∂t
û(ω, t) + kω2û(ω, t) = 0,

û(ω, t) = aωe−ω2kt .

6.3 Conducción de calor en un medio infi nito

para 0 ≤ x ≤ π

para x > π
.

π − x

0
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Para determinar el coefi ciente aω, tome la transformada de la condición inicial para obtener

Por tanto,

Esta es la transformada de Fourier de la solución del problema. Para recuperar la solución, aplique la 
inversa de la transformada de Fourier:

Por supuesto, la parte real de esta expresión es u(x, t). Para ver que esta solución coincide con la obtenida 
por separación de las variables, inserte la integral para f̂ (ω) para obtener

Tomando la parte real de esta expresión, tiene

la solución obtenida por separación de las variables.

Conducción de calor en la semirecta Considere nuevamente el problema

el cual ha resuelto por separación de las variables. Para ilustrar la técnica de la transformada, resolverá 
este problema nuevamente usando la transformada de Fourier en senos. Tome la transformada en senos de 
la ecuación de calor respecto a x, usando la fórmula operacional para la transformada del término ∂2u/∂x2, 
para obtener

û(ω, 0) = f̂ (ω) = aω.

û(ω, t) = f̂ (ω)e−ω2kt .

u(x, t) = F−1
[
f̂ (ω)e−ω2kt

]
(x) = 1

2π

∫ ∞

−∞
f̂ (ω)e−ω2kteiωx dω.

1

2π

∫ ∞

−∞
f̂ (ω)e−ω2kteiωx dω = 1

2π

∫ ∞

−∞

(∫ ∞

−∞
f (ξ)e−iωξdξ

)
eiωxe−ω2kt dω

= 1

2π

∫ ∞

−∞

∫ ∞

−∞
f (ξ)e−iω(ξ−x)e−ω2kt dξ dω

= 1

2π

∫ ∞

−∞

∫ ∞

−∞
f (ξ) cos(ω(ξ − x))e−ω2kt dξ dω

− i

2π

∫ ∞

−∞

∫ ∞

−∞
f (ξ) sen(ω(ξ − x))e−ω2kt dξ dω.

u(x, t) = 1

2π

∫ ∞

−∞

∫ ∞

−∞
f (ξ) cos(ω(ξ − x))e−ω2kt dξ dω,

∂u

∂t
= k

∂2u

∂x2 para 0 < x < ∞, t > 0,

u(0, t) = 0 para t ≥ 0,

∂

∂t
ûS(ω, t) = −ω2kûS(ω, t) + ωku(0, t).

∫

−∞u(x, 0) = f (x) para < x < ∞,
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Como u(0, t) = 0, esto es

con solución general

Ahora u(x, 0) = f (x), así

y por tanto

Esta es la transformada en senos de la solución. Para la solución, aplique la inversa de la transformada de 
Fourier para obtener

Queda para que el estudiante inserte la expresión de la integral para f̂S(ω) y pruebe que esta solución 
coincide con la obtenida usando la separación de las variables.

La solución mediante la transformada de Laplace de un problema con valores en la frontera Se ha 
ilustrado el uso de la transformada de Fourier y de la transformada de Fourier en senos en la resolución 
de problemas de conducción de calor. Aquí hay un ejemplo en donde la transformada natural que hay que 
usar es la transformada de Laplace.

Considere el problema en una semirecta:

en donde A, B y t0 son constantes positivas. Esto defi ne un problema con una temperatura inicial constante 
distinta de cero y una distribución de temperatura discontinua en el extremo izquierdo de la barra.

Puede escribir la condición en la frontera más nítidamente en términos de la función de Heaviside H:

Debido a la discontinuidad en u(0, t), puede intentar con una transformada de Laplace en t. Denote

con s la variable de la función transformada y x tratada como un parámetro. Tome la transformada de 
Laplace de la ecuación de calor:

Para la transformada de ∂u/∂t, la derivada de la variable transformada, use la fórmula operacional para la 
transformada de Laplace:

∂

∂t
ûS(ω, t) = −ω2kûS(ω, t),

ûS(ω, t) = bωe−ω2kt .

ûS(ω, 0) = f̂S(ω) = bω

ûS(ω, t) = f̂S(ω)e−ω2kt .

u(x, t) = 2

π

∫ ∞

0
f̂S(ω)e−ω2kt sen(ωx) dω.

∂u

∂t
= k

∂2u

∂x2 para x > 0, t > 0,

u(x, 0) = A para x > 0,

u(0, t) =
{

B para 0 ≤ t ≤ t0

0 para t > t0
,

u(0, t) = B[1 − H(t − t0)].

L[u(x, t)](s) = U(x, s),

L

[
∂u

∂t

]
= kL

[
∂2u

∂x2

]
.

L

[
∂u

∂t

]
(s) = sU(x, s) − u(x, 0) = sU(x, s) − A.

6.3 Conducción de calor en un medio infi nito
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La transformada pasa a través de ∂2u/∂x2 debido a que x y t son independientes:

Transformando la ecuación de calor se obtiene

Escriba esta ecuación como

una ecuación diferencial en x, para cada s > 0. La solución general de esta ecuación es

La notación refl eja el hecho de que los coefi cientes, en general, dependerán de s. Ahora, para tener una 
solución acotada necesita as = 0, ya que e

√
s/kx → ∞ conforme s →∞. Por tanto,

(6.12)

Para obtener bs, aplique la transformada de Laplace de u(0, t) = B[1 − H(t − t0)] para obtener

Entonces

así

Ponga esto en la ecuación (6.12) para obtener

Ahora obtiene la solución usando la inversa de la transformada de Laplace:

Esta inversa puede ser calculada usando tablas estándar y haciendo uso de la función error y la función de 
error complementario, las cuales tienen un uso frecuente en estadística. Estas funciones están defi nidas 
por

y

L

[
∂2u

∂x2

]
(s) =

∫ ∞

0
e−st ∂

2u

∂x2 (x, t) dt = ∂2

∂x2

∫ ∞

0
e−stu(x, t) dt = ∂2U(x, s)

∂x2 .

sU(x, s) − A = k
∂2U(x, s)

∂x2
.

∂2U(x, s)

∂x2 − s

k
U(x, s) = −A

k
,

U(x, s) = bse
−

√
s/kx + A

s
.

U(0, s) = BL[1](s) − BL[H(t − t0)](s) = B
1

s
− B

1

s
e−t0s .

U(0, s) = B
1

s
− B

1

s
e−t0s = bs + A

s
,

bs = B − A

s
− B

s
e−t0s .

U(x, s) =
[
B − A

s
− B

s
e−t0s

]
e−

√
s/kx + A

s
.

u(x, t) = L−1[U(x, s)].

erf(x) = 2√
π

∫ x

0
e−ξ2

dξ

erfc

U(x, s) = ase
√

s/kx + bse
−

√
s/kx + A

s
.

c(x) = 2√
π

∫ ∞

x

e−ξ2
dξ = 1 − erf(x).
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Obtiene

En los problemas del 1 al 4, considere el problema

Obtenga primero una solución por separación de las variables 
(integral de Fourier) y después nuevamente mediante transfor-
mada de Fourier.

1. f (x) = e−4|x|

2. f (x) = sen(x) para |x| ≤ π

  0         para |x| > π

3. f (x) = x         para 0 ≤ x ≤ 4

  0         para x < 0 y para x > 4

4. f (x) = e−x      para −1 ≤ x ≤ 1

  0         para |x| > 1

 En los problemas del 5 al 8, resuelva el problema

5. f (x) = e−αx, con α cualquier constante positiva.

6. f (x) = xe−αx, con α > 0.

7. f (x) =
 1          para 0 ≤ x ≤ h

  0          para x > h

 con h cualquier número positivo.

 8. 

  En los problemas 9 y 10, use una transformada de Fourier 
en la semirecta para obtener una solución.

 9. 

10. 

  En los problemas 11 y 12, use la transformada de Laplace 
para obtener una solución.

11. 

12. 

6.4 La conducción de calor en un cilindro infi nito

Considerará el problema de determinar la función de distribución de temperatura en un cilindro sólido, 
de longitud infi nita, homogéneo de radio R. El eje del cilindro está a lo largo del eje z en el espacio x, y, z 

SECCIÓN 6.3 PROBLEMAS

∂u

∂t
= k

∂2u

∂x2
para 0 < x < ∞, t > 0,

u(0, t) = 0 para t ≥ 0,

u(x, 0) = f (x) para 0 < x < ∞.

+
(

A erf

(
x

2
√

kt

)
+ B erfc

∂u

∂t
= k

∂2u

∂x2
para −∞ < x < ∞, t > 0

u(x, 0) = f (x) para −∞ < x < ∞.

{

{

{

{

f (x) =
{

x para 0 ≤ x ≤ 2

0 para x > 2

u(0, t) = 0 para t

u(0, t) = t2 para t ≥ 0,

u(x, 0) = 0 para x > 0

u(0, t) = 0 para t ≥ 0,

u(x, 0) = e−x para x > 0

6.4 La conducción de calor en un cilindro infi nito

∂u

∂x
(0, t) = f (t) para t

c

(
x

2
√

kt

))
(1 − H(t − t0))

(
x

2
√

kt

)
− B erf

u(x, t) =
(

A erf

(
x

2
√

kt

)
+ B erfcc

(
x

2
√

k(t − t0)

))
H(t − t0).c

∂u

∂t
= ∂2u

∂x2
− tu para x > 0, t > 0

u(x, 0) = xe−x para x > 0

0≥

∂u

∂t
= ∂2u

∂x2
− u para x > 0, t > 0

u(x, 0) = 0 para x > 0

0≥

∂u

∂t
= k

∂2u

∂x2
para x > 0, t > 0,

≥

∂u

∂t
= k

∂2u

∂x2
para x > 0, t > 0,

≥
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(fi gura 6.15). Si u(x, y, z, t) es la función de temperatura, entonces u satisface la ecuación de calor en tres 
dimensiones

Es conveniente usar coordenadas cilíndricas, las cuales consisten de las coordenadas polares en el 
plano junto con la coordenada usual z, como en el diagrama. Con x = r cos(θ) y y = r sen(θ), sea

Se vio en la sección 5.1 que

Así, en coordenadas cilíndricas, con U(r, θ, z, t) la temperatura en el cilindro en el punto (r, θ, z) y tiempo 
t, U satisface:

Esta es una ecuación formidable para tratar de resolverla en este momento, así suponga que la tempe-
ratura en cualquier punto en el cilindro depende solamente del tiempo t y la distancia horizontal r desde el 
eje z. Esta suposición simétrica signifi ca que ∂U/∂θ = ∂U/∂z = 0, y la ecuación de calor se convierte en

En este caso escribirá U(r, t) en lugar de U(r, θ, z, t).
La condición en la frontera es

Esto signifi ca que la superfi cie exterior del cilindro se mantiene a temperatura cero.
La condición inicial es

Separe las variables en la ecuación de calor haciendo U(r, t) = F(r)T(t):

Debido a que r y t son variables independientes, esto produce

∂u

∂t
= k

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
.

la
z

y

x

r

(r,w)�

� en
se

FIGURA 6.15

u(x, y, z, t) = U(r, θ, z, t).

∂2u

∂x2 + ∂2u

∂y2 = ∂2U

∂r2 + 1

r

∂U

∂r
+ 1

r2

∂2U

∂θ2 .

∂U

∂t
= k

(
∂2U

∂r2
+ 1

r

∂U

∂r
+ 1

r2

∂2U

∂θ2
+ ∂2U

∂z2

)
.

∂U

∂t
= k

(
∂2U

∂r2
+ 1

r

∂U

∂r

)
para 0 ≤ r < R, t > 0.

U(R, t) = 0 para t > 0.

U(r, 0) = f (r) para 0 ≤ r < R.

F (r)T ′(t) = k

(
F ′′(r)T (t) + 1

r
F ′(r)T (t)

)
.

T ′

kT
= F ′′ + (1/r)F ′

F
= −λ,
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en donde λ es la constante de separación. Entonces

Más aún, U(R, t) = F(R)T (t) = 0 para t > 0, así tiene la condición en la frontera

El problema para F es un problema de Sturm-Liouville singular (véase la sección 4.3.1) en [0, R], 
con sólo una condición en la frontera. Imponga la condición que la solución debe ser acotada. Considere 
casos sobre λ.

Caso 1 λ = 0
Ahora

Para resolver esto, hacemos ω = F ′(r) para obtener

o

Ésta tiene solución general

así

Entonces

Tiene que ln(r) → −∞ conforme r → 0+ (centro del cilindro), de manera que elige c = 0 para tener una 
solución acotada. Esto signifi ca que F(r) = constante para λ = 0. La ecuación para T en este caso es T' = 0, 
con T = constante también. En este evento, U(r, t) = constante. Como U(R, t) = 0, esta constante debe ser 
cero. De hecho, U(r, t) = 0 es la solución en el caso que f (r) = 0. Si la temperatura en la superfi cie se mantie-
ne en cero, y la temperatura en todo el cilindro es inicialmente cero, entonces la distribución de temperatura 
permanece cero en todo tiempo, en ausencia de fuentes de calor.

Caso 2 λ < 0
Escriba λ = −ω2 con ω > 0. Ahora T' − kω2 T = 0 tiene solución general

que es no acotada a menos que c = 0, llevando nuevamente a u(r, t) = 0. Este caso conduce sólo a la 
solución trivial.

Caso 3 λ > 0, esto es λ = ω2.
Ahora T ′  + kω2T = 0 tiene soluciones que son múltiplos constantes de e−ω2kt, y éstas son acotadas para 
t > 0. La ecuación para F es

T ′ + λkT = 0 y F ′′ + 1

r
F ′ + λF = 0.

F (R) = 0.

F ′′ + 1

r
F ′ = 0.

w′(r) + 1

r
w(r) = 0,

rw′ + w = (rw)′ = 0.

rw(r) = c,

w(r) = c

r
= F ′(r).

F (r) = c ln(r) + d.

T (t) = ceω2kt ,

F ′′(r) + 1

r
F ′(r) + ω2F(r) = 0,

6.4 La conducción de calor en un cilindro infi nito
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o

En esta forma reconoce la ecuación de Bessel de orden cero, con solución general

J0 es la función de Bessel del primer tipo de orden cero, y Y0 es la función de Bessel de segundo tipo 
de orden cero (véase la sección 4.2.3). Como Y0(ωr) → −∞ conforme r → 0+, debe tener d = 0. Sin 
embargo, J0(ωr) está acotada en [0, R], así F(r) es una constante múltiplo de J0(ωr).

La condición F(R) = 0 ahora requiere que esta constante sea cero (en cuyo caso tiene la solución 
trivial) o que ω sea elegida de manera que

Esto se puede hacer. Recuerde que J0(x) tiene una infi nidad de ceros positivos, los cuales se ordenan 
como

Por tanto, puede tener J0(ωR) = 0 si ωR es cualquiera de esos números. Así 

Los números

son los vectores propios de este problema, y las funciones propias son constantes distintas de cero múlti-
plos de J0(jnr/R).

Ahora tiene para cada entero positivo n, una función

Para satisfacer la condición inicial U(r, 0) = f (r) generalmente debe usar una superposición

Ahora debe elegir los coefi cientes de manera que

Este es un desarrollo en funciones propias de f (r) en términos de las funciones propias de un problema 
de Sturm-Liouville singular para F(r). Sabe de la sección 4.3.3 cómo encontrar los coefi cientes. Sea ξ = 
r/R. Entonces

y

La solución del problema es

r2F ′′(r) + rF ′(r) + ω2r2F(r) = 0.

F (r) = cJ0(ωr) + dY0(ωr).

J0(ωR) = 0.

0 < j1 < j2 < · · · .

ωn = jn

R
.

Un(r, t) = anJ0

(
jnr

R

)
e−jn

2kt/R2
.

U(r, t) =
∞∑

n=1

anJ0

(
jnr

R

)
e−jn

2kt/R2
.

U(r, 0) =
∞∑

n=1

anJ0

(
jnr

R

)
= f (r).

f (Rξ) =
∞∑

n=1

anJ0(jnξ),

an = 2

[J1(jn)]2

∫ 1

0
ξf (Rξ)J0(jnξ) dξ.

U(r, t) =
∞∑

n=1

(
2

[J1(jn)]2

∫ 1

0
ξf (Rξ)J0(jnξ) dξ

)
J0

(
jnr

R

)
e−jn

2kt/R2
.

λn = ω2
n = j2

n

R2
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1.  Suponga que el cilindro tiene radio R = 1 y, en coordenadas 
polares, la temperatura inicial es U(r, 0) = f (r) = r para 
0 ≤ r < 1. Suponga que U(1, t) = 0 para t > 0. Aproxime la 
integral en la solución y escriba los primeros cinco términos 
de la solución en serie para U(r, t), con k = 1. [Los prime-
ros cinco ceros de J0(x) se dan en la sección 4.2]. Dibuje la 
gráfi ca de esta suma de los primeros cinco términos para 
distintos valores de t.

2.  Suponga que el cilindro tiene radio R = 3 y, en coordenadas 
polares, la temperatura inicial es U(r, 0) = f (r) = er para 
0 ≤ r < 3. Suponga que U(3, t) = 0 para t > 0. Aproxime la 
integral en la solución y escriba los primeros cinco términos 
de la solución en serie para U(r, t), con k = 16. Dibuje la 
gráfi ca de esta suma de los primeros cinco términos para 
distintos valores de t.

3.  Suponga que el cilindro tiene radio R = 3 y, en coordenadas 
polares, la temperatura inicial es U(r, 0) = f (r) = 9 − r2 para 

0 ≤ r < 3. Suponga que U(3, t) = 0 para t > 0. Aproxime la 
integral en la solución y escriba los primeros cinco términos 
en la solución en serie para U(r, t), con k = 1

2 . Dibuje la 
gráfi ca de esta suma de los primeros cinco términos para los 
distintos valores de t.

4.  Determine la distribución de temperatura en un cilindro 
circular homogéneo de radio R con las tapas superior e infe-
rior aisladas bajo la suposición que la temperatura es inde-
pendiente tanto del ángulo radial como de la altura. Suponga 
que el calor irradia de la superfi cie lateral hacia el medio que
lo rodea, el cual tiene temperatura cero, con coefi ciente de 
transferencia A. La temperatura inicial es U(r, 0) = f (r). 
Sugerencia: Es necesario saber que una ecuación de la for-
ma kJ′

0(x) + AJ0(x) = 0 tiene una infi nidad de soluciones 
positivas. Esto puede probarse, pero aquí lo supondrá. Las 
soluciones de esta ecuación conducen a los valores propios 
de este problema.

6.5 La conducción de calor en una placa rectangular

Considere la distribución de temperatura u(x, y, t) en una placa rectangular, plana y homogénea que cubre 
la región 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 en el plano. Los lados se mantienen a temperatura cero y la temperatura 
interior en el tiempo cero en (x, y) está dada por 

El problema para u es

Sea u(x, y, t) = X(x)Y(y)T (t) obtenemos

donde λ y μ son las constantes de separación. Las condiciones en la frontera implican en el sentido usual 
que

Los valores y funciones propios son

para n = 1, 2, . . . y

SECCIÓN 6.4 PROBLEMAS

f (x, y) = x(1 − x2)y(1 − y).

∂u

∂t
= k

(
∂2u

∂x2 + ∂2u

∂y2

)
para 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, t > 0,

u(x, 0, t) = u(x, 1, t) = 0 para 0 < x < 1, t > 0

u(0, y, t) = u(1, y, t) = 0 para 0 < y < 1, t > 0,

u(x, y, 0) = x(1 − x2)y(1 − y).

X′′ + λX = 0, Y ′′ + μY = 0, T ′ + (λ + μ)kT = 0,

X(0) = X(1) = 0, Y (0) = Y (1) = 0.

λn = n2π2, Xn(x) = sen(nπx),

μm = m2π2, Ym(y) = sen(mπy)

6.5 La conducción de calor en una placa rectangular
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para m = 1, 2, . . . El problema para T es ahora

con solución general

Para cada entero positivo n y cada entero positivo m, ahora tiene las funciones

que satisfacen la ecuación de calor y las condiciones en la frontera. Para satisfacer la condición inicial, 
sea

Debe elegir los coefi cientes de manera que

Encuentre (como en la sección 5.7) que

La solución es

1.  Tomando como antecedente el problema recién resuelto, 
escriba una solución con una serie doble para el siguiente 
problema más general:

2.  Escriba la solución para el problema 1 en el caso que k = 4, 
L = 2, K = 3 y f (x, y) = x2(L − x) sen(y)(K − y).

3.  Escriba la solución para el problema 1 en el caso que k = 1, 
L = π, K = π y f (x, y) = sen(x)y cos(y/2).

SECCIÓN 6.5 PROBLEMAS

T ′ + (n2 + m2)π2kT = 0,

Tnm(t) = cnme−(n2+m2)π2kt .

unm(x, y, t) = cnm sen(nπx) sen(mπy)e−(n2+m2)π2kt

u(x, y, t) =
∞∑

n=1

∞∑

m=1

cnm sen(nπx) sen(mπy)e−(n2+m2)π2kt .

u(x, y, 0) = x(1 − x2)y(1 − y) =
∞∑

n=1

∞∑

m=1

cnm sen(nπx) sen(mπy).

u(x, y, z)

= 48

π6

∞∑

n=1

∞∑

m=1

(−1)n

n3

)(
(−1)n − 1

m3

)
sen(nπx) sen(mπy)e−(n2+m2)π2kt .

u(x, 0, t) = u(x, K, t) = 0 para 0

u(0, y, t) = u(L, y, t) = 0 para 0

u(x, y, 0) = f (x, y).

cnm = 4
∫ 1

0

∫ 1

0
x(1 − x2)y(1 − y) sen(nπx) sen(mπy) dx dy

= 4

(∫ 1

0
x(1 − x2) sen(nπx) dx

)(∫ 1

0
y(1 − y) sen(mπy) dy

)

= 48

(
(−1)n

n3π3

)(
(−1)m − 1

m3π3

)
.

∂u

∂t
= k

(
∂2u

∂x2
+ ∂2u

∂y2

)
para 0

0

x L,

K, t > 0,y

≥

L, t > 0x

≥

≥

K, t > 0,y

≥

≤ ≤

≤ ≤



7.1 Las funciones armónicas y el problema de Dirichlet

La ecuación diferencial parcial

se llama la ecuación de Laplace en dos dimensiones. En tres dimensiones esta ecuación es

El laplaciano ∇2 (se lee “nabla cuadrada”) está defi nido en dos dimensiones por

y en tres dimensiones por

En esta notación, la ecuación de Laplace es ∇2 u = 0.
Una función que satisface la ecuación de Laplace en cierta región se dice que es armónica en esa 

región. Por ejemplo,

x2 − y2

y

2xy

son armónicas sobre todo el plano.
343

C A P Í T U L O 7
La ecuación 
del potencial

LA SERIE DE FOURIER DE UNA
FUNCION CONVERGENCIA DE UN
SERIE DE FOURIER SERIE DE FO
EN COSENOS EN SENOS INTEGRA

∂2u

∂x2
+ ∂2u

∂y2
= 0

∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2 = 0.

∇2u = ∂2u

∂x2 + ∂2u

∂y2

∇2u = ∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2 .
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La ecuación de Laplace se encuentra en problemas que involucran potenciales, tales como los poten-
ciales para el campo de fuerza en mecánica o electromagnetismo o campos gravitacionales. La ecuación 
de Laplace también se conoce como la ecuación del estado estacionario del calor. La ecuación de calor 
en el espacio de dos o tres dimensiones es

En el caso de estado estacionario (el límite cuando t → ∞), la solución se vuelve independiente de t, así 
∂u/∂t = 0 y la ecuación de calor se convierte en la ecuación de Laplace.

En problemas que involucran la ecuación de Laplace no hay condiciones iniciales. Sin embargo, fre-
cuentemente se encuentra el problema resolviendo

∇2 u(x, y) = 0

para (x, y) en alguna región D del plano, sujeta a la condición que

u(x, y) = f (x, y)

para (x, y) en la frontera de D. Esta frontera se denota ∂D. Aquí f es una función que tiene valores en ∂D, 
que frecuentemente es una curva o está compuesta por varias curvas (fi gura 7.1). El problema de deter-
minar una función armónica conociendo su valor en la frontera, se llama un problema de Dirichlet, y f se 
llama datos en la frontera del problema. Hay versiones de este problema en dimensiones mayores, pero 
aquí se abordará principalmente en la dimensión 2.

La difi cultad en el problema de Dirichlet dependiente usualmente de qué tan complicada es la región 
D. En general, hay más oportunidad de resolver un problema de Dirichlet para una región que posea cierto 
tipo de simetría, tal como un disco o un rectángulo. Empezará resolviendo el problema de Dirichlet para 
regiones familiares en el plano.

1.  Sean f y g armónicas en un conjunto D de puntos en el pla-
no. Pruebe que f + g es armónica, así como α f para cual-
quier número real α.

2.  Pruebe que las siguientes funciones son armónicas en todo 
el plano:

 (a) x3 − 3xy2

 (b) 3x2y − y3

 (c) x4 − 6x2y2 + y4

 (d) 4x3y − 4xy3

 (e) sen(x) cosh(y)

 (f) cos(x) senh (y)

 (g) e−x cos(y)

3.  Pruebe que ln(x2 + y2) es armónica en el plano excepto en 
el origen.

SECCIÓN 7.1 PROBLEMAS

∂u

∂t
= k∇2u.

FIGURA 7.1 
Frontera típica ∂D de 
una región D.

x

D

D

y

CAPÍTULO 7   La ecuación del potencial
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7.2 Problema de Dirichlet para un rectángulo

Sea R un rectángulo sólido, que consiste de los puntos (x, y) con 0 ≤ x ≤ L, 0 ≤ y ≤ K. Busque una fun-
ción que sea armónica en los puntos interiores de R y tome valores prescritos en los cuatro lados de R, que 
forman la frontera ∂R de R.

Este tipo de problema puede ser resuelto por separación de variables si los valores en la frontera son 
distintos de cero en sólo un lado del rectángulo. Se ilustra este tipo de problema y después se esboza una 
estrategia a seguir si los valores en la frontera son distintos de cero en más de un lado.

EJEMPLO 7.1

Considere el problema de Dirichlet

La fi gura 7.2 muestra la región y los valores en la frontera.
Sea u(x, y) = X(x)Y(y) y sustituya en la ecuación de Laplace para obtener

Entonces

A partir de las condiciones en la frontera,

4.  Pruebe que rn cos(nθ) y rn sen(nθ), en coordenadas polares, 
son armónicas en el plano, para cualquier entero positivo n. 
Sugerencia: Busque la ecuación de Laplace en coordenadas 
polares.

5.  Pruebe que para cualquier entero positivo n, r−n cos(nθ), 
y r−n sen(nθ) son armónicas en el plano excepto en el 
origen.

∇2u(x, y) = 0 para 0 < x < L, 0 < y < K,

u(x, 0) = 0 para 0 ≤ x ≤ L,

u(0, y) = u(L, y) = 0 para 0 ≤ y ≤ K,

u(x, K) = (L − x) sen(x) para 0 ≤ x ≤ L.

x

R

(L – x) sen(x)

00

(0, K ) (L, K )

(L, 0)0

y

FIGURA 7.2 Valores en la 
frontera dados en los lados de 
la frontera del rectángulo.

X′′

X
= −Y ′′

Y
= −λ.

X′′ + λX = 0 y Y ′′ − λY = 0.

u(x, 0) = X(x)Y (0) = 0

7.2 Problema de Dirichlet para un rectángulo
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así Y (0) = 0. Análogamente,

X (0) = X(L) = 0.

El problema para X(x) ya es familiar, con valores propios λn = n2π2/L2 y funciones propias que son múl-
tiplos constantes distintos de cero de sen(nπx/L).

El problema para Y es ahora

Las soluciones de este problema son múltiplos constantes de senh (nπy/L). 
Para cada entero positivo n = 1, 2,…, ahora tiene funciones

que son armónicas en el rectángulo y satisfacen la condición de que valen cero en los lados izquierdo, 
inferior y derecho del rectángulo. Para satisfacer la condición en la frontera en el lado y = K, debe 
usar la superposición

Elija los coefi cientes de manera que

Éste es un desarrollo en serie de Fourier en senos de (L − x) sen(x) en [0, L], de manera que debe elegir 
todo el coefi ciente como el coefi ciente de seno:

Entonces

La solución es

■

Si se dan valores distintos de cero en los cuatro lados de R, se defi nen cuatro problemas de Dirichlet, 
en cada uno de los cuales los valores en la frontera son distintos de cero únicamente en un lado. Este 
proceso se muestra en la fi gura 7.3. Cada uno de estos problemas puede resolverse por separación de las 
variables. Si uj (x, y) es la solución del j-ésimo problema, entonces

es la solución del problema original. Esta suma satisfará los datos originales en la frontera, ya que cada 
uj (x, y) satisface los valores distintos de cero en un lado y es cero en los otros tres lados.

Y ′′ − n2π2

L2 Y = 0; Y (0) = 0.

un(x, y) = bn sen
(nπx

L

)
senh

(nπy

L

)
,

u(x, y) =
∞∑

n=1

bn sen
(nπx

L

)
senh

(nπy

L

)
.

u(x, K) =
∞∑

n=1

bn sen
(nπx

L

)
senh

(
nπK

L

)
= (L − x) sen(x).

bn senh

(
nπK

L

)
= 2

L

∫ L

0
(L − ξ) sen(ξ) sen

(
nπξ

L

)
dξ

= 4L2 nπ [1 − (−1)n cos(L)]
L4 − 2L2n2π2 + n4π4

.

u(x, y) =
4∑

j=1

uj (x, y)

bn = 4L2

senh(nπK/L)

nπ [1 − (−1)n cos(L)]
(L2 − n2π2)2 .

k

u(x, y) =
∞∑

n=1

4L2

senh(nπK/L)

nπ [1 − (−1)n cos(L)]
(L2 − n2π2)2

sen
(nπx

L

)
senh

(nπy

L

)
.

k
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7.3 El problema de Dirichlet para un disco

Resuelva el problema de Dirichlet para un disco de radio R centrado en el origen. En coordenadas polares, 
el problema es

En los problemas del 1 al 5, resuelva el problema de Dirichlet 
para el rectángulo, con las condiciones en la frontera dadas.

1.  u(0, y) = u(1, y) = 0 para 0 ≤ y ≤ π, u(x, π) = 0, y u(x, 0) = 
sen(πx) para 0 ≤ x ≤ 1

2.  u(0, y) = y(2 − y), u(3, y) = 0 para 0 ≤ y ≤ 2, y u(x, 0) = 
u(x, 2) = 0 para 0 ≤ x ≤ 3

3.  u(0, y) = u(1, y) = 0 para 0 ≤ y ≤ 4, y u(x, 0) = 0, u(x, 4) 
= x cos(πx/2) para 0 ≤ x ≤ 1

4.  u(0, y) = sen(y), u(π, y) = 0 para 0 ≤ y ≤ π, y u(x, 0) = 
x(π − x), u(x, π) = 0 para 0 ≤ x ≤ π

5.  u(0, y) = 0, u(2, y) = sen(y) para 0 ≤ y ≤ π, y u(x, 0) = 0, 
u(x, π) = x sen(πx) para 0 ≤ x ≤ 2

6.  Aplique la separación de variables para resolver el siguiente 
problema mixto con valores en la frontera (“mixto” signifi -
ca que algunas condiciones en la frontera están dadas en la 
función y otras en sus derivadas parciales):

∇2u(x, y) = 0 para 0 < x < a, 0 < y < b

7.  Aplique la separación de variables para resolver el siguiente 
problema mixto con valores en la frontera:

8.  Resuelva la distribución de temperatura del estado estacio-
nario en una placa delgada, plana que cubre el rectángulo 
0 ≤ x ≤ a, 0 ≤ y ≤ b si la temperatura en los lados verticales  
e inferior se mantiene en cero y la temperatura a lo largo del 
lado superior es f (x) = x(x − a)2.

9.  Resuelva la distribución de temperatura del estado estacio-
nario en una placa delgada, plana que cubre el rectángulo 
0 ≤ x ≤ 4, 0 ≤ y ≤ 1 si la temperatura en los lados horizon-
tales es cero, mientras que en el lado izquierdo es f (y) = 
sen(πy) y en el lado derecho es f (y) = y(1 − y).

SECCIÓN 7.2 PROBLEMAS

x

y

f2(x)

R

f1(x)

g2(y)g1(y)

(0, k)

(L, 0)
x

y

R

f1(x)

0 0

0

x

y

R g2(y) g1(y)0

0

0
x

y

R

f2(x)

0 0

0
x

y

R 0

0

0

FIGURA 7.3 u(x, y) = �4
j=1uj (x, y).

u(x, 0) = ∂u

∂y
(x, b) = 0 para 0 ≤ x ≤ a

u(0, y) = 0, u(a, y) = g(y) para 0 ≤ y ≤ b.

∇2u(x, y) = 0 para 0 < x < a, 0 < y < b

u(x, 0) = 0, u(x, b) = f (x) para 0 ≤ x ≤ a

u(0, y) = ∂u

∂x
(a, y) = 0 para 0 ≤ y ≤ b.

7.3 El problema de Dirichlet para un disco

∇2u(r, θ) = 0 para 0 ≤ r < R, −π ≤ θ ≤ π,

u(R, θ) = f (θ) para − π ≤ θ ≤ π.π ≤ θ ≤ π.
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La ecuación de Laplace en coordenadas polares es

Es fácil verifi car que las funciones

son armónicas en todo el plano. Entonces intente una solución

Para satisfacer la condición en la frontera, necesita elegir los coefi cientes de manera que

Pero éste es precisamente el desarrollo de Fourier de f (θ) en [−π, π], que conduce a elegir

y

Entonces

y

La solución es

Esto también puede escribirse

o

∂2u

∂r2
+ 1

r

∂u

∂r
+ 1

r2

∂2u

∂θ2
= 0.

u(r, θ) = 1

2
a0 +

∞∑

n=1

anr
n cos(nθ) + bnr

n sen(nθ).

u(r, θ) = 1

2π

∫ π

−π

f (ξ) dξ

+ 1

π

∞∑

n=1

( r

R

)n
(∫ π

−π

f (ξ) cos(nξ) dξ cos(nθ) +
∫ π

−π

f (ξ) sen(nξ) dξ sen(nθ)

)
.

u(r, θ) = 1

2π

∫ π

−π

f (ξ) dξ + 1

π

∞∑

n=1

( r

R

)n
∫ π

−π

f (ξ) cos(n(ξ − θ)) dξ,

u(r, θ) = 1

2π

∫ π

−π

[
1 + 2

∞∑

n=1

( r

R

)n

cos(n(ξ − θ))

]
f (ξ) dξ.

u(R, θ) = f (θ) = 1

2
a0 +

∞∑

n=1

anR
n cos(nθ) + bnR

n sen(nθ).

a0 = 1

π

∫ π

−π

f (ξ) dξ,

anR
n = 1

π

∫ π

−π

f (ξ) cos(nξ) dξ,

bnR
n = 1

π

∫ π

−π

f (ξ) sen(nξ) dξ.

an = 1

πRn

∫ π

−π

f (ξ) cos(nξ) dξ

bn = 1

πRn

∫ π

−π

f (ξ) cos(nξ) dξ.

1, rn cos(nθ), y rn sen(nθ)
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EJEMPLO 7.2

Resuelva el problema de Dirichlet

La solución es

■

EJEMPLO 7.3

Resuelva el problema de Dirichlet

Convertir el problema a coordenadas polares, usando x = r cos(θ) y y = r sen(θ). Sea

La condición en la frontera, donde r = 3, se convierte en

La solución es

Ahora

y

Por tanto,

7.3 El problema de Dirichlet para un disco

∇2u(r, θ) = 0 para 0 ≤ r < 4, −π ≤ θ ≤ π,

u(4, θ) = f (θ) = θ2 para −π ≤ θ ≤ π.

u(r, θ) = 1

2π

∫ π

−π

ξ2 dξ + 1

π

∞∑

n=1

( r

4

)n
∫ π

−π

ξ2 cos(n(ξ − θ)) dξ

= 1

3
π2 +

∞∑

n=1

4(−1)n

n2

( r

4

)n

cos(nθ).

∇2u(x, y) = 0 para x2 + y2 < 9,

u(x, y) = x2y2 para x2 + y2 = 9.

u(x, y) = u(r cos(θ), r sen(θ)) = U(r, θ).

U(3, θ) = 9 cos2(θ)9 sen2(θ) = 81 cos2(θ) sen2(θ) = f (θ).

U(r, θ) = 1

2π

∫ π

−π

81 sen2(ξ) cos2(ξ) dξ

+ 1

π

∞∑

n=1

( r

3

)n
[∫ π

−π

81 cos2(ξ) sen2(ξ) cos(nξ) dξ cos(nθ)

+
∫ π

−π

81 cos2(ξ) sen2(ξ) sen(nξ) dξ sen(nθ)

]
.

∫ π

−π

81 cos2(ξ) sen2(ξ) sen(nξ) dξ = 0.

U(r, θ) = 1

2π

81π

4
− 1

π

81π

8

( r

3

)4
cos(4θ) = 81

8
− 1

8
r4 cos(4θ).

∫ π

−π

81 sen2(ξ) cos2(ξ) dξ = 81

4
π,

∫ π

−π

81 cos2(ξ) sen2(ξ) cos(nξ) dξ =

⎧
⎨
⎩−81

8

0

−81π

8

si n �= 4

para n = 4
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Para regresar esta solución a coordenadas rectangulares, use el hecho de que

Entonces

 ■

En los problemas del 1 al 8, encuentre una solución en serie
para el problema de Dirichlet para un disco del radio dado,
con los datos dados en la frontera (en coordenadas polares).

1. R = 3, f (θ) = 1

2. R = 3, f (θ) = 8 cos(4θ)

3. R = 2, f (θ) = θ2 − θ

4. R = 5, f (θ) = θ cos(θ)

5. R = 4, f (θ) = e−θ

6. R = 1, f (θ) = sen2(θ)

7. R = 8, f (θ) = 1 − θ3

8. R = 4, f (θ) = θe2θ

Escriba una solución para cada uno de los siguientes problemas 
de Dirichlet convirtiendo a coordenadas polares.

9. ∇2u(x, y) = 0 para x2 + y2 < 16

  u(x, y) = x2 para x2 + y2 = 16

10. ∇2u(x, y) = 0 para x2 + y2 < 9

  u(x, y) = x − y para x2 + y2 = 9

11. ∇2u(x, y) = 0 para x2 + y2 < 4

  u(x, y) = x2 − y2 para x2 + y2 = 4

12. ∇2u(x, y) = 0 para x2 + y2 < 25

  u(x, y) = xy para x2 + y2 = 25

SECCIÓN 7.3 PROBLEMAS

7.4 La fórmula de la integral de Poisson para el disco

Existe una fórmula en serie para la solución del problema de Dirichlet para un disco. En esta sección 
obtendrá una fórmula integral para esta solución. El problema para un disco de radio 1, en coordenadas 
polares, es

La solución en serie de la sección anterior, con R = 1, es

(7.1)

La cantidad

cos(4θ) = 8 cos4 θ − 8 cos2 θ + 1.

U(r, θ) = 81

8
− 1

8

(
8r4 cos4(θ) − 8r2r2 cos2(θ) + r4

)

= 81

8
− 1

8

(
8x4 − 8(x2 + y2)x2 + (x2 + y2)2

)
= u(x, y).

u(r, θ) = 1

2π

∫ π

−π

[
1 + 2

∞∑

n=1

rn cos(n(ξ − θ))

]
f (ξ) dξ.

1

2π

[
1 + 2

∞∑

n=1

rn cos(nζ )

]

∇2u(r, θ) = 0 para 0 ≤ r < 1, −π ≤ θ ≤ π,

u(1, θ) = f (θ) para −π ≤ θ < π.≤
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se llama el núcleo de Poisson y se denota por P(r, ζ). En términos del núcleo de Poisson, la solución es

Ahora obtendrá una forma cerrada para el núcleo de Poisson, llegando a una fórmula integral para la solu-
ción. Sea z = reiζ. Por la fórmula de Euler,

así rn cos(nζ), que aparece en el núcleo de Poisson, es la parte real de zn, denotada Re(zn). Entonces

Pero |z| = r < 1 en el disco unitario, de manera que la serie geométrica 
∑∞

n=1 zn converge. Más aún,

Entonces

El resto son sólo cálculos para extraer esta parte real:

Por tanto,

así la solución dada por la ecuación (7.1) es

Esta es la fórmula de la integral de Poisson para la solución del problema de Dirichlet para el disco unita-
rio. Para un disco de radio R, un simple cambio de variables conduce a la solución

(7.2)

Esta integral, para el disco de radio R, también se conoce como la fórmula de Poisson.

7.4 La fórmula de la integral de Poisson para el disco

u(r, θ) =
∫ π

−π

P(r, ξ − θ)f (ξ) dξ.

zn = rneinζ = rn cos(nζ ) + irn sen(nζ ),

1 + 2
∞∑

n=1

rn cos(nζ ) = Re

(
1 + 2

∞∑

n=1

zn

)
.

aún, ∞∑

n=1

zn = z

1 − z
.

Entonces

1 + 2
∞∑

n=1

rn cos(nζ ) = Re

(
1 + 2

∞∑

n=1

zn

)

= Re

(
1 + 2

z

1 − z

)
= Re

(
1 + z

1 − z

)
= Re

(
1 + reiζ

1 − reiζ

)
.

Por tanto,

1 + 2
∞∑

n=1

rn cos(nζ ) = Re

(
1 + 2

∞∑

n=1

zn

)
= 1 − r2

1 + r2 − 2r cos(ζ )
,

u(r, θ) = 1

2π

∫ π

−π

1 − r2

1 + r2 − 2r cos(ξ − θ)
f (ξ) dξ.

u(r, θ) = 1

2π

∫ π

−π

R2 − r2

R2 + r2 − 2Rr cos(ξ − θ)
f (ξ) dξ.

=
1 − r2 + r

(
eiζ − e−iζ

)

1 + r2 − r
(
eiζ + e−iζ )

) = 1 − r2 + 2ir sen(ζ )

1 + r2 − 2r cos(ζ )
.

1 + reiζ

1 − reiζ
=

(
1 + reiζ

1 − reiζ

)(
1 − re−iζ

1 − re−iζ

)
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EJEMPLO 7.4

De nuevo al problema

que fue resuelto en la sección anterior mediante la serie de Fourier. La fórmula integral de Poisson para 
la solución es

Esta integral no puede ser evaluada en la forma cerrada, pero frecuentemente es más conveniente para las 
aproximaciones numéricas que la solución en serie infi nita. ■

En los problemas del 1 al 4, escriba una fórmula integral para 
la solución del problema de Dirichlet para un disco de radio 
R alrededor del origen con los valores dados de la función en 
la frontera. Use la solución integral para aproximar el valor de 
u(r, θ) en los puntos dados.

1. R = 1, f (θ) = θ; (1/2, π), (3/4, π/3), (0.2, π/4)

2.  R = 4, f(θ) = sen(4θ); (1, π/6), (3, 7π/2), (1, π/4), 
(2.5, π/12)

3. R = 15, f (θ) = θ3 − θ; (4, π), (12, 3π/2), (8, π/4), (7, 0)

4. R = 6, f (θ) = e−θ ; (5.5, 3π/5), (4, 2π/7), (1, π), (4, 9π/4)

5.  La fórmula integral de Dirichlet puede usarse algunas veces 
para evaluar integrales bastante generales. Como un ejem-
plo, sea n un entero positivo y sea u(r, θ) = rn sen(nθ) para 
0 ≤ r < R, 0 ≤ θ ≤ 2π. Sabe que u es armónica en todo el 
plano. Puede, por tanto, pensar en u como la solución del 
problema de Dirichlet en el disco r ≤ R que satisface u(R, θ) 

= f (θ) = Rn sen(nθ). Use la fórmula integral de Poisson de 
la ecuación (7.2) (cuya solución ya conoce) para escribir

 Ahora evalúe u(R/2, π/2) para obtener la fórmula integral

6.  En el problema 5, evalúe u(R/2, π). ¿Qué integral se 
obtiene?

7.  Use la estrategia mostrada en el problema 5, pero ahora 
use u(r, θ) = rn cos(nθ). Obtenga las integrales evaluando 
u(R/2, π/2) y u(R/2, π).

8.  ¿Qué integral se obtiene haciendo u(r, θ) = 1 en la fórmula 
integral de Poisson?

SECCIÓN 7.4 PROBLEMAS

7.5 Los problemas de Dirichlet en regiones no acotadas

Considere el problema de Dirichlet para algunas regiones que no están acotadas en el sentido de contener 
puntos arbitrariamente lejanos del origen. Para tales problemas, la integral de Fourier, la transformada de 
Fourier, o la transformada de Fourier en senos o cosenos pueden ser buenos recursos para su solución.

Volvemos al problema
∇2u(r, θ) = 0 para 0 ≤ r < 4, −π ≤ θ ≤ π,

u(4, θ) = f (θ) = θ2 para −π ≤ θ ≤ π,

u(r, θ) = 1

2π

∫ π

−π

16 − r2

16 + r2 − 8r cos(ξ − θ)
ξ2 dξ

= 16 − r2

2π

∫ π

−π

ξ2

16 + r2 − 8r cos(ξ − θ)
dξ.

∫ 2π

0

sen(nξ)

5 − 4 sen(ξ)
dξ = π

3(2n−1)
sen

(nπ

2

)
.

rn sen(nθ)

= 1

2π

∫ 2π

0

R2 − r2

r2 − 2rR cos(ξ − θ) + R2
Rn sen(nξ) dξ.

(θ − ξ)
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7.5.1 El problema de Dirichlet para el semiplano superior

Considere el problema

Busque una función que sea armónica en el semiplano superior y tome valores dados a lo largo del eje x. 
Sea u(x, y) = X(x)Y(y) y separe las variables en la ecuación de Laplace para obtener

Busque una solución acotada. Considere casos sobre λ.

Caso 1 λ = 0.
Ahora X(x) = ax + b, y obtiene una solución acotada eligiendo a = 0. Así 0 es un valor propio de este 
problema, con funciones propias constantes.

Caso 2 λ = −ω2 < 0.
Ahora X(x) = aeωx + be−ωx. Pero eωx → ∞ conforme x → ∞, de manera que se debe elegir a = 0. 
Y e−ωx →∞ conforme x →−∞, de manera que también debe hacer b = 0, llegando a la solución trivial. 
Este problema no tiene valor propio negativo.

Caso 3 λ = ω2 > 0.
Ahora X(x) = a cos(ωx) + b sen(ωx), una función acotada para a y b constantes cualesquiera.

La ecuación para Y ahora se convierte en Y´´ − ω2Y = 0, con solución general Y(y) = aeωy + be−ωy. 
Como y > 0 y ω > 0, eωy → ∞ conforme y → ∞, de manera que necesita a = 0. Sin embargo, e−ωy está 
acotado para y > 0, así Y(y) = be−ωy.

Para cada ω ≥ 0, ahora tiene una función

que satisface la ecuación de Laplace. Intente una solución del problema con la superposición

Para satisfacer las condiciones en la frontera, elija los coefi cientes de manera que

Este es el desarrollo integral de Fourier de f (x), así

y

7.5 Los problemas de Dirichlet en regiones no acotadas

∇2u(x, y) = 0 para −∞ < x < ∞, y > 0,

u(x, 0) = f (x) para −∞ < x < ∞.

X′′ + λX = 0, Y ′′ − λY = 0.

uω(x, y) = [aω cos(ωx) + bω sen(ωx)]e−ωy

u(x, y) =
∫ ∞

0
[aω cos(ωx) + bω sen(ωx)]e−ωy dω.

u(x, 0) = f (x) =
∫ ∞

0
[aω cos(ωx) + bω sen(ωx)] dω.

aω = 1

π

∫ ∞

−∞
f (ξ) cos(ωξ) dξ

bω = 1

π

∫ ∞

−∞
f (ξ) sen(ωξ) dξ.



CAPÍTULO 7   La ecuación del potencial354

Con estos coefi cientes, tiene la solución, que puede escribirse en una forma compacta, involucrando 
sólo una integral, de la siguiente manera. Escriba

La integral interna puede ser evaluada explícitamente:

Por tanto, la solución del problema de Dirichlet para el semiplano superior es

(7.3)

Para ilustrar la técnica, resuelva nuevamente este problema usando la transformada de Fourier.

Solución usando la transformada de Fourier Aplique la transformada de Fourier en la variable x para 
la ecuación de Laplace. Ahora ∂/∂y sale de la transformada, y puede usar la regla operacional para aplicar 
la transformada a la derivada respecto a x. Obtiene

La solución general de la ecuación diferencial en la variable y es

Tenga presente aquí que ω varía sobre toda la recta real (a diferencia de la solución mediante la integral 
de Fourier, donde ω era una variable de integración sobre la semirecta). Debido a que eωy → ∞ conforme 
y → ∞, debe tener aω = 0 para ω positivo. Pero e−ωy → ∞ conforme y → ∞ si ω < 0, así bω = 0 para 
ω negativo. Así,

Simplifi que esta notación escribiendo

Para resolver cω, use el hecho de que u(x, 0) = f (x) para obtener

La transformada de Fourier de la solución es

u(x, y) = 1

π

∫ ∞

0

[(∫ ∞

−∞
f (ξ) cos(ωξ) dξ

)
cos(ωx)

+
(∫ ∞

−∞
f (ξ) sen(ωξ) dξ

)
sen(ωx)

]
e−ωy dω

= 1

π

∫ ∞

0

∫ ∞

−∞
[cos(ωξ) cos(ωx) + sen(ωξ) sen(ωx)] f (ξ)e−ωy dξ dω

= 1

π

∫ ∞

−∞

[∫ ∞

0
cos(ω(ξ − x))e−ωy dω

]
f (ξ) dξ.

∫ ∞

0
cos(ω(ξ − x))e−ωy dω =

[
e−ωy

y2 + (ξ − x)2 [−y cos(ω(ξ − x)) + (ξ − x) sen(ω(ξ − x))]
]∞

0

= y

y2 + (ξ − x)2 .

u(x, y) = y

π

∫ ∞

−∞

f (ξ)

y2 + (ξ − x)2 dξ.

F

(
∂2u

∂y2

)
+ F

(
∂2u

∂x2

)
= ∂2û

∂y2 (ω, y) − ω2û(ω, y) = 0.

û(ω, y) = aωeωy + bωe−ωy .

û(ω, y) =
{

bωe−ωy si ω ≥ 0

aωeωy si ω < 0
.

û(ω, y) = cωe−|ω|y .

û(ω, 0) = f̂ (ω) = cω.

û(ω, y) = f̂ (ω)e−|ω|y .
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Para obtener u(x, y), aplique la transformada inversa de Fourier de esta función:

Ahora

y una integración rutinaria da

La solución por la transformada de Fourier es

que coincide con la solución obtenida usando separación de las variables.

7.5.2 El problema de Dirichlet para el primer cuadrante

Algunas veces puede usar la solución de un problema para elaborar la solución de otro problema. Se ilus-
tra esto con el problema de Dirichlet para el primer cuadrante:

La frontera del primer cuadrante consiste en la parte no negativa del eje x junto con la parte no negativa del 
eje y, y la información acerca de la función buscada debe ser dada en ambos segmentos. En este caso está 
asignando el valor cero en la parte vertical y los valores f (x) dados en la parte horizontal de la frontera.

Podría resolver este problema por separación de las variables. Sin embargo, si dobla el semiplano 
superior a lo largo del eje vertical, obtiene el primer cuadrante, lo que sugiere que explore la posibilidad 
de usar la solución para el semiplano superior para obtener la solución para el primer cuadrante. Para 
hacer esto, sea

Por “cualquier valor,” implica que por el momento no importa qué valores de g(x) para x < 0, pero se 
reserva el derecho de asignar después estos valores.

El problema de Dirichlet

7.5 Los problemas de Dirichlet en regiones no acotadas

u(x, y) = F−1
[
f̂ (ω)e−|ω|y

]
(x)

= 1

2π

∫ ∞

−∞
f̂ (ω)e−|ω|yeiωx dω

= 1

2π

∫ ∞

−∞

(∫ ∞

−∞
f (ξ)e−iωξ dξ

)
e−|ω|yeiωx dω

= 1

2π

∫ ∞

−∞

(∫ ∞

−∞
e−|ω|ye−iω(ξ−x) dω

)
f (ξ) dξ.

e−iω(ξ−x) = cos(ω(ξ − x)) − i sen(ω(ξ − x))

∫ ∞

−∞
e−|ω|ye−iω(ξ−x) dω = 2y

y2 + (ξ − x)2 .

u(x, y) = y

π

∫ ∞

−∞

f (ξ)

y2 + (ξ − x)2 dξ,

∇2u(x, y) = 0 para x > 0, y > 0,

u(x, 0) = f (x) para x ≥ 0,

u(0, y) = 0 para y ≥ 0.

∇2u(x, y) = 0 para −∞ < x < ∞, y > 0,

u(x, 0) = g(x) para −∞ < x < ∞

g(x) =
{

f (x) para x ≥ 0

cualquier valor para x < 0
.

f (x)
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para el semiplano superior tiene la solución

Escriba esto como

Intercambie variables en la integral que está más a la izquierda haciendo w = −ξ . Esta integral se con-
vierte en

Ahora reemplace nuevamente la variable de integración por ξ para escribir

donde en la última integral ha usado el hecho de que g(ξ) = f (ξ) si ξ ≥ 0. Ahora reemplace “cualquier 
valor” en la defi nición de g. Observe que la última integral se hace cero en la parte positiva del eje y, en los 
puntos (0, y), si f (ξ) + g(−ξ) = 0 para ξ ≥ 0. Esto ocurrirá si g(−ξ) = −f (ξ). Esto es, hace a g la extensión 
impar de f a toda la recta real, obteniendo

Esta es la solución de este problema de Dirichlet particular para el semiplano superior. Pero esta función 
también es armónica en el primer cuadrante, haciéndose cero cuando x = 0, e igual a f(x) si x ≥ 0 y 
y = 0. Por tanto, uhp(x, y) también es la solución de este problema de Dirichlet para el primer cuadrante 
del plano.

EJEMPLO 7.5

Considere el problema

La solución es

■

EJEMPLO 7.6

Resuelva el problema

uhp(x, y) = y

π

∫ ∞

−∞

g(ξ)

y2 + (ξ − x)2
dξ.

uhp(x, y) = y

π

[∫ 0

−∞

g(ξ)

y2 + (ξ − x)2 dξ +
∫ ∞

0

g(ξ)

y2 + (ξ − x)2 dξ

]
.

∫ 0

−∞

g(ξ)

y2 + (ξ − x)2 dξ =
∫ 0

∞

g(−w)

y2 + (w + x)2 (−1) dw.

uhp(x, y) = y

π

[∫ 0

∞

g(−ξ)

y2 + (ξ + x)2
(−1) dξ +

∫ ∞

0

g(ξ)

y2 + (ξ − x)2
dξ

]

= y

π

∫ ∞

0

(
g(−ξ)

y2 + (ξ + x)2 + f (ξ)

y2 + (ξ − x)2

)
dξ,

uhp(x, y) = y

π

∫ ∞

0

(
1

y2 + (ξ − x)2 − 1

y2 + (ξ + x)2

)
f (ξ) dξ.

Consideramos el problema ∇2u = 0 para x > 0, y > 0,

u(0, y) = 0 para y > 0,

u(x, 0) = xe−x para x > 0.

u(x, y) = y

π

∫ ∞

0

(
1

y2 + (ξ − x)2
− 1

y2 + (ξ + x)2

)
ξe−ξ dξ.

Resolveremos el problema ∇2u = 0 para x > 0, y > 0,

u(0, y) = 0 para y > 0,

u(x, 0) = 1 para x > 0.
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La solución es

Estas integrales pueden ser evaluadas en la forma cerrada. Para la primera,

Por un cálculo semejante,

Entonces

Esta función es armónica en el primer cuadrante del plano y u(0, y) = 0 para y > 0. Más aún, si x > 0,

como se requería. ■

7.5.3 Un problema del potencial electrostático

Considere el problema

Este es un problema de Dirichlet si h = 0, pero suponga que h es una constante positiva. Este pro-
blema modela el potencial electrostático en la banda que consiste en todos los (x, y) con 0 < x < π y y > 0, 
suponiendo una distribución uniforme de la carga con densidad h/4π en toda esta región. La ecuación 
diferencial parcial ∇2u = −h se llama la ecuación de Poisson. La frontera de la banda consiste en las 
semirectas x = 0 y x = π con y ≥ 0 y el segmento en el eje x con 0 ≤ x ≤ π. En la fi gura 7.4 se muestran 
la banda y su frontera.

7.5 Los problemas de Dirichlet en regiones no acotadas

u(x, y) = y

π

∫ ∞

0

1

y2 + (ξ − x)2 dξ − y

π

∫ ∞

0

1

y2 + (ξ + x)2 dξ.

y

π

∫ ∞

0

1

y2 + (ξ − x)2 dξ = y

π

∫ ∞

0

1

y2
[
1 + ((ξ − x)/y)2

] dξ

= y

π

1

y

(
π

2
− arctan

(
−x

y

))
= 1

2
+ 1

π
arctan

(
x

y

)
.

y

π

∫ ∞

0

1

y2 + (ξ + x)2
dξ = 1

2
− 1

π
arctan

(
x

y

)
.

u(x, y) = 2

π
arctan

(
x

y

)
.

lím
y→0+

2

π
arctan

(
x

y

)
= 2

π

π

2
= 1,

∇2u(x, y) = −h para 0 < x < π, y > 0,

u(0, y) = 0, u(π, y) = 1 para y > 0,

u(x, 0) = 0 para 0 < x < π.

x

y

FIGURA 7.4 
Banda 0 ≤ x ≤ π, 
y ≥ 0.
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Considere las posibilidades para resolver este problema. Como y > 0, debe considerar una transfor-
mada de Fourier en senos o en cosenos en y. La difi cultad aquí es que al transformar la ecuación de Pois-
son, tendría que tomar la transformada de −h, y una constante no tiene transformada en senos o cosenos. 
Por ejemplo, si intenta calcular la transformada de Fourier en senos, debe evaluar

y esta integral diverge.
Como x varía de 0 a π, podría intentar una transformada de Fourier fi nita en senos o cosenos en x. 

Si intenta la transformada de Fourier fi nita en cosenos, entonces la fórmula operacional requiere que tenga 
información acerca de la derivada de la función en el origen, y no tiene dicha información. Sin embargo, 
la fórmula operacional de la transformada fi nita en senos requiere de información acerca de la función 
en los extremos del intervalo, y esto está dado en las condiciones en la frontera para y > 0. Se buscará, 
por tanto, una solución usando esta transformada. Denote la transformada de Fourier fi nita en senos en la 
variable x como 

Ahora aplique la transformada respecto a x a la ecuación de Poisson:

Por la fórmula operacional,

Debido a que x y y son independientes,

Finalmente,

Por tanto, la ecuación de Poisson se transforma en

Ahora u(π, y) = 1 y u(0, y) = 0, de manera que esta ecuación se puede escribir como

Para n = 1, 2, . . . , esta ecuación tiene solución general

Para que esta función permanezca acotada para y > 0, elija an = 0 para n = 1, 2, . . . . Entonces

∫ ∞

0
−h sen(ωx) dx,

S

[
∂2u

∂x2

]
+S

[
∂2u

∂y2

]
= S[−h].

S

[
∂2u

∂y2

]
=

∫ π

0

∂2u

∂y2 (x, y) sen(nx) dx = ∂2

∂y2

∫ π

0
u(x, y) sen(nx) dx = ∂2

∂y2 ũS(n, y).

S[−h] =
∫ π

0
−h sen(nx) dx = −h

n
[1 − (−1)n].

−n2ũS(n, y) − n(−1)nu(π, y) + nu(0, y) + ∂2

∂y2 ũS(n, y) = −h

n
[1 − (−1)n].

∂2

∂y2 ũS(n, y) − n2ũS(n, y) = n(−1)n − h

n
[1 − (−1)n].

ũS(n, y) = ane
ny + bne

−ny + (−1)n+1

n
+ h

n3
[1 − (−1)n].

ũS(n, y) = bne
−ny + (−1)n+1

n
+ h

n3 [1 − (−1)n].

S

[
∂2u

∂x2

]
= −n2ũS(n, y) − n(−1)nu(π, y) + nu(0, y).

S[u(x, y)] = ũS(n, y).
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Para resolver bn, aplique la transformada de la condición u(x, 0) = 0 para obtener

Entonces

Tiene, por tanto

Por la fórmula de inversión, estos son los coefi cientes en la serie de Fourier en senos (en x) de la solución, 
así la solución es

1.  Escriba una solución integral para el problema de Dirichlet 
para el semiplano superior si los valores en la frontera son

2.  Escriba una solución integral para el problema de Dirichlet 
para el semiplano superior si el valor en la frontera es 
f (x) = e−|x|.

3.  Escriba una solución integral para el problema de Dirichlet 
para el primer cuadrante si

 u(x, 0) = e−x  cos(x) para x > 0,

 y

 u(0, y) = 0 para y > 0.

4.  Escriba una solución integral para el problema de Dirichlet 
para el primer cuadrante si

 u(x, 0) = 0 para x > 0

 y

 u(0, y) = g(y) para y > 0.

  Obtenga la solución primero usando la separación de las 
variables, y después usando una transformada de Fourier 
adecuada.

5.  Escriba una solución integral para el problema de Dirichlet 
para el primer cuadrante si

u(x, 0) = f (x) para x > 0

 y

 u(0, y) = g(y) para y > 0.

6.  Escriba la solución integral para el problema de Dirichlet 
para el semiplano inferior y < 0.

7.  Resuelva el problema del potencial electrostático para la 
banda 0 < x < π, y > 0 con los valores en la frontera

u(0, y) = 0, u(π, y) = 0 para y > 0,

u(x, 0) = B sen(x) para 0 < x < π.

 Aquí B es una constante positiva.

8.  Resuelva el problema del potencial electrostático para la 
banda −∞ < x < ∞, 0 < y < 1 si

u(x, 0) = 0 para x < 0

 y

 u(x, 0) = e−αx para x > 0,

 con α un número positivo.

9.  Resuelva el problema de Dirichlet para la banda 0 < x < π, 
y > 0 si

u(0, y) =0 y u(π, y) = 2 para y > 0

SECCIÓN 7.5 PROBLEMAS

7.5 Los problemas de Dirichlet en regiones no acotadas

Entonces
bn = (−1)n

n
− h

n3 [1 − (−1)n].

0 = ũS(n, 0) = bn + (−1)n+1

n
+ h

n3 [1 − (−1)n].

ũS(n, y) =
[
(−1)n

n
− h

n3 [1 − (−1)n]
]

e−ny + (−1)n+1

n
+ h

n3 [1 − (−1)n]

=
[
(−1)n

n
− h

n3 [1 − (−1)n]
]

(e−ny − 1).

u(x, y) = 2

π

∞∑

n=1

[
(−1)n

n
− h

n3 [1 − (−1)n]
]

(e−ny − 1) sen(nx).

f (x) =

⎧
⎪⎨
⎪⎩

−1

1

0

−1 para −4 ≤ x < 0

1 para 0 ≤ x ≤ 4

0 para |x| > 4

.
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7.6 El problema de Dirichlet para un cubo

Ilustrará el problema de Dirichlet en el espacio de tres dimensiones. Considere:

Busque una función que sea armónica en el cubo (el cual puede tener lados de distintas longitudes), y cero 
en cinco lados, pero con los valores prescritos f (x, z) en el sexto lado.

Sea u(x, y, z) = X(x)Y(y)Z(z) para obtener

y entonces, después de una segunda separación,

Entonces

A partir de las condiciones en la frontera,

X(0) = X(A) = 0,

Z(0) = Z(C) = 0,

y
Y(0) = 0.

 y

    u(x, 0) = −4 para 0 < x < π.

10.  Resuelva el siguiente problema, en donde los datos en la 
frontera son una mezcla de valores de la función y los valo-
res de una derivada parcial de la función:

∇2u = 0 para 0 < x < π, 0 < y < 2,

    u(0, y) = 0
y

u(π, y) = 4 para 0 < y < 2,

y

11.  Encuentre la distribución de temperatura en estado estacio-
nario en una placa plana, homogénea, fi nita que se extiende 
en el primer cuadrante x ≥ 0, y ≥ 0 si la temperatura en y en 

el lado vertical es e−y y la temperatura en el lado horizontal 
es cero.

12.  Encuentre la distribución de temperatura en estado estacio-
nario en una placa plana, homogénea, infi nita que cubre el 
semiplano x ≥ 0 si la temperatura en la frontera x = 0 es 
f (y), donde

13.  Encuentre la distribución de temperatura en estado estacio-
nario en una placa plana, homogénea, infi nita que cubre el 
semiplano y ≥ 0 si la temperatura en la frontera y = 0 es 
cero para x < 4, la constante A para 4 ≤ x ≤ 8, y cero para 
x > 8.

14.  Escriba una expresión general para la distribución de tempe-
ratura en estado estacionario en una placa plana, homogénea, 
fi nita que cubre la banda 0 ≤ y ≤ 1, x ≥ 0 si la temperatura 
en la frontera izquierda y el lado inferior son cero y la tem-
peratura en la parte superior de la frontera es f (x).

f (y) =
{

1 para |y| ≤ 1

0 para |y| > 1
.

∇2u(x, y, z) = 0 para 0 < x < A, 0 < y < B, 0 < z < C,

u(x, y, 0) = u(x, y, C) = 0,

u(0, y, z) = u(A, y, z) = 0,

u(x, 0, z) = 0, u(x, B, z) = f (x, z).

X′′

X
= −Y ′′

Y
− Z′′

Z
= −λ,

Z′′

Z
= λ − Y ′′

Y
= −μ.

∂u

∂y
(x, 0) = u(x, 2) = 0 para 0 < x < π.

X′′ + λX = 0, Z′′ + μZ = 0, y Y ′′ − (λ + μ)Y = 0.
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Los problemas para X y Z son familiares, y obtiene los valores y funciones propios:

y

con n y m variando independientemente sobre los enteros positivos.
La ecuación diferencial para Y(y) se convierte en

Ésta tiene soluciones que son múltiplos constantes de senh(βnmy), donde

Para cada entero positivo n y m, ahora tiene una función

que satisface la ecuación de Laplace y las condiciones cero en la frontera dadas en cinco de las caras del 
cubo. Para satisfacer la condición en la sexta cara, generalmente debe usar una superposición

Ahora debe elegir los coefi cientes de manera que

Ha encontrado previamente esta clase de desarrollos dobles de Fourier en senos, en el tratamiento 
de vibraciones en una membrana elástica, rectangular y fi ja a un marco. A partir de esa experiencia, puede 
escribir

Como es usual, si hay más de una cara con valores distintos de cero, entonces divida el problema de 
Dirichlet en una suma de problemas, en cada uno de los cuales hay sólo una cara con valores distintos 
de cero.

7.6 El problema de Dirichlet para un cubo

λn = n2π2

A2 , Xn(x) = sen
(nπx

A

)
,

μm = m2π2

C2 ; Zm(z) = sen
(mπz

C

)
,

Y ′′ −
(

n2π2

A2 + m2π2

C2

)
Y = 0; Y (0) = 0.

βnm =

√
n2π2

A2 + m2π2

C2 .

unm(x, y, z) = cnm sen
(nπx

A

)
sen

(mπz

C

)
senh(βnmy),

u(x, y, z) =
∞∑

n=1

∞∑

m=1

cnm sen
(nπx

A

)
sen

(mπz

C

)
senh(βnmy).

u(x, B, z) = f (x, z) =
∞∑

n=1

∞∑

m=1

cnm sen
(nπx

A

)
sen

(mπz

C

)
senh(βnmB).

cnm = 4

AC senh(βnmB)

∫ A

0

∫ C

0
f (ξ, ζ ) sen

(
nπξ

A

)
sen

(
mπζ

C

)
dζ dξ.
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7.7 La ecuación de calor en estado estacionario para una esfera sólida

Considere una esfera sólida de radio R, centrada en el origen. Busque resolver para la distribución de 
temperatura en estado estacionario, dada la temperatura en la superfi cie en todo tiempo.

En el caso de estado estacionario, ∂u/∂t = 0 y la ecuación de calor es la ecuación de Laplace ∇2u = 0. 
Use coordenadas esféricas (ρ, θ, ϕ), en donde ρ es la distancia desde el origen a (x, y, z), θ es el ángulo polar 
entre el eje x positivo y la proyección en el plano xy de la recta que va del origen a (x, y, z), y ϕ es el ángulo 
de declinación desde el eje z positivo a esta recta (fi gura 7.5). También suponga la simetría alrededor del 
eje z, así u es una función solamente de ρ y ϕ. Entonces ∂u/∂θ = 0, y la ecuación de Laplace se vuelve

1. Resuelva

 ∇2 u(x, y, z) = 0 para 0 < x < 1, 0 < y < 1, 0 < z < 1,

 u(x, y, 0) = u(x, 1, z) = 0,

 u(0, y, z) = u(1, y, z) = 0,

 u(x, 0, z) = 0, u(x, y, 1) = xy.

2. Resuelva

 ∇2 u(x, y, z) = 0 para 0 < x < 2π, 0 < y < 2π, 0 < z < 1,

 u(x, y, 0) = u(x, y, 1) = 0,

 u(0, y, z) = 0,

 u(x, 0, z) = 0, u(x, 2π, z) = 0,

 u(2π, y, z) = z

3. ∇2 u(x, y, z) = 0 para 0 < x < 1, 0 < y < 2π, 0 < z < π,

 u(x, y, 0) = 0, u(x, y, π) = u(π − x)y (π − y),

 u(0, y, z) = u(1, y, z) = 0,

 u(x, 0, z) = u(x, y, 0) = 0,

 u(x, y, π) = 1, u(x, 2π, z) = 2.

4. ∇2 u(x, y, z) = 0 para 0 < x < 1, 0 < y < 2, 0 < z < π,

 u(x, y, 0) = x2(1 − x)y(2 − y), u(x, y, π) = 0,

 u(0, y, z) = 0, u(1, y, z) = sen(πy)sen(z),

 u(x, 0, z) = 0, u(x, 2, z) = 0

SECCIÓN 7.6 PROBLEMAS

La temperatura en la superfi cie es

∇2u(ρ, ϕ) = ∂2u

∂ρ2
+ 2

ρ

∂u

∂ρ
+ 1

ρ2

∂2u

∂ϕ2
+ cot(ϕ)

ρ2

∂u

∂ϕ
= 0.

y

z

x

�

�
�

(�, �, �)

FIGURA 7.5 
Coordenadas esféricas.

u(R, ϕ) = f (ϕ).
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Para separar las variables en la ecuación diferencial, sea u(ρ, ϕ) = X(ρ)�(ϕ) para obtener

Entonces

Después

La ecuación diferencial para � puede escribirse

(7.4)

Cambie variables haciendo

Entonces ϕ = arccos(x). Sea

Como 0 ≤ ϕ ≤ π, entonces −1 ≤ x ≤ 1. Calcule

Entonces

Entonces

y la ecuación (7.4) se transforma en

Esta es la ecuación diferencial de Legendre (sección 4.1). Para las soluciones acotadas, elija λ = n(n+1) 
para n = 0, 1, 2, . . . Estos son los valores propios de este problema. Las funciones propias son múltiplos 
constantes distintos de cero de los polinomios de Legendre Pn(x).

Para n = 0, 1, 2, . . . , ahora tiene la solución de la ecuación diferencial para �:

7.7 La ecuación de calor en estado estacionario para una esfera sólida

X′′� + 2

ρ
X′� + 1

ρ2 X�′′ + cot(ϕ)

ρ2 X�′ = 0.

�′′

�
+ cot(ϕ)

�′

�
= −ρ2 X′′

X
− 2ρ

X′

X
= −λ.

ρ2X′′ + 2ρX′ − λX = 0 y �′′ + cot(ϕ)�′ + λ� = 0.

1

sen(ϕ)
[�′ sen(ϕ)]′ + λ� = 0.

x = cos(ϕ).

G(x) = �(arccos(x)).

�′(ϕ) sen(ϕ) = sen(ϕ)
d�

dx

dx

dϕ

= sen(ϕ)G′(x)[− sen(ϕ)]
= − sen2(ϕ)G′(x) = −[1 − cos2(ϕ)]G′(x)

= −(1 − x2)G′(x).

d

dϕ
[�′(ϕ) sen(ϕ)] = − d

dϕ
[(1 − x2)G′(x)]

= − d

dx
[(1 − x2)G′(x)] dx

dϕ

= − d

dx
[(1 − x2)G′(x)](− sen(ϕ)).

1

sen(ϕ)

d

dϕ
[�′(ϕ) sen(ϕ)] = d

dx
[(1 − x2)G′(x)],

[(1 − x2)G′(x)]′ + λG(x) = 0.

�n(ϕ) = G(cos(ϕ)) = Pn(cos(ϕ)).
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Ahora que conoce los valores admisibles para λ, la ecuación diferencial para X se vuelve

Esta es una ecuación diferencial de Euler de segundo orden, con solución general

Debe elegir b = 0 para tener una solución acotada en el centro de la esfera, ya que ρ−n−1 → ∞ conforme 
ρ → 0+. Así

Para cada entero no negativo n, tiene ahora una función

que satisface la ecuación de Laplace. Para satisfacer las condiciones en la frontera, escriba una superpo-
sición de estas funciones:

Debe elegir los coefi cientes para que satisfagan

Para poner esto en el contexto de los desarrollos de Fourier-Legendre, sea ϕ = arccos(x) para escribir

Ésta es una serie de Fourier-Legendre para la función conocida f (arccos(x)). De la sección 4.1.5, los 
coefi cientes son

o

La distribución de temperatura en estado estacionario es

EJEMPLO 7.7

Considere esta solución en un caso específi co, con f (ϕ) = ϕ. Ahora

ρ2X′′ + 2ρX′ − n(n + 1)X = 0.

X(ρ) = aρn + bρ−n−1.

Xn(ρ) = anρ
n.

un(ρ, ϕ) = anρ
nPn(cos(ϕ))

u(ρ, ϕ) =
∞∑

n=0

anρ
nPn(cos(ϕ)).

u(R, ϕ) =
∞∑

n=0

anR
nPn(cos(ϕ)) = f (ϕ).

∞∑

n=0

anR
nPn(x) = f (arccos(x)).

anR
n = 2n + 1

2

∫ 1

−1
f (arccos(x))Pn(x) dx,

an = 2n + 1

2Rn

∫ 1

−1
f (arccos(x))Pn(x) dx.

u(ρ, ϕ) =
∞∑

n=0

2n + 1

2

(∫ 1

−1
f (arccos(x))Pn(x) dx

)( ρ

R

)n

Pn(cos(ϕ)).

u(ρ, ϕ) =
∞∑

n=0

2n + 1

2

(∫ 1

−1
arccos(x)Pn(x) dx

)( ρ

R

)n

Pn(cos(ϕ)).
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Determinará algunos de estos coefi cientes aproximando las integrales. De la sección 4.1, los primeros seis 
polinomios de Legendre son

Aproxime:

y

Tome los primeros seis términos de la serie como una aproximación de la solución, obtiene

Algunos de estos términos pueden ser combinados, pero se han escrito todos ellos para indicar cómo 
aparecen. ■

Regresará nuevamente al problema de Dirichlet cuando se trate de análisis complejos. Ahí estará en 
posición de explotar los mapeos conformes. La idea será mapear la región de interés de cierta manera al 
disco unitario. Como puede resolver el problema de Dirichlet para el disco (esto es, sabe una fórmula 
para la solución), éste mapea el problema original en un problema que puede resolver. Entonces, intentará 
invertir el mapeo para transformar la solución para el disco en la solución para la región original.

Concluirá este capítulo con una breve discusión del problema de Neumann.

1.  Escriba la solución para la distribución de temperatura en 
estado estacionario en la esfera si los valores iniciales están 
dados por f (ϕ) = Aϕ2, en donde A es una constante posi-
tiva. Haga una aproximación a la integración para obtener 
el coefi ciente y escriba (calcule) los primeros seis términos  
de la solución en serie.

2.  Lleve a cabo el programa del problema 1 para la función de 
valores iniciales f (ϕ) = sen(ϕ) para 0 ≤ ϕ ≤ π.

3.  Lleve a cabo el programa del problema 1 para la función de 
valores iniciales f (ϕ) = ϕ3.

4.  Lleve a cabo el programa del problema 1 para la función de 
valores iniciales f (ϕ) = 2 − ϕ2.

SECCIÓN 7.7 PROBLEMAS

7.7 La ecuación de calor en estado estacionario para una esfera sólida

P0(x) = 1, P1(x) = x, P2(x) = 1

2
(3x2 − 1)

P3(x) = 1

2
(5x3 − 3x), P4(x) = 1

8
(35x4 − 30x2 + 3),

P5(x) = 1

8
(63x5 − 70x3 + 15x).

∫ 1

−1

1

8
(63x5 − 70x3 + 15x) arccos(x) dx ≈ −1. 2272 × 10−2.

∫ 1

−1
arccos(x) dx ≈ π,

∫ 1

−1
x arccos(x) dx ≈ −. 785 4,

∫ 1

−1

1

2
(3x2 − 1) arccos(x) dx = 0,

∫ 1

−1

1

2
(5x3 − 3x) arccos(x) dx ≈ −4. 9087 × 10−2

∫ 1

−1

1

8
(35x4 − 30x2 + 3) arccos(x) dx = 0,

0.7854,

u(ρ, ϕ) ≈ 1

2
π − 3

2
(.(0.7854)

ρ

R
cos(ϕ) − 7

2
(0.049087)

1

2

( ρ

R

)3 (
5 cos3(ϕ) − 3 cos(ϕ)

)

( ρ

R

)5 1

8

(
63 cos5(ϕ) − 70 cos3(ϕ) + 15 cos(ϕ)

)
.(0.012272)− 11

2
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7.8 El problema de Neumann

El problema de Neumann en el plano consiste en encontrar una función que sea armónica en una región 
dada D y cuya derivada normal en la frontera de la región está dada. Este problema tiene la forma 

donde, como es usual, ∂D denota la frontera de D. Esta frontera frecuentemente es una curva suave a peda-
zos en el plano (pero no necesariamente una curva cerrada). La derivada normal está defi nida por

el producto punto del gradiente de u con la normal unitaria exterior a la curva (fi gura 7.6). Si está normal 
es n = n1i + n2j, entonces ∂u/∂n es

Use el siguiente.

5.  Resuelva para la distribución de temperatura en estado 
estacionario en una esfera agujereada, dada en coorde-
nadas esféricas por R1 ≤ ρ ≤ R2. La superfi cie interior 
ρ = R1 se mantiene a temperatura constante T1, mientras 
que la superfi cie exterior ρ = R2 se mantiene a temperatu-
ra cero. Suponga que la distribución de temperatura es una 
función únicamente de ρ y ϕ.

6.  Aproxime la solución del problema 5 escribiendo los 
primeros seis términos de la solución en serie, llevando 
a cabo cualquier integración requerida por un método 
numérico.

7.  Resuelva para la distribución de temperatura en estado esta-
cionario en un hemisferio cerrado sólido, el cual en coorde-
nadas esféricas está dado por 0 ≤ ρ ≤ R, 0 ≤ θ  ≤ 2π, 0 ≤ 
ϕ ≤ π/2. El disco base se mantiene a temperatura cero y la 
superfi cie hemisférica a temperatura constante A. Suponga 
que la distribución es independiente de θ.

8.  Rehaga el problema 7, pero ahora la base está aislada en 
lugar de mantenerse a temperatura cero.

9.  Rehaga el problema 7 para el caso en que la temperatura en 
la superfi cie hemisférica es u(R, ϕ) = f (ϕ), no necesaria-
mente constante.

∂u

∂n
= ∇u · n,

∂u

∂n
= n1

∂u

∂x
+ n2

∂u

∂y
.

x

y

D

P

D

FIGURA 7.6 Normal exterior 
n en un punto en ∂D.

∇2u(x, y) = 0 para (x, y) en D,

∂u

∂n
(x, y) = g(x, y) para (x, y) en ∂D,D,
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Sea D una región acotada en el plano cuya frontera ∂D es una curva cerrada suave a pedazos. Sean k y h 
continuas con primera y segunda derivadas parciales continuas en D y su frontera. Entonces

En esta integral de línea, ds denota la integración respecto a la longitud de arco a lo largo de la curva 
que acota D.

Prueba Por el teorema de Green escriba

Ahora,

Use este resultado como sigue. Si k = 1 y h = u, una función armónica en D, entonces la integral 
doble es cero ya que su integrando se hace cero y la integral de línea es sólo la integral de línea de la deri-
vada normal de u sobre la frontera de la región. Pero en ∂D, ∂u/∂n = g, una función dada. Concluya que

Esto signifi ca que una condición necesaria para que el problema de Neumann tenga solución, es que la 
integral de la derivada normal dada alrededor de la frontera de la región sea cero. Esta conclusión puede 
ser extendida al caso que ∂D no sea una curva cerrada. Por ejemplo, la frontera del semiplano superior es 
el eje horizontal, el cual no es una curva cerrada.

EJEMPLO 7.8

Resuelva el problema de Neumann para un cuadrado:

sujeto a

en el lado izquierdo y en los lados superior e inferior, mientras

7.8 El problema de Neumann

LEMA 7.1 Primera identidad de Green

∮

∂D

k
∂h

∂n
ds =

∫∫

D

(k∇2h + ∇k · ∇h) dA.

∮

∂D

k
∂h

∂n
ds =

∮

∂D

(k∇h) · n ds =
∫∫

D

div (k∇h) dA.

Ahora,

div(k∇h) = div

(
k
∂h

∂x
i + k

∂h

∂y
j
)

= ∂

∂x

(
k
∂h

∂x

)
+ ∂

∂y

(
k
∂h

∂y

)

= k

(
∂2h

∂x2 + ∂2h

∂y2

)
+ ∂k

∂x

∂h

∂x
+ ∂k

∂y

∂h

∂y

= k∇2h + ∇k · ∇h.

∇2u(x, y) = 0 para 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

∂u

∂n
= 0

∂u

∂n
(1, y) = y2 para 0 ≤ y ≤ 1.

∮

∂D

∂u

∂n
ds =

∮

∂D

gds = 0.
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Como

este problema no tiene solución. ■

La existencia también puede ser una pregunta para el problema de Dirichlet. Sin embargo, para un 
problema de Dirichlet, si la función dada en la frontera es bien portada (por ejemplo, continua) y la región 
es “simple” (tal como un disco, rectángulo, semiplano), entonces el problema de Dirichlet tiene una solu-
ción. Para los problemas de Neumann, aun para regiones sencillas y aparentemente con valores para la 
derivada normal con buen comportamiento, puede no haber solución si la integral de la función de valores 
alrededor de la frontera no es cero.

Resolverá ahora dos problemas de Neumann para ilustrar lo que está involucrado.

7.8.1 El problema de Neumann para un rectángulo

Considere el problema

Para el rectángulo, la derivada normal es ∂u/∂x en los lados verticales, y ∂u/∂y en los lados horizontales. 
Como una condición necesaria (pero no sufi ciente) para la existencia de una solución, se pide que

Este ejemplo aclarará por qué puede no haber solución sin esta condición.
Sea u(x, y) = X(x)Y(y) y obtiene

Ahora

implica que Y´(0) = 0. Análogamente,

implica que Y´(b) = 0. El problema para Y es

Esta ecuación de Sturm-Liouville familiar tiene valores y funciones propios

para n = 0, 1, 2, . . .

∮

∂D

∂u

∂n
ds =

∫ 1

0
y2 dy = 1

3
�= 0,

∇2u(x, y) = 0 para 0 < x < a, 0 < y < b,

∂u

∂y
(x, 0) = ∂u

∂y
(x, b) = 0 para 0 ≤ x ≤ a,

∂u

∂x
(0, y) = 0 para 0 ≤ y ≤ b,

∂u

∂x
(a, y) = g(y) para 0 ≤ y ≤ b.

∫ b

0
g(y) dy = 0.

X′′ + λX = 0, Y ′′ − λY = 0.

∂u

∂y
(x, 0) = X(x)Y ′(0) = 0

∂u

∂y
(x, b) = X(x)Y ′(b) = 0

Y ′′ − λY = 0; Y ′(0) = Y ′(b) = 0.

λn = −n2π2

b2 y Yn(y) = cos
(nπy

b

)
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Ahora el problema para X es

Más aún,

implica que X´(0) = 0.
Para n = 0, la ecuación diferencial para X es sólo X″ = 0, de donde X(x) = cx + d. Entonces X´(0) = 

c = 0, así en este caso X(x) = constante.
Si n es un entero positivo, entonces la ecuación diferencial para X tiene solución general

Ahora

implica que c = d. Esto nos da

Ahora tiene las funciones

y, para cada entero positivo n,

Para satisfacer la última condición en la frontera (en el lado derecho del rectángulo), use una superposi-
ción

Necesita

un desarrollo de Fourier en cosenos de g(y) en [0, b]. Observe que el término constante en este desarrollo 
de g(y) es cero. Este término constante es 

que debe suponer cero. Si esta integral no es cero, entonces el desarrollo en cosenos de g(y) tendría un 
término constante distinto de cero, contradiciendo el hecho que no lo tiene. En este caso este problema de 
Neumann no tendrá solución.

Para los otros coefi cientes en la serie en cosenos, tiene

así

7.8 El problema de Neumann

X′′ − n2π2

b2 X = 0.

∂u

∂x
(0, y) = X′(0)Y (y) = 0

X(x) = cenπx/b + de−nπx/b.

X′(0) = nπ

b
c − nπ

b
d = 0

Xn(x) = cosh
(nπx

b

)
.

u0(x, y) = constante

un(x, y) = cn cosh
(nπx

b

)
cos

(nπy

b

)
.

u(x, y) = c0 +
∞∑

n=1

cn cosh
(nπx

b

)
cos

(nπy

b

)
.

∂u

∂x
(a, y) = g(y) =

∞∑

n=1

nπ

b
cn senh

(nπa

b

)
cos

(nπy

b

)
,

1

b

∫ b

0
g(y) dy,

nπ

b
cn senh

(nπa

b

)
= 2

b

∫ b

0
g(ξ) cos

(
nπξ

b

)
dξ,

así

cn = 2

nπ senh(nπa/b)

∫ b

0
g(ξ) cos

(
nπξ

b

)
dξ.
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Con esta elección de los coefi cientes, la solución de este problema de Neumann es

El número c0 es indeterminado y permanece arbitrario. Esto se debe a que los problemas de Neumann no 
tienen soluciones únicas. Si u es cualquier solución de un problema de Neumann, también lo es u + c para 
cualquier constante c, debido a que la condición en la frontera está en la derivada normal y c se anula en 
esta diferenciación.

7.8.2 El problema de Neumann para un disco

Resuelva el problema de Neumann para un disco de radio R centrado en el origen. En coordenadas pola-
res, el problema es

La derivada normal aquí es ∂/∂r, ya que la recta del origen a un punto en este círculo está en la dirección 
del vector normal exterior al círculo en ese punto.

Una condición necesaria para la existencia de una solución es que

y suponga que f satisface esta condición.
Como hizo con el problema de Dirichlet para un disco, intente una solución

Necesita

Este es un desarrollo de Fourier de f (θ) en [−π, π]. El término constante en este desarrollo es

y debe ser cero ya que esta serie de Fourier para (∂u/∂r)(R, θ) tiene un término constante cero. La suposi-
ción de que esta integral es cero es por tanto consistente con esta condición en la frontera.

Para los otros coefi cientes, necesita

y

Así elija

u(x, y) = c0 +
∞∑

n=1

cn cosh
(nπx

b

)
cos

(nπy

b

)
.

∇2u(r, θ) = 0 para 0 ≤ r < R, −π ≤ θ ≤ π,

∂u

∂r
(R, θ) = f (θ) para −π ≤ θ ≤ π.

∫ π

−π

f (θ) dθ = 0,

u(r, θ) = 1

2
a0 +

∞∑

n=1

anr
n cos(nθ) + bnr

n sen(nθ).

Necesitamos
∂u

∂r
(R, θ) = f (θ) =

∞∑

n=1

nanR
n−1 cos(nθ) + nbnR

n−1 sen(nθ).

1

π

∫ π

−π

f (θ) dθ,

nanR
n−1an = 1

π

∫ π

−π

f (ξ) cos(nξ) dξ

nanR
n−1bn = 1

π

∫ π

−π

f (ξ) sen(nξ) dξ.

an = 1

nπRn−1

∫ π

−π

f (ξ) cos(nξ) dξ
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y

Insertando estos coefi cientes, la solución es

También puede escribir esta solución como

El término a0/2 es una constante arbitraria. El factor de 1/2 en esta constante arbitraria es sólo costumbre.

EJEMPLO 7.9

Resolver el problema de Neumann

Cambie a coordenadas polares, haciendo u(r cos(θ), r sen(θ)) = U(r, θ). Entonces

Primero calcule

así vale la pena intentar resolver este problema. Escriba la solución

Evalúe

La solución es, por tanto

Para obtener la solución en coordenadas rectangulares, use x = r cos(θ) y r2 = x2 + y2 para escribir

■

7.8 El problema de Neumann

bn = 1

nπRn−1

∫ π

−π

f (ξ) sen(nξ) dξ.

u(r, θ) = 1

2
a0 + R

π

∞∑

n=1

1

n

( r

R

)n
∫ π

−π

[cos(nξ) cos(nθ) + sen(nξ) sen(nθ)]f (ξ) dξ.

u(r, θ) = 1

2
a0 + R

π

∞∑

n=1

1

n

( r

R

)n
∫ π

−π

cos(n(ξ − θ))f (ξ) dξ.

∇2u(x, y) = 0 para x2 + y2 < 1,

∂u

∂n
(x, y) = xy2 para x2 + y2 = 1.

∇2U(r, θ) = 0 para 0 ≤ r < 1, −π ≤ θ ≤ π,

∂U

∂r
(1, θ) = cos(θ) sen2(θ).

∫ π

−π

cos(θ) sen2(θ) dθ = 0,

U(r, θ) = 1

2
a0 + 1

π

∞∑

n=1

1

n
(r)n

∫ π

−π

cos(n(ξ − θ)) cos(ξ) sen2(ξ) dξ.

∫ π

−π

cos(n(ξ − θ)) cos(ξ) sen2(ξ) dξ =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 para n = 2, 4, 5, 6, . . .

π cos(θ)

4
si n = 1

−π cos3(θ) + 3π cos(θ)

4
si n = 3

.

π cos(θ)

4
si n = 1

.

0 para n = 2, 4, 5, 6, . . .

U�r� ��=
1

2
a
0
+

1

4
r cos���+

1

3
r3
(

− cos
3���+

3

4
cos���

)

=
1

2
a
0
+

1

4
r cos���−

1

3
r3 cos3���+

1

4
r3 cos����

u�x� y�=
1

2
a
0
+

1

4
x−

1

3
x3+

1

4
x�x2+y2��
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Nuevamente, la solución tiene una constante arbitraria, que está escrita con un factor de 1
2 debido 

simplemente a que inició con una serie de Fourier y la constante a menudo se llama a0/2.

7.8.3 El problema de Neumann para el semiplano superior

Como una ilustración de un problema de Neumann para un dominio no acotado, considere:

La frontera de la región es el eje real, y ∂/∂y es la derivada normal de esta recta.

Requiere que �∞
−∞ f (x)dx = 0 como una condición necesaria para que exista una solución. 

Hay una manera elegante de reducir este problema a uno que ya ha resuelto. Sea v = ∂u/∂y. 
Entonces

de manera que v es armónica siempre que u lo sea. Más aún

Por tanto v es la solución de un problema de Dirichlet para el semiplano superior. Pero conoce la solución 
de este problema:

Ahora recupere u de v por integración: Dentro de una constante arbitraria,

en donde c es una constante arbitraria. Esto da la solución del problema de Neumann para el semiplano 
superior.

1. Resuelva 2. Resuelva

SECCIÓN 7.8 PROBLEMAS

∇2u(x, y) = 0 para −∞ < x < ∞, y > 0,

∂u

∂y
(x, 0) = f (x) para −∞ < x < ∞.

∇2v = ∂2

∂x2

(
∂u

∂y

)
+ ∂2

∂y2

(
∂u

∂y

)
= ∂

∂y

(
∂2u

∂x2 + ∂2u

∂y2

)
= 0,

v(x, 0) = ∂u

∂y
(x, 0) = f (x) para −∞ < x < ∞.

v(x, y) = y

π

∫ ∞

−∞

f (ξ)

y2 + (ξ − x)2 dξ.

∇2u(x, y) = 0 para 0 < x < 1, 0 < y < 1,

∂u

∂y
(x, 0) = 4 cos(πx),

∂u

∂y
(x, 1) = 0 para 0 ≤ x ≤ 1,

∂u

∂x
(0, y) = ∂u

∂x
(1, y) = 0 para 0 ≤ y ≤ 1.

∇2u(x, y) = 0 para 0 < x < 1, 0 < y < π,

∂u

∂y
(x, 0) = ∂u

∂y
(x, π) = 0 para 0 ≤ x ≤ 1,

∂u

∂x
(0, y) = y − π

2
para 0 ≤ y ≤ π,

∂u

∂x
(π, y) = cos(y) para 0 ≤ y ≤ π.

u(x, y) =
∫

∂u

∂y
dy =

∫
y

π

∫ ∞

−∞

f (ξ)

y2 + (ξ − x)2 dξ dy

= 1

π

∫ ∞

−∞

(∫
y

y2 + (ξ − x)2 dy

)
f (ξ) dξ

= 1

2π

∫ ∞

−∞
ln(y2 + (ξ − x)2)f (ξ) dξ + c,

dy
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3. Resuelva

4.  Use la separación de las variables para resolver el problema 
con valor mixto en la frontera

 ¿Tiene este problema una solución única?

5. Intente una separación de las variables para resolver

6. Escriba una solución en serie para

7. Escriba una solución para

8.  Resuelva el siguiente problema de Neumann para el semi-
plano superior:

9.  Resuelva el siguiente problema de Neumann para el semi-
plano superior:

10.  Resuelva el siguiente problema de Neumann para el semi-
plano inferior:

11.  Resuelva el siguiente problema de Neumann para el primer 
cuadrante:

12. Resuelva el siguiente problema mixto:

7.8 El problema de Neumann

∇2u(x, y) = 0 para 0 < x < π, 0 < y < π,

∂u

∂y
(x, 0) = cos(3x),

∂u

∂y
(x, π) = 6x − 3π para 0 ≤ x ≤ π,

∂u

∂x
(0, y) = ∂u

∂x
(π, y) = 0 para 0 ≤ y ≤ π.

∇2u(x, y) = 0 para 0 < x < π, 0 < y < π,

u(x, 0) = f (x), u(x, π) = 0 para 0 ≤ x ≤ π,

∂u

∂x
(0, y) = ∂u

∂x
(π, y) = 0 para 0 ≤ y ≤ π.

∇2u(x, y) = 0 para 0 < x < 1, 0 < y < 1,

u(x, 0) = u(x, 1) = 0 para 0 ≤ x ≤ 1,

∂u

∂x
(0, y) = 3y2 − 2y,

∂u

∂x
(1, y) = 0 para 0 ≤ y ≤ 1.

∇2u(r, θ) = 0 para 0 ≤ r < R, −π ≤ θ ≤ π,

∂u

∂r
(R, θ) = sen(3θ) para −π ≤ θ ≤ π.

∇2u(r, θ) = 0 para 0 ≤ r < R, −π ≤ θ ≤ π,

∂u

∂r
(R, θ) = cos(2θ) para −π ≤ θ ≤ π.

∇2u(x, y) = 0 para −∞ < x < ∞, y > 0,

∂u

∂y
(x, 0) = xe−|x| para −∞ < x < ∞.

∇2u(x, y) = 0 para −∞ < x < ∞, y > 0,

∂u

∂y
(x, 0) = e−|x| sen(x) para −∞ < x < ∞.

∇2u(x, y) = 0 para −∞ < x < ∞, y < 0,

∂u

∂y
(x, 0) = f (x) para −∞ < x < ∞.

∇2u(x, y) = 0 para x > 0, y > 0,

∂u

∂x
(0, y) = 0 para y ≥ 0,

∂u

∂y
(x, 0) = f (x) para 0 ≤ x < ∞.

∇2u(x, y) = 0 para x > 0, y > 0,

u(0, y) = 0 para y ≥ 0,

∂u

∂y
(x, 0) = f (x) para 0 ≤ x < ∞.





8.1 Los números complejos

Un número complejo es un símbolo de la forma x + iy o x + yi, en donde x y y son números reales 
e i2 = −1. La aritmética de los números complejos está defi nida por

igualdad: a + ib = c + id exactamente cuando a  = c y b = d,

suma: (a + ib) + (c + id) = (a + c) + i(b + d),

y

multiplicación: (a + ib)(c + id) = ac − bd + i(ad + bc).

En la multiplicación de números complejos, proceda exactamente como lo haría con los polinomios 
de primer grado a + bx y c + dx, pero con i en lugar de x:

 (a + bi)(c + di) = ac + adi + bci + bdi2

 = ac − bd + (ad + bc)i

ya que i2 = −1. Por ejemplo,

(6 − 4i)(8 + 13i) = (6)(8) − (−4)(13) + i[(6)(13) + (−4)(8)] = 100 + 46i.

El número real a se llama la parte real de a + bi y es denotado Re(a + bi). El número real b es la parte 
imaginaria, denotado Im(a + bi). Por ejemplo,

Re(−23 + 7i) = −23 y Im(−23 + 7i) = 7.

Tanto la parte real como la imaginaria de cualquier número complejo son números reales.
Piense al sistema de los números complejos como una extensión del sistema de los números reales en 

el sentido que todo número real a es el número complejo a + 0i. Esta extensión de los números reales a 
los complejos tiene consecuencias profundas, tanto para el álgebra como para el análisis. Por ejemplo, la 
ecuación polinomial x2 + 1 = 0 no tiene solución real, pero tiene dos soluciones complejas, i y −i. En 
general, el teorema fundamental del álgebra establece que todo polinomio de grado positivo n, con coefi -
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cientes complejos (algunos o todos pueden ser reales), tiene exactamente n raíces en los números comple-
jos, contando las raíces repetidas. Esto signifi ca que no necesita extender los números complejos para 
encontrar las raíces de los polinomios con coefi cientes complejos, como sucede con los números reales 
para encontrar las raíces de un polinomio simple tal como x2 + 1.

La suma compleja obedece a muchas de las reglas de la aritmética de los números reales. Específi ca-
mente, para cualesquiera números complejos z, w y u,

z + w = w + z (conmutatividad de la suma)

zw = wz (conmutatividad de la multiplicación)

z + (w + u) = (z + w) + u (asociatividad de la suma)

z(wu) = (zw)u (asociatividad de la multiplicación)

z(w + u) = zw + zu (distributividad)

z + 0 = 0 + z

z · 1 = 1 · z.

8.1.1 El plano complejo

Los números complejos admiten dos interpretaciones geométricas naturales.
Primera, identifi que el número complejo a + bi con el punto (a, b) en el plano, como en la fi gura 8.1. 

En esta interpretación, cada número real a, o a + 0i, está identifi cado con el punto (a, 0) en el eje horizon-
tal, el cual es por tanto llamado el eje real. Un número 0 + bi, o sólo bi, se llama un número imaginario 
puro y está asociado con el punto (0, b) en el eje vertical. Este eje se llama el eje imaginario. Debido a 
esta correspondencia entre los números complejos y los puntos en el plano, serán referidos en el plano xy 
como el plano complejo.

Cuando los números complejos aparecieron por primera vez (en la resolución de ecuaciones polino-
miales), los matemáticos recelaron de ellos, aun el gran matemático suizo del siglo XVIII, Leonhard Euler, 
quien los usó en cálculos con habilidad sin precedente, no los reconoció como números “legítimos”. 
Fue el matemático alemán del siglo XIX, Carl Friedrich Gauss, el que apreció plenamente su signifi cado 
geométrico y utilizó su reputación en la comunidad científi ca para promover su legitimidad entre otros 
matemáticos y fi lósofos naturales.

La segunda interpretación geométrica de los números complejos es en términos de vectores. El núme-
ro complejo z = a + bi, o el punto (a, b), puede pensarse como un vector ai + bj en el plano, el cual a su 
vez es representado como una fl echa desde el origen a (a, b), como en la fi gura 8.2. La primera compo-
nente de este vector es Re(z) y la segunda componente es Im(z). En esta interpretación, la defi nición de 
suma de números complejos es equivalente a la ley del paralelogramo para suma de vectores, ya que dos 
vectores se suman, sumando sus componentes respectivas (fi gura 8.3).

Eje
imaginario

Eje
real

a + bi
(a, b)

x

y

a i � b j
a � bi

(a, b)

x

y

a � bi

a � c � (b � d )i

c � di 

FIGURA 8.1 
El plano 
complejo.

FIGURA 8.2 
Los números 
complejos como 
vectores en el 
plano.

FIGURA 8.3 La ley del 
paralelogramo para la suma de 
números complejos.
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8.1.2 Magnitud y conjugado

Por supuesto, la magnitud de cero es cero. Como sugiere la fi gura 8.4, si z = a + ib es un número 
complejo distinto de cero, entonces |z | es la distancia del origen al punto (a, b). Alternativamente, |z| es 
la longitud del vector ai + bj representando a z. Por ejemplo,

La magnitud de un número complejo también se llama su módulo.

Obtiene el conjugado de z cambiando el signo de la parte imaginaria de z. Por ejemplo,

Esta operación no cambia la parte real de z. Tiene

y

La operación de conjugar puede ser interpretada como una refl exión sobre el eje real, debido a que el 
punto (a, −b) asociado con a − ib es la refl exión a través del eje horizontal del punto (a, b) asociado con 
a + ib (fi gura 8.5).

Aquí hay algunas reglas computacionales para la magnitud y el conjugado.

DEFINICIÓN 8.1  Magnitud

La magnitud de a + bi es denotada por |a + bi | y está defi nida por

|a + bi| =
√

a2 + b2.

|2 − 5i| =
√

4 + 25 =
√

29.

a + bi = a − bi.

DEFINICIÓN 8.2  Conjugado

El complejo conjugado (o sólo conjugado) de a + bi es el número denotado por a + bi y defi nido por

Re(a + ib) = a = Re(a + ib)

Im(a + ib) = −b = − Im(a + ib).

FIGURA 8.5 
Conjugado de un número 
complejo.

x

y a � bi
�a � bi� (a, b) x

y a � bi
(a, b)

(a, �b)
a � bi � a � bi

FIGURA 8.4 
Magnitud de un 
número complejo.

3 − 8i = 3 + 8i, i = −i, y −25 = −25.
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Sean z y w números complejos. Entonces

1.

2.

3.

4.

5.

6.

7.

8.

Prueba La conclusión (1) establece que conjugar un conjugado regresa al número original. Esto es 
geométricamente evidente, ya que la refl exión de (x, y) a (x, −y), seguida de la refl exión de (x, −y) a 
(x, y), regresa al punto original. Para un argumento analítico, escriba

Para la conclusión (5), sean z = a + ib y w = c + id. Entonces

Una demostración mucho más clara de (5) estará disponible cuando conozca la forma polar de un 
número complejo.

Las otras partes del teorema se dejan al estudiante. ■

8.1.3 División compleja

Suponga que quiere formar el cociente z/w, donde w � 0. Este cociente es el número complejo u tal que 
wu = z. Sin embargo, esto nos ayuda mucho para encontrar u. He aquí una manera computacional efectiva 
de realizar la división compleja. Sean z = a + ib y w = c + id y

Multiplicando y dividiendo la fracción original por el conjugado del denominador, obtiene una expresión 
en la cual las partes real e imaginaria del cociente son evidentes. La razón de esto es que el denominador 
es w—

w, el cual es el número real |w|2.
Por ejemplo,

así la parte real de este cociente es −5/73 y la parte imaginaria es −62/73.

TEOREMA 8.1

a + ib = a − ib = a + ib.

|zw| = |(ac − bd) + i(ad + bc)|

=
√

(ac − bd)2 + (ad + bc)2

=
√

a2c2 + b2d2 − 2acbd + a2d2 + b2c2 + 2adbc

=
√

a2c2 + a2d2 + b2c2 + b2d2

=
√

a2 + b2
√

c2 + d2 = |z| |w| .

a + ib

c + id
= a + ib

c + id

c − id

c − id
= ac + bd + i(bc − ad)

c2 + d2 .

2 − 7i

8 + 3i
= 2 − 7i

8 + 3i

8 − 3i

8 − 3i
= −5 − 62i

64 + 9
= − 5

73
− 62

73
i,

z = z.

z + w = z + w.

zw = (z) (w).

|z| = |z|.
|zw| = |z| |w|.
Re(z) = 1

2 (z + z) y Im(z) = 1
2i

(z − z).

|z| ≥ 0, y |z| = 0 si, y sólo si z = 0.

zz = |z|2.
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8.1.4 Desigualdades

Hay varias desigualdades que tendrá ocasión de usar.

Sean z y w números complejos. Entonces

1.

2.

3.

Prueba Si z = a + ib, entonces

y

La conclusión (2), que se llama la desigualdad del triángulo, se prueba para vectores. He aquí una 
demostración en el contexto de los números complejos:

En resumen,

Sacando la raíz cuadrada de estas cantidades no negativas, obtiene la desigualdad del triángulo.
Para (3), use la desigualdad del triángulo para escribir

así

Intercambiando z y w,

Por tanto,

así

TEOREMA 8.2

|Re(z)| ≤ |z| y |Im(z)| ≤ |z|.
|z + w| ≤ |z| + |w|.
||z| − |w|| ≤ |z − w|.

|Re(z)| = |a| ≤
√

a2 + b2 = |z|

|Im(z)| = |b| ≤
√

a2 + b2 = |z| .

0 ≤ |z + w|2 = (z + w)(z + w) = (z + w)(z + w) = zz + zw + wz + ww

= |z|2 + zw + zw + |w|2 = |z|2 + 2 Re(zw) + |w|2 ≤ |z|2 + 2 |zw| + |w|2

= |z|2 + 2 |z| |w| + |w|2 = |z|2 + 2 |z| |w| + |w|2 = (|z| + |w|)2 .

0 ≤ |z + w|2 ≤ (|z| + |w|)2 .

|z| = |(z + w) − w| ≤ |z + w| + |w| ,

|z| − |w| ≤ |z + w| .

y
|w| − |z| ≤ |z + w| .

− |z + w| ≤ |z| − |w| ≤ |z + w| ,

||z| − |w|| ≤ |z + w| .

8.1 Los números complejos
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8.1.5 Argumento y forma polar de un número complejo

Sea z = a + ib un número complejo distinto de cero. Entonces (a, b) es un punto distinto del origen en el 
plano. Este punto tiene coordenadas polares (r, θ). Como es estándar con las coordenadas polares, el ángulo 
polar θ de (a, b) no está únicamente determinado. Si camina en el eje real r unidades a la derecha desde el 
origen y rota este segmento θ0 radianes desde el extremo del segmento en (a, b), como en la fi gura 8.6, 
entonces el ángulo polar θ para (a, b) es cualquier número θ0 + 2nπ, en el cual n es cualquier entero. Una 
elección positiva para n corresponde a girar el segmento desde 0 hasta r un radián inicial θ0 para alcanzar 
a (a, b) y después continuando en sentido contrario al movimiento de las manecillas del reloj dar n vueltas 
completas, lo cual nuevamente lo coloca en (a, b). Una elección negativa para n corresponde a girar el 
segmento desde 0 hasta r un radián inicial de θ0, y después dar n vueltas en el sentido de las manecillas 
del reloj, terminando nuevamente en (a, b). Así, por convención, se piensa en rotaciones en sentido con-
trario al movimiento de las manecillas del reloj como las que tienen orientación positiva y las rotaciones 
en sentido del movimiento de las manecillas del reloj como las que tienen orientación negativa.

Para ilustrar, considere z = 1 + i. El punto (1, 1) tiene coordenadas polares (
√

2, π/4), ya que 1 + i 
está a 

√
2  unidades del origen, y el segmento desde el origen a 1 + i forma un ángulo π/4 radianes con la 

parte positiva del eje real (fi gura 8.7). Todas las coordenadas polares de (1, 1) tienen la forma

de n puede ser cualquier entero.
Si z distinto de cero tiene coordenadas polares (r, θ), entonces r = |z|. El ángulo θ (el cual siempre 

se expresa en radianes) se llama un argumento de z. Cualquier número distinto de cero tiene una infi -
nidad de argumentos y ellos difi eren uno del otro en múltiplos enteros de 2π. Los argumentos de 1 + i son 
π/4 + 2nπ, para cualquier entero n.

Ahora recuerde la fórmula de Euler

Si θ es cualquier argumento de z = a + ib, entonces (a, b) tiene coordenadas polares (r, θ), así a = r cos(θ) 
y b = r sen(θ). Combinando este hecho con la fórmula de Euler, tiene

Esta forma exponencial para z se llama la forma polar de z. Cualquier argumento de z puede usarse en 
esta forma polar, ya que cualesquiera dos argumentos θ0 y θ1 difi eren en algún múltiplo entero de 2π. 
Si, θ1 = θ0 + 2kπ, entonces

eiθ = cos(θ) + i sen(θ).

z = a + ib = r cos(θ) + ir sen(θ) = reiθ .

reiθ1 = r[cos(θ0 + 2kπ) + i sen(θ0 + 2kπ)]
= r[cos(θ0) + i sen(θ0)] = reiθ0 .

las que tienen orientación negativa.

x

y

r

(a, b)

�0
x

y

2

1 � i

2

�
4

FIGURA 8.6 (a, b) tiene 
coordenadas polares 
(r, θ0 + 2nπ), n cualquier 
entero.

FIGURA 8.7 Las 
coordenadas polares de 1 + i 
son (

√
2, π/4 + 2nπ), n  

cualquier entero.

√
2, π/4 + 2nπ(     ),
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EJEMPLO 8.1

Encuentre la forma polar de −1 + 4i. Primero, r = |−1 + 4i| = 
√

17. Ahora considere la fi gura 8.8. θ es 
un argumento de −1 + 4i, y α será útil para la determinación de θ. A partir del diagrama, tan(α) = 4, así

Puede, por tanto, escribir la forma polar

■

EJEMPLO 8.2

Encontrará la forma polar de 3 + 3i. Como se indica en la fi gura 8.9, π/4 es un argumento de 3 + 3i. La 
forma polar es

■

Para cualquier real θ,

Esto signifi ca que al escribir la forma polar z = reiθ, la magnitud de z está totalmente contenida en el factor 
r, mientras eiθ, el cual tiene magnitud 1, aporta toda la información acerca de la dirección de z (distinto de 
cero) desde el origen.

Debido a las propiedades de la función exponencial, algunos cálculos con números complejos se 
simplifi can si usa las formas polares. Para ilustrar, suponga que quiere probar que |zw| = |z| |w|, algo que 
hizo por manipulación algebraica. Hace z = reiθ y w = ρeiξ para obtener inmediatamente

El hecho de que ei(θ+ξ) = eiθ eiξ también signifi ca que el argumento de un producto es la suma de los 
argumentos de los factores, módulo un múltiplo entero de 2π. Escrito más cuidadosamente, si θ0 es cual-
quier argumento de z, y θ1 es cualquier argumento de w, y � es cualquier argumento de zw, entonces para 
algún entero n,

θ = π − α = π − tan−1(4).

−1 + 4i =
√

17ei(π−tan−1(4)).

FIGURA 8.8 π − tan−1(4) es 
un argumento de −1 + 4i.

x

y�1 � 4i

4

1


 �

∣∣∣eiθ
∣∣∣ = cos2(θ) + sen2(θ) = 1.

|zw| =
∣∣∣rρeiθeiξ

∣∣∣ = rρ

∣∣∣ei(θ+ξ)
∣∣∣ = rρ = |z| |w| .

� = θ0 + θ1 + 2nπ.

FIGURA 8.9 π/4 es un 
argumento de 3 + 3i.

x

y 3 � 3i
(3, 3)

�
4

3 + 3i =
√

18eiπ/4.
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Multiplicar dos números complejos tiene el efecto de sumar sus argumentos, módulo un múltiplo 
entero de 2π.

EJEMPLO 8.3

Sean z = i y w = 2 − 2i. Un argumento de z es θ0 = π/2, y un argumento de w es θ1 = 7π/4 (fi gura 8.10). 
Ahora

y un argumento de 2 + 2i es � = π/4. Con esta elección de argumentos,

Si hubiera elegido θ0 = π/2 y θ1 = −π/4, entonces obtendría

■

8.1.6 Orden

Dados dos números reales distintos cualesquiera a y b, exactamente una de a < b o b < a debe ser cierta. Se 
dice que los números reales son ordenados. Comprobará que no hay un orden de los números complejos.

Para entender por qué esto es cierto, debe investigar la idea detrás del orden de los números reales que 
es una verdadera partición de los números reales distintos de cero en dos conjuntos mutuamente exclusi-
vos, N y P, con las siguientes propiedades:

1. Si x es un número real distinto de cero, entonces x está en P o −x está en P, pero no ambos.

2. Si x y y están en P, entonces x + y y xy están en P.

Piense en P como el conjunto de los números positivos y en N como el conjunto de los números nega-
tivos. La existencia de tal partición de los números reales distintos de cero que satisface las condiciones 
(1) y (2) es la razón por la cual ordena a los reales. Un orden está establecido al defi nir x < y si, y sólo si 
y − x está en P. Por ejemplo, 2 < 5 ya que 5 − 2 = 3 es positivo.

¿Existe una partición de los números complejos distintos de cero en dos conjuntos, P y N, que tengan 
las propiedades (1) y (2)? Si es así, puede ordenar los números complejos.

zw = i(2 − 2i) = 2 + 2i,

θ0 + θ1 = π

2
+ 7π

4
= 9π

4
= � + 2π.

θ0 + θ1 = π

2
− π

4
= π

4
= �.

x

i

2 � 2i

y

�
2

7�
4

FIGURA 8.10 π/2 es un 
argumento de i, y 7π/4 
un argumento de 2 − 2i.
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Suponga que tal partición existe. Entonces i está en P o −i está en P, pero no ambos. Si i está en P, 
entonces i2 = −1 está en P por (2), así (−1)(i) = −i está en P. Pero esto viola la condición (1). Si −i está 
en P, entonces (−i)(−i) = i2 = −1 está en P, así (−1)(−i) = i está en P, nuevamente viola (1).

Esto prueba que tal partición no existe, y los números complejos no se pueden ordenar. Siempre que 
escriba z < w, está suponiendo que z y w son números reales.

En cada problema del 1 al 10, lleve a cabo el cálculo indicado.

1. (3 − 4i)(6 + 2i)

2. i(6 − 2i) + |1 + i|

3. 
2 + i

4 − 7i

4. 
(2 + i) − (3 − 4i)

(5 − i)(3 + i)

5. (17 − 6i)(−4 − 12i)

6. 

∣∣∣∣
3i

−4 + 8i

∣∣∣∣

7. i3 − 4i2 + 2

8. (3 + i)3

9. 
(−6 + 2i

1 − 8i

)2

10. (−3 − 8i)(2i)(4 − i)

11. Pruebe que, para cualquier entero positivo n,

i4n = 1, i4n + 1 = i, i4n+2 = −1, y i4n+3 = −i.

12. Sea z = a + ib. Determine Re(z2) e Im(z2).

13. Sea z = a + ib. Determine Re(z2 − iz + 1) e Im(z2 − iz + 1).

14. Pruebe que z2 = z−2 si, y sólo si z es real o imaginario puro.

15.  Sean z, w y u números complejos. Pruebe que cuando están 
representados como puntos en el plano, estos números for-
man los vértices de un triángulo equilátero si, y sólo si

z2 + w2 + u2 = zw + zu + wu.

16. Pruebe que Re(iz) = −Im(z) e Im(iz) = Re(z).

En cada problema del 17 al 22, determine arg(z). La respuesta 
debe incluir todos los argumentos del número.

17. 3i

18. −2 + 2i

19. −3 + 2i

20. 8 + i

21. −4

22. 3 − 4i

En cada problema del 23 al 28, escriba el número complejo en 
forma polar.

23. −2 + 2i

24. −7i

25. 5 − 2i

26. −4 − i

27. 8 + i

28. −12 + 3i

29.  Sean z y w números complejos tales que z−w  1, pero tales 
que z o w tienen magnitud 1. Pruebe que

  Sugerencia: En los problemas que involucran magnitud, 
muchas veces es útil recordar el teorema 8.1(8). Para aplicar 
este resultado, eleve al cuadrado ambos lados de la igualdad 
propuesta.

30. Pruebe que para cualesquiera números complejos z y w,

 Sugerencia: Tenga en mente el teorema 8.1 (8).

8.2 Lugares geométricos y conjuntos de puntos en el plano complejo

Algunas veces la notación compleja es muy efi ciente en la especifi cación de lugares geométricos de pun-
tos en el plano. En esta sección se ilustrará esto, y también la representación compleja de ciertos conjuntos 
que aparecen frecuentemente en discusiones de integrales y derivadas complejas

SECCIÓN 8.1 PROBLEMAS

∣∣∣∣
z − w

1 − zw

∣∣∣∣ = 1.

|z + w|2 + |z − w|2 = 2
(
|z|2 + |w|2

)
.

8.2 Lugares geométricos y conjuntos de puntos en el plano complejo
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8.2.1 Distancia

Si z = a + ib es cualquier número complejo, |z| =
√

a2 + b2  es la distancia del origen a z (punto (a, b)) 
en el plano complejo. Si w = c + id también es un número complejo, entonces

es la distancia entre z y w en el plano complejo (fi gura 8.11). Esta es la fórmula estándar de geometría para 
la distancia entre puntos (a, b) y (c, d).

8.2.2 Círculos y discos

Si a es un número complejo y r es un número positivo (por tanto real), la ecuación

|z − a| = r

se satisface exactamente por aquellos puntos z cuya distancia a a es r. El lugar geométrico de los puntos que 
satisfacen esta condición es el círculo de radio r alrededor de a (fi gura 8.12). Esta es la manera de especifi -
car a los círculos en el plano complejo, y muchas veces se hace referencia “al círculo |z − a| = r”.

Si a = 0, entonces cualquier punto en el círculo |z| = r tiene forma polar

z = reiθ,

donde θ es el ángulo desde la parte positiva del eje real a la recta desde el origen hasta z (fi gura 8.13). 
Conforme θ varía de 0 a 2π, el punto z = reiθ se mueve una vez en sentido contrario al movimiento de las 
manecillas del reloj alrededor de este círculo, empezando en z = r en el eje real positivo cuando θ = 0, 
encontrando ri cuando θ = π/2, −r cuando θ = π, −ri cuando θ = 3π/2, y regresando a r cuando θ = 2π.

Si a  0, entonces el centro del círculo |z − a| = r es a en lugar del origen. Ahora un punto en el 
círculo tiene la forma

z = a + reiθ,

que es simplemente un sistema de coordenadas polares trasladado para tener a como su origen (fi gura 
8.14). Conforme θ varía de 0 a 2π, este punto se mueve una vez en sentido contrario al movimiento de las 
manecillas del reloj alrededor de este círculo. Por ejemplo, la ecuación |z − 3 + 7i| = 4 defi ne al círculo 
de radio 4 alrededor del punto (3,−7) en el plano. El número complejo 3 − 7i es el centro del círculo. Un 
punto típico en el círculo tiene la forma z = 3 − 7i + 4eiθ (fi gura 8.15).

|z − w| = |(a − c) + i(b − d)|

=
√

(a − c)2 + (b − d)2

x

�z � w �

y

z

w

�z � a� � r

x

y

a

r

�z� � r

x

y

�

z � re i�

FIGURA 8.11 |z − w| es 
la distancia entre z y w.

FIGURA 8.12 
El círculo 
de radio r 
alrededor de a.

FIGURA 8.13 

El círculo 
de radio r 
alrededor del 
origen.
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Una desigualdad |z − a| < r especifi ca a todos los puntos dentro del círculo de radio r alrededor de a. 
Tal conjunto se llama un disco abierto. “Abierto” aquí signifi ca que los puntos en la circunferencia del 
círculo que acota a este disco no pertenecen al conjunto. Un punto en este círculo debería satisfacer 
|z − a| = r, no |z − a| < r. En un dibujo se indica que un disco es abierto dibujando la frontera del círculo 
punteada (fi gura 8.16). Por ejemplo, |z − i| < 8 especifi ca a los puntos dentro del disco abierto de radio 8 
alrededor de i. 

Un disco cerrado de radio r y centro a consiste de todos los puntos en o dentro del círculo de radio r 
alrededor de a. Este conjunto está especifi cado mediante la desigualdad débil |z − a| ≤ r. Al mostrar este 
conjunto, frecuentemente dibujamos un círculo sólido como la frontera para indicar que esos puntos están 
incluidos en el disco cerrado (fi gura 8.17).

8.2.3 La ecuación �z − a� = �z − b�

Sean w1 y w2 números complejos distintos. Una ecuación

|z − w1| = |z − w2|

puede expresarse como “la distancia entre z y w1 debe ser igual a la distancia entre z y w2”. Como lo 
sugiere la fi gura 8.18, esto requiere que z esté en la bisectriz perpendicular del segmento de recta que 
conecta a w1 y w2. La ecuación |z − w1| = |z − w2| debe, por tanto, ser considerada como la ecuación de 
esta recta.

FIGURA 8.14

x

y

a�

z � a � re i�

x

y

(3, −7)

3

−7

4 3 − 7i + 4e iθ

(3 + 4 cos( ), −7 + 4 sen( ))
=

FIGURA 8.15 El círculo |z − 3 + 7i| = 4.

FIGURA 8.16 
|z − a| < r, el 
disco abierto de 
radio r alrededor 
de a.

FIGURA 8.17 
|z − a| ≤ r, el 
disco cerrado 
de radio r 
alrededor de a.

x

y

a

r
x

y

ar

x

y

b

a

FIGURA 8.18 
|z − a| = |z − b| 
se satisface 
para todo z 
en la bisectriz 
perpendicular 
al segmento 

—
ab.

8.2 Lugares geométricos y conjuntos de puntos en el plano complejo

sen(θ))
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EJEMPLO 8.4

La ecuación

|z + 6i| = |z − 1 + 3i|

se satisface para todos los puntos en el bisector perpendicular del segmento entre −6i y 1 − 3i. Este es el 
segmento que conecta (0,−6) y (1,−3), como se muestra en la fi gura 8.19.

Puede obtener la ecuación “estándar” de esta recta como sigue. Primero escriba

|z + 6i|2 = |z − 1 + 3i|2,

o

Esto elimina los signos de los valores absolutos. Lleve a cabo las multiplicaciones para obtener

Sea z = x + iy. Entonces −z − z = (x − iy) − (x + iy) = −2iy y −−z − z = −2x, así la última ecuación se 
convierte en

6i(−2iy) + 36 = −2x + 3i(−2iy) + 10,

o

12y = −2x + 6y − 26.

Esta es la recta

■

Ahora considere la desigualdad

|z + 6i| < |z − 1 + 3i| .

Ya sabe que la ecuación |z + 6i| = |z − 1 + 3i| describa una recta separando el plano en dos conjuntos, 
teniendo esta recta como frontera (fi gura 8.19). La desigualdad dada mantiene a los puntos en uno de 
estos conjuntos, en un lado u otro de esta recta. Claramente z está más cerca de −6i que de 1 − 3i si z está 
abajo de la recta frontera. Así la desigualdad especifi ca todos los puntos z debajo de esta recta, la región 
sombreada en la fi gura 8.20. La recta frontera está punteada porque los puntos en esta recta no pertenecen 
a esta región.

La desigualdad débil |z + 6i| ≤ |z − 1 + 3i| especifi ca todos los puntos en la región sombreada de la 
fi gura 8.21, junto con todos los puntos en la recta frontera.

(z + 6i)(z − 6i) = (z − 1 + 3i)(z − 1 − 3i).

zz + 6i(z − z) + 36 = zz − z − 3iz − z + 1 + 3i + 3iz − 3i + 9.

FIGURA 8.19 El lugar 
geométrico de la ecuación 
|z + 6i| = |z − 1 + 3i|.
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FIGURA 8.20 Región I consiste 
de los puntos que satisfacen 
|z + 6i| < |z − 1 + 3i|.
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FIGURA 8.21 La región dada 
por |z + 6i| ≤ |z − 1 + 3i|.
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8.2.4 Otros lugares geométricos

Cuando un argumento geométrico no es claro, se intenta determinar un lugar geométrico sustituyendo 
z = x + iy en la ecuación o desigualdad dada.

EJEMPLO 8.5

Considere la ecuación

|z|2 + 3Re(z2) = 4.

Si z = x + iy, esta ecuación se convierte en

x2 + y2 + 3(x2 − y2) = 4,

o

4x2 − 2y2 = 4.

La gráfi ca de esta ecuación es la hipérbola de la fi gura 8.22. Un número complejo satisface la ecuación 
dada si, y sólo si su representación como un punto en el plano está en la hipérbola. ■

8.2.5 Puntos interiores, puntos frontera y conjuntos abiertos y cerrados

En el desarrollo del cálculo de funciones complejas, ciertos tipos de conjuntos y puntos serán importan-
tes. Para esta sección sea S un conjunto de números complejos. Un número es un punto interior de S si 
está en un sentido completamente rodeado de puntos de S.

Esto signifi ca que, para algún r positivo, todos los puntos que satisfacen |z − z0| < r están en S. Cla-
ramente esto fuerza también a z0 a estar en S.

1
2

x2 − y2 = 1

x

y

.

FIGURA 8.22 
Lugar geométrico 
de los puntos z con 
|z|2 + 3 Re(z2) = 4.

DEFINICIÓN 8.3  Punto interior

Un número complejo z0 es un punto interior de S si existe un disco abierto alrededor de z0 que con-
tenga sólo puntos de S.

8.2 Lugares geométricos y conjuntos de puntos en el plano complejo
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EJEMPLO 8.6

Sea K el disco abierto |z − a| < r (fi gura 8.23). Todo punto de K es un punto interior ya que alrededor de 
cualquier punto en K es posible dibujar un disco de radio lo sufi cientemente pequeño que contenga sólo 
puntos en K. Así K es un conjunto abierto, justifi cando la terminología “disco abierto” usado anteriormen-
te para un disco que no incluía ningún punto de su círculo frontera. ■

EJEMPLO 8.7

Sea L consistente en todos los puntos que satisfacen |z − a| ≤ r. Ahora L contiene puntos que no son 
puntos interiores, específi camente aquellos en el círculo |z − a| = r. Cualquier disco abierto dibujado 
alrededor de un punto tal contendrá puntos fuera del disco L (fi gura 8.24). Este conjunto no es un conjunto 
abierto. ■

EJEMPLO 8.8

Sea V consistente en todo z = x + iy con x > 0. Este es el semiplano derecho, sin incluir el eje imaginario 
que forma la frontera entre los semiplanos izquierdo y derecho. Como lo sugiere la fi gura 8.25, todo punto 
de V es un punto interior, ya que alrededor de cualquier punto z0 = x0 + iy0 con x0 > 0, es factible dibujar 
un disco bastante pequeño para que todos los puntos que encierre también tengan partes reales positivas. 
Debido a que todo punto de V es un punto interior, V es un conjunto abierto. ■

EJEMPLO 8.9

Sea M consistente en todo z = x + iy con x ≥ 0. Todo punto en M con parte real positiva es un punto inte-
rior, igual que en el ejemplo anterior. Pero no todo punto de M es interior. Un punto z = iy en el eje ima-

DEFINICIÓN 8.4  Conjunto abierto

S es abierto si todo punto de S es un punto interior.

x
a

K

y

.

x
a

L
y

.

x

V

y

FIGURA 8.23 
Un disco abierto es 
un conjunto abierto 
(todos sus puntos son 
puntos interiores).

FIGURA 8.24 
Los puntos en 
|z − a| = r no son 
puntos interiores de 
|z − a| ≤ r.

FIGURA 8.25 
El semiplano 
Re(z) > 0 
(un conjunto 
abierto).
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ginario está en M pero no se puede encerrar en un disco que contenga sólo puntos en M, que tengan parte 
real no negativa (fi gura 8.26). Como M contiene puntos que no son puntos interiores, M no es abierto. ■

EJEMPLO 8.10

Sea W consistente en todos los puntos en el eje real. Entonces ningún punto de W es un punto interior. 
Cualquier disco, sin importar qué tan pequeño tenga el radio, dibujado alrededor de un punto en el eje real 
contendrá puntos que no estén en este eje, por tanto no en W. Ningún punto de W es un punto interior de 
W. ■

Regresando a la discusión general, los puntos frontera de un conjunto S son números complejos que 
están en algún sentido en el “borde” de S.

Un punto frontera puede o no estar en S. Debido a que la defi nición de punto interior y punto frontera 
son exclusivos, ningún punto puede ser un punto interior y un punto frontera del mismo conjunto. El con-
junto de todos los puntos frontera de S se llama la frontera de S y se denota ∂S.

EJEMPLO 8.11

Los conjuntos K y L de los ejemplos 8.6 y 8.7 tienen la frontera, a saber, los puntos en el círculo |z − a| = r. 
K no contiene a ninguno de sus puntos frontera, mientras L los contiene a todos. ■

EJEMPLO 8.12

El conjunto V del ejemplo 8.8 tiene todos los puntos en el eje imaginario como sus puntos frontera. Este 
conjunto no contiene ninguno de sus puntos frontera. En contraste, M del ejemplo 8.9 tiene los mismos 
puntos frontera que V, a saber, todos los puntos en el eje imaginario, pero M contiene todos esos puntos 
frontera. ■

FIGURA 8.26 
El semiplano 
Re(z) ≥ 0 (no es 
un conjunto abierto).

x

M

DEFINICIÓN 8.5  Punto frontera

Un punto z0 es un punto frontera de S si todo disco abierto alrededor de z0 contiene al menos un 
punto en S y al menos un punto que no esté en S.

8.2 Lugares geométricos y conjuntos de puntos en el plano complejo
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EJEMPLO 8.13

Para la recta real (W en el ejemplo 8.10), todo punto de W es un punto frontera. Si dibuja cualquier disco 
abierto alrededor de un número real x, este disco contiene un punto de W, a saber, x, y muchos puntos que 
no están en W. No hay otros puntos frontera de W. ■

EJEMPLO 8.14

Sea E consistente en todos los números complejos z = x + iy con y > 0, junto con el punto −23i (fi gura 
8.27). Entonces −23i es un punto frontera de E, ya que todo disco alrededor de −23i ciertamente contiene 
puntos que no están en E, pero también contiene un punto de E, a saber el mismo −23i. Todo número real 
(eje horizontal) también es un punto frontera de E. ■

Una lectura cuidadosa de la defi nición prueba que todo punto de un conjunto es un punto interior o 
un punto frontera.

Sea S un conjunto de números complejos y sea z en S. Entonces z es un punto frontera de S o un punto 
interior de S. ■

Prueba Suponga que z está en S, pero no es un punto interior. Si D es cualquier disco abierto alrededor de z, 
entonces D no puede contener sólo puntos de S, y así debe contener al menos un punto que no esté en S. Pero 
D también contiene un punto de S, a saber, el mismo z. De donde z debe ser un punto frontera de S. ■

Sin embargo, un conjunto puede tener puntos frontera que no estén en el conjunto, como ocurre en algu-
nos de los ejemplos anteriores.

Además, un conjunto abierto no puede contener cualesquiera de estos puntos frontera.

Sea S un conjunto de números complejos. Si S es abierto, entonces S no puede contener ningún punto 
frontera.

Prueba Suponga que z está en S y S es abierto. Entonces algún disco abierto D alrededor de z contiene 
solamente puntos de S. Pero entonces este disco no contiene ningún punto que no esté en S, de esta manera 
z no puede ser un punto frontera de S. ■

TEOREMA 8.3

TEOREMA 8.4

x

x  iy, y 0

23i

y

E

FIGURA 8.27 −23i es un punto 
frontera de E.

23i
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Por ejemplo, el disco cerrado |z − z0| ≤ r es un conjunto cerrado. Los puntos frontera son todos los 
puntos en el círculo |z − z0| = r, y todos están en el disco cerrado. El conjunto M del ejemplo 8.9 es cerra-
do. Sus puntos frontera son todos los puntos en el eje imaginario, y todos éstos pertenecen al conjunto. 
El conjunto W del ejemplo 8.10 es cerrado, ya que todo punto en el conjunto es un punto frontera, y el 
conjunto no tiene otros puntos frontera.

Los términos cerrado y abierto no son mutuamente exclusivos, y uno no es el opuesto del otro. Un 
conjunto puede ser ambos, cerrado y abierto, o cerrado y no abierto, o abierto y no cerrado, o ni abierto 
ni cerrado. Por ejemplo, el conjunto � de todos los números complejos es abierto (todo punto es interior) 
y cerrado (no hay puntos frontera, de manera que � los contiene a todos). Un disco cerrado es cerrado 
pero no abierto, y un disco abierto es abierto y no cerrado. El siguiente ejemplo da un conjunto que no es 
ni abierto ni cerrado.

EJEMPLO 8.15

Sea T consistente en todos los puntos z = x + iy con −1 ≤ x ≤ 1 y y > 0. En la fi gura 8.28 se muestra esta 
banda infi nita. Los puntos frontera son todos los puntos −1 + iy con y ≥ 0, todos los puntos 1 + iy con 
y ≥ 0, y todos los puntos x con −1 ≤ x ≤ 1. Algunos de estos puntos están en T, por ejemplo, los puntos 
frontera −1 + iy con y > 0. Esto signifi ca que T no puede ser abierto. Pero algunos de estos puntos frontera 
no están en T, por ejemplo, los puntos x con −1 ≤ x ≤ 1. Así T no es cerrado. ■

8.2.6 Puntos límite

Un número z0 es un punto límite de S si hay puntos de S arbitrariamente cercanos a z0 pero diferentes 
de z0.

DEFINICIÓN 8.6  Conjunto cerrado

Un conjunto de números complejos es cerrado si contiene todos sus puntos frontera.

1 1

T

y

x

FIGURA 8.28 La 
banda que consiste en 
todo z = x + iy con 
−1 ≤ x ≤ 1, y > 0.
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El punto límite difi ere del punto frontera en requerir que todo disco abierto alrededor del punto con-
tenga algo de S distinto de él mismo. En el ejemplo 8.14, −23i es un punto frontera de W, pero no es un 
punto límite de W, porque hay discos abiertos alrededor de −23i que no contienen otro punto de W.

EJEMPLO 8.16

Para el conjunto V del ejemplo 8.8, todo punto del eje vertical es un punto límite. Dados cualesquiera de 
tales puntos z0 = iy0, todo disco alrededor de z0 contiene puntos de V distintos que iy0. Así z0 es tanto un 
punto frontera como un punto límite. Este ejemplo muestra que un punto límite de un conjunto no necesita 
pertenecer al conjunto. Este conjunto tiene muchos otros puntos límite. Por ejemplo, todo número x + iy 
con x > 0 es un punto límite que también pertenece a V. ■

EJEMPLO 8.17

Sea Q consistente en los números i/n para n = 1, 2, . . . . Todo disco abierto alrededor de 0, sin importar 
qué tan pequeño sea el radio, contiene puntos i/n en Q si elige n sufi cientemente grande. Por tanto, 0 es un 
punto límite de Q. En este ejemplo, 0 también es un punto frontera de Q (su único punto de frontera). ■

EJEMPLO 8.18

Sea N consistente en todo in, con n un entero. Entonces N no tiene puntos límite. Un disco abierto de radio 
1
2 alrededor de in puede tener solamente un punto en común con N, a saber, el mismo in. ■

Como prueban estos ejemplos, un punto límite de un conjunto puede o no estar en el conjunto. Los 
conjuntos cerrados son exactamente aquellos que contienen todos sus puntos límite, en el entendido de 
que un conjunto que no tiene puntos límite contiene a todos sus puntos límite. 

Sea S el conjunto de números complejos. Entonces S es cerrado si, y sólo si S contiene todos sus puntos 
límite. ■

Prueba Suponga primero que S es cerrado y sea w un punto límite de S. Probará que w está en S. Suponga 
que w no está en S. Sabe que cualquier disco |z − w| < r debe contener un punto zr de S distinto de w. Pero 
entonces este disco contiene un punto en S (a saber zr) y un punto que no está en S (a saber el mismo w). 
Por tanto, w es un punto frontera de S. Pero S es cerrado y entonces contiene todos sus puntos frontera, en 
particular w. Esta contradicción muestra que w debe estar en S, así S contiene todos sus puntos límite.

En sentido inverso, suponga que si w es un punto límite de S, entonces w está en S. Quiere probar que 
S es cerrado. Para hacer esto, probaremos que S contiene sus puntos frontera. Sea b un punto frontera de S. 

DEFINICIÓN 8.7  Punto límite

Un número complejo z0 es un punto límite de un conjunto S si todo disco abierto alrededor de z0 
contiene al menos un punto de S distinto de z0.

TEOREMA 8.5
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Suponga que b no está en S. Si |z − b| < r es un disco abierto alrededor de b, entonces este disco contiene 
un punto de S, ya que b es un punto frontera. Pero este punto no está en b, porque supuso que b no estaba 
en S. Entonces todo disco abierto alrededor de b contiene un punto de S distinto de b, así b es un punto 
límite de S. Pero había supuesto que todo punto límite de S estaba en S, así b está en S. Esta contradicción 
prueba que S contiene todos sus puntos frontera, por tanto S es cerrado. ■

Aquí hay algunos ejemplos adicionales de puntos límite.

EJEMPLO 8.19

Sea X consistente en todos los números 2 − i/n, con n = 1, 2, . . . . Entonces 2 es un punto límite (y punto 
frontera) de X. No hay otros puntos límite de X. ■

EJEMPLO 8.20

Sea Q consistente en todos los números complejos a + ib con a y b números racionales. Entonces todo 
número complejo es tanto un punto límite como un punto frontera de Q. Algunos puntos límite de Q están 
en Q (si a y b son racionales), y algunos no lo están (si a o b es irracional). ■

EJEMPLO 8.21

Sea P consistente en todos los números complejos x + iy con −1 ≤ y < 1. Entonces cada punto de P es un 
punto límite, y los x + i también son puntos límite de P que no pertenecen a P. ■

EJEMPLO 8.22

Sea D el disco abierto |z − z0| < r. Todo punto en D es un punto límite. Sin embargo, los puntos en el círculo 
frontera |z − z0| = r, el cual no pertenece a D, también son puntos límite, así como puntos frontera, de D. ■

8.2.7 Sucesiones complejas

La noción de sucesión compleja es una adaptación directa del concepto de sucesión real.

El número zn es el n-ésimo término de la sucesión. Por ejemplo, {in} tiene n-ésimo término in.
Frecuentemente se indica una sucesión haciendo una lista de los primeros términos, incluyendo sufi -

cientes términos de manera que el patrón quede claro y uno pueda predecir que zn es para cada n. Por 
ejemplo, puede escribir {in} como

i, i2, i3, . . . , in, . . . .

DEFINICIÓN 8.8  Sucesión

Una sucesión compleja {zn} es una asignación de un número complejo zn a cada entero positivo n.

8.2 Lugares geométricos y conjuntos de puntos en el plano complejo
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La convergencia de sucesiones complejas también está modelada a partir de la convergencia de suce-
siones reales.

Esto signifi ca que puede hacer cada término zn tan cerca como quiera de L eligiendo n al menos 
tan grande como algún número N. Puesto de otra manera, dado cualquier disco abierto D alrededor de 
z0, puede encontrar algún término de la sucesión de manera que todos los términos de la lista a partir 
de él (esto es, para un índice sufi cientemente grande) caiga en D (fi gura 8.29). Esta es la misma idea 
que está detrás de la convergencia de sucesiones reales, excepto en que los intervalos abiertos en la 
recta real son reemplazados por discos abiertos. Cuando {zn} converge a L, se escribe zn → L o límn→∞ 
zn = L. Si una sucesión no converge para ningún número, entonces la sucesión diverge.

EJEMPLO 8.23

La sucesión {in} diverge. Esta es la sucesión

i, −1, −i, 1, i, −1, −i, 1, . . .

y no hay ningún punto en la sucesión anterior a partir del cual todos los términos se aproximen a un núme-
ro específi co tanto como quiera. Por ejemplo, si toma el disco |z − i| < 1

2 , entonces los primeros términos 
de la sucesión, y cada cuarto término a partir de éste, está en el disco, pero ningún otro término está en 
este disco. ■

EJEMPLO 8.24

La sucesión {1 + i /n} converge a 1. Esto se sigue a partir de la defi nición ya que, si ǫ > 0, entonces

si n se elige mayor que 1/ǫ. Dada ǫ > 0, puede elegir N = 1/ǫ en la defi nición de convergencia. ■

DEFINICIÓN 8.9  Convergencia

La sucesión compleja {zn} converge a un número L si, dado cualquier número positivo ǫ, existe un 
número positivo N tal que

|zn − L| < ǫ si n ≥ N.

zn�3

L

z3

z2z1

z4 z5
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zn�1

zn

x

y

FIGURA 8.29 Convergencia de 
{zn} a L.
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La convergencia de una sucesión compleja siempre se puede reducir a un problema de convergencia 
de dos sucesiones reales.

Sea zn = xn + iyn y L = a + ib. Entonces zn → L si, y sólo si xn → a y yn → b. ■

Por ejemplo, sea zn = (1 + 1/n)n + ((n + 2)/n)i. Sabe que

y

Entonces

Prueba Suponga primero que zn → a + bi. Sea ǫ > 0. Para alguna N, |zn − L| < ǫ si n ≥ N. Entonces, 
por el teorema 8.2(1), para n ≥ N,

|xn − a| = |Re(zn − L)| ≤ |zn − L| < ǫ,

así xn → a. Análogamente, si n ≥ N,

|yn − b| = |Im(zn − L)| ≤ |zn − L| < ǫ,

así yn → b.
Inversamente, suponga que xn → a y yn → b. Sea ǫ > 0. Para algún N1,

Para algún N2,

Entonces, para n ≥ N1 + N2,

probando que zn → L. ■

La noción de convergencia de una sucesión compleja está íntimamente ligada al concepto de punto 
límite de un conjunto.

Sea K un conjunto de números complejos y sea w un número complejo. Entonces w es un punto límite de 
K si, y sólo si existe una sucesión {kn} de puntos en K, con cada kn � w, que converge a w. ■

Esta es la razón para el nombre punto límite. Un número w puede ser un punto límite de un conjunto 
sólo si w es el límite de la sucesión de puntos en el conjunto, todos distintos de w. Esto se satisface si w 
está o no él mismo en el conjunto.

TEOREMA 8.6
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si n ≥ N2.
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ǫ
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TEOREMA 8.7
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Por ejemplo, considere el disco abierto unitario |z| < 1. Sabe que i es un punto límite del disco, porque 
cualquier disco abierto alrededor de i contiene puntos del disco unitario diferentes de i. Pero también pue-
de encontrar una sucesión de puntos en el disco unitario que converja a i, por ejemplo, zn = (1 − 1/n)i.

Prueba Suponga primero que w es un punto límite de K. Entonces para cada entero positivo n, el disco 
abierto de radio 1/n alrededor de w debe contener un punto de K distinto de w. Elija tal punto y llámelo 
kn. Entonces cada kn � w, kn está en K, y |kn − w| < 1/n. Como 1/n → 0 conforme n → ∞, entonces {kn} 
converge a w.

Inversamente, suponga que hay una sucesión de puntos kn en K, todos distintos de w y que convergen 
a w. Sea D cualquier disco abierto alrededor de w, de radio ǫ. Debido a que kn → w, D debe contener 
todos los kn para n mayor que algún número N. Pero entonces D contiene puntos de K diferentes de w, y 
por tanto w es un punto límite de K. ■

8.2.8 Subsucesiones

Una subsucesión de una sucesión se forma eligiendo ciertos términos para producir una nueva sucesión.

La subsucesión está, por tanto formada a partir de {zn} enlistando los términos de esta sucesión,

z1, z2, z3, . . .

y eligiendo después, en orden de izquierda a derecha, algunos de los zj para formar una sucesión nueva. 
Una subsucesión es una sucesión por sí misma pero consiste en términos selectos de una sucesión dada 
de antemano.

EJEMPLO 8.25

Sea zn = in. Puede defi nir muchas subsucesiones de {zn}, veamos una. Sea

wj = z4 j

para j = 1, 2, . . . . Entonces cada wj = z4 j = i4 j = 1, y todo término de esta subsucesión es igual a 1. Aquí 
nj = 4 j en la defi nición. ■

Si una sucesión converge, entonces toda subsucesión de ella converge al mismo límite. Para ver esto, 
suponga que zn → L. Sea D un disco abierto alrededor de L. Entonces “eventualmente” (esto es, para n 
sufi cientemente grande), todo zn está en D. Si {wj} es una subsucesión, entonces cada wj = znj

 , así even-
tualmente todos estos términos estarán también en D y la subsucesión también converge a L.

Sin embargo, una subsucesión de una sucesión divergente puede diverger, o puede converger, como 
muestra el ejemplo 8.25. La sucesión {in} diverge, pero puede elegir una subsucesión que tenga todos sus 
términos iguales a 1, y esta subsucesión converge a 1.

DEFINICIÓN 8.10  Subsucesión

Una sucesión {wj} es una subsucesión de {zn} si existen enteros positivos

n1 < n2 < · · ·

tales que

wj = znj
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También es posible que una sucesión divergente no tenga subsucesiones convergentes. Por ejemplo, 
sea zn = ni. Esta sucesión diverge, y no es posible elegir una subsucesión que converja. Ahora no importa 
qué subsucesión se elija, sus términos crecerán sin cota conforme avance en la subsucesión.

En este ejemplo, la sucesión {ni} no está acotada, por tanto es divergente, y cualquier subsucesión 
tampoco está acotada y es divergente. Obtendrá un resultado más interesante para sucesiones acotadas.

Alternativamente, una sucesión está acotada si existe algún disco que contenga todos sus elementos. 
Toda sucesión acotada, convergente o no, tiene una subsucesión convergente.

Sea {zn} una sucesión acotada. Entonces {zn} tiene una subsucesión convergente. ■

Este resultado tiene consecuencias importantes, por ejemplo, en el teorema integral de Cauchy. 
Suponga el resultado correspondiente para una sucesión acotada real, la conclusión para una sucesión 
acotada compleja se sigue del teorema 8.6.

Prueba Sea zn = xn + iyn una sucesión acotada. Entonces {xn} es una sucesión real acotada, de manera 
que tiene una subsucesión {xnj

} que converge a algún número real a. Pero entonces {ynj
} también es una 

sucesión real acotada, y así tiene una subsucesión convergente {yn jk
} que converge a algún número real 

b. Usando estos índices, se forma la subsucesión {xn jk
} de {xnj}. Esta subsucesión también converge a a. 

Entonces {xn jk
 + iyn jk

} es una subsucesión de {zn} que converge a a + ib.

8.2.9 Compactibilidad y el teorema de Bolzano-Weierstrass

Un conjunto acotado es, por tanto, uno cuyos puntos no pueden estar arbitrariamente lejos del origen. 
Ciertamente cualquier conjunto fi nito está acotado, como cualquier disco abierto o cerrado. El conjunto 
de puntos in, para n entero, no está acotado.

Los conceptos de conjunto cerrado y conjunto acotado son independientes. Sin embargo, cuando son 
combinados, caracterizan a unos conjuntos que tienen propiedades que son importantes en el análisis de 
funciones complejas. Tales conjuntos se llaman compactos.

DEFINICIÓN 8.11  Sucesión acotada

{zn} es una sucesión acotada si para algún número M, |zn| ≤ M para n = 1, 2, . . . .

TEOREMA 8.8

DEFINICIÓN 8.12  Conjunto acotado

Un conjunto K de números complejos está acotado si, para algún número M, |z| ≤ M para todo z 
en K.

8.2 Lugares geométricos y conjuntos de puntos en el plano complejo
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Cualquier disco cerrado es compacto, mientras que un disco abierto no lo es (no es cerrado). El con-
junto de puntos in para n entero no es compacto ya que no está acotado (a pesar de ser cerrado). Cualquier 
conjunto fi nito es compacto.

Ahora probará que cualquier conjunto compacto infi nito debe contener al menos un punto límite. Este 
es un resultado notable, ya que los conjuntos cerrados no tienen que contener (o incluso tener) ningún 
punto límite, y los conjuntos acotados no necesitan tener puntos límite.

Sea K un conjunto compacto infi nito de números complejos. Entonces K contiene un punto límite. ■

Prueba Como K es cerrado, cualquier punto límite de K debe estar en K. Se concentrará por tanto en 
demostrar que hay un punto límite de K.

Elija cualquier número z1 en K. Debido a que K es infi nito, puede elegir un segundo número z2 en K, 
distinto de z1. Ahora elija algún z3 en K distinto de z1 y z2 y continúe este proceso. De esta manera genera 
una sucesión infi nita {zn} de puntos distintos en K. Como K es un conjunto acotado, esta sucesión es aco-
tada. Por tanto, {zn} contiene una subsucesión {zn j

} que converge a algún número L. Como cada término 
de esta sucesión es distinto de todos los demás, elija la subsucesión de manera que ningún zn j

 sea igual a 
L. Por el teorema 8.7, L es un punto límite de K. ■

Ahora está listo para empezar el cálculo de funciones complejas.

DEFINICIÓN 8.13  Conjunto compacto

Un conjunto K de números complejos es compacto si es cerrado y acotado.

TEOREMA 8.9 Bolzano-Weierstrass

En cada problema del 1 al 11, determine el conjunto de todos 
los puntos z que satisfacen la ecuación o la desigualdad dada. 
En algunos casos puede ser conveniente que especifi que el con-
junto con un diagrama claramente etiquetado.

1. |z − 8 + 4i| = 9

2. |z| = |z − i|

3. |z|2 + Im(z) = 16

4. |z − i| + |z| = 9

5. |z| + Re(z) = 0

6. z + –z2 = 4

7. Im(z − i) = Re(z + 1)

8. |z| = Im(z − i)

9. |z + 1 + 6i| = |z − 3 + i|

10. |z − 4i| ≤ |z + 1|

11. |z + 2 + i| > |z − 1|

En cada problema del 12 al 19, un conjunto de puntos (núme-
ros complejos) está dado. Determine si el conjunto es abierto, 
cerrado, abierto y cerrado, o ni abierto ni cerrado. Determine 
todos los puntos límite del conjunto, todos los puntos frontera, 
y la frontera del conjunto. También determine si el conjunto es 
compacto.

12. S es el conjunto de todos los puntos z con |z| > 2.

13.  K es el conjunto de todos los puntos z que satisfacen |z − 1| 
≤ |z + 4i|.

14. T es el conjunto de los puntos z con 4 ≤ |z + i| ≤ 8.

15. M consiste en todos los puntos z con Im(z) < 7.

16.  R es el conjunto de todos los números complejos 1/m + 
(1/n)i, en donde m y n pueden ser enteros positivos.

17. U es el conjunto de todos los puntos z tal que 1 < Re(z) ≤ 3.

18.  V es el conjunto de todos los puntos z tal que 2 < Re(z) ≤ 3 
y −1 < Im(z) < 1.

SECCIÓN 8.2 PROBLEMAS
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19. W consiste en todos los puntos z tales que Re(z) > (Im(z))2.

20.  Suponga que S es un conjunto fi nito de números complejos, 
a saber consiste en los números z1, z2, . . . , zn.

 (a) Pruebe que S no tiene punto límite.

 (b) Pruebe que todo z j es un punto frontera de S.

 (c) Pruebe que S es cerrado.

En cada problema del 21 al 27, encuentre el límite de la suce-
sión, o establezca que la sucesión diverge.

21. 
{

1 + 2in

n + 1

}

22. {i2n}

23. 

{
1 + 2n2

n2
− n − 1

n
i

}

24. {enπi /3}

25. {−(i4n)}

26. {sen(n)i}

27. 

{
1 + 3n2i

2n2 − n

}

28.  Considere la sucesión {enπi/3} del problema 24. Encuentre 
dos subsucesiones convergentes diferentes de esta sucesión.

29.  Encuentre dos subsucesiones convergentes diferentes de la 
sucesión {i2n} del problema 22.

8.2 Lugares geométricos y conjuntos de puntos en el plano complejo





9.1 Límites, continuidad y derivadas

Una función compleja es una función que está defi nida para los números complejos en algún conjunto S 
y toma valores complejos. Si � denota al conjunto de los números complejos, y f es tal función, entonces  
f : S → �. Esto simplemente signifi ca que f (z) es un número complejo para cada z en S. El conjunto S se 
llama el dominio de f. Por ejemplo, sea S consistente de todos los z con |z| < 1 y se defi ne f (z) = z2 para z 
en S. Entonces f : S → � f es una función compleja.

Con frecuencia se defi ne una función por alguna expresión explícita en z, por ejemplo,

Si no se especifi ca el dominio S, se acuerda permitir a todo z para el cual la expresión f (z) esté defi nida. 
Dicha función está, por tanto, defi nida para todo complejo z excepto 2i y −2i.

9.1.1 Límites

La notación de límite para una función compleja está modelada a partir de la de funciones con valores 
reales, reemplazando intervalos por discos.

401

C A P Í T U L O 9
Funciones complejas

LÍMITES,  CONTINUIDAD, Y DERIV
ECUACIONES DE CAUCHY-RIEMAN
SERIES DE POTENCIAS LA EXPONENCIAL
Y FUNCIONES TRIGO

DEFINICIÓN 9.1  Límite

Sea f : S → � una función compleja y sea z0 un punto límite de S. Sea L un número complejo. 
Entonces

f (z) = z + i

z2 + 4
.

lim
z→z0

f (z) = Llím
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Así, límz→z0
 f (z) = L si es factible hacer que los valores de la función f (z) estén arbitrariamente 

cercanos (a menos de ǫ ) a L eligiendo z en S (de manera que f (z) esté defi nida) y sufi cientemente cerca 
(a menos de δ) a z0, pero de hecho no igual a z0. La condición 0 < |z − z0| < δ excluye al punto z0. Sólo 
interesa el comportamiento de f (z) en otros puntos cercanos a z0.

Dicho de otra manera, dado un disco abierto Dǫ de radio ǫ alrededor de L, debe encontrar un disco 
abierto Dδ de radio δ alrededor de z0 de manera que cada punto en Dδ, excepto el mismo z0, que también 
está en S, es mandado por la función a Dǫ. Esto se ilustra en la fi gura 9.1.

Aunque en esta defi nición no se pide que f (z0) esté defi nida, sí requiere que haya puntos arbitraria-
mente cercanos a z0 en los cuales f (z) está defi nida. Esto se asegura haciendo que z0 sea un punto límite de 
S y es la razón por la cual se hace este requerimiento en la defi nición. No tiene sentido hablar de un límite 
de f (z), conforme z se acerca a z0, si f (z) no está defi nida conforme z se acerca a z0.

Aun si f (z0) está defi nida, no se está pidiendo que f (z0) = L.

EJEMPLO 9.1

Sea

Entonces límz→i f (z) = −1, pero el límite no es igual a f (0). Aun si f (0) no estuviera defi nida, todavía 
podría tener límz→i f (z) = −1. ■

Frecuentemente se escribe

cuando límz→z0
 f (z) = L.

Muchos teoremas de límite del cálculo real también son válidos para funciones complejas. Suponga 
que límz→z0

 f (z) = L y límz→z0
 g(z) = K. Entonces

si, y sólo si, dado ǫ > 0, existe un número positivo δ tal que

para todo z en S tal que

Cuando límz→z0
 f (z) = L, L es el límite de f (z) conforme z se acerca a z0.

|f (z) − L| < ǫ

0 < |z − z0| < δ.

f (z) =
{

z2 para z �= i

0 para z = i
.

f (z) → L conforme z → z0

lim
z→z0

[f (z) + g(z)] = L + K,

lim
z→z0

[f (z) − g(z)] = L − K,

lim
z→z0

cf (z) = cL para cualquier número c,

lim
z→z0

[f (z)g(z)] = LK,

lim
z→z0

cf (z) = cL para cualquier número c,

lím

lím

lím

lím
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y, si K � 0,

Una diferencia signifi cativa entre los límites de funciones complejas y los límites de funciones reales 
es la manera en que la variable se aproxima al punto. Para una función real g, límx→a g(x) involucra el 
comportamiento de g(x) conforme x se aproxima a a por cualquier lado. En la recta hay sólo dos maneras 
de que x pueda aproximarse a a. Pero límz→z0

 f (z) = L involucra el comportamiento de f (z) conforme 
z se aproxima a z0 en el plano complejo (o en un conjunto específi co S de valores aceptables) y esto 
puede involucrar que z se aproxime a z0 desde cualquier dirección (fi gura 9.2). Los números f (z) deben 
aproximarse a L a lo largo de cualquier trayectoria de aproximación de z a z0 en S. Si a lo largo de una 
sola trayectoria de aproximación de z a z0, f (z) no se aproxima a L, entonces f (z) no tiene límite L ahí. 
Esto hace que límz→z0

 f (z) = L en el plano complejo sea un enunciado más fuerte que su contraparte 
real, exigiendo más de f (z) para z cerca de z0 que lo que se exige a funciones reales. Más adelante se 
profundizará en este hecho para obtener propiedades acerca de las funciones complejas.

9.1.2 Continuidad

FIGURA 9.1 límz→a f (z) = L.

lim
z→z0

f (z)

g(z)
= L

K
.lím

DEFINICIÓN 9.2  

Una función compleja f : S → � es continua en un número z0 en S si, y sólo si

f es continua en un conjunto K si f es continua en cada punto de K. En particular, si f es continua 
en todo punto z para el cual f (z) está defi nida, entonces f es una función continua.

lim
z→z0

f (z) = f (z0).lím

Muchas funciones familiares son continuas. Cualquier polinomio es continuo para todo punto z, y 
cualquier función racional (cociente de polinomios) es continua si su denominador es distinto de cero. 
Cuando tenga versiones complejas de las funciones trigonométricas y exponenciales, verá que también 
son continuas.

Si f es continua en z0, también lo es | f |. Debe esperar esto. Si conforme se elige z más cerca de z0, 
f  (z) llega a estar más cerca de f  (z0), entonces es razonable que |  f  (z)| se aproxime a |  f  (z0)|. Más 
rigurosamente,

si límz→z0
 f (z) = f (z0).

0 ≤ ||f (z)| − |f (z0)|| ≤ |f (z) − f (z0)| → 0

z0

z
D�

x

y

L
f (z)

�

D� �

x

y

z

z0

FIGURA 9.2 z se aproxima a z0 
a lo largo de cualquier trayectoria 
en la defi nición de límz→z0

 f (z).

9.1 Límites, continuidad y derivadas
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Si {zn} es una sucesión de números complejos y cada f (zn) está defi nida, entonces {f (zn)} también es 
una sucesión compleja. Por ejemplo, si f (z) = 2z2 y zn = 1/n, entonces f (zn) = 2/n2. Se afi rma que {f (zn)} 
converge si {zn} converge, cuando f es continua. Otra manera de decir esto es que la continuidad conserva 
la convergencia de sucesiones.

Sea f : S → � continua, y sea {zn} una sucesión de números complejos en S. Si {zn} converge a un número 
w en S, entonces {f (zn)} converge a f (w). ■

Aquí está la idea detrás del teorema. Como f es continua en w, entonces límz→w f (z) = f (w). Esto 
signifi ca que f (z) debe aproximarse a f (w) a lo largo de cualquier trayectoria de aproximación de z a w en 
S. Pero, si zn → w, las zn determinan una trayectoria de aproximación de la variable z a w. Entonces f (z) 
debe aproximarse a f (w) a lo largo de esta trayectoria, y por tanto f (zn) → f (w).

También se puede probar el recíproco del teorema 9.1. Si f (zn) → f (w) para toda sucesión {zn} de 
puntos de S que converge a w, entonces f es continua en w.

Ahora desarrolle una propiedad importante de funciones continuas. Primero, defi na una función 
compleja (continua o no) acotada, si los números f (z) no se vuelven arbitrariamente grandes en mag-
nitud.

TEOREMA 9.1 

DEFINICIÓN 9.3  Función acotada

Sea f : S → �. Entonces f es una función acotada si existe un número positivo M tal que

para todo z en S.

|f (z)| ≤ M

Alternativamente, f está acotada si existe un disco alrededor del origen que contiene todos los números 
f (z) para z en S.

Una función continua no necesita ser acotada ( f (z) = 1/z para z � 0). Sin embargo, una función con-
tinua defi nida en un conjunto compacto está acotada. Esto es análogo al resultado de que toda función real 
que es continua en un intervalo cerrado es acotada. En la recta real, los intervalos cerrados son conjuntos 
compactos.

TEOREMA 9.2 

Sea f : S → �. Suponga que S es compacto y f es continua en S. Entonces f es acotada. ■

Prueba Suponga que f no es acotada. Entonces, si n es un entero positivo, el disco de radio n alrede-
dor del origen no puede contener todas las f (z) para z en S. Esto signifi ca que hay algún zn en S tal que 
| f (zn)| > n.

Ahora {zn} es una sucesión de puntos en el conjunto acotado S, por tanto tiene una subsucesión 
convergente {znj}. Esta subsucesión converge a w. Entonces w es un punto límite de S, y S es cerrado, de 
manera que w también está en S.

Debido a que f es continua, f (znj ) → f (w). Entonces, para algún N, es posible hacer que cada f (znj ) 
esté en el disco abierto de radio 1 alrededor de w eligiendo nj ≥ N. Pero esto contradice el hecho de que 
cada | f (znj )| > nj. Por tanto, f debe ser una función acotada. ■
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Es factible mejorar este teorema de la siguiente manera. Además de ser acotada, se afi rma, bajo las 
condiciones del teorema anterior que, | f (z)|, que es un valor real, alcanza un máximo y un mínimo en S.

Sea f : S → � continua, y suponga que S es compacto. Entonces existen números z1 y z2 en S tales que, 
para todo z en S,

9.1.3 La derivada de una función compleja

TEOREMA 9.3 

|f (z1)| ≤ |f (z)| ≤ |f (z2)| .

DEFINICIÓN 9.4  Derivada

Sea f : S → � y suponga que S es un conjunto abierto. Sea z0 en S. Entonces f es diferenciable en z0 
si, para algún número complejo L,

En este caso llamamos L a la derivada de f en z0 y la denota por  f ′(z0).
Si f es diferenciable en cada punto de un conjunto, entonces f es diferenciable en este 

conjunto.

La razón para pedir S abierto en la defi nición es estar seguros que existe algún disco abierto alrededor 
de z0 en donde f (z) esté defi nida. Cuando el número complejo h es en magnitud sufi cientemente pequeño, 
entonces z0 +h está en el disco y f (z0 + h) está defi nida. Esto permite que h se aproxime a cero desde 
cualquier dirección en el límite que defi ne la derivada. Esto tendrá ramifi caciones importantes en las 
ecuaciones de Cauchy-Riemann.

EJEMPLO 9.2

Sea f (z) = z2 para todo complejo z. Entonces

para todo z. ■

Para funciones familiares tales como los polinomios, se aplican las reglas usuales para derivadas. 
Por ejemplo, si n es un entero positivo y f (z) = zn, entonces f ′(z) = nzn−1. Cuando desarrolle la función 
compleja seno f (z) = sen(z), verá que f ′(z) = cos(z). Otras fórmulas familiares de derivadas son:

lim
h→0

f (z0 + h) − f (z0)

h
= L.lím

f ′(z) = lim
h→0

(z + h)2 − z2

h
= lim

h→0
(2z + h) = 2zlím

(f + g)′(z) = f ′(z) + g′(z),

(f − g)′(z) = f ′(z) − g′(z),

(cf )′(z) = cf ′(z),

(fg)′(z) = f (z)g′(z) + f ′(z)g(z),

lím

9.1 Límites, continuidad y derivadas
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y

Estas conclusiones suponen que las derivadas involucradas existen. También hay una versión compleja 
para la regla de la cadena. Recuerde que la composición de dos funciones está defi nida por 

La regla de la cadena para diferenciar una composición es

suponiendo que g es diferenciable en z y f es diferenciable en g(z).
Frecuentemente f ′(z) se denota usando la notación de Leibniz

En esta notación, la regla de la cadena es

donde w = g(z).
No todas las funciones son diferenciables.

EJEMPLO 9.3

Sea f (z) = −z. Demostrará que f no es diferenciable en ningún punto. Para ver por qué esto es cierto, 
calcule

Busque el límite de este cociente conforme h → 0. Pero este límite está en el plano complejo, y el número 
complejo h debe poder aproximarse a cero a lo largo de cualquier trayectoria. Si h se aproxima a cero a lo 
largo del eje real, entonces h es real, 

−
h = h y 

−
h/h = 1 → 1. Pero si h se aproxima a cero a lo largo del eje 

imaginario, entonces h = ik para k real, y

conforme k → 0. El cociente 
−−
h/h se acerca a números distintos conforme h se aproxima a cero a lo largo 

de trayectorias distintas. Esto signifi ca que 

no existe, de manera que f no tiene derivada en ningún punto. ■

Como en el caso de las funciones reales, una función compleja diferenciable es continua.

(
f

g

)′
(z) = g(z)f ′(z) − f (z)g′(z)

[g(z)]2 si g(z) �= 0.

(f ◦ g)(z) = f (g(z)).

(f ◦ g)′(z) = f ′(g(z))g′(z),

df

dz
.

d

dz
(f (g(z)) = df

dw

dw

dz
,

f (z + h) − f (z)

h
= z + h − z

h
= h

h
.

h

h
= −ik

ik
= −1 → −1

TEOREMA 9.4 

Sea f diferenciable en z0. Entonces f es continua en z0. ■

lim
h→0

h

h
lím
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Prueba Sabe que

Sea

Entonces límh→0 ǫ(h) = 0. Más aún,

Como el lado derecho tiene límite cero conforme h → 0, entonces

Esto es lo mismo que

que a su vez implica que límz→z0
 f (z) = f (z0). Por tanto, f es continua en z0. ■

9.1.4 Las ecuaciones de Cauchy-Riemann

Obtendrá un conjunto de ecuaciones diferenciales parciales que deberán ser satisfechas por las partes real 
e imaginaria de una función compleja diferenciable. Estas ecuaciones también juegan un papel importante 
en la teoría del potencial y en el tratamiento del problema de Dirichlet.

Sea f una función compleja. Si z = x + iy, siempre escriba

en donde u y v son funciones con valores reales de las dos variables reales x y y. Entonces

EJEMPLO 9.4

Sea f (z) = 1/z para z � 0. Entonces

Para esta función

Ahora obtendrá una relación entre las derivadas parciales de u y v en cualquier punto
donde f es diferenciable.

lim
h→0

(
f (z0 + h) − f (z0)

h
− f ′(z0)

)
= 0.lím

ǫ(h) = f (z0 + h) − f (z0)

h
− f ′(z0).

f (z0 + h) − f (z0) = hf ′(z0) + hǫ(h).

lim
h→0

[f (z0 + h) − f (z0)] = 0.

lim
h→0

f (z0 + h) = f (z0),

lím

lím

f (z) = f (x + iy) = u(x, y) + iv(x, y),

u(x, y) = Re[f (z)] y v(x, y) = Im[f (z)].

f (x + iy) = 1

x + iy
= 1

x + iy

x − iy

x − iy
= x

x2 + y2 − i
y

x2 + y2 .

u(x, y) = x

x2 + y2 y v(x, y) = − y

x2 + y2 .

TEOREMA 9.5 Ecuaciones de Cauchy-Riemann

Sea f : S → �, con S un conjunto abierto. Escriba f = u + iv. Suponga que z = x +iy es un punto de S y 
f ′(z) existe. Entonces, en (x, y),

∂u

∂x
= ∂v

∂y
y

∂v

∂x
= −∂u

∂y
.

■

9.1 Límites, continuidad y derivadas
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Prueba Empiece con

Sabe que este límite existe, entonces debe tener el mismo valor, f ′(z), sin importar cómo se aproxima h a 
cero. Considere dos trayectorias de aproximación de h al origen.

Primero, sea h → 0 a lo largo del eje real (fi gura 9.3). Ahora h es real, y z + h = x + h + iy. 
Entonces

Ahora, tome el límite a lo largo del eje imaginario (fi gura 9.4). Ponga h = ik con k real, así h → 0 
conforme k → 0. Ahora z = x + i(y + k) y

en donde ha usado el hecho que 1/i = −i.
Ahora tiene dos expresiones para f ′(z), de manera que deben ser iguales:

Haciendo la parte real del lado izquierdo igual a la parte real del lado derecho, y después la parte imaginaria del 
lado izquierdo a la parte imaginaria del lado derecho, se obtienen las ecuaciones de Cauchy-Riemann. ■

Un resultado extra que se obtiene de esta prueba es que también ha obtenido fórmulas para f ′(z) en 
términos de las partes real e imaginaria de f (z). Por ejemplo, si f (z) = z3, entonces

Entonces

de manera que

Esto muestra automáticamente las partes real e imaginaria de f ′(z). Por supuesto, para esta función sencilla 
es igualmente fácil escribir directamente

Las ecuaciones de Cauchy-Riemann constituyen una condición necesaria para que f sea diferenciable 
en un punto. Si no se satisfacen, entonces f ′(z) no existe en ese punto.

f ′(z) = lim
h→0

f (z + h) − f (z)

h
.

f ′(z) = lim
k→0

u(x, y + k) + iv(x, y + k) − u(x, y) − iv(x, y)

ik

= lim
k→0

(
1

i

u(x, y + k) − u(x, y)

k
+ v(x, y + k) − v(x, y)

k

)

= −i
∂u

∂y
+ ∂v

∂y
,

∂u

∂x
+ i

∂v

∂x
= −i

∂u

∂y
+ ∂v

∂y
.

f (z) = f (x + iy) = (x + iy)3 = x3 − 3xy2 + i(3x2y − y3).

u(x, y) = x3 − 3xy2 y v(x, y) = 3x2y − y3,

f ′(z) = ∂u

∂x
+ i

∂v

∂x
=

(
3x2 − 3y2

)
+ i (6xy) .

f ′(z) = 3z2 = 3(x + iy)2 = 3(x2 − y2) + 6xyi.

lím

f ′(z) = lim
h→0

u(x + h, y) + iv(x + h, y) − u(x, y) − iv(x, y)

h

= lim
h→0

(
u(x + h, y) − u(x, y)

h
+ i

v(x + h, y) − v(x, y)

h

)

= ∂u

∂x
+ i

∂v

∂x
.

lím

lím

lím

lím

FIGURA 9.3 

h
x

y

h � ik

x

y

FIGURA 9.4 
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EJEMPLO 9.5

Sea f (z) = −z. Entonces f (z) = x − iy y u(x, y) = x, v(x, y) = −y. Ahora

así las ecuaciones de Cauchy-Riemann no se cumplen para f , en cualquier punto, y por tanto f no es dife-
renciable en ningún punto. ■

EJEMPLO 9.6

Sea f (z) = z Re(z). Entonces

así u(x, y) = x2 y v(x, y) = xy. Ahora

y

Las ecuaciones de Cauchy-Riemann no se cumplen en ningún punto excepto en z = 0. Esto signifi ca que 
f no es diferenciable en z si z � 0, pero puede tener derivada en 0. De hecho, esta función es diferenciable 
en 0, ya que

Mientras que las ecuaciones de Cauchy-Riemann son condiciones necesarias para la diferenciabilidad, 
no son sufi cientes. Si las ecuaciones de Cauchy-Riemann se satisfacen en un punto z, entonces f puede 
o no ser diferenciable en z. En el ejemplo anterior, las ecuaciones de Cauchy-Riemann se satisfacen en 
el origen y f ′(0) existe. A continuación un ejemplo en el cual las ecuaciones de Cauchy-Riemann se 
satisfacen en el origen, pero f no tiene derivada ahí.

EJEMPLO 9.7

Sea

Demostrará que las ecuaciones de Cauchy-Riemann se satisfacen en z = 0 pero que f no es diferenciable 
en 0. Primero algo de álgebra para obtener

∂u

∂x
= 1 �= ∂v

∂y
,

f (x + iy) = (x + iy)x = x2 + ixy,

∂u

∂x
= 2x,

∂v

∂y
= x

∂u

∂y
= 0,

∂v

∂x
= y.

f ′(0) = lim
h→0

f (h) − f (0)

h
= lim

h→0
Re(h) = 0.

f (z) =
{

z5/ |z|4 para z �= 0

0 para z = 0
.

u(x, y) = 5xy4 − 10x3y2 + x5

(x2 + y2)2 si (x, y) �= (0, 0),

v(x, y) = y5 − 10x2y3 + 5x4y

(x2 + y2)2 si (x, y) �= (0, 0),

■

9.1 Límites, continuidad y derivadas

lím lím

0
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y

Calcule las derivadas parciales en el origen:

y

Por tanto, las ecuaciones de Cauchy-Riemann se satisfacen en el origen. Sin embargo,  f no es diferenciable 
en 0. Considere

Asegure que (h/
−
h)2 no tiene límite conforme h → 0. Esto se puede ver fácilmente convirtiendo a la forma 

polar. Si h = reiθ , entonces h = re−iθ y

En la recta que forma un ángulo θ con el eje real positivo (fi gura 9.5), el cociente

tiene el valor constante e4iθ, y así se aproxima a este número conforme h → 0. Por tanto, el cociente de 
las diferencias se aproxima a valores diferentes a lo largo de distintas trayectorias, y así no tiene límite 
conforme h → 0. ■

Este ejemplo signifi ca que debe agregar algunas condiciones a las ecuaciones de Cauchy-Riemann 
para garantizar la existencia de la derivada en un punto. El siguiente teorema da las condiciones sufi cien-
tes para la diferenciabilidad.

u(0, 0) = v(0, 0) = 0.

∂u

∂x
(0, 0) = lim

h→0

u(h, 0) − u(0, 0)

h
= lim

h→0

h5

hh4 = 1;

∂u

∂y
(0, 0) = lim

h→0

u(0, h) − u(0, 0)

h
= lim

h→0
0 = 0;

∂v

∂x
(0, 0) = lim

h→0

v(h, 0) − v(0, 0)

h
= lim

h→0
0 = 0;

∂v

∂y
(0, 0) = lim

h→0

v(0, h) − v(0, 0)

h
= lim

h→0

h5

hh4 = 1.

f (0 + h) − f (0)

h
= h5

h |h|4
= h5

h(hh)2
= h2

(h)2
=

(
h

h

)2

.

(
h

h

)2

= r2e2iθ

r2e−2iθ
= e4iθ .

f (0 + h) − f (0)

h

x

y

h �

FIGURA 9.5 

lím

lím

lím

lím lím

lím

lím

lím



411

Sea f : S → � una función compleja, con S un conjunto abierto. Sea f = u + iv. Suponga que u, v y sus 
primeras derivadas parciales son continuas en S. Asimismo u y v satisfacen las ecuaciones de Cauchy-
Riemann en S. Entonces f es diferenciable en cada punto de S. ■

En cálculo real, una función cuya derivada es cero en todo un intervalo debe ser constante en ese 
intervalo. Aquí está el análogo complejo de este resultado, junto con otro resultado que necesitará más 
adelante.

TEOREMA 9.6 

Sea f diferenciable en un disco abierto D. Sea f = u + iv y suponga que u y v satisfacen las ecuaciones de 
Cauchy-Riemann y son continuas con primeras derivadas parciales continuas en D. Entonces,

1. Si f ′(z) = 0 para todo z en D, entonces f (z) es constante en D.

2. Si | f (z)| es constante en D, también lo es f (z).

Prueba Para probar (1), recuerde que en la prueba del teorema 9.5, para z en D,

Pero entonces ∂u/∂x y ∂v/∂x son cero en todo D. Por las ecuaciones de Cauchy-Riemann, ∂u/∂y y ∂v/∂y 
también son cero en cada punto de D. Entonces u(x, y) y v(x, y) son constantes en D, y también lo es 
f (z).

Para (2), suponga que | f (z)| = k para todo z en D. Entonces

(9.1)

para (x, y) en D. Si k = 0, entonces | f (z)| = 0 para todo z en D, entonces f (z) = 0 en D. Si k � 0, deriva 
respecto a x la ecuación (9.1) para obtener

(9.2)

Deriva respecto a y la ecuación (9.1) para obtener

(9.3)

Usando las ecuaciones de Cauchy-Riemann, las ecuaciones (9.2) y (9.3) pueden escribirse como

(9.4)

y

(9.5)

Al multiplicar la ecuación (9.4) por u y la ecuación (9.5) por v y sumar las ecuaciones resultantes 
obtiene

TEOREMA 9.7 

f ′(z) = 0 = ∂u

∂x
+ i

∂v

∂x
.

|f (z)|2 = u(x, y)2 + v(x, y)2 = k2

u
∂u

∂x
+ v

∂v

∂x
= 0

u
∂u

∂y
+ v

∂v

∂y
= 0.

u
∂u

∂x
− v

∂u

∂y
= 0

u
∂u

∂y
+ v

∂u

∂x
= 0.

(u2 + v2)
∂u

∂x
= k2 ∂u

∂x
= 0.

9.1 Límites, continuidad y derivadas
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Por tanto,

para todo (x, y) en D. Por las ecuaciones de Cauchy-Riemann,

en todo D. Ahora una manipulación semejante muestra que

en D. Por tanto, u(x, y) y v(x, y) son constantes en D, así que f (z) también es constante. ■

∂u

∂x
= 0

∂v

∂y
= 0

∂u

∂y
= ∂v

∂x
= 0

En cada problema del 1 al 12, encuentre u y v de manera que 
f (z) = u(x, y) + iv(x, y), determine todos los puntos (si los hay) 
en donde las ecuaciones de Cauchy-Riemann se satisfagan, y 
determine todos los puntos en donde la función es diferenciable. 
Se pueden suponer todos los resultados familiares acerca de la 
continuidad de funciones reales de dos variables.

SECCIÓN 9.1 PROBLEMAS

1. f (z) = z − i

2. f (z) = z2 − iz

3. f (z) = |z|

4. f (z) = 2z + 1

z

5. f (z) = i|z|2

6. f (z) = z + Im(z)

7. f (z) = z

Re(z)

8. f (z) = z3 − 8z + 2

9. f (z) = z2

10. f (z) = iz + |z|

11. f (z) = −4z + 1

z

12. f (z) = z − i

z + i

9.2 Series de potencias

Ahora sabe algunos resultados acerca de la continuidad y la diferenciabilidad. Sin embargo, las únicas 
funciones complejas que tiene hasta ahora son los polinomios y las funciones racionales. Un polinomio 
complejo es una función

en donde las aj son números complejos, y una función racional es un cociente de polinomios,

Los polinomios son diferenciables para todo z, y una función racional es diferenciable para todo z en 
donde el denominador no sea cero.

El vehículo para enriquecer nuestro catálogo de funciones, obteniendo funciones exponenciales y 
trigonométricas, logaritmos, funciones de potencias, y otras, es la serie de potencias. Construirá las series 
de potencias complejas usando algunos resultados acerca de las series de constantes.

p(z) = a0 + a1z + a2z
2 + · · · + anz

n,

R(z) = a0 + a1z + · · · + anz
n

b0 + b1z + · · · + bmzm
.
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9.2.1 Series de números complejos

Suponga resultados estándares acerca de las series de números reales. Considere una serie compleja 
∑∞

n=1 
cn, con cada cn un número complejo. La N-ésima suma parcial de la serie es la suma fi nita 

∑N
n=1 cn. 

La sucesión {
∑N

n=1 cn} es la sucesión de sumas parciales de esta serie, y la serie converge si, y sólo si 
esta sucesión de sumas parciales converge.

Si cn = an + ibn, entonces

de manera que {
∑N

n=1 cn} converge si, y sólo si las sumas parciales reales 
∑N

n=1 an y 
∑N

n=1 bn convergen 
conforme N →∞. Más aún, si 

∑∞
n=1 an = A y 

∑∞
n=1 bn = B, entonces

Por tanto, puede estudiar cualquier serie de constantes complejas considerando dos series de constantes 
reales, para las cuales los criterios están disponibles (criterio de la razón, criterio de la raíz, criterio de 
comparación, etcétera).

Como en las series reales, si 
∑∞

n=1 cn converge, entonces necesariamente límn→∞ cn = 0.
En algunos casos no sólo probaremos que la serie converge sino que es factible encontrar su suma. La 

serie geométrica es un ejemplo importante de esto que usará con frecuencia.

EJEMPLO 9.8

Considere la serie 
∑∞

n=1 z
n, con z un número complejo dado. Una serie que suma potencias sucesivas de 

un número se llama serie geométrica. Puede sumar esta serie como sigue. Sea

Entonces

si resta esta suma fi nita, la mayoría de los términos se cancelan y queda

Entonces, para z � 1,

Si |z| < 1, entonces |z|N+1 → 0 conforme N → ∞, entonces también zN+1 → 0 y en este caso la serie 
geométrica converge:

Si |z| ≥ 1, la serie geométrica diverge. ■

Algunas veces tiene una serie geométrica con el primer término igual a 1. Esta es la serie

Se dice que la serie 
∑∞

n=1 cn converge absolutamente si la serie real 
∑∞

n=1 |cn| converge.

N∑

n=1

cn =
N∑

n=1

an + i

N∑

n=1

bn,

∞∑

n=1

cn = A + iB.

SN =
N∑

n=1

zn = z + z2 + z3 + · · · + zN−1 + zN .

zSN = z2 + z3 + · · · + zN + zN+1,

SN − zSN = (1 − z)SN = z − zN+1.

SN = z

1 − z
− 1

1 − z
zN+1.

∞∑

n=1

zn = lim
N→∞

SN = z

1 − z
.

∞∑

n=0

zn = 1 +
∞∑

n=1

zn = 1 + z

1 − z
= 1

1 − z
si |z| < 1.

9.2 Series de potencias

lím
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Si 
∑∞

n=1 cn converge absolutamente, entonces esta serie converge. ■

Prueba Sea cn = an + ibn. Suponga que 
∑∞

n=1 |cn| converge. Como 0 ≤ |an| ≤ |cn|, entonces por 
comparación, 

∑∞
n=1 an converge. Análogamente, 0 ≤ |bn| ≤ |cn|, así 

∑∞
n=1 bn converge. Entonces 

∑∞
n=1 an 

+ ibn = 
∑∞

n=1 cn converge. ■

EJEMPLO 9.9

Considere la serie

Calcule

Ahora la serie real 
∑∞

n=1 
√

5/(
√

2)n converge. Esto es 
√

5  veces la serie geométrica real 
∑∞

n=1 1/(
√

2)n, la 
cual converge ya que 1/

√
2 < 1. Por tanto, la serie compleja dada converge absolutamente, de aquí que 

converge.

El punto para el teorema 9.8 es que 
∑∞

n=1 |cn| es una serie real, y tiene métodos para demostrar la 
convergencia o divergencia de las series reales. Por tanto, puede (en el caso de convergencia absoluta) 
probar la convergencia de una serie compleja probando la de una serie real. Sin embargo, este acercamiento 
no cubre todos los casos, ya que una serie puede converger, pero no converger absolutamente. Una serie 
así se dice que converge condicionalmente. Por ejemplo, se sabe que la serie

converge, pero la serie de los valores absolutos de sus términos es la serie armónica divergente 
∑∞

n=1(1/n).
Con estos antecedentes sobre las series complejas, puede abordar las series de potencias.

9.2.2 Series de potencias

TEOREMA 9.8 

∞∑

n=1

(−1)n
2 − i

(1 + i)n
.

∣∣∣∣(−1)n
2 − i

(1 + i)n

∣∣∣∣ =
√

5

(
√

2)n
.

∞∑

n=1

(−1)n

n

DEFINICIÓN 9.5  Serie de potencias

Una serie de potencias es una serie de la forma

en donde z0 y cada cn son números complejos dados.

∞∑

n=0

cn(z − z0)
n,
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La sumatoria en una serie de potencias empieza en n = 0 para permitir un término constante:

El número z0 es el centro de la serie, y los números cn son sus coefi cientes.
Dada una serie de potencias, quiere saber para qué valores de z, si los hay, la serie converge. 

Indudablemente cualquier serie de potencias converge en su centro z = z0, ya que entonces la serie es 
únicamente c0. El siguiente teorema proporciona la clave para determinar si hay otros valores de z para los 
cuales converge. Dice que si encontramos un punto z1 � z0 donde la serie de potencias converge, entonces 
la serie debe converger absolutamente al menos para todo punto que esté más cerca de z0 que z1. Esto da 
convergencia (absoluta) al menos en los puntos interiores del disco de la fi gura 9.6.

Suponga que 
∑∞

n=0 cn(z − z0)n converge para algún z1 distinto de z0. Entonces la serie de potencias converge 
absolutamente para todo z que satisfaga

Prueba Suponga que 
∑∞

n=0 cn(z1 − z0)n converge. Entonces límn→∞ cn(z1 − z0)n = 0. Entonces, para 
algún N,

Entonces, para n ≥ N,

Pero si |z − z0| < |z1 − z0|, entonces

y la serie geométrica

TEOREMA 9.9 

x

y

z0

z1

FIGURA 9.6 Convergencia en 
z1 � z0 implica convergencia 
en |z − z0| < r = |z1 − z0|.

∞∑

n=0

cn(z − z0)
n = c0 + c1(z − z0) + c2(z − z0)

2 + · · · .

|z − z0| < |z1 − z0| .

∣∣cn(z1 − z0)
n
∣∣ < 1 si n ≥ N.

∣∣cn(z − z0)
n
∣∣ = |cn|

∣∣∣∣
(z − z0)

n

(z1 − z0)n

∣∣∣∣
∣∣(z1 − z0)

n
∣∣ ≤

∣∣∣∣
(z − z0)

n

(z1 − z0)n

∣∣∣∣ =
∣∣∣∣
z − z0

z1 − z0

∣∣∣∣
n

.

∣∣∣∣
z − z0

z1 − z0

∣∣∣∣ < 1

∞∑

n=1

∣∣∣∣
z − z0

z1 − z0

∣∣∣∣
n

9.2 Series de potencias
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converge. Por comparación (ya que éstas son series de números reales),

converge. Pero entonces

converge, de manera que 
∑∞

n=0 cn(z − z0)n converge absolutamente, como quería probar. ■

Aplique esta conclusión de la siguiente manera. Imagine que se encuentra en z0 en el plano complejo. 
Mirando en todas las direcciones, distinguirá que no hay ningún otro punto en el cual la serie de 
potencias converge. En este caso, la serie converge sólo para z = z0. Esta es una serie de potencias poco 
interesante.

Una segunda posibilidad es que vea sólo puntos en donde la serie de potencias converge. Ahora la 
serie de potencias converge para todo z.

La tercera posibilidad es que vea algunos puntos en los que la serie converge y otros en los que 
diverge. Sea R la distancia de z0 al punto más cercano, sea ζ, en el cual la serie de potencias diverge. La 
distancia R es crítica en el siguiente sentido.

Si z está más lejos de z0 que ζ, entonces la serie de potencias debe diverger en z. Ya que si convirgiera, 
entonces debería converger en todos los puntos que están más cercanos a z0 que z, y por el teorema 9.9 
debería converger en ζ.

Si z está más cerca de z0 que ζ, entonces la serie de potencias debe converger a z, ya que ζ es el punto 
más cercano a z0 en el que la serie diverge.

Esto signifi ca que en el tercer caso, la serie de potencias

converge para todo z con |z − z0| < R,

y

diverge para todo z con |z − z0| > R.

El número R se llama el radio de convergencia de la serie de potencias, y el disco abierto |z − z0| < R 
se llama el disco abierto de convergencia. La serie converge dentro de este disco y diverge fuera del 
disco cerrado |z − z0| ≤ R. En puntos de la frontera de este disco, |z − z0| = R, la serie puede converger o 
diverger.

Si la serie de potencias converge sólo para z = z0, el radio de convergencia es R = 0. En este caso no 
hay un disco abierto de convergencia.

Si la serie de potencias converge para todo z, sea R = ∞. Ahora el disco abierto de convergencia es 
todo el plano complejo. En este caso es conveniente denotar al disco de convergencia como |z − z0| < ∞.

Algunas veces se puede calcular el radio de convergencia para una serie de potencias usando el 
criterio de la razón.

EJEMPLO 9.10

Considere la serie de potencias

El centro es z0 = 1 − 2i. Busque el radio de convergencia de la serie.

∞∑

n=N

∣∣cn(z − z0)
n
∣∣

∞∑

n=0

∣∣cn(z − z0)
n
∣∣

p
∞∑

n=0

(−1)n
2n

n + 1
(z − 1 + 2i)2n.
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Considere la magnitud del cociente de términos sucesivos de esta serie:

A partir del criterio de la razón para series reales, la serie de potencias convergirá absolutamente si este 
límite es menor que 1 y divergirá si este límite es mayor que 1. Así, la serie de potencias converge 
absolutamente si

o

Y la serie diverge si

o

El radio de convergencia es 1/
√

2 y el disco abierto de convergencia es |z − 1 + 2i| < 1/
√

2 (fi gura 
9.7). ■

Suponga ahora que las series de potencia tienen un radio de convergencia positivo o infi nito. Para 
cada z en el disco abierto de convergencia

Esto defi ne una función f sobre este disco. Debe explorar las propiedades de esta función, en particular si 
es diferenciable. Para responder a esta pregunta necesita el lema técnico.

∣∣∣∣∣
(−1)n+1 2n+1

n+2 (z − 1 + 2i)2n+2

(−1)n 2n

n+1 (z − 1 + 2i)2n

∣∣∣∣∣ = 2(n + 1)

n + 2
|z − 1 + 2i|2

→ 2 |z − 1 + 2i|2 conforme n → ∞.

2 |z − 1 + 2i|2 < 1,

|z − 1 + 2i| <
1√
2
.

2 |z − 1 + 2i|2 > 1,

|z − 1 + 2i| >
1√
2
.

f (z) =
∞∑

n=1

cn(z − z0)
n.

f (z) =
∞∑

n=0

cn(z − z0)
n.

x

y

1 � 2i

1
	2

FIGURA 9.7 

LEMA 9.1

La serie de potencias 
∑∞

n=0 cn(z − z0)n y 
∑∞

n=1 ncn(z − z0)n−1 tienen el mismo radio de convergen-
cia. ■

Una prueba de este lema, que está esbozada en los ejercicios, puede ser omitida pero la conclusión es 
importante. Establece que la diferenciación término a término de una serie de potencias no cambia el radio 
de convergencia. Esto signifi ca que dentro del disco abierto de convergencia, una serie de potencias defi ne 
una función diferenciable cuya derivada puede obtenerse diferenciando término a término.

Sea 
∑

 ∞n =0 cn(z−z0)n con radio de convergencia positivo o infi nito. Para cada z en el disco abierto de con-
vergencia, sea

TEOREMA 9.10 

9.2 Series de potencias
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Entonces f es diferenciable en este disco abierto, y

Mediante este teorema, puede diferenciar una función defi nida con una serie de potencias. Pero allí 
puede obtenerse más del teorema 9.10 que esto. La serie 

∑
 ∞n =1 ncn(z − z0)n−1 es una serie de potencias en 

sí misma, y tiene el mismo radio de convergencia que la serie 
∑

 ∞n =0 cn(z − z0)n. Por tanto, puede aplicar 
este teorema a esta serie diferenciada y obtener

dentro del disco abierto de convergencia. Más aún, continúe diferenciando tantas veces como quiera den-
tro de este disco. Si f (k)(z) denota la k-ésima derivada, entonces

y en general

Si la k-ésima derivada es evaluada en z0, entonces todos los términos de la serie para f  (k)(z0) que 
tienen potencias positivas de z − z0 se hacen cero, dejando sólo el primer término constante en esta serie 
diferenciada. En este camino, obtiene

y, en general,

Puede resolver estas ecuaciones para los coefi cientes en términos de la función y sus derivadas en z0:

(9.6)

donde k! es el producto de los enteros desde 1 hasta k, por convención 0! = 1, y la derivada cero f (0)(z) 
es sólo f (z). Esta notación permite escribir una fórmula para los coefi cientes, sin considerar por separado 
el caso k = 0. Los números dados por la ecuación (9.6) son los coefi cientes de Taylor de f en z0, y la serie 
de potencias

se llama la serie de Taylor para f en (o alrededor de) z0.
Ha probado que si una función f está defi nida en un disco por una serie de potencias con centro en 

z0, entonces los coefi cientes en esta serie de potencias deben ser los coefi cientes de Taylor, y la serie de 
potencias debe ser la serie de Taylor de f alrededor de z0.

f ′(z) =
∞∑

n=1

ncn(z − z0)
n−1.

f ′′(z) =
∞∑

n=2

n(n − 1)cn(z − z0)
n−2

f (3)(z) =
∞∑

n=3

n(n − 1)(n − 2)cnz
n−3,

f (k)(z) =
∞∑

n=k

n(n − 1)(n − 2) · · · (n − k + 1)cn(z − z0)
n−k.

f (z0) = c0,

f ′(z0) = c1,

f ′′(z0) = 2c2,

f (3)(z0) = 3(2)c3

ck = 1

k!f
(k)(z0) para k = 0, 1, 2, . . . ,

∞∑

n=0

1

n!f
(n)(z0)(z − z0)

n

f (k)(z0) = k(k − 1)(k − 2) · · · (1)ck.
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Ahora está en la posición de defi nir algunas funciones complejas elementales, incluyendo las funcio-
nes exponencial y trigonométricas y funciones de potencias.

En cada uno de los problemas del 1 al 8, determine el radio de 
convergencia y el disco abierto de convergencia de la serie de po-
tencias.

 9.  ¿Es posible que 
∑

 cn(z − 2i)n converja en 0 y diverja en i?

10.  ¿Es posible que 
∑

 ∞n =0 cn(z − 4 + 2i)n converja en i y diver-
ja en 1 + i?

11.  Considere 
∑

 ∞n =0 cnzn, donde cn = 2 si n es par y cn = 1 si n 
es impar. Pruebe que el radio de convergencia de esta serie 
de potencias es 1, pero que este número no se puede calcular 
usando el criterio de la razón. (Esto signifi ca simplemente 
que no siempre se puede usar este criterio para determinar 
el radio de convergencia de una serie de potencias.)

SECCIÓN 9.2 PROBLEMAS

9.3 Las funciones exponencial y trigonométricas

Busque defi nir la función exponencial compleja ez de manera que coincida con la función exponencial real 
cuando z es real. Para todo real x,

En esta serie, reemplace x con z, para obtener la serie de potencias

Calcule

Debido a que este límite es menor que 1 para todo z, esta serie de potencias converge para todo z, y hace 
la siguiente defi nición.

1.
∑∞

n=0
n + 1

2n
(z + 3i)n

2.
∑∞

n=0(−1)n
1

(2n + 1)2
(z − i)2n

3.
∑∞

n=0
nn

(n + 1)n
(z − 1 + 3i)n

4.
∑∞

n=0

(
2i

5 + i

)n

(z + 3 − 4i)n

5.
∑∞

n=0
in

2n+1
(z + 8i)n

6.
∑∞

n=0
(1 − i)n

n + 2
(z − 3)n

7.
∑∞

n=0
n2

2n + 1
(z + 6 + 2i)n

8.
∑∞

n=0
n3

4n
(z + 2i)3n

ex =
∞∑

n=0

1

n!x
n.

∞∑

n=0

1

n!z
n.

lim
n→∞

∣∣∣∣
zn+1/(n + 1)!

zn/n!

∣∣∣∣ = lim
n→∞

1

n + 1
|z| = 0.lím lím

9.3 Las funciones exponencial y trigonométricas
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Para todo número complejo, y todo entero positivo k, la k-ésima derivada de ez es

Prueba Calcule

Por tanto, f ′(z) = ez. Ahora al seguir diferenciando da f (k)(z) = ez para cualquier entero positivo k. ■

Enseguida aparece una lista de las propiedades de la función exponencial compleja, muchas de las 
cuales son familiares del caso real. La conclusión (8) da las partes real e imaginaria de ez, lo que permite 
escribir ez = u(x, y) + iv(x, y). La conclusión (9) es quizá la sorpresa principal al extender la función 
exponencial real al plano complejo. ¡La función exponencial compleja es periódica! Este periodo no se 
manifi esta en el caso real ya que es imaginario puro.

DEFINICIÓN 9.6  Función exponencial

Para z complejo, defi na la función exponencial compleja ez por

ez =
∞∑

n=0

1

n!z
n.

TEOREMA 9.11 

f (k)(z) = ez.

f ′(z) =
∞∑

n=1

1

n!nzn−1 =
∞∑

n=1

1

(n − 1)!z
n−1 =

∞∑

n=0

1

n!z
n = ez.

■

1. e0 = 1.

2. Si g es diferenciable en z, entonces también lo es eg(z), y

3. ez+w = ezew para todo complejo z y w.

4. ez � 0 para todo z.

5. e−z = 1/ez.

6. Si z es real, entonces ez es real y ez > 0.

7. (Fórmula de Euler) Si y es real, entonces

eiy = cos(y) + i sen(y).

8. Si z = x + iy, entonces

ez = ex cos(y) + iex sen(y).

9. ez es periódica con periodo 2nπi para cualquier entero n.

TEOREMA 9.12 

d

dz
eg(z) = g′(z)eg(z).
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Prueba (1) es obvio y (2) se sigue a partir de la regla de la cadena para la diferenciación.
Para probar (3), fi je cualquier número complejo u y defi na f (z) = ezeu−z, para todo complejo z. En-

tonces

f ′(z) = ezeu−z − ezeu−z = 0

para todo z. Por el teorema 9.7, en cualquier disco abierto D : |z| < R, f (z) es constante. Para algunos nú-
meros K, f (z) = K para |z| < R. Pero entonces f (0) = K = e0eu = eu, de manera que para todo z en D,

ezeu−z = eu.

Ahora u = z + w para obtener

ezew = ez+w.

Como R puede ser tan grande como desee, esto se cumple para todo complejo z y w.
Para probar (4), suponga que eα = 0. Entonces

1 = e0 = eα−α = eαe−α = 0,

una contradicción.
Para (5), argumente como en (4) que

1 = e0 = ez−z = eze−z,

de manera que

e−z = 1/ez.

Para probar (7), escriba

Ahora

y

de manera que

en donde ha usado las expansiones de Maclaurin (real) de cos(y) y sen(y) para y real.
Para (8), use (7) para escribir

Finalmente, para la conclusión (9), para cualquier entero n,

Así para cualquier entero n distinto de cero, 2nπi es un periodo de ez.

eiy =
∞∑

n=0

1

n! (iy)n =
∞∑

n=0

1

(2n)! (iy)2n +
∞∑

n=0

1

(2n + 1)! (iy)2n+1

=
∞∑

n=0

1

(2n)! i
2ny2n +

∞∑

n=0

1

(2n + 1)! i
2n+1y2n+1.

i2n = (i2)n = (−1)n

i2n+1 = i(i2n) = i(−1)n,

eiy =
∞∑

n=0

(−1)n

(2n)! y2n + i

∞∑

n=0

(−1)n

(2n + 1)!y
2n+1 = cos(y) + i sen(y),

ez = ex+iy = exeiy = ex(cos(y) + i sen(y)).

ez+2nπi = ex+i(y+2nπ) = ex (cos(y + 2nπ) + i sen(y + 2nπ))

= ex cos(y) + iex sen(y) = ez.

9.3 Las funciones exponencial y trigonométricas
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La conclusión (8) da la forma polar de ez en términos de x y y. Implica que la magnitud de ez es ex y 
que un argumento de ez es y. Establezca estas conclusiones:

y

También es fácil de verifi car que

Para esto, escriba

Por ejemplo,

La conclusión (9) se puede mejorar. No solamente es 2nπi un periodo de ez sino que estos números 
son los únicos periodos. Esto es la parte (4) del siguiente teorema.

arg(ez) = Im(z) + 2nπ = y + 2nπ.

ez = ez.

ez = ex(cos(y) + i sen(y)) = ex(cos(y) − i sen(y)) = ex−iy = ez.

e2+6i = e2+6i = e2−6i = e2(cos(6) − i sen(6)).

∣∣ez
∣∣ = eRe(z) = ex

TEOREMA 9.13 

1. ez = 1 si, y sólo si z = 2nπi para algún entero n.

2. ez = −1 si, y sólo si z = (2n + 1)πi para algún entero n.

3. ez = ew si, y sólo si z − w = 2nπi para algún entero n.

4. Si p es un periodo de ez, entonces p = 2nπi para algún entero n.

Compare la conclusión (2) de este teorema con la conclusión (6) del teorema anterior. Si x es real, 
entonces ex es un número real positivo. Sin embargo, la función exponencial compleja puede dar valores 
negativos. La conclusión (2) de este teorema da todos los valores de z tales que ez toma el −1.

Prueba Para (1), suponga primero que ez = 1. Entonces

Entonces

Ahora x es real, de manera que ex > 0 y la segunda ecuación requiere que sen(y) = 0. Como esta es la 
función seno real, conoce todos sus ceros y puede concluir que y = kπ para k entero. Ahora debe tener

Pero cos(kπ) = (−1)k para k entero, de manera que

Para que se satisfaga esto, primero necesita que (−1)k sea positivo, mientras k debe ser un entero par, 
k = 2n. Esto deja

de manera que x = 0. Por tanto, z = x + iy = 2nπi.

ez = 1 = ex cos(y) + iex sen(y).

ex cos(y) = 1 y ex sen(y) = 0.

ex cos(y) = ex cos(kπ) = 1.

ex(−1)k = 1.

ex = 1,
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Recíprocamente, suponga que z = 2nπi para algún entero n. Entonces

La conclusión (2) puede probarse con un argumento paralelo al que acaba de elaborar para (1).
Para (3), si z − w = 2nπi, entonces

así

Recíprocamente, suponga que ez = ew. Entonces ez−w = 1, de manera que por (1), z − w = 2nπi para 
algún entero n.

Finalmente, para (4), suponga que p es un periodo de ez. Entonces

para todo z. Pero entonces

de manera que ep = 1 y, por (1), p = 2nπi para algún entero n. ■

Usando las propiedades que ha obtenido para ez, algunas veces puede resolver ecuaciones que invo-
lucran a esta función.

EJEMPLO 9.11

Encontrar todas las z tales que

Para hacer esto, sea z = x + iy, de manera que

Entonces

y

Sume el cuadrado de estas ecuaciones para obtener

Entonces

en donde ln(5) es el logaritmo natural real de 5. Ahora, dividiendo

así y = tan−1(2). Una solución de la ecuación dada es z = 1
2 ln(5) + i tan−1(2), o aproximadamente 

0.8047 + 1.1071i. ■

ez = cos(2nπ) + i sen(2nπ) = 1.

ez−w = ez

ew
= e2nπi = 1,

ez = ew.

ez+p = ez

ezep = ez

ez = 1 + 2i.

ex cos(y) + iex sen(y) = 1 + 2i.

ex cos(y) = 1

ex sen(y) = 2.

e2x(cos2(y) + sen2(y)) = e2x = 5.

x = 1
2 ln(5),

ex sen(y)

ex cos(y)
= tan(y) = 2,

9.3 Las funciones exponencial y trigonométricas
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Ahora está listo para extender las funciones trigonométricas de la recta real al plano complejo. Bus-
que defi nir sen(z) y cos(z) para todo complejo z de manera que estas funciones coincidan con las funciones 
seno y coseno reales cuando z es real. Aplique el método usado para extender la función exponencial de 
la recta real al plano complejo, empiece con la serie de potencias.

La defi nición presupone que estas series convergen para todo complejo z, un hecho fácil de probar.
A partir de la serie de potencias, es inmediato que

Diferenciando término a término esta serie, encuentra que para todo z,

La fórmula de Euler establece que, para y real, eiy = cos(y) + i sen(y). Ahora extienda esto a todo el 
plano complejo.

DEFINICIÓN 9.7  

Para todo complejo z, sea

sen(z) =
∞∑

n=0

(−1)n

(2n + 1)!z
2n+1 y cos(z) =

∞∑

n=0

(−1)n

(2n)! z2n.

cos(−z) = cos(z) y sen(−z) = − sen(z).

d

dz
sen(z) = cos(z) y

d

dz
cos(z) = − sen(z).

TEOREMA 9.14 

Para todo número complejo z,

Se sigue la prueba del teorema 9.12(7), con z en lugar de y.
Exprese sen(z) y cos(z) en términos de la función exponencial de la siguiente manera. Primero, del 

teorema 9.14,

y

Resuelva estas ecuaciones para sen(z) y cos(z) para obtener

Fórmulas como éstas revelan uno de los benefi cios de extender estas funciones familiares al plano com-
plejo. En la recta real, no hay una conexión evidente entre ex, sen(x) y cos(x). Estas formulaciones también 
son convenientes para llevar a cabo manipulaciones que involucren sen(z) y cos(z). Por ejemplo, para 
obtener la identidad

eiz = cos(z) + i sen(z).

eiz = cos(z) + i sen(z)

e−iz = cos(z) − i sen(z).

cos(z) = 1

2
(eiz + e−iz) y sen(z) = 1

2i
(eiz − e−iz).

sen(2z) = 2 cos(z) sen(z),
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inmediatamente tiene que

Las identidades que involucran funciones trigonométricas reales siguen siendo ciertas en el caso 
complejo, y siempre las usará sin probarlas. Por ejemplo,

No todas las propiedades del seno y coseno reales pasan a sus extensiones complejas. Recuerde que 
|cos(x)| ≤ 1 y |sen(x)| ≤ 1 para x real. Contraste esto con el siguiente.

2 sen(z) cos(z) = 2
1

2
(eiz + e−iz)

1

2i
(eiz − e−iz)

= 1

2i
(e2iz − e−2iz + 1 − 1) = 1

2i
(e2iz − e−2iz) = sen(2z).

sen(z + w) = sen(z) cos(w) + cos(z) sen(w).

TEOREMA 9.15 

cos(z) y sen(z) no están acotados en el plano complejo. ■

La prueba consiste en mostrar que ambas funciones pueden hacerse arbitrariamente grandes en mag-
nitud para cierta elección de z. Sea z = iy con y real. Entonces

así

y el lado derecho puede hacerse tan grande como se quiera eligiendo y sufi cientemente grande en magni-
tud. Esto es, conforme z se aleja del origen en cualquier dirección a lo largo del eje vertical, |sen(z)| crece 
en magnitud sin cota. Es fácil verifi car que |cos(z)| muestra el mismo comportamiento.

Frecuentemente es útil conocer las partes real e imaginaria de estas funciones.

sen(z) = sen(iy) = 1

2i
(e−y − ey)

|sen(z)| = 1

2
|ey − e−y |,

TEOREMA 9.16 

Sea z = x + iy. Entonces

cos(z) = cos(x) cosh(y) − i sen(x) senh(y)

y

sen(z) = sen(x) cosh(y) + i cos(x) senh(y). ■

Es rutinario obtener estas expresiones a partir de las expresiones exponenciales para el sen(z) y el 
cos(z).

Ahora probará que las funciones seno y coseno complejas tienen exactamente los mismos periodos y 
ceros que sus contrapartes reales.

TEOREMA 9.17  

1. sen(z) = 0 si, y sólo si z = nπ para algún entero n.

2. cos(z) = 0 si, y sólo si z = (2n + 1)π/2 para algún entero n.

9.3 Las funciones exponencial y trigonométricas
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3.  sen(z) y cos(z) son periódicas con periodos 2nπ, para n cualquier entero distinto de cero. Más aún, 
estos son los únicos periodos para estas funciones.

La conclusión (3) signifi ca que

para todo complejo z y, recíprocamente, si

Entonces p = 2nπ, y si

Entonces q = 2nπ. Esto garantiza que las funciones seno y coseno no tendrán periodos adicionales cuando 
se extienden al plano complejo, como ocurre con la función exponencial compleja.

Prueba Para (1), si n es un entero, entonces

Así todo z = nπ, con n un entero, es un cero de sen(z). Para probar que estos son los únicos ceros, suponga 
que sen(z) = 0. Sea z = x + iy. Entonces

Entonces

Como cosh(y) > 0 para todo real y, entonces sen(x) = 0, y para esta función seno real, esto signifi ca que 
x = nπ para algún entero n. Entonces

Pero cos(nπ) = (−1)n � 0, de manera que senh(y) = 0 y esto fuerza que y = 0. Por tanto, z = nπ.
(2) puede probarse con un argumento similar al utilizado para (1).
Para (3), si n es un entero, entonces

así cada entero par múltiplo de π es un periodo de sen(z). Para probar que no hay otros periodos, suponga 
que p es un periodo de sen(z). Entonces

para todo complejo z. En particular, esto debe cumplirse para z = 0, de manera que sen(p) = 0 y entonces 
por (1), p = nπ para n entero. Pero también puede poner z = i para tener

Entonces

Por tanto,

cos(z + 2nπ) = cos(z) y sen(z + 2nπ) = sen(z)

cos(z + p) = cos(z) para todo z,

sen(z + q) = sen(z) para todo z,

sen(nπ) = 1

2i
(enπi − e−nπi) = 1

2i
(1 − 1) = 0.

sen(x) cosh(y) + i cos(x) senh(y) = 0.

sen(x) cosh(y) = 0 y cos(x) senh(y) = 0.

cos(x) senh(y) = cos(nπ) senh(y) = 0.

sen(z + 2nπ) = 1

2i
(ei(z+2nπ) − e−i(z+2nπ))

= 1

2i
(eize2nπi − e−ize−2nπi) = 1

2i
(eiz − e−iz) = sen(z),

sen(z + p) = sen(z)

sen(i + nπ) = sen(i).

ei(i+nπ) − e−i(i+nπ) = e−1 − e.

e−1 cos(nπ) − e cos(nπ) = e−1 − e.
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Si n es par, entonces cos(nπ) = 1 y esta ecuación es cierta. Si n es impar, entonces cos(nπ) = −1 y esta 
ecuación se convierte en

que es imposible. Por tanto, n es par, y los únicos periodos de sen(z) son enteros pares múltiplos de π.
Un argumento similar establece el mismo resultado para los periodos de cos(z). ■

El siguiente es un ejemplo en el cual se usan resultados acerca del cos(z) para resolver una ecuación.

EJEMPLO 9.12

Resolver cos(z) = i.
Sea z = x + iy, de manera que

Entonces

Como cosh(y) > 0 para todo real y, la primera ecuación implica que cos(x) = 0, así

en donde (hasta aquí) n puede ser un entero. A partir de la segunda ecuación,

Ahora sen((2n + 1)π/2) = (−1)n, de manera que

con n cualquier entero. Así y = senh−1((−1)n+1). Las soluciones de cos(z) = i son, por tanto, los números 
complejos 

y

Una fórmula estándar para la función del seno hiperbólico inversa da

para β real. Por tanto, las soluciones se pueden escribir como

y

−e−1 + e = e−1 − e,

cos(x) cosh(y) − i sen(x) senh(y) = i.

cos(x) cosh(y) = 0 y sen(x) senh(y) = −1.

x = 2n + 1

2
π,

sen

(
2n + 1

2
π

)
senh(y) = −1.

senh(y) = (−1)n+1,

2n + 1

2
π + i senh−1(−1) para n un entero par,

2n + 1

2
π + i senh−1(1) para n un entero impar.

senh−1(β) = ln
(
β +

√
β2 + 1

)

2n + 1

2
π + i ln(−1 +

√
2) para n un entero par,

2n + 1

2
π + i ln(1 +

√
2) para n un entero par. ■

9.3 Las funciones exponencial y trigonométricas

(
−1

)

)(
1
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Las otras funciones trigonométricas se defi nen por

en cada caso para todo z para el cual el denominador no sea cero. Las propiedades de estas funciones se 
pueden obtener a partir de las propiedades del sen(z) y cos(z).

sec(z) = 1

cos(z)
, csc(z) = 1

sen(z)
,

tan(z) = sen(z)

cos(z)
, cot(z) = cos(z)

sen(z)
,

9.4 El logaritmo complejo

En cálculo real, el logaritmo natural es la inversa de la función exponencial para x > 0,

y = ln(x) si, y sólo si x = ey.

En este sentido, el logaritmo natural real se puede pensar como la solución de la ecuación x = ey para y 
en términos de x.

Puede intentar este acercamiento para buscar una defi nición del logaritmo complejo. Dado z � 0, 
cuando existen números complejos w tales que

ew = z.

En cada problema del 1 al 10, escriba la función en la forma 
a + bi.

1. ei

2. sen(1 − 4i)

3. cos(3 + 2i)

4. tan(3i)

5. e5+2i

6. cot

7. sen2(1 + i)

8. cos(2 − i) − sen(2 − i)

9. eπi/2

10. sen(ei)

11.  Encuentre u(x, y) y v(x, y) tales que ez2 = u(x, y) + iv(x, y). 
Pruebe que u y v satisfacen las ecuaciones de Cauchy-Rie-
mann para todo complejo z.

12.  Encuentre u(x, y) y v(x, y) tales que e1/z = u(x, y) + iv(x, 
y). Pruebe que u y v satisfacen las ecuaciones de Cauchy-
Riemann para todo z excepto cero.

13.  Encuentre u(x, y) y v(x, y) tales que tan(z) = u(x, y) + 
iv(x, y). Determine dónde están defi nidas estas funciones y 
pruebe que satisfacen las ecuaciones de Cauchy-Riemann 
para estos puntos (x, y).

14.  Encuentre u(x, y) y v(x, y) tales que sec(z) = u(x, y) + 
iv(x, y). Determine dónde están defi nidas estas funciones 
y pruebe que satisfacen las ecuaciones de Cauchy-Rie-
mann para tales puntos.

15. Pruebe que sen2(z) + cos2(z) = 1 para todo complejo z.

16.  Sean z y w números complejos.

  (a) Pruebe que sen(z + w) = sen(z) cos(w) + cos(z) 
sen(w).

  (b) Pruebe que cos(z + w) = cos(z) cos(w) − sen(z) 
sen(w).

17. Encuentre todas las soluciones de ez = 2i.

18. Encuentre todas las soluciones de sen(z) = i.

19. Encuentre todas las soluciones de ez = −2.

SECCIÓN 9.3 PROBLEMAS

(
1 − πi

4
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Para contestar a esta pregunta, ponga z en la forma polar como z = reiθ. Sea w = u + iv. Entonces

(9.7)

Como θ y v son reales, | eiθ | = | eiv | = 1 y la ecuación (9.7) dan r = |z| = eu. De donde

u = ln(r),

el logaritmo natural real del número positivo r.
Pero ahora la ecuación (9.7) implica que eiθ = eiv, de manera que por el teorema 9.13(3),

iv = iθ + 2nπi

y por tanto

v = θ + 2nπ,

en donde n puede ser cualquier entero.
En resumen, dado un número complejo z = reiθ distinto de cero, existe una infi nidad de números 

complejos w tales que ew = z, y estos números son

w = ln(r) + iθ + 2nπi,

con n cualquier entero. Como θ es cualquier argumento de z, y todos los argumentos de z están contenidos 
en la expresión θ + 2nπ para n entero, entonces en términos de z,

w = ln(|z|) + i arg(z),

con el entendido de que hay una infi nidad de valores distintos para arg(z). Cada uno de estos números se 
llama un logaritmo complejo de z.

Cada número complejo distinto de cero tiene, por tanto, una infi nidad de logaritmos. Para enfatizar 
esto, escriba

log(z) = {ln(|z| + i arg(z)} .

Esto se lee, “el logaritmo de z es el conjunto de todos los números ln(|z|) + iθ, donde θ varía sobre todos 
los argumentos de z”.

EJEMPLO 9.13

Sea z = 1 + i. Entonces z =
√

2ei(π/4+2nπ). Entonces

Algunos de los logaritmos de 1 + i son

EJEMPLO 9.14

Sea z = −3. Un argumento de z es π, y en la forma polar z = 3ei(π+2nπ) = 3e(2n+1)πi. Entonces

log(z) = {ln(3) + (2n + 1)πi}.

Algunos valores de log(−3) son ln(3) + πi, ln(3) + 3πi, ln(3) + 5πi, . . . , ln(3) − πi, ln(3) − 3πi, y así 
sucesivamente. ■

z = reiθ = ew = eueiv.

log(z) =
{

ln(
√

2) + i
π

4
+ 2nπi

}
.

ln(
√

2) + π

4
i, ln(

√
2) + 9π

4
i, ln(

√
2) − 7π

4
i, . . . . ■

9.4 El logaritmo complejo

( ) ( ) ( )

( )
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El logaritmo complejo no es una función ya que con cada z distinto de cero están asociados infi nidad 
de números complejos distintos. No obstante, log(z) muestra algunas de las propiedades de la función 
logaritmo real, con las que está familiarizado. ■

Sea z � 0. Si w es cualquier valor de log(z), entonces ew = z.

Esta es la función compleja equivalente al hecho que en cálculo real, eln(x) = x. Esta es la condición 
para entender una defi nición de log(z).

Sean z y w números complejos distintos de cero. Entonces cada valor de log(zw) es una suma de valores 
de log(z) y log(w).

Prueba Sean z = reiθ y w = ρeiϕ. Entonces zw = rρei(θ+ϕ). Si α es cualquier valor de log(zw), entonces 
para algún entero N,

α = ln(ρr) + i(θ + ϕ + 2Nπ) = [ln(r) + iθ] + [ln(ρ) + i(ϕ + 2Nπ)].

Pero ln(r) + iθ es un valor de log(z), y ln(ρ) + i(ϕ +2Nπ) es un valor de log(w), lo que prueba el 
teorema. ■

Aquí hay un ejemplo del uso del logaritmo para resolver una ecuación que involucra la función ex-
ponencial.

EJEMPLO 9.15

Resolver para todo z tal que ez = 1 + 2i.
En el ejemplo 9.11 encontró una solución separando las partes real e imaginaria de ez. Usando el 

logaritmo, obtiene todas las soluciones como sigue:

ez = 1 + 2i

signifi ca que

en donde n es cualquier entero positivo. ■

Algunas veces es conveniente elegir un logaritmo en particular para usarlo con los números comple-
jos distintos de cero. Esto se puede hacer eligiendo un argumento. Por ejemplo, para z  � 0,

Log(z) = ln(|z|) + iθ,

donde 0 ≤ θ < 2π. Esto asignado al símbolo Log(z) cuyo valor particular de log(z) corresponde al argu-
mento de z que está en [0, 2π). Por ejemplo,

y

TEOREMA 9.18 

TEOREMA 9.19 

z = log(1 + 2i) = ln(|1 + 2i|) + i arg(1 + 2i) = 1
2 ln(5) + i(arctan(2) + 2nπ),

Log(1 + i) = ln(
√

2) + i
π

4

Log(−3) = ln(3) + iπ.

Log

Log

1
2

( )
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Si se hace esto, entonces hay que tener cuidado con los cálculos. Por ejemplo, en general Log(zw) � 
Log(z) + Log(w).

9.5 Potencias

Busque asignarle un signifi cado al símbolo zw cuando w y z son números complejos y z � 0. Construirá 
esta idea en pasos. A lo largo de esta sección z es un número complejo distinto de cero.

9.5.1 Potencias enteras

Las potencias enteras no presentan problemas. Defi na z0 = 1. Si n es un entero positivo, entonces 
zn = z · z · · · · z, un producto de n factores de z. Por ejemplo,

(1 + i)4 = (1 + i)(1 + i)(1 + i)(1 + i) = −4.

Si n es un entero negativo, entonces zn = 1/z|n|. Por ejemplo,

9.5.2 z1/n para n entero positivo

Sea n un entero positivo. Un número u tal que un = z se llama la n-ésima raíz de z, y se denota z1/n. Como 
con el logaritmo y el argumento, este es un símbolo que denota más que un número. De hecho, todo nú-
mero complejo distinto de cero tiene exactamente n raíces n-ésimas distintas.

Para determinar estas n-ésimas raíces de z, sea z = reiθ, con r = |z| y θ cualquier argumento de z. 
Entonces

z = rei(θ+2kπ),

en donde k puede ser cualquier entero. Entonces

 z1/n = r1/nei(θ+2kπ)/n. (9.8)

Aquí r1/n es la única raíz n-ésima real del número positivo r. Conforme k varía sobre los enteros, la ex-
presión del lado derecho de la ecuación (9.8) produce números complejos cuyas n-ésimas potencias son 
iguales a z. Vea cuántos de tales números produce.

En cada problema del 1 al 6, determine todos los valores de 
log(z) y también el valor de Log(z) defi nido en la discusión.

1. −4i

2. 2 − 2i

3. −5

4. 1 + 5i

5. −9 + 2i

6. 5

7.  Sean z y w números complejos distintos de cero. Pruebe 
que cada valor de log(z / w) es igual al valor de log(z) me-
nos un valor de log(w).

8.  Dé un ejemplo para probar que, en general Log(zw) � 
Log(z) + Log(w) para todo complejo z y w distinto de cero.

SECCIÓN 9.4 PROBLEMAS

(1 + i)−4 = 1

(1 + i)4 = −1

4
.

9.5 Potencias
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Para k = 0, 1, . . . , n − 1, tenemos n raíces n-ésimas distintas de z. Ellas son

 r1/neiθ/n, r1/nei(θ+2π)/n, r1/nei(θ+4π)/n, . . . , r1/nei(θ+2(n−1)π)/n. (9.9)

Otra elección de k simplemente reproduce una de estas raíces n-ésimas. Por ejemplo, si k = n, entonces 
la ecuación (9.8) lleva a

r1/nei(θ+2nπ)/n = r1/neiθ/ne2πi = r1/neiθ/n,

el primer número de la lista (9.9). Si k = n + 1, obtiene

r1/nei(θ+2(n+1)π)/n = r1/nei(θ+2π)/ne2πi = r1/nei(θ+2π)/n,

el segundo número en la lista (9.9), y así sucesivamente.
En resumen, para cualquier entero positivo n, el número de raíces n-ésimas de cualquier número 

complejo z distinto de cero, es n. Estas raíces n-ésimas son

o

EJEMPLO 9.16

Encuentre las raíces cuartas de 1 + i.
Como un argumento de 1 + i es π/4 y |1 + i| = 

√
2, tiene la forma polar

Las raíces cuartas son

Estos números son

o

EJEMPLO 9.17

Las raíces n-ésimas de 1 se llaman las raíces n-ésimas de la unidad. Estos números tienen muchos usos, 
por ejemplo, en conexión con la transformada rápida de Fourier. Como 1 tiene magnitud 1, y un argumen-
to de 1 es cero, las raíces n-ésimas de la unidad son

e2kπi/n para k = 0, 1, . . . , n − 1.

r1/nei(θ+2kπ)/n para k = 0, 1, . . . , n − 1,

r1/n

(
cos

(
θ + 2kπ

n

)
+ i sen

(
θ + 2kπ

n

))
para k = 0, 1, . . . , n − 1.

1 + i =
√

2ei(π/4+2kπ).

(
√

2)1/4ei(π/4+2kπ)/4 para k = 0, 1, 2, 3.

21/8eπi/16, 21/8ei(π/4+2π)/4, 21/8ei(π/4+4π)/4, 21/8ei(π/4+6π)/4,

21/8
(

cos

(
π

16

)
+ i sen

( π

16

))
,

21/8
(

cos

(
9π

16

)
+ i sen

(
9π

16

))
,

21/8
(

cos

(
17π

16

)
+ i sen

(
17π

16

))
,

21/8
(

cos

(
25π

16

)
+ i sen

(
25π

16

))
. ■

( )
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Si pone ω = e2πi/n, entonces estas raíces n-ésimas de la unidad son 1, ω, ω2, . . . , ωn−1.
Por ejemplo, las raíces quintas de la unidad son

1, e2πi/5, e4πi/5, e6πi/5 y e8πi/5.

Estas son

Si dibuja como puntos en el plano, las raíces n-ésimas de la unidad forman los vértices de un polígono 
regular con los vértices en el círculo unitario |z| = 1 y teniendo un vértice en (1, 0). La fi gura 9.8 muestra 
las raíces quintas de la unidad vistas de esta manera.

Si n es un entero negativo, entonces

en el sentido que los n números representados por el símbolo en la izquierda son calculados tomando los 
n números producidos en la derecha. Éstos son sólo los recíprocos de las raíces n-ésimas de z.

9.5.3 Potencias racionales

Un número racional es un cociente de enteros, a saber r = m/n. Suponga que n es positivo y que m y n no 
tienen factores comunes. Escriba

zr = zm/n = (zm)1/n,

las raíces n-ésimas de zm.
Verifi que que obtiene los mismos números si primero saca las raíces n-ésimas de z, entonces eleva 

cada una a la potencia m. Esto se debe a que

EJEMPLO 9.18

Encuentre todos los valores de (2 − 2i)3/5.
Primero, (2 − 2i)3 = −16 − 16i. Así que quiere las raíces quintas de −16 − 16i. Ahora |−16 − 16i| 

= 
√

512, y 5π/4 es un argumento de −16 − 16i. Entonces

1, cos

(
2π

5

)
+ i sen

(
2π

5

)
, cos

(
4π

5

)
+ i sen

(
4π

5

)
,

cos

(
6π

5

)
+ i sen

(
6π

5

)
, cos

(
8π

5

)
+ i sen

(
8π

5

)
.

x

y

z1/n = 1

z1/|n| ,

(
zm

)1/n =
(
rmeim(θ+2kπ)

)1/n

= rm/neim(θ+2kπ)/n =
(
r1/nei(θ+2kπ)/n

)m

=
(
z1/n

)m

.

−16 − 16i = (512)1/2ei(5π/4+2kπ)

FIGURA 9.8 

■

9.5 Potencias



CAPÍTULO 9   Funciones complejas434

y

(−16 − 16i)1/5 = (512)1/10ei(5π/4+2kπ)/5.

Haciendo k = 0, 1, 2, 3, 4, obtiene los números

(512)1/10e5πi/4, (512)1/10e13πi/20, (512)1/10e21πi/20, (512)1/10e29πi/20, (512)1/10e37πi/20.

Estos son todos los valores de (2 − 2i)3/5. ■

9.5.4 Potencias zw

Suponga que z � 0 y sea w cualquier número complejo. Busca defi nir el símbolo zw.
En el caso de potencias reales, ab se defi ne como b ln(a). Por ejemplo, 2π = eπ ln(2), y éste está defi ni-

do ya que ln(2) está determinado. Siga el mismo camino para zw, excepto que ahora, para el hecho de que 
log(z), denote un conjunto infi nito de números complejos. Por tanto, defi na zw como el conjunto de todos los 
números ew log(z).

Si w = m/n, un número racional en su mínima expresión, entonces ewlog(z) tiene n valores distintos. Si 
w no es un número racional, entonces zw es un conjunto infi nito de números complejos.

EJEMPLO 9.19

Calcule todos los valores de (1 − i)1+i.
Estos números se obtienen como e(1+i) log(1−i). Primero, |1 − i| = 

√
2 y −π/4 es un argumento de 1 − 

i (obtiene el punto (1,−1) rotando π/4 radianes en sentido negativo desde el eje real positivo). Por tanto, 
en la forma polar,

Así todos los valores de log(1 − i) están dados por

Todo valor de (1 − i)1+i está contenido en la expresión

Conforme n varía entre todos los valores enteros, esta expresión da todos los valores de (1 − i)1+i. ■

1 − i =
√

2ei(−π/4+2nπ).

ln(
√

2) + i
(
−π

4
+ 2nπ

)
.

e(1+i)[ln(
√

2)+i(−π/4+2nπ)] = eln(
√

2)+π/4−2nπei(ln(
√

2)−π/4+2nπ)

=
√

2eπ/4−2nπ
(

cos(ln(
√

2 − π/4 + 2nπ)) + i sen(ln(
√

2 − π/4 + 2nπ))
)

=
√

2eπ/4−2nπ
(

cos(ln(
√

2 − π/4)) + i sen(ln(
√

2 − π/4))
)

.

En cada problema del 1 al 14, determine todos los valores 
de zw.

1. i1+i

2. (1 + i)2i

3. ii

4. (1 + i)2−i

5. (−1 + i)−3i

6. (1 − i)1/3

7. i1/4

8. 161/4

SECCIÓN 9.5 PROBLEMAS
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 9. (−4)2−i

10. 6−2−3i

11. (−16)1/4

12. 

(
1 + i

1 − i

)1/3

13. 11/6

14. (7i)3i

15.  Sea n un entero positivo, y sean u1, . . . , un las raíces 
n-ésimas de la unidad. Pruebe que 

∑n
j=1

 uj = 0. Sugerencia: 
Escriba cada raíz n-ésima de la unidad como una potencia 
de e2πi/n.

16.  Sea n un entero positivo, y ω = e2πi/n. Evalúe 
∑n

j=
−1

0  
(−1) jω j.

9.5 Potencias





Ahora conoce algunas funciones complejas importantes, así como ciertos resultados acerca de las deriva-
das de las funciones complejas. A continuación se desarrolla una integral para las funciones complejas.

Las funciones reales están defi nidas sobre conjuntos de números reales y con frecuencia se integran 
sobre intervalos. Las funciones complejas están defi nidas sobre conjuntos de puntos en el plano y se inte-
gran sobre curvas. Antes de defi nir esta integral, repasará algunos resultados sobre las curvas.

10.1 Curvas en el plano

Una curva en el plano complejo es una función Ŵ: [a, b] → �, defi nida en un intervalo real [a, b] y que toma 
valores complejos. Para cada número t en [a, b], Ŵ(t) es un número complejo, o punto en el plano. El lugar 
geométrico de tales puntos es la gráfi ca de la curva. Sin embargo, la curva es más que un lugar geomé-
trico de puntos en el plano. Ŵ tiene una orientación natural, que es la dirección en la que el punto Ŵ(t) 
se mueve a lo largo de la gráfi ca conforme t crece de a a b. En este sentido, es natural referirse a Ŵ(a) como 
el punto inicial de la curva y a Ŵ(b) como el punto fi nal.

Si Ŵ(t) = x(t) + iy(t), entonces la gráfi ca de Ŵ es el lugar geométrico de los puntos (x(t), y(t)) para 
a ≤ t ≤ b. El punto inicial de Ŵ es (x(a), y(a)) y el punto fi nal es (x(b), y(b)) y (x(t ), y(t)) se mueve del pun-
to inicial al punto fi nal conforme t varía de a a b. Las funciones x(t) y y(t) son las funciones coordenadas 
de Ŵ.

EJEMPLO 10.1

Sea Ŵ(t) = 2t + t2i para 0 ≤ t ≤ 2. Entonces

Ŵ(t) = x(t) + iy(t ),
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donde x(t) = 2t y y(t) = t2. La gráfi ca de esta curva es la parte de la parábola y = (x / 2)2, que se muestra en 
la fi gura 10.1. Conforme t varía de 0 a 2, el punto Ŵ(t) = (2t, t2) se mueve a lo largo de esta gráfi ca del pun-
to inicial Ŵ(0) = (0, 0) al punto fi nal Ŵ(2) = (4, 4). Las fl echas en la gráfi ca indican esta orientación. ■

EJEMPLO 10.2

Sea �(t) = eit para 0 ≤ t ≤ 3π. Entonces �(t) = cos(t) + i sen(t) = x(t) + iy(t), así

x(t) = cos(t),  y(t) = sen(t).

Como x2 + y2 = 1, todo punto en esta curva está en el círculo unitario alrededor del origen. Sin embargo, 
el punto inicial de � es �(0) = 1 y el punto fi nal es �(3π) = e3πi = −1. Esta curva no es cerrada. Si ésta 
fuera una pista de carreras, la carrera empezaría en el punto 1 de la fi gura 10.2 y terminaría en −1. Una 
pista de carreras circular no signifi ca que los puntos de inicio y fi n de la carrera sean el mismo. Esto no es 
evidente a partir sólo de la gráfi ca. � está orientada positivamente, como lo indica la fl echa. ■

EJEMPLO 10.3

Sea �(t) = eit para 0 ≤ t ≤ 4π. Esta curva es cerrada, ya que �(0) = 1 = �(4π). Sin embargo, el punto 
(x(t), y(t)) se mueve alrededor del círculo unitario x2 + y2 = 1 dos veces conforme t varía de 0 a 4π. Esto 
tampoco es evidente a partir sólo de la gráfi ca (fi gura 10.3). ■

x

y

1 2 3 4

1

0

2

3

4 (4, 4)

FIGURA 10.1 x = 2t , y = t2 para 
0 ≤ t ≤ 2.

FIGURA 10.2 �(t) = eit para 0 ≤ t ≤ 3π.

x

y

�(3�) = �1 �(0) = 1

�(t) = eit

FIGURA 10.3 �(t) = eit para 0 ≤ t ≤ 4π.

x

y

�(0) � �(2�) � �(4�) � 1

�(t) � eit



Una curva Ŵ es simple si Ŵ(t1) � Ŵ(t2) siempre que t1 � t2. Esto signifi ca que el mismo punto nun-
ca se repite en tiempos diferentes. Se hace una excepción para las curvas cerradas, que requieren que 
Ŵ(a) = Ŵ(b). Si éste es el único punto en el cual Ŵ(t1) = Ŵ(t2) con t1 � t2, entonces Ŵ es una curva cerra-
da simple. La curva � del ejemplo 10.3 es cerrada, pero no simple. Si defi ne �(t) = eit para 0 ≤ t ≤ 2π, 
entonces (x(t), y(t)) recorre el círculo exactamente una vez conforme t varía de 0 a 2π, y � es una curva 
cerrada simple.

Una curva Ŵ: [a, b] → � es continua si cada una de sus funciones coordenadas es continua en [a, 
b]. Si x(t) y y(t) son diferenciables en [a, b], Ŵ es una curva diferenciable. Si x′(t) y y′(t) son continuas, y 
no valen cero para el mismo valor de t, Ŵ es una curva suave. Todas las curvas en los ejemplos anteriores 
son suaves.

En términos vectoriales, escriba Ŵ(t) = x(t)i + y(t)j (fi gura 10.4). Si Ŵ es diferenciable, y x ′(t) y y ′(t) 
no son cero, entonces Ŵ′(t) = x ′(t)i + y ′(t)j es el vector tangente a la curva en el punto (x(t), y(t)) (fi gura 
10.5). Si Ŵ es suave, entonces x ′(t) y y ′(t) son continuas, así que el vector tangente es continuo. Una curva 
suave es, por tanto, la que tiene una tangente continua. Para ilustrar, en el ejemplo 10.3, �(t) = cos(t) + 
i sen(t), de manera que �′(t) = −sen(t) + i cos(t). Puede dejar esto como está o escribir el vector tangen-
te �′(t) = −sen(t)i + cos(t)j, explotando la correspondencia natural entre los números complejos y los 
vectores en el plano.

Algunas veces se forma una curva Ŵ juntando varias curvas Ŵ1, . . . , Ŵn en sucesión, en el entendido 
de que el punto fi nal de Ŵj−1 debe ser el mismo que el punto inicial de Ŵj para j = 2, . . . , n (fi gura 10.6). 
Una curva así se llama la concatenación de Ŵ1, . . . , Ŵn y se denota

Ŵ = Ŵ1 ⊕ Ŵ2 ⊕· · ·⊕ Ŵn.

Las curvas Ŵj son las componentes de esta concatenación. Si cada componente de una concatenación es 
suave, entonces ésta es suave a pedazos. Tiene una tangente continua en cada punto, excepto quizá en los 
puntos de conexión donde Ŵj−1 es unida a Ŵj. Si la conexión es de manera suave, la concatenación puede 
tener una tangente en cada uno de estos puntos y ella misma ser suave.

EJEMPLO 10.4

Sea Ŵ1(t) = eit para 0 ≤ t ≤ π y sea Ŵ2(t) = −1 + ti para 0 ≤ t ≤ 3. Entonces Ŵ1(π) = −1 = Ŵ2(0), de 
manera que el punto fi nal de Ŵ1 es el punto inicial de Ŵ2. La fi gura 10.7 muestra una gráfi ca de Ŵ1 ⊕ Ŵ2. 
Esta curva es suave a pedazos, ya que es la concatenación de dos curvas suaves. La concatenación tiene 
una tangente en cada punto excepto en −1, donde se hace la conexión para formar la concatenación. ■

Se defi nirá un tipo de equivalencia entre curvas. Suponga

Ŵ : [a, b] → � y  �: [A, B] → �

son dos curvas suaves. Llame a estas curvas equivalentes si una se puede obtener a partir de la otra 
mediante un cambio de variables defi nido por una función creciente y diferenciable. Esto signifi ca que 
existe una función ϕ que manda puntos de [A, B] en [a, b] tal que

os vectores en el plano.
y

x


(t) � x(t) � y(t)i � x(t)i � y(t)j y

x


'(t)


(t)

y

x


1 
3

4
2

FIGURA 10.6 
La concatenación 
Ŵ1 ⊕ Ŵ2 ⊕ Ŵ3 ⊕ Ŵ4.

FIGURA 10.4 Vector posición de una curva. FIGURA 10.5 Vector 
tangente a una curva.
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1. ϕ′ (p) > 0 para A < p < B,
2. ϕ(A) = a y ϕ(B) = b, y
3. �(p) = Ŵ(ϕ(p)) para A ≤ p ≤ B.

Si piensa en t = ϕ(p), entonces Ŵ(t) = �(p). Las curvas tienen el mismo punto inicial y terminal y la 
misma gráfi ca y orientación, pero Ŵ(t) se mueve a lo largo de la gráfi ca conforme t varía de a a b, mientras 
�(p) se mueve a lo largo de la misma gráfi ca en la misma dirección conforme p varía de A a B. Informal-
mente, dos curvas son equivalentes si una es sólo una reparametrización de la otra.

FIGURA 10.7 La concatenación 
de Ŵ1(t) = eit para 0 ≤ t ≤ π, con 
Ŵ2(t) = −1 + it para 0 ≤ t ≤ 3.

x

y


1

2

�1 � 3i

1�1

EJEMPLO 10.5

Sean

Ŵ(t) = t2 − 2ti para 0 ≤ t ≤ 1,

y

�(p) = sen2(p) − 2 sen(p)i para 0 ≤ p ≤ π / 2.

Ambas curvas tienen la misma gráfi ca (fi gura 10.8), extendiéndose del punto inicial 0 al punto fi nal 
1 − 2i. Sea

t = ϕ(p) = sen(p) para 0 ≤ p ≤ π / 2.

Entonces ϕ es una función creciente y diferenciable, que manda [0, π / 2] sobre [0, 1]. Más aún, para 0 ≤ 
p ≤ π/2,

Ŵ(sen(p)) = sen2(p) − 2 sen(p)i = �(p).

Por tanto, estas curvas son equivalentes. ■

Informalmente, se describirá a menudo una curva geométricamente y se hablará de la curva y de su 
gráfi ca de manera indistinta. Cuando se hace esto, es importante no perder de vista la orientación a lo largo 
de la curva y si es o no una curva cerrada.

Por ejemplo, suponga que Ŵ es una recta de 1 + i a 3 + 3i (fi gura 10.9). Esto proporciona la gráfi ca y 
su orientación, y así encuentra Ŵ. Como la gráfi ca es el segmento de recta de (1, 1) a (3, 3), las funciones 
coordenadas son

x = t, y = t para 1 ≤ t ≤ 3.

Entonces

Ŵ(t) = x(t) + y(t)i = (1 + i)t para 1 ≤ t ≤ 3



es una representación de la curva que ha sido descrita. Por supuesto, hay otras representaciones equiva-
lentes.

Como otro ejemplo, suponga que � es el cuarto de círculo de radio 2 alrededor de i, de 2 + i a 3i 
(fi gura 10.10). Nuevamente, se ha dado la gráfi ca y su orientación. Usando coordenadas polares con cen-
tro en i = (0, 1), puede escribir las funciones coordenadas

x(t) = 2 cos(t ), y(t) = 1 + 2 sen(t) para 0 ≤ t ≤ π / 2.

Como una función, esta curva puede escribirse como

�(t) = 2 cos(t) + 2i sen(t) + i = i + 2eit para 0 ≤ t ≤ π / 2.

También se pueden usar otras representaciones equivalentes.
Finalmente, interpretará con frecuencia enunciados tales como “f es continua en Ŵ”, lo que signifi ca 

que f es una función compleja que es continua en todos los puntos en la gráfi ca de Ŵ. Y “z en Ŵ”, signifi -
ca un número complejo z que está en la gráfi ca de Ŵ.

Las curvas son los objetos sobre los cuales se integran las funciones complejas. Ahora se defi nirá esta 
integral.

0.20 0.4 0.6 0.8 1.0

�0.5

�1.0

�1.5

�2.0

x

y

FIGURA 10.8 Gráfi ca de Ŵ(t) = t2 − 2it 
para 0 ≤ t ≤ 1.

FIGURA 10.10

2 � ii

3i

y

x

�(t) � i � 2eit, 0 � t � 2
�

FIGURA 10.9 Recta dirigida 
de 1 + i a 3 + 3i

x

y

3 � 3i

1 � i

En cada problema del 1 al 10, dibuje la gráfi ca de la curva, 
determine sus puntos inicial y terminal, si es o no cerrada, si 
es o no simple y la tangente a la curva en cada punto donde 
exista. Esta tangente puede expresarse como un vector o como 
una función compleja.

 1. Ŵ(t) = 4 − 2i + 2eit para 0 ≤ t ≤ π

 2. Ŵ(t) = ie2it para 0 ≤ t ≤ 2π

 3. Ŵ(t) = t + t2i para 1 ≤ t ≤ 3

 4. Ŵ(t) = 3 cos(t) + 5 sen(t)i para 0 ≤ t ≤ 2π

 5. �(t) = 3 cos(t) + 5 sen(t)i para 0 ≤ t ≤ 4π

 6. �(t) = 4 sen(t) − 2 cos(t)i para −π ≤ t ≤ π / 2

 7. �(t) = t − t2i para −2 ≤ t ≤ 4

 8. �(t) = (2t + 1) − 12 t2i para −3 ≤ t ≤ −1

 9. Ŵ(t) = cos(t) − 2 sen(2t)i para 0 ≤ t ≤ 2

10. 
(t) = t2 − t4i para −1 ≤ t ≤ 1

SECCIÓN 10.1 PROBLEMAS

10.1 Curvas en el plano 441
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10.2 La integral de una función compleja

Defi nirá la integral de una función compleja en dos pasos, empezando con el caso especial donde f es una 
función compleja defi nida en un intervalo [a, b] de números reales. Un ejemplo de este tipo de función es 
f (x) = x2 + sen(x)i para 0 ≤ x ≤ π. Es natural integrar tal función como

∫ π

0
f (x) dx =

∫ π

0
x2 dx + i

∫ π

0
sen(x) dx = 1

3
π3 + 2i.

Este es el modelo para estas funciones.

DEFINICIÓN 10.1

Sea f : [a, b] → � una función compleja. Sea f (x) = u(x) + iv(x) para a ≤ x ≤ b. Entonces

∫ b

a

f (x) dx =
∫ b

a

u(x) dx + i

∫ b

a

v(x) dx.

Ambas integrales de la derecha son integrales de Riemann de funciones de variable real sobre [a, b].

EJEMPLO 10.6

Sea f (x) = x − ix2 para 1 ≤ x ≤ 2. Entonces

∫ 2

1
f (x) dx =

∫ 2

1
x dx − i

∫ 2

1
x2 dx = 3

2
− 7

3
i.

 
■

EJEMPLO 10.7

Sea f (x) = cos(2x) + i sen(2x) para 0 ≤ x ≤ π / 4. Entonces

∫ π/4

0
f (x) dx =

∫ π/4

0
cos(2x) dx + i

∫ π/4

0
sen(2x) dx = 1

2
+ 1

2
i.

 
■

En el último ejemplo, es tentador hacer f (x) = e2ix y adaptar el teorema fundamental del cálculo a 
funciones complejas para obtener

∫ π/4

0
f (x) dx =

∫ π/4

0
e2ix dx =

[
1

2i
e2ix

]π/4

0
= 1

2i

(
eπi/2 − 1

)

= 1

2i

(
cos

(π

2

)
+ i sen

(π

2

)
− 1

)
= 1

2i
(−1 + i) = 1

2
(1 + i).

Estos cálculos se justifi carán en breve.
Ahora se defi ne la integral de una función compleja sobre una curva en el plano.



Como z = Ŵ(t) en la curva, esta integral se escribe frecuentemente como

∫

Ŵ

f (z) dz =
∫ b

a

f (z(t))z′(t) dt.

Esta formulación tiene la ventaja de sugerir la manera que � Ŵ f (z) dz es evaluada, reemplace z con z(t) en 
la curva. Sea dz = z′(t) dt, e integre sobre el intervalo a ≤ t ≤ b.

EJEMPLO 10.8

Evaluar �Ŵ –z dz si Ŵ(t) = eit para 0 ≤ t ≤ π.
La gráfi ca de Ŵ es la mitad superior del círculo unitario, orientado en sentido contrario al movimiento 

de las manecillas del reloj de 1 a −1 (fi gura 10.11). En Ŵ, z(t) = eit y z′(t) = ieit. Más aún, f (z(t)) = z(t) = 
e−it ya que t es real. Entonces

∫

Ŵ

f (z) dz =
∫ π

0
e−it ieit dt = i

∫ π

0
dt = πi.

 
■

EJEMPLO 10.9

Evaluar �� z2 dz si �(t) = t + it para 0 ≤ t ≤ 1.
La gráfi ca de � es el segmento de recta del origen a (1, 1), como se muestra en la fi gura 10.12. En la 

curva, z(t) = (1 + i)t. Como f (z) = z2,

f (z(t)) = (z(t))2 = (1 + i)2t2 = 2it2

y

z′(t) = 1 + i.

Entonces

∫

�

z2 dz =
∫ 1

0
2it2(1 + i) dt = (−2 + 2i)

∫ 1

0
t2 dt = 2

3
(−1 + i).

 
■

DEFINICIÓN 10.2

Sea f una función compleja. Sea Ŵ: [a, b] → � una curva suave en el plano. Suponga que f es con-
tinua en todos los puntos en Ŵ. Entonces la integral de f sobre Ŵ se defi ne como

∫

Ŵ

f (z) dz =
∫ b

a

f (Ŵ(t))Ŵ′(t) dt.

y

x
�1 1

z(t) � eit, 0 � t � � y

x
z(t) � t � it, 0 � t � 1

1 � i

FIGURA 10.12FIGURA 10.11
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EJEMPLO 10.10

Evaluar �Ŵ z Re(z) dz si Ŵ(t) = t − it2 para 0 ≤ t ≤ 2.
Aquí f (z) = z Re(z), y en esta curva, z(t) = t − it2, así

f (z(t)) = z(t) Re(z(t)) = (t − it2)t = t2 − it3.

Más aún,

z ′(t) = 1 − 2it,

así
∫

Ŵ

z Re(z) dz =
∫ 2

0
(t2 − it3)(1 − 2it) dt =

∫ 2

0
(t2 − 3it3 − 2t4) dt

=
∫ 2

0
(t2 − 2t4) dt − 3i

∫ 2

0
t3 dt = −152

15
− 12i.

 
■

Se probará que las integrales de una función sobre curvas equivalentes son iguales. Esto es importante 
porque posibilita parametrizar una curva de una infi nidad de maneras distintas, y esto no cambiará el valor 
de la integral de una función dada sobre la curva.

TEOREMA 10.1

Sean Ŵ y � curvas equivalentes y sea f continua en su gráfi ca. Entonces

∫

Ŵ

f (z) dz =
∫

�

f (z) dz.

 
■

Prueba Suponga que Ŵ: [a, b] → � y � : [A, B] → �. Debido a que estas curvas son equivalentes, existe 
una función continua ϕ con derivada positiva en [A, B] tal que ϕ(A) = a y ϕ(B) = b y �(p) = Ŵ(ϕ(p)) para 
A ≤ p ≤ B. Por la regla de la cadena,

�′ (p) = Ŵ ′(ϕ(p))ϕ′(p).

Entonces

∫

�

f (z) dz =
∫ B

A

f (�(p))�′(p) dp =
∫ B

A

f (Ŵ(ϕ(p))Ŵ′(ϕ(p))ϕ′(p) dp.

Sea s = ϕ( p). Entonces s varía de a a b conforme p varía de A a B. Continuando a partir de la última 
ecuación,

∫

�

f (z) dz =
∫ b

a

f (Ŵ(t))Ŵ′(t) dt =
∫

Ŵ

f (z) dz.

 
■

Hasta aquí integra sólo sobre curvas suaves. Puede extender la defi nición a una integral sobre curvas 
suaves a pedazos sumando las integrales sobre las componentes de la concatenación.

s s ds



EJEMPLO 10.11

Sea Ŵ1(t) = 3eit para 0 ≤ t ≤ π / 2, y sea Ŵ2(t) = t2 + 3i(t + 1) para 0 ≤ t ≤ 1. Ŵ1 es el cuarto de círcu-
lo de radio 3 alrededor del origen, recorrido en sentido contrario al movimiento de las manecillas del reloj, 
de 3 a 3i, y Ŵ2 es la parte de la parábola x = (y − 3)2 / 9 de 3i a 1 + 6i. La fi gura 10.13 muestra la gráfi -
ca de Ŵ = Ŵ1 ⊕ Ŵ2. Evaluará �Ŵ Im(z) dz.

En Ŵ1, escriba z(t) = 3eit = 3 cos(t) + 3i sen(t). Entonces

∫

Ŵ1

Im(z) dz =
∫ π/2

0
Im(z(t))z′(t) dt =

∫ π/2

0
3 sen(t)[−3 sen(t) + 3i cos(t)] dt

= −9
∫ π/2

0
sen2(t) dt + 9i

∫ π/2

0
sen(t)cos(t) dt = −9

4
π + 9

2
i.

En Ŵ2, z(t) = t2 + 3i(t + 1) y z′(t) = 2t + 3i, así
∫

Ŵ2

Im(z) dz =
∫ 1

0
Im[t2 + 3i(t + 1)][2t + 3i] dt

=
∫ 1

0
3(t + 1)(2t + 3i) dt =

∫ 1

0
(6t2 + 6t + 9it + 9i) dt

=
∫ 1

0
(6t2 + 6t) dt + 9i

∫ 1

0
(t + 1) dt = 5 + 27

2
i.

Entonces
∫

Ŵ

f (z) dz = −9

4
π + 9

2
i + 5 + 27

2
i = 5 − 9

2
π + 18i.

 
■

10.2.1 La integral compleja en términos de integrales reales

Es posible pensar en la integral de una función compleja sobre una curva como una suma de integrales de 
línea de funciones de valor real de dos variables reales sobre la curva. Sea  f (z) = u(x, y) + iv(x, y) y, en 
la curva Ŵ, suponga que z(t) = x(t) + iy(t) para a ≤ t ≤ b. Ahora

f (z(t)) = u(x(t), y(t)) + iv(x(t), y(t))

y

z ′(t) = x ′(t) + iy′(t)

DEFINICIÓN 10.3

Sea Ŵ = Ŵ1 ⊕ Ŵ2 ⊕· · ·⊕ Ŵn una concatenación de curvas suaves. Sea f continua en cada Ŵj . Enton-
ces

∫

Ŵ

f (z) dz =
n∑

j=1

∫

Ŵj

f (z) dz.

x
3

1 � 6i 

3i

y


2


1

FIGURA 10.13
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así

 f (z(t))z′(t) = [u(x(t), y(t)) + iv(x(t ), y(t))] [x′ (t) + iy′(t)]

  = u(x(t), y(t))x′(t) − v(x(t), y(t))y′(t)

     + i[v(x(t), y(t))x′(t) + u(x(t ), y(t))y′(t)].

Entonces

∫

Ŵ

f (z) dz =
∫ b

a

[
u(x(t), y(t))x′(t) − v(x(t), y(t))y′(t)

]
dt

+ i

∫ b

a

[v(x(t), y(t))x′(t) + u(x(t), y(t))y′(t)] dt.

 En la notación de integrales de línea reales,

 

∫

Ŵ

f (z) dz =
∫

Ŵ

u dx − v dy + i

∫

Ŵ

v dx + u dy.

 
(10.1)

Esta formulación permite una perspectiva que algunas veces es útil en el desarrollo de las propiedades 
de las integrales complejas.

EJEMPLO 10.12

Evaluar �Ŵ iz2 dz si Ŵ(t) = 4 cos(t) + i sen(t) para 0 ≤ t ≤ π / 2. La fi gura 10.14 muestra la gráfi ca de Ŵ, 
que es parte de la elipse

x2

16
+ y2 = 1.

Para evaluar �Ŵ iz2 dz en términos de integrales de línea reales, primero calcule

f (z) = iz2 = −2xy + i(x2 − y2) = u + iv,

donde

u(x, y) = −2xy y v(x, y) = x2 − y2.

0.2

0.4

0.6

0.8

1.0

10 2 3 4
x

y

FIGURA 10.14 x = 4 cos(t), y = sen(t) 
para 0 ≤ t ≤ π / 2.



En la curva, x(t) = 4 cos(t) y y(t) = sen(t). Ahora la ecuación (10.1) da

∫

Ŵ

iz2 dz =
∫ π/2

0
(−8 cos(t) sen(t)) (−4 sen(t)) dt −

∫ π/2

0

(
16 cos2(t) − sen2(t)

)
cos(t) dt

+ i

[∫ π/2

0

(
16 cos2(t) − sen2(t)

)
(−4 sen(t)) dt +

∫ π/2

0
(−8 cos(t) sen(t)) cos(t) dt

]

= 1

3
− 64

3
i.

 
■

Tendrá una manera fácil de evaluar integrales de línea sencillas tales como �Ŵ iz2 dz, cuando tenga más 
propiedades de las integrales complejas.

10.2.2 Propiedades de las integrales complejas

Desarrollará algunas propiedades de �Ŵ f (z)dz.

TEOREMA 10.2 Linealidad

Sea Ŵ una  curva suave a pedazos y sean f y g continuas en Ŵ. Sean α y β números complejos. Entonces

∫

Ŵ

(αf (z) + βg(z)) dz = α

∫

Ŵ

f (z) dz + β

∫

Ŵ

g(z) dz.

Esta conclusión es ciertamente lo que se espera de cualquier cosa llamada una integral. El resultado 
se extiende a sumas fi nitas arbitrarias:

∫

Ŵ

n∑

j=1

αifj (z) dz =
n∑

j=1

αj

∫

Ŵ

fj (z) dz.

La orientación juega un papel signifi cativo en la integral compleja, ya que es una parte intrínseca 
de la curva sobre la cual se calcula la integral. Suponga que Ŵ: [a, b] → � es una curva suave, como se 
distingue en la fi gura 10.15. La fl echa indica la orientación. Puede invertir esta orientación defi niendo una 
curva nueva

Ŵr (t) = Ŵ(a + b − t) para a ≤ t ≤ b.

Ŵr es una curva suave que tiene la misma gráfi ca que Ŵ. Sin embargo,

Ŵr (a) = Ŵ(b) y  Ŵr (b) = Ŵ(a).

Ŵr empieza donde termina Ŵ, y Ŵr termina donde empieza Ŵ. Se invirtió la orientación.
Invertir la orientación cambia el signo de la integral.

FIGURA 10.15 Orientación invertida en una curva.
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TEOREMA 10.3 Inversión de la orientación

Sea Ŵ: [a, b] → C una curva suave. Sea f continua en Ŵ. Entonces

∫

Ŵ

f (z) dz = −
∫

Ŵr

f (z) dz.

 
■

Prueba Sea u = a + b − t. Por la regla de la cadena,

d

dt
Ŵr(t) = d

dt
Ŵ(a + b − t) = Ŵ′(u)u′(t) = −Ŵ′(u) = −Ŵ′(a + b − t).

Entonces

∫

Ŵr

f (z) dz =
∫ b

a

f (Ŵr(t))Ŵ
′
r(t) dt = −

∫ b

a

f (Ŵ(a + b − t))Ŵ′(a + b − t) dt.

Ahora cambie variables poniendo s = a + b − t . Entonces

∫

Ŵr

f (z) dz = −
∫ a

b

f (Ŵ(s))Ŵ′(s)(−1) ds = −
∫ b

a

f (Ŵ(s))Ŵ′(s) ds = −
∫

Ŵ

f (z) dz.

No necesita defi nir Ŵr para invertir la orientación en integrales específi cas, sólo integrar de b a a en 
lugar de a a b. Esto invierte los papeles de los puntos inicial y terminal y por tanto, la orientación. O puede 
integrar de a a b y tomar el negativo del resultado.

Enuncie una versión compleja del teorema fundamental del cálculo. Establece que si f tiene una 
an tiderivada continua F, entonces el valor de �Ŵ f (z)dz es el valor de F en el punto fi nal de Ŵ menos el 
valor de F en el punto inicial.

TEOREMA 10.4

Sea f continua en un conjunto abierto G y suponga que F ′(z) = f (z) para z en G. Sea Ŵ: [a, b] → G una 
curva suave en G. Entonces

∫ b

a

f (z) dz = F(Ŵ(b)) − F(Ŵ(a)).

Prueba Con Ŵ(t) = z(t) = x(t) + iy(t) y F(z) = U(x, y) + iV (x, y),
∫

Ŵ

f (z) dz =
∫ b

a

f (z(t))z′(t) dt =
∫ b

a

F ′(z(t))z′(t) dt =
∫ b

a

d

dt
F (z(t)) dt.

=
∫ b

a

d

dt
U(x(t), y(t)) dt + i

∫ b

a

d

dt
V (x(t), y(t)) dt.

Ahora es factible aplicar el teorema fundamental del cálculo a las dos integrales reales de la derecha para 
obtener ∫

Ŵ

f (z) dz = U(x(b), y(b)) + iV (x(b), y(b)) − [U(x(a), y(a)) + iV (x(a), y(a))]

= F(x(b), y(b)) − F(x(a), y(a)) = F(Ŵ(b)) − F(Ŵ(a)).

EJEMPLO 10.13

Calculará �Ŵ(z2 + iz) dz si Ŵ(t) = t5 − t cos(t)i para 0 ≤ t ≤ 1.



Este es un cálculo elemental pero tedioso si lo hace calculando � 10 f (z(t))z′(t) dt. Sin embargo, si G es 
todo el plano complejo, entonces G es abierto, y F(z) = z3 / 3 + iz2 / 2 satisface F′(z) = f (z). El punto inicial 
de Ŵ es Ŵ(0) = 0 y el punto fi nal es Ŵ(1) = 1 − cos(1)i. Por tanto,
∫

Ŵ

(z2 + iz) dz = F(Ŵ(1)) − F(Ŵ(0)) = F(1 − cos(1)i) − F(0)

= 1

3
(1 − cos(1)i)3 + i

2
(1 − cos(1)i)2

 
= (1 − cos(1)i)2

(
1

3
(1 − cos(1)i) + 1

2
i

)
.

 ■

Una consecuencia del teorema 10.4 es que bajo las condiciones dadas, el valor de �Ŵ f (z)dz depende 
solamente de los puntos inicial y terminal de la curva. Si � también es una curva suave en G teniendo el 
mismo punto inicial que Ŵ y el mismo punto fi nal que Ŵ, entonces

∫

Ŵ

f (z) dz =
∫

�

f (z) dz.

Esto se llama independencia de la trayectoria, la cual verá más adelante.
Otra consecuencia es que si Ŵ es una curva cerrada en G, entonces los puntos inicial y fi nal coinciden y

∫

Ŵ

f (z) dz = 0.

Considerará esta circunstancia con más detalle cuando vea el teorema de Cauchy.
El siguiente resultado se usa para acotar la magnitud de una integral, ya que algunas veces lo necesita 

para hacer estimaciones en ecuaciones o desigualdades.

TEOREMA 10.5

Sea Ŵ: [a, b] → C una curva suave y sea f continua en Ŵ. Entonces

∣∣∣∣
∫

Ŵ

f (z) dz

∣∣∣∣ ≤
∫ b

a

|f (z(t))|
∣∣z′(t)

∣∣ dt.

Si, además, existe un número positivo M tal que | f (z)| ≤ M para todo z en Ŵ, entonces
∣∣∣∣
∫

Ŵ

f (z) dz

∣∣∣∣ ≤ ML,

donde L es la longiud de Ŵ.

Prueba Escribir el número complejo �Ŵ f (z) dz en la forma polar:
∫

Ŵ

f (z) dz = reiθ .

Entonces

r = e−iθ

∫

Ŵ

f (z) dz = e−iθ

∫ b

a

f (z(t))z′(t) dt.

Como r es real,

r = Re(r) = Re

[
e−iθ

∫ b

a

f (z(t))z′(t) dt

]
=

∫ b

a

Re
[
e−iθf (z(t))z′(t)

]
dt.

Ahora para cualquier número complejo w, Re(w) ≤ |w|. Por tanto,

Re
[
e−iθf (z(t))z′(t)

]
≤

∣∣∣e−iθf (z(t))z′(t)
∣∣∣ =

∣∣f (z(t))z′(t)
∣∣ ,
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como |e−iθ| = 1 para θ real. Entonces

∣∣∣∣
∫

Ŵ

f (z) dz

∣∣∣∣ = r =
∣∣∣∣
∫ b

a

f (z(t))z′(t) dt

∣∣∣∣ ≤
∫ b

a

∣∣f (z(t))z′(t)
∣∣ dt =

∫ b

a

|f (z(t))|
∣∣z′(t)

∣∣ dt,

como quería demostrar.
Si ahora |f (z)| ≤ M en Ŵ, entonces

∣∣∣∣
∫

Ŵ

f (z) dz

∣∣∣∣ ≤
∫ b

a

|f (z(t))|
∣∣z′(t)

∣∣ dt ≤ M

∫ b

a

∣∣z′(t)
∣∣ dt.

Si Ŵ(t) = x(t) + iy(t), entonces

∣∣z′(t)
∣∣ =

∣∣x′(t) + iy′(t)
∣∣ =

√
(x′(t))2 + (y′(t))2,

así
∣∣∣∣
∫

Ŵ

f (z) dz

∣∣∣∣ ≤ M

∫ b

a

√
(x′(t))2 + (y′(t))2 dt = ML.

EJEMPLO 10.14

Obtendrá una cota en |�Ŵ eRe(z) dz|, donde Ŵ es el círculo de radio 2 alrededor del origen, recorrido una 
vez en sentido del movimiento de las manecillas del reloj.

En Ŵ puede escribir z(t) = 2 cos(t) + 2i sen(t) para 0 ≤ t ≤ 2π. Ahora
∣∣∣eRe(z(t))

∣∣∣ = e2 cos(t) ≤ e2

para 0 ≤ t ≤ 2π. Como la longitud de Ŵ es 4π, entonces
∣∣∣∣
∫

Ŵ

eRe(z) dz

∣∣∣∣ ≤ 4πe2.

 
■

Este número acota la magnitud de la integral. No se pide que sea una aproximación del valor de la integral 
con ningún grado de exactitud.

10.2.3 Integrales de series de funciones

Frecuentemente querrá intercambiar una integral y una serie. Se dan condiciones bajo las cuales
∫

Ŵ

( ∞∑

n=1

fn(z) dz

)
?=

∞∑

n=1

∫

Ŵ

fn(z) dz.

Probará que si puede acotar cada fn(z), para z en la curva, por una constante positiva Mn de manera 
que 

∑∞
n=1 Mn converja, entonces intercambiará la sumatoria y la integral e integrará la serie término a 

término.

TEOREMA 10.6 Integración término a término

Sea Ŵ una curva suave y sea fn continua en Ŵ para n = 1, 2, . . . . Suponga que para cada entero positivo n 
existe un número positivo Mn tal que 

∑∞
n=1 Mn converge y, para todo z en Ŵ,

|fn(z)| ≤ Mn.



Entonces 
∑∞

n=1 fn(z) converge absolutamente para todo z en Ŵ. Más aún, si denota 
∑∞

n=1 fn(z) = g(z), 
entonces

∫

Ŵ

g(z) dz =
∞∑

n=1

∫

Ŵ

fn(z) dz.

 
■

Prueba Para cada z en Ŵ, la serie real 
∑∞

n=1 | fn(z)| converge por comparación con la serie convergente ∑∞
n=1 Mn. Ahora sea L la longitud de Ŵ y considere la suma parcial

FN (z) =
N∑

n=1

fn(z).

Cada FN es continua en Ŵ y

∣∣∣∣∣

∫

Ŵ

g(z) dz −
N∑

n=1

∫

Ŵ

fn(z) dz

∣∣∣∣∣ =
∣∣∣∣
∫

Ŵ

[g(z) dz − FN (z)] dz

∣∣∣∣

≤ L

(
max
z en Ŵ

|g(z) − FN (z)|
)

.

Ahora para todo z en Ŵ,

|g(z) − Fn(z)| =
∣∣∣∣∣

∞∑

n=N+1

fn(z)

∣∣∣∣∣ ≤
∣∣∣∣∣

∞∑

n=N+1

Mn

∣∣∣∣∣ .

Si ǫ es cualquier número positivo, puede elegir N sufi cientemente grande para que 
∑∞

n=N+1 Mn < ǫ / L, ya 
que 

∑∞
n=1 Mn converge. Pero entonces

max
z en Ŵ

|g(z) − FN (z)| <
ǫ

L
,

así ∣∣∣∣∣

∫

Ŵ

g(z) dz −
N∑

n=1

∫

Ŵ

fn(z) dz

∣∣∣∣∣ < L
ǫ

L
= ǫ

para N sufi cientemente grande. Esto prueba que

lim
N→∞

N∑

n=1

∫

Ŵ

fn(z) dz =
∫

Ŵ

g(z) dz,

como quería demostrar. ■

Por supuesto, el teorema se aplica a series de potencias dentro de su círculo de convergencia, con fn(z) 
= cn(z − z0)n.

´

´

lím

SECCIÓN 10.2 PROBLEMAS

En cada problema del 1 al 15, evalúe �Ŵ f (z)dz. Todas las curvas 
cerradas están orientadas en sentido contrario al movimiento de 
las manecillas del reloj, a menos que se especifi que la excep-
ción.

 1. f (z) = 1; Ŵ(t) = t2 − it para 1 ≤ t ≤ 3.

 2.  f (z) = z2 − iz; Ŵ es el cuarto de círculo alrededor del origen 
de 2 a 2i.

 3. f (z) = Re(z); Ŵ es el segmento de recta de 1 a 2 + i.

 4.  f (z) = 1 / z; Ŵ es la parte del semicírculo de radio 4 alrede-
dor del origen de 4i a −4i.

 5.  f (z) = z − 1; Ŵ es cualquier curva suave a pedazos de 2i a 
1 − 4i.

 6.  f (z) = iz2; Ŵ es el segmento de recta de 1 + 2i a 3 + i.
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 7.  f (z) = sen(2z); Ŵ es el segmento de recta de −i a −4i.

 8.  f (z) = 1 + z2; Ŵ es la parte del círculo de radio 3 alrededor 
del origen de −3i a 3i.

 9.  f (z) = −i cos(z); Ŵ es cualquier curva suave a pedazos de 
0 a 2 + i.

10.  f (z) = |z|2 ; Ŵ es el segmento de recta de −4 a i.

11.  f (z) = (z − i)3; Ŵ(t) = t − it2 para 0 ≤ t ≤ 2.

12.  f (z) = eiz; Ŵ es cualquier curva suave a pedazos de −2 a 
−4 − i.

13.  f (z) = i–z; Ŵ es el segmento de recta de 0 a −4 + 3i.

14.  f (z) = Im(z); Ŵ es el círculo de radio 1 alrededor del ori-
gen.

15.  f (z) = |z|2; Ŵ es el segmento de recta de −i a 1.

16.  Encuentre una cota para 
∣∣∣
∫
Ŵ cos(z2) dz

∣∣∣, si Ŵ es el círculo 
de radio 4 alrededor del origen.

17.  Encuentre una cota para 
∣∣∫

Ŵ 1
1 + z

 dz
∣∣, si Ŵ es el segmento 

de recta de 2 + i a 4 + 2i.

10.3 Teorema de Cauchy

El teorema de Cauchy (o de la integral de Cauchy) es considerado el teorema fundamental de la integra-
ción compleja y su nombre es en honor del matemático e ingeniero francés del siglo ���, Augustin-Louis 
Cauchy. Él tuvo la idea del teorema, así como de muchas de sus consecuencias, pero fue capaz de pro-
barlo sólo bajo condiciones, que después se encontró que son restriciones innecesarias. Edouard Goursat 
probó el teorema como se suele enunciar ahora, y por esta razón algunas veces es llamado el teorema de 
Cauchy-Goursat.

El enunciado del teorema usa implícitamente el teorema de la curva de Jordan, que establece que una 
curva continua, simple y cerrada Ŵ en el plano separa al plano en dos conjuntos abiertos. Uno de estos 
conjuntos es no acotado y se llama el exterior de Ŵ, y el otro es acotado y se llama el interior de Ŵ. La 
(gráfi ca de la) curva no pertenece a ninguno de estos conjuntos, pero forma la frontera de ambos. La fi gura 
10.16 ilustra el teorema. A pesar de que esta conclusión puede parecer obvia para las curvas cerradas que 
se suelen dibujar, es difícil de probar debido a la generalidad de su enunciado.

Alguna terminología determinará al enunciado del teorema de Cauchy más efi ciente.

Así, una trayectoria es una concatenación de curvas suaves que no se cruzan a sí mismas. 

DEFINICIÓN 10.4 Trayectoria

Una trayectoria es una curva simple, suave a pedazos.
Una trayectoria en un conjunto S es una trayectoria cuya gráfi ca está en S.

FIGURA 10.16 Teorema de la 
curva de Jordan.

Ŵ
Exterior de Ŵ

Interior de Ŵ

y

x



S es conexo si es posible ir desde cualquier punto de S a cualquier otro punto moviéndose a lo largo 
de alguna trayectoria totalmente contenida en S. Un disco abierto es conexo, así como también lo es un 
disco cerrado, mientras que el conjunto que consiste en los dos discos abiertos |z| < 1 y |z − 10i| < 1 no 
lo es (fi gura 10.17), ya que no es posible ir de 0 a 10i sin salir del conjunto.

DEFINICIÓN 10.5 Conjunto conexo

Un conjunto S de números complejos es conexo si, dados dos puntos cualesquiera z y w en S, existe 
una trayectoria en S que tiene a z y a w como puntos extremos.

DEFINICIÓN 10.6 Dominio

Un conjunto de números complejos, abierto y conexo se llama un dominio.

D es un dominio si:

1. Alrededor de cualquier z en D, hay algún disco abierto que contiene sólo puntos de D.

2. Puede ir desde cualquier punto en D a cualquier otro punto en D por una trayectoria en D.

Por ejemplo, cualquier disco abierto es un dominio, como lo es el semiplano superior que consiste de 
todo z con Im(z) > 0. Un disco cerrado no es un dominio (es conexo pero no abierto), y un conjunto que 
consiste en dos discos abiertos ajenos no es un dominio (es abierto pero no conexo).

Todo disco abierto es simplemente conexo (fi gura 10.18). Si dibuja una trayectoria cerrada en un 
disco abierto, esta trayectoria cerrada encerrará solamente puntos en el disco abierto. El anillo de la fi gura 
10.19, que consiste de los puntos entre dos círculos concéntricos, no es simplemente conexo, a pesar de 
ser conexo. Puede dibujar una trayectoria cerrada contenida en el anillo, pero que encierra la frontera inte-
rior circular del anillo. Esta curva encierra puntos que no están en el anillo, a saber aquellos encerrados 
por la frontera interior circular.

Ahora está listo para enunciar una versión del teorema de Cauchy.

TEOREMA 10.7 Teorema de Cauchy

Sea f diferenciable en un dominio simplemente conexo G. Sea Ŵ una trayectoria cerrada en G. Entonces
∫

Ŵ

f (z) dz = 0.

Con frecuencia las integrales alrededor de trayectorias cerradas se denotan por �. En esta notación, la 
conclusión del teorema se lee � Ŵ f (z) dz = 0. El óvalo en el signo de la integral es sólo para recordar que 
la trayectoria es cerrada y no altera cómo opera la integral o la manera de evaluarla.

DEFINICIÓN 10.7 Simplemente conexo

Un conjunto S de números complejos es simplemente conexo si toda trayectoria cerrada en S encie-
rra únicamente puntos de S.
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Informalmente, el teorema de Cauchy establece que � Ŵ f (z) dz = 0 si f es diferenciable en la curva 
y en todo punto encerrado por la curva. Se analizará la prueba después de ver dos ejemplos. Como una 
convención, las curvas cerradas están orientadas positivamente (en sentido contrario del movimiento de 
las manecillas del reloj), a menos que se especifi que.

EJEMPLO 10.15

Evaluar � Ŵ ez2
 dz, donde Ŵ es cualquier trayectoria cerrada en el plano.

La fi gura 10.20 muestra una Ŵ típica. Aquí f (z) = ez2
 es diferenciable para todo z, y el plano completo 

es un dominio simplemente conexo. Por tanto,
∮

Ŵ

ez2
dz = 0.

 
■

EJEMPLO 10.16

Evaluar
∮

Ŵ

2z + 1

z2 + 3iz
dz,

donde Ŵ es el círculo |z + 3i| = 2 de radio 2 y centro −3i (fi gura 10.21).

FIGURA 10.17 Discos 
abiertos ajenos forman 
un conjunto que no es 
conexo.

FIGURA 10.18 Un 
disco abierto es 
simplemente conexo.

FIGURA 10.19 El conjunto 
de puntos entre dos círculos 
concéntricos no es simplemente 
conexo.
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Puede parametrizar Ŵ(t) = −3i + 2eit para 0 ≤ t ≤ 2π. Ŵ(t) recorre el círculo una vez, en sentido 
contrario del movimiento de las manecillas del reloj, conforme t varía de 0 a 2π.

Primero observe que f (z) es diferenciable excepto en los puntos donde el denominador se anula, 0 
y −3i. Use una descomposición en fracciones parciales para escribir

f (z) = 1

3i

1

z
+

(
6 + i

3

)
1

z + 3i
.

Como 1 / z es diferenciable en Ŵ y dentro del dominio simplemente conexo encerrado por ella, por el 
teorema de Cauchy,

∮

Ŵ

1

3i

1

z
dz = 0.

Sin embargo, 1 / (z + 3i) no es diferenciable en el dominio simplemente conexo encerrado por Ŵ, de 
manera que no es posible aplicar el teorema de Cauchy a la integral de esta función. Evalúe esta integral 
directamente escribiendo z(t) = −3i + 2eit:

∮

Ŵ

(
6 + i

3

)
1

z + 3i
dz = 6 + i

3

∫ 2π

0

1

z(t) + 3i
z′(t) dt

= 6 + i

3

∫ 2π

0

1

2eit
2ieit dt = 6 + i

3

∫ 2π

0
i dt = 6 + i

3
(2πi).

Por tanto,
∮

Ŵ

2z + 1

z2 + 3iz
dz = 6 + i

3
(2πi) =

(
−2

3
+ 4i

)
π.

 
■

En breve veremos otras ramifi caciones del teorema de Cauchy impresionantes. 

10.3.1 Prueba del teorema de Cauchy para un caso especial

Si añade una hipótesis adicional, es fácil probar el teorema de Cauchy. Sea f (z) = u(x, y) + iv(x, y) y 
suponga que u y v y sus primeras derivadas parciales son continuas en G. Ahora obtiene el teorema de 
Cauchy inmediatamente aplicando el teorema de Green y las ecuaciones de Cauchy-Riemann a la ecua-
ción (10.1). Si D consiste en todos los puntos en y encerrados por Ŵ, entonces

∮

Ŵ

f (z) dz =
∮

Ŵ

u dx − v dy + i

∮

Ŵ

v dx + u dy

=
∫∫

D

(
∂(−v)

∂x
− ∂u

∂y

)
dA + i

∫∫

D

(
∂u

∂x
− ∂v

∂y

)
dA = 0,

ya que, por las ecuaciones de Cauchy-Riemann,

∂u

∂x
= ∂v

∂y
y

∂u

∂y
= −∂v

∂x
.

Este argumento es sufi cientemente bueno para muchas situaciones donde se usa el teorema de Cau-
chy. Sin embargo, no es un argumento óptimo ya que hace una suposición adicional acerca de la continui-
dad de las derivadas parciales de u y v. Una prueba rigurosa del teorema como está enunciado involucra 
sutilezas topológicas con las cuales no es conveniente involucrarnos aquí.

En la siguiente sección desarrollará algunas consecuencias importantes del teorema de Cauchy.
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En cada problema del 1 al 12, evalúe la integral de la función 
sobre la trayectoria cerrada dada. Todas las trayectorias están 
orientadas positivamente (en sentido contrario del movimiento 
de las manecillas del reloj). En algunos casos se satisface el 
teorema de Cauchy, y en otros no.

 1. f (z) = sen(3z); Ŵ es el círculo |z| = 4.

 2. f (z) = 2z

z − i
; Ŵ es el círculo |z − i| = 3.

 3. f (z) = 1

(z − 2i)3
; Ŵ está dada por |z − 2i| = 2.

 4. f (z) = z2 sen(z); Ŵ es el cuadrado con vértices 0, 1, 1 + i, e i.

 5. f (z) = –z; Ŵ es el círculo unitario alrededor del origen.

 6. f (z) = 1 / –z; Ŵ es el círculo de radio 5 alrededor del origen.

 7. f (z) = zez; Ŵ es el círculo |z − 3i| = 8.

 8.  f (z) = z2 − 4z + i; Ŵ es el rectángulo con vértices 1, 8, 8 + 
4i y 1 + 4i.

 9.  f (z) = |z|2; Ŵ es el círculo de radio 7 alrededor del origen.

10.  f (z) = sen(1 / z); Ŵ es el círculo |z − 1 + 2i| = 1.

11.  f (z) = Re(z); Ŵ está dada por |z| = 2.

12.  f (z) = z2 + Im(z); Ŵ es el cuadrado con vértices 0, −2i, 
2 − 2i y 2.

SECCIÓN 10.3 PROBLEMAS

10.4 Consecuencias del teorema de Cauchy

Esta sección exhibe algunos de los resultados principales de la integración compleja, con implicaciones 
profundas para entender el comportamiento y las propiedades de las funciones complejas, así como para 
las aplicaciones de la integral. Como es usual, todas las integrales sobre curvas cerradas son tomadas con 
una orientación en sentido contrario del movimiento de las manecillas del reloj a menos que se diga otra 
cosa.

10.4.1 Independencia de la trayectoria

En la sección 10.2.2 se mencionó la independencia de la trayectoria, en la que, bajo ciertas condiciones 
sobre f , el valor de �Ŵ f (z) dz depende solamente de los extremos de la curva, y no de la curva particular 
elegida entre estos extremos.

La independencia de la trayectoria también se puede ver bajo la perspectiva del teorema de Cauchy. 
Suponga que f es diferenciable en un dominio simplemente conexo G, y z0 y z1 son puntos de G. Sean 
Ŵ1 y Ŵ2 curvas suaves a pedazos en G con punto inicial z0 y punto fi nal z1 (fi gura 10.22). Si invierte la 
orientación en Ŵ2, obtiene una curva nueva, −Ŵ2, que va de z1 a z0. Más aún, la concatenación de Ŵ1 y 
−Ŵ2 forma una curva cerrada Ŵ, con punto inicial y fi nal z0 (fi gura 10.23). Por el teorema de Cauchy y el 
teorema 10.3,

∮

Ŵ

f (z) dz = 0 =
∮

Ŵ1⊕(−Ŵ2)

f (z) dz =
∮

Ŵ1

f (z) dz −
∮

Ŵ2

f (z) dz,

implicando que
∮

Ŵ1

f (z) dz =
∮

Ŵ2

f (z) dz.

Esto signifi ca que la integral no depende de la curva particular (en G) entre z0 y z1 y es, por tanto, inde-
pendiente de la trayectoria.

Este argumento no es muy riguroso, ya que Ŵ1 ⊕ (−Ŵ2) puede no ser una curva simple (fi gura 10.24). 
De hecho, Ŵ1 y Ŵ2 pueden cruzarse una a la otra cualquier número de veces conforme van de z0 a z1. No 
obstante, se quiere señalar la conexión entre el teorema de Cauchy y el concepto de independencia de la 
trayectoria de una integral que fue discutida antes.



Si �Ŵ f (z) dz es independiente de la trayectoria en G, y Ŵ es cualquier trayectoria de z0 a z1, algunas 
veces se escribe

∮

Ŵ

f (z) dz =
∫ z1

z0

f (z) dz.

El símbolo de la derecha tiene el valor de la integral de línea de la izquierda, siendo Ŵ cualquier trayectoria 
de z0 a z1 en G.

10.4.2 El teorema de deformación

El teorema de deformación permite, bajo ciertas condiciones, reemplazar una trayectoria de integración 
cerrada por otra, quizá más conveniente.

TEOREMA 10.8 Teorema de deformación

Sean Ŵ y γ trayectorias cerradas en el plano, con γ en el interior de Ŵ. Sea f diferenciable en un conjunto 
abierto que contiene ambas trayectorias y todos los puntos entre ellas. Entonces,

∫

Ŵ

f (z) dz =
∫

γ

f (z) dz.

La fi gura 10.25 muestra la situación del teorema. Puede pensar en deformar una curva, γ, en otra. 
Imagine que γ está hecha de goma, y la deforma de manera continua en la forma de Ŵ. Al hacer esto, es 
necesario que en los pasos intermedios de la deformación de γ a Ŵ sólo se pase sobre puntos en donde f 

�2

�1

z1

z0

FIGURA 10.22  

Trayectorias 
Ŵ1 y Ŵ2 de z0 a z1.

FIGURA 10.23  

Curva cerrada 
Ŵ = Ŵ1 ⊕ (−Ŵ2).

��2 �1

z1

z0

FIGURA 10.24  

Ŵ1 ⊕ (−Ŵ2) no necesita 
ser simple.

�2

�1

z0

z2

�

�

FIGURA 10.25 Deformando 
γ continuamente en Ŵ.
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es diferenciable, de aquí la hipótesis acerca de que f sea diferenciable en algún conjunto abierto que con-
tiene ambas trayectorias y todos los puntos entre ellas.

El teorema establece que la integral de f tiene el mismo valor sobre ambas trayectorias cuando una 
puede ser deformada en la otra, moviéndose sólo sobre los puntos en los cuales la función es diferencia-
ble. Esto signifi ca que reemplaza Ŵ con otra trayectoria γ que pueda ser más conveniente para usar en la 
evaluación de la integral. Considere el siguiente ejemplo.

EJEMPLO 10.17

Evaluar ∮

Ŵ

1

z − a
dz

sobre cualquier trayectoria cerrada que encierra el número complejo a dado.
La fi gura 10.26 muestra una trayectoria típica. No es posible parametrizar Ŵ porque no la cono-

ce específi camente, es simplemente cualquier trayectoria que encierra a a. Sea γ un círculo de radio r 
alrededor de a, con r sufi cientemente pequeño para que γ quede encerrada por Ŵ (fi gura 10.27). Ahora 
f (z) = 1 / (z − a) es diferenciable en todos los puntos excepto a, es decir, en ambas curvas y la región entre 
ellas. Por el teorema de deformación,

∮

Ŵ

1

z − a
dz =

∮

γ

1

z − a
dz.

Pero γ se puede parametrizar fácilmente: γ (t) = a + reit para 0 ≤ t ≤ 2π. Entonces

∮

γ

1

z − a
dz =

∫ 2π

0

1

reit
ireit dt =

∫ 2π

0
i dt = 2πi.

Por tanto,

∮

Ŵ

1

z − a
dz = 2πi.

El punto es que por medio del teorema de deformación, puede evaluar esta integral sobre cualquier trayec-
toria que encierre a a. Por supuesto, si Ŵ no encierra a a, y a no está en Ŵ, entonces 1 / (z − a) es diferencia-
ble en Ŵ y el conjunto que encierra, de manera que � Ŵ[1 / (z − a)] dz = 0 por el teorema de Cauchy. ■

La prueba del teorema emplea una técnica útil en diversas ocasiones.

Prueba La fi gura 10.28 muestra gráfi cas de trayectorias típicas Ŵ y γ. Inserta rectas L1 y L2 entre Ŵ y γ 
(fi gura 10.29) y las usa para formar dos trayectorias cerradas � y � (en la fi gura 10.30 se muestran sepa-
radas para enfatizar). Una trayectoria, �, consiste de partes de Ŵ y γ, junto con L1 y L2, con orientación 
en cada pieza como se muestra para tener orientación positiva en �. La otra trayectoria, �, consiste del 
resto de Ŵ y γ, nuevamente con L1 y L2, con la orientación elegida en cada pieza de manera que � ten-
ga orientación positiva. La fi gura 10.31 muestra las trayectorias más realísticamente, compartiendo los 
segmentos insertados L1 y L2. En la fi gura 10.31, Ŵ está orientada en sentido contrario del movimiento 

FIGURA 10.27
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de las manecillas del reloj, pero γ en el sentido del movimiento de las manecillas del reloj, debido a sus 
orientaciones como parte de � y �.

Debido a que f es diferenciable en ambas � y � y los conjuntos que encierra, se satisface el teorema 
de Cauchy

∮

�

f (z) dz =
∮

�

f (z) dz = 0.

Entonces

 

∮

�

f (z) dz +
∮

�

f (z) dz = 0.

 
(10.2)

En esta suma de integrales, cada uno de L1 y L2 es integrado en una dirección como parte de � y la 
dirección opuesta como parte de �. Las contribuciones de estos segmentos se cancelan en la suma (10.2). 
Ahora observe que en la suma de estas integrales, obtiene la integral sobre toda Ŵ, orientada en sentido 
contrario del movimiento de las manecillas del reloj, junto con la integral sobre toda γ, orientada en sen-
tido del movimiento de las manecillas del reloj. En vista del teorema 10.3, la ecuación (10.2) se convierte 
en

∮

�

f (z) dz −
∮

γ

f (z) dz = 0,

o
∮

�

f (z) dz =
∮

γ

f (z) dz,

en donde la orientación en ambas Ŵ y γ en estas integrales es positiva (en sentido contrario del movimiento 
de las manecillas del reloj). Esto prueba el teorema. ■

10.4.3 Fórmula de la integral de Cauchy

Ahora se establecerá un resultado notable que da una fórmula de la integral para los valores de una fun-
ción diferenciable.

TEOREMA 10.9 Fórmula de la integral de Cauchy

Sea f diferenciable en un conjunto abierto G. Sea Ŵ una trayectoria cerrada en G que encierra únicamente 
puntos de G. Entonces, para cualquier z0 encerrada por Ŵ,

f (z0) = 1

2πi

∮

Ŵ

f (z)

z − z0
dz.

Verá muchos usos de este teorema, pero uno es inmediato. Escriba la fórmula como
∮

Ŵ

f (z)

z − z0
dz = 2πif (z0).

FIGURA 10.28 FIGURA 10.29 FIGURA 10.30 FIGURA 10.31
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Esto da, bajo las condiciones del teorema, una evaluación de la integral de la izquierda como un múltiplo 
constante del valor de la función de la derecha.

EJEMPLO 10.18

Evaluar ∮

Ŵ

ez2

z − i
dz

para cualquier trayectoria cerrada que no pase por i.
Sea f (z) = ez2. Entonces f es diferenciable para todo z. Hay dos casos.

Caso 1 Ŵ no encierra a i. En este caso � Ŵ ez2

z − i  dz = 0 por el teorema de Cauchy, ya que ez2 / (z − 2) es 
diferenciable en Ŵ y dentro de ella.

Caso 2 Ŵ encierra a i. Por la fórmula de la integral de Cauchy, con z0 = i,
∮

Ŵ

ez2

z − i
dz = 2πif (i) = 2πie−1. ■

EJEMPLO 10.19

Evaluar ∮

Ŵ

e2z sen(z2)

z − 2
dz

sobre cualquier trayectoria que no pase por 2.
Sea f (z) = e2z sen(z2). Entonces f es diferenciable para todo z. Esto lleva a dos casos.

Caso 1 Si Ŵ no encierra a 2, entonces f (z) / (z − 2) es diferenciable en la curva y en todos los puntos que 
encierra. Así que la integral es cero por el teorema de Cauchy.

Caso 2 Si Ŵ encierra a 2, entonces por la fórmula de la integral,

∮

Ŵ

e2z sen(z2)

z − 2
dz = 2πif (2) = 2πie4 sen(4). ■

Observe los distintos papeles de f (z) en el teorema de Cauchy y en la representación integral de 
Cauchy. El teorema de Cauchy está interesado en � Ŵ f (z) dz. La representación integral está interesada en 
las integrales de la forma � Ŵ[f (z) / (z − z0)] dz, con f (z) dada, pero multiplicada por un factor 1 / (z − z0), 
que no está defi nido en z0. Si Ŵ no encierra a z0, entonces f (z) / (z − z0) = g(z) puede ser diferenciable en 
z0 y puede intentar aplicar el teorema de Cauchy a � Ŵ g(z) dz. Si z0 está encerrada por Ŵ, entonces, bajo 
condiciones apropiadas, la fórmula de la integral da � Ŵ g(z) dz en términos de f (z0).

Aquí está una prueba de la representación integral.

Prueba Primero use el teorema de la deformación para reemplazar Ŵ por un círculo γ de radio r alrede-
dor de z0, como en la fi gura 10.32. Entonces

∮

Ŵ

f (z)

z − z0
dz =

∮

γ

f (z)

z − z0
dz =

∮

γ

f (z) − f (z0) + f (z0)

z − z0
dz

= f (z0)

∮

γ

1

z − z0
dz +

∮

γ

f (z) − f (z0)

z − z0
dz,



en donde f (z0) pudo sacarse de la primera integral ya que f (z0) es constante. Por el ejemplo 10.17,
∮

γ

1

z − z0
dz = 2πi

debido a que γ encierra a z0. Por tanto,
∮

Ŵ

f (z)

z − z0
dz = 2πif (z0) +

∮

γ

f (z) − f (z0)

z − z0
dz.

La representación integral está probada si prueba que la última integral es cero. Escriba γ(t) = 
z0 + reit para 0 ≤ t ≤ 2π. Entonces

∣∣∣∣
∮

γ

f (z) − f (z0)

z − z0
dz

∣∣∣∣ =
∣∣∣∣
∫ 2π

0

f (z0 + reit ) − f (z0)

reit
ireit dt

∣∣∣∣

=
∣∣∣∣
∫ 2π

0
[f (z0 + reit ) − f (z0)] dt

∣∣∣∣

≤
∫ 2π

0

∣∣∣f (z0 + reit ) − f (z0)

∣∣∣ dt

≤ 2π

(
max

0≤t≤2π

∣∣f (z0 + reit ) − f (z0)
∣∣
)

.

Debido a la continuidad de f (z) en z0, f (z0 + reit) → f (z0) conforme r → 0, así el término de la derecha en 
esta desigualdad tiene límite cero conforme r → 0. Por tanto, puede hacer

∣∣∣∣
∮

γ

f (z) − f (z0)

z − z0
dz

∣∣∣∣

arbitrariamente pequeño haciendo r sufi cientemente pequeño. Pero esta integral es independiente de r por 
el teorema de la deformación. Así

 

∣∣∣∣
∮

γ

f (z) − f (z0)

z − z0
dz

∣∣∣∣ = 0,

así
∮

γ

f (z) − f (z0)

z − z0
dz = 0

y el teorema queda probado. ■

La representación integral da alguna idea de lo fuerte que es la condición de diferenciabilidad para 
las funciones complejas. La integral

 

∮

Ŵ

f (z)

z − z0
dz

es igual a 2πi f (z0) y de esta manera determina f (z0) en cada z0 encerrada por Ŵ. Pero el valor de esta 
integral depende sólo del valor de f (z) en Ŵ. Así, para una función diferenciable, conociendo los valores 
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de la función en Ŵ determina los valores de la función en todos los puntos encerrados por Ŵ. No hay un 
resultado análogo para funciones diferenciables reales. El conocimiento de los valores de una función 
diferenciable real ϕ(x) en los extremos de un intervalo en general no da información acerca de los valores 
de esta función en todo el intervalo.

10.4.4 La fórmula de la integral de Cauchy para derivadas superiores

Ahora probará que una función compleja que es diferenciable en un conjunto abierto debe tener derivadas 
de todos los órdenes en este conjunto. No hay un resultado como éste para funciones reales. Una función 
real que es diferenciable puede no tener segunda derivada.Y si tiene segunda derivada, puede no tener una 
tercera, y así sucesivamente.

No solamente una función compleja diferenciable tiene derivadas de todos los órdenes, probará que 
la n-ésima derivada de la función en un punto también está dada por una fórmula integral, muy parecida 
a la fórmula integral de Cauchy.

TEOREMA 10.10 Fórmula integral de Cauchy para derivadas de orden superior

Sea f diferenciable en un conjunto abierto G. Entonces f tiene derivadas de todos los órdenes en cada punto 
de G. Más aún, si Ŵ es una trayectoria cerrada en G que encierra únicamente puntos de G, y z0 es cualquier 
punto encerrado por Ŵ, entonces

f (n)(z0) = n!
2πi

∮

Ŵ

f (z)

(z − z0)n+1
dz.

La integral de la derecha es exactamente lo que obtendría diferenciando la fórmula integral de Cauchy 
para f (z0), n veces respecto a z0, bajo el signo de la integral.

Como con la fórmula de la integral, esta conclusión se usa frecuentemente para evaluar integrales.

EJEMPLO 10.20

Evaluar

 

∮

Ŵ

ez3

(z − i)3 dz

con Ŵ cualquier trayectoria que no pase por i.
Si Ŵ no encierra a i entonces esta integral es cero por el teorema de Cauchy, ya que el único punto en 

el que ez3 / (z − i)3 no es diferenciable es i. Entonces suponga que Ŵ encierra a i. Debido a que el factor z − 
i aparece a la tercera potencia en el denominador, use n = 2 en el teorema, con f (z) = ez3, para obtener

 

∮

Ŵ

ez3

(z − i)3
dz = 2πi

2! f (2)(i) = πif ′′(i).

Ahora

f ′(z) = 3z2ez3
y f ′′(z) = 6zez3 + 9z4ez3

,

así
∮

Ŵ

ez3

(z − i)3 dz = πi
[
6ie−i + 9e−i

]
= (−6 + 9i)πe−i . ■

El teorema puede probarse por inducción sobre n, pero no se llevarán a cabo los detalles.



10.4.5 Cotas en las derivadas y el teorema de Liouville

La fórmula integral de Cauchy para derivadas de orden superior puede utilizarse para obtener cotas para 
las derivadas de todos los órdenes.

TEOREMA 10.11

Sea f diferenciable en un conjunto abierto G. Sea z0 un punto de G y deje el disco abierto de radio r alre-
dedor de z0 que está contenido en G. Suponga que

|f (z)| ≤ M

para z en el círculo de radio r alrededor de z0. Entonces, para cualquier entero positivo n,

∣∣∣f (n)(z0)

∣∣∣ ≤ Mn!
rn

. ■

Prueba Sea γ (t) = z0 + reit para 0 ≤ t ≤ 2π. Entonces | f (z0 + reit)| ≤ M para 0 ≤ t ≤ 2π. Por los teo-
remas 10.10 y 10.5,

∣∣f (n)(z0)
∣∣ = n!

2π

∣∣∣∣
∮

γ

f (z)

(z − z0)n+1 dz

∣∣∣∣ = n!
2π

∣∣∣∣
∫ 2π

0

f (z0 + reit )

rn+1ei(n+1)t
ireit dt

∣∣∣∣

≤ n!
2π

∫ 2π

0

∣∣f (z0 + reit )
∣∣

rn
dt ≤ n!

2π
(2π)M

1

rn
= Mn!

rn
.

Como una aplicación de este teorema, probará el teorema de Liouville para funciones diferenciables 
y acotadas.

TEOREMA 10.12 Liouville

Sea f una función acotada que es diferenciable para todo z. Entonces f es una función constante. ■

Anteriormente observó que sen(z) no es una función acotada en el plano complejo como lo es en la 
recta real. Esto es consistente con el teorema de Liouville. Como sen(z) es diferenciable para todo z y 
claramente no es una función constante, no puede ser acotada.

Aquí está una prueba del teorema de Liouville.

Prueba Suponga que | f (z)| ≤ M para todo complejo z. Elija cualquier número z0 y cualquier r > 0. Por 
el teorema 10.11, con n = 1,

∣∣f ′(z0)
∣∣ ≤ M

r
.

como f es diferenciable en todo el plano complejo, r se puede elegir tan grande como quiera, así que 
| f ′(z0)| debe ser menor que cualquier número positivo. Se concluye que | f ′(z0)| = 0, de donde f ′(z0) = 0. 
Como z0 es cualquier número, entonces f (z) = constante. ■

El teorema de Liouville se puede usar para una demostración sencilla del teorema fundamental del 
álgebra. Este teorema establece que cualquier polinomio complejo no constante p(z) = a0 + a1z +· · ·+ 
anzn tiene una raíz compleja. Esto es, para algún número ζ, p(ζ) = 0. A partir de esto se puede probar 
que si an � 0, entonces p(z) debe tener exactamente n raíces, contando cada raíz k veces en la lista si su 
multiplicidad es k. Por ejemplo, p(z) = z2 − 6z + 9 tiene exactamente dos raíces, 3 y 3 (una raíz de mul-
tiplicidad 2).

Este teorema fundamental supone terminología elemental para su enunciado y usualmente se incluye, 
en alguna forma, en el currículum de matemáticas de enseñanza media. El matemático más importante del 
siglo ���, Carl Friedrich Gauss, consideró este teorema tan importante que lo demostró de distintas mane-
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ras (cerca de 20) a lo largo de su vida. Pero aún hoy en día las pruebas rigurosas del teorema requieren 
términos matemáticos y técnicas que están lejos de las que se necesitan para enunciarlo.

Para probar el teorema usando el teorema de Liouville, suponga que p(z) es un polinomio complejo 
no constante y que p(z) � 0 para todo z. Entonces 1 / p(z) es diferenciable para todo z.

Sea p(z) = a0 + a1z + · · · + anzn con n ≥ 1 y an � 0. Pruebe que |p(z)| está acotado para todo z. 
Como

anzn = p(z) − a0 − a1z−· · ·− an−1zn−1,

entonces

|an| |z|n ≤ |p(z)| + |a0| + |a1| |z|+· · ·+|an−1| |z|n−1 .

Entonces, para |z| ≥ 1,

|p(z)| ≥ |an| |z|n −
(
|a0| + |a1| |z| + · · · + |an−1| |z|n−1)

= |z|n−1
(

|an| |z| − |a0|
|z|n−1 − |a1|

|z|n−2 − · · · − |an−1|
|z|n−n

)

≥ |z|n−1 (|an| |z| − |a0| − |a1| − · · · − |an−1|) .

Pero entonces

1

|p(z)| ≤ 1

|z|n−1 (|an| |z| − |a0| − |a1| − · · · − |an−1|)
→ 0

conforme |z| → ∞. Por tanto, límn→∞ 1 / |p(z)| = 0. Esto implica que para algún número positivo R,

1

|p(z)| < 1 si |z| > R.

Pero el disco cerrado |z| ≤ R es compacto, y 1 / |p(z)| es continuo, de manera que, por el teorema 9.1, 
1 /  |p(z)| está acotado en este disco. Por tanto, para algún M,

1

|p(z)| ≤ M para |z| ≤ R.

Ahora tiene que 1 / |p(z)| está acotado dentro y fuera |z| ≤ 1. Poniendo estas cotas juntas,

1

|p(z)| ≤ M + 1 para todo z,

tanto en |z| ≤ R como en |z| ≥ R. Esto hace que 1 / p(z) sea una función acotada y diferenciable para todo 
z. Por el teorema de Liouville, 1 / p(z) debe ser constante, una contradicción. Por tanto debe haber algún 
complejo ζ tal que p(ζ ) = 0, lo que prueba el teorema fundamental del álgebra.

El análisis complejo proporciona varias demostraciones de este teorema. Más adelante verá una usan-
do una técnica para evaluar integrales reales de funciones racionales involucrando senos y cosenos.

10.4.6 Un teorema de deformación extendido

El teorema de deformación permite deformar una trayectoria cerrada de integración, Ŵ, en otra, γ, sin 
cambiar el valor de la integral de línea de una función diferenciable f. Una condición crucial para este 
proceso es que ningún paso de la deformación debe pasar sobre un punto en el cual f no sea diferenciable. 
Esto signifi ca que f necesita ser diferenciable en ambas curvas y en la región entre ellas. Ahora extenderá 
este resultado al caso que Ŵ encierra un número fi nito de trayectorias cerradas ajenas. Como es usual, a 
menos que se establezca explícitamente de otra manera, todas las trayectorias cerradas se suponen orien-
tadas positivamente (en sentido contrario del movimiento de las manecillas del reloj).
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TEOREMA 10.13 Teorema de deformación extendido

Sea Ŵ una trayectoria cerrada. Sean γ1, . . . , γn trayectorias cerradas dentro de Ŵ. Suponga que ningún par 
de trayectorias se intersecan, y que ningún punto interior de alguna γj es interior a alguna otra γk. Sea f 
diferenciable en un conjunto abierto que contiene a Ŵ, cada γj, y todos los puntos que son interiores a Ŵ y 
exteriores a cada γj. Entonces,

∮

Ŵ

f (z) dz =
n∑

j=1

∮

γj

f (z) dz.

Este es el teorema de deformación en el caso n = 1. La fi gura 10.33 muestra un escenario típico 
cubierto por este teorema. Con las curvas como se muestran (y suponiendo la diferenciabilidad de f ), la 
integral de f alrededor de Ŵ es la suma de las integrales de f alrededor de cada una de las curvas cerradas 
γ1, . . . , γn.

 Después de una ilustración de un uso típico del teorema se hace un bosquejo de la demostración.

EJEMPLO 10.21

Considere
∮

Ŵ

z

(z + 2)(z − 4i)
dz,

donde Ŵ es una trayectoria cerrada que encierra a −2 y a 4i. Evalúe esta integral usando el teorema de 
deformación extendido. Coloque un círculo γ1 alrededor de −2 y un círculo γ2 alrededor de 4i con radios 
sufi cientemente pequeños para que ningún círculo interseque al otro o a Ŵ y que cada uno esté encerrado 
por Ŵ (fi gura 10.34). Entonces

∮

Ŵ

z

(z + 2)(z − 4i)
dz =

∮

γ1

z

(z + 2)(z − 4i)
dz +

∮

γ2

z

(z + 2)(z − 4i)
dz.

Use la descomposición en fracciones parciales para escribir

z

(z + 2)(z − 4i)
=

1
5 − 2

5 i

z + 2
+

4
5 + 2

5 i

z − 4i
.

FIGURA 10.33
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Entonces
∮

Ŵ

z

(z + 2)(z − 4i)
dz =

(
1

5
− 2

5
i

)∮

γ1

1

z + 2
dz +

(
4

5
+ 2

5
i

)∮

γ1

1

z − 4i
dz

+
(

1

5
− 2

5
i

)∮

γ2

1

z + 2
dz +

(
4

5
+ 2

5
i

)∮

γ2

1

z − 4i
dz.

A la derecha, la segunda y tercera integrales son cero por el teorema de Cauchy (γ1 no encierra a 4i y γ2 no 
encierra a −2). La primera y cuarta integrales son iguales a 2πi por el ejemplo 10.17. Por tanto,

∮

Ŵ

z

(z + 2)(z − 4i)
dz = 2πi

[(
1

5
− 2

5
i

)
+

(
4

5
+ 2

5
i

)]
= 2πi.  ■

Se puede modelar una prueba del teorema, a partir de la prueba del teorema de deformación.

Prueba Como se sugiere en la fi gura 10.35, dibuje los segmentos de recta L1 de Ŵ a γ1, L2 de γ1 a 
γ2, . . . , Ln de γn−1 a γn, y, fi nalmente, Ln+1 de γn a Ŵ. Forme las trayectorias cerradas � y 
 mostradas 
separadamente en las fi guras 10.36, 10.37 y 10.38. Entonces

∮

�

f (z) dz +
∮

	

f (z) dz = 0,

ambas integrales son cero por el teorema de Cauchy. (Por las hipótesis del teorema, f es diferenciable en 
� y 
 y dentro de ellas.)

En esta suma de integrales sobre � y 
, cada segmento de recta Lj es integrado en ambas direccio-
nes, de donde las contribuciones de las integrales sobre estos segmentos son cero. Más aún, en esta suma 
recupere la integral de f (z) sobre toda Ŵ y sobre cada γj, con la orientación en sentido contrario del movi-
miento de las manecillas del reloj en Ŵ y en sentido del movimiento de las manecillas del reloj en cada γj 
(observe las orientaciones en la fi gura 10.38). Invirtiendo las orientaciones en las γj, de manera que todas 
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las trayectorias sean orientadas en sentido contrario del movimiento de las manecillas del reloj, la última 
suma se convierte en

∮

Ŵ

f (z) dz −
n∑

j=1

∮

γj

f (z) dz = 0,

llegando a la conclusión del teorema. ■

SECCIÓN 10.4 PROBLEMAS

En cada problema del 1 al 12, evalúe � f (z) dz para la función y 
trayectoria dadas. Estos problemas pueden involucrar el teore-
ma de Cauchy, las fórmulas integrales de Cauchy, y/o los teore-
mas de deformación.

 1.  f (z) = z4

z − 2i
; Ŵ es cualquier trayectoria cerrada que encie-

rra a 2i.

 2.  f (z) = sen(z2)

z − 5
; Ŵ es cualquier trayectoria cerrada que 

encierra a 5.

 3.  f (z) = 
z2 − 5z + i

z − 1 + 2i
; Ŵ es el círculo |z| = 3.

 4.  f (z) = 
2z3

(z − 2)2
; Ŵ es el rectángulo con vértices 4 ± i y 

−4 ± i.

 5.  f (z) = 
iez

(z − 2 + i)2
; Ŵ es el círculo |z − 1| = 4.

 6.  f (z) = cos(z − i)

(z + 2i)3
; Ŵ es cualquier trayectoria cerrada que 

encierra a −2i.

 7.  f (z) = z sen(3z)

(z + 4)3
; Ŵ es el círculo |z − 2i| = 9.

 8.  f (z) = 2i
–z |z| ; Ŵ es el segmento de recta de 1 a −i.

 9.  f (z) = − (2 + i) sen(z4)

(z + 4)2
;

i 4

 Ŵ es cualquier trayectoria cerra-

da que encierra a −4.

10.  f (z) = (z − i)2; Ŵ es el semicírculo de radio 1 alrededor de 
0 de i a −i.

11.  f (z) = Re(z + 4); Ŵ es el segmento de recta de 3 + i a 
2 − 5i.

12.  f (z) = 3z2 cosh(z)

(z + 2i)2
; Ŵ es el círculo de radio 8 alrededor 

de 1.

13.  Evalúe

∫ 2π

0
ecos(θ) cos(sen(θ)) dθ.

  Sugerencia: Considere �Ŵ (ez / z)dz, con Ŵ el círculo unita-
rio alrededor del origen. Evalúe esta integral una vez usan-
do la fórmula de la integral de Cauchy, después otra vez 
directamente usando las funciones coordenadas para Ŵ.

14.  Use la forma extendida del teorema de deformación para 

evaluar �Ŵ 
z − 4i
z3 + 4z

 dz, donde Ŵ es una trayectoria cerrada 

que encierra al origen, 2i y −2i.





Ahora se desarrollarán dos tipos de representaciones de una f (z) en serie de potencias de z − z0. La prime-
ra serie contendrá solamente potencias enteras no negativas, así que es una serie de potencias, y se aplica 
cuando f es diferenciable en z0. La segunda contendrá además potencias enteras negativas de z − z0 y se 
usará cuando f no es diferenciable en z0.

11.1 Representación en serie de potencias

Ya sabe que una serie de potencias que converge en un disco abierto, o quizá en todo el plano, defi ne 
una función que es infi nitamente diferenciable dentro del disco o del plano. Ahora irá por el otro senti-
do y probará que una función que es diferenciable en un disco abierto está representada por un desarrollo 
en serie de potencias alrededor del centro de ese disco. Esto tendrá aplicaciones importantes, incluyen-
do información acerca de los ceros de las funciones y el máximo valor que puede ser tomado por el módu-
lo | f (z)| de una función diferenciable.

469

C A P Í T U L O 11

Representación en
serie de una función

LA SERIE DE FOURIER DE UNA
FUNCION CONVERGENCIA DE UN
SERIE DE FOURIER SERIE DE FO
EN COSENOS EN SENOS INTEGRA

f (z) =
∞∑

n=0

f (n)(z0)

n! (z − z0)
n.

TEOREMA 11.1 Serie de Taylor

Sea f diferenciable en un disco abierto D alrededor de z0. Entonces, para cada z en D,

La serie de la derecha es la serie de Taylor de f (z) alrededor de z0, y el número f (n)(z0) / n! es el n-ésimo 
coefi ciente de Taylor de f (z) en z0. El teorema afi rma que la serie de Taylor de f (z) converge a f (z), así que 
representa a f (z), dentro del disco.
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Prueba Sea z cualquier punto de D y R el radio de D. Elija un número r con |z − z0| < r < R y sea γ el 
círculo de radio r alrededor de z0 (fi gura 11.1). Por la fórmula de la integral de Cauchy, usando w para la 
variable de integración en γ,

f (z) = 1

2πi

∮

γ

f (w)

w − z
dw.

Ahora

1

w − z
= 1

w − z0 − (z − z0)
= 1

w − z0

1

1 − (z − z0)/(w − z0)
.

Como w está en γ y z está encerrada por γ, entonces

∣∣∣∣
z − z0

w − z0

∣∣∣∣ < 1,

de manera que use una serie geométrica convergente para escribir

1

w − z
= 1

w − z0

∞∑

n=0

(
z − z0

w − z0

)n

=
∞∑

n=0

1

(w − z0)n+1
(z − z0)

n.

Entonces

 

f (w)

w − z
=

∞∑

n=0

f (w)

(w − z0)n+1 (z − z0)
n.

 (11.1)

Como f es continua en γ, para algún M, | f (w)| ≤ M para w en γ. Más aún, |w − z0| = r, así

∣∣∣∣
f (w)

(w − z0)n+1 (z − z0)
n

∣∣∣∣ ≤ M
1

r

( |z − z0|
r

)n

.

Llamada

M
1

r

( |z − z0|
r

)n

= Mn.

Entonces 
∑∞

n=0 Mn converge (esta serie es una constante por una serie geométrica convergente). Por el 
teorema 10.6, la serie en la ecuación (11.1) puede ser integrada término a término para llegar a

f (z) = 1

2πi

∮

γ

f (w)

w − z
dw = 1

2πi

∮

γ

( ∞∑

n=0

f (w)

(w − z0)n+1
(z − z0)

n

)
dw

=
∞∑

n=0

(
1

2πi

∮

γ

f (w)

(w − z0)n+1 dw

)
(z − z0)

n =
∞∑

n=0

f (n)(z0)

n! (z − z0)
n,

en donde use la fórmula de la integral de Cauchy para la n-ésima derivada para escribir el coefi ciente en 
la última serie. Esto prueba el teorema. ■

Se dice que una función compleja es analítica en z0 si tiene un desarrollo en serie de potencias en 
algún disco abierto alrededor de z0. Acaba de probar que una función que es diferenciable en un disco 
abierto alrededor de un punto es analítica en ese punto.

Sólo se han calculado los coefi cientes de una serie de Taylor por las fórmulas de derivación o integra-
ción cuando otros medios fallan. Cuando es posible, use series conocidas y operaciones tales como dife-

FIGURA 11.1

w
z0

rR



renciación e integración para obtener una representación en serie. Esta estrategia hace uso de la unicidad 
de las representaciones en serie de potencias.

TEOREMA 11.2

Suponga que, en algún disco |z − z0| < r,

∞∑

n=0

cn(z − z0)
n =

∞∑

n=0

dn(z − z0)
n.

Entonces, para n = 0, 1, 2, . . . , cn = dn.

Prueba Si llama f (z) a la función defi nida en este disco por ambas series de potencias, entonces

cn = f (n)(z0)

n! = dn.

Esto signifi ca que sin importar qué método se use para encontrar una serie de potencias para f (z) 
alrededor de z0, el resultado fi nal es la serie de Taylor.

EJEMPLO 11.1

Encontrar el desarrollo de Taylor de ez alrededor de i.
Sabe que para todo z,

ez =
∞∑

n=0

1

n!z
n.

Para un desarrollo alrededor de i, la serie de potencias debe estar en términos de potencias de z − i. De 
esta manera 

ez = ez−i+i = eiez−i =
∞∑

n=0

ei 1

n! (z − i)n.

Esta serie converge para todo z. ■

En este ejemplo, hubiera sido igual de fácil calcular los coefi cientes de Taylor directamente:

cn = f (n)(i)

n! = ei

n! .

EJEMPLO 11.2

Escriba la serie de Maclaurin para cos(z3).
Un desarrollo de Maclaurin es una serie de Taylor alrededor de cero. Para todo z,

cos(z) =
∞∑

n=0

(−1)n

(2n)! z2n.

Todo lo que necesita hacer es reemplazar z con z3:

cos(z3) =
∞∑

n=0

(−1)n

(2n)! (z3)2n =
∞∑

n=0

(−1)n

(2n)! z6n.

Como es un desarrollo alrededor del origen, es el desarrollo que buscaba. ■

11.1 Representación en serie de potencias 471
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EJEMPLO 11.3

Desarrollar

2i

4 + iz

en una serie de Taylor alrededor de −3i.
Busque una serie de potencias en z + 3i. Haga un poco de manipulación algebraica y después use la 

serie geométrica. Para obtener z + 3i, escriba

2i

4 + iz
= 2i

4 + i(z + 3i) + 3
= 2i

7 + i(z + 3i)
= 2i

7

1

1 + (i/7)(z + 3i)
.

Si |t | < 1, entonces

1

1 + t
= 1

1 − (−t)
=

∞∑

n=0

(−t)n =
∞∑

n=0

(−1)n.

Con t = (z + 3i)i / 7, tiene

1

1 + (i/7)(z + 3i)
=

∞∑

n=0

(−1)n
(

i

7
(z + 3i)

)n

.

Por tanto,

2i

4 + iz
= 2i

7

∞∑

n=0

(−1)n
(

i

7

)n

(z + 3i)n =
∞∑

n=0

2(−1)nin+1

7n+1 (z + 3i)n.

Debido a que es un desarrollo en serie de la función alrededor de −3i, es la serie de Taylor alrededor de 
−3i. Esta serie converge para

∣∣∣∣
i

7
(z + 3i)

∣∣∣∣ < 1,

o

|z + 3i| < 7.

Así z debe estar en el disco abierto de radio 7 alrededor de −3i. El radio de convergencia de esta serie 
es 7. ■

Por la sección 9.2, puede diferenciar una serie de Taylor término a término dentro de su disco abierto 
de convergencia. Algunas veces, esto es útil para la obtención del desarrollo de Taylor de una función.

EJEMPLO 11.4

Encontrar el desarrollo de Taylor de f (z) = 1 / (1 − z)3 alrededor del origen.
Es posible hacerlo por manipulación algebraica, pero es más fácil empezar con la serie geométrica 

familiar

g(z) = 1

1 − z
=

∞∑

n=0

zn para |z| < 1.

Entonces

g′(z) = 1

(1 − z)2 =
∞∑

n=1

nzn−1



y

g′′(z) = 2

(1 − z)3 =
∞∑

n=2

n(n − 1)zn−2 =
∞∑

n=0

(n + 1)(n + 2)zn

para |z| < 1. Entonces

f (z) =
∞∑

n=0

1

2
(n + 1)(n + 2)zn para |z| < 1.

 

■

Cuando se desarrolla f (z) en una serie de potencias alrededor de z0, el radio de convergencia de la 
serie será la distancia de z0 al punto más cercano en donde f (z) no es diferenciable. Piense en un disco 
expandiéndose uniformemente a partir de z0, que puede continuar su expansión hasta que choca con un 
punto en donde f (z) no es diferenciable.

Por ejemplo, suponga que f (z) = 2i / (4 + iz) y quiere el desarrollo de Taylor alrededor de −3i. El 
único punto en donde f (z) no está defi nida es 4i, de manera que el radio de convergencia de esta serie 
será la distancia entre −3i y 4i o 7. Este resultado se obtiene previamente a partir del desarrollo de Taylor ∑∞

n=0 (2(−1)nin+1 / 7n+1)(z + 3i)n de f (z).

EJEMPLO 11.5

Encuentre el radio de convergencia de la serie de Taylor de csc(z) alrededor de 3 − 4i.
Como csc(z) = 1 / sen(z), esta función es diferenciable excepto en z = nπ, con n cualquier entero. 

Como ilustra la fi gura 11.2, π es el punto más cercano a 3 − 4i en el cual csc(z) no es diferenciable. La 
distancia entre π y 3 − 4i es

√
(π − 3)2 + 16,

y es el radio de convergencia del desarrollo en serie de csc(z) alrededor de 3 − 4i. ■

	(w � 3)2 � 16

3 � 4i

�

�
y

x

FIGURA 11.2

La existencia de un desarrollo en serie de potencias implica la existencia de una antiderivada.

Sea f diferenciable en un disco abierto D alrededor de z0. Entonces existe una función diferenciable F tal 
que F′ (z) = f (z) para todo z en D.

Prueba Sabe que f tiene un desarrollo en serie de potencias en D:

f (z) =
∞∑

n=0

cn(z − z0)
n.

Sea

F(z) =
∞∑

n=0

1

n + 1
cn(z − z0)

n+1

TEOREMA 11.3

11.1 Representación en serie de potencias 473
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Por ejemplo, los ceros de sen(z) son n π, con n cualquier entero. Estos ceros son todos aislados. En 
contraste, sea

f (z) =
{

sen(1/z) si z �= 0

0 si z = 0
.

Los ceros de f son 0 y los números 1 / nπ, con n cualquier entero distinto de cero. Sin embargo, 0 no es un 
cero aislado, ya que cualquier disco abierto alrededor de cero contiene otros ceros, 1 / nπ, para n sufi cien-
temente grande.

Probará que el comportamiento de los ceros en este ejemplo descalifi ca a f para ser diferenciable 
en 0.

TEOREMA 11.4

Sea f diferenciable en un conjunto abierto G y sea ζ un cero de f en G. Entonces, o ζ es un cero aislado de 
f o existe un disco abierto alrededor de ζ en donde f (z) es idénticamente cero.

Esto signifi ca que una función diferenciable que no es idénticamente cero en algún disco solamente 
puede tener ceros aislados.

Prueba Escriba el desarrollo en serie de potencias de f (z) alrededor de ζ,

f (z) =
∞∑

n=0

cn(z − ζ )n,

en algún disco abierto D con centro en ζ. Ahora considere dos casos.

Caso 1 Si todas las cn = 0, entonces f (z) = 0 en todo D.

Caso 2 Suponga que algún coefi ciente en la serie de potencias no es cero. Sea m el entero más pequeño 
tal que cm � 0. Entonces c0 = c1 = · · · = cm−1 = 0 y cm � 0. Para z en D,

f (z) =
∞∑

n=m

cn(z − ζ )n =
∞∑

n=0

cn+m(z − ζ )n+m = (z − ζ )m
∞∑

n=0

cn+m(z − ζ )n.

para z en D. Es rutinario verifi car que esta serie de potencias tiene un radio de convergencia al menos tan 
grande como el radio de D y que

F′(z) = f (z)

para z en D. ■

11.1.1 Ceros aislados y el teorema de la identidad

Use la representación en serie de Taylor de una función diferenciable para obtener información importante 
acerca de sus ceros.

DEFINICIÓN 11.1

Un número ζ es un cero de f si f (ζ) = 0.
Un cero ζ de f es aislado si existe un disco abierto alrededor de ζ que no contenga ningún otro 

cero de f .

0



Ahora 
∑∞

n=0 cn+m (z − ζ)n es una serie de potencias, así que defi ne una función diferenciable g(z) para z 
en D. Más aún,

f (z) = (z − ζ)m g(z).

Pero g(ζ ) = cm � 0, de manera que hay algún disco abierto K alrededor de ζ en donde g(z) � 0. Por tanto, 
para z � ζ en K, f (z) � 0, así que ζ es un cero aislado de f. ■

Esta prueba contiene información adicional acerca de los ceros y será útil más adelante. El núme-
ro m en la prueba se llama el orden del cero ζ de f (z). Es el menor entero m tal que el coefi ciente cm 
en el desarrollo de f (z) alrededor de ζ es distinto de cero. Ahora recuerde que cn = f (n) (ζ) / n!. Así c0 = 
c1 = · · · = cm−1 = 0 implica que

f (ζ) = f ′ (ζ) = · · · = f (m−1)(ζ) = 0,

mientras cm � 0 implica que

f (m)( ζ ) � 0.

En resumen, un cero aislado ζ de f tiene orden m si la función y sus primeras m −1 derivadas valen cero en 
ζ, pero la m-ésima derivada en ζ es distinta de cero. Dicho de otra manera, el orden del cero ζ es el menor 
orden de la derivada de f que no vale cero en ζ.

También obtuvo que si ζ es un cero aislado de orden m de f, entonces puede escribir

f (z) = (z − ζ)m g(z),

donde g también es diferenciable en algún disco alrededor de ζ, y g(ζ) � 0.

EJEMPLO 11.6

Considere f (z) = z2 cos(z). 0 es un cero aislado de esta función diferenciable. Calcule

f ′ (z) = 2z cos(z) − z2 sen(z)

y

f ′′ (z) = 2 cos(z) − 4z sen(z) + z2 cos(z).

Observe que f (0) = f ′(0) = 0 mientras que f ′′(0) � 0. Así 0 es un cero de orden 2 de f. En este caso, ya 
tiene

f (z) = (z − 0)2g(z)

con g(0) � 0, ya que puede elegir g(z) = cos(z). ■

EJEMPLO 11.7

Debe tener cuidado al identifi car el orden de un cero. Considere f (z) = z2 sen(z). 0 es un cero aislado de 
f. Calcule

 f ′(z) = 2z sen(z) + z2 cos(z),

 f ′′(z) = 2 sen(z) + 4z cos(z) − z2 sen(z),

 f (3)(z) = 2 cos(z) + 4 cos(z) − 4z sen(z) − 2z sen(z) − z2 cos(z)

  = 6 cos(z) − 6z sen(z) − z2 cos(z).
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Entonces

f (0) = f ′ (0) = f ′′ (0) = 0

mientras que

f (3) (0) � 0.

Esto signifi ca que 0 es un cero de orden 3. Puede escribir

f (z) = z2
∞∑

n=0

(−1)n

(2n + 1)!z
2n+1 = z3

∞∑

n=0

(−1)n

(2n + 1)!z
2n = z3g(z),

donde

g(z) =
∞∑

n=0

(−1)n

(2n + 1)!z
2n

es diferenciable (en este ejemplo, para todo z) y g(0) = 1 � 0. ■

El resultado del teorema 11.3, prueba que si una función compleja diferenciable vale cero en una 
sucesión de puntos convergente en un dominio (conjunto abierto conexo), entonces la función es idéntica-
mente cero en todo el dominio. Este es un resultado muy fuerte, para el que no hay análogo para funciones 
reales. Por ejemplo, considere

h(x) =
{

0 para x ≤ 0

x2 para x > 0
,

cuya gráfi ca se muestra en la fi gura 11.3. Esta función es diferenciable para todo x real y es idénticamente 
cero en la semirecta, pero no es idénticamente cero sobre toda la recta. Otra diferencia entre la diferencia-
bilidad para funciones reales y complejas es evidente en este ejemplo. Aunque h es diferenciable, no tiene 
desarrollo en serie de potencias alrededor de 0. En contraste, una función compleja que es diferenciable en 
un conjunto abierto tiene un desarrollo en serie de potencias alrededor de cada punto del conjunto.

TEOREMA 11.5

Sea f diferenciable en un dominio G. Suponga que {zn} es una sucesión de ceros distintos de f en G, que 
converge a un punto de G. Entonces f (z) = 0 para todo z en G.

h(x)

x
20�2�4 4

2
4
6
8

10
12
14
16

FIGURA 11.3

h(x) =
{

x2 para x > 0 < 1

0 para x ≤ 0
.



Prueba Suponga que zn → ζ en G. Como f es continua, f (zn) → f (ζ). Pero cada f (zn) = 0, de manera que 
f (ζ) = 0 y ζ también debe ser un cero de f en G. Esto signifi ca que ζ no es un cero aislado, así por el teore-
ma 11.3, debe haber un disco abierto D alrededor de ζ en donde f (z) es idénticamente cero (fi gura 11.4).

Busque probar que esto fuerza a que f (z) = 0 para todo z en G. Para hacer esto, sea w cualquier punto 
de G. Pruebe que f (w) = 0.

Como G es conexo, hay una trayectoria Ŵ en G de ζ a w. Elija un número r tal que todo punto de 
Ŵ esté a una distancia de al menos 2r de la frontera de G, y también que r sea menor que el radio de D. 
Ahora camine a lo largo de Ŵ de ζ a w, en el camino seleccione puntos a una distancia menor que r uno 
del otro. Esto produce puntos ζ = ξ0, ξ1, . . . , ξn = w en Ŵ, como en la fi gura 11.5. Forme un disco abierto 
Dj de radio r alrededor de cada ξj . (Por la elección de r, ninguno de estos discos toca la frontera de G.) 
Cada ξj−1 está en Dj−1, Dj y Dj+1 para j = 1, . . . , n−1. Más aún, ξ0 = ζ está en D0 y D1 y w está en Dn−1 
y Dn.

Como ξ1 está en D0 y D1, existe una sucesión de puntos en ambos D0 y D1 que converge a ξ1 (fi gura 
11.6). Pero f (z) es idénticamente cero en D0, de manera que f (z) vale cero en esta sucesión. Como esta 
sucesión también está en D1, f (z) = 0 para todo z en D1.

Ahora ξ2 está en D1 y D2. Elija una sucesión de puntos comunes a ambos de estos discos y convergen-
tes a ξ2. Como f (z) es idénticamente cero en D1, entonces f (z) = 0 en cada punto de esta sucesión. Pero 
como esta sucesión también está en D2, entonces f (z) es idénticamente cero en D2.

Al continuar de esta manera, caminando a lo largo de Ŵ de ζ a w. Encuentre que f (z) es idénticamente 
cero en cada uno de los discos a lo largo del camino. Finalmente, f (z) es cero en Dn. Pero w está en Dn, de 
manera que f (w) = 0, y por tanto, f (z) = 0 para todo z en G. ■

Este teorema conduce inmediatamente a la conclusión que dos funciones diferenciables que coinci-
den en una sucesión convergente en un dominio deben ser la misma función. Esto se llama el teorema de 
la identidad.

COROLARIO 11.1 Teorema de la identidad

Sean f y g diferenciables en un dominio G. Suponga que f (z) y g(z) coinciden en una sucesión convergen-
te de puntos distintos de G. Entonces f (z) = g(z) para todo z en G. ■

Prueba Aplique el teorema 11.4 a la función diferenciable f − g. ■

Para tener una idea del poder de este resultado, considere el problema de defi nir la función seno 
compleja sen(z) de manera que coincida con la función seno real cuando z es real. ¿De cuántas maneras 
se puede hacer esto?

�

y

x
D

f(z) � 0

Distancia > 2r

D2

D1

w

D3

Dn-1

G

D0

Dn

ζξ1

ξ2
ξ3

ξn-1

D1

z1

D0

�

f (z) � 0

FIGURA 11.4 FIGURA 11.5 FIGURA 11.6
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Dicho de otra manera, ¿es posible inventar dos funciones complejas diferenciables distintas, f y g, 
defi nidas para todo z, tales que, cuando x es real,

f (x) = g(x) = sen(x)?

Si esto se puede hacer, entonces f (z) = g(z) en una sucesión convergente de números complejos (ele-
gidos a lo largo de la recta real) en un dominio (todo el plano), así necesariamente f = g. Sólo puede haber 
una extensión de una función diferenciable del dominio real al complejo.

Esta es la razón por la cual, cuando extiende una función a real (tal como la exponencial o las funcio-
nes trigonométricas) al plano complejo, puede estar seguro que esta extensión es única.

11.1.2 El teorema del módulo máximo

Suponga que f : S → �, y S es un conjunto compacto. Sabe del teorema 9.3 que | f (z)| alcanza un valor 
máximo en S. Esto signifi ca que al menos para una ζ en S, | f (z)| ≤ | f (ζ| para todo z en S. Pero esto no da 
ninguna información acerca de dónde está el punto ζ en S. Ahora pruebe que cualquiera de estas ζ debe 
estar en la frontera de S si f es una función diferenciable. Éste se llama el teorema del módulo máximo. El 
nombre del teorema se deduce del hecho de que la función de valor real | f (z)| se llama el módulo de f (z), 
y le interesa el máximo que tiene el módulo de f (z) conforme z varía sobre el conjunto S.

Primero probará que una función diferenciable que no es constante en un disco abierto no puede tener 
su módulo máximo en el centro del disco.

LEMA 11.1

Sea f diferenciable y no constante en un disco abierto D con centro en z0. Entonces, para algún z en este 
disco,

| f (z)| > | f (z0)|.

Prueba Suponga lo contrario, que | f (z)| ≤ | f (z0| para todo z en D. Obtendrá una contradicción.
Sea γ (t) = z0 + reit para 0 ≤ t ≤ 2π. Suponga que r es lo sufi cientemente pequeño para que este 

círculo esté contenido en D. Por el teorema de la integral de Cauchy,

f (z0) = 1

2πi

∮

γ

f (z)

z − z0
dz = 1

2π

∫ 2π

0
f (z0 + reit ) dt.

Entonces

|f (z0)| ≤ 1

2π

∫ 2π

0
|f (z0 + reit )| dt.

Pero z0 + reit está en D para 0 ≤ t ≤ 2π, de manera que | f (z0 + reit )| ≤ | f (z0)|. Entonces

1

2π

∫ 2π

0
|f (z0 + reit )| dt ≤ 1

2π

∫ 2π

0
|f (z0)| dt = |f (z0)|.

Las dos últimas desigualdades implican que

1
2π

∫ 2π

0
|f (z0 + reit )| dt = |f (z0)| .

Pero entonces

1

2π

∫ 2π

0

(
|f (z0)| −

∣∣∣f (z0 + reit )

∣∣∣
)

dt = 0.



Este integrando es continuo y no negativo para 0 ≤ t ≤ 2π. Si fuera positivo para algún t, entonces habría 
un subintervalo de [0, 2π] en el cual el integrando sería positivo y entonces esta integral debería ser posi-
tiva, una contradicción. Por tanto, el integrando debe ser idénticamente cero:

 
| f (z0 + reit )| = | f (z0)| para 0 ≤ t ≤ 2π.

Esto dice que | f (z)| tiene el valor constante | f (z0)| en todo círculo alrededor de z0 y contenido en D. Pero 
todo punto en D está en algún círculo alrededor de z0 y contenido en D. Por tanto, | f (z)| = | f (z0)| = cons-
tante para todo z en D. Entonces por el teorema 9.7, f (z) = constante en D. Esta contradicción prueba el 
lema. ■

Ahora puede obtener el teorema del módulo máximo.

TEOREMA 11.6 Teorema del módulo máximo

Sea S un conjunto conexo y compacto de números complejos. Sea f continua en S y diferenciable en cada 
punto interior de S. Entonces | f (z)| alcanza su valor máximo en un punto frontera de S. Más aún, si f no es 
una función constante, entonces | f (z)| no alcanza su máximo en un punto interior de S.

Prueba Debido a que S es compacto y f es continua, sabe por el teorema 9.3 que | f (z)| alcanza un valor 
máximo en algún punto (quizá muchos) de S. Sea ζ dicho punto. Si ζ es un punto interior, entonces existe 
un disco abierto D alrededor de ζ que contiene solamente puntos de S. Pero entonces | f (z)| alcanza su 
máximo en este disco en su centro. Ahora hay dos casos.

Caso 1 f (z) es constante en este disco. Por el teorema de la identidad,  f (z) es constante en S. En este 
caso | f (z)| es constante en S.

Caso 2 f  (z) no es constante en este disco. Entonces | f (z)| ≤ | f (ζ)| para z en este disco, contradiciendo 
el lema 11.1. En este caso | f (z)| no puede alcanzar un máximo en el interior de S y de esta manera debe 
alcanzar su máximo en un punto de la frontera. ■

EJEMPLO 11.8

Sea f (z) = sen(z). Determine el valor máximo de | f (z)| en el cuadrado 0 ≤ x ≤ π, 0 ≤ y ≤ π.
Primero, es conveniente trabajar con | f (z)|2, ya que ésta tendrá su máximo en el mismo valor de z 

donde lo tiene | f (z)|. Ahora

f (z) = sen(z) = sen(x)cosh(y) + i cos(x)senh(y),

así

|f (z)|2 = sen2(x)cosh2(y) + cos2(x)senh2(y).

Por el teorema del módulo máximo, | f (z)|2 debe alcanzar su valor máximo (para este cuadrado) en uno de 
los lados del cuadrado. Vea, por turno, cada lado.

En el lado inferior, y = 0 y 0 ≤ x ≤ π, de manera que | f (z)|2 = sen2(x) alcanza un valor máximo 
de 1.

En el lado derecho, x = π y 0 ≤ y ≤ π, de manera que | f (z)|2 = senh2(y) alcanza un valor máximo de 
senh2(π). Esto se debe a que cos2(π) = 1 y senh(y) es una función estrictamente creciente en [0, π].
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En el lado superior del cuadrado, y = π y 0 ≤ x ≤ π. Ahora | f (z)|2 = sen2 (x)cosh2 (π) + cos2 (x) 
senh2 (π). Necesita saber dónde alcanza ésta su valor máximo para 0 ≤ x ≤ π. Este es un problema de 
cálculo de una variable. Sea

g(x) = sen2 (x)cosh2 (π) + cos2 (x)senh2 (π).

Entonces
g′(x) = 2 sen(x)cos(x)cosh2 (π) − 2 cos(x)sen(x)senh2 (π)

= sen(2x)[cosh2(π) − senh2 (π)] = sen(2x).

Esta derivada es cero en (0, π) en x = π / 2, de manera que este es el punto crítico de g. Más aún, 

g
(π

2

)
= cosh2(π).

En los extremos del intervalo, 

g(0) = g(π) = senh2 (π) < cosh2 (π).

Por tanto, en el lado superior del cuadrado, | f (z)|2 alcanza su valor máximo de cosh2(π).
Finalmente, en el lado izquierdo del cuadrado, x = 0 y 0 ≤ y ≤ π, de manera que | f (z)|2 = senh2 (y), 

con máximo senh2(π) en 0 ≤ y ≤ π.
La conclusión es que en este cuadrado, | f (z)|2 tiene su valor máximo igual a cosh2 (π), que es el valor 

máximo de | f (z)|2 en la frontera del cuadrado. Por tanto, | f (z)| tiene un valor máximo igual a cosh(π) en 
este cuadrado. ■

SECCIÓN 11.1 PROBLEMAS

En cada problema del 1 al 12, encuentre la serie de Taylor de 
la función alrededor del punto. También determine el radio 
de convergencia y el disco abierto de convergencia de la serie.

 1. cos(2z); z = 0

 2. e−z; z = −3i

3.
1

1 − z
; 4i

4. sen(z2); 0

5.
1

(1 − z)2
; 0

6.
1

2 + z
; 1 − 8i

7. z2 − 3z + i; 2 − i

8. 1 + 1

2 + z2
; i

9. (z − 9)2; 1 + i

10. ez − i sen(z); 0

11. sen(z + i); −i

12.
3

z − 4i
; −5

13.   Suponga que f es diferenciable en un disco abierto alre-
dedor de cero y satisface f ′′ (z) = 2 f (z) + 1. Suponga que 
f (0) = 1 y f ′ (0) = i. Encuentre el desarrollo de Maclaurin 
de f (z).

14.   Encuentre los primeros tres términos del desarrollo de 
Maclaurin de sen2 (z) de tres maneras, como sigue:

  (a) Primero, calcule los coefi cientes de Taylor en 0.

   (b) Encuentre los primeros tres términos del producto de 
la serie de Maclaurin para sen(z) con ella misma.

   (c) Escriba sen2 (z) en términos de la función exponencial 
y use el desarrollo de Maclaurin de esta función.

15.  Pruebe que

∞∑

n=0

1

(n!)2
z2n = 1

2π

∫ 2π

0
e2z cos(θ) dθ.

  Sugerencia: Primero pruebe que

(
zn

n!

)2
= 1

2πi

∮

Ŵ

zn

n!wn+1
ezw dw



11.2 Desarrollo de Laurent

Si f es diferenciable en algún disco alrededor de z0, entonces f (z) tiene una representación en serie de 
Taylor alrededor de z0. 

Si una función no es diferenciable en z0, puede tener un tipo diferente de desarrollo en serie alrede-
dor de z0, un desarrollo de Laurent. Esto tendrá implicaciones profundas en el análisis de las propiedades 
de funciones y en aplicaciones tales como la suma de series y la evaluación de integrales reales y com-
plejas.

Primero es necesaria alguna terminología. El conjunto abierto entre dos círculos concéntricos se lla-
ma un anillo. Un anillo se describe típicamente por las desigualdades

r < |z − z0| < R,

en donde r es el radio del círculo interior y R el radio del círculo exterior (fi gura 11.7). Permita r = 0 en 
esta desigualdad, en cuyo caso el anillo 0 < |z − z0| < R es un disco agujerado (disco abierto sin el cen-
tro).

También permita R = ∞. El anillo r < |z − z0| < ∞ consiste en todos los puntos fuera del círculo 
interior de radio r. Un anillo 0 < |z − z0| < ∞ consiste en todos los complejos z excepto z0.

Ahora puede enunciar el resultado principal en series de Laurent.

TEOREMA 11.7

Sea 0 ≤ r < R ≤ ∞. Suponga que f es diferenciable en el anillo r < |z − z0| < R. Entonces, para cada z 
en este anillo,

f (z) =
∞∑

n=−∞
cn(z − z0)

n,

donde, para cada entero n,

cn = 1

2πi

∮

Ŵ

f (z)

(z − z0)n+1
dz,

y Ŵ es cualquier trayectoria cerrada alrededor de z0 totalmente contenida en el anillo. ■

En la fi gura 11.8 se muestra una Ŵ típica. La serie en el teorema, que puede incluir tanto potencias de 
z − z0 positivas como negativas es el desarrollo de Laurent, o serie de Laurent, para f (z) alrededor de z0 
en el anillo dado. Este desarrollo tiene la apariencia

· · · + c−2

(z − z0)2 + c−1

z − z0
+ c0 + c1(z − z0) + c2(z − z0)

2 + · · · .

La función no tiene que ser diferenciable, o incluso estar defi nida, en z0 o en otros puntos dentro del 
círculo interior del anillo. Los números cn son los coefi cientes de Laurent de f alrededor de z0.

Una serie de Laurent es una descomposición de f (z) en una suma

f (z) =
−1∑

n=−∞
cn(z − z0)

n +
∞∑

n=0

cn(z − z0)
n =

∞∑

n=1

c−n

(z − z0)n
+

∞∑

n=0

cn(z − z0)
n = h(z) + g(z).

   para n = 0, 1, 2, . . . y Ŵ el círculo unitario alrededor del 
origen.

16.   Encuentre el máximo valor de |cos(z)| en el cuadrado 0 ≤ 
x ≤ π, 0 ≤ y ≤ π.

17.   Encuentre el máximo valor de |ez| en el rectángulo 0 ≤ x ≤ 1, 
0 ≤ y ≤ π.

18.   Encuentre el máximo valor de |sen(z)| en el rectángulo 0 ≤ 
x ≤ 2π, 0 ≤ y ≤ 1.
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La parte que contiene sólo potencias no negativas de z − z0 defi ne una función g(z) que es diferenciable 
en |z − z0| < R (debido a que esta parte es un desarrollo de Taylor). La parte que contiene sólo potencias 
negativas de z − z0 defi ne una función h(z) que no está defi nida en z0. Esta parte determina el compor-
tamiento de f (z) alrededor del punto z0 donde f no es diferenciable.

Como con la serie de Taylor, raramente se calculan los coefi cientes del desarrollo de Laurent usando 
esta fórmula integral (más bien al contrario, se usa uno de estos coefi cientes para evaluar las integrales). 
En cambio, utilice series y manipulaciones algebraicas o analíticas conocidas. Esto requiere que esté 
seguro de que el desarrollo de Laurent de una función en un anillo alrededor de un punto es única y no 
cambia con el método de derivación.

TEOREMA 11.8

Sea f diferenciable en un anillo r < |z − z0| < R. Suponga que, para z en este anillo,

f (z) =
∞∑

n=−∞
bn(z − z0)

n.

Entonces los bn son los coefi cientes de Laurent cn de f y esta serie es el desarrollo de Laurent de f (z) en 
este anillo.

Prueba Elija γ como un círculo alrededor de z0 en el anillo. Sea k cualquier entero. Usando el teorema 
10.6, obtiene

2πick =
∮

γ

f (w)

(w − z0)k+1 dw =
∮

γ

( ∞∑

n=−∞
bn(z − z0)

n

)
1

(w − z0)k+1 dw

=
∞∑

n=−∞
bn

∮

γ

1

(w − z0)k−n+1 dw.

 (11.2)

Ahora, en γ, w = z0 + reit para 0 ≤ t ≤ 2π, con r el radio de γ. Entonces

∮

γ

1

(w − z0)k−n+1 dw =
∫ 2π

0

1

rk−n+1(eit )k−n+1 ireit dt

= i

rk−n

∫ 2π

0
ei(n−k)t dt =

{
0 si k �= n

2πi si k = n
.

rR
z0

.

z0

Γ

FIGURA 11.7 

Círculos |z − z0| = r 
y |z − z0| = R acotando 
el anillo abierto 
r < |z − z0| < R.

FIGURA 11.8 

Trayectoria cerrada 
encerrando a z0 y 
contenida en el anillo 
r < |z − z0| < R.

0



Así en la ecuación (11.2), todos los términos en la última serie son cero excepto el término con n = k, y 
la ecuación se reduce a

2πick = 2πibk.

Así que para cada entero k, bk = ck. ■

Los siguientes son ejemplos de desarrollos de Laurent.

EJEMPLO 11.9

e1/z es diferenciable en el anillo 0 < |z| < ∞, el plano sin el origen. Como

ez =
∞∑

n=0

1

n!z
n,

entonces, en este anillo,

e1/z =
∞∑

n=0

1

n!

(
1

z

)n

= 1 + 1

z
+ 1

2

1

z2 + 1

6

1

z3 + 1

24

1

z4 + · · · .

Este es el desarrollo de Laurent de e1 / z alrededor de 0, y converge para todo z distinto de cero. Además 
contiene un término constante y un número infi nito de potencias enteras negativas de z, pero no potencias 
positivas. ■

EJEMPLO 11.10

Encontrará el desarrollo de Laurent de cos(z) / z5 alrededor de cero. Para todo z,

cos(z) =
∞∑

n=0

(−1)n

(2n)! z2n.

Para z � 0,

cos(z)

z5
=

∞∑

n=0

(−1)n

(2n)! z2n−5 = 1

z5
− 1

2

1

z3 + 1

24

1

z
− 1

720
z + 1

40 320
z3 − · · · .

Este es el desarrollo de Laurent de cos(z) / z5 alrededor de 0. Este desarrollo tiene exactamente tres térmi-
nos que contienen potencias negativas de z, y el resto de los términos contienen sólo potencias positivas. 
Puede pensar en cos(z) / z5 = h(z) + g(z), donde

g(z) = − 1

720
z + 1

40 320
z3 − · · ·

es una función diferenciable (es una serie de potencias alrededor del origen), y

h(z) = 1

z5
− 1

2

1

z3 + 1

24

1

z
.

Es h(z) quien determina el comportamiento de cos(z) / z5 cerca del origen. ■
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EJEMPLO 11.11

Encontrar el desarrollo de Laurent de

1

(z + 1)(z − 3i)

alrededor de −1.
Use fracciones parciales para escribir

1

(z + 1)(z − 3i)
= −1 + 3i

10

1

z + 1
+ 1 − 3i

10

1

z − 3i
.

1 / (z + 1) ya está desarrollada alrededor de −1, de manera que concéntrese en el último término:

1

z − 3i
= 1

−1 − 3i + (z + 1)
= 1

−1 − 3i 1 − (z +

= −
∞∑

n=0

1

(1 + 3i)n+1 (z + 1)n.

 

= −1

1 + 3i

∞∑

n=0

(
z + 1

1 + 3i

)n

Este desarrollo es válido para |(z + 1) / (1 + 3i)| < 1, o |z + 1| < 
√

10. El desarrollo de Laurent de 1/(z + 1)
(z − 3i) alrededor de −1 es

1

(z + 1)(z − 3i)
= −1 + 3i

10

1

z + 1
− 1 − 3i

10

∞∑

n=0

1

(1 + 3i)n+1 (z + 1)n,

y esta representación es válida en el anillo 0 < |z + 1| < 
√

10.
Observe que 

√
10  es la distancia de −1, el centro del desarrollo de Laurent, al otro punto, 3i, en el 

que la función no es diferenciable. ■

En el siguiente capítulo utilizará el desarrollo de Laurent para obtener el poderoso teorema del resi-
duo, el cual tiene muchas aplicaciones, incluyendo las evaluaciones de las integrales reales y complejas 
y la sumatoria de series.

En cada problema del 1 al 10, escriba el desarrollo de Laurent de 
la función en un anillo 0 < |z − z0| < R alrededor del punto.

1.
2z

1 + z2
; i

2.
sen(z)

z2
; 0

3.
1 − cos(2z)

z2
; 0

4. z2 cos

(
i

z

)
; 0

5.
z2

1 − z
; 1

6.
z2 + 1

2z − 1
; 1

2

7.
ez2

z2
; 0

8.
sen(4z)

z
; 0

9.
z + i

z − i
; i

10. senh

(
1

z3

)
; 0

SECCIÓN 11.2 PROBLEMAS

z + 1
1 + 3i

1
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C A P Í T U L O 12
Singularidades
y el teorema 
del residuo

SINGULARIDADES EL TEOREMA DEL RESI-
DUO ALGUNAS APLICACIONES DEL TEOREMA 
DEL RESIDUO SINGULARIDADES EL TEORE-
MA DEL RESIDUO ALGUNAS APLICACIONES 

DEFINICIÓN 12.1  Singularidad aislada

Una función compleja f tiene una singularidad aislada en z0 si f es diferenciable en un anillo 0 < 
|z − z0| < R, pero no en el mismo z0.

Como preludio al teorema del residuo, usará el desarrollo de Laurent para clasifi car puntos en donde una 
función no es diferenciable.

DEFINICIÓN 12.2  Clasifi cación de singularidades

Sea f con una singularidad aislada en z0. Sea el desarrollo de Laurent de f (z) en un anillo 0 < 
|z − z0| < R.

f (z) =
 

∞ 

∑ 
n=−∞

 cn(z − z0)n.

Por ejemplo, 1/z tiene una singularidad aislada en 0, y sen(z)/(z − π) tiene una singularidad aislada 
en π.

Ahora identifi cará las singularidades de diferentes tipos, dependiendo de los términos que aparezcan 
en el desarrollo de Laurent de la función alrededor de la singularidad.
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Estos tres tipos cubren todas las posibilidades para una singularidad aislada.
En el caso de una singularidad removible, el desarrollo de Laurent no tiene potencias negativas de 

z − z0 y, por tanto, es

Entonces:

 1. z0 es una singularidad removible de f si cn = 0 para n = −1, −2, . . . .

 2. z0 es un polo de orden m (m un entero positivo) si c−m � 0 y c−m−1 = c−m−2 = · · · = 0.

 3. z0 es una singularidad esencial de f si c−n � 0 para una infi nidad de enteros positivos n.

f (z) =
∞∑

n=0

cn(z − z0)
n,

una serie de potencias alrededor de z0. En este caso puede asignar a f (z0) el valor c0 para obtener una fun-
ción que es diferenciable en el disco abierto |z − z0| < r.

EJEMPLO 12.1

Sea

cos(z) = 1 − z2

2! + z4

4! − z6

6! + · · ·

f (z) = 1 − cos(z)

z

para 0 < |z| < ∞. Como

para todo z, entonces

para z � 0. La serie de la derecha es una serie de potencias, que vale 0 en z = 0. Puede, por tanto, defi nir 
una función nueva

que coincide con f (z) para z � 0 pero está defi nida en 0 de tal manera que es diferenciable ahí, ya que g(z) 
tiene un desarrollo en serie de potencias alrededor de 0. Debido a que es posible extender f a una función 
g que es diferenciable en 0, llame a 0 una singularidad removible de f. ■

Así, una singularidad removible es la que se puede “quitar” asignando a la función un valor apropiado 
en un punto.

onces

f (z) = 1 − cos(z)

z
= z

2! − z3

4! + z5

6! + · · · =
∞∑

n=1

z2n−1

(2n)!
(−1)n + 1

g(z) =
{

(1 − cos(z))/z para z �= 0

0 para z = 0
,

0
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EJEMPLO 12.2

f (z) = sen(z) / (z − π) tiene una singularidad removible en π. Para ver esto, primero escriba el desarrollo 
de Laurent de f (z) en 0 < |z − π| < ∞. Una manera fácil de hacer esto es empezar con

sen(z − π) = sen(z) cos(π) − cos(z) sen(π) = −sen(z),

así

con c−m � 0. Este desarrollo es válido en algún anillo 0 < |z − z0| < R.

EJEMPLO 12.3

Sea f (z) = 1/(z + i). Esta función es su propio desarrollo de Laurent alrededor de −i y c−1 = 1, mientras 
que todos los otros coefi cientes son cero. Así −i es un polo de orden 1 de f.

Esta singularidad no es removible. No hay manera de asignarle un valor a f (−i) para que la función 
extendida sea diferenciable en −i. ■

EJEMPLO 12.4

g(z) = 1/(z + i)3, entonces g tiene un polo de orden 3 en −i. Aquí la función es su propio desarrollo de 
Laurent alrededor de −i, y el coefi ciente de 1/(z + i)3 es distinto de cero, mientras que todos los otros 
coefi cientes son cero. ■

Entonces, para z � π,

sen(z) = − sen(z − π) =
∞∑

n=0

(−1)n+1

(2n + 1)! (z − π)2n+1.

sen(z)

z − π
=

∞∑

n=0

(−1)n+1

(2n + 1)! (z − π)2n = −1 + 1

6
(z − π)2 − 1

120
(z − π)4 + · · · .

Aunque f (π) no está defi nida, la serie de la derecha está defi nida para z = π, y ahí es igual a −1. Por 
tanto, extienda f a una función diferenciable g defi nida en todo el plano asignando el valor −1 a la nueva 
función cuando z = π:

Esta extensión “quita” la singularidad de f en π, ya que f (z) = g(z) para z � π y g(π) = −1. ■

Para que f  tenga un polo en z0, el desarrollo de Laurent de f alrededor de z0 debe tener términos con poten-
cias negativas de z − z0, pero sólo un número fi nito de tales términos. Si el polo tiene orden m, entonces 
este desarrollo de Laurent tiene la forma

g(z) =
{

f (z) para z �= π

−1 para z = π
.

f (z) = c−m

(z − z0)m
+ c−m+1

(z − z0)m−1 + · · · + c−1

z − z0
+

∞∑

n=0

cn(z − z0)
n,
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EJEMPLO 12.5

Sea

DEFINICIÓN 12.3  Polo simple y doble

Un polo de orden 1 se llama polo simple. Un polo de orden 2 es un polo doble.

Por tanto, f tiene un polo doble en 0. ■

EJEMPLO 12.6

e1/z está defi nida para todo z distinto de cero, y para z � 0,

Como este desarrollo de Laurent tiene una infi nidad de potencias negativas de z, 0 es una singularidad 
esencial de e1/z. ■

Se discutirán algunos resultados que son útiles en la identifi cación de los polos de una función.

f (z) = 1

z3

∞∑

n=0

(−1)n

(2n + 1)!z
2n+1 =

∞∑

n=0

(−1)n

(2n + 1)!z
2n−2

= 1

z2 − 1

6
+ 1

120
z2 − 1

5040
z4 + · · · .

f (z) = sen(z)

z3 .

Para z � 0,

e1/z =
∞∑

n=0

1

n!
1

zn
.

TEOREMA 12.1 Condición para un polo de orden m

Sea f diferenciable en el anillo 0 < |z − z0| < R. Entonces f tiene un polo de orden m en z0 si,
y sólo si

existe, es fi nito y distinto de cero. ■

Prueba Desarrolle f (z) en una serie de Laurent en este anillo:

f (z) =
∞∑

n=−∞
cn(z − z0)

n para 0 < |z − z0| < R.

Suponga que f tiene un polo de orden m en z0. Entonces c−m � 0 y c−m−1 = c−m−2 = · · · = 0, de manera 
que la serie de Laurent es

f (z) =
∞∑

n=−m

cn(z − z0)
n.

lim
z→z0

(z − z0)
mf (z)lím
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Entonces

Entonces

Recíprocamente, suponga que límz→z0
 (z − z0)m f (z) = L � 0. Busque probar que f tiene un polo de orden 

m en z0.
Sea ǫ > 0. Debido al límite, existe un positivo δ < R tal que

(z − z0)
mf (z) =

∞∑

n=−m

cn(z − z0)
n+m =

∞∑

n=0

cn−m(z − z0)
n

= c−m + c−m+1(z − z0) + c−m+2(z − z0)
2 + · · · .

Entonces, para tal z,

En particular, si |z − z0| = δ, entonces

Los coefi cientes en el desarrollo de Laurent de f (z) alrededor de z0 están dados por

en donde puede elegir a Ŵ como un círculo de radio δ alrededor de z0. Entonces

Ahora δ−n−m puede hacerse tan pequeño como quiera eligiendo δ pequeña, si n < −m. Se concluye que 
|cn| = 0, de donde cn = 0, si n < −m. Así el desarrollo de Laurent de f (z) alrededor de z0 tiene la forma

y por tanto f tiene un polo de orden m en z0, como quería demostrar. ■

EJEMPLO 12.7

Vea nuevamente el ejemplo 12.3. Como

f tiene un polo simple en −i.
En el ejemplo 12.4,

así g tiene un polo de orden 3 en −i.

∣∣(z − z0)
mf (z) − L

∣∣ < ǫ si 0 < |z − z0| < δ.

∣∣(z − z0)
mf (z)

∣∣ < |L| + ǫ.

∣∣∣(z − z0)
−n−1f (z)

∣∣∣ < (|L| + ǫ) |z − z0|−n−m−1 = (|L| + ǫ) δ−n−m−1.

cn = 1

2πi

∮

Ŵ

f (z)

(z − z0)n+1
dz,

f (z) = c−m

(z − z0)m
+ c−m+1

(z − z0)m−1 + · · · + c−1

z − z0
+

∞∑

n=0

cn(z − z0)
n,

lim
z→−i

(z + i)3g(z) = lim
z→−i

(z + i)3 1

(z + i)3 = 1 �= 0,lím lím

lim
z→−i

(z + i)f (z) = lim
z→−i

(z + i)
1

z + i
= 1 �= 0,lím lím

lim
z→z0

(z − z0)
mf (z) = c−m �= 0.lím

|cn| ≤ 1

2π
(2πδ) max

z en Ŵ

∣∣∣f (z)(z − z0)
−n−1

∣∣∣ < δ (|L| + ǫ) δ−n−m−1 = (|L| + ǫ) δ−n−m.máx
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En el ejemplo 12.5,

TEOREMA 12.2

así sen(z) / z3 tiene un polo doble en 0. Es un error común pensar que esta función tiene un polo de orden 
3 en cero ya que el denominador tiene un cero de orden 3 ahí. Sin embargo,

entonces por el teorema 12.1, la función no puede tener un polo de tercer orden en 0. ■

Si f (z) es un cociente de funciones, es natural buscar polos en los valores donde el denominador vale 
cero. El primer resultado a lo largo de estas líneas trata con un cociente en donde el denominador vale cero 
en z0 pero el numerador no. Recuerde que g(z) tiene un cero de orden k en z0 si g(z0) = · · · = g(k−1)(z0) = 
0, pero g(k)(z0) � 0. El orden del cero es el de la derivada de menor orden que no vale cero en el punto.

Sea f (z) = h(z)/g(z), donde h y g son diferenciables en algún disco abierto alrededor de z0. Suponga que 
h(z0) � 0, pero g tiene un cero de orden m en z0. Entonces f tiene un polo de orden m en z0. ■

Queda para el estudiante la prueba de este resultado.

EJEMPLO 12.8

f (z) = 1 + 4z3

sen6(z)

tiene un polo de orden 6 en 0, ya que el numerador no vale cero en 0, y el denominador tiene un cero de 
orden 6 en 0. Por la misma razón, f tiene un polo de orden 6 en nπ para cualquier entero n. ■

El teorema 12.2 no se puede aplicar si el numerador también vale cero en z0. El ejemplo f (z) = 
sen(z) / z3 es instructivo. El numerador tiene un cero de orden 1 en 0 y el denominador un cero de orden 
3 en 0, y por el ejemplo 12.5 el cociente tiene un polo de orden 2. Parecería que los órdenes de los ceros 
del numerador y del denominador se restan (o cancelan) para dar el orden de un polo en el punto. Éste es 
el caso.

TEOREMA 12.3 Polos de cocientes

Sea f (z) = h(z) / g(z) y suponga que h y g son diferenciables en algún disco abierto alrededor de z0. Sea 
h con un cero de orden k en z0 y g con un cero de orden m en z0, con m > k. Entonces f tiene un polo de 
orden m − k en z0. ■

Se deja al estudiante la prueba del teorema. Al permitir k = 0, este teorema incluye el caso que el 
numerador h(z) no tenga ceros en z0.

lim
z→0

z2 sen(z)

z3 = lim
z→0

sen(z)

z
= 1 �= 0,lím lím

lim
z→0

z3 sen(z)

z3
= lim

z→0
sen(z) = 0,lím lím
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EJEMPLO 12.9

Considere

El numerador tiene un cero de orden 4 en 3π/2 y el denominador tiene ahí un cero de orden 7, entonces el 
cociente f tiene un polo de orden 3 en 3π/2. ■

EJEMPLO 12.10

Sea f (z) = tan3 (z) / z9. El numerador tiene un cero de orden 3 en 0 y el denominador tiene un cero de orden 
9 en 0. Por tanto, f tiene un polo de orden 6 en 0. ■

También hay algunos resultados enunciados en términos de productos en lugar de cocientes. Por tan-
to, el orden de un polo de un producto es la suma de los órdenes de los polos de los factores en un punto 
dado.

f (z) = (z − 3π/2)4

cos7(z)
.

TEOREMA 12.4 Polos de productos

Sea f con un polo de orden m en z0 y sea g con un polo de orden n en z0. Entonces fg tiene un polo de orden 
m + n en z0. ■

EJEMPLO 12.11

Sea

Aquí f (z) es un producto, que se escribe para enfatizar como

Ahora 1/cos4(z) tiene un polo de orden 4 en π/2 y 1/(z − π/2)2 tiene ahí un polo de orden 2, así f tiene 
un polo de orden 6 en π/2. f también tiene un polo de orden 4 (no 6) en z = (2n + 1)π/2 para cualquier n 
distinto de cero. ■

Ahora está preparado para desarrollar el poderoso teorema del residuo.

f (z) =
[

1

cos4(z)

] [
1

(z − π/2)2

]
.

f (z) = 1

cos4(z)(z − π/2)2
.

En cada problema del 1 al 12, determine todas las singularidades 
de la función y clasifi que cada singularidad como removible, un 
polo de cierto orden, o una singularidad esencial.

SECCIÓN 12.1 PROBLEMAS

1.
cos(z)

z2

2.
4 sen(z + 2)

(z + i)2(z − i)
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13.  Sea f diferenciable en z0 y sea g con un polo de orden m en 
z0. Suponga que f (z0) � 0. Pruebe que fg tiene un polo de 
orden m en z0.

14.  Sean h y g diferenciables en z0, g(z0) � 0, y h tiene un cero 
de orden 2 en z0. Demuestre que g(z)/h(z) tiene un polo de 
orden 2 en z0.

15.  Suponga que h y g son diferenciables en z0 y g(z0) � 0, 
mientras que h tiene un cero de orden 3 en z0. Demuestre que 
g(z)/h(z) tiene un polo de orden 3 en z0.

3. e1/z(z + 2i)

4.
sen(z)

z − π

5.
cos(2z)

(z − 1)2(1 + z2)

6.
z

(z + 1)2

7.
z − i

z2 + 1

8.
sen(z)

senh(z)

9.
z

z4 − 1

10. tan(z)

11.
1

cos(z)

12. e1/z(z+1)

12.2 El teorema del residuo

Para ver una conexión entre la serie de Laurent y la integral de una función, suponga que f tiene un desa-
rrollo de Laurent

f (z) =
∞∑

n=−∞
cn(z − z0)

n

en algún anillo 0 < |z − z0| < R. Sea Ŵ una trayectoria cerrada en este anillo que encierra a z0. De acuerdo 
con el teorema 11.6, los coefi cientes de Laurent están dados por una fórmula integral. En particular, 
el coefi ciente de 1/(z − z0) es

c−1 = 1

2πi

∮

Ŵ

f (z) dz.

Por tanto,

∮

Ŵ

f (z) dz = 2πic−1.

Si conoce este coefi ciente en el desarrollo de Laurent puede obtener el valor de esta integral. Este hecho 
da una importancia especial a este coefi ciente, de manera que tomará ese nombre.

Ahora extienda la idea detrás de la ecuación (12.1) para incluir el caso en que Ŵ pueda encerrar cual-
quier número fi nito de puntos en donde f no es diferenciable.

DEFINICIÓN 12.4  Residuo

Sea f con una singularidad aislada en z0 y desarrollo de Laurent f (z) = 
∑ ∞

n=−∞ cn(z − z0)n en al-
gún anillo 0 < |z − z0| < R. Entonces el coefi ciente c−1 se llama el residuo de f en z0 y se denota 
Re s(f, z0).

(12.1)
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Sea Ŵ una trayectoria cerrada y sea f diferenciable en Ŵ y en todos los puntos encerrados por Ŵ, excepto 
para z1, . . . , zn, que son todas singularidades aisladas de f encerradas por Ŵ. Entonces

zn

n

z2

2
1

3

z1

z3

FIGURA 12.1

TEOREMA 12.5 Teorema del residuo

En palabras, el valor de esta integral es 2πi veces la suma de los residuos de f en las singularidades 
de f encerradas por Ŵ.

Prueba Encierre cada singularidad zj en una trayectoria cerrada γj (fi gura 12.1) de manera que cada γj 
esté en el interior de Ŵ, encierre exactamente una singularidad, y no interseque ninguna otra γk. Por el 
teorema de la deformación extendido,

El teorema del residuo es efectivo en la medida de nuestra efi ciencia para evaluar los residuos  de una 
función en sus singularidades. Si realmente tuviera que escribir el desarrollo de Laurent de f alrededor de 
cada singularidad para mostrar el coefi ciente del 1/(z − zj) término, el teorema sería difícil de aplicar en 
muchos ejemplos. Lo que aumenta su importancia, es que, al menos para los polos, es una manera efi cien-
te de calcular los residuos. Ahora desarrolle algunos de éstos.

TEOREMA 12.6 Residuo en un polo simple

Si f tiene un polo simple en z0, Entonces

Prueba Si f tiene un polo simple en z0, entonces su desarrollo de Laurent alrededor de z0 es

en algún anillo 0 < |z − z0| < R. Entonces

f (z) = c−1

z − z0
+

∞∑

n=0

cn(z − z0)
n

(z − z0)f (z) = c−1 +
∞∑

n=0

cn(z − z0)
n+1,

Res(f, z0) = lim
z→z0

(z − z0)f (z).Re s lím

∮

Ŵ

f (z) dz = 2πi

n∑

j=1

Res(f, zj ).Re s

∮

Ŵ

f (z) dz =
n∑

j=1

∮

γj

f (z) dz = 2πi

n∑

j=1

Res(f, zj ).Re s
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EJEMPLO 12.12

f (z) = sen(z)/z2 tiene un polo simple en 0, y

así

p , y

(f, 0) = lim
z→0

z
sen(z)

z2
= lim

z→0

sen(z)

z
= 1.Re s lím lím

Si Ŵ es cualquier trayectoria cerrada en el plano que encierra al origen, entonces por el teorema del residuo,
∮

Ŵ

sen(z)

z2 dz = 2πi Res(f, 0) = 2πi. ■Re s

EJEMPLO 12.13

Sea

f (z) = z − 6i

(z − 2)2(z + 4i)
.

Entonces f tiene un polo simple en −4i y un polo doble en 2. El teorema 12.6 no ayudará con el residuo 
de f en 2, pero en el polo simple,

Antes de estudiar residuos en polos de orden mayor que 1, vea la siguiente versión del teorema 12.6 
que algunas veces es útil.

es(f, −4i) = lim
z→−4i

(z + 4i)
z − 6i

(z − 2)2(z + 4i)
= lim

z→−4i

z − 6i

(z − 2)2 = −4i − 6i

(−4i − 2)2

= −2

5
+ 3

10
i. ■

límRe s lím

Sea f (z) = h(z) / g(z), donde h es continua en z0 y h(z0) � 0. Suponga que g es diferenciable en z0 y tiene 
ahí un cero simple. Entonces f tiene un polo simple en z0 y

COROLARIO 12.1

Prueba Por el teorema 12.2, f tiene un polo simple en z0. Por el teorema 12.6,

(f, z0) = h(z0)

g′(z0)
.Re s  ■

EJEMPLO 12.14

Sea
f (z) = 4iz − 1

sen(z)
.

(f, z0) = lim
z→z0

(z − z0)
h(z)

g(z)
= lim

z→z0

h(z)

((g(z) − g(z0))/(z − z0)
= h(z0)

g′(z0)
.Re s lím lím

lim
z→z0

(z − z0)f (z) = c−1 = Res(f, z0).Re slím
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Entonces f tiene un polo simple en π y por el corolario 12.1,

(f, π) = 4iπ − 1

cos(π)
= 1 − 4πi.Re s

De hecho, f tiene un polo simple en nπ para cualquier entero n, y

(f, nπ) = 4inπ − 1

cos(nπ)
= (−1)n(−1 + 4nπi).Re s ■

EJEMPLO 12.15

Evaluar

con Ŵ la trayectoria cerrada de la fi gura 12.2.

∮

Ŵ

4iz − 1

sen(z)
dz

x

y

�� 0 �

�

2�

Ŵ encierra los polos 0, π, 2π y −π pero no otras singularidades de f. Por el teorema del residuo y el 
ejemplo 12.14,

FIGURA 12.2  Ŵ encierra solamente 
las singularidades −π, 0, π y 2π de

 4iz−1
sen(z)

.

Aquí hay una fórmula para el residuo de una función en un polo de orden mayor que 1.

TEOREMA 12.7 Residuo en un polo de orden m

Sea f con un polo de orden m en z0. Entonces

∮

Ŵ

4iz − 1

sen(z)
dz = 2πi[Res(f, 0) + Res(f, π) + Res(f, 2π) + Res(f, −π)]

= 2πi [−1 + (1 − 4πi) + (−1 + 8πi) + (1 + 4πi)] = −16π2. ■

Re s Re s Re s Re s

(f, z0) = 1

(m − 1)! lim
z→z0

dm−1

dzm−1 [(z − z0)
mf (z)].Re s lím
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Si m = 1 (polo simple), entonces (m − 1)! = 0! = 1 por defi nición, y la derivada de orden (m − 1) 
está defi nida para ser exactamente la propia función. Con estas convenciones, la conclusión del teorema 
se reduce al resultado para los residuos en polos simples cuando m = 1.

Prueba En algún anillo alrededor de z0,

f (z) = c−m

(z − z0)m
+ c−m+1

(z − z0)m−1 + · · · + c−1

z − z0
+

∞∑

n=0

cn(z − z0)
n.

Quiere encontrar c−1. Escriba

(z − z0)
mf (z) = c−m + c−m+1(z − z0) + · · · + c−1(z − z0)

m−1 +
∞∑

n=0

cn(z − z0)
n+m.

El lado derecho de esta ecuación es una serie de potencias alrededor de z0 y puede ser diferenciada cual-
quier número de veces dentro de su disco abierto de convergencia. Calcule

dm−1

dzm−1 [(z − z0)
mf (z)]

= (m − 1)!c−1 +
∞∑

n=0

(n + m)(n + m − 1) · · · (n + 1)(z − z0)
n+1.

En el límite conforme z → z0, esta ecuación produce

lim
z→z0

dm−1

dzm−1 [(z − z0)
mf (z)] = (m − 1)!c−1 = (m − 1)! Res(f, z0).lím Re s

EJEMPLO 12.16

Sea

Entonces f tiene un polo de orden 3 en −i. Por el teorema 12.7,

f (z) = cos(z)

(z + i)3 .

Res(f, −i) = 1

2! lim
z→−i

d2

dz2

(
(z + i)3 cos(z)

(z + i)3

)
Re s lím

Aquí hay algunos ejemplos del uso del teorema del residuo para la evaluación de integrales complejas.

EJEMPLO 12.17

Sea

Busque evaluar �Ŵ f (z)dz, con Ŵ una trayectoria cerrada que no pasa por ninguna singularidad de f.

f (z) = 2iz − cos(z)

z3 + z
.

= 1

2
lim

z→−i

d2

dz2
cos(z) = −1

2
cos(−i) = −1

2
cos(i). ■lím
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Las singularidades de f son polos simples en 0, i y −i. Primero calcule el residuo de f en cada uno de 
estos puntos. Aquí es conveniente usar el corolario 12.1:

y

Ahora se consideran casos.
1.  Si Ŵ no encierra ninguna de las singularidades, entonces �Ŵ f (z)dz = 0 por el teorema de 

Cauchy.

2. Si Ŵ encierra a 0 pero no a i o −i, entonces

3. Si Ŵencierra a i pero no a 0 o −i, entonces
∮

Ŵ

f (z) dz = 2πi

(
1 + 1

2
cos(i)

)
.

4. Si Ŵencierra a −i pero no a 0 o i, entonces
∮

Ŵ

f (z) dz = 2πi

(
−1 + 1

2
cos(i)

)

5. Si Ŵ encierra a 0 y a i pero no a −i, entonces
∮

Ŵ

f (z) dz = 2πi

(
−1 + 1 + 1

2
cos(i)

)
= πi cos(i).

6. Si Ŵ encierra a 0 y a −i pero no a i, entonces
∮

Ŵ

f (z) dz = 2πi

(
−1 − 1 + 1

2
cos(i)

)
= 2πi

(
−2 + 1

2
cos(i)

)
.

7. Si Ŵ encierra a i y a −i pero no a 0, entonces
∮

Ŵ

f (z) dz = 2πi

(
1 + 1

2
cos(i) − 1 + 1

2
cos(i)

)
= 2πi cos(i).

8. Si Ŵ encierra a las tres singularidades, entonces
∮

Ŵ

f (z) dz = 2πi

(
−1 + 1 + 1

2
cos(i) − 1 + 1

2
cos(i)

)
= 2πi (−1 + cos(i)) . ■

EJEMPLO 12.18

Sea

Busque evaluar �Ŵ f (z)dz, donde  Ŵ es una trayectoria cerrada que encierra a 0 y a 2i pero no a −2i.

∮

Ŵ

f (z) dz = 2πi Res(f, 0) = −2πi.Re s

f (z) = sen(z)

z2(z2 + 4)
.

Res(f, 0) = − cos(0)

1
= −1,

Res(f, i) = 2i2 − cos(i)

3(i)2 + 1
= −2 − cos(i)

−2
= 1 + 1

2
cos(i),

Res(f, −i) = 2i(−i) − cos(−i)

3(−i)2 + 1
= −1 + 1

2
cos(i).

Re s

Re s

Re s

−
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Por el teorema 12.3, f tiene un polo simple en 0, no un polo doble, ya que sen(z) tiene un cero simple 
en 0. f también tiene polos simples en 2i y −2i. Sólo los polos en 0 y 2i son de interés en el uso del teorema 
del residuo, ya que Ŵ no encierra a −2i.

Calcule

y

Entonces

Res(f, 0) = lim
z→0

zf (z) = lim
z→0

sen(z)

z

1

z2 + 4
= 1

4
,

(f, 2i) = lim
z→2i

(z − 2i)f (z) = lim
z→2i

sen(z)

z2(z + 2i)
= sen(2i)

(−4)(4i)
= i

16
sen(2i).

∮

Ŵ

sen(z)

z2(z2 + 4)
dz = 2πi

(
1

4
+ i

16
sen(2i)

)
.

lím zRe s

■

lím

límlímRe s

EJEMPLO 12.19

Evalúe

para Ŵ cualquier trayectoria cerrada que no pase por el origen.
Hay dos casos. Si Ŵ no encierra al origen, entonces �Ŵ e1/z dz = 0 por el teorema de Cauchy.
Si Ŵ encierra al origen, entonces se usa el teorema del residuo. Necesita Re s(e1/z, 0). Como encontró 

en el ejemplo 12.6, 0 es una singularidad esencial de e1/z. No hay una fórmula general simple para el resi-
duo de una función en una singularidad esencial. Sin embargo,

∮

Ŵ

e1/z dz

e1/z =
∞∑

n=0

1

n!
1

zn

es el desarrollo de Laurent de e1/z alrededor de 0, y el coefi ciente de 1/z es 1. Así Re s(e1/z, 0)  = 1 y

∮

Ŵ

e1/z dz = 2πi. ■

Ahora verá una variedad de aplicaciones del teorema del residuo.

SECCIÓN 12.2 PROBLEMAS

En cada problema del 1 al 16, use el teorema del residuo para 
evaluar la integral sobre la trayectoria dada.

1.
  

∮

Ŵ

1 + z2

(z − 1)2(z + 2i)
dz;

 
Ŵ es el círculo de radio 7 alrededor  

de −i.

2.
  

∮

Ŵ

2z

(z − i)2
dz;

 
Ŵ es el círculo de radio 3 alrededor de 1.

3.
  

∮

Ŵ

(
ez

z

)
dz;

 
Ŵ es el círculo de radio 2 alrededor de −3i.

4.  
∮

Ŵ

cos(z)

4 + z2
dz;

 
Ŵ es el cuadrado de lado de longitud 3 y lados

 
paralelos a los ejes, con centro en −2i.

5.  
∮

Ŵ

z + i

z2 + 6
dz;

 
Ŵ es el cuadrado de lado de longitud 8 y lados

 
paralelos a los ejes, con centro en el origen.
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6.
 

∮

Ŵ

z − i

2z + 1
dz;

 
Ŵ es el círculo de radio 1 alrededor del origen.

7. 
∮

Ŵ

z

senh2(z)
dz; ŴŴ es el círculo de radio 1 alrededor de

 

1

2
.

8. 
∮

Ŵ

cos(z)

zez
dz;

 
Ŵ es el círculo de radio 

1

2
 alrededor de 

i

8
.

9.
  

∮

Ŵ

iz

(z2 + 9)(z − i)
dz;

 
Ŵ es el círculo de radio 2 alrededor 

de −3i.

10.
  

∮

Ŵ
e2/z2

dz;
 
Ŵ es el cuadrado con lados paralelos a los ejes 

y de longitud 3, con centro en −i.

11.
  

∮

Ŵ

8z − 4i + 1

z + 4i
dz;

 
Ŵ es el círculo de radio 2 alrededor 

de −i.

12.
  

∮

Ŵ

z2

z − 1 + 2i
dz;

 
Ŵ es el cuadrado de lado de longitud 4 y 

lados paralelos a los ejes, con centro en 1 − 2i.

13.
  

∮

Ŵ
coth(z)dz;

 
Ŵ es el círculo de radio 2 alrededor de i.

14.
  

∮

Ŵ

(1 − z)2

z3 − 8
dz;

 
Ŵ es el círculo de radio 2 alrededor de 2.

15.
  

∮

Ŵ

e2z

z(z − 4i)
dz;

 
Ŵ es cualquier trayectoria cerrada que 

encierra a 0 y a 4i.

16.
  

∮

Ŵ

(
z

z − 1

)2
dz;

 
Ŵ es cualquier trayectoria cerrada que 

encierra a 1.

17.  Con h y g como en el problema 14 de la sección 12.1, pruebe 
que

18.  Con h y g como en el problema 15 de la sección 12.1, pruebe 
que

19.  Sean g y h diferenciables en z0. Suponga que g(z0) � 0 y sea 
h con un cero de orden k en z0. Pruebe que g(z)/h(z) tiene un 
polo de orden k en z0, y

12.3 Algunas aplicaciones del teorema del residuo

12.3.1 El principio del argumento

El principio del argumento es una fórmula integral para la diferencia entre el número de ceros y el número 
de polos de una función (contando multiplicidades) encerrada por una trayectoria cerrada Ŵ dada.

(
g(z)

h(z)
, z0

)
= 3

g′′(z0)

h′′′(z0)
− 3

10

g(z0)h(5)(z0)

(h′′′(z0))2

+ 9

(
g(z0)h(4)(z0)

24
− g′(z0)h′′′(z0)

6

)
h(4)(z0)

(h′′′(z0))3
.

Re s

Res

(
g(z)

h(z)
, z0

)
=

(
k!

h(k)(z0)

)k

×

∣∣∣∣∣∣∣∣∣∣∣∣∣

Hk 0 0 · · · 0 G0

Hk+1 Hk 0 · · · 0 G1

Hk+2 Hk+1 Hk · · · 0 G2
...

...
...

...
...

...

H2k−1 H2k−2 H2k−3 · · · Hk+1 Gk−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

donde

Hj = h(j)(z0)

j ! y Gj = g(j)(z0)

j ! .

Re s

TEOREMA 12.8 Principio del argumento

Sea f diferenciable en una trayectoria cerrada Ŵ y en todos los puntos en el conjunto G de puntos ence-
rrados por Ŵ, excepto posiblemente en un número fi nito de polos de f en G. Sea Z el número de ceros 
de f en G, y P el número de polos de f en G, contando cada polo y cero k veces si su multiplicidad es k. 
Entonces,

Prueba Observe primero que los únicos puntos en G donde f ′ / f podría tener una singularidad son los 
ceros y los polos de f en G.

12.3 Algunas aplicaciones del teorema del residuo

∮

Ŵ

f ′(z)

f (z)
dz = 2πi(Z − P).

Res

(
g(z)

h(z)
, z0

)
= 2

g′(z0)

h′′(z0)
− 2

3

g(z0)h(3)(z0)

[h′′(z0)]2
.

g'' g′
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Ahora suponga que f tiene un cero de orden k en z0 en G. Probará que f ′ / f debe tener un polo simple 
en z0, y que Re s( f ′ / f, z0) = k. Para ver esto, primero observe que, debido a que z0 es un cero de orden k,

mientras f (k)(z0) � 0. Entonces, en algún disco abierto alrededor de z0, el desarrollo de Taylor de f (z) es

donde g es diferenciable en z0 (porque ahí tiene un desarrollo de Taylor) y g(z0) = ck � 0. Ahora, en algún 
anillo 0 < |z − z0| < R,

Como g′ (z) / g(z) es diferenciable en z0, entonces f ′ (z) / f (z) tiene un polo simple en z0 y Re s(f ′ / f , z0) = k.
Ahora, suponga que f tiene un polo de orden m en z1. En algún anillo alrededor de z0,  f (z) tiene de-

sarrollo de Laurent

con h diferenciable en z1 y h(z1) = c−m � 0. Entonces f (z) = (z − z1)−mh(z), así en algún anillo alrededor 
de z1,

Por tanto,  f ′ / f tiene un polo simple en z1, con Re s( f ′ /f, z1) = −m.
Por tanto, la suma de los residuos de f ′ (z) / f (z) en las singularidades de esta función en G cuenta los 

ceros de f en G, de acuerdo con su multiplicidad, y el negativo del número de polos de f en G, nuevamente 
de acuerdo con su multiplicidad. ■

EJEMPLO 12.20

Evalúe �Ŵ cot(z) dz, con Ŵ la trayectoria cerrada de la fi gura 12.3.
Escriba

donde f (z) = sen(z). Como f tiene cinco ceros simples y ningún polo encerrado por Ŵ, el principio del 
argumento da

f (z0) = f ′(z0) = · · · = f (k−1)(z0) = 0

f (z) =
∞∑

n=k

cn(z − z0)
n =

∞∑

n=0

cn+k(z − z0)
n+k

= (z − z0)
k

∞∑

n=0

cn+k(z − z0)
n = (z − z0)

kg(z),

f ′(z)

f (z)
= k(z − z0)

k−1g(z) + (z − z0)
kg′(z)

(z − z0)kg(z)
= k

z − z0
+ g′(z)

g(z)
.

f (z) =
∞∑

n=−m

dn(z − z1)
n,

. Entonces

(z − z1)
mf (z) =

∞∑

n=−m

dn(z − z1)
n+m =

∞∑

n=0

dn−m(z − z1)
n = h(z),

con d−m � 0. Entonces

f ′(z)

f (z)
= −m(z − z1)

−m−1h(z) + (z − z1)
−mh′(z)

(z − z1)−mh(z)
= −m

z − z1
+ h′(z)

h(z)
.

cot(z) = cos(z)

sen(z)
= f ′(z)

f (z)

∮

Ŵ

cot(z) dz = 2πi(5 − 0) = 10πi. ■

z0)
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12.3.2 Una fórmula de inversión para la transformada de Laplace

Si f es una función compleja defi nida en al menos todo z en [0, ∞), la transformada de Laplace de f es

para todo z tal que esta integral esté defi nida y sea fi nita. Si �[ f ] = F, entonces F es la transformada 
de Laplace de f, y f es una transformada inversa de Laplace de F. Algunas veces se escribe f = �−1[ f ], 
aunque esto requiere de condiciones adicionales para la unicidad ya que en general, hay muchas funciones 
cuya transformada de Laplace es F.

Se da una fórmula para �−1[ f ] en términos de la suma de los residuos de eztF(z) en los polos de f.

�2� 20 �� 3� 4����3�

y

x




FIGURA 12.3

TEOREMA 12.9  Transformada Inversa de Laplace

Sea F diferenciable para todo z excepto para un número fi nito de puntos z1, . . . , zn, que son todos los polos 
de F. Suponga que para algún σ real, F es diferenciable para todo z con  Re(z) > σ. Suponga también que 
existen números M y R tales que

Para t ≥ 0, sea

Entonces

L[f ](z) =
∫ ∞

0
e−ztf (t) dt,�

La condición F es diferenciable para Re(z) > σ signifi ca que F ′(z) existe para todo z a la derecha de 
la recta vertical x = σ. También se supone que zF(z) es una función acotada para z fuera de un círculo, 
sufi cientemente grande, alrededor del origen. Por ejemplo, esta condición la satisface cualquier función 
racional (cociente de polinomios) en donde el grado del denominador sea mayor que el del numerador.

EJEMPLO 12.21

Sea a > 0. Se busca una transformada inversa de Laplace de F(z) = 1/(a2 + z2).
Ésta se puede encontrar en tablas de las transformadas de Laplace. Para usar el teorema, F tiene polos 

simples en ±ai. Calcule

(
ezt

a2 + z2 , ai

)
= eati

2ai
Re s

12.3 Algunas aplicaciones del teorema del residuo

|zF (z)| ≤ M para |z| > R.

f (t) =
n∑

j=1

Res(eztF(z), zj ).

L[f ](z) = F(z) para Re(z) > σ.�

Re s
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Una transformada inversa de Laplace de F está dada por

para t ≥ 0. ■

EJEMPLO 12.22

Busque una función cuya transformada de Laplace es

Res

(
ezt

a2 + z2 , −ai

)
= e−ati

−2ai
.Re s

f (t) = 1

2ai

(
eati − e−ati

)
= 1

a
sen(at)

y

F tiene polos simples en ±2 y un polo doble en 1. Calcule

y

Una transformada inversa de Laplace de F está dada por

para t > 2 (ya que todos los polos de F están en la recta Re(z) = 2 o a su izquierda). ■

En estas secciones podrá ver el desarrollo de un tema. Una variedad de problemas (ceros de funcio-
nes, sumas de series, transformadas inversas de Laplace y otros pueden ser resueltos integrando una fun-
ción compleja debidamente elegida sobre una trayectoria apropiada. La función y la trayectoria deben ser 
seleccionadas de manera que la integral dé la cantidad que quiere calcular, quizá después de un proceso de 
límite. Entonces puede usar el teorema del residuo para evaluar explícitamente la integral. Dependiendo 
del problema, la elección de la función correcta y la trayectoria correcta pueden ser una tarea no trivial, 
pero al menos este método provee un camino.

12.3.3 Evaluación de integrales reales

Se ilustrará el uso del teorema del residuo en la evaluación de varias clases generales de integrales 
reales.

F(z) = 1

(z2 − 4)(z − 1)2
.

Res

(
ezt

(z2 − 4)(z − 1)2 , 2

)
= lim

z→2

ezt

(z + 2)(z − 1)2 = 1

4
e2t ,límRe s

f (t) = −1

3
tet − 2

9
et + 1

4
e2t − 1

36
e−2t ,

s

(
ezt

(z2 − 4)(z − 1)2 , −2

)
= lim

z→−2

ezt

(z − 2)(z − 1)2 = − 1

36
e−2t ,Re s lím

(
ezt

(z2 − 4)(z − 1)2
, 1

)
= lim

z→1

d

dz

(
ezt

z2 − 4

)

= lim
z→1

ezt tz
2 − 4t − 2z
(
z2 − 4

)2 = −1

3
tet − 2

9
et .

Re s lím

lím
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Integrales de �2ππ
0  K(cos(θ), sen(θ)) dθ Sea K(x, y) un cociente de polinomios en x y y, por ejemplo,

Si reemplaza x por cos(θ) y y por sen(θ), obtiene un cociente que involucra sumas de productos de poten-
cias enteras de cos(θ) y sen(θ). Se busca evaluar integrales de la forma

La idea será probar que esta integral real es igual a una integral de cierta función compleja sobre el círculo 
unitario. Después usará el teorema del residuo para evaluar esta integral compleja, obteniendo el valor de 
la integral real.

Para llevar a cabo esta estrategia, sea γ el círculo unitario, orientado en sentido contrario del movimien-
to de las manecillas del reloj, como es usual. Parametrice γ por γ (θ) = eiθ para 0 ≤ θ ≤ 2π. En esta curva, 
z = eiθ y z– = e−iθ = 1/z, así

12.3 Algunas aplicaciones del teorema del residuo

x3y − 2xy2 + x − 2y

x4 + x3 .

∫ 2π

0
K(cos(θ), sen(θ)) dθ.

cos(θ) = 1

2

(
eiθ + e−iθ

)
= 1

2

(
z + 1

z

)

sen(θ) = 1

2i

(
eiθ − e−iθ

)
= 1

2i

(
z − 1

z

)
.

dz = ieiθ dθ = iz dθ,

dθ = 1

iz
dz.

Ahora tiene
∮

γ

K

(
1

2

(
z + 1

z

)
,

1

2i

(
z − 1

z

))
1

iz
dz =

∫ 2π

0
K(cos(θ), sen(θ))

1

ieiθ
ieiθ dθ

=
∫ 2π

0
K(cos(θ), sen(θ)) dθ.

Esto convierte la integral real a evaluar en la integral de la función compleja f (z) sobre el círculo unitario, 
donde

f (z) = K

(
1

2

(
z + 1

z

)
,

1

2i

(
z − 1

z

))
1

iz
.

La suma de la derecha es sobre todos los polos p de f (z) encerrados por el círculo unitario. Los polos 
que están fuera del círculo unitario no se incluyen en el cálculo. Finalmente, la ecuación (12.2) supone que 
f (z) no tiene singularidades en el círculo unitario.

Así que el procedimiento para evaluar �2π
0  K(cos(θ), sen(θ)) dθ consiste en calcular f (z), determinar 

sus polos dentro del círculo unitario, evaluar ahí los residuos y aplicar la ecuación (12.2). Este es un mé-

Use el teorema del residuo para evaluar �γ f (z)dz, obteniendo

y

Más aún, en γ,

así

(12.2)

∫ 2π

0
K(cos(θ), sen(θ)) dθ = 2πi

∑

p

Res(f, p).Re s
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todo muy poderoso que permite obtener evaluaciones en forma cerrada de integrales para las cuales las 
técnicas usuales de integración del cálculo real son inadecuadas.

EJEMPLO 12.23

Evalúe ∫ 2π

0

sen2(θ)

2 + cos(θ)
dθ.

La función K en la discusión anterior es

K(x, y) = y2

2 + x
.

El primer paso es reemplazar x = cos(θ) con (z + (1/z))/2 y y = sen(θ) con (z − (1/z)/2i, y entonces 
multiplicar por 1/iz, para producir la función compleja

f tiene un polo doble en 0 y polos simples en los ceros de z2 + 4z + 1, que son −2 + 
√

3 y −2 − 
√

3. 
De estos dos polos simples de f, el primero está encerrado por γ y el segundo no, de manera que descarte 
−2 − 

√
3. Por la ecuación (12.2),

∫ 2π

0

sen2(θ)

2 + cos(θ)
dθ = 2πi

[
Res(f, 0) + Res(f, −2 +

√
3)
]
.Re s Re s

  Ahora

y

Entonces

Res(f, 0) = lim
z→0

d

dz

[
z2f (z)

]
= lim

z→0

d

dz

i

2

z4 − 2z2 + 1

z2 + 4z + 1

= i

2
lim
z→0

(
2
z5 + 6z4 − 4z2 − 3z + 2z3 − 2

(
z2 + 4z + 1

)2

)
= −2i

Res(f,−2 +
√

3) = i

2

[
z4 − 2z2 + 1

2z(z2 + 4z + 1) + z2(2z + 4)

]

z=−2+
√

3

= i

2

42 − 24
√

3

−12 + 7
√

3
.

∫ 2π

0

sen2(θ)

2 + cos(θ)
dθ = 2πi

[
−2i + i

2

42 − 24
√

3

−12 + 7
√

3

]
= 90 − 52

√
3

12 − 7
√

3
π,

Re s lím lím

lím

Re s

aproximadamente 1.68357. ■

Al aplicar este método, si se obtiene un número que no es real, hay que verifi car los cálculos, ya que 
una integral real tiene un valor real.

1/z))

f (z) = K

(
1

2

(
z + 1

z

)
,

1

2i

(
z − 1

z

))
1

iz

= [(1/2i)(z − (1/z))]2

2 + 1
2 (z + (1/z))

1

iz
= i

2

z4 − 2z2 + 1

z2(z2 + 4z + 1)
.

[(1/2i)(z − )]21/z)

2 + 1
2 (z +1/z)
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EJEMPLO 12.24

Evalúe

donde 0 < β < α.
Como el método desarrollado tiene que ver con integrales sobre [0, 2π], primero debe decidir cómo 

acomodar una integral sobre [0, π]. Escriba

∫ π

0

1

α + β cos(θ)
dθ,

∫ 2π

0

1

α + β cos(θ)
dθ =

∫ π

0

1

α + β cos(θ)
dθ +

∫ 2π

π

1

α + β cos(θ)
dθ.

Sea w = 2π − θ en la última integral para obtener
∫ 2π

π

1

α + β cos(θ)
dθ =

∫ 0

π

1

α + β cos(2π − w)
(−1) dw =

∫ π

0

1

α + β cos(w)
dw.

Por tanto,
∫ π

0

1

α + β cos(θ)
dθ = 1

2

∫ 2π

0

1

α + β cos(θ)
dθ,

ahora puede concentrarse en la integral sobre [0, 2π]. Primero obtiene la función

f (z) = 1

α + β
2

(
z + 1

z

) 1

iz
= −2i

βz2 + 2αz + β
.

f tiene polos simples en

z = −α ±
√

α2 − β2

β
.

Como α > β, estos números son reales. Sólo uno de ellos,

z1 = −α +
√

α2 − β2

β
,

está encerrado por γ. El otro está fuera del disco unitario y es irrelevante para sus propósitos. Entonces

Antes de continuar con otros tipos de integrales reales a evaluar usando el teorema del residuo, hará 
una breve excursión y verá otra, quizá sorprendente, prueba del teorema fundamental del álgebra. Este 
argumento se debe originalmente a N. C. Ankeny, y la versión presentada aparece en Lion Hunting and 
Other Mathematical Pursuits, por R. P. Boas (The Mathematical Association of America Dolciani Mathe-
matical Expositions, Vol. 15).

Sea p(z) un polinomio no constante con coefi cientes complejos. Busque probar que para algunos 
números z, p(z) = 0.

Primero, suponga que p(x) es real si x es real. Para ver por qué es cierto esto, sea

p(z) = a0 + a1z + · · · + anz
n,

∫ π

0

1

α + β cos(θ)
dθ = 1

2

∫ 2π

0

1

α + β cos(θ)
dθ = 1

2
2πi Res(f, z1)

= πi
−2i

2βz1 + 2α
= π√

α2 − β2
. ■

Re s
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donde an  � 0. Denote
p(z) = a0 + a1z + · · · + anz

n.

Entonces q(z) = p(z)p—(z) es un polinomio no constante. Más aún, si z = x es real, entonces x−  = x y

q(x) = p(x)p(x)

= (a0 + a1x + · · · + anx
n) (a0 + a1x + · · · + anx

n)

= (a0 + a1x + · · · + anx
n)

(
a0 + a1x + · · · + anxn

)

= |a0 + a1x + · · · + anx
n|2

es real. Entonces podría usar q(z) en el argumento en lugar de p(z), ya que q(z) es un polinomio sin ceros 
cuando p(z) no tiene ceros. Así, suponga que p(z) � 0 para todo z, y p(x) es real si x es real.

Debido a que p(x) es continuo y nunca vale cero para x real, p(x) debe ser estrictamente positivo o 
estrictamente negativo para todo x real. Pero entonces

∫ 2π

0

1

p(2 cos(θ))
dθ �= 0.

Pero, por el método recién discutido, con γ el círculo unitario, se concluye que
∫ 2π

0

1

p(2 cos(θ))
dθ =

∮

γ

1

p(z + 1/z)

1

iz
dz = 1

i

∮

γ

zn−1

r(z)
dz �= 0,

r(z) = znp

(
z + 1

z

)

= zn

[
a0 + a1

(
z + 1

z

)
+ a2

(
z + 1

z

)2

+ · · · + an

(
z + 1

z

)n
]

= zn

[
a0 + a1

z2 + 1

z
+ a2

(z2 + 1)2

z2 + · · · + an

(z2 + 1)n

zn

]
.

donde

De aquí es claro que r(z) es un polinomio. Si r(ζ) = 0 para algún ζ � 0, entonces p(ζ + 1/ζ) = 0, de ma-
nera que ζ + 1/ζ sería un cero de p, una contradicción. Más aún, r(0) = an � 0 debido a que p tiene grado 
n. Por tanto, r(z) � 0 para todo z, de manera que zn−1/r(z) es una función diferenciable para todo z. Pero 
entonces, por el teorema de Cauchy,

1

i

∮

γ

zn−1

r(z)
dz = 0,

una contradicción. Concluye que p(z) = 0 para algún número z, probando el teorema fundamental del 
álgebra.

Evaluación de �∞
−∞[p(x)/q(x)] dx Ahora se consideran integrales reales de la forma

∫ ∞

−∞

p(x)

q(x)
dx,

en donde p y q son polinomios con coefi cientes reales y sin factores comunes, q no tiene ceros reales, 
y el grado de q excede el grado de p por al menos 2. Estas condiciones son sufi cientes para asegurar la 
convergencia de esta integral impropia.

Como con la clase anterior de integrales, la estrategia es obtener una integral compleja que sea igual 
a esta integral real, entonces evaluar la integral compleja usando el teorema del residuo. Para hacer esto, 
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z2

z3 z1




zm

�R RS

R

y

x

primero observe que q(z) tiene coefi cientes reales, de manera que sus ceros aparecen en pares complejos 
conjugados. Suponga que los ceros de q son z1, z

—
1 , z2, z

—
2 , . . . , zm, z—m , con cada zj en el semiplano superior 

Im(z) > 0 y cada z—j  en el semiplano inferior Im(z) < 0. Sea Ŵ la curva mostrada en la fi gura 12.4, que con-
siste del semicírculo γ de radio R y el segmento S de −R a R en el eje real, con R sufi cientemente grande 
para que Ŵ encierre todos los polos z1, . . . , zm de p(z) / q(z) en el semiplano superior. Entonces

∣∣∣∣
z2p(z)

q(z)

∣∣∣∣ ≤ M para |z| ≥ R.

∣∣∣∣
p(z)

q(z)

∣∣∣∣ ≤ M

|z|2
≤ M

R2 para |z| ≥ R,

∣∣∣∣
∫

γ

p(z)

q(z)
dz

∣∣∣∣ ≤ M

R2 (longitud de γ )

= M

R2
(πR) = πM

R
→ 0 conforme R → ∞.

(12.3)

En S, z = x para −R ≤ x ≤ R, así
∫

S

p(z)

q(z)
dz =

∫ R

−R

p(x)

q(x)
dx.

Ahora considere la integral sobre γ. Como el grado de q(z) excede el de p(z) por al menos 2, 

grado de z2p(z) ≤ grado de q(z).

Esto signifi ca que para R sufi cientemente grande, z2p(z)/q(z) está acotada para |z| ≥ R. Esto es, para algún 
número M,

Entonces

así

Así que, en el límite conforme R → ∞ en la ecuación (12.3), la primera integral de la derecha tiene límite 
�∞

−∞(p(x )/q(x)) dx y la segunda integral tiene límite cero. En el límite conforme R → ∞, la ecuación (12.3) 
produce

(12.4)

La ecuación (12.4) provee un método general para evaluar integrales de funciones racionales sobre la recta 
real, bajo las suposiciones antes hechas. No es necesario repetir la obtención de esta ecuación cada vez 
que se usa, simplemente hay que determinar los ceros de q(z) en el semiplano superior, evaluar el residuo 
de p/q en cada uno de tales ceros (que es un polo de p/q cuyo orden debe ser determinado), y aplicar la 
ecuación (12.4).

FIGURA 12.4

∮

Ŵ

p(z)

q(z)
dz = 2πi

m∑

j=1

Res(p/q, zj ) =
∫

S

p(z)

q(z)
dz +

∫

γ

p(z)

q(z)
dz.Re s

∫ ∞

−∞

p(x)

q(x)
dx = 2πi

m∑

j=1

Res

(
p(z)

q(z)
, zj

)
.Re s
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EJEMPLO 12.25

Evalúe
∫ ∞

−∞

1

x6 + 64
dx.

Aquí p(z) = 1 y q(z) = z6 + 64. El grado de q excede al de p por 6, y q no tiene ceros reales. Los ceros de 
z6 + 64 son las raíces sextas de −64. Para encontrarlas, escriba −64 en la forma polar:

en donde n puede ser cualquier entero. Las raíces sextas de −64 son

2ei(π+2nπ)/6 para n = 0, 1, 2, 3, 4, 5.

Las tres raíces en el semiplano superior son

Necesita el residuo de 1/(z6 + 64) en cada uno de estos polos simples. Es conveniente usar aquí el 
corolario 12.1:

−64 = 64ei(π+2nπ),

z1 = 2eπi/6, z2 = 2eπi/2 = 2i y z3 = 2e5πi/6.

∫ ∞

−∞

1

x6 + 64
dx = 2πi

192

[
e−5πi/6 − i + e−πi/6

]

= πi

96

[
cos

(
5π

6

)
− i sen

(
5π

6

)
− i + cos

(π

6

)
− i sen

(π

6

)]
.

cos

(
5π

6

)
+ cos

(π

6

)
= 0

sen

(
5π

6

)
+ sen

(π

6

)
= 1

y

Entonces

Ahora

y

así

∫ ∞

−∞

1

x6 + 64
dx = πi

96
(−2i) = π

48
. ■

Res

(
1

z6 + 64
, 2eπi/6

)
= 1

6(2eπi/6)5
= 1

192
e−5πi/6,Re s

Res

(
1

z6 + 64
, 2e5πi/6

)
= 1

6(2e5πi/6)5
= 1

192
e−25πi/6 = 1

192
e−πi/6.Re s

s

(
1

z6 + 64
, 2i

)
= 1

6(2i)5
= − i

192
,Re s
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Integrales de �∞
−∞[p(x)/q(x)] cos(cx) dx y �∞

−∞[p(x)/q(x)] sen(cx) dx Suponga que p y q son polinomios 
con coefi cientes reales y sin factores comunes, que el grado de q excede al grado de p por lo menos en 2, 
y que q no tiene ceros reales. Busque evaluar las integrales

en donde c es cualquier número positivo.
Nuevamente, proceda buscando la integral de una función compleja convenientemente elegida sobre 

una curva cerrada apropiadamente elegida. Considere

donde Ŵ es la trayectoria cerrada de la subsección anterior, que encierra todos los ceros z1, . . . , zm de q 
que están en el semiplano superior. He aquí por qué esta integral es prometedora. Con Ŵ consistente en el 
semicírculo γ y el segmento S en el eje real, como antes, se tiene

∫ ∞

−∞

p(x)

q(x)
cos(cx) dx y

∫ ∞

−∞

p(x)

q(x)
sen(cx) dx,

∮

Ŵ

p(z)

q(z)
eicz dz,

∮

Ŵ

p(z)

q(z)
eicz dz =

∫

γ

p(z)

q(z)
eicz dz +

∫ R

−R

p(x)

q(x)
eicx dx

=
∮

γ

p(z)

q(z)
eicz dz +

∫ R

−R

p(x)

q(x)
cos(cx) dx + i

∫ R

−R

p(x)

q(x)
sen(cx) dx

= 2πi

m∑

j=1

Res

(
p(z)

q(z)
eicz, zj

)
.

Conforme R → ∞, uno puede probar que �γ [p(z)/q(z)]eicz dz → 0, dejando

∫ ∞

−∞

p(x)

q(x)
cos(cx) dx + i

∫ ∞

−∞

p(x)

q(x)
sen(cx) dx = 2πi

m∑

j=1

Res

(
p(z)

q(z)
eicz, zj

)
. (12.5)

La parte real del lado derecho de la ecuación (12.5) es �∞
−∞[p(x)/q(x)] cos(cx) dx, y la parte imaginaria 

es �∞
−∞[p(x)/q(x)] sen(cx) dx.

EJEMPLO 12.26

Evalúe

Re s

Re s

∫ ∞

−∞

cos(cx)

(x2 + α2)(x2 + β2)
dx,

en donde c, α y β son números positivos y α � β.
Los ceros del denominador en el semiplano superior son αi y βi, y éstos son polos simples de

Calcule

y

f (z) = eicz

(z2 + α2)(z2 + β2)
.

(f, αi) = eicαi

2αi(β2 − α2)
= e−cα

2αi(β2 − α2)

Res(f, βi) = e−cβ

2βi(α2 − β2)
.Re s

Re s
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Entonces

Separando las partes real e imaginaria, tiene

y

Lo último es obvio ya que el integrando es una función impar. ■

Integrales usando contornos dentados La ecuación (12.4) permite evaluar ciertas integrales impropias 
de cocientes de polinomios, suponiendo que el denominador no tiene ceros reales. Extienda este resultado 
al caso en que el denominador tenga ceros simples reales. Considere

en donde p y q son polinomios con coefi cientes reales y sin factores comunes y el grado de q excede al 
de p por al menos 2. Suponga que q tiene ceros complejos z1, . . . , zm en el semiplano superior así como 
ceros simples reales t1, . . . , tk.

Sea Ŵ la trayectoria de la fi gura 12.5, que incluye el semicírculo γ de radio R alrededor del origen, 
los semicírculos pequeños γj de radio ǫ  con centro en cada cero real tj , y los segmentos Lj a lo largo de 
la recta real que conectan estos semicírculos, como se muestra. A una trayectoria de este tipo se le llama 
trayectoria dentada debido a los semicírculos pequeños alrededor de los ceros reales de q(x). Sea ǫ sufi -
cientemente pequeño para que los semidiscos determinados por γj y γk no se corten si j � k, y ningún zj 
esté encerrado en ninguna γk. También suponga que R es sufi cientemente grande para que Ŵ encierre a 
todos los zj . Observe que cada tj está fuera de Ŵ.

Por el teorema del residuo,

∫ ∞

−∞

cos(cx)

(x2 + α2)(x2 + β2)
dx + i

∫ ∞

−∞

sen(cx)

(x2 + α2)(x2 + β2)
dx

= 2πi

[
e−cα

2αi(β2 − α2)
+ e−cβ

2βi(α2 − β2)

]
= π

β2 − α2

(
e−cα

α
− e−cβ

β

)
.

∫ ∞

−∞

cos(cx)

(x2 + α2)(x2 + β2)
dx = π

β2 − α2

(
e−cα

α
− e−cβ

β

)

∫ ∞

−∞

sen(cx)

(x2 + α2)(x2 + β2)
dx = 0.

∫ ∞

−∞

p(x)

q(x)
dx

(12.6)

Investigue qué pasa en la ecuación (12.6) cuando R → ∞ y ǫ → 0.

y

x
t1 t2 t3L2 L3L1 L4

1






2



3



FIGURA 12.5

∮

Ŵ

p(z)

q(z)
dz = 2πi

∑

j=1

Res

(
p(z)

q(z)
, zj

)

=
∫

γ

p(z)

q(z)
dz +

k∑

j=1

∫

γj

p(z)

q(z)
dz +

k+1∑

j=1

∫

Lj

p(x)

q(x)
dx.

Re s
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Cuando R → ∞, se afi rma que �γ [p(z)/q(z)] dz → 0 por un argumento como el anterior. La suma de 
los residuos en los ceros de q no cambia en este límite.

Conforme ǫ → 0, los semicírculos γj se contraen en tj , y los segmentos Lj se expanden para cubrir el 
intervalo [−R, R] y después toda la recta real conforme R → ∞. Esto signifi ca que en la ecuación (12.6),

Todavía no es claro qué pasa, en este proceso, con cada integral �γ j
 [p(z)/q(z)] dz. Se probará que cada 

una de estas integrales se aproxima a πi veces el residuo de p(z)/q(z) en el polo real simple tj. 
Para ver esto, escriba el desarrollo de Laurent de p(z)/q(z) alrededor de tj:

donde g es diferenciable en tj. En γj , z = tj + ǫeit, donde t varía de π a 0 (para la orientación en sentido 
contrario del movimiento de las manecillas del reloj en Ŵ). Entonces

k+1∑

j=1

∫

Lj

p(z)

q(z)
dz →

∫ ∞

−∞

p(x)

q(x)
dx

p(z)

q(z)
= c−1

z − tj
+

∞∑

s=0

cs(z − tj )
s = c−1

z − tj
+ g(z),

Ahora iǫ�0
π
 g(tj + ǫeit )eit dt → 0 conforme ǫ → 0. Por tanto,

Por tanto, conforme R → ∞ y ǫ → 0 en la ecuación (12.6), obtiene

de donde

(12.7)

En un sentido, los polos simples de p(z)/q(z) en la recta real contribuyen como “medios residuos”, 
siendo encerrados por semicírculos en lugar de círculos, mientras que los polos en el semiplano superior 
contribuyen como “residuos completos” en esta suma.

2πi
∑

j=1

Res

(
p(z)

q(z)
, zj

)
= −πi

k∑

j=1

Res

(
p(z)

q(z)
, tj

)
+

∫ ∞

−∞

p(x)

q(x)
dx,Re s Re s

∫ ∞

−∞

p(x)

q(x)
dx = πi

k∑

j=1

Re s

(
p(z)

q(z)
, tj

)
+ 2πi

∑

j=1

Res

(
p(z)

q(z)
, zj

)
.Re s Re s

∫

γj

p(z)

q(z)
dz = c−1

∫

γj

1

z − tj
dz +

∫

γj

g(z) dz

= c−1

∫ 0

π

1

ǫeit
iǫeit dt +

∫ 0

π

g(tj + ǫeit )iǫeit dt

= −πic−1 + iǫ

∫ 0

π

g(tj + ǫeit )eit dt

= −πi Res

(
p(z)

q(z)
, tj

)
+ iǫ

∫ 0

π

g(tj + ǫeit )eit dt.Re s

γ j
 γ j

 γ j
 

∫

γj

p(z)

q(z)
dz → −πi Res

(
p(z)

q(z)
, tj

)
.Re s

γ j
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EJEMPLO 12.27

Evaluar

Aquí

El denominador tiene ceros reales simples en 0 y 4 y ceros complejos simples −3i y 3i. Sólo 3i está en el 
semiplano superior. Calcule los residuos:

y

Entonces

∫ ∞

−∞

3x + 2

x(x − 4)(x2 + 9)
.

f (z) = 3z + 2

z(z − 4)(z2 + 9)
.

Integrales �∞
0  xa[p(x)/q(x)] dx Sea 0 < a < 1. Se consideran integrales de la forma

en donde p y q son polinomios con coefi cientes reales y sin factores comunes, q no tiene ceros positivos, 
y el grado de q excede el grado de p por lo menos en 1. También se supone que q(0) � 0 o q(z) tiene un 
cero simple en el origen.

Sean z1, . . . , zm los ceros distintos de cero de q. Estos son todos los ceros distintos de cero de q, no 
sólo aquellos que están en el semiplano superior. Como los coefi cientes de q son reales, esta lista incluye 
los pares complejos conjugados.

Elija r sufi cientemente pequeño y R sufi cientemente grande, para que, la trayectoria cerrada Ŵ, que se 
muestra en la fi gura 12.6, encierre a z1, . . . , zm. Ŵ consiste en γR (“la mayor parte” del círculo de radio R 
alrededor de 0), γr (“la mayor parte” del círculo de radio r alrededor de 0), y los segmentos de recta L1 y 
L2 que conectan γr y γR. Al fi nal se hará r → 0 y R → ∞, pero antes se requiere de cierto trabajo.

Habrá que defi nirse el signifi cado de za, ya que este símbolo generalmente denota un conjunto (posi-
blemente infi nito) de números distintos. Escriba z = ρeiθ para algún θ en [0, 2π) y defi na

za = ρa eiaθ.

Conforme z se acerca a L1,

∫ ∞

0
xa p(x)

q(x)
dx,

f (z) = zap(z)

q(z)
→ xap(x)

q(x)
,

Res(f, 0) = lim
z→0

zf (z) = 2

−36
= − 1

18
,

Res(f, 4) = lim
z→4

(z − 4)f (z) = 14

100
= 7

50

Res(f, 3i) = lim
z→3i

(z − 3i)f (z) = 9i + 2

3i(3i − 4)(6i)
= 2 + 9i

72 − 54i
.

∫ ∞

−∞

3x + 2

x(x − 4)(x2 + 9)
= πi

(
− 1

18
+ 7

50

)
+ 2πi

(
2 + 9i

72 − 54i

)
= −14

75
π.

Re s lím

lím

lím

Re s

Re s
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donde r < x < R. Pero conforme z se acerca a L2, el lado inferior del eje real positivo,

La razón para esto es que el argumento crece en 2π conforme z se acerca desde abajo, al eje positivo real, 
y entonces

Por el teorema del residuo,

En L1, x varía de r a R, mientras en L2, x varía de R a r para mantener la orientación, en sentido contrario 
del movimiento de las manecillas del reloj, en Ŵ. La última ecuación se convierte en

Haciendo una estimación en los dos arcos circulares, puede probar que las primeras dos integrales en la 
última ecuación tienden a cero conforme r → 0 y R → ∞. En este límite, la última ecuación se vuelve

A partir de esto obtiene

f (z) → xae2πaip(x)

q(x)
.

za = ρaei(θ+2π)a = ρaeiaθe2πai .

∮

Ŵ

zap(z)

q(z)
dz = 2πi

m∑

j=1

Res(f, zj )

=
∫

γR

zap(z)

q(z)
dz +

∫

γr

zap(z)

q(z)
dz +

∫

L1

xap(x)

q(x)
dx +

∫

L2

xae2πaip(x)

q(x)
dx.

Re s

2πi

m∑

j=1

Res(f, zj ) =
∫

γR

zap(z)

q(z)
dz +

∫

γr

zap(z)

q(z)
dz

+
∫ R

r

xap(x)

q(x)
dx +

∫ r

R

xae2πaip(x)

q(x)
dx.

Re s

2πi

m∑

j=1

Res(f, zj ) =
∫ ∞

0

xap(x)

q(x)
dx +

∫ 0

∞

xae2πaip(x)

q(x)
dx.Re s

∫ ∞

0

xap(x)

q(x)
dx = 2πi

1 − e2πai

m∑

j=1

Res(f, zj ).Re s

y

x

z3z4

z1z2

L1

L2zm


R


r

FIGURA 12.6

(12.8)
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EJEMPLO 12.28

Use la ecuación (12.8) para evaluar

Aquí p(z) = 1, a = 1
3 y q(z) = z(1 + z2), con ceros simples en 0, i y −i. Calcule

y

Entonces

Muchas otras clases de integrales pueden ser evaluadas usando las técnicas de las integrales com-
plejas. Algunas de éstas requieren de un ingenio considerable en la búsqueda de la función correcta para 
integrarlas sobre una trayectoria elegida para obtener el resultado que se quiere.

El valor principal de Cauchy Como ha estado tratando con integrales impropias, es conveniente men-
cionar el valor principal de Cauchy.

Una integral

se defi ne como

si ambas integrales convergen. Estos límites son independientes uno del otro.
El valor principal de Cauchy de I se defi ne como

Este es un caso especial de los dos límites independientes que defi nen I.
En el caso en que �∞

−∞ g(x)dx converja, indudablemente el valor de I coincide con el valor principal de 
Cauchy de la integral. Sin embargo, es posible que una integral tenga VPC fi nito pero ser divergente en el 
sentido extenso de la defi nición de I. Esto ocurre con �∞

−∞ xdx, la cual ciertamente diverge. Sin embargo, 
esta integral tiene un valor principal de Cauchy de 0, ya que para cualquier positivo R,

En algunos de los ejemplos discutidos, se han calculado los valores principales de Cauchy siempre que 
se tomó el límite de �R

−R
 g(x) dx conforme R → ∞. En estos ejemplos las condiciones impuestas aseguran 

que la integral impropia converge en el sentido más general.

∫ ∞

0

x1/3

x(x2 + 1)
dx.

Res

(
z1/3

q(z)
, i

)
= i1/3

2i2 = (eπi/2)1/3

−2
= −1

2
eπi/6

Res

(
z1/3

q(z)
, −i

)
= (e3πi/2)1/3

−2
= −1

2
eπi/2.

∫ ∞

0

x1/3

x(x2 + 1)
dx = 2πi

1 − e2πi/3

(
−1

2

)(
eπi/6 + eπi/2

)

= −πi

1 + 1
2 −

√
3

2 i

(√
3

2
+ 1

2
i + i

)
= π. ■

Re s

Re s

I =
∫ ∞

−∞
g(x) dx

lim
r→−∞

∫ 0

r

g(x) dx + lim
R→∞

∫ R

0
g(x) dx,lím lím

VPC

(∫ ∞

−∞
g(x) dx

)
= lim

R→∞

∫ R

−R

g(x) dx.lím

∫ R

−R

xdx = 0.
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1.  Evalúe
 

∮

Ŵ

z

1 + z2
dz,

 
con Ŵ el círculo |z| = 2, primero 

usando el teorema del residuo y después por el principio del 
argumento.

2.  Evalúe 
∮
Ŵ tan(z) dz, con Ŵ el círculo |z| = π, primero usan-

do el teorema del residuo y después por el principio del ar-
gumento.

3.  Evalúe 

∮

Ŵ

z + 1

z2 + 2z + 4
dz, con Ŵ el círculo |z| = 1, primero 

usando el teorema del residuo y después por el principio del 
argumento.

4.  Sean p(z) = (z − z1)(z − z2) · · · (z − zn), con z1, . . . , zn 
números complejos distintos. Sea Ŵ una trayectoria cerra-
da orientada positivamente que encierra cada uno de los zj. 
Pruebe que

  primero usando el teorema del residuo y después por el prin-
cipio del argumento.

En cada problema del 5 al 9, encuentre una transformada inver-
sa de Laplace de la función, usando residuos.

5. 

6. 

7. 

8. 

9. (z + 5)−3

En cada problema del 10 al 22, evalúe la integral.

10. 

11.  

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. Sea α un número positivo. Pruebe que

 

24. Sean α y β un número positivo. Pruebe que

  

25. Sean α y β números positivos distintos. Pruebe que

26. Sea α un número positivo. Pruebe que

27. Sea β un número positivo. Pruebe que

Sugerencia: Integre e−z2 alrededor de la trayectoria rec-
tangular con vértices ±R y ±R + βi. Use el teorema de 
Cauchy para evaluar esta integral, igualar esto a la suma 

SECCIÓN 12.3 PROBLEMAS

∮

Ŵ

p′(z)
p(z)

dz = 2πin,

z

z2 + 9
1

(z + 3)2

1

(z − 2)2(z + 4)

1

(z2 + 9)(z − 2)2

∫ 2π

0

1

6 + sen(θ)
dθ

∫ 2π

0

1

2 − cos(θ)
dθ

∫ ∞

−∞

1

x4 + 1
dx

∫ ∞

−∞

1

x6 + 1
dx

∫ ∞

−∞

1

x2 − 2x + 6
dx

∫ ∞

−∞

x sen(2x)

x4 + 16
dx

∫ 2π

0

2 sen(θ)

2 + sen2(θ)
dθ

∫ ∞

−∞

1

x(x + 4)(x2 + 16)
dx

∫ ∞

−∞

sen(x)

x2 − 4x + 5
dx

∫ ∞

−∞

cos2(x)

(x2 + 4)2
dx

∫ 2π

0

sen(θ) + cos(θ)

2 − cos(θ)
dθ

∫ ∞

−∞

1

(x − 4)(x5 + 1)
dx

∫ ∞

0

x3/4

x4 + 1
dx

∫ ∞

−∞

cos(αx)

x2 + 1
dx = πe−α .

∫ ∞

−∞

cos(αx)

x2 + β2
dx = π

2β3
(1 + αβ)e−αβ .

∫ 2π

0

1

α2 cos2(θ) + β2 sen2(θ)
dθ = 2π

αβ
.

∫ π/2

0

1

α + sen2(θ)
dθ = π

2
√

α(1 + α)
.

∫ ∞

0
e−x2

cos(2βx) dx =
√

π

2
e−β2

.
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de las integrales en los lados del rectángulo, y tomar el límite 
conforme R → ∞. Suponga el resultado estándar que

28. Obtenga las integrales de Fresnel:

Sugerencia: Integre eiz2 sobre la trayectoria cerrada acotan-
do el sector 0 ≤ x ≤ R, 0 ≤ θ ≤ π/4, que se muestra en 
la fi gura 12.7. Use el teorema de Cauchy para evaluar esta 
integral, después evaluarla como la suma de las integrales 
sobre los segmentos frontera del sector. Use el lema de Jor-
dan para probar que la integral sobre el arco circular tiende 
a cero conforme R → ∞, y use las integrales sobre los seg-
mentos de recta par obtener las integrales de Fresnel.

29. Sean α y β números positivos. Pruebe que

30. Sea 0 < β < α. Pruebe que

∫ ∞

0
e−x2

dx =
√

π

2
.

∫ ∞

0
cos(x2) dx =

∫ ∞

0
sen(x2) dx = 1

2

√
π

2
.

∫ ∞

0

x sen(αx)

x4 + β4
dx = π

2β2
e−αβ/

√
2 sen

(
αβ√

2

)
.

∫ π

0

1

(α + β cos(θ))2
dθ = απ

(α2 − β2)3/2
.

y

R
x�

FIGURA 12.1012.7



En el cálculo de funciones reales de una sola variable real, es factible entender más del comportamie-
to de una función si hace un esbozo de su gráfi ca. Para funciones complejas no puede hacer el mismo tipo 
de gráfi cas, ya que una variable compleja z D x C iy por sí misma tiene dos variables. Sin embargo, sí le 
es posible establecer  D f (z) y hacer dos copias del plano complejo, una para z y la otra para los pun-
tos imagen . Conforme z traza una trayectoria o varía sobre un conjunto S en el plano z, trace los puntos 
imagen  D f (z) en el plano , obteniendo una fi gura de cómo actúa la función en esta trayectoria o en 
los puntos en S. El conjunto de todos los puntos imagen f (z) para z en S es denotado por f (S). A una 
función de esta manera, se le llama mapeo o transformación. En la fi gura 13.1 hay un diagrama con esta 
idea.

517

C A P Í T U L O 13

Mapeos 
conformes

FUNCIONES COMO MAPEOS MAPE
CONFORMES CONSTRUCCIÓN DE
MAPEOS CONFORMES ENTRE DOMINIOS
FUNCIONES ARMÓNICAS

Pensar en una función como un mapeo puede ser una herramienta poderosa en la resolución de cierta 
clase de problemas, incluyendo el análisis del movimiento de fl uidos y la solución de ecuaciones dife-
renciales parciales, en particular los problemas de Dirichlet. Ahora se desarrollarán algunas ideas sobre 
los mapeos, después las aplicaciones.

13.1 Funciones como mapeos

Primero necesita alguna terminología. Sea f una función compleja y D un conjunto de puntos en el plano 
donde está defi nida f (z). Sea D� también un conjunto de números complejos.

FIGURA 13.1

z w

S
w  f (z) f (S)
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Así, f : D ! D� es sobre si todo punto de D� es la imagen bajo f de algún punto en D.

EJEMPLO 13.1

Sea f (z) D iz para czc � 1. Entonces f actúa sobre los puntos del disco unitario cerrado D : czc � 1. Si z está 
en D, entonces cuf (z)c D cizc D czc � 1, de manera que la imagen de cualquier punto de este disco está en 
el mismo disco. Aquí f mapea D en D (así D� D D en la definición).

Este mapeo es sobre. Si  está en D, entonces z D  / i también está en D, y

f (z) D f (  / i) D i(  / i) D .

Todo punto en el disco unitario es la imagen de algún punto del disco bajo este mapeo.
Puede ver este mapeo geométricamente. Como i D ei  / 2, si z D rei , entonces

f (z) D iz D rei  / 2ei  D rei( C  / 2),

de manera que a cada z, f le suma  / 2 a su argumento. Esto gira la recta que va del origen a z un 
ángulo de  / 2 radianes en sentido contrario del movimiento de las manecillas del reloj. La acción de  
f en z puede verse en la figura 13.2. Como esta función es simplemente una rotación de  / 2 radianes, en 
sentido contrario del movimiento de las manecillas del reloj, es claro por qué f mapea el disco unitario 
sobre él mismo. ■

DEFINICIÓN 13.1

1.  f mapea D en D� si f (z) está en D� para todo z en D. En este caso, escriba f : D ! D�.
2.  f mapea D sobre D� si f (z) está en D� para todo z en D y, recíprocamente, si  está en D�, 

entonces existe algún z en D tal que  D f (z). f es un mapeo sobre.

Frecuentemente se tiene la función f y el conjunto D de números complejos a los cuales se busca 
aplicar este mapeo. Entonces debe analizar f (z) para determinar la imagen de D bajo el mapeo. En efecto, 
está encontrando D� de manera que f sea un mapeo de D sobre D�.

EJEMPLO 13.2

Sea f (z) D z2 para z en la cuña D que se muestra en la figura 13.3. D consiste en todos los números com-
plejos en o entre el eje real no negativo y la recta y D x.

z

i

z

1

w

i

1

2

w iz

f (z) iz

FIGURA 13.2 El mapeo f (z) D iz para czc � 1.



En la forma polar, z D rei  está en D si 0 �  � / 4. Entonces f (z) D z2 D r2e2i , de manera que f tiene 
el efecto de elevar al cuadrado la magnitud de z y duplicar su argumento. Si z tiene un argumento entre 0 y 

 / 4, entonces z2 lo tiene entre 0 y  / 2. Esto abre la cuña D para cubrir todo el primer cuadrante del plano, 
que consiste en los puntos en o entre el eje real no negativo y el imaginario. Si llama D� a este cuarto de 
plano derecho, entonces f mapea D sobre D�. ■

Algunas funciones mapean más de un punto a la misma imagen. Por ejemplo, f (z) D sen(z) mapea 
todos los enteros múltiplos de  en cero. Si cada punto imagen proviene de exactamente un punto, enton-
ces el mapeo se llama uno a uno.

z w

4 2

D D*
w  z2

FIGURA 13.3  D z2 mapea D uno 
a uno sobre D�.

Así f es uno a uno (o 1 ฀ 1) si z1 p z2 implica que f (z1) p f (z2).
Las nociones de uno a uno y sobre son independientes una de la otra. Un mapeo puede tener una 

de estas propiedades, ambas, o ninguna. El mapeo f (z) D z2 del ejemplo 13.2 mapea la cuña 0 � arg(z)  
�  / 4 de una manera uno a uno sobre el primer cuadrante del plano. Sin embargo, f (z) D z2 no mapea 
todo el plano complejo de manera uno a uno, ya que f (฀z) D f (z). Esta función mapea el plano sobre sí 
mismo, ya que, dado cualquier número complejo , existe algún z tal que f (z) D z2 D .

EJEMPLO 13.3

Sea h(z) D z2 para todo z. h mapea todo el plano sobre sí mismo pero no es uno a uno.
Si z D x C iy, entonces

h(z) D x2 ฀ y2 C 2ixy D u C i ,

donde u D x2 ฀ y2 y  D 2xy. Use esta información para determinar la imagen bajo f de una recta vertical 
x D a. Cualquier punto en esta recta tiene la forma z D a C iy, y se mapea en

h(a C iy) D u C i  D a2 ฀ y2 C 2iay.

Los puntos en la recta x D a se mapean en puntos (u, ) con u D a2 ฀y2 y  D 2ay. Escriba y D  / 2a 
(suponiendo que a p 0) para obtener

2
2

4 2

o

2 D 4a2(a2 ฀ u),

la ecuación de una parábola en el plano u . h mapea rectas verticales x D a p 0 en parábolas.

DEFINICIÓN 13.2

Un mapeo f : D ! D� es uno a uno si puntos distintos de D se mapean en puntos distintos en D�.

13.1 Funciones como mapeos 519
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Si a D 0, la recta vertical x D a es el eje imaginario, que consiste en los puntos z D iy. Ahora  
h(z) D ฀y2, de manera que h mapea el eje imaginario del plano xy en la parte no positiva del eje real en 
el plano u .

La figura 13.4 muestra la imagen parabólica de una recta x D a p 0. Cuanto más grande sea a, más 
abre la parábola a la izquierda (cortando el eje  más lejos del origen). Conforme se elige a pequeña, cer-
cana a 0, estas parábolas se vuelven “cerradas,” aproximándose al eje real no positivo en el plano u .

Una recta horizontal y D b consistente en los puntos z D x C ib, se mapea en

h(z) D (x C ib)2 D x2 ฀ b2 C 2ixb D u C i .

Ahora u D x2 ฀ b2 y  D 2xb, de manera que, para b p 0,

2 D 4b2(b2 C u).

En la figura 13.5 se muestra una parábola típica, abriendo hacia la derecha. Estas parábolas también 
abren más conforme b es más grande. Si b D 0, la recta y D b es el eje real en el plano z, y ésta se mapea  
en h(x) D x2, dando el eje real no negativo en el plano u  conforme x toma todos los valores reales. ■

EJEMPLO 13.4

Vea la función exponencial  D E(z) D ez como un mapeo. Escriba

 D u C i  D exCiy D ex cos(y) C iex sen(y),

así

u D ex cos(y) y  D ex sen(y).

Como un mapeo de todo el plano en él mismo, E no es sobre (ningún número se mapea al cero), y E tam-
poco es uno a uno (todos los puntos z C 2n i tienen la misma imagen, para cualquier entero n).

Considere la recta vertical x D a en el plano xy. La imagen de esta recta consiste en los puntos  
u C i  con

u D ea cos(y),  D ea sen(y).

Entonces

u2 C 2 D e2a,

de manera que la recta x D a se mapea en el círculo de radio ea alrededor del origen en el plano u . De 
hecho, conforme el punto z D a C iy se mueve a lo largo de esta recta vertical, el punto imagen u Cui  
da una vuelta completa alrededor del círculo conforme y varía sobre un intervalo de longitud 2 , ya que 
cos(y Cu2n ) D cos(y) y sen(y Cu2n ) D sen(y). Por tanto, puede pensar en una recta vertical como un 
número infinito de intervalos de longitud 2  uno detrás de otro, y a la función exponencial envolviendo 
cada segmento una vez alrededor del círculo u2 C 2 D e2a (figura 13.6).

z

x

w

u

y v

a a2

w  z2

Re z a

FIGURA 13.5  D z2 mapea rectas horizontales 
en parábolas que abren a la derecha.

z

x

y
w

u

v

bi

w  z2

b2

Im(z) b

FIGURA 13.4  D z2 mapea rectas verticales 
en parábolas que abren a la izquierda.



La imagen de un punto z D x C ib en la recta horizontal y D b es un punto u C i  con

u D ex sen(b), y D ex cos(b).

Conforme x varía sobre la recta real, ex varía de 0 a 1 sobre el eje real positivo. El punto (ex sen(b),  
ex cos(b)) se mueve a lo largo de una semirecta desde el origen hacia infinito, formando un ángulo de b 
radianes con el eje real positivo (figura 13.7). En coordenadas polares, esta semirecta es  D b.

Usando estos resultados, se encuentra la imagen de cualquier rectángulo en el plano xy, con lados 
paralelos a los ejes. Considere al rectángulo con lados en las rectas x D a, x D b, y D c y y D d (en el plano 
xy en la figura 13.8). Estas rectas se mapean, respectivamente, en los círculos

u2 C 2 D e2a, u2 C 2 D e2b

y las semirectas

 D c y  D d.

La cuña en el plano u  en la figura 13.8 es la imagen del rectángulo bajo este mapeo exponencial. ■

Dado un mapeo f y un dominio D, se muestra una estrategia que usualmente es útil para determinar 
f (D). Suponga que D tiene una frontera formada por curvas 1, . . . , n. Encontrar las imágenes de estas 
curvas, f ( 1), . . . , f ( n). Éstas forman curvas en el plano , acotando a dos conjuntos, etiquetados como  
I y II en la figura 13.9. f (D) es uno de estos dos conjuntos. Para determinar cuál es, elija un punto cual-
quiera  en D y localice f ( ). Este punto estará en f (D).

EJEMPLO 13.5

Se determinará la imagen, bajo el mapeo  D f (z) D sen(z), de la franja S que consiste en todo z con  
฀  / 2  Re(z)   / 2 e Im(z)  0. En la figura 13.10 se muestra S.
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FIGURA 13.6  D ez envuelve una 
recta vertical alrededor de un círculo 
cubriendo el círculo una vez por cada  
intervalo de longitud 2 .

FIGURA 13.7  D ez mapea rectas 
horizontales en semirrayos desde el origen.

FIGURA 13.8  D ez mapea el rectángulo mostrado en una 
cuña acotada por dos semirrayos y dos círculos.
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La frontera de S consiste en el segmento ฀  / 2 � x �  / 2 en el eje real, junto con las semirectas  
x D ฀  / 2 y x D  / 2 para y � 0. Llevará a cabo la estrategia de ver las imágenes de las rectas que acotan 
a S. Primero,

 D u C i  D sen(x) cosh(y) C i cos(x) senh(y).

Si x D ฀  / 2, entonces

 D u C i  D ฀cosh(y).

Como 0 � y  1uen esta parte de la frontera de S, entonces cosh(y) varía de 1 a 1. La imagen de la 
frontera vertical izquierda de S es, por tanto, el intervalo (฀1,฀1] en el eje real en el plano u .

Si x D  / 2, un análisis similar muestra que la imagen de la frontera vertical derecha de S es [1, 1) 
en el eje real en el plano u .

Finalmente, si y D 0, entonces

 D sen(x).

Conforme x varía de ฀  / 2 a  / 2, sen(x) varía de ฀1 a 1. Así [฀  / 2,  / 2] mapea [฀1, 1] en el plano 
u .

La figura 13.11 muestra estos resultados. La frontera de S se mapea sobre todo el eje real en el plano 
u . Este eje es la frontera de los dos conjuntos en el plano , el semiplano superior y el semiplano inferior. 
Elija cualquier z adecuada en S, z D i. Su imagen es

 D sen(i) D i senh(1),

que está en el semiplano superior. Por tanto, la imagen de S es el semiplano superior.
La orientación juega un papel importante en estos mapeos. Imagine que camina a lo largo de la fron-

tera de S en sentido contrario del movimiento de las manecillas del reloj. Esto significa que empieza en 
algún lugar de la frontera izquierda x D ฀  / 2, recorra esta recta hacia el eje real, después gire a la izquier-
da y camine a lo largo de este eje hacia x D  / 2, después a la izquierda nuevamente y prosiga hacia arriba 
por la frontera derecha recta. Siga el movimiento del punto imagen f (z) conforme z toma esta ruta. Con-
forme z se mueve hacia abajo por la recta x D ฀  / 2, f (z) D sen(z) empieza en algún lado a la izquierda  

FIGURA 13.9
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I

IIf ( 1)

f( 2)

vy
w

u
1 1

2 2

2Re z
Im z  0

2Re z
Im z  0

z

x

FIGURA 13.11  D sen(z) mapea x D ฀  / 2, y 
� 0, en u � ฀1; ฀  / 2 � x �  / 2 en ฀1 � u � 
1; y x D  / 2, y � 0, en u � 1.

FIGURA 13.10 Banda acotada  
por las rectas verticales x D ฀  / 2 y  
x D  / 2 y el eje x.
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de ฀1 en el eje real en el plano , y se mueve hacia  D ฀1. Conforme  gira la primera esquina y se 
mueve a lo largo del eje real en el plano z de ฀  / 2 a  / 2, f (z) continúa a partir de ฀1 y sigue adelante 
a lo largo del eje real hasta  D C1. Finalmente, z gira hacia arriba y se mueve a lo largo de la recta  
x D  / 2, y f (z) se mueve desde  D 1 hacia afuera del eje real en el plano . Conforme z recorre la fronte-
ra de la banda en sentido contrario del movimiento de las manecillas del reloj (interior de S a la izquierda),  
f (z) recorre la frontera del semiplano superior de izquierda a derecha en sentido contrario del movimiento 
de las manecillas del reloj (interior del semiplano a la izquierda). ■

En este ejemplo, conforme z se mueve sobre la frontera de D en sentido positivo (en sentido contrario 
del movimiento de las manecillas del reloj), f (z) se mueve sobre la frontera de f (D) en sentido positivo. 
En la siguiente sección se analizan mapeos que conservan ángulos y sentido de rotación.

 1.  En cada inciso de (a) a (e), encuentre la imagen del rectán-
gulo dado bajo el mapeo  D ez. Dibuje el rectángulo en el 
plano z y su imagen en el plano .

 (a) 0 � x � , 0 � y � 

 (b) ฀1 � x � 1,u
2 2

 (c) 0 � x � 1, 0 � y �u
4

 (d) 1 � x � 2, 0 � y � 

 (e) ฀1 � x � 2, ฀ 
2 2

 2.  En cada inciso de (a) a (e), encuentre la imagen del rectán-
gulo dado bajo el mapeo  D cos(z). Dibuje, en cada caso, 
el rectángulo y su imagen.

 (a) 0 � x � 1, 1 � y � 2

 (b) 
2

 � x � , 1 � y � 3

 (c) 0 � x � , 
2

 � y � 

 (d)  � x � 2 , 1 � y � 2

 (e) 0 � x �u
2

, 0 � y � 1

 3.  En cada inciso de (a) a (e), encuentre la imagen del rec-
tángulo dado bajo el mapeo  D 4 sen(z). Dibuje, en cada 
caso, el rectángulo y su imagen.

 (a) 0 � x �u
2

0
2

 (b) 
4 2

0
4

 (c) 0 � x � 1, 0 � y �u
6

 (d) 
2

3

2
, 0

2
 (e) 1 � x � 2, 1 � y � 2

 4.  Determine la imagen del sector  / 4 �  � 5  / 4 bajo el 
mapeo  D z2. Dibuje el sector y su imagen.

 5.  Determine la imagen del sector  / 6 �  �  / 3 bajo el 
mapeo  D z3. Dibuje el sector y su imagen.

 6.  Pruebe que el mapeo

1

2

1

  mapea el círculo czc D r sobre una elipse con focos 1 y ฀1 
en el plano . Dibuje un círculo típico y su imagen.

 7.  Pruebe que el mapeo del problema 6 mapea la semirecta  
 Duconstante sobre una hipérbola con foco �1 en el plano 
. Dibuje una semirecta típica y su imagen.

 8.  Pruebe que el mapeo  D 1 / z mapea toda recta en un círcu-
lo o una recta, y todo círculo en un círculo o una recta. Dé 
un ejemplo de un círculo que se mapee en una recta, y una 
recta que se mapee en un círculo.

 9.  Encuentre la imagen de la banda infinita definida por  
0 � Im(z) � 2  bajo el mapeo  D ez.

10.  Sea D el rectángulo que cuyos vértices son �฀ i y  �฀ i, 
con  un número positivo.

  (a) Determine la imagen de D bajo el mapeo  D cos(z). 
Dibuje D y su imagen.

  (b) Determine la imagen de D bajo el mapeo  D sen(z). 
Dibuje esta imagen.

  (c) Determine la imagen de D bajo el mapeo  D 2z2. 
Dibuje esta imagen.

SECCIÓN 13.1 PROBLEMAS
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13.2 Mapeos conformes

Sea f : D ! D� un mapeo.

DEFINICIÓN 13.3 Mapeo que conserva ángulos

f conserva ángulos si para cualesquiera z0 en D, dos curvas suaves en D que se cortan en z0, y el 
ángulo entre estas curvas en z0 es , las imágenes de estas curvas se cortan en el mismo ángulo  en 
f (z0).

En la figura 13.12 se ilustra esta idea. Las imágenes de 1 y 2 son las curvas f ( 1) y f ( 2) en D�. 
Suponga que 1 y 2 se cortan en z0 y que sus tangentes tienen ahí un ángulo  entre ellas. Busque  
que las tangentes a f ( 1) y f ( 2) se corten en f (z0) en el mismo ángulo. Si esta condición se cumple para 
todas las curvas suaves que pasan por cada punto de D, entonces f conserva ángulos en D.

DEFINICIÓN 13.4 Mapeo que conserva orientación

f conserva la orientación si una rotación en sentido contrario del movimiento de las manecillas del 
reloj en D es mapeada por f en una rotación en sentido contrario del movimiento de las manecillas 
del reloj en D�.

Esta idea se ilustra en la figura 13.13. Si L1 y L2 son rectas que pasan por cualquier punto z0 en D y el 
sentido de la rotación de L1 a L2 es contrario al movimiento de las manecillas del reloj, entonces el sentido 
de la rotación de f (L1) a f (L2) a través de f (z0) en D�utambién debe ser en sentido contrario del movimien-
to de las manecillas del reloj. Por supuesto, f (L1) y f (L2) no necesitan ser rectas, pero uno puede seguir 
considerando el sentido de la rotación de la tangente de f (L1) a la tangente de f (L2) en f (z0). En contraste, 
la figura 13.14 ilustra un mapeo que no conserva la orientación.

z

z0

f (z0)

w

2

1

f ( 1)

f( 2)

FIGURA 13.12 Mapeo que conserva ángulos.
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w f (L2)

f (L1)L1

L2
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f (L1)

f (L2)L1
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FIGURA 13.14 Mapeo que no conserva la 
orientación.

FIGURA 13.13 Mapeo que conserva la 
orientación.



La conservación de los ángulos y la orientación son conceptos independientes. Un mapeo puede con-
servar uno pero no el otro. Si f : D ! D� conserva ambas, decimos que f es conforme.

El siguiente teorema genera muchos ejemplos de mapeos conformes.

TEOREMA 13.1

Sea f : D ! D� una función diferenciable definida en un dominio D. Suponga que f 0(z) p 0 para todo z 
en D. Entonces f es conforme. ■

Así, una función diferenciable con derivada distinta de cero en un dominio (conjunto abierto conexo) 
mapea este conjunto de tal manera que conserva tanto ángulos como orientación. Se esbozará un argu-
mento mostrando por qué esto es cierto. Sea z0 en D y sea  una curva suave en D que pasa por z0. Enton-
ces f ( ) es una curva suave que pasa por f (z0) en D� (figura 13.15). Si  D f (z) y 0 D f (z0), entonces

0
0

0
0

Ahora recordemos que el argumento se comporta como un logaritmo, en el sentido que cualquier argu-
mento de un producto es una suma de los argumentos de los factores individuales salvo múltiplos de 2 . 
Entonces

 
arg 0 arg 0

0
arg 0

 
(13.1)

En la figura 13.16,  es el ángulo entre el eje real positivo y la recta que pasa por z y z0 y es un argumento 
de z ฀ z0. El ángulo  entre el eje real positivo y la recta que pasa por  y 0 en el plano  es un argu-
mento de  ฀ 0. En el límite, conforme z ! z0, la ecuación (13.1) da

 D arg[ f 0(z0)] C .

Es aquí donde se usa la suposición que f 0(z0) p 0, debido a que 0 no tiene argumento.
Si � es otra curva suave que pasa por z0, entonces por el mismo razonamiento,

� D arg[f 0(z0)] C �.

Entonces

 ฀ � D  ฀ �,

DEFINICIÓN 13.5 Mapeo conforme

f : D ! D� es un mapeo conforme si f conserva tanto ángulos como orientación.

FIGURA 13.15 FIGURA 13.16
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(salvo múltiplos de 2 ). Pero  ฀ � es el ángulo entre las tangentes a  y � en z0, y  ฀ � es el ángulo 
entre las tangentes a f ( ) y f ( �) en f (z0). Por tanto, f conserva ángulos.

La última “ecuación” también implica que f conserva orientación, ya que el sentido de la rotación de  
a � es el mismo que el sentido de la rotación de f ( ) a f ( �). Habría obtenido una inversión en el sentido 
de rotación si hubiera encontrado que ฀u � D �u฀u . Por ejemplo,  D sen(z) es diferenciable, con 
una derivada distinta de cero en la banda ฀  / 2  Re(z)   / 2, y así es un mapeo conforme de la banda 
sobre un conjunto en el plano .

Una composición de mapeos conformes es conforme. Suponga que f mapea D conformemente sobre 
D�, y g mapea D� conformemente sobre D��. Entonces g B f mapea D conformemente sobre D�� (figura 
13.17), ya que ángulos y orientación son conservados en cada paso del mapeo.

Ahora considere la siguiente clase, importante, de mapeos conformes.

13.2.1 Transformaciones lineales racionales

Con frecuencia hay dominios D y D� (por ejemplo, representando áreas de un flujo de fluido), y busca 
producir un mapeo conforme de D sobre D�. Esto puede ser una tarea formidable. Las transformaciones 
lineales racionales son mapeos conformes relativamente sencillos que servirán algunas veces a este pro-
pósito.

DEFINICIÓN 13.6 Transformación lineal racional

Una transformación lineal racional es una función

,

en donde a, b, c y d son números complejos dados y ad ฀ bc p 0.

Otros nombres para esta clase de función son transformación de Möbius y transformación bilineal. 
La función está definida excepto en z D ฀d / c, que es un polo simple de T. Más aún,

2

FIGURA 13.17 Una composición  
de mapeos conformes es conforme.
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D**



y es distinto de cero si z p ฀d / c. T es por tanto, un mapeo conforme del plano sin el punto  
z D ฀d / c.

La condición ad ฀ bc p 0 garantiza que T es uno a uno, por tanto, invertible. Si  D (az C b) /  
(cz C d), entonces el mapeo inverso es

que también es una transformación lineal racional.
Ahora algunas clases especiales de transformaciones lineales racionales.

EJEMPLO 13.6

Sea  D T(z) D z Cub, con b constante. Ésta se llama una traslación debido a que T desplaza a z horizon-
talmente Re(b) unidades y verticalmente Im(z) unidades.

Por ejemplo, si T (z) D z Cu2 ฀ui, entonces T toma a z y lo mueve dos unidades a la derecha y una 
unidad hacia abajo (figura 13.18). Puede ver esto con los siguientes puntos y sus imágenes:

0 ! 2 ฀ i, 1 ! 3 ฀ i, i ! 2, 4 C 3i ! 6 C 2i. ■

EJEMPLO 13.7

Sea  D T (z) D az, con a una constante distinta de cero. Ésta se llama una rotación / dilatación. Para ver 
por qué, primero observe que

c c D cac czc .

Si cac  1, esta transformación alarga un número complejo, en el sentido que la línea está más lejos del 
origen que z. Si cac  1, acorta esta distancia. De ahí el término dilatación.

Ahora escriba las formas polares z D rei  y a D Aei . Entonces

T(z) D arei( C ),

de manera que la transformación suma  al argumento de cualquier número complejo distinto de cero. 
Esto gira al número en sentido contrario del movimiento de las manecillas del reloj un ángulo . Esta es 
la razón para el término rotación.

El efecto total de la transformación es, por tanto, un escalamiento y una rotación. Como un ejemplo 
específico, considere

 D (2 C 2i)z.

Esto mapeará

i !฀2 C 2i, 1 ! 2 C 2i y 1 C i ! 4i,

como se muestra en la figura 13.19. Como sugiere la figura 13.20, en general la imagen de z se obtiene 
multiplicando la magnitud de z por c2 C 2ic Du 8 y rotando la recta del origen a z en sentido contrario del 
movimiento de las manecillas del reloj  / 4 radianes. ■

Si cac D 1, T (z) D az se llama una rotación pura, ya que en este caso no hay efecto de dilatación, sólo 
una rotación del argumento de a.

13.2 Mapeos conformes 527
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EJEMPLO 13.8

Sea  D T(z) D 1 / z. Este mapeo se llama una inversión. Para z p 0,

1

y

arg( ) D arg(1) ฀ arg(z) D ฀arg(z)

(salvo múltiplos enteros de 2 ). Esto significa que llega a T(z) al moverse 1 /  czc unidades desde el origen a 
lo largo de la recta de 0 a z y después reflejando este punto a través del eje real (figura 13.21). Esto mapea 
puntos dentro del disco unitario, en el exterior de él y puntos del exterior al interior, mientras que los pun-
tos en el círculo unitario permanecen en el círculo unitario (pero se mueven alrededor del círculo, excepto 
para 1 y ฀1). Por ejemplo, si z D (1 C i) / 2,  entonces 1 / z D (1 ฀ i) / 2 (figura 13.22). ■

Ahora probará que las traslaciones, las rotaciones/dilataciones y las inversiones son las transforma-
ciones lineales racionales fundamentales, en el sentido que cualquiera de estos mapeos puede obtenerse 
como una secuencia de transformaciones de estos tres tipos. Para ver cómo hacerlo, empiece con

Si c D 0, entonces

es una rotación/dilatación seguida por una traslación:

rot dil tras

z
z

w z 2 i

FIGURA 13.18
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FIGURA 13.19

FIGURA 13.21 Imagen 
de z bajo una inversión.
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FIGURA 13.20 El mapeo T (z) D (2 C 2i)z.



Si c p 0, entonces T es el resultado de la siguiente secuencia:

rot dil tras inv

1

rot dil

1
tras

1

Esta manera de descomponer una transformación lineal racional en componentes más simples tiene 
dos propósitos. Primero, es posible analizar propiedades generales de estas transformaciones analizando 
las componentes más sencillas de las transformaciones. Quizá más importante, algunas veces se usa esta 
secuencia para construir mapeos conformes entre dominios dados.

La siguiente es una propiedad fundamental de las transformaciones lineales racionales. Se aplica el 
término recta para línea recta.

TEOREMA 13.2

Una transformación lineal racional mapea cualquier círculo en un círculo o recta y cualquier recta en un 
círculo o recta. ■

Prueba Debido a la discusión anterior, necesita verificar esto solamente para traslaciones, rotacio- 
nes/dilataciones e inversiones.

Es obvio geométricamente que una traslación mapea un círculo en un círculo y una recta en una recta. 
Similarmente, una rotación/dilatación mapea un círculo en un círculo y una recta en una recta.

Ahora necesita determinar el efecto de una inversión en un círculo o una recta. Comience con el 
hecho que cualquier círculo o recta en el plano es la gráfica de una ecuación

A(x2 C y2) C Bx C Cy C R D 0,

en donde A, B, C y R son números reales. Esta gráfica es un círculo si A p 0 y una recta si A D 0 y B y C 
no son ambas cero. Con z D x C iy, esta ecuación se vuelve

2

2 2
0

Ahora sea  D 1 / z. La imagen en el plano  de este lugar geométrico es la gráfica de

1
2 2

1 1

2

1 1
0

Multiplique esta ecuación por ฀ (que es c c2) para obtener

2

2 2
0
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En el plano , esta es la ecuación de un círculo si R p 0, y una recta si A D 0 y B y C no son ambas 
cero. ■

Como muestra la prueba, las traslaciones y las rotaciones/dilataciones mapean círculos en círculos 
y rectas en rectas, mientras una inversión mapea un círculo en un círculo o una recta y una recta en un 
círculo o recta.

EJEMPLO 13.9

Sea  D T(z) D i(z ฀ 2) C 3. Esta es la secuencia

 z ! z ฀ 2 ! i(z ฀ 2) ! i(z ฀ 2) C 3 D , (13.2)

una traslación de 2 a la izquierda, seguida de una rotación, en sentido contrario del movimiento de las 
manecillas del reloj, de  / 2 radianes (un argumento de i es  / 2), y después una traslación de 3 a la dere-
cha. Debido a que este mapeo no involucra una inversión, mapea círculos en círculos y rectas en rectas.

Como un ejemplo específico, considere el círculo K dado por

(x ฀ 2)2 C y2 D 9,

con radio 3 y centro (2, 0). Escriba esta ecuación como

x2 C y2 ฀ 4x ฀ 5 D 0

o

czc2 ฀ 2(z C –z ) ฀ 5 D 0.

Resuelva  D i(z ฀u2) Cu3 para obtener z D ฀i( ฀u3) Cu2 y sustituya en la última ecuación para  
obtener

3 2 2 2 3 2 3 2 5 0

Después de una manipulación rutinaria, obtiene

2 3 0

Con  D u C i , esto es

(u ฀ 3)2 C 2 D 9,

un círculo de radio 3 y centro (3, 0) en el plano u ฀. Este resultado pudo haber sido pronosticado geomé-
tricamente a partir de la secuencia de mapeos elementales 13.2, mostrados en pasos en la figura 13.23. La 
secuencia, primero mueve el círculo 2 unidades a la izquierda, después (multiplicación por i) lo rota  / 2 
radianes (que deja el mismo centro y radio), y finalmente lo traslada 3 unidades a la derecha. El resultado 
es un círculo de radio 3 alrededor de (3, 0). ■

EJEMPLO 13.10

Examinará los efectos de una inversión  D 1 / z en la recta vertical Re(z) D a p 0. En esta recta, z D a C 
iy y su imagen consiste en los puntos

1
2 2 2 2

Es de rutina verificar que

1

2

2
2 1

4 2



de manera que la imagen de esta recta vertical es un círculo en el plano u  con centro (1 / 2a, 0) y radio 
1 / 2a. ■

Como preparación para la construcción de mapeos entre dominios dados, probará que siempre se 
encontrará una transformación lineal racional que mapee tres puntos dados en tres puntos dados.

TEOREMA 13.3 Teorema de los tres puntos

Sean z1, z2 y z3 tres puntos distintos en el plano z y 1, 2 y 3 tres puntos distintos en el plano . Enton-
ces existe una transformación lineal racional T del plano z al plano  tal que

T(z1) D 1, T(z2) D 2 y T(z3) D 3. ■

Prueba Sea  D T(z) la solución para  en términos de z y de los seis puntos dados en la ecuación

 ( 1 ฀ )( 3 ฀ 2)(z1 ฀ z2)(z3 ฀ z) D (z1 ฀ z)(z3 ฀ z2)( 1 ฀ 2)( 3 ฀ ). (13.3)

Sustituyendo z D zj en esta ecuación obtiene a  D j para j D 1, 2, 3. ■

EJEMPLO 13.11

Busca una transformación lineal racional que mapea

3 ! i, 1 ฀ i ! 4 y 2 ฀ i ! 6 C 2i.

Haga

z1 D 3, z2 D 1 ฀ i, z3 D 2 ฀ i

y

1 D i, 2 D 4, 3 D 6 C 2i

en la ecuación (13.3) para obtener

(i ฀ )(2 C 2i)(2 C i)(2 ฀ i ฀ z) D (3 ฀ z)(1)(i ฀ 4)(6 C 2i ฀ ).

Resuelva para  y obtenga

20 4 68 16

6 5 22 7

Entonces cada T(zj) D j. ■

13.2 Mapeos conformes 531

FIGURA 13.23

y

x
-1 2

(a)

5
(x - 2)2

+ y2
= 9

-3

(b)

3 -3

(c)

3

v

u
0

(d)

63

Traslación TraslaciónRotación



CAPÍTULO 13   Mapeos conformes532

Se puede probar que la especificación de tres puntos y sus imágenes determina unívocamente una 
transformación lineal racional. Entonces, en el último ejemplo, T es la única transformación lineal racio-
nal que mapea los tres puntos dados en sus imágenes dadas.

Cuando trate con mapeos, a veces es conveniente reemplazar el plano complejo con la esfera com-
pleja. Para visualizar cómo se hace esto, considere el sistema coordenado de tres dimensiones en la figura 
13.24. Una esfera de radio 1 es colocada con su polo sur en el origen y su polo norte en (0, 0, 2). El plano 
xy es el plano complejo. Para cualquier (x, y) en este plano, la recta de (0, 0, 2) a (x, y) corta a la esfera 
exactamente en un punto S(x, y). Esto asocia con cada punto en la esfera excepto el (0, 0, 2), un único 
punto en el plano complejo, y recíprocamente. Este mapeo se llama la proyección estereográfica de la 
esfera (excepto su polo norte) sobre el plano. Esta esfera agujerada se llama esfera compleja. El punto  
(0, 0, 2) juega el papel de un punto al infinito. Esto está motivado porque conforme (x, y) esté más lejos del 
origen en el plano xy, S(x, y) se mueve más cerca a (0, 0, 2) en la esfera. El punto (0, 0, 2) no está asociado 
con ningún número complejo, pero da una manera de visualizar al infinito como un punto, algo que no se 
puede hacer en el plano. El plano complejo extendido (que consiste en todos los números complejos, junto 
con el infinito) está en una correspondencia uno a uno con esta esfera, incluyendo su polo norte.

Para darle algún sentido al punto al infinito, considere la recta y D x en el plano xy. Ésta consiste en 
los números complejos x C xi. Si hace que x !u1, el punto (1 C i)x se mueve sobre esta recta alejándose 
del origen. La imagen de esta recta en la esfera compleja es parte de un círculo máximo, y el punto imagen 
S(x, y) en la esfera se aproxima a (0, 0, 2) conforme x !u1. Esto permite pensar que (1 C i)x acerca a 
una ubicación específica que puede señalar en este proceso de límite, en lugar de sólo decir que se aleja 
del origen.

Al definir una transformación lineal racional, algunas veces es conveniente mapear uno de los tres 
puntos dados a los que se refiere el último teorema en el punto infinito. Esto se puede hacer anulando los 
factores que involucran a 3 en la ecuación (13.3).

TEOREMA 13.4

Sean z1, z2, z3 tres números complejos distintos y 1, 2 números complejos distintos. Entonces existe una 
transformación lineal racional  D T(z) que mapea

T(z1) D 1, T(z2) D 2 y T(z3)D1. ■

Prueba Tal transformación se obtiene resolviendo para  en la ecuación

 ( 1 ฀ )(z1 ฀ z2)(z3 ฀ z) D (z1 ฀ z)( 1 ฀ 2)(z3 ฀ z2). ■ (13.4)

z

y

x

N: (0, 0, 2)

(x, y)

S(x, y)

FIGURA 13.24

Proyección  
estereográfica  
identificando la esfera  
compleja con el  
plano complejo extendido.



EJEMPLO 13.12

Encontrará una transformación lineal racional que mapea

i ! 4i, 1 ! 3 ฀ i, 2 C i !u1.

Resuelva para  la ecuación

(4i ฀ )(i ฀ 1)(2 C i ฀ z) D (i ฀ z)(฀3 C 5i)(1 C i)

para obtener

5 1 3

2  
■

Algunas otras propiedades de las transformaciones lineales racionales son propuestas en los ejerci-
cios. Ahora, el problema de construir mapeos conformes entre dos dominios dados.

13.2 Mapeos conformes 533

SECCIÓN 13.2 PROBLEMAS

En cada problema del 1 al 5, encuentre una transformación 
lineal racional que mande los puntos dados en las imágenes 
indicadas.

 1.  1 ! 1, 2!฀i, 3 ! 1 C i

 2.  i ! i, 1!฀i, 2 ! 0

 3.  1 ! 1 C i, 2i ! 3 ฀ i, 4 !u1

 4.  ฀5 C 2i ! 1, 3i ! 0,฀1 !u1

 5.  6 C i ! 2 ฀ i, i ! 3i, 4 !฀i

En cada problema del 6 al 12, encuentre la imagen del círculo o 
recta dado bajo la transformación lineal racional.

 6.  
2

Re 4

 7.   D 2iz ฀ 4; Re(z) D 5

 8.  
1

2

1

2
4

 9.  
1

2 1
4

10.   D 3z ฀ i; cz ฀ 4c D 3

11.  
2 5 3

2
5 0

12.  
1 3 2

1

13.  Pruebe que el mapeo  D –z no es conforme.

14.  Pruebe que la composición de dos transformaciones linea-
les racionales es una transformación lineal racional.

15.  Pruebe que toda transformación lineal racional tiene una 
inversa y que esta inversa también es una transformación 
lineal racional. (T� es una inversa de T si T BuT� y T� Buu
T siendo ambas el mapeo identidad, que manda cada punto 
en sí mismo).

16.  Pruebe que no existe una transformación lineal racional que 
mapea el disco abierto czc  1 sobre el conjunto de puntos 
acotados por la elipse u2 / 4 C 2 D 1 / 16.

En los problemas 17 y 18, el escenario es el plano complejo 
extendido, el cual incluye el punto al infinito.

17.  Un punto z0 es un punto fijo del mapeo f si f (z0) D z0. Supon-
ga que f es una transformación lineal racional que no es ni 
una traslación ni el mapeo identidad f (z) D z. Pruebe que  
f debe tener uno o dos puntos fijos pero no puede tener tres. 
¿Por qué esta conclusión falla para traslaciones? ¿Cuántos 
puntos fijos puede tener una traslación?

18.  Sea f una transformación lineal racional con tres puntos 
fijos. Pruebe que f es el mapeo identidad.

En cada problema del 19 al 22 escriba la transformación lineal 
racional como el resultado final de una secuencia de mapeos, 
cada uno de los cuales es una traslación, rotación/dilatación o 
inversión.

19. 
4

20. 
4

2

21. 6 2

22. 
1

3
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13.3 Construcción de mapeos conformes entre dominios

Una estrategia para resolver cierto tipo de problemas (por ejemplo, los problemas de Dirichlet) es encon-
trar la solución para un dominio “simple” (por ejemplo, el disco unitario), luego mapear este dominio 
conformemente al dominio de interés. Este mapeo puede llevar la solución para el disco a la solución 
para el último dominio. Por supuesto, esta estrategia depende de dos pasos: encontrar un dominio para el 
cual es posible resolver el problema, y poder mapear este dominio en el dominio donde desee la solución. 
Ahora se discute el último problema.

Aunque en la práctica puede ser una tarea imponente encontrar un mapeo conforme entre los domi-
nios dados, el siguiente resultado asegura que dicho mapeo existe, con una excepción.

TEOREMA 13.5 Teorema del mapeo de Riemann

Sea D� un dominio en el plano  y suponga que D� no es todo el plano . Entonces existe un mapeo 
conforme uno a uno del disco unitario czc  1 sobre D�. ■

Este resultado implica la existencia de un mapeo conforme entre los dominios dados. Suponga que 
busca mapear D sobre D� (ninguno de los cuales es todo el plano). Inserte un tercer plano, el plano , entre el 
plano z y el plano , como en la figura 13.25. Por el teorema de Riemann, existe un mapeo conforme uno  
a uno g del disco unitario c c  1 sobre D�. Similarmente, existe un mapeo conforme uno a uno f de c c  1 
sobre D. Entonces g B f ฀1 es un mapeo conforme uno a uno de D sobre D�.

En teoría, entonces, dos dominios, ninguno de los cuales es todo el plano, pueden ser mapeados 
conformemente de una manera uno a uno, uno sobre el otro. Esto no hace, sin embargo, que sea fácil de 
encontrar el mapeo. En un intento por encontrar tal mapeo, la siguiente observación es útil.

Un mapeo conforme de un dominio D sobre un dominio D� mapeará la frontera de D en la frontera de 
D�. Esto se usa de la siguiente manera. Suponga que D está acotado por una trayectoria C (no necesaria-
mente cerrada) que separa el plano z en dos dominios, D y . Estos se llaman dominios complementarios. 
Análogamente, suponga que D� está acotado por una trayectoria C� que separa el plano  en dos dominios 
complementarios D� y � (figura 13.26). Intente encontrar un mapeo conforme f que mande puntos de C 
en puntos de C�. Esto puede ser más fácil que tratar de encontrar un mapeo de todo el dominio. Entonces, 
este mapeo mandará D en D� o en �. Para saber a cuál, elija un punto z0 en D y vea si f (z0) está en D� 
o en �. Si f (z0) está en D� (figura 13.27(a)), entonces f : D ! D� y el mapeo es conforme. Si f (z0) está 
en � como en la figura 13.27(b), entonces f : D ! �. No es el mapeo que busca, pero algunas veces es 
necesario hacer otro paso y usar f para fabricar un mapeo conforme de D a D�.

Ahora construirá algunos mapeos conformes, empezando con unos fáciles y después unos más difí-
ciles.

D

C

D D*

D*

C*

wz

FIGURA 13.26FIGURA 13.25 Mapeo D sobre D� 
por medio del disco unitario.

g  f 1

f 1

f

gi

1
D

D*

wz



EJEMPLO 13.13

Suponga que busca mapear el disco unitario D : czc  1 de manera conforme sobre el disco D� : c c  3.
Claramente la dilatación  D f (z) D 3z hará esto, ya que todo lo que debe hacer es expandir el disco 

unitario a un disco de radio 3 (figura 13.28). Observe que este mapeo manda la frontera de D sobre la 
frontera de D�. ■

EJEMPLO 13.14

Mapeo conforme del disco unitario D : czc  1 sobre el dominio c c  3.
Aquí está mapeando D en el dominio complementario del ejemplo anterior. Ya sabe que f (z) D 3z 

mapea conformemente a D sobre c c  3. Combinando este mapeo con una inversión, haciendo

1 3

Éste mapea czc  1 en c c  3 (figura 13.29). Nuevamente, la frontera del disco unitario se mapea en la 
frontera de c c  3, que es el círculo de radio 3 alrededor del origen en el plano . ■

EJEMPLO 13.15

Mapeará el disco unitario D : czc  1 sobre el disco D�: c  ฀ ic  3, de radio 3 y centro en i en el  
plano .

La figura 13.30 sugiere una manera de construir este mapeo. Desea expandir el radio del disco uni-
tario por un factor de 3. Después traslada el disco resultante una unidad hacia arriba. Así, el mapeo en 
pasos es:

z ! 3z ! 3z C i,

FIGURA 13.27(a) FIGURA 13.27(b)

D

C C*

D*D

D*

wz

f : D m D*
f (z0)

z0 D

C C*

D*D

D*

wz

f : D m D*

f (z0)

z0
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FIGURA 13.29 Mapeo de czc  1 
sobre c c  3.

FIGURA 13.28 Mapeo de czc  1 
sobre c c  3.
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una dilatación seguida de una traslación. El mapeo es

 D f (z) D 3z C i.

Éste mapea el círculo unitario czc D 1 en el círculo c  ฀ ic D 3 ya que

c  ฀ ic D c3zc D 3 czc D 3.

Más aún, el origen en el plano z (centro de D) se mapea en i en el plano ฀, e i es el centro de D�, así  
f : D ! D�. ■

EJEMPLO 13.16

Suponga que desea mapear el semiplano derecho D : Re(z)  0 sobre el disco unitario D� : c c  1.
En la figura 13.31 se muestran los dominios. La frontera de D es el eje imaginario Re(z) D 0. Mapea-

rá ésta en la frontera del disco unitario c c D 1. Para hacer esto, elija tres puntos en Re(z) D 0 y tres en  
c c D 1 y úselos para definir una transformación lineal racional. Hay, sin embargo, una sutileza para man-
tener la orientación positiva (en sentido contrario del movimiento de las manecillas del reloj en curvas 
cerradas), elija tres puntos en sucesión hacia abajo en el eje imaginario, de manera que una persona cami-
nando a lo largo de estos puntos vea el semiplano derecho a la izquierda. Mapee estos puntos en orden en 
sentido contrario del movimiento de las manecillas del reloj alrededor de c c D 1.

Por ejemplo, elija

z1 D i, z2 Du0 y z3 D ฀i

en el eje imaginario en el plano z y mapear éstos en orden

1 D 1, 2 D i, 3 D ฀1.

A partir de la ecuación (13.3), tiene

(1 ฀ )(฀1 ฀ i)(i)(฀i ฀ z) D (i ฀ z)(฀i)(1 ฀ i)(฀1 ฀ ).

Resuelva para :

1

1

Este mapeo conforme debe mandar el semiplano derecho al interior o exterior del disco unitario en el pla-
no . Para ver cuál es, elija un punto en Re(z)  0, z D 1. Como T(1) D 0 está en D�, T mapea el semiplano 
derecho en disco unitario c c  1, como buscaba. ■

EJEMPLO 13.17

Suponga que desea mapear el semiplano derecho en el exterior del disco unitario, el dominio es c c  1. 
Del ejemplo anterior tenemos T : Re(z)  0 ! c c  1. Al seguir este mapeo (mandando Re(z)  0 sobre 

FIGURA 13.30 Mapeo de czc  1 sobre c  ฀ ic  3. FIGURA 13.31
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el disco unitario) con una inversión (mandando el disco unitario al exterior del disco unitario), tendrá el 
mapeo buscado. Así, con T(z) como en el último ejemplo, sea

1 1

1

Como una verificación, 1 C i está en el semiplano derecho, y

1
2

2

es exterior al disco unitario en el plano . ■

EJEMPLO 13.18

Mapeará el semiplano derecho Re(z)  0 conformemente sobre el disco c  ฀ ic  3.
Puede hacer esto como una composición de mapeos. Ponga un plano intermedio  entre los planos z  

y  (figura 13.32). Por el ejemplo 13.16, mapeamos Re(z)  0 sobre el disco unitario c  c  1 mediante

1

1

Ahora use el mapeo del ejemplo 13.15 y mande el disco unitario c  c  1 sobre el disco c  ฀ ic  3:

 D g(  ) D 3  C i.

La composición g B f es un mapeo conforme Re(z)  0 sobre c  ฀ ic  3:

3 3
1

1

2 2

1  ■

EJEMPLO 13.19

Mapeará la banda infinita S : ฀  / 2  Im(z)   / 2 sobre el disco unitario c c  1.
Recuerde del ejemplo 13.4 que la función exponencial mapea rectas horizontales a semirectas desde 

el origen. La frontera de S consiste en dos rectas horizontales, Im(z) D ฀  / 2 y Im(z) D  / 2. En la recta 
de la frontera inferior, z D x ฀ i  / 2, de manera que

ez D ex e฀i  / 2 D ฀iex,

varía sobre el eje imaginario negativo conforme x toma todos los valores reales. En la frontera superior 
de S, z D x C i  / 2, y

ez D iex

varía sobre la parte positiva del eje imaginario conforme x se mueve sobre la recta real.
El eje imaginario forma la frontera del semiplano derecho Re( )  0, así como la del semiplano 

izquierdo Re( )  0 en el plano . El mapeo  D ez debe mapear S en uno de estos dominios comple-
mentarios. Sin embargo, el mapeo manda el 0 al 1, en el semiplano derecho, de manera que el mapeo  

 D f (z) D ez mapea S en el semiplano derecho.
Quiere mapear S sobre el disco unitario. Pero ahora conoce un mapeo de S sobre el semiplano dere-

cho, y también un mapeo del semiplano derecho sobre el disco unitario. Todo lo que debe hacer es poner-
los juntos.

13.3 Construcción de mapeos conformes entre dominios 537



CAPÍTULO 13   Mapeos conformes538

En la figura 13.33, se pone un plano  entre los planos z y . El mapeo

 D f (z) D ez

manda S sobre el semiplano derecho Re( )  0. Ahora el mapeo

1

1

manda el semiplano derecho Re( )  0 sobre el disco unitario c c  1. Por tanto, la función

 

1

1

es un mapeo conforme de S sobre c c  1. En términos de funciones hiperbólicas, este mapeo puede es- 
cribirse como

tanh
2  ■

El mapeo conforme del último ejemplo no es una transformación lineal racional. Es conveniente 
usar éstas siempre que sea posible. Sin embargo, aun cuando sabe por el teorema de mapeo de Riemann  
que existe un mapeo conforme entre dos dominios, no hay garantía de que siempre pueda encontrar tal 
mapeo en la forma de una transformación lineal racional.

EJEMPLO 13.20

Mapeará el disco czc  2 sobre el dominio D� : u Cu   0 en el plano u . En la figura 13.34 se muestran 
estos dominios.

Se consideran mapeos ya vistos que se relacionan con este problema. Primero, puede mapear czc  
 2 en c c  1 mediante una simple dilatación (multiplicando por 1

2). Pero también conoce un mapeo 
del disco unitario al semiplano derecho. Finalmente, puede obtener D� a partir del semiplano derecho 
mediante una rotación, en sentido contrario del movimiento de las manecillas del reloj, de  / 4 radianes, 

FIGURA 13.33 cIm(z)c  2  ! Re( )  0 ! c c  1 
produce un mapeo de cIm(z)c  2  sobre c c  1.

FIGURA 13.32 Mapeo de Re(z)  0 
sobre |  ฀ i|  3.

FIGURA 13.34
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y conseguir el efecto multiplicando por ei  / 4. Esto sugiere la estrategia de construir el mapeo que desea en 
los pasos que se muestran en la figura 13.35:

czc  2 ! c c  1 ! Re( )  0 ! u Cu   0.

El primer paso se consigue mediante

1

2
Ahora, use el inverso del mapeo del ejemplo 13.16 y nombre las variables  y  para obtener

1

1

Esto mapea

c c  1 ! Re( )  0.

Finalmente, realice la rotación:

 D ei  / 4 .

En resumen,

4 4 1

1
4 1 2

1 2

2

2
4

Esto mapea el disco czc  2 conformemente sobre el semiplano u Cu   0. Por ejemplo, 0 está en el  
disco, y

0 4 2

2
1

está en u Cu   0. ■

Ahora se discutirá brevemente la transformación de Schwarz-Christoffel, que puede ser usada cuando 
la frontera del dominio es un polígono.

13.3.1 Transformación de Schwarz-Christoffel

Suponga que quiere un mapeo conforme del semiplano superior  al interior  de un polígono P, que 
podría ser un triángulo, rectángulo, pentágono u otro polígono. Una transformación lineal racional no  
hará esto. Sin embargo, la transformación de Schwarz-Christoffel fue construida justo para este propó-
sito.

Sea P con vértices 1, . . . , n en el plano  (figura 13.26). Sean 1, . . . , n los ángulos exteriores 
de P. Existen constantes z0, a y b, con Im(z0)  0, y números reales x1, . . . , xn tales que la función

 0

1
1

2
2

 
(13.5)

FIGURA 13.35
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es un mapeo conforme de  sobre . Esta integral se toma sobre cualquier trayectoria en  de z0 a z en 
. Los factores (  ฀ xj)฀ j están definidos usando el logaritmo complejo obtenido al tomar el argumento 

en [0, 2 ).
Cualquier función de la forma de la ecuación (13.5) se llama una transformación de Schwarz-Chris-

toffel. Para ver la idea que está detrás de esta función, suponga que cada xj  xjC1. Si z está en , sea

g(z) D a(z ฀ x1)฀ 1(z ฀ x2)฀ 2 · · · (z ฀ xn)฀ n.

Entonces f 0(z) D g(z) y

arg[f 0(z)] D arg(z) ฀ 1 arg(z ฀ x1)฀· · ·฀u n arg(z ฀ xn).

Como vio en la discusión del teorema 13.1, arg[ f 0(z)] es el número de radianes que rota el mapeo f a las 
rectas tangentes, si f 0(z) p 0.

Ahora imagine que z se mueve de izquierda a derecha a lo largo del eje real (figura 13.37), que es la 
frontera de . En (฀1, x1), f (z) se mueve a lo largo de la recta (no hay cambios en el ángulo). Cuando z 
pasa sobre x1, sin embargo, arg[ f 0(z)] cambia por 1 . Este ángulo permanece fijo conforme z se mueve 
de x1 hacia x2. Cuando z pasa sobre x2, arg[ f 0(z)] cambia por 2 , después permanece con este valor hasta  
que z encuentra a x3, donde arg[ f 0(z)] cambia por 3 , y así sucesivamente. De donde arg[ f 0(z)] perma-
nece constante en intervalos (xj฀1, xj) y crece en j conforme z pasa sobre xj. El resultado neto es que el 
eje real es mapeado al polígono P� con ángulos exteriores 1 , . . . , n . Estos números están ya deter-
minados por 1, . . . , n฀1, ya que 

1

2

P� tiene los mismos ángulos exteriores que P pero no tiene que ser el mismo que P debido a su loca-
lización y tamaño. Debe rotar, trasladar y/o dilatar P� para obtener P. Estos efectos se consiguen eligiendo 
x1, . . . , xn para hacer P� similar a P, y después eligiendo a (rotación/dilatación) y b (traslación) para 
obtener P.

Si elige zn Du1, entonces z1, . . . , zn฀1, 1uson mapeados en los vértices de P. En este caso la trans-
formación de Schwarz-Christoffel es

 0

1
1

2
2 1

  
(13.6)

Se puede probar que cualquier mapeo conforme de  sobre un polígono debe tener la forma de una 
transformación de Schwarz-Christoffel.

En la práctica una transformación de Schwarz-Christoffel puede ser difícil o imposible de determinar 
en forma cerrada debido a la integración.

n

2

1 w1
w2

wn

w
v

u

n

2

3

1 w1

w2

w3

wn

x2x1 xn

w
v

u

z
y
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EJEMPLO 13.21

Mapeará el semiplano superior  sobre un rectángulo.
Elija x1 D 0, x2 D 1 y x3 como cualquier número real mayor que 1. La transformación de Schwarz-

Christoffel de la ecuación (13.6) tiene la forma

0

1

1 3

con a y b elegidos para ajustar las dimensiones del rectángulo y su orientación respecto a los ejes. El 

radical aparece ya que los ángulos externos del rectángulo son todos iguales a  / 2, de manera que 
4
jD1  

j D 4 k D 2. Esta integral es elíptica y no se puede evaluar en forma cerrada. ■

EJEMPLO 13.22

Mapeará  sobre la banda S : Im( )  0, ฀c  Re( )  c en el plano . Aquí c es una constante posi-
tiva.

En la figura 13.38 se muestran  y la banda S. Para usar la transformación de Schwarz-Christo-
ffel, debe pensar en S como un polígono con vértices ฀c, c e 1. Elija x1 D ฀1 para mapearlo en ฀c y  
x2 D 1 para mapearlo en c. Mapee 1 en 1. Los ángulos exteriores de la banda son  / 2 y  / 2, así  

1 D 2 D 12  . La transformación tiene la forma

0

1 1 2 1 1 2

Elija z0 D 0 y b D 0. Escriba

(  ฀ 1)฀1 / 2 D [฀(1 ฀ )]฀1 / 2 D ฀i(1 ฀ )฀1 / 2.

Con ฀ai D A, tiene

0

1

1 2 1 2

Esta integral recuerda a la representación de la integral real de la función inversa del seno. De hecho, 
puede escribir 

 D A sen฀1(z),

con lo que quiere decir que

sen

Elija A de manera que ฀1 se mapea en ฀c y 1 en c, necesita

sen 1

FIGURA 13.38
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Así c / A D  / 2, o

2

El mapeo es
2

sen 1

Si elige c D  / 2, este mapeo es simplemente  D sen฀1(z), mapeando  sobre la banda Im( )  0,  
฀  / 2  Re( )   / 2. Esto es consistente con el resultado del ejemplo 13.5. ■

SECCIÓN 13.3 PROBLEMAS

En cada problema del 1 al 6, encuentre una transformación 
lineal racional que mapee el primer dominio sobre el segundo.

 1.  czc  3 sobre c  ฀ 1 C ic  6

 2.  czc  3 sobre c  ฀ 1 C ic  6

 3.  cz C 2ic  1 sobre c  ฀ 3c  2

 4.  Re(z)  1 sobre Im( )  ฀1

 5.  Re(z)  0 sobre c c  4

 6.  Im(z)  ฀4 sobre c  ฀ ic  2

 7.  Encuentre un mapeo conforme del semiplano superior 
Im(z)  0 sobre el lado 0  arg( )   / 3.

 8.  Sea  D Log(z), en donde el logaritmo toma un valor único 
para cada z distinto de cero, pidiendo que el argumento de z 
esté en [0, 2 ). Pruebe que el mapeo manda Im(z)  0 sobre 
la banda 0  Im( )  .

 9.  Pruebe que la transformación de Schwarz-Christoffel

2
0

1 1 2 1 1 2 1 2

  mapea el semiplano superior sobre el rectángulo con vérti-
ces 0, c, c Cuic e ic, donde c D 1

2
1
4

3
4 . Donde  

es la función gamma.

10.  Defina la razón cruzada de z1, z2, z3 y z4 como la imagen de 
z1 bajo la transformación lineal racional que mapea z2 ! 
1, z3 ! 0, z4 ! 1. Denote esta razón cruzada como [z1,  
z2, z3, z4]. Suponga que T es cualquier transformación  
lineal racional. Pruebe que T conserva la razón cruzada. 
Esto es,

[z1, z2, z3, z4] D [Tz1, Tz2, Tz3, Tz4].

11.  Pruebe que [z1, z2, z3, z4] es la imagen de z1 bajo la transfor-
mación lineal racional definida por

1 3 4

3 2

2

4

12.  Pruebe que [z1, z2, z3, z4] es real si, y sólo si las zj están en el 
mismo círculo o recta.

13.4 Funciones armónicas y el problema de Dirichlet

Dado un conjunto D de puntos en el plano, sea D la frontera de D. Un problema de Dirichlet para D 
consiste en encontrar una solución de la ecuación de Laplace

2

2

2

2
0

para (x, y) en D, que satisfaga las condiciones en la frontera

u(x, y) D f (x, y) para (x, y) en D.

Aquí f es una función dada, usualmente se supone que es continua en la frontera de D.



Una función que satisface la ecuación de Laplace en un conjunto se dice que es armónica en ese con-
junto. Así el problema de Dirichlet para un conjunto consiste en encontrar una función que es armónica en 
ese conjunto y satisface los datos dados en la frontera del conjunto.

El capítulo 7 está dedicado a las soluciones de problemas de Dirichlet usando métodos del análisis 
real. El propósito aquí es aplicar los métodos de funciones complejas a los problemas de Dirichlet. La 
conexión entre un problema de Dirichlet y la teoría de funciones complejas está dada por el siguiente 
teorema.

TEOREMA 13.6

Sea D un conjunto abierto en el plano, y sea f (z) D u(x, y) C i (x, y) diferenciable en D. Entonces u y  
son armónicas en D. ■

Esto es, las partes real e imaginaria de una función compleja diferenciable son armónicas.

Prueba Por las ecuaciones de Cauchy-Riemann,

2

2

2

2

2 2

0

Por tanto, u es armónica en D. La prueba de que  es armónica es similar. ■

Recíprocamente, dada una función armónica u, existe una función armónica  tal que f (z) D u(x, y) 
C i (x, y) es diferenciable. Tal  se llama una conjugada armónica para u.

TEOREMA 13.7

Sea u armónica en un dominio D. Entonces, para algún , u(x, y) C i (x, y) define una función compleja 
diferenciable para z D x C iy en D. ■

Prueba Sea

para (x, y) en D. Usando las ecuaciones de Cauchy-Riemann y el teorema 9.6, g es diferenciable en D. 
Entonces, para alguna función G, G0(z) D g(z) para z en D. Escriba

G(z) D U(x, y) C iV (x, y).

Ahora

Por tanto,

y

en D. Entonces, para alguna constante K,

U(x, y) D u(x, y) C K.

13.4 Funciones armónicas y el problema de Dirichlet 543
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Sea f (z) D G(z) ฀ K. Entonces f es diferenciable en todos los puntos de D. Más aún,

f (z) D G(z) ฀ K D U(x, y) C iV (x, y) ฀ K D u(x, y) C i (x, y).

Por tanto, puede elegir (x, y) D V(x, y), probando el teorema. ■

Dada una función armónica u, no estará interesado realmente en obtener una conjugada armónica . 
Sin embargo, explotará el hecho de que existe tal función para obtener una función compleja diferenciable 
f D u C i , dada u armónica. Esto permite aplicar los métodos de funciones complejas a los problemas  
de Dirichlet. Como preliminar, se obtendrán dos propiedades importantes de las funciones armónicas.

TEOREMA 13.8 Propiedad del valor medio

Sea u armónica en un dominio D. Sea (x0, y0) cualquier punto de D y sea C un círculo de radio r con centro 
en (x0, y0), contenido en D y que encierra solamente puntos de D. Entonces

0 0
1

2

2

0
0 cos 0 sen

Conforme  varía de 0 a 2  (x0 C r cos( ), y0 C r sen( )) se mueve una vez alrededor del círculo de 
radio r con centro en (x0, y0). La conclusión del teorema se llama la propiedad del valor medio debido a 
que establece que el valor de una función armónica en el centro de cualquier círculo en el dominio es el 
promedio de sus valores en el círculo.

Prueba Para alguna , f D u Cui  es diferenciable en D. Sea z0 D x0 Cuiy0. Por la fórmula de la integral 
de Cauchy,

0 0 0 0 0
1

2 0

1

2

2

0

0

1

2

2

0
0 cos 0 sen

2

2

0
0 cos 0 sen

Tomando la parte real e imaginaria de ambos lados de esta ecuación, obtiene la conclusión del teo- 
 rema. ■

Si D es un dominio acotado, entonces el conjunto 
—
D que consiste en D junto con todos los puntos 

frontera de D se llama la cerradura de D. El conjunto 
—
D es cerrado y acotado por tanto, es un conjunto 

compacto. Si u(x, y) es continua en 
—
D, entonces u(x, y) debe alcanzar un valor máximo en D. Si u también 

es armónica en D, ese máximo debe alcanzarse en un punto frontera de D. Esto recuerda el teorema del 
módulo máximo, del cual se sigue.

TEOREMA 13.9

Sea D un dominio acotado. Suponga que u es continua en 
—
D y armónica en D. Entonces u(x, y) alcanza su 

valor máximo en D en un punto frontera de D. ■

Prueba Primero construya  de manera que f D u C i  sea diferenciable en D. Defina

g(z) D e f (z)



para todo z en 
—
D. Entonces g es diferenciable en D. Por el teorema del módulo máximo, cg(z)c alcanza su 

máximo en un punto frontera de D. Pero

Como eu(x,y) es una función real estrictamente creciente, eu(x,y) y u(x, y) deben alcanzar sus valores máxi-
mos en el mismo punto. Por tanto, u(x, y) debe alcanzar su máximo en un punto frontera de D. ■

Por ejemplo, u(x, y) D x2 ฀ y2 es armónica en el disco unitario abierto x2 C y2  1, y continua en 
su cerradura x2 C y2 � 1. Esta función debe, por tanto, alcanzar su valor máximo para x2 C y2 � 1 en un 
punto frontera del disco, a saber en un punto para el cual x2 C y2 D 1. Este valor máximo es 1, alcanzado 
en (1, 0) y en (฀1, 0).

13.4.1 Solución a problemas de Dirichlet mediante mapeos conformes

Busque usar los mapeos conformes para resolver los problemas de Dirichlet. La estrategia consiste en 
resolver primero el problema de Dirichlet para un disco. Una vez hecho esto, intentará resolver el pro-
blema de Dirichlet para otro dominio D construyendo un mapeo conforme entre el disco unitario y D, y 
aplicando este mapeo a la solución para el disco.

En la sección 7.3 se obtuvo la fórmula de la integral de Poisson para la solución del problema de 
Dirichlet para un disco, mediante los métodos de Fourier. Usaremos los métodos de funciones complejas 
para obtener una forma de esta solución que es particularmente apropiada para usar con los mapeos con-
formes.

Busque una función u que sea armónica en el disco �D : czc  1 y que tome valores dados u(x, y) D  
g(x, y) en la frontera del círculo. Suponga que u es armónica en el disco, ligeramente más grande czc   
1 C . Si  es una conjugada armónica de u, entonces f D u C i  es diferenciable en este disco. Si es nece-
sario sume una constante, elija  tal que (0, 0) D 0.

Desarrolle f en una serie de Maclaurin

 0  (13.7)

Entonces

Re
1

2

1

2
0

0
1

2
1

Ahora sea  en el círculo unitario  . Entonces c c2 D — D 1, así — D 1 /  y la serie es

0
1

2
1

Multiplique esta ecuación por m / 2 i e integre sobre . Dentro del disco abierto de convergencia, se pue-
den intercambiar la serie y la integral. Obtiene

 

1

2
0

2

1

2

1

2
1  

(13.8)

Recuerde que
0 si 1

2 si 1

13.4 Funciones armónicas y el problema de Dirichlet 545

0



CAPÍTULO 13   Mapeos conformes546

Por tanto, si m D ฀1 en la ecuación (13.8), tiene

1

2

1
0

Si m D ฀n ฀ 1 con n D 1, 2, 3, . . . , obtiene

1

2
1 1

2

Sustituya estos coeficientes dentro de la ecuación (13.7) para obtener

0

1

2

1

1

1 1

1

2
1 2

1

Como czc  1 y c c D 1, entonces cz / c  1 y la serie geométrica en esta ecuación converge:

1
1

Entonces

1

2
1

2 1 1

2

1

Si u(  ) D g(  ), son los valores dados para u en la frontera del disco unitario, entonces, para czc  1,

 
Re Re

1

2

1

 
(13.9)

Esta es una fórmula integral para la solución del problema de Dirichlet para el disco unitario. Queda como 
ejercicio para el alumno recuperar la fórmula de la integral de Poisson a partir de esta expresión haciendo 
z D rei  y  D ei .

La ecuación (13.9) es apropiada para resolver ciertos problemas de Dirichlet mediante mapeos con-
formes. Suponga que conoce un mapeo conforme, uno a uno y diferenciable T : D ! 

�
D, donde 

�
D es el 

disco unitario c c  1 en el plano . Suponga que T mapea C, la frontera de D, sobre el círculo unitario 
�
C que acota a 

�
D y que T฀1 también es un mapeo conforme diferenciable.

Para continuar esta discusión, use  para denotar un punto arbitrario de 
�
C,  para un punto en C, y  

(�x, �y ) para un punto en el plano  (figura 13.39).
Ahora considere un problema de Dirichlet para D:

2

2

2

2 0 para en

para en

FIGURA 13.39
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Si  D T(z), entonces z D T฀1( ) y defina

1

en el plano , ahora tiene un problema de Dirichlet para el disco unitario:

2

2

2

2 0 para en

para en

Por la ecuación (13.9) la solución de este problema para el disco unitario es la parte real de

1

2

1

Finalmente, recuerde que T mapea C sobre 
�
C, sea  D T ( ) para  en C para obtener

Re Re
1

2

1

Como �g(T( )) D g(T ฀1(T( )) D g( ), tiene la solución

 
Re Re

1

2  (13.10)

Esto resuelve el problema de Dirichlet para el dominio original D.
Para ilustrar esta técnica, resuelva el problema de Dirichlet para el semiplano derecho:

2

2

2

2 0 para 0

0 para

Necesita un mapeo conforme del semiplano derecho al disco unitario. Hay muchos de tales mapeos. 
Por el ejemplo 13.16, use

1

1

Calcule

2

1 2

De la ecuación (13.10), la solución es la parte real de

1

2

1 1 1 1

1 1 1 1

1

1 1

2

1 2

1 1 1
2 1
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La frontera C del semiplano derecho es el eje imaginario y no es una curva cerrada. Parametrice C como  
D (0, t) D it, con t variando de 1 a ฀1 para obtener la orientación positiva en C (conforme camina sobre 
el eje, D está sobre su hombro izquierdo). Obtiene

1
0

1 1

1 2

1
0

1 1

1 2

La solución es la parte real de esta integral. Ahora t, u(0, ) y 1 / (1 C t2) son reales, de manera que con-
céntrese en el término que contiene a i y z D x C iy:

1 1 1

2

2 2

La parte real de esta expresión es

1 2

2 2

Por tanto,

Re
1

0
1 2

2 2

1

1 2

1
2 2

Esta es una fórmula integral para la solución del problema de Dirichlet para el semiplano derecho.

 1.  Usando los métodos de las funciones complejas, escriba 
una solución integral para el problema de Dirichlet para el 
semiplano superior Im(z)  0.

 2.  Usando los métodos de las funciones complejas, escriba 
una solución integral para el problema de Dirichlet para el 
primer cuadrante Re(z)  0, Im(z)  0, si las condiciones 
en la frontera son u(x, 0) D f (x) y u(0, y) D 0.

 3.  Escriba una solución integral para el problema de Dirichlet 
para el disco cz ฀ z0c  R.

 4.  Escriba una fórmula para la solución del problema de Di-
richlet para el semiplano derecho si la condición en la fron-
tera está dada por

0
1 para 1 1

0 para 1

 5.  Escriba una fórmula para la solución del problema de Di-
richlet para el disco unitario si la condición en la frontera está 
dada por u(x, y) D x ฀ y para (x, y) en el círculo unitario.

 6.  Escriba una fórmula para la solución del problema de Di-
richlet para el disco unitario si la condición en la frontera 
está dada por

1 para 0 4

0 para 4 2

 7.  Escriba una fórmula para la solución del problema de Di-
richlet para la banda ฀1  Im(z)  1, Re(z)  0 si la con-
dición en la frontera está dada por

u(x, 1) D u(x, ฀1) D 0 para 0  x  1
u(0, y) D 1 ฀ cyc para ฀1 � y � 1.

 8.  Escriba una fórmula integral para la solución del problema 
de Dirichlet para la banda ฀1  Re(z)  1, Im(z)  0 si la 
condición en la frontera está dada por

u(x, 0) D 1 para ฀1  x  1
u(฀1, y) D u(1, y) D e฀y para 0  y  1.

SECCIÓN 13.4 PROBLEMAS

.

.

idt



13.5 Modelos de funciones complejas de flujo de fluido plano

Aqui se trata cómo las funciones complejas y la integración son usadas en la modelación y el análisis del 
flujo de los fluidos.

Considere un fluido incompresible, tal como el agua bajo condiciones normales. Suponga que tiene 
un campo de velocidad V(x, y) en el plano y que el flujo depende solamente de dos variables, supone que 
el flujo es el mismo en todos los planos paralelos al plano complejo. Un flujo así se llama plano paralelo. 
Este vector velocidad también se supone independiente del tiempo, esta circunstancia se describe diciendo 
que el flujo es estacionario.

Escriba

V(x, y) D u(x, y)i C (x, y)j.

Debido a que puede identificar vectores y números complejos, escriba, por un abuso moderado de nota-
ción, el vector velocidad como una función compleja

V (z) D V (x C iy) D u(x, y) C i (x, y).

Dado V (z), parece que el plano complejo está dividido en dos conjuntos. El primero es el dominio D 
en donde está definido V . El complemento de D consiste en todos los números complejos que no están en 
D. Piense en el complemento como canales contenedores confinando el fluido a D o como barreras por las 
cuales el fluido no puede correr. Esto permite modelar el flujo de un fluido por medio de una variedad de 
configuraciones y alrededor de barreras de distintas formas.

Suponga que  es una trayectoria cerrada en D. Del análisis vectorial, si parametriza  por x D x(s),  
y D y(s), con s la longitud de arco a lo largo de la trayectoria, entonces el vector x0(s)i C y0(s)j es un vector 
tangente unitario de , y

i j i j

Este es el producto punto de la velocidad con la tangente a la trayectoria, por lo cual interpreta

como una medida de la velocidad del fluido a lo largo de . El valor de esta integral se llama la circulación 
del fluido a lo largo de .

El vector ฀y 0(s)i C x 0(s)j es un vector unitario normal a , siendo perpendicular al vector tangente 
(figura 13.40). Por tanto

i j i j

es el negativo de la integral de la componente normal de la velocidad a lo largo de la trayectoria. Cuan- 
do esta integral no es cero, se llama el flujo del fluido a través de la trayectoria. Esto da una medida del 

FIGURA 13.40

2
TN
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flujo del fluido a través de  fuera de la región acotada por . Cuando este flujo es cero para toda trayec-
toria cerrada en el dominio del fluido, éste se llama solenoidal.

Un punto z0 D (x0, y0) es un remolino del fluido si la circulación tiene un valor constante distinto de 
cero en toda trayectoria cerrada alrededor de z0 en el interior de algún disco agujereado 0  cz ฀ z0c  r. 
El valor constante de la circulación es la energía del remolino.

Si  ฀u dx C udy tiene el mismo valor positivo k para toda trayectoria cerrada alrededor de z0 en 
algún disco agujereado alrededor de z0, entonces llamamos a z0 una fuente de energía k; si k es negativo, 
z0 es un sumidero de energía ckc.

La conexión entre el campo de velocidad de un fluido y las funciones complejas es proporcionado 
por el siguiente.

TEOREMA 13.10

Sean u y  continuas con primera y segunda derivadas parciales continuas en un dominio simplemente 
conexo D. Suponga que ui C j es irrotacional y solenoidal en D. Entonces u y ฀ satisfacen las ecuacio-
nes de Cauchy-Riemann en D, y f (z) D u(x, y) ฀ui (x, y) es una función compleja diferenciable en D.

Recíprocamente, si u y ฀  satisfacen las ecuaciones de Cauchy-Riemann en D, entonces ui C j 
define un flujo irrotacional, solenoidal en D.

Prueba Sea  cualquier trayectoria cerrada en D. Si M es el interior de , entonces todo punto en M 
también está en D por la hipótesis que D es simplemente conexo. Por el teorema de Green,

0

ya que el flujo es irrotacional. Pero el flujo también es solenoidal, de manera que, nuevamente por el 
teorema de Green,

0

Debido a que M puede ser cualquier conjunto de puntos en D acotado por una trayectoria cerrada, los 
integrandos en ambas de estas integrales dobles deben ser cero en todo D, de donde

y

Por el teorema 9.6, f (z) D u(x, y) ฀ i (x, y) es diferenciable en D.
El recíproco se sigue por un argumento similar. ■

El teorema 13.9 nos enseña algo sobre los flujos irrotacionales y solenoidales. Si el flujo es irrotacional, 
entonces

i j k 0

como se muestra en la prueba del teorema. Este rot es el vector normal al plano del flujo. El rot de ui Cu j 
es dos veces la velocidad angular de la partícula del fluido en (x, y). El hecho que este rot es cero para un 
flujo irrotacional significa que las partículas del fluido pueden experimentar traslaciones y distorsiones en 
su movimiento, pero no rotaciones. No hay efecto de remolino en el fluido.

Si el flujo es solenoidal, entonces

i j 0

Otra conexión entre los flujos y las funciones complejas es proporcionada por el siguiente.



TEOREMA 13.11

Sea f una función diferenciable definida en un dominio D. Entonces f 0 (z) es un flujo irrotacional, solenoi-
dal en D.

Recíprocamente, si V D ui Cu j es un campo vectorial irrotacional, solenoidal en un dominio sim-
plemente conexo D, entonces existe una función compleja diferenciable f definida en D tal que f 0 (z) D V. 
Más aún, si f (z) D (x, y) C i (x, y), entonces

y

Queda la prueba de este resultado al alumno. En vista de que f 0 (z) es la velocidad del flujo, f es un 
potencial complejo del flujo.

El teorema 13.11 implica que cualquier función diferenciable f (z) D (x, y) C i (x, y) definida en un 
dominio simplemente conexo determina un flujo irrotacional y solenoidal.

Llame  al potencial de velocidad del flujo, y las curvas (x, y) D k se llaman las curvas equipotencia-
les. La función  se llama función de corriente del flujo, y las curvas (x, y) D c se llaman las líneas de 
corriente.

Puede pensar en  D f (z) como un mapeo conforme siempre que f 0(z) p 0. Un punto en donde  
f 0(z) D 0 se llama un punto estacionario del flujo. Piense en f como un mapeo en el plano , tiene

 D f (z) D (x, y) C i (x, y) D  C i .

Las curvas equipotenciales (x, y) D k se mapean bajo f en rectas verticales  D k, y las líneas de corriente 
(x, y) D c se mapean en rectas horizontales  D c. Como estos conjuntos de rectas verticales y horizon-

tales son mutuamente ortogonales en el plano , las líneas de corriente y las curvas equipotenciales en el 
plano z también forman familias ortogonales. Cada línea de corriente es ortogonal a cada curva equipo-
tencial en cualquier punto donde se corten. Esta conclusión falla en un punto estacionario, donde el mapeo 
puede no ser conforme.

A lo largo de una curva equipotencial (x, y) D k,

0

Ahora ui C j es la velocidad del flujo en (x, y) y x 0(s)i C y 0(s)j es una tangente unitaria a la curva equi-
potencial en (x, y). Como el producto de estos dos vectores es cero del hecho que d  D 0 a lo largo de la 
curva equipotencial, concluya que la velocidad es ortogonal a la curva equipotencial en (x, y), siempre que 
(x, y) no sea un punto estacionario.

Análogamente, a lo largo de una línea de corriente (x, y) D c,

0

de manera que la normal al vector velocidad es ortogonal a la línea de corriente. Esto significa que la 
velocidad es tangente a la línea de corriente y justifica la interpretación de que la partícula del fluido en  
(x, y) se está moviendo en la dirección de la línea de corriente en ese punto. Por tanto, interprete las líneas 
de corriente como las trayectorias de las partículas en el fluido. Si se colocara en una partícula podría 
cabalgar a lo largo de una línea de corriente. Por esta razón, las gráficas de las líneas de corriente forman 
una figura de los movimientos de las partículas del fluido.

El resto de esta sección está dedicado a algunas ilustraciones de estas ideas.
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EJEMPLO 13.23

Sea f (z) D ฀Kei z, en donde K es una constante positiva y 0 �  � 2 .
Escriba

 f (z) D ฀K[cos( ) C i sen( )][x C iy]
u D ฀K[x cos( ) ฀ y sen( )] ฀ iK[y cos( ) C x sen( )].

Si f (z) D (x, y) C i (x, y), entonces

(x, y) D ฀K[x cos( ) ฀ y sen( )]

y

(x, y) D ฀K[y cos( ) C x sen( )].

Las curvas equipotenciales son gráficas de

(x, y) D ฀K[x cos( ) ฀ y sen( )] D constante.

Como K es constante, las curvas equipotenciales son gráficas de

x cos( ) ฀ y sen( ) D k,

o

y D cot( )x C b,

en donde b D k csc( ) es constante. Estas son rectas con pendiente cot( ).
Las líneas de corriente son gráficas de

y D ฀tan( )x C d,

rectas con pendiente ฀tan( ). Estas rectas forman un ángulo  ฀u  con el eje real positivo, como en la 
figura 13.41. Estas son las trayectorias del flujo, que pueden pensarse como moviéndose a lo largo de 
estas rectas. Las líneas de corriente y las curvas equipotenciales son ortogonales, siendo sus pendientes 
recíprocas negativas.

Ahora calcule

Esto implica que la velocidad es de magnitud constante K.
En resumen, f modela un flujo uniforme con velocidad de magnitud constante K y forma un ángulo  

 ฀  con el eje real positivo, como en la figura 13.41. ■

EJEMPLO 13.24

Considere el flujo representado por el potencial complejo f (z) D z2. Esta función es diferenciable para 
todo z, pero f 0(0) D 0, así el origen es un punto estacionario. Vea qué efecto tiene esto en el flujo y deter-
mine las trayectorias.

Con z D x C iy, f (z) D x2 ฀ y2 C 2ixy, así

(x, y) D x2 ฀ y2 y (x, y) D 2xy.

Las curvas equipotenciales son las hipérbolas

x2 ฀ y2 D k



si k p 0. Las líneas de corriente son las hipérbolas

xy D c

si c p 0. En la figura 13.42 se muestran algunas curvas de estas familias.
Si k D 0 las curvas equipotenciales son la gráfica de x2 ฀ y2 D 0, formada por dos rectas y D x y  

y D ฀x por el origen. Si c D 0 las líneas de corriente son los ejes x D 0 y y D 0.
La velocidad del flujo es f 0 (z) D 2z–. f modela un flujo no uniforme con velocidad de magnitud 2czc  

en z. Puede interpretar este flujo como un fluido moviéndose a lo largo de las líneas de corriente. En cual-
quier cuadrante, las partículas se mueven a lo largo de las hipérbolas xy D c, con los ejes actuando como 
las barreras del flujo (piense en los lados de un recipiente que contiene el fluido). ■

EJEMPLO 13.25

Analizará el potencial complejo

2
Log

Aquí K es un número positivo y Log(z) denota esa rama del logaritmo definida por Log(z) D 1
2  ln(x2 Cu

y2) C i , donde  es el argumento de z en 0 �   2  para z p 0. Si z D x C iy, entonces

2

1

2
ln 2 2

2 4
ln 2 2

Ahora

2
y

4
ln 2 2

Las curvas equipotenciales son gráficas de  D constante, y éstas son las semirectas desde el origen y que 
forman un ángulo  con el eje real positivo. Las líneas de corriente son gráficas de (x, y) D constante, 
y éstas son círculos alrededor del origen. Como las líneas de corriente son trayectorias del fluido, las 
partículas se mueven en círculos alrededor del origen. En la figura 13.43 se muestran algunas líneas de 
corriente y curvas equipotenciales.

FIGURA 13.41  

Líneas de corriente 
del flujo con potencial 
complejo f (z) D ฀Kei z.

Q

y

x

FIGURA 13.42 

Curvas equipotenciales y 
líneas de corriente del flujo con 
potencial complejo f (z) D z2.
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Es fácil verificar que f 0(z) D (iK / 2 )(1 / z) si z p 0. En un círculo czc D r, la magnitud de la velocidad 
del fluido es

2

1

2

La velocidad crece conforme r ! 0, de manera que tiene partículas del fluido arremolinándose en el ori-
gen, con velocidad creciente hacia el centro (origen) (figura 13.44). El origen es un remolino del flujo.

Para calcular la circulación del flujo alrededor del origen, escriba

2

1

2 2 2 2 2 2 2 2

Si  es el círculo de radio r alrededor del origen, entonces en  , x D r cos( ) y y D r sen( ), así

2

0 2

sen
2 sen

2

cos
2 cos

2

2

0

Este es el valor de la circulación en cualquier círculo alrededor del origen.
Por un cálculo semejante, obtenga

 ฀ dx C udy D 0,

así el origen no es ni una fuente ni un sumidero.
En este ejemplo restringe czc  R y piense en un cilindro sólido alrededor del origen como barrera, 

con el fluido arremolinándose alrededor de este cilindro (figura 13.45). ■

EJEMPLO 13.26

Puede intercambiar los papeles de las líneas de corriente y las curvas equipotenciales en el ejemplo ante-
rior haciendo

f (z) D K Log(z),

con K una constante positiva. Ahora

2
ln 2 2

FIGURA 13.43 Líneas de corriente 
y líneas equipotenciales del flujo 
con potencial complejo  
f (z) D (iK / 2 )Log(z).

y

x

Líneas de
corriente

Líneas
equipotenciales

y

x

FIGURA 13.44  

Líneas de corriente 
del flujo con potencial 
complejo f (z) D 
(iK / 2 )Log(z).



así

2
ln 2 2 y

Las curvas equipotenciales son círculos alrededor del origen y las líneas de corriente son semirectas que 
salen del origen (figura 13.46). Como deben ser, estos círculos y líneas forman familias ortogonales de 
curvas. La velocidad de este flujo es

2 2 2 2

Sea  un círculo de radio r alrededor del origen. Ahora encuentre que

0

y

2

El origen es una fuente de energía 2 K. Piense en partículas del fluido manando desde el origen, movién-
dose a lo largo de rectas con velocidad decreciente conforme crece su distancia del origen. ■

EJEMPLO 13.27

Modelará un flujo alrededor de una barrera elíptica. Del ejemplo 13.25, el potencial complejo f (z) D 
(iK / 2 )Log(z) para czc  R modela el flujo con circulación ฀K alrededor de una barrera cilíndrica de 
radio R alrededor del origen. Para modelar el flujo alrededor de una barrera elíptica, mapee el círculo  
czc D R conformemente en la elipse. Para esto, considere el mapeo

2

en donde a es una constante positiva. Este se llama una transformación de Joukowski, y se usa para ana-
lizar flujo de fluido alrededor de las alas de un aeroplano debido a las imágenes distintas del círculo que 
resulta de hacer distintas elecciones de a.

Sean z D x C iy y  D X C iY . El círculo x2 C y2 D R2 es mapeado en la elipse

2

1 2

2

1 2
2

siempre que a p R. En la figura 13.47 se muestra esta elipse. Si a D R, el círculo mapea en [฀2a, 2a] en 
el eje real.
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FIGURA 13.45 Flujo alrededor 
de una barrera cilíndrica de 
radio R.

y

x

Líneas de

corriente

Curvas

equipotenciales

FIGURA 13.46 Curvas 
equipotenciales y líneas de corriente 
para el potencial f (z) D K Log(z).

y

x
�z��= R

�
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Resuelva para z en la transformación de Joukowski. Como es una ecuación cuadrática, tiene dos 
soluciones, y elija

2 4 2

2

Componga este mapeo con la función compleja potencial para la barrera circular en el ejemplo 13.25. 
Obtiene

2    

2 4 2

2

Esto es un potencial complejo para el flujo en el plano  alrededor de una barrera elíptica si R  a, y 
alrededor del plato plano ฀2a � X � 2a, Y D 0 si R D a. ■

Esta sección concluye con una aplicación de integración compleja a un flujo de fluido. Suponga que f 
es un potencial complejo para un flujo alrededor de una barrerra cuya frontera es una trayectoria cerrada . 
Suponga que el empuje del fluido fuera de la barrera está dado por el vector Ai C Bj. Entonces un teorema 
de Blasius asegura que

1

2
2

en donde  es la densidad constante del fluido. Más aún, el momento del empuje alrededor del origen está 
dado por

Re
1

2
2

En la práctica, estas integrales usualmente son evaluadas mediante el teorema del residuo.

z w

z R

w z a2

z

FIGURA 13.47 Transformación  
de Joukowski mapeando un círculo 
en una elipse.

SECCIÓN 13.5 PROBLEMAS

 1.  Analice el flujo dado por el potencial complejo f (z) D az, en 
donde a es una constante compleja distinta de cero. Dibuje 
algunas curvas equipotenciales y líneas de corriente, y deter-
mine la velocidad y si el flujo tiene alguna fuente o sumidero.

 2.  Analice el flujo con potencial f (z) D z3. Dibuje algunas cur-
vas equipotenciales y líneas de corriente.

 3.  Dibuje algunas curvas equipotenciales y líneas de corriente 
para el flujo con potencial f (z) D cos(z).

 4.  Dibuje algunas curvas equipotenciales y líneas de corriente 
para el flujo con potencial f (z) D z C iz2.

 5.  Analice el flujo con potencial f (z) D K Log(z ฀ z0), en don-
de K es una constante real distinta de cero y z0 es un número 
complejo dado. Pruebe que z0 es una fuente para este flujo 

si K 0 y un sumidero si K 0. Dibuje algunas curvas 
equipotenciales y líneas de corriente del flujo.

 6.  Analice el flujo con potencial f (z) D K Log(z ฀ua) / (z ฀ 
b), donde K es un número real distinto de cero y a y b son 
números complejos distintos. Dibuje algunas curvas equi-
potenciales y líneas de corriente para este flujo.

 7.  Sea f (z) D k(z C 1 / z), con k un real constante distinto  
de cero. Dibuje algunas curvas equipotenciales y líneas de 
corriente para este flujo. Pruebe que f modela el flujo alre-
dedor de la mitad superior del círculo unitario.

 8.  Sea

2
Log

Log

Log



  en donde m y k son números reales distintos de cero y a y 
b son números complejos distintos. Pruebe que este flujo 
tiene una fuente o sumidero de energía m y un remolino de 
energía k en ambos a y b. (Un punto en donde se combinan 
las propiedades de fuente [o sumidero] y remolino se llama 
un remolino espiral). Dibuje algunas curvas equipotencia-
les y líneas de corriente para este flujo.

 9.  Analice el flujo con potencial

1

2
Log

  en donde k y b con constantes reales distintas de cero. Dibu-
je algunas curvas equipotenciales y líneas de corriente para 
este fluido.

10.  Analice el flujo con potencial

el flujo con potencial

3 Log
2 3

2 3

  con K y a constantes positivas. Pruebe que este potencial 
modela un flujo irrotacional alrededor del cilindro 4x2 C 
4(y ฀ a)2 D a2 con una frontera plana a lo largo del eje y. 
Dibuje algunas curvas equipotenciales y líneas de corriente 
para este flujo.

11.  Use el teorema de Blasius para probar que la fuerza por 
unidad de anchura en el cilindro en el problema 10 tiene 
componente vertical 2 3 2, con  la densidad cons-
tante del fluido.
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CAPÍTULO 1

R1

Respuestas y soluciones a 
problemas seleccionados

Sección 1.1

1.
1

s −1
− 1

s +1
3.

16s
2 +4 2

5.
1

s2
− s

s2 +25
7.

2

s3
+ 8

s2
+ 16

s
9.

6

s4
− 3

s2
+ s

s2 +16
11. −2e−16t

13. 2 cos 4 − 5
4 sen 4 15. 3e7t + t 17. e4t −6te4t 23.

5

1+ e−3s

25. De la gráfica, = 0 si 0 < t ≤ 5 y = 5 si 5 < t ≤ 10 y = 0 si 10 < t ≤ 25. Más aún,

+25 = , así que f es periódica de período T =25. Por tanto £ = 5e−5s 1− e−5s

1− e−25s
.

27.
s2 + 2

1

1− e− 29. = h si 0 < t ≤ a y = 0 si a < t ≤ 2a. Más aún, +2 = , así que f es periódica

de período 2

Eω

ω

a, y = h

1+ e−as
.

Sección 1.2

1. y = 1
4 − 13

4 e−4t 3. y = − 4
17 e−4t + 4

17 cos + 1
17 sen 5. y = − 1

4 + 1
2 t + 17

4 e2t

7. y = 22
25 e2t − 13

5 te2t + 3
25 cos − 4

25 sen 9. y = 1
16 + 1

16 t − 33
16 cos 4 + 15

64 sen 4

Sección 1.3

1.
6

+2 4
− 3

+2 2
+ 2

s +2
3.

1

s
1− e−7s + s

s2 +1
cos 7 −7s − 1

s2 +1
sen 7 −7s

5.
1

s2
− 11

s
e−3s − 4

s2
e−3s 7.

1

s +1
− 2

+1 3
+ 1

+1 2 +1
9.

s

s2 +1
+ 2

s
− s

s2 +1
− 1

s2 +1
e−2πs

11.
s2 +4s −5
2 +4s +13 2

13.
1

s2
− 2

s
− 1

s2
+ 15

s
e−16s 15.

24

+5 5
+ 4

+5 3
+ 1

+5 2
17. e2t sen

19. cos 3 −2 −2 21. 1√
2
e−3t senh

√
2 23. e−3t cosh 2

√
2 − 1

2
√

2
e−3t senh 2

√
2

25. 1
16 1− cos 4 −21 −21 27. y = cos 2 + 3

4 1− cos 2 −4 −4

29. y = − 1
4 + 1

12 e2 −6 + 1
6 e− −6 cos

√
3 −4 −6

31. y = − 1
4 + 2

5 et − 3
20 cos 2 − 1

5 sen 2 + − 1
4 + 2

5 et−5 + 3
20 cos 2 −5 − 1

5 sen 2 −5 −5

33. Eout = 5e−4t +10 1− e−4 −5 −5 35. = k

R
1− e−Rt/L − k

R
1− e− −5 −5

37. £ − − − = K

s
e−as − K

s
e−bs

39. £ h
t −a

b −a
− +h

c − t

c −b
− t −a

b −a
− −h

c − t

c −b
−

= h

b −a

e−as

s2
− −

− −
e−bs

s2
+ h

c −b

e−cs

s2

Sección 1.4

1. 1
16 senh 2 − sen 2 3.

cos − cos

− + si b2 = a2 tsen

2a
si b2 = a2

si



R2

CAPÍTULO 2

Sección 2.1
1. A continuación se muestran las gráfi cas de la segunda, tercera y cuarta suma parcial.

5.
1

a4
1− cos − 1

2a3
t sen 7. 1

2 − 1
2 e−2 −4 −4 9. = e3t ∗ − e2t ∗

11. = 1
4 e6t ∗ − 1

4 e2t ∗ +2e6t −5e2t 13. = 1
3 sen 3 ∗ − cos 3 + 1

3 sen 3

15. = 4
3 et − 1

4 e2t − 1
12 e−2t − 1

3 et ∗ + 1
4 e2t ∗ + 1

12 e−2t ∗ 17. = 1
2 e−2t − 3

2

19. = cosh 21. = 3+ 2
5

√
15et/ 2 sen

√
15t/ 2 23. = 1

4 e−2t + 3
4 e−6t

Sección 1.5

1. y = 3 −2 −2 − e−3 −2 −2 −4 −2 −5 − e−3 −5 −5 3. y = 6 −2t − e−t + te−t

5. = +9 −2t − +6 −3t = 3, 0 = B 7. 3 / 9. 4
11. Eout = 10e−4 −2 −2 −10e−4 −3 −3 13. 0 si − si t ≥ a

15. = m

k
v0 sen

k

m
t

ϕ(t) ϕ πϕ(0)

Sección 1.6

1. = −2+2et/ 2 − = −1+ et/ 2 − t 3. = 4
9 + 1

3 t − 4
9 e3t/ 4 = − 2

3 + 2
3 e3t/ 4

5. = 3
4 − 3

4 e2t/ 3 + 1
2 t2 + 1

2 = − 3
2 e2t/ 3 + t + 3

2 7. = e−t cos + t −1 = e−t sen + t2 − t
9. = 1− e−t −2te−t = 1− e−t

11. y1 = 1
2 et + 1

2 e−t −1− 2 = − 1
4 t2 − 1

2 3 = − 1
6 et + 1

6 e−t − 1
3 t

13. i1 = 1
5 1− 1

2 e−t/ 2 − 2
85

− −4 2 − cos 2 −4 + 9
2 sen 2 −4 −4 y

i2 = 1
10 e−t/ 2 + 2

85
− −4 2 − cos 2 −4 −4 sen 2 −4 −4

15. x1 = 5
36 − 1

20 cos 2 − 4
45 cos 3 − 5

36 − 1
20 cos 2 −2 − 4

45 cos 3 −2 −2 y
x2 = 1

18 − 1
10 cos 2 + 2

45 cos 3 − 1
18 − 1

10 cos 2 −2 + 2
45 cos 3 −2 −2

17. m1y1 = 2 − y1 2y2 = − 2 − y1 1 0 = y1 0 = y2 0 = 0 2 0 = d . Entonces 1s2 + 1 − kY2 = 0 y

2s2 + 2 − kY1 = m2ds . Remplazar Y2 con m1s2+k
k Y1 en la segunda ecuación para obtener 

Y1 = kd

m1
2 + 1 +m2 1m2

. El término cuadrático en el denominador indica que los objetos van a

oscilar con período 2π
m1m2

1 +m2

.

19. i1 = 1
10 e− −1 + 3

20 e− −1 6 −1 2 = − 1
10 e− −1 + 1

10 e− −1 6 −1

21. x1 = 9e−t/ 100 + e−3t/ 50 +3 − −3 100 − e−3 −3 50 −3
x2 = 6e−t/ 100 − e−3t/ 50 + 2e− −3 100 +3e−3 −3 50 −3

Sección 1.7

1. y = −1+ ce−2/t 3. y = 7t2 5. y = ct2e−t 7. y = 4 9. y = 3t2/ 2

Respuestas y soluciones a problemas seleccionados

;
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Sección 2.2

Sección 2.3

Sección 2.4

Respuestas y soluciones a problemas seleccionados

11.
1

3
sen(3) + 6 sen(3)

∞∑

n=1

(−1)n

n2π2 − 9
cos

(nπx

3

)
13. Los coeficientes de Fourier de f y de g son los mismos.

1. La serie de Fourier es
11

18
+

∞∑

n=1

{
1

nπ

[
4 sen

(
2nπ

3

)
− sen

(nπ

3

)]
+ 6

n2π2

[
cos

(
2nπ

3

)
− cos

(nπ

3

)
+ 2(−1)n

]
+

18

n3π3
sen

(nπ

3

)}
cos

(nπx

3

)
+

∞∑

n=1

{
1

nπ

[
4 cos

(
2nπ

3

)
+ cos

(nπ

3

)
− 15(−1)n

]
− 6

n2π2

[
sen

(
2nπ

3

)
+ sen

(nπ

3

)]

− 18

n3π3

[
cos

(nπ

3

)
− (−1)n

]}
sen

(nπx

3

)
; esto converge a 3

2 si x = 3 o si x = −3, a 2x si −3 < x < −2, a −2 si

x = −2, a 0 si −2 < x < 1, a 1
2 si x = 1, y a x2 si 1 < x < 3.

3. Sea αn = nπ/3. La serie de Fourier es
11

3
senh(3) − 2 cosh(3) +

∞∑

n=1

(−1)n

{
senh(3)

[
1

1 + α2
n

+ 4(1 − 3α2
n)

3(1 + α2
n)3

]
+

4(α2
n − 1) cosh(3)

(1 + α2
n)2

}
cos (αnx)+

∞∑

n=1

(−1)n

{
senh(3)

[
6αn

1 + α2
n

+ 4αn(α2
n − 3)

3(1 + α2
n)2

]
− 8αn cosh(3)

(1 + α2
n)2

}
sen(αnx); esto con-

verge a 18 cosh(3) si x = −3 o x = 3, y a x2e−x si −3 < x < 3.

5.
6 + π2

6
+ 2

∞∑

n=1

(−1)n

n2
cos(nx) + 1

π

∞∑

n=1

[(
2

n3
+ 2

n

)
(1 − (−1)n) + π2

n
(−1)n

]
sen(nx); esto converge a 1

2 (π2 + 2)

para x = π o x = −π , a x2 si −π < x < 0, a 1 si x = 0, y a 2 si 0 < x < π .

7.
4

π

∞∑

n=1

1

2n − 1
sen

(
(2n − 1)πx

4

)
; converge a −1 si −4 < x < 0, a 0 ai x = −4, 0 or 4, y a 1 si 0 < x < 4.

9.
1 − e−π

π
+ 2

π

∞∑

n=1

1 − (−1)ne−π

n2 + 1
cos(nx); converge a e−|x| para −π ≤ x ≤ π .

∞

1. Serie en cosenos: 4 (esta función es su propio desarrollo de Fourier en cosenos ), que converge a 4 para 0 ≤ x ≤ 3; serie

en senos:
16

π

∞∑

n=1

1

2n − 1
sen

(
(2n − 1)πx

3

)
, que converge a 0 si x = 0 o x = 3, y a 4 para 0 < x < 3

y a x2e−x si −3 < x < 3.

4, y a 1 si 0 < x < 4.si o

y a 4 para 0 < x < 3

y a 2 si 0 < x < π .

12. −π2/12

���

� ��� ��� ��� ��� ��� ���

���

���

���

���

฀�฀�

1. 4 3.
1

π
senh(π) + 2

π
senh(π)

∞

n=1

(−1)n

n2 + 1
cos(nπx) 5.

16

π

∞

n=1

1

2n − 1
sen((2n − 1)x)

7.
13

3
+

∞

n=1

(−1)n 16

n2π2
cos

nπx

2
+ 4

nπ
sen

nπx

2
9.

3

2
+ 2

π

∞

n=1

1

2n − 1
sen((2n − 1)x)
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11.

13.

Sección 2.5

Sección 2.6

3. serie en cosenos:
1

2
cos(x)− 2

π

∞∑

n=1

(−1)n(2n − 1)

(2n − 3)(2n + 1)
cos

(
(2n − 1)x

2

)
, que converge a 0 si 0 ≤ x < π o x = 2π , a − 1

2

si x = π , y a cos(x) si π < x < 2π ; serie en senos:
2

π

∞∑

n=1

(−1)n(2n − 1)

(2n − 3)(2n + 1)
sen

(
(2n − 1)x

2

)
− 2

π

∞∑

n=2

n

n − 1
sen(nx),

que converge a 0 si 0 ≤ x < π o x = 2π , a − 1
2 si x = π , y a cos(x) si π < x < 2π

5. serie en cosenos:
4

3
+ 16

π2

∞∑

n=1

(−1)n

n2
cos

(nπx

2

)
, que converge a x2 para 0 ≤ x ≤ 2; serie en senos: − 8

π

∞∑

n=1

[
(−1)n

n
+

2(1 − (−1)n)

n3π2

]
sen

(nπx

2

)
, que converge a x2 para 0 ≤ x < 2 y a 0 para x = 2

7. serie en cosenos:
1

2
+

∞∑

n=1

[
4

nπ
sen

(
2nπ

3

)
+ 12

n2π2
cos

(
2nπ

3

)
− 6

n2π2
(1 + (−1)n)

]
cos

(nπx

3

)
, que converge a x

si 0 ≤ x ≤ 2, a 1 si x = 2, y a 2 − x si 2 < x ≤ 3; serie en senos:
∞∑

n=1

[
12

n2π2
sen

(
2nπ

3

)
− 4

nπ
cos

(
2nπ

3

)
+

2

nπ
(−1)n

]
sen

(
nπx

3

)
, que converge a x si 0 ≤ x < 2, a 1 si x = 2, a 2 − x si 2 < x < 3, y a 0 si x = 3

9. serie en cosenos:
5

6
+ 16

π2

∞∑

n=1

[
1

n2
cos

(nπ

4

)
− 4

n3π
sen

(nπ

4

)]
cos

(nπx

4

)
, que converge a x2 si 0 ≤ x ≤ 1, y a 1 si

1 < x ≤ 4; serie en senos:
∞∑

n=1

[
16

n2π2
sen

(nπ

4

)
+ 64

n3π3

(
cos

(nπ

4

)
− 1

)
− 2(−1)n

nπ

]
sen

(nπx

4

)
, que converge a

x2 si 0 ≤ x ≤ 1, a 1 si 1 < x ≤ 4, y a 0 si x = 4

Sean g(x) = 1
2 (f (x) + f (−x)) y h(x) = 1

2 (f (x) − f (−x)). Entonces g es par y h es impar, y f (x) = g(x) + h(x).
1

2
− π

4

3. (a) La serie de Fourier de f en [−π, π ] es
1

4
π +

∞∑

n=1

[
(−1)n − 1

πn2
cos(nx) + (−1)n+1

n
sen(nx)

]
. Esta series converge

a 0 para −π < x < 0, a x para 0 < x < π , y a 1
2 (f (0+) + f (0−)), o 0, en x = 0.

(b) f es continua, por tanto, continua a pedazos en [−π, π ]. Por el teorema 13.5, su serie de Fourier puede integrarse
término a término para llegar a la integral de la suma de la serie de Fourier.

(c) Primero,
∫ x

−π
f (t) dt =

{
0 si − π ≤ x ≤ 0

1
2 x2 si 0 < x ≤ π

.

Esta función está representada por la serie obtenida al integrar la serie de Fourier de −π a x para obtener:
1

4
xπ + 1

4
π2 +

∞∑

n=1

[
(−1)n − 1

πn2

1

n
sen(nx) + (−1)n+1

n

1

n

(
− cos(nx) + (−1)n

)
]

.

5. (a) Para −π ≤ x ≤ π , x sen(x) = π − 1

2
π cos(x) + 2π

∞∑

n=2

(−1)n+1

n2 − 1
cos(nx).

(b) f es continua con primera y segunda derivadas continuas en [−π, π ], y f (−π) = f (π). El teorema 13.6 nos da

x cos(x) + sen(x) = 1

2
π sen(x) + 2π

∞∑

n=2

(−1)n

n2 − 1
n sen(nx) para −π < x < π .

(c) La serie de Fourier de x cos(x) + sen(x) en [−π, π ] es
1

2
π sen(x) +

∞∑

n=2

2n(−1)nπ
1

n2 − 1
sen(nx).

3. Sugerencia: Escriba la definición de f ′(x + p) y use la periodicidad de f . 5. 1 − 2

π

∞∑

n=1

1

n
cos

(
nπx − π

2

)

7. 16 + 48

π2

∞∑

n=1

1

n2

√
1 + n2π2 cos

(nπx

2
+ tan−1(nπ

)
9.

8

π

∞∑

n=1

n

4n2 − 1
cos

(
2nπx − π

2

)

11.
2

π

∞∑

n=1

1

n
cos

(
nπx + π

2
(−1)n

)
13.

3

2
+ 2

π

∞∑

n=1

1

2n − 1
cos

(
(2n − 1)πx

2
+ π

2
(1 − (−1)n)

)

2(1 − (−1)n)

n3π2

]
sen

(nπx

2

)
, que converge a x2 para 0 ≤ x < 2 y a 0 para x = 2

2

nπ
(−1)n

]
sen

(
nπx

3

)
, que converge a x si 0 ≤ x < 2, a 1 si x = 2, a 2 − x si 2 < x < 3, y a 0 si x = 3

+

+

Serie

Serie

Serie

Serie

Esta serie converge

2.5,

4 y a 0 si x = 4

y f (x) = g(x) + h(x).

y f (−π) = f (π). El teorema 2.6 nos da
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i(t) =
∞∑

n=1

120(−1)n+1(10 − n2)π

n2[100n2 + (10 − n2)2]
cos(nt) + 1200(−1)n+1π

n[100n2 + (10 − n2)2]
sen(nt)

1. 3 + 3i

π

∞∑

n=−∞,n �=0

1

n
e2nπix/3 3.

3

4
− 1

2π

∞∑

n=−∞,n �=0

1

n

[
sen

(nπ

2

)
+ i

(
cos

(nπ

2

)
− 1

)]
enπix/2

5.
1

2
+ 3i

π

∞∑

n=−∞,n �=0

1

2n − 1
e(2n−1)πix/2 7.

1

2
− 2

π2

∞∑

n=−∞,n �=0

1

(2n − 1)2
e(2n−1)πix

f (x) = 5

3
+ 5

π

∞∑

n=−∞,n �=0

1

n
sen

(nπ

3

)
enπix/6 y g(x) = 5

3
+ 5i

π

∞∑

n=−∞,n �=0

1

n

{[
cos

(
2nπ

3

)
− 1

]
−

1.
∫ ∞

0

[
2 sen(πω)

πω2
− 2 cos(πω)

ω

]
sen(ωx) dω, que converge a −π

2
si x = −π , a x para −π < x < π , a

π

2
si x = π , y a

0 si |x| > π .

3.
∫ ∞

0

(
2

πω
(1 − cos(πω))

)
sen(ωx) dω, que converge a − 1

2 si x = −π , a −1 si −π < x < 0, to x = 0 si x = 0, to 1 si

0 < x < π , a 1
2 si x = π , y a 0 si |x| > π .

5.
∫ ∞

0

1

πω3
[400ω cos(100ω) + (20,000ω2 − 4) sen(100ω)] cos(ωx) dω, que converge a x2 si −100 < x < 100, to 5000

si x = ±100, y a 0 si |x| > 100.

7.
∫ ∞

0

2

π(ω2 − 1)
[− sen(πω) sen(2πω) cos(ωx)−cos(πω) sen(2πω) sen(ωx)] dω, que converge a sen(x) si −3π ≤ x ≤

π , y a 0 si x < −3π or x > π .

9.
∫ ∞

0

2

π(1 + ω2)
cos(ωx) dω, que converge a e−|x| para todo real x.

1. integral en senos:
∫ ∞

0

4

πω3
[10ω sen(10ω) − (50ω2 − 1) cos(10ω) − 1] sen(ωx) dω;

integral en cosenos:
∫ ∞

0

4

πω3
[10ω cos(10ω)− (50ω2 − 1) sen(10ω)] cos(ωx) dω; ambas integrales convergen a x2

para 0 ≤ x < 10, a 50 si x = 10, y a 0 para x > 10.

3. integral en senos:
∫ ∞

0

2

πω
[1+cos(ω)−2 cos(4ω)] sen(ωx) dω; integral en cosenos:

∫ ∞

0

2

πω
[2 sen(4ω)−sen(ω)] cos(ωx) dω;

ambas integrales convergen a 1 para 0 < x < 1, a
3

2
para x = 1, a 2 para 1 < x < 4, a 1 para x = 4, y a 0 para x > 4.

La integral en cosenos converge a 1 en x = 0, mientras la integral en senos converge a 0 en x = 0.

5. integral en senos:
∫ ∞

0

{
2

πω
[1 + (1 − 2π) cos(πω) − 2 cos(3πω)] + 4

πω2
sen(πω)]

}
sen(ωx) dω; integral en cosenos:

∫ ∞

0

{
2

πω
[(2π − 1) sen(πω) + 2 sen(3πω)] + 4

πω2
[cos(πω) − 1]

}
cos(ωx) dω; ambas integrales convergen a 1+2x

para 0 < x < π , to 1
2 (3 + 2π) para x = π , to 2 para π < x < 3π , to 1 para x = 3π , y a 0 para x > 3π . La integral en

senos converge a 0 para x = 0, mientras la integral en cosenos converge a 1 para x = 0.

7. integral en senos:
∫ ∞

0

2

π

(
ω3

4 + ω4

)
sen(ωx) dω; integral en cosenos:

∫ ∞

0

2

π

(
2 + ω2

4 + ω4

)
cos(ωx) dω; ambas integrales

convergen a e−x cos(x) para x > 0. La integral en cosenos converge a 1 para x = 0, y la integral en senos converge a 0
para x = 0.

Integral

Integral

Integral

Integral

− i sen

(
2nπ

3

)}
enπix/6. f y g tiene la misma frecuencia espectral pero diferente fase espectral.

a x = 0 si x = 0, a 1 si

a 5000

π y a

a 2 para π < x < 3π , ta 1 para x = 3π , y a 0 para x > 3π . La integral en

o x > π.

y a 0 si |x| > 100.

000ω2 − 4) sen(100ω)] cos(ωx) dω, que converge a x2 si −100 < x < 100,

y a 0 si x < −3π or x > π .
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17.       19.

21.

23.

Sección 3.5

9. integral en senos:
∫ ∞

0

2k

πω
[1 − cos(cω)] sen(ωx) dω; integral en cosenos:

∫ ∞

0

2k

πω
sen(cω) cos(ωx) dω; ambas inte-

grales convergen a k para 0 < x < c, to 1
2 k para x = c, y a 0 para x > c. La integral en cosenos converge a k para

x = 0, y la integral en senos a 0 para x = 0.

11. Para todo x,
∫ ∞

0
e−ω cos(ωx) dω = 1

1 + x2
y
∫ ∞

0
e−ω sen(ωx) dω = x

1 + x2
.

1.
i

π

∫ ∞

−∞

⎛
⎜⎝−2ω

(
1 − ω2

)2

((
1 − ω2

)2 + 4ω2
)2

− 8
ω3

((
1 − ω2

)2 + 4ω2
)2

⎞
⎟⎠ eiωx dω; que converge a xe−|x| para todo real x.

3. i

∫ ∞

−∞

(
sen(5ω)

ω2 − π2

)
eiωx dω; que converge a sen(πx) para −5 < x < 5, y a 0 para |x| ≥ 5.

5.
1

π

∫ ∞

−∞

[
−e−1 ω

ω2 + 1
sen(ω) + e−1 1

ω2 + 1
cos(ω) + i

ω2
[ω cos(ω) − sen(ω)]

]
eiωx dω; que converge a x para −1 <

x < 1, a 1
2 (1 + e−1) para x = 1, a 1

2 (−1 + e−1) para x = −1, y a e−|x| para |x| > 1.

7.
1

2π

∫ ∞

−∞

[
−cos(πω/2)

ω2 − 1
+ i

sen(πω/2) − ω

ω2 − 1
+ 1 − ω sen(πω/2)

ω2 − 1
+ i

ω

ω2 − 1
cos (πω/2)

]
eiωx dω; que converge a cos(x)

para 0 < x < π/2, a sen(x) para −π/2 < x < 0, a 0 para |x| > π/2, a 1
2 a x = 0, a − 1

2 en x = −π/2, y a 0 en
x = π/2.

9.
2i

ω
[cos(ω) − 1] 11. −10

ω
e−2ωi sen(ω) 13.

4

1 + 4iω
e−(1+4iω)k/4 15. πe−|ω| 17.

24

16 + ω2
e2iω

27. H(t + 2)e−10−(5−3i)t 29. H(t)[2e−3t − e−2t ]

1

ω3
[50ω2 sen(5ω) + 20ω cos(5ω) − 4 sen(5ω)], tC = 0, tR = 25

3

1. f̂C(ω) = 1

1 + ω2
, f̂S(ω) = ω

1 + ω2

3. f̂C(ω) = 1

2

[
sen(K(1 − ω))

1 − ω
+ sen(K(1 + ω))

1 + ω

]

f̂S(ω) = ω

ω2 − 1
− 1

2

[
cos(K(1 + ω))

1 + ω
− cos(K(1 − ω))

1 − ω

]

5. f̂C(ω) = 1

2

[
1

1 + ((1 + ω)2
+ 1

1 + (1 − ω)2

]

f̂S(ω) = 1

2

[
1 + ω

1 + (1 + ω)2
− 1 − ω

1 + (1 − ω)2

]

7. Las condiciones suficientes son: f ′′ y f (3) continuas en [0, ∞); f (4) continua a pedazos en [0, L] para todo L positivo; y

f (t) → 0, f ′(t) → 0, f ′′(t) → 0; y f (3)(t) → 0 conforme t → ∞. Las necesarias son
∫ ∞

0
|f (t)| dt y

∫ ∞

0

∣∣f ′′(t)
∣∣ dt

convergente.

a

25. 18

√
2

π
e−8t2

e−4it19. 21. 23.

e−4 sen(4ω)
ω

ω2 + 1
− e−4 cos(4ω) − 1

ω2 + 1
+ i

(
[e−4 cos(4ω) − 1] ω

ω2 + 1
+ e−4 sen(4ω)

ω2 + 1

)
, tC = 2, tR = 4

3

− 2

ω3
[−8ω2 sen(2ω) − 4ω cos(2ω) + 2 sen(2ω)] + 2i

1

ω3
[8ω2 cos(2ω) − 4ω sen(2ω)], tC = 0, tR = 4

3

1. πi[H(−ω)e3ω − H(ω)e−3ω] 3.
26

(2 + iω)2
5.

iω

3 + iω
− 1 7.

5π

3
e−2i(ω−3)e−3|ω−3| 9. H(t)te−t

11. 1
4

[
1 − e−2(t+3)

]
H(t + 3) − 1

4

[
1 − e−2(t−3)

]
H(t − 3) 13.

3

2π
e−4it

[
1

9 + (t + 2)2
+ 1

9 + (t − 2)2

]

3π

s
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1.
K

n
[1 − (−1)n] para n = 1, 2, . . . 3. − 2

n3
+ (−1)n

(
2

n3
− π2

n

)
para n = 1, 2, . . .

5.
(−1)nn sen(aπ)

a2 − n2
para n = 1, 2, . . . si a no es un entero; si a = m, es un entero positivo, entonces f̃S(n) =

{
0 si n �= m

π/2 si n = m
.

7.
n

n2 + 1
[1 − (−1)ne−π ] para n = 1, 2, . . . 9. f̃C(n) =

{
π2/2 si n = 0

[(−1)n − 1]/n2 si n = 1, 2, . . .
.

11. f̃C(0) = 1

4
π4, f̃C(n) = 6

n4
+ (−1)n

(
3π2

n2
− 6

n4

)
si n = 1, 2, . . . .

13.
a

a2 − n2
[1 − (−1)n] cos(aπ) para n = 0, 1, 2, . . . , si a no es un entero.

15. Escriba f̃ ′
S(n) =

∫ π

0
f ′(x) sen(nx) dx e integrando por partes.

1. D[u](0) =
5∑

j=0

cos(j) ≈ −.23582,D[u](1) =
5∑

j=0

cos(j)e−πij/3 ≈ 2.9369−.42794i,D[u](2) =
5∑

j=0

cos(j)e−2πij/3 ≈

.13292 − 1.6579 × 10−2i, D[u](3) =
5∑

j=0

cos(j)e−πij ≈ 9.6238 × 10−2, D[u](4) =
5∑

j=0

cos(j)e−4πij/3 ≈

.13292 + 1.6579 × 10−2i, D[u](−1) =
5∑

j=0

cos(j)eπij/3 ≈ 2.9369 + .42794i, D[u](−2) =
5∑

j=0

cos(j)e2πij/3 ≈

.13292 + 1.6579 × 10−2i, D[u](−3) =
5∑

j=0

cos(j)eπij ≈ 9.6238 × 10−2, D[u](−4) =
5∑

j=0

cos(j)e4πij/3 ≈

.13292 − 1.6579 × 10−2i

3. D[u](0) =
5∑

j=0

1

j + 1
= 2.45, D[u](1) =

5∑

j=0

1

j + 1
e−πij/3 ≈ .81667− .40415i, D[u](2) ≈ .65− .17321i, D[u](3) ≈

.61667, D[u](4) ≈ .65 + .17321i, D[u](−1) ≈ .81667 + .40415i, D[u](−2) ≈ .65 + .17321i, D[u](−3) ≈ .61667,
D[u](−4) ≈ .65 − .17321i

5. D[u](0) = 55, D[u](1) ≈ −6.0 + 31.177i, D[u](2) ≈ −14.0 + 10.392i, D[u](3) = 15, D[u](4) ≈ −14.0 − 10.392i,
D[u](−1) ≈ −6.0 − 31.177i, D[u](−2) ≈ −14.0 − 10.392i, D[u](−3) ≈ −15, D[u](−4) ≈ −14.0 + 10.392i

7. La inversa es {uj }5
j=0, donde u0 = 1

6

5∑

k=0

(1 + i)k ≈ −1.3333 + .16667i, u1 = 1
6

5∑

k=0

(1 + i)keπik/3 ≈ −.42703

+ .54904i, u2 ≈ −1.6346 × 10−2 + .561i, u3 ≈ .33333 + .5i, u4 ≈ .84968 + .27233i, y u5 ≈ 1.5937 − 2.049i

9. u0 = 1

7

6∑

k=0

e−ik ≈ .10348 + 1.4751 × 10−2i, u1 = 1
7

6∑

k=0

e−ike2πik/7 ≈ .93331 − .29609i, u2 ≈ −9.4163 ×

10−2 + 8.8785 × 10−2i, u3 ≈ −2.3947 × 10−2 + 6.2482 × 10−2i, u4 ≈ 4.3074 × 10−3 + 5.1899 × 10−2i,
u5 ≈ 2.5788 × 10−2 + 4.3852 × 10−2i, u6 ≈ 5.1222 × 10−2 + 3.4325 × 10−2i

11. u0 ≈ −.1039, u1 ≈ .42051 + .29456i, u2 ≈ .13143 + 3.1205 × 10−2i,
u3 ≈ .13143 − 3.1205 × 10−2i, u4 ≈ .42051 − .29456i

13. Los coeficientes de Fourier son dk = 1

2

∫ 2

0
cos(ξ)e−πkiξ dξ = −1

2

sen(2)

π2k2 − 1
+ kπi

2

cos(2) − 1

π2k2 − 1
. Para la aproximación

TFD, elija N = 128, y aproxime a dk por fk = 1
128

127∑

j=0

cos(j/64)e−πijk/64.

Entonces
d0 = 1

2 sen(2) ≈ 0.45465, f0 ≈ 0.46017

d1 ≈ −5.1259 × 10−2 − .2508i y f1 ≈ −4.5737 × 10−2 − .25075i

d2 ≈ −1.1816 × 10−2 − .11562i y f2 ≈ −6.2931 × 10−3 − .11553i

d3 ≈ −5.1767 × 10−3 − 7.5984 × 10−2i y f3 ≈ 3.4589 × 10−4 − 7.5849 × 10−2i

�

�

�

�

�

�

�

�

�

�

�

�

TDF,

0.2508i
0.11562i

y f1 ≈ −4.5737 × 10−2 −
y f2 ≈ −6.2931 × 10−3 −

0.13143 0.42051 − 0.29456i
0.1039,, u1 ≈

0.25075i
0.11553i

− 3.1205 × 10−2i, u4 ≈
0.42051 + 0.29456i, u2 ≈ 0.13143 + 3.1205 × 10−2i,

−0.23582, �[u](1) =
5∑

j=0

cos(j)e−πij/3 ≈ 2.9369−.427942.9369 − 0.42794i, �[u](2) =
5∑

j=0

cos(j)e−2πij/3 ≈

0.13292 − 1.6579 × 10−2i, D[u](3) =
5∑

j=0

cos(j)e−πij ≈ 9.6238 × 10−2, D[u](4) =
5∑

j=0

cos(j)e−4πij/3 ≈� �

0.13292 + 1.6579 × 10−2i, D[u](−1) =
5∑

j=0

cos(j)eπij/3 ≈ 2.9369 +� 0.42794i, �[u](−2) =
5∑

j=0

cos(j)e2πij/3 ≈

0.13292

0.13292

+ 1.6579 × 10−2i, D[u](−3) =
5∑

j=0

cos(j)eπij ≈ 9.6238 × 10−2, D[u](−4) =
5∑

j=0

cos(j)e4πij/3 ≈

2

� �

− 1.6579 × 10−2i

D[u](1) =
5∑

j=0

1

j + 1
e−πij/3 ≈ 0.81667 − 0.40415i, �[u](2) ≈ 0.65 − 0.17321i, �[u](3) ≈�

0.61667, �[u](4) ≈ 0.65 + 0.17321i, �[u](−1) ≈ 0.81667 + 0.40415i, �[u](−2) ≈ 0.65 + 0.17321i, �[u](−3) ≈ 0.61667,
�[u](+4) ≈ 0.65 − 0.17321i

0.16667i, u1 = 1
6

5∑

k=0

(1 + i)keπik/3 ≈ −.4−0.42703

+0.54904i, u2 ≈ −1.6346 × 10−2 + 0.561i, u3 ≈ 0.33333 + 0.5i, u4 ≈ 0.84968 + 0.27233i, y u5 ≈ 1.5937 − 2.049i

0.10348 + 1.4751 × 10−2i, u1 = 1
7

6∑

k=0

e−ike2πik/7 ≈ 0.93331 − 0.29609i, u2 ≈ −9.4163 ×
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1. La serie de Fourier compleja es 2 +
∞∑

k=−∞,k �=0

i

πk
eπikt , so S10( 1

8 ) = 1.0207 + 1.6653 × 10−16i. Aproximadamente

S10( 1
8 ) ≈ 1

128
∑127

k=−0 Vke
πik/8, que es 1.0552+10−14i;

∣∣∣1.0207 + 1.6653 × 10−16i − (1.0552 − 2.0983 × 10−16i)

∣∣∣ =
0.003452.

3. La serie de Fourier compleja es
∞∑

k=−∞

[
−1

2

sen(2)

π2k2 − 1
+ i

2
kπ

cos(2) − 1

π2k2 − 1

]
eπikt . Entonces S10( 1

8 ) = 1.0672−3.4694×

10−18i.AproximadamenteS10(
1

8
) ≈ 1

128

127∑

k=0

Vke
πik/8, que vale 1.0428+3.8025×10−15i;

∣∣∣1.0672 − 3.4694 × 10−18i−

0.002440.

5. La serie de Fourier compleja es
1

4
+

∞∑

k=−∞,k �=0

(
3

4

1

π2k2
+ i

4

2k2π2 − 3

π3k3

)
e2kπit , y S10( 1

4 ) = −7.2901 × 10−4 +

1.0408 × 10−17i. Aproximadamente S10(
1

4
) ≈ 1

128

127∑

k=0

Vke
πki/2, que vale 3.4826 × 10−3 + 9.1593 × 10−16i;

∣∣∣−7.2901 × 10−4 + 1.0408 × 10−17i − (3.4826 × 10−3 + 9.1593 × 10−16i)

∣∣∣
≈ 0.004212.

Sección 3.8

d−1 ≈ −5.1259 × 10−2 + .2508i y f−1 ≈ −4.5737 × 10−2 + .25075i

d−2 ≈ −1.1816 × 10−2 + .11562i, f−2 ≈ −6.2931 × 10−3 + .11553i

d−3 ≈ −5.1767 × 10−3 + 7.5984 × 10−2i, f−3 ≈ 3.4589 × 10−4 + 7.5849 × 10−2i

15. Ahora,dk =
∫ 1

0
ξ2e−2πkiξdξ = 1

2π2k2
+i

1

2πk
si k �= 0, yd0 = 1

3
.The DFT approximation

d0 = 1
3 , f0 ≈ .32944

d1 ≈ 5.0661 × 10−2 + .15915i, f1 ≈ 4.6765 × 10−2 + .15912i

d2 ≈ 1.2665 × 10−2 + 7.9577 × 10−2i, f2 ≈ 8.7691 × 10−3 + 7.9514 × 10−2i

d3 ≈ 5.629 × 10−3 + 5.3052 × 10−2i. f3 ≈ 1.7329 × 10−3 + 5.2956 × 10−2i

d−1 ≈ 5.0661 × 10−2 − .15915i, f−1 ≈ 4.6765 × 10−2 − .15912i

d−2 ≈ 1.2665 × 10−2 − 7.9577 × 10−2i, f−2 ≈ 8.7691 × 10−3 − 7.9514 × 10−2i

d−3 ≈ 5.629 × 10−3 − 5.3052 × 10−2i, f−3 ≈ 1.7329 × 10−3 − 5.2956 × 10−2i

9. 0.14386 − 0.12455i 11. −6.5056 × 10−3 − 2.191 × 10−3i 13. −1.5699 × 10−2 − 4.8753 × 10−17i
En las gráficas asociadas con los problemas 15, 17 y 19, en la serie 1 los puntos son los los valores verdaderos calculados
a partir de la transformada, y en la serie dos los puntos son las aproximaciones de la TFD. En todos los casos las
aproximaciones se pueden mejorar eligiendo N grande.

15. f̂ (ω) = 2ω sen(2ω) + cos(2ω) − ω sen(ω) − cos(ω)

ω2
+ i

2ω cos(2ω) − sen(2ω) − ω cos(ω) + sen(ω)

ω2
. Nota: en la

suma de la ecuación (14.24), 11 ≤ j ≤ 20 ya que f (t) es cero fuera del intervalo [1, 2). Genere la siguiente tabla usando
L = 4:

k f̂ (k/4) DFT f̂ (k/4)

∣∣∣f̂ (k/4)

∣∣∣
∣∣∣DFT f̂ (k/4)

∣∣∣
1 1.3845 − 0.5673i 1.3764 − 0.5714i 1.4962 1.4903
2 1.0579 − 1.0421i 1.0445 − 1.048i 1.485 1.4796
3 0.5761 − 1.3488i 0.5558 − 1.3521i 1.4667 1.4619
4 0.2068 − 1.4404i −.0573 − 1.4372i 1.4406 1.4383
5 −0.5162 − 1.3098i −0.5453 − 1.2959i 1.4078 1.406
6 −0.9483 − 0.9865i −0.9749 − 0.9602i 1.3684 1.3684
7 −1.2108 − 0.5325i −1.2288 − 0.4945i 1.3227 1.3247
8 −1.2708 − 0.0295i −1.2751 + .0170i 1.2711 1.2752
9 −1.1323 + 0.4386i −1.1194 + 0.4866i 1.2143 1.2206

10 −0.8329 + 0.7966i −0.8026 + 0.8393i 1.1525 1.1613
11 −0.4359 + 0.9953i −0.3909 + 1.0258i 1.0866 1.0978
12 −0.0166 + 1.0168i .0374 + 1.0299i 1.0169 1.0306

11.

 7.  9.
11 y 13, en la serie 1 los puntos son los

TDF TDF

(3.24)

TDF.

0.2508i y 
0.11562i, 

f−1 ≈ −4.5737 × 10−2 + .25075i

f−2 ≈ −6.2931 × 10−3 + .11553i

0.25075i 
0.11553i, 

+ i
1

2πk
si k �= 0, yd0 = 1

3
.The fk = 1

128

127∑

j=0

(
j

128

)2
La aproximación TDF es e−πijk/64.

0.32944

0.15915i,

f1 ≈ 4.6765 × 10−2 + .15912i

así

f−1 ≈ 4.6765 × 10−2 −

0.15915i, 0.15912i

0.15912i

S10( 1
8 ) = 1.0207 + 1.6653 × 10−16i. Aproximadamente

(
1

8
) 10−14i;

∣∣∣1.0207 + 1.6653 × 10−16i − (1.0552 − 2.0983 × 10−16i)

∣∣∣ = + 

(
1

8
)

1

128
0.003452. 

(
1

8
)

0.0374

 + 3.8025×10−15i;
∣∣∣1.0672 − 3.4694 × 10−18i−

y S10( 1
4 ) = −7.2901 × 10−4 +1

4

(1.0428 + 3.8025 × 10−15i 0.002440
k=±1

los valores verdaderos calculados
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Las gráfi cas siguentes comparan las (a) partes reales, (b) las partes imaginarias y (c) los valores absolutos, de  f̂ (k/4) y las aproxi-
maciones TFD.

13. f̂ (ω) = sen(ω)

ω
+ i

cos(ω) − 1

ω
. Con L = 4 obtiene la siguiente tabla (con j sumando de 0 a 10 en la ecuación (3.24)):

�1.5

2.0

1 2 3 4 5 6 7 8 9 10 11 12

1.5

1.0

0.5

0

�0.5

�1.0

f

DFT

(a)

�2.0

1.5

1 2 3 4 5 6 7 8 9 10 11 12

1.0

0.5

0

�0.5

�1.0

�1.5

f

DFT

(b)

0

1.6

1 2 3 4 5 6 7 8 9 10 11 12

1.4

1.0

0.8

0.6

0.4

0.2

f

DFT
1.2

(c)

TDF

TDF

TDF

TDF.

 k f (k/4) TDF  f (k/4) 

 1 0.9896 – 0.1244i  1.0686 – 0.1318i 0.99739 1.0767
 2 0.9589 – 0.2448i   1.035 – 0.25925i 0.98965 1.067
 3 0.9089 – 0.3577i 0.98047 – 0.37821i 0.97675 1.0509
 4  0.8415 – 0.4597i 0.90716 – 0.48489i 0.95888 1.0286
 5 0.7592 – 0.5477i  0.81791 – 0.57604i 0.93614 1.0004
 6 0.6650 – 0.6195i 0.71616 – 0.64909i 0.90885 0.96654
 7 0.5623 – 0.6733i 0.60574 – 0.70222i 0.87722 0.92738
 8 0.4546 – 0.7081i 0.49076 – 0.73447i 0.84147 0.88334
 9 0.3458 – 0.7236i 0.37537 – 0.74574i 0.80198 0.83488
 10 0.2394 – 0.7205i 0.26362 – 0.73678i 0.75923 0.78252
 11 0.1388 – 0.6997i 0.15924 – 0.70914i 0.71333 0.7268
 12 0.0470 – 0.6633i  0.0655 – 0.66506i 0.66496 0.66828

f̂ (k/4) f̂ (k/4)

∣∣∣f̂ (k/4)

∣∣∣
∣∣∣DFT f̂ (k/4)

∣∣∣TDF
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Las gráfi cas siguientes comparan (a) las partes reales, (b) las partes imaginarias y (c) los valores absolutos, de  f̂ (k/4) y las aproxi-
maciones TDF.

15.

1 2 3 4 5 6 7 8 9 10 11 12

1.2

f

DFT
1.0

0.8

0.6

0.4

0.2

0

(a)
1 2 3 4 5 6 7 8 9 10 11 12

(b)

�0.1

�0.2

�0.3

�0.4

�0.5

�0.6

�0.7

�0.8

0

1 2 3 4 5 6 7 8 9 10 11 12

1.2

1.0

0.8

0.6

0.4

0.2

0

DFT

f

(c)

TDF

TDF

La serie de Fourier de f es
∞∑

n=−∞,n �=0

i

nπ
(−1 + (−1)n)enπit/2, o

∞∑

n=1

4

(2n − 1)π
sen

(
(2n − 1)πt

2

)
.

EntoncesSN (t) =
N∑

n=1

2

nπ

(
1 − (−1)n

)
sen

(
nπt

2

)
. LaN -ésima suma de Cesàro esσN (t) =

N∑

n=−N

(
1 −

∣∣∣ n

N

∣∣∣
) i

nπ

(−1)n)enπit/2, o σN (t) =
N∑

n=1

(
1 −

∣∣∣ n

N

∣∣∣
) 2

nπ
(1 − (−1)n) sen

(
nπt

2

)
.

1.0

�2
t

�1
0

1 2

0.5

Cesàro

Fourier

�0.5

�1.0

N = 5

1.0

�2

0
t

�1 1 2

0.5

�0.5

�1.0

N = 10

(−1)n)enπit/2, o σN (t) =
N∑

n=1

(
1 −

∣∣∣ n

N

∣∣∣
) 2

nπ
(1 − (−1)n) sen

(
nπt

2

)
.(−1+σN (t) =

N∑

n=−N

(
1 −

∣∣∣ n

N

∣∣∣
) i

nπ

Las gráficas están dibujadas para N = 5, 10, 25.
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17.

1.0

�2
t

�1 1 2

0.5

0

�0.5

�1.0

N = 25

19.

SN (t) =
N∑

n=−N,n�=0

i

nπ

(
(−1)n − cos(nπ/2)

)
enπit =

N∑

n=1

2

nπ
(cos(nπ/2) − (−1)n) sen(nπt), σN (t) =

N∑

n=−N,n�=0

(
1 −

∣∣∣ n

N

∣∣∣
) i

nπ

(
(−1)n − cos(nπ/2)

)
enπit =

N∑

n=1

(
1 −

∣∣∣ n

N

∣∣∣
) 2

nπ
(cos(nπ/2) − (−1)n) sen(nπt)

Las gráficas están dibujadas para N = 5, 10, 25.

1.0

�1.0
t

�0.5

0.5 1.0

0.5

0

�0.5

�1.0

N = 5

1.0

�1.0
t

�0.5

0 0.5 1.0

0.5

�0.5

�1.0

N = 10

1.0

�1.0
t

�0.5

0 0.5 1.0

0.5

�0.5

�1.0

N = 25

SN (t) = 17

4
+

N∑

n=−N,n�=0

(
1

2

1 − (−1)n

n2π2
+ i

nπ

(
1 − 1

2
(−1)n + 7

2
((−1)n − 1)

))
enπit

2

nπ

(
−5

2
+ 3(−1)n

)
sen(nπt),

17
N ( ∣

n
∣) [

1 1 ( 1)n i
(

1 7

2

nπ

(
−5

2
+ 3(−1)n

)
sen(nπt),−= 17

4
+

N∑

n=1

1 − (−1)n

n2π2
cos(nπt)

σN (t) = 17

4
+

N∑

n=−N,n�=0

(
1 −

∣∣∣ n

N

∣∣∣
) [

1

2

1 − (−1)n

n2π2
+ i

nπ

(
1 − 1

2
(−1)n + 7

2
[(−1)n − 1]

)]
enπit =

17

4
+

N∑

n=1

(
1 −

∣∣∣ n

N

∣∣∣
) [

1 − (−1)n

n2π2
cos(nπt) − 2

nπ

(
−5

2
+ 3(−1)n

)
sen(nπt)

]

Las gráficas están dibujadas para N = 5, 10, 25.

+

25 (ver siguiente página).
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21.

7

�1.0
t

�0.5 0
N = 5

0.5 1.0

6

5

4

3

2

1

7

�1.0
t

�0.5 0
N = 10

0.5 1.0

6

5

4

3

2

1

7

�1.0
t

�0.5 0
N = 25

0.5 1.0

6

5

4

3

2

1

SN (t) = 1 +
N∑

n=−N,n�=0

i

nπ

(
3(−1)n − 1

)
enπit/2 = 1 +

N∑

n=1

−2

nπ

(
3(−1)n − 1

)
sen(nπt/2), σN (t) =

1 +
N∑

n=1

−2

nπ

(
1 −

∣∣∣ n

N

∣∣∣
) (

3(−1)n − 1
)

sen(nπt/2)

Suma parcial filtrada de Hamming: HN (t) = 1 +
N∑

n=1

−2

nπ
(0.54 + 0.46 cos(πn/N))

(
3(−1)n − 1

)
sen(nπt/2)

Suma parcial filtrada de Gauss: GN (t) = 1 +
N∑

n=1

− 2

nπ
e−aπ2n2/N2 (

3(−1)n − 1
)

sen(nπt/2)

Las gráficas están dibujadas para N = 5, 10, 25, con a = 1
2 en el filtro de Gauss.
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�2
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�1 0 1
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Hamming

2

3
Fourier

2

1
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N = 5

4

�2
t

�1 1
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Hamming

2

3

2

1

0
�1

�2

Cesàro

Fourier

N = 10
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Sección 3.9

1. Espectro de potencias de y(t) = 4 sen(80πt) − sen(20πt)

3. Espectro de potencias de y(t) = 3 cos(90πt) − sen(30πt)

Cesàro

4

�2
t

�1 1 2

3

2

1

0
�1

�2

Fourier

Hamming

Gauss

N = 25
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5. Señal corrupta de y(t) = cos(30πt) + cos(70πt) + cos(140πt)

Componentes de la frecuencia de la señal corrupta

7. Señal corrupta de y(t) = cos(20πt) + sen(140πt) + cos(240πt)

0 5045403530252015105

6

4

2

0
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Componentes de la frecuencia de la señal corrupta

CAPÍTULO 4

Sección 4.1

 3. Se ilustra para P3(x). Por la fómula de Rodrigues, P3(x) = 1

233!
d3

dx3
((x2−1)3) = 1

48
(120x3−72x) = 1

2
(5x3−3x).

 5. Por ejemplo, con n = 3 tiene 
[

3
2

]
= 1 y

1∑

k=0

(−1)k
(6 − 2k)!

8k!(3 − k)!(3 − 2k)!x
3−2k =

 
6!

8(3!)(3!) x3 − 4!
8(2!)(1!) x = 5

2
x3 − 3

2
x = P3(x).

 7.  Sustituya Q(x) = Pn(x)u(x) en la ecuación de Legendre. Después de las cancelaciones debido a que Pn(x) es una solución, obtiene

  u′′+
(

2
P ′

n

Pn
− 2x

1 − x2

)
u′ = 0. Sea v = u′ para escribir 

v′(x)

v(x)
= −2

P ′
n(x)

Pn(x)
+ 2x

1 − x2
. Integre para obtener

 ln(v(x)) = −2 ln(Pn(x)) − ln(1 − x2), so
 
v(x) = 1

Pn(x)2(1 − x2)
. Entonces u(x) =

∫
1

Pn(x)2(1 − x2)
dx

 
y

 Q(x) = Pn(x)u(x).

13.  Para −1 < x < 1, sen(πx/2) = 
12

π2
x + 168

π2 − 10

π4

1

2
(5x3 − 3x) + 660

−112π2 + π4 + 1008

π6

1

8
(63x5 − 70x3 + 15x) + · · · . 

 En la gráfi ca, la suma de estos términos es indistinguible de la función.

0 50045040035030025020015010050
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y
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15. Para −1 < x < 1, sen2(x) = 
[
− 1

2 cos(1) sen(1) + 1
2

]
+

[
− 5

8 cos(1) sen(1) + 15
8 − 15

4 cos2(1)
]

1
2 (3x2 − 1)

 + 
[

531
32 cos(1) sen(1) − 585

32 + 585
16 cos2(1)

]
1
8 (35x4 − 30x2 + 3) + · · ·  En la gráfi ca, la suma de estos términos es

 indistinguible de la función.

17.  Para −1 < x < 0 y para 0 < x < 1, f (x) = 32 x − 7
8

1
2 (5x3 − 3x) + 11

16
1
8 (63x5 − 70x3 + 15x) + · · · La siguiente gráfi ca

 muestra la función y la suma de estos tres términos del desarrollo de Fourier-Legendre.

 Observe que en el 13 y 15, sólo los primeros tres términos del desarrollo de la función propia se aproxima tanto a la función que 
las dos gráfi cas son virtualmente indistinguibles. En el 17, es claro que debemos agregar más términos del desarrollo de la función 
propia para tener una aproximación razonable de f (x).

Sección 4.2

 1.

 3.

 7.

11.

15.

17.

19.
29.

x

y

0.500.51.0 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

y

0.5�0.5�1.0

�1.0

�0.5
0 1.0

0.5

1.0

Sea y = xaJν(bxc) y calcule y′ = axa−1Jν(bxc) + xabcxc−1J ′
ν(bxc) y

y′′ = a(a −1)xa−2Jν(bxc)+[2axa−1bcxc−1 +xabc(c−1)xc−2]J ′
ν(bxc)+xab2c2x2c−2J ′′

ν (bxc). Sustituya esto en
la ecuación diferencial y simplifique para obtener c2xa−2{(bxc)2J ′′

ν (bxc)+bxcJ ′
ν(bxc)+[(bxc)2 −ν2]Jν(bxc)} = 0.

y = c1J1/3(x2) + c2J−1/3(x2) 5. y = c1x−1J3/4(2x2) + c2x−1J−3/4(2x2)

y = c1x4J3/4(2x3) + c2x4J−3/4(2x3) 9. y = c1x−2J1/2(3x3) + c2x−2J−1/2(3x3)

y1 = c1J3(
√

x) + c2Y3(
√

x) 15. y = c1J4(2x1/3) + c2Y4(2x1/3)

y = c1x2/3J1/2(x) + c2x2/3J−1/2(x) 19. y = c1x−2J3(3
√

x) + c2x−2Y3(3
√

x)

Sustituya esto en la ecuación diferencial y use el hecho que J1/3(z) satisface z2J ′′
1/3 + zJ ′

1/3 +
(
z2 − 1

9

)
J1/3 = 0.

y = c1xJ2(x) + c2xY2(x) 25. y = c1x2J2(
√

x) + c2x2Y2(
√

x) 27. y = c1x4J1(x) + c2x4Y1(x)

(a) La suma de los primeros cinco términos del desarrollo de Fourier - Bessel es≈ 1.67411J2(5.135x)−0.77750J2(8.417x)+
0.8281J2(11.620x) − 0.6201J2(14.796x) + 0.6281J2(17.960x). A partir de las gráficas de x de los primeros cinco tér-
minos de este desarrollo, se deben incluir más términos para conseguir una precisión razonable.

13.

21.

Y

−0.77750J2(8.417x)+ −  + 

531
32

585
16

535
32

1
2

1
2

5
8

15
8

5
8

15
4

1
8

7
8

1
2

3
2

11
16

1
8
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 (c) La suma de los primeros cinco términos del desarrollo de Fourier-Bessel es 0.85529J2(5.135x) − 0.21338J2(8.417x)
  + 0.35122J2(11.620x) − 0.20338J2(14.796x) + 0.025800J2(17.960x). Como indican las gráfi cas, se necesitan más términos para 

aproximar la función con la suma parcial del desarrollo de Fourier-Bessel.

Sección 4.3

 1. Problema

 5. Periódico

 7. Regular

 9. Regular

11. Regular

13. Para

1.0

0
x

y

0.2 0.4 0.6 0.8 1.0

0.8

0.6

0.4

0.2

(a)

x

y

0.2 0.4 0.6 0.8 1.0

0.1

0

0.2

0.3

0.4

(c)

periodico en [−3π, 3π ]; 0 es un valor propio con función propia 1; para n = 1, 2, . . . , 1
9n2 es un valor propio con

función propia an cos(nx/3) + bn sen(nx/3), no ambos an y bn cero

regular en [0, 1]; los valores propios son soluciones positivas de tan(
√

λ) = 1
2

√
λ. Hay infinidad de tales soluciones, de

las cuales las primeras cuatro son aproximadamente 0.43, 10.84, 40.47 y 89.82. Las funciones propias correspondientes
al valor propio λn, tienen la forma 2

√
λ cos(

√
λnx) + sen(

√
λx).

en [0, π ]; 1 + n2 para n = 1, 2, . . . ; e−x sen(nx) para n = 1, 2, . . .

en [1, e3]; 1 + n2π2

9
para n = 1, 2, . . . ; x−1 sen

(nπ

3
ln(x)

)
para n = 1, 2, . . .

0 < x < 1, 1 − x =
∞∑

n=1

2

nπ
sen(nπx). Se compara la décima suma parcial de la serie con la gráfica de la función.

1.0

0
x

y

0.2 0.4 0.6 0.8 1.0

0.8

0.6

0.4

0.2

distintos de cero sen

(
2n − 1

2L
πx

)
3. regular en [0, 4];

(
2n − 1

2

π

4

)2
; cos

(
2n − 1

2

π

4
x

)
regular en [0, L]; valores propios

(
2n − 1

2L
π

)2
para n = 1, 2, . . . ; funciones propias múltiplos constantes

3.  Regular
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15.  El desarrollo es 
∞∑

n=1

4

π

√
2 cos(nπ/2) −

√
2 sen(nπ/2) − (−1)n

2n − 1
cos

(
2n − 1

8
πx

)
. Éste converge a −1 para 0 < x < 2 y 1 para

 2 < x < 4, y a 0 si x = 2. Se compara la décima suma parcial de la serie con la gráfi ca de la función.

17.  Para −3π < x < 3π, x2 = 3π2 + 36 
∞∑

n=1

(−1)n

n2  cos(nx/3). Se compara la décima suma parcial de la serie con la gráfi ca de

 la función.

19. Las funciones propias normalizadas son ϕn(x) = 
1√
2

cos

(
2n − 1

8
πx

)
. Ahora, (f · ϕn) =

Sección 4.4

3.  El intervalo en donde σ1,3(t) es distinto de cero es ajeno al intervalo en donde σ−2,1(t) es distinto de cero, de manera que σ1,3(t)σ−2,1(t) 
es idénticamente cero, así �−

∞
∞ σ1,3(t)σ−2,1(t) dt = 0. La gráfi ca de σ1,3(t) y σ−2,1(t) se muestra a continuación.

1.0

x

y

1 3 4

0.5

0

�0.5

�1.0

2

80

0
x

y

42 6 8�4 �2�6�8

60

40

20

∫ 4

0
x(4 − x)

1√
2

cos

(
2n − 1

8
πx

)
dx = −128

√
2

4(−1)n + (2n − 1)π

π3(2n − 1)3
, so

∞∑

n=1

(
(128

√
2)

4(−1)n + (2n − 1)π

π3(2n − 1)3

)2

≤ f · f =
∫ 4

0 x2(4 − x)2 dx = 512
15 , or

∞∑

n=1

(
4(−1)n + (2n − 1)π

π3(2n − 1)3

)2
≤ 512

15(128
√

2)2
= 1

960
.

1.0

�10
t

y

�5 0 5 10

0.5

�0.5

�1.0

o
∞∑

n=1

(
(128

√
2)

4(−1)n + (2n − 1)π

π3(2n − 1)3

)2
así

n 1
∞∑

n=1

(
4(−1)n + (2n − 1)π

π3(2n − 1)3

)2
≤ 512

15(128
√

2)2
= 1

960
.o 
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 5. Una gráfi ca de ψ(2t − 3) se muestra abajo.

 7. La serie de Fourier de f (t) en [−16, 16] es

 9. La serie de Fourier de f (t) en [−16, 16] es

1.0

�3
t

y

�2 �1 0 1

2

3 4 5

0.5

�0.5

�1.0

( )

Fourier.

�6

�15
t

y

�5 5 10 15

�4

�2

�2

�4

�6

�10

11. La serie de Fourier de f (t) en [−16, 16] es
∞∑

n=1

1

nπ

[
−14 sen

(nπ

2

)
− 8 sen

(nπ

4

)
+ 16 sen

(
3nπ

8

)]
cos

(
nπt

16

)
+

1

nπ

[
3(−1)n + 2 cos

(nπ

2

)
+ 3 + 8 cos

(nπ

4

)
− 16 cos

(
3nπ

8

)]
sen

(
nπt

16

)
. La siguiente gráfica compara la función

con la décimo quinta suma parcial de su serie de Fourier.

8

�15
t

y

�10 �5 5 10 15

6
4
2

�2
�4
�6
�8

∞∑

n=1

[
4

nπ

(
−2 sen

(
3nπ

4

)
+ sen

(nπ

2

))
− 6

nπ

(
sen

(nπ

8

)
− 2 sen

(
3nπ

16

)

+

+

sen
(nπ

4

))]
cos

(
nπt

16

)
+
[
− 4

nπ

(
− cos(nπ) + 2 cos

(
3nπ

4

)
− cos

(nπ

2

))
+ 6

nπ

(
cos

(nπ

8

)
− 2 cos

(
3nπ

16

)
+

cos
(nπ

4

))]
sen

(
nπt

16

)
. La siguiente gráfica compara la función con la décimo quinta suma parcial de su serie de

( ( )

quinta suma parcial de su serie de

n=1
1

nπ

[
3(−1)n + 2 cos

(nπ

2

)
+ 3 + 8 cos

(nπ

4

)
− 16 cos

(
3nπ

8

)]
sen

(
nπt

16

)
. La siguiente gráfica compara la función

l dé i i i l d i d i

+ 
décimoquinta suma parcial de su serie de Fourier.
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CAPÍTULO 5

Sección 5.1

Sección 5.2

 9.

11.

13.

1. Calcule
∂2y

∂x2
= −n2π2

L2
sen(nπx/L) cos(nπct/L) y

∂2y2

∂t
= −n2π2c2

L2
sen(nπx/L) cos(nπct/L).

3. Calcule
∂2y

∂x2
= 1

2

[
f ′′(x + ct) + f ′′(x − ct)

]
y

∂2y

∂t2
= 1

2
c2[f ′′(x + ct) + f ′′(x − ct)].

5. El problema para esta función de desplazamiento z(x, y, t) es
∂2z

∂t2
= c2

(
∂2z

∂x2
+ ∂2z

∂y2

)
para 0 < x < a, 0 < y < b,

z(x, y, 0) = f (x, y),
∂z

∂t
(x, y, 0) = 0 para 0 < x < a, 0 < y < b,

z(0, y, t) = z(a, y, t) = z(x, 0, t) = z(x, b, t) = 0.

1. y(x, t) =
∞∑

n=1

16(−1)n

(2n − 1)3π3c
sen

(
(2n − 1)πx

2

)
sen

(
(2n − 1)πct

2

)
+

∞∑

n=1

2(−1)n

n2π2c
sen(nπx) sen(nπct)

3. y(x, t) =
∞∑

n=1

108

(2n − 1)4π4
sen

(
(2n − 1)πx

3

)
sen

(
2(2n − 1)πt

3

)

5. y(x, t) =
∞∑

n=1

24

(2n − 1)2π
(−1)n+1 sen

(
(2n − 1)x

2

)
cos

(
(2n − 1)

√
2t
)

7. y(x, t) =
∞∑

n=1

−32

(2n − 1)3π3
sen

(
(2n − 1)πx

2

)
cos

(
3(2n − 1)πt

2

)

+
∞∑

n=1

4

n2π2
sen

(nπx

2

) [
cos

(nπ

4

)
− cos

(nπ

2

)]
sen

(
3nπt

2

)

Sea Y (x, t) = y(x, t) + h(x) y sustituya en el problema para elegir h(x) = 1
9x3 − 4

9x. El problema para Y se vuelve

∂2Y

∂t2
= 3

∂2Y

∂x2
,

Y (0, t) = Y (2, t) = 0,

Y (x, 0) = 1

9
x3 − 4

9
x,

∂Y

∂t
(x, 0) = 0.

Encontramos que Y (x, t) =
∞∑

n=1

32

3n3π3
(−1)n sen

(nπx

2

)
cos

(
nπ

√
3t

2

)
, y entonces y(x, t) = Y (x, t) − h(x).

Sea Y (x, t) = y(x, t) + h(x) y elija h(x) = cos(x) − 1. El problema para Y es

∂2Y

∂t2
= ∂2Y

∂x2
,

Y (0, t) = Y (2π, t) = 0,

Y (x, 0) = cos(x) − 1,
∂Y

∂t
(x, 0) = 0.

Este problema tiene solución Y (x, t) =
∞∑

n=1

16

π

1

(2n − 1)[(2n − 1)2 − 4]
sen

(
(2n − 1)x

2

)
cos

(
(2n − 1)t

2

)
, y en-

tonces y(x, t) = Y (x, t) + 1 − cos(x).

u(x, t) = e−At/2
∞∑

n=1

Cn sen
(nπx

L

) [
1

AL
rn cos

(
rnt

2L

)
+ sen

(
rnt

2L

)]
, donde Cn = 2A

rn

∫ L

0
f (x) sen

(nπx

L

)
dx y

rn =
√

4(BL2 + n2π2c2) − A2L2
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15.  (a) La solución con el término de fuerza es yf (x, t) = 
∞∑

n=1

64

π3

(
2

(2n − 1)3
− 1

9

1

(2n − 1)[(2n − 1)2 − 16]

)
sen

(nπx

4

)

 cos

(
3(2n − 1)πt

4

)
+ 1

9π2
[cos(πx) − 1].

  (b) Sin el término de fuerza, la solución es y(x, t) = 
∞∑

n=1

128

π3(2n − 1)3
sen

(
(2n − 1)πx

4

)
cos

(
3(2n − 1)πt

4

)
.

 Ambas soluciones están dibujadas juntas para los tiempos t = 0.5, 0.6, 4.9 y 9.8, use los mismos ejes para permitir la comparación.

–2

–1

0
0 1 2 3 4

1

2

t = 9.8

t = 0.6

x

t = 0.5

t = 4.9

17. y 1 = 0 25 para j = 1 2 19
y1 2 = 0 08438 2 = 0 05 para j = 2 3 19
y1 3 = 0 13634 2 3 = 0 077149 3 = 0 075 para j = 3 4 19
y1 4 = 0 17608 2 4 = 0 10786 3 4 = 0 10013 4 = 0 1 para j = 4 5 19
y1 5 = 0 20055 2 5 = 0 14235 3 5 = 0 12574 4 5 = 0 12501
y 5 = 0 125 para j = 5 6 19

19. Se da y para j = 1 2 9, primero para k = −1, después k = 0 1 5.
y −1 0 08075 0 127 0 14475 0 14 0 11875 0 087 0 05075 0 016 −0 01125
y 0 0 081 0 128 0 147 0 144 0 125 0 096 0 063 0 032 0 009
y 1 0 079125 0 1735 0 14788 0 147 0 13063 0 10475 0 075375 0 0485 0 030125
y 2 0 0057813 00 2115 0 77078 0 14903 0 13567 0 11328 0 087906 0 065531 0 050516
y 3 −0 055066 0 27160 1 3199 0 18908 0 14015 0 12162 0 10062 0 083022 0 068688
y 4 −0 092055 0 3768 1 7328 0 29675 0 14653 0 12981 0 11355 0 10072 0 083463
y 5 −0 093987 0 53745 1 9712 0 48652 0 16125 0 13803 0 12669 0 11814 0 0941

Sección 5.3

 7.

1. y(x, t) =
∫ ∞

0

10

π
(
25 + ω2

) cos(ωx) cos(12ωt)dω 3. y(x, t) =
∫ ∞

0

−1

2πω

sen(πω)

ω2 − 1
sen(ωx) sen(4ωt)dω

5. y(x, t) =
∫ ∞

0

[(
1

3πω
e−2 2 cos(ω) − ω sen(ω)

4 + ω2

)
cos(ωx) +

(
1

3πω
e−2 ω cos(ω) + 2 sen(ω)

4 + ω2

)
sen(ωx)

]
sen(3ωt)dω

y(x, t) =
∫ ∞

0

2

π

2 − ω sen(ω) − 2 cos(ω)

ω3
sen(ωx) cos(3ωt) dω
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 9.

11.

13.

Sección 5.4

 7.

 9.

11.

En cada uno del 13, 15 y 17, las gráfi cas muestran una progresión del movimiento conforme a la suma de las ondas hacia adelante y 
hacia atrás.
13.

y(x, t) =
∫ ∞

0

1

πω

sen(πω/2) − sen(5πω/2)

ω2 − 1
sen(ωx) sen(2ωt) dω

y(x, t) =
∫ ∞

0
− 3

7πω5

[
16ω cos3(ω) − 12ω cos(ω) + 12ω2 sen(ω) cos2(ω) − 3ω2 sen(ω) − 8 sen(ω) cos2(ω)

+2 sen(ω) + 2ω] sen(ωx) sen(14ωt) dω

y(x, t) = At + (1 − A)
(
t − x

c

)
H

(
t − x

c

)

1. Las características son rectas x − t = k1, x + t = k2;

y(x, t) = 1
2

[
(x − t)2 + (x + t)2

]
+ 1

2

∫ x+t

x−t
−ξ dξ = x2 + t2 − xt

3. Las características son x − 7t = k1, x + 7t = k2;

y(x, t) = 1

2
[cos(π(x − 7t)) + cos(π(x + 7t))] + t − x2t − 49

3
t3

5. Las características son x − 14t = k1, x + 14t = k2;

y(x, t) = 1
2

[
ex−14t + ex+14t

]
+ xt

y(x, t) = x + 1
8

(
e−x+4t − e−x−4t

)
+ 1

2 xt2 + 1
6 t3

y(x, t) = x2 + 64t2 − x + 1
32 (sen(2(x + 8t)) − sen(2(x − 8t))) + 1

12 t4x

y(x, t) = 1
2 [cosh(x − 3t) + cosh(x + 3t)] + t + 1

4xt4
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∫

0
+2 sen(ω) + 2ω] sen(ωx) sen(14ωt) dω
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15.
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17.

Sección 5.5

1. Encuentre que (aproximadamente) a1 =
2
∫ 1

0 xJ0(2.405x) dx

[J1(2.405)]2
= 2

0.1057

0.2695
= 0.78442, a2 = 0.04112, a3 = −8.1366,

  a4 = −375.2, a5 = −6470.9. La quinta suma parcial de la serie da la aproximación z(r, t) ≈ 0.78442J0 (2.405r) cos(2.405t)
+ 0.04112J0 (5.520r) cos(5.520t) − 8.1366J0 (8.654r) cos(8.654t) − 375.2 J0 (11.792r) cos(11.792t) − 6470.9J0 (14.931r) 
cos(14.931t).

 La siguiente gráfi ca muestra z(r, t) en distintos tiempos.

�4
x

u
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�1.2

(2)

�4
x

u

0 2 4
�0.2
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t � 0.9
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3.  Aproximadamente, z(r, t) ≈ 1.2534J0(2.405r)cos(2.405t) − 0.88824J0(5.520r)cos(5.520t) − 24.89J0(8.654r)cos(8.654t) − 
1133.6J0(11.792r) cos(11.792t) − 19523J0(14.931r) cos(14.931t).

 La siguiente gráfi ca muestra z(r, t) en los tiempos seleccionados.

Sección 5.6

 1. Calcule

Sección 5.7

 1.

15,000

r

z

0.8

1.0

10,000

5,000

0

�5,000

�10,000

�15,000

�20,000

0.2

0.4

0.6

t � 1.5

t � 0.9
t � 0.4
t � 4.2

t � 2.7

Así, z(r, θ, t) =
∞∑

k=1

2

[J1(j0k)]2

(∫ 1

0
ξ(1 − ξ2)J0(j0kξ) dξ

)
J0

(
1

2
j0kr

)
cos(j0k t)

+
∞∑

k=1

4

[J3(j2k)]2

(∫ 1

0
ξ(ξ2 − 1)J2(j2kξ) dξ

)
J2

(
1

2
j2kr

)
cos(2θ) cos(j2k t)

+
∞∑

p=1

sen(pθ)

∞∑

q=1

4(−1)p+1

pjpq [Jp+1(jpq )]2
∫ 1

0
ξJp(jpqξ) dξ)Jθ

(
1

2
jpqr

)
sen(jpq t)

≈ 1.1081J0(1.2025r) cos(2.40483t) − 0.13975J0(2.760r) cos(5.52008t)

+ 0.4555J0(4.3270r) cos(8.65373t) − 0.02105J0(5.8960r) cos(11.7915t)

+ 0.01165J0(7.4655r) cos(14.43092t) + · · · − 2.9777J2(2.5675r) cos(2θ) cos(5.1356t)

− 1.4035J2(4.2085r) cos(2θ) cos(8.41724t) − 1.1405J2(5.8100r) cos(2θ) cos(11.6198t)

− 0.83271J2(7.398r) cos(2θ) cos(14.7960t) − · · · .

z(x, y, t) = 1

π

∞∑

n=1

[
8(−1)n+1π2

n
+ 16

n3
[(−1)n − 1]

]
sen

(nx

2

)
sen(y) cos

(
1

2

√
n2 + 4t

)

1

2
α0(r) = 1

2π

∫ π

−π
(4 − r2)

αn(r) = 4 − r2

π

∫ π

−π

2
sen(θ

βn(r) = 4 − r2

π

∫ π

−π

2
sen(θ

)
2

sen(θ) dθ = 1

2

(
4 − r2

)

(θ) cos(nθ) dθ =

⎧
⎪⎨
⎪⎩

0 si n �= 2

4 − r2

π

(
−1

2
π

)
si n = 2

(θ) sen(nθ) dθ = 0.

sen2

sen2

sen2
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 3.

CAPÍTULO 6

Sección 6.1

Sección 6.2

En estas soluciones, exp(A) = eA.

11.

13.

z(x, y, t) =
∞∑

n=1

∞∑

m=1

[
16

π2(2n − 1)(2m − 1)
√

(2n − 1)2 + (2m − 1)2

]
cos

(
(2n − 1)x

2

)
sen

(
(2m − 1)x

2

)

1.
∂u

∂t
= k

∂2u

∂x2
para 0 < x < L, t > 0; u(0, t) = ∂u

∂x
(L, t) = 0 para t ≥ 0; u(x, 0) = f (x) para 0 ≤ x ≤ L.

3.
∂u

∂t
= k

∂2u

∂x2
para 0 < x < L, t > 0;

∂u

∂x
(0, t) = 0 y u(L, t) = β(t) para t ≥ 0; u(x, 0) = f (x) para 0 ≤ x ≤ L.

1. u(x, t) =
∞∑

n=1

8L2

(2n − 1)3π3
sen

(
(2n − 1)πx

L

)
exp

(
−(2n − 1)2π2kt

L2

)

3. u(x, t) =
∞∑

n=1

−16L

(2n − 1)π [(2n − 1)2 − 4]
sen

(
(2n − 1)πx

L

)
exp

(
−3(2n − 1)2π2t

L2

)

5. u(x, t) = 2

3
π2−

∞∑

n=1

4

n2
cos(nx)e−4n2t 7. u(x, t) = 1

6

(
1 − e−6

)
+

∞∑

n=1

12

(
1 − e−6(−1)n

36 + n2π2

)
cos

(nπx

6

)
e−n2π2t/18

9. u(x, t) =
∞∑

n=1

4B

(2n − 1)π
sen

(
(2n − 1)πx

2L

)
exp

(
−(2n − 1)2π2kt

4L2

)

Sustituya eαx+βtv(x, t) en la ecuación diferencial parcial y resuelva para α y β de manera que vt = kvxx . Obtenemos
α = −A/2 y β = k(B − A2/4).

Sea u(x, t) = e−3x−9tv(x, t). Entonces vt = vxx , v(0, t) = v(4, t) = 0 y v(x, 0) = e3x . Entonces v(x, t) =
∞∑

n=1

(
2nπ

1 − e12 (−1)n

144 + n2π2

)
sen

(nπx

4

)
e−n2π2t/16. Las gráficas de la solución se muestran para los tiempos t = 0.003,

y 1.3.
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t = 0.003

4
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u
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2

0

�2
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�8

t = 0.02

vt = kvxx. Obtiene

× sen

(√
(2n − 1)2 + (2m − 1)2t

)

0.02, 0.08
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15. Sea u(x, t) = v(x, t)+f (x) y elija f (x) = 3x +2 para tener vt = 16vxx, v(0, t) = v(1, t) = 0 y v(x, 0) = x2 − f (x).

Entonces v(x, t) =
∞∑

n=1

2

(
4n2π2(−1)n + 2(−1)n − 2 − 2n2π2

n3π3

)

sen(nπx)e−16n2π2t y u(x, t) = v(x, t) + 3x + 2.

Las gráfi cas de la solución se muestran para los tiempos t = 0.005, 0.009 y 0.01.
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17. Sea u(x, t) = e−Atw(x, t). Entonces wt = 4wxx, w(0, t) = w(9, t) = 0 y w(x, 0) = 3x. Obtenga

 w(x, t) = 
∞∑

n=1

54(−1)n+1

nπ
sen

(nπx

9

)
e−4n2π2t/81. Las gráfi cas comparan las soluciones en los tiempos t = 0.008, 0.04

 y 0.6 para A = 14 , 1 y 3.

19.

0

5

10

15

20

25

2 4 6 8
x

u

t = 0.008

A = 3

A = 1

A = 1
4

0

5

10

15

20

2 4 6 8
x

u

t = 0.04

A = 3

A = 1

A = 1
4

0

2

4

6

8

10

2 4 6 8
x

u

A = 3

A = 1

A = 1
4

t = 0.6

0.25

0
x

u

0.5 1.0 1.5 2.0 2.5 3.0

0.20

0.15

0.10

0.05

No source

With source

t = 0.8

0.5

0
x

u

0.5 1.0 1.5 2.0 2.5 3.0

0.4

0.3

0.2

0.1

t = 0.4

u(x, t) =
∞∑

n=1

[
1

8π

1 − (−1)n

n5

(
−1 + 4n2t + e−4n2t

)]
sen(nx) + 4

π

∞∑

n=1

(
1 − (−1)n

n3

)
sen(nx)e−4n2t . Las gráficas

comparan las soluciones con y sin el término fuente, para los tiempos t = 0.8, 0.4 y 1.3.

Con fuente

Sin fuente
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21. 

0.30

0
x

u

0.5 1.0 1.5 2.0 2.5 3.0

0.25

0.20

0.15

0.10

0.05

t = 1.3

u(x, t) =
∞∑

n=1

50

n3π3

1 − (cos 5) (−1)n

n2π2 − 25

(
−25 + n2π2t + 25e−n2π2t/25

)
sen

(nπx

5

)

+
∞∑

n=1

(
−250

4(−1)n + 2

n3π3

)
sen

(nπx

5

)
e−n2π2t/25. Las gráficas comparan las soluciones con y sin el término fuente,

para los tiempos t = 0.7, 1.5, 2.6 y 4.2.
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23.

Sección 6.3

u(x, t) =
∞∑

n=1

27 (−1)n+1

128

(
16n2π2t + 9e−16n2π2t/9 − 9

n5π5

)
sen

(nπx

3

)
+2K

∞∑

n=1

(
1 − (−1)n

nπ

)
sen

(nπx

3

)
e−16n2π2t/9.

Las gráficas muestran la solución con y sin el término fuente, en los tiempos t = 0.05 y 0.2, con K = 1
2 .
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25. En lo subsiguiente, j = 1 2 9
u 0: 0.009, 0.032, 0.063, 0.096, 0.125, 0.144
0.147. 0.128, 0.081
u 1: 0.0125, 0.034, 0.0635, 0.095, 0.1225
0.14, 0.1415, 0.121, 0.0725
u 2: 0.01475, 0.064125, 0.089, 0.094, 0.1195
0.136, 0.136, 0.114, 0.0665
u 3: 0.023381, 0.058, 0.084031, 0.099125, 0.11725
0.13188, 0.1305, 0.10763, 0.06175

27. En lo subsiguiente, j = 1 2 9.
u 0: 0.098769, 0.19021, 0.2673, 0.32361, 0.35355
0.35267, 0.31779, 0.24721, 0.14079
u 1: 0.096937, 0.18622, 0.26211, 0.31702, 0.34585
0.34417, 0.30887, 0.23825, 0.13220
u 2: 0.095124, 0.18307, 0.25697, 0.3105, 0.33822
0.33577, 0.30004, 0.22939, 0.12566
u 3: 0.09330, 0.17956, 0.25188, 0.30405, 0.33062
0.32745, 0.29131, 0.22112, 0.12018

1. u(x, t) = 1

π

∫ ∞

0

8(
16 + ω2

) cos(ωx)e−ω2kt dω

3. u(x, t) =
∫ ∞

0

[(
8

π
cos(ω)

cos3(ω) − cos(ω) + 4ω sen(ω) cos2(ω) − 2ω sen(ω)

ω2

)
cos(ωx)

−
(

4

π

−2 sen(ω) cos3(ω) + sen(ω) cos(ω) + 8ω cos4(ω) − 8ω cos2(ω) + ω

ω2

)
sen(ωx)

]
e−ω2kt dω

5. u(x, t) = 2

π

∫ ∞

0

cos(ω) − 1

ω
sen(ωx)e−ω2kt dω 7. u(x, t) = 2

π

∫ ∞

0

ω

α2 + ω2
sen(ωx)e−ω2kt dω

9. u(x, t) = 2

π

∫ ∞

0

1 − cos(hω)

ω
sen(ωx)e−ω2kt dω 11. u(x, t) = 4

π

∫ ∞

0

(
cos2(hω) − cos(hω)

ω

)
sen(ωx)e−ω2kt dω

13. u(x, t) = 4

π

∫ ∞

0

ω

(1 + ω2)2
sen(ωx)e−ω2te−t2/2 dω

15. u(x, t) =
∫ t

0
2(t − τ) erfc

(
x

2
√

kτ

)
dτ , en donde erfc es la función error complementaria.

u(x, t) = 2

π

∫ ∞

0

ω

α2 + ω2
sen(ωx)e−ω2kt dω

 7.

 9.

11.

Con fuente

Sin fuente
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Sección 6.4

1.

3.

Sección 6.5 

CAPÍTULO 7

Sección 7.1

1.

U(r, t) =
∞∑

n=1

2

[J1(jn)]2

(∫ 1

0
ξ2J0(jnξ) dξ

)
J0(jnr)e−j2

n t ; la quinta suma parcial, con valores aproximados insertados,

esU(r, t) ≈ .8170J0(2.405r)e−5.785t−1.1394J0(5.520r)e−30.47t+0.7983J0(8.654r)e−74.89t−0.747J0(11.792r)e−139.04t+
0.6315J0(14.931r)e−222.93t . Se muestra una gráfica de esta función para los tiempos t = 0.003, 0.009, 0.04 y 0.7.
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t � 0.003

0

2

4

6

8

0.5 1.0 1.5 2.0 2.5 3.0
r
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t = 0.003

t = 0.08

u

t = 0.009

1. u(x, y, t) =
∞∑

n=1

∞∑

m=1

bnm sen
(nπx

L

)
sen

(mπy

K

)
e−βnmkt , donde βnm =

(
n2

L2
+ m2

K2

)
π2 y

βnm = 4

LK

∫ K

0

∫ L

0
f (x, y) sen(nπx/L) sen(mπy/K) dx dy.

3. u(x, y) =
∞∑

m=1

4

π

8 (−1)m+1 m

(2m + 1)2(2m − 1)2
sen(x) sen(my)e−(1+m2)t .

∇2(f + g) = (f + g)xx + (f + g)yy = (fxx + fyy) + (gxx + gyy) = ∇2f + ∇2g y ∇2(αf ) = (αf )xx + (αf )yy =
α
(
fxx + fyy

)
= α∇2f .

U(r, t) =
∞∑

n=1

2

[J1(jn)]2

(∫ 1

0
ξ(9 − 9ξ2)J0(jnξ) dξ

)
J0

(
jn

3
r

)
e−j2

n t/18; la quinta suma parcial, con valores aproxi-

mados insertados, esU(r, t) ≈ 9.9722J0(2.405r/3)e−5.78t/18−1.258J0(5.520r/3)e−30.47t/18+0.4093J0(8.654r/3)e−74.89t/18−
0.1889J0(11.792r/3)e−139.04t/18 +0.1048J0(14.931r/3)e−222.93t/18. Se muestra una gráfica de esta suma parcial para
los tiempos t = 0.003, 0.009, 0.08, and 0.4.y 0.4.

ξ2)J0(jnξ) dξ

)
J0

(
jn

3
r

)
e−j2

n t/18; la quinta suma parcial, con valores aproxi-

0.8170J0(2.405r)e−5.785t−e−5.785t− 1.1394J0(5.520r)e−30.47t 0.7983J0(8.654r)e−74.89t− + 747J0(11.792r)e−139.04t+ − 

1.258J0(5.520r/3)e−30.47t/18 −  +  − 0.4093J0(8.654r/3)e−74.89t/18

0.1048J0(14.931r/3)e−222.93t/18. Se muestra una gráfica de esta suma parcial para + 
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Sección 7.2

Sección 7.3

Sección 7.4

3. Calcule
∂

∂x
ln(x2 + y2) = 2x

x2 + y2
and

∂

∂x

(
2x

x2 + y2

)
= 2

y2 − x2

(x2 + y2)2
.

Similarmente,
∂2

∂y2

(
2x

x2 + y2

)
= 2

x2 − y2

(x2 + y2)2
. Entonces ∇2 ln(x2 + y2) = 0, siempre que x2 + y2 �= 0.

5. Recuerde que, en coordenadas polares, la ecuación de Laplace es
∂2u

∂r2
+ 1

r

∂u

∂r
+ 1

r2

∂2u

∂θ2
= 0. Es rutina verificar por

sustitución que las funciones dadas son armónicas.

1. u(x, y) = −1

senh(π2)
sen(πx) senh(π(y − π))

5. u(x, y) = 1

senh(π2)
sen(πx) senh (πy) +

∞∑

n=1,n �=2

16n
(−1)n − 1

π2(n − 2)2(n + 2)

1

senh(nπ2/2)
sen

(nπx

2

)
senh

(nπy

2

)

+ 1

senh(2)
sen(y) senh(x)

7. u(x, y) =
∞∑

n=1

cn sen

(
(2n − 1)πx

2a

)
senh

(
(2n − 1)πy

2a

)
, donde cn =

2

a senh[(2n − 1)πb/2a]

∫ a

0
f (x) sen

(
(2n − 1)πx

2a

)
dx.

9. u(x, y) = −1

senh(4π)
sen(πy) senh(π(x − 4)) +

∞∑

n=1

2

senh(4nπ)

(
2

1 − (−1)n

π3n3

)
sen(nπy) senh(nπx)

3. u(x, y) =
∞∑

n=1

32

π2 senh(4nπ)

n(−1)n+1

(2n − 1)2 (2n + 1)2
sen(nπx) senh(nπy)

1. u(r, θ) = 1 3. u(r, θ) = 1

3
π2 +

∞∑

n=1

( r

2

)n
2(−1)n

1

n2
[2 cos(nθ) + n sen(nθ)]

5. u(r, θ) = 1

π
senh(π) + 1

π

∞∑

n=1

( r

4

)n e−π (−1)n

n2 + 1
[− cos(nθ) − n sen(nθ) + e2π cos(nθ) + e2πn sen(nθ)]

7. u(r, θ) = 1 +
∞∑

n=1

( r

8

)n
(

2

n3

)
[n2π2(−1)n sen(nθ) − 6(−1)n sen(nθ)]

9. En coordenadas polares, el problema es ∇2U(r, θ) = 0 para r < 4, U(4, θ) = 16 cos2(θ). Esta tiene solución U(r, θ) =
8 + r2(cos2 θ − 1

2 ). En coordenadas rectangulares, la solución es u(x, y) = 1
2 (x2 − y2) + 8.

11. En coordenadas polares, la solución es U(r, θ) = r2
(

2 cos2 θ − 1
)

, so u(x, y) = x2 − y2.

1. u

(
1

2
, π

)
= 3

8π

∫ 2π

0

ξ

5/4 − cos(ξ − π)
dξ = 9.8696/π ;u

(
3

4
, π/3

)
≈ 4.813941647/π ,u(0.2, π/4) ≈ 8.843875590/π

3. u(4, π) ≈ 155.25/π , u(12, 3π/2) ≈ 302/π , u(8, π/4) ≈ 111.56/π , u(7, 0) ≈ 248.51/π

5. Conu(r, θ) = rn sen(nθ), calculeu(R/2, π/2) = Rn

2n
sen(nπ/2) = 1

2π

∫ 2π

0

R2 − R2/4

R2 + R2/4 − R2 cos(ξ − π/2)
Rn sen(nξ) dξ .

Dividiendo entre las potencias comunes deR y resolviendo para la integral, obtenemos
1

2n

2π

3
sen(nπ/2) =

∫ 2π

0

sen(nξ)

5 − 4 sen(ξ)
dξ .

7.
π

3(2n−1)
cos

(nπ

2

)
=

∫ 2π

0

1

5 − 4 sen(ξ)
cos(nξ) dξ

π

3(2n−1)
(−1)n =

∫ 2π

0

1

5 + 4 cos(ξ)
cos(nξ) dξ

obtiene
1

2n

2π

3
sen(nπ/2) =

∫ 2π

0

sen(nξ)

5 − 4 sen(ξ)
dξ .

y
∂

∂x

(
2x

x2 + y2

)
= 2

y2 − x2

(x2 + y2)2
.

entonces u(x, y) = x2 − y2.

É
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Sección 7.5

 7.

 9.

11.

13.

Sección 7.6

Sección 7.7

1. u(x, y) = 1

π

[
arctan

(
4 − x

y

)
− arctan

(
4 + x

y

)]
para −∞ < x < ∞, y > 0

3. u(x, y) = y

π

∫ ∞

0

(
1

y2 + (ξ − x)2
− 1

y2 + (ξ + x)2

)
e−ξ cos(ξ) dξ

5. u(x, y) = 2

π

∫ ∞

0

(∫ ∞

0
f (ξ) sen(ωξ) dξ

)
sen(ωx)e−ωydω + 2

π

∫ ∞

0

(∫ ∞

0
g(ξ) sen(ωξ) dξ

)
sen(ωy)e−ωx dω

u(x, y) = Be−y sen(x) +
∞∑

n=1

2

π

h

n3

(
1 − (−1)n

) (
1 − e−ny

)
sen(nx)

Usando una transformada finita de Fourier en senos enx, obtenemosu(x, y) = 2

π

∞∑

n=1

[(
− 4

n
+ 6

(−1)n

n

)
e−ny − 2

(−1)n

n

]
sen(nx).

u(x, y) = 2

π

∫ ∞

0

(
ω

1 + ω2

)
sen(ωy)e−ωx dω

u(x, y) = y

π

∫ 8

4

A

y2 + (ξ − x)2
dξ = A

π

[
− arctan

(
x − 8

y

)
+ arctan

(
x − 4

y

)]

1. u(x, y, z) =
∞∑

n=1

∞∑

m=1

4(−1)n+m

nmπ2 senh
(
π
√

n2 + m2
) sen(nπx) sen(mπy) senh(π

√
n2 + m2z)

3. u(x, y, z) =
∞∑

n=1

∞∑

m=1

[
16

π2(2n − 1)(2m − 1) senh(2π
√

(2m − 1)2 + π2(2n − 1)2)

× sen((2n − 1)πx) sen((2m − 1)z) senh(

√
(2m − 1)2 + π2(2n − 1)2y)

]

+
∞∑

n=1

∞∑

m=1

⎡
⎢⎢⎢⎢⎢⎢⎣

16

π2(2n − 1)(2m − 1)

1

senh

⎛
⎝π

√
(2m − 1)2

4
+ π2(2n − 1)2

⎞
⎠

× sen((2n − 1)πx) sen

(
(2m − 1)y

2

)
senh

⎛
⎝
√

(2m − 1)2

4
+ π2(2n − 1)2z

⎞
⎠

⎤
⎦

1. u(ρ, ϕ) =
∞∑

n=0

(2n + 1)A

2

(∫ 1

−1
(arccos(ξ))2Pn(ξ) dξ

)( ρ

R

)n
Pn(cos(ϕ))

≈ 2.9348A − 3.7011A
( ρ

R

)
P1(cos(ϕ)) + 1.1111A

( ρ

R

)2
P2(cos(ϕ))

− 0.5397A
( ρ

R

)3
P3(cos(ϕ) + 0.3200A

( ρ

R

)4
P4(cos(ϕ)) − 0.2120

( ρ

R

)5
P5(cos(ϕ)) + · · ·

3. u(ρ, ϕ) ≈ 6.0784 − 9.8602
( ρ

R

)
P1(cos(ϕ)) + 5.2360

( ρ

R

)2
P2(cos(ϕ))

− 2.4044
( ρ

R

)3
P3(cos(ϕ)) + 1.5080

( ρ

R

)4
P4(cos(ϕ)) − 0.9783

( ρ

R

)5
P5(cos(ϕ)) + · · ·

5. u(ρ, ϕ) = 1

R2 − R1
(T1R1)

[
1

ρ
R2 − 1

]

obtenga u(x, y) = 2

π

∞∑

n=1

[(
− 4

n
+ 6

(−1)n

n

)
e−ny − 2

(−1)n

n

]
sen(nx).
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Sección 7.8

 9.

11.

CAPÍTULO 8

Sección 8.1

Sección 8.2

13.

15.

17.

19.

21.

29.

7. u(ρ, ϕ) =
∞∑

n=1

a2n−1ρ2n−1P2n−1(cos(ϕ)), dondea2n−1 =
∫ 1

0 AP2n−1(x) dx

R2n−1
∫ 1

0 (P2n−1(x))2 dx
= (4n − 1)A

R2n−1

∫ 1

0
P2n−1(x) dx.

9. u(ρ, ϕ) =
∞∑

n=1

a2n−1ρ2n−1P2n−1(cos(ϕ)), donde a2n−1 = 4n − 1

R2n−1

∫ 1

0
f (arccos(x))P2n−1(x) dx.

1. Como
∫ 1

0 4 cos(πx) dx = 0, puede existir una solución. Encontramos u(x, y) = 4

−π senh(π)
cos(πx) cosh(π(1 −

)) C

u(x, y) = 1

2π

∫ ∞

−∞
ln(y2 + (ξ − x)2)e−|ξ | sen(ξ) dξ + c

u(x, y) =
∫ ∞

0
aω cos(ωx)e−ωy dω + c, with aω = − 2

πω

∫ ∞

0
f (ξ) cos(ωξ) dξ

1. 26 − 18 3. 1
65 (1 + 18i) 5. 4 + 228i 7. 6 − i 9. 1

4225 (−1632 + 2024i)

11. i4n = ((i2)2)n = 1n = 1; i4n+1 = ii4n = i, como i4n = 1; i4n+2 = i4n(i2) = −1; i4n+3 = i4ni2i = −i

13. a2 − b2 + b + 1; 2ab − a 17.
π

2
+ 2nπ 19. π − tan−1( 2

3 ) + 2nπ 21. π + 2nπ

23. 2
√

2[cos(3π/4) + i sen(3π/4)] 25.
√

29
[
cos(− tan−1( 2

5 )) + i sen(− tan−1( 2
5 ))

]

27.
√

65
[
cos(tan−1( 1

8 )) + i sen(tan−1( 1
8 ))

]

29. Sugerencia: Si |z| = 1, entonces zz = 1 y

∣∣∣∣
z − w

1 − zw

∣∣∣∣ =
∣∣∣∣

z − w

zz − wz

∣∣∣∣ = 1

|z|

∣∣∣∣
z − w

z − w

∣∣∣∣ = 1. 33. 8i

1. Círculo de radio 9 con centro (8,−4) 3. Círculo de radio 1
2

√
65 con centro (0, − 1

2 ) 5. El eje real para x ≤ 0
7. La recta y = x + 2 9. La recta 8x + 10y + 27 = 0 11. El semiplano 3x + y + 2 > 0

K es el semiplano cerrado 2x + 8y + 15 ≥ 0; todo punto de K es un punto límite de K , y no hay otros puntos límite;
los puntos frontera de K son aquellos puntos en la recta 2x + 8y + 15 = 0; K es cerrado pero no compacto (ya que K
no es acotado).
M consiste de todos los puntos que pertenecen a la recta y = 7; los puntos límite son puntos de M y puntos en la recta
y = 7; los puntos frontera son x + 7i; M es abierto; M no es compacto.
U consiste de todos los puntos x + iy con 1 < x ≤ 3; los puntos límite son puntos de U y puntos en la recta x = 1;
los puntos frontera son puntos en las rectas x = 1 y x = 3; U no es abierto ni cerrado; U no es compacto (ni cerrado ni
acotado).
W consiste de todo x + iy con x > y2. Estos son puntos (x, y) dentro y a la derecha de la parábola x = y2. Este conjunto
es abierto, y no compacto. Los puntos límite son todos puntos de W y puntos en la parábola; los puntos frontera son los
puntos en la parábola.

1 + 2i 33. 2 − i 35. −1 37. 3
2 i

Si n es par, a saber n = 2m, entonces i2n = i4m = 1, de manera que {1} es una subsucesión convergente; si n = 2m+1,
entonces i2n = i4mi2 = i2 = −1, así {−1} es otra subsucesión convergente. Hay otras.

23. 25. 27.

con

y)) + C.

3. Como
∫ π

0 cos(3x) dx =
∫ π

0 (6x−3π) dx = 0, puede existir una solución. Encon

y)) +
∞∑

n=1

12

π

(−1)n − 1

n3 senh(nπ)
cos(nx) cosh(ny) + C.

5. u(x, y) =
∞∑

n=1

2

(
n2π2(−1)n + 6(1 − (−1)n)

n4π4 senh(π)

)
sen(nπy) cosh(nπ(1 − x))

7. u(r, θ) = 1

2
a0 + R

2

( r

R

)2 (
2 cos2 θ − 1

)

Encuentre uu(x, y) = 4

−π senh(π)
cos(πx) cosh(π(1 −

Encuentre u(x, y) = 1

−3 senh(3π)
cos(3x) cosh(3(π−
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1. 2; |z + 3i| < 2 3. 1; |z − 1 + 3i| < 1 5. 2; |z + 8i| < 2 7. 1; |z + 6 + 2i| < 1 9. 1; |z + 4| < 1
11. No; i está más cerca de 2i que de 0, de manera que si la serie convergiera a 0 tendría que converger a i.

CAPÍTULO 9

Sección 9.1

Sección 9.2

 9.

11.

Sección 9.3

17.

Sección 9.4

Sección 9.5

15.

1. u = x, v = y − 1; Las ecuaciones de Cauchy - Riemann se satisfacen en todos los puntos; f es diferenciable para todo
complejo z.

3. u =
√

x2 + y2, v = 0; en ninguna parte; en ninguna parte

5. u = 0, v = x2 + y2; las ecuaciones de Cauchy - Riemann se satisfacen en (0, 0); en ninguna parte

7. u = 1, y/x; en ninguna parte; en ninguna parte 9. u = x2 − y2, v = −2xy; (0, 0); en ninguna parte

11. u = −4x + x

x2 + y2
, v = −4y − y

x2 + y2
; las ecuaciones de Cauchy - Riemann se satisfacen en todo z distinto de

cero; diferenciable para z �= 0

cn+1/cn es 2 o 1
2 , dependiendo de si n es impar o par, de manera que cn+1/cn no tiene límite. Sin embargo,

lim
n→∞ |cn|1/n = 1, de manera que el radio de convergencia es 1 por el criterio de la n-ésima raíz aplicado a

∞∑

n=0

∣∣cnzn
∣∣.

1. cos(1) + i sen(1) 3. cos(3) cosh(2) − i sen(3) senh(2) 5. e5 cos(2) + ie5 sen(2)

7. 1
2 [1 − cos(2) cosh(2)] + 1

2 i sen(2) senh(2) 9. i 11. u = ex2−y2
cos(2xy), v = ex2−y2

sen(2xy)

13. u = sen(x) cos(x)

cos2(x) cosh2(y) + sen2(x) senh2(y)
, v = cosh(y) senh(y)

cos2(x) cosh2(y) + sen2(x) senh2(y)

15.
2

sen(z) + cos2(z) =
(

1

2i
(eiz − e−iz

)2
+

(
1

2
(eiz + e−iz

)2
= 1 17. senh(z) = −i sen(iz), cosh(z) = cos(iz)

z = ln(2) + i
(π

2
+ 2nπ

)
, n cualquier entero 23. z = ln(2) + (2n + 1)πi, n cualquier entero

1. ln(4) + 4n − 1

2
πi, ln(4) + 3

2
πi 3. ln(5) + (2n + 1)πi, ln(5) + πi

7. Sugerencia: En forma polar,
z

w
=

∣∣∣ z

w

∣∣∣ ei(arg(z)−arg(w)).

1. ie−(2nπ+π/2) 3. e−(2nπ+π/2) 5. e3(2nπ+3π/4)

[
cos

(
3 ln(2)

2

)
− i sen

(
3 ln(2)

2

)]

7. cos
(π

8
+ nπ

2

)
+ i sen

(π

8
+ nπ

2

)
9. 16e(2n+1)π [cos(ln(4)) − i sen(ln(4))]

11. 2

[
cos

(
(2n + 1)π

4

)
+ i sen

(
(2n + 1)π

4

)]
13. cos(nπ/3) + i sen(nπ/3)

Las raíces n-ésima de la unidad son ωk = e2kπi/n para k = 0, 1, . . . , n − 1. Ahora use el hecho que para z �= 1,
n−1∑

k=0

zk = zn − 1

z − 1
, con z = e2πi/n.

las Cauchy-Riemann

Cauchy-Riemann

lím

17. 19.

sen2(z)

en

Cauchy-Rieman se satisfacen en todo z distinto de

 + [(2n + 1)π ++tan−1(− 2
9 )]i, ln(

√
85)+(π + [(π + tan−1(− 2

9 ))i
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CAPÍTULO 10

Sección 10.1

La gráfi ca de las curvas en los problemas 1, 3, 5, 7 y 9 se muestran abajo.

1. punto inicial 6 − 2i, punto terminal 2 − 2i; simple y no
cerrado; tangente Ŵ′(t) = 2ieit

3. 1 + i, 3 + 9i; simple y no cerrado;
Ŵ′(t) = 1 + 2t i = i + 2tj

0
2

x

y

3 4 5 6

�0.5

�1.0

�1.5

�2.0

9

1.0
x

y

1.5 2.0 2.5 3.0

8
7
6
5
4
3
2
1

5. 3, 3; cerrado pero no simple;
�′(t) = −3 sen(t)+ 5 cos(t)i = −3 sen(t)i + 5 cos(t)j

7. −2 − 4i, 4 − 16i; simple y no cerrado;
� ′(t) = 1 − t i = i − tj

4

x

y

�3 �2 �1 0 1 2 3

2

�2

�4

�2
x

y

�1 0 1

2 3 4

�4

�8

�12

�2

�6

�10

�16
�14

9. 1, cos(2) − 2 sen(4)i; simple y no cerrado;
Ŵ′(t) = − sen(t) − 4 cos(2t)i = − sen(t)i − 4 cos(2t)j

1.5

�0.4 �0.2
x

y

0 0.2 0.4 0.6 0.8 1.0

1.0

0.5

�0.5

= −2 sen(t)i + 2 cos(t)j
1.  Punto
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Sección 10.2

16. 1 /
√

z
–
 (o cualquier número grande)

Sección 10.3

Sección 10.4

 13.

CAPÍTULO 11

Sección 11.1

13.

15.

17.

Sección 11.2

CAPÍTULO 12

Sección 12.1

1. Polo de orden 2 a z = 0  3. Singularidad esencial en z = 0  5. Polos simples en i y −i, polo de orden 2 en 1

7. Polo simple en −i, singularidad removible en i  9. Polos simples en 1, −1, i  y −i  11. Polos simples en 
(2n + 1)

2
π

1. 8 − 2i 3. 3
2 (1 + i) 5. 1

2 (−13 + 4i) 7. − 1
2 [cosh(8) − cosh(2)]

9. − 1
2 [e−1(cos(2) + i sen(2)) − e(cos(2) − i sen(2))] 11. 10 + 210i 13. 25

2 i 15. 2
3 (1 + i)

1. 0 3. 0 5. 2πi 7. 0 9. 0 11. 4πi

1. 32πi 3. 2πi(−8 + 7i) 5. −2πe2(cos(1) − i sen(1)) 7. πi(6 cos(12) − 36 sen(12))

9. −512π(1 − 2i) cos(256) 11. − 13
2 − 39i 13. 0 15. πi 17. 2πi cosh(senh(3)) 19

1.
∞∑

n=0

(−1)n

(2n)! 22nz2n; |z| < ∞ (esto es, la serie converge para todo complejo z)

3.
∞∑

n=0

1

(1 − 4i)n+1
(z − 4i)n; |z − 4i| <

√
17 5.

∞∑

n=0

(n + 1)zn; |z| < 1

7. −3 + (1 − 2i)(z − 2 + i) + (z − 2 + i)2; |z| < ∞ 9. 63 − 16i + (−16 + 2i)(z − 1 − i) + (z − 1 − i)2; |z| < ∞

11.
∞∑

n=0

(−1)n

(2n + 1)! (z + i)2n+1; |z| < ∞ 13.
∞∑

n=0

−1

(2 + 6i)n+1
(z + 2i)n; |z + 2i| <

√
40

1 + iz +
∞∑

n=1

(
2n + 2n−1

(2n)! z2n + i
2n

(2n + 1)!z
2n+1

)
; |z| < ∞

Fije z y piense en w como la variable. Defina f (w) = ezw . Entonces f (n)(w) = znezw . Por la fómula integral

de Cauchy, f (n)(0) = zn = n!
2πi

∫

Ŵ

ezw

wn+1
dw, con Ŵ el círculo unitario alrededor del origen. Entonces

zn

n! =

1

2πi

∫

Ŵ

ezw

wn+1
dw, así

(
zn

n!

)2
=

1

2πi

∫

Ŵ

zn

n!wn+1
ezw dw. Entonces

∞∑

n=0

(
zn

n!

)2
= 1

2πi

∞∑

n=0

∫

Ŵ

zn

n!wn+1
ezw dw =

1

2πi

∫

Ŵ

( ∞∑

n=0

1

n!
( z

w

)
n

)
ezw

w
dw =

1

2πi

∫

Ŵ
ez(w+1/w) 1

w
dw. Ahora sea w = eiθ en Ŵ para obtener el resultado.

El máximo debe alcanzarse en un punto frontera del rectángulo. Considere cada lado. En el lado vertical izquierdo,

x = 0 y
∣∣ez

∣∣ =
∣∣∣eiy

∣∣∣ = 1. En el lado vertical derecho,
∣∣ez

∣∣ = e1
∣∣∣eiy

∣∣∣ = e tiene máximo e. En el lado horizontal inferior,
∣∣ez

∣∣ = ex para 0 ≤ x ≤ 1, con máximo e. En el lado horizontal superior,
∣∣ez

∣∣ = ex tiene máximo e. Así el máximo de∣∣ez
∣∣ en este rectángulo es e.

2π

1.
1

z − i
+

∞∑

n=0

(−1)n

(2i)n+1
(z − i)n, para 0 < |z − i| < 2 3.

∞∑

n=1

(−1)n+14n

(2n)! z2n−2; |z| < ∞

5. − 1

z − 1
− 2 − (z − 1); 0 < |z − 1| < ∞ 7.

1

z2
+

∞∑

n=0

z2n

(n + 1)! ; 0 < |z| < ∞ 9. 1 + 2i

z − i
; 0 < |z − i| < ∞

fórmula integral
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Sección 12.2

18.

Sección 12.3

f tiene desarrollo de Taylor f (z) =
∞∑

n=0

an(z − z0)n en algún disco abierto alrededor de z0 y g tiene un desarrollo de

Laurent de la forma g(z) = b−1

z − z0
+

∞∑

n=0

bn(z−z0)n en algún anillo 0 < |z − z0| < r . Entonces fg tiene un desarrollo

de la forma
b−1a0

z − z0
+

∞∑

n=0

cn(z − z0)n en el anillo, y b−1a0 �= 0 ya que b−1 �= 0 y a0 = f (z0) �= 0.

Escriba h(z) = (z − z0)3q(z), donde q es analítica en z0 y q(z0) �= 0. Entonces
g(z)

h(z)
= 1

(z − z0)3

g(z)

q(z)
en algún anillo

0 < |z − z0| < r . Ahora g/q es analítica en z0, y así tiene desarrollo de Taylor g(z)/q(z) =
∞∑

n=0

cn(z − z0)n en algún

disco alrededor de z0. Más aún, c0 �= 0 ya que q(z0) �= 0 y g(z0) �= 0. Entonces, en algún anillo alrededor de z0,

13.

15.

1. El residuo en 1 is 1
25 (16 − 12i), y en −2i, 1

25 (9 + 12i); el valor de la integral es, por tanto 2πi.

3. 0 5. 2πi 7. 2πi 9. −πi/4 11. 0 13. 2πi 15.
π

2
(e8i − 1) 17.

πi

9
(cosh(9) − 2)

g(z)

h(z)
= c0

(z − z0)3
+

∞∑

n=1

cn(z − z0)n−2.

g(z)

h(z)
=

∞∑

n=−3

dn(z−z0)n, con d−3 �= 0. Escriba g(z) =
∞∑

n=0

an(z−z0)n =
( ∞∑

n=3

bn(z − z0)n

)⎛
⎝

∞∑

n=−3

dn(z − z0)n

⎞
⎠

e iguale el coeficiente de (z−z0)n de la izquierda con el coeficiente de (z−z0)n en el producto de la derecha. Obtenemos
a0 = d−3b3, a1 = d−3b4 + d−2b3, a2 = d−3b5 + d−2b4 + d−1b3. Use esto para resolver para d−1 en términos de los

coeficientes a0, a1, a2, b1, . . . , b4 y use el hecho que an = 1

n!g
(n)(z0), bn = 1

n!h
(n)(z0).

1. 2πi 3. 0

cos(3t) 19. 1
36 e−4t − 1

36 e2t + 1
6 te2t 21. 1

2 t2e−5t

2π/
√

3 31. 2π/3 33. 1
4πe−2

√
2 sen(2

√
2) 35. −π/128 37.

π

32
(1 + 5e−4)

−16π

5
sen

(
3π

5

)
17 cos(π/5) + 16 cos(3π/5)

289 + 168 cos(2π/5) + 136 cos(4π/5) + 32 cos(6π/5)
41. π/2 43.

π

3
e−9

Con las sustituciones trigonométricas

Por el teorema de Cauchy,
∫
Ŵ e−z2

dz = 0, donde Ŵ es una trayectoria rectangular. Escriba la integral sobre cada
pedazo de la frontera (empezando abajo y recorriéndola en sentido contrario al movimiento de las manecillas del

reloj), tenemos
∫ R

−R
e−x2

dx +
∫ β

0
e−(R+it)2

i dt +
∫ −R

R
e−(x+βi)2

dx +
∫ 0

β
e−(−R+it)2

i dt = 0. Sea R → ∞. La

segunda integral es e−R2
∫ β

0
et2

e−2iRt dt , y esta tiende a cero conforme R → ∞. Similarmente, la cuarta integral

tiene límite cero. La primera y tercera integrales dan
∫ ∞

−∞
e−x2

dx−
∫ ∞

−∞
e−x2

eβ2
e−2βix dx = 0. Entonces

√
π =

eβ2
∫ ∞

−∞
e−x2

cos(2βx) dx + ie−β2
∫ ∞

−∞
e−x2

sen(2βx) dx. La última integral es cero ya que la integral es impar.

Finalmente, escriba
√

π = 2eβ2
∫ ∞

0
e−x2

cos(2βx) dx, ya que este integrando es par. Ahora resuelva la integral.

 5.

11.

21.

23.

25.

27.

 7.  9.

13. 15. 17. 19.

15.

culo unitario. Los dos poles dentro del disco unitario son z = ±
√

β − α

β + α
, y el residuo en cada uno es −i/2αβ. Por tanto,cír

el valor de la integral es 2πi(−i/αβ), or 2π/αβ.

Re s(eiαz/(z2 + 1), i) = − 1
2 ie−α , so

∫ ∞

−∞

cos(αx)

x2 + 1
dx = 2πi

(
−1

2
ie−α

)
= πe−α .

−4i

∫

Ŵ

z

(α2 − β2)z2 + 2(α2 + β2)z + (α2 − β2)
dz, con Ŵ el

es

Obtiene

∫ ∞

−∞

cos(αx)

x2 + 1
dx = 2πi

(
−1

2
ie−α

)
= πe−α .

esto y resuelva para d−1 en términos de los

así

obtendrá

o

2π/αβ.

tendrá
∫ R

−R
e−x2

dx +
∫ β

0
e−(R+it)2

i dt +
∫ −R

R
e−(x+βi)2

dx +
∫ 0

β
e−(−R+it)2

iidt = 0. Sea R → ∞. La

é

∞∑

n=0

Escriba g(z) = an(z − z0)n y h(z) =
∞∑

n=3

bn(z − z0)n, con a0 �= 0 y b3 �= 0. Del problema 23, seccíon 24.1,

⎛ ⎞
sección 12.1,
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CAPÍTULO 13

Sección 13.1

1. Las imágenes están dadas por los siguientes diagramas.

Por el teorema de Cauchy,
∫

Ŵ
eiz2

dz = 0. Ahora integre sobre cada pedazo de Ŵ, recorriendola en sentido contrario al

movimiento de las manecillas del reloj y empezando con el segmento [0, R]:
∫ R

0
eix2

dx +
∫ π/4

0
eiR2e2iξ

Rieiξ dξ +
∫ 0

R
ei(reiπ/4)2

eiπ/4 dr = 0. La segunda integral tiende a cero conforme R → ∞, y en el límite la última ecuación se

convierte en
∫ ∞

0
[cos(x2) + i sen(x2)] dx =

√
2

2
(1 + i)

∫ ∞

0
e−r2

dr =
√

2

2
(1 + i)

1

2

√
π . Iguale la parte real de cada

lado y la parte imaginaria de cada lado para evaluar las integrales de Fresnel.
∫ 2π

0

1

(α + β cos(θ))2
dθ =

∫

Ŵ

1
(

α + β

2

(
z + 1

z

))2

1

iz
dz = −4i

∫

Ŵ

z

(βz2 + 2αz + β)2
dz. El integrando tiene po-

los dobles en
1

β

(
−α ±

√
α2 − β2

)
, pero solamente

1

β

(
−α +

√
α2 − β2

)
está encerrado por el círculo unitario Ŵ.

Calcule Re s

( −4iz

(βz2 + 2αz + β)2
,

1

β

(
−α +

√
α2 − β2

))
= − αi

(α2−β2)3/2 . Entonces
∫ 2π

0

1

(α + β cos(θ))2
dθ =

2πα

(α2 − β2)3/2
. Finalmente, verifique que

∫ 2π

0

1

(α + β cos(θ))2
dθ = 2

∫ π

0

1

(α + β cos(θ))2
dθ .

28.

30.

v

u

y

π

π
x

D C

B

CD

B

B
C

CD

A B

D

A

A

A D'

C'

D'
e

A'

B'

C'

B'
D'

C' D' A' B'

A' B'C'
e e

e2e

1

1 1

1

21

1

1
(a)

(b)

(c)

(d)

w e z

y

x

v

u

2

4

2

1
e

y

x

v

u
e

A'

y

x

v

u

π

π

π

π

π

π π

é
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3. Las imágenes están dadas por los siguientes diagramas.

D'

C'

A'

B'

e2

(e)

A

D

B

C

1 2

2
π

π

2

y

x

v

u
1
e

v

u

y

x

D C

BA

D'

C'B'A'

(4, 0)

(a)

w 4 sen(z)

2

2

π

π

(b)

D C

BA

y

x

v

u

4

4 2
B'A' C'

D'

(4, 0)
u2 v2 8π

π π

CD

A B B'

D'

(c)

6

y

x

v

u
A'

C'

π

C' D'A'B'

(4, 0)( 4, 0)

v

uCD

A B

(d)

2

2 2
3

y

x

D'

π

π π

(e)

D C

A B1

2

21

y

x

D'

C'

A'

B'

v

u
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5. El sector que consiste de todo w con un argumento en [π/2, π].

7. Sugerencia: Haga z = reiθ y obtenga u = 
1

2

(
r + 1

r

)
cos(k), v = 1

2

(
r − 1

r

)
 sen(k), donde se localiza la semirecta θ = k.

9. Todo el plano w sin el origen.

Sección 13.2

 1. w = 3 + 8i − (1 + 4i)z

4 + 7i − (2 + 3i)z
3. w = 16 − 16i + (−7 + 13i)z

4 − 8i + (−1 + 2i)z
5. w = 4 − 75i + (3 + 22i)z

−21 + 4i + (2 + 3i)z

 7. v = 10 15. (u − 11
21 )2 + (v + 1

63 )2 = 208
3969 17. (u − 1)2 + (v + 19

4 )2 = 377
16

13. w = z invierte orientación.

15. Si w = 
az + b

cz + d
y ad − bc �= 0, entonces z = −dw − b

cw − a
 también es una transformación lineal fraccional.

17.  Sugerencia: Pruebe que z = 
az + b

cz + d
 tiene una o dos soluciones, dependiendo de si c es o no cero. Una traslación no tiene 

punto fi jo.
En cada uno de los problemas del 19 al 21, hay muchas soluciones, una de las cuales se da aquí.

19. z → 1

z
→ −4

1

z
→ −4

1

z
+ i = w  21. z → iz → iz − (2 − 7i) = w

Sección 13.3

En los problemas 1, 3 y 5, hay muchos mapeos que tienen la propiedad pedida. Se da uno de tales mapeos en cada caso.

 1. w = 2z + 1 − i 3. w = 3z + 2 + 6i

z + 2i
5. w = −4i(z + 1)

z − 1

 7. w = z1/3   9. Sugerencia: Evalúe f (1), f (−1), f (0), y f (∞) y entonces use el resultado que 

∫ 1

0
tm−1(1 − t)n−1 dt = Ŵ(m)Ŵ(n)

Ŵ(m + n)
 

para enteros positivos m y n.

Sección 13.4

Sección 13.5

 1.  Con a = Keiθ , las curvas equipotenciales son ϕ(x, y) = K[x cos(θ) − y sen(θ)] = constante. Estas son líneas de la forma 
y = cot(θ)x + b. Las líneas de corriente son ψ(x, y) = K[y cos(θ) + x sen(θ)] = constante, que son líneas y = −tan(θ)x + b. 
Velocidad = 

—
f ′(z)

—
 = Ke−iθ. No hay fuente o sumidero.

 3.  ϕ(x, y) = cos(x) cosh(y),ψ(x, y) = −sen(x) senh(y). Las curvas equipotenciales son las gráfi cas de y = cosh−1(K/ cos(x)), las líneas 
de corriente son gráfi cas de y = senh−1(C/ sen(x)).

 5.  ϕ(x, y) = K ln |z − z0|, ψ(x, y) = K arg(z − z0). Las curvas equipotenciales son círculos |z − z0| = r y las líneas de corriente son 
rayos que emanan desde z0;  �C −vdx + udv = 2πK, con C el círculo de radio r alrededor de z0.

1. u(x, y) = y

π

∫ ∞

−∞

g(t)

(t − x)2 + y2
dt , donde u(x, 0) = g(x).

3. u(x, y) = 1

2π

∫ 2π

0
g(x0 + R cos(t), y0 + R sen(t))

×
[

R2 − (x − x0)2 − (y − y0)2

R2 + (x − x0)2 + (y − y0)2 − 2R(x − x0) cos(t) − 2R(y − y0) sen(t)

]
dt

5. u(r cos(θ), r sen(θ)) = 1

2π

∫ 2π

0

[r cos(t) − r sen(t)](1 − r2)

1 + r2 − 2r cos(t − θ)
dt

7. u(x, y) = 1

8

∫ 1

−1

(1 − |t |) cos(πt/2)

1 + sen2(πt/2)

×
[

4 senh(πx/2) cos(πy/2)[1 + sen2(πt/2)] + senh(πx) sen(πy)[1 − sen(πt/2)]
senh2(πx/2) + sen2(πy/2) − 2 cosh(πx/2) sen(πy/2) sen(πt/2) + sen2(πt/2)

]
dt

11
21

1
63

208
3969

19
4

377
16

9. 11.
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7. f (z) = k

[
x + x

x2 + y2
+ i

(
y − y

x2 + y2

)]
. Las curvas equipotenciales son las gráficas de x + x

x2 + y2
= c, las

líneas de corriente son gráficas de y − y

x2 + y2
= d.

9. Las curvas equipotenciales son las gráficas de K

[
x + x

x2 + y2

]
− b

2π
arg(z) = c. Las líneas de corriente son gráficas

de k

[
y − y

x2 + y2

]
+ b

4π
ln |z| = d. Stagnation points occur donde f ′(z) = k

(
1 − 1

z2

)
+ ib

2πz
= 0, or z =Los puntos de estancamiento ocurrren donde

z =

f ′(z) = k

(
1 − 1

z2

)
+ ib

2πz
= 0, or

− ib

4kπ
±

√

1 − b2

16π2k2
.
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Desigualdades de Bessel, 84-86
Desplazamiento, 255-258
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E
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 características, 286-294
 condiciones de frontera, 245-249
 condiciones iniciales, 245-249, 262-265
 desplazamiento, 255-258
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 movimiento, 262-265, 272-286
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279-285
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Ecuación del estado estacionario del calor
 como función armónica, 343-344
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 electrostática, 357-359
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Mapeos, 517-557
 conformes, 524-557
 defi nición, 517
 funciones como, 517-523
 inversión, 528-529
 que conservan ángulos, 524
 que conservan orientación, 524
 proyección estereográfi ca, 532
Mapeos conformes, 524-557
 construcción de, entre dominios, 534-542
 defi nición, 525
 fl ujo de un fl uido, 549-556
 funciones armónicas, 542-548
 modelos con funciones complejas, 549-556
 problema de Dirichlet, 542-548
 propiedad del valor medio, 544
 que conservan ángulos, 524 
 que preserva orientación, 524
 teorema de los tres puntos, 531-533
 teorema del mapeo de Riemann, 534-539
 transformación de Joukowski, 547-548
 transformación de Möbius, 526
 transformación de Schwartz-Christoffel, 539-542
 transformación lineal racional, 526-533
Mareas, análisis con TRF, 163-165
Media, 225-229, 544
 aproximación en, 225-227
 convergencia en, 228-229
 desigualdad de Bessel, 225-227
 propiedad del valor medio, 544
 teorema de Parseval, 228-229
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 complejos, 376, 383-398, 437-441
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Los siguientes símbolos y notación se utilizan a lo largo de este texto. Cada símbolo está acompañado con 
la sección en la que se defi ne o se usa. Los símbolos usuales, como la notación para integrales y sumas 
no están incluidas.

Notación

�[ f ] transformada de Laplace de f (1.1)

�[ f ](s) transformada de Laplace de f evaluada 
en s (1.1)

�−1[F ] transformada inversa de Laplace de F

H(t) función Heaviside (1.3.2)

δ(t) función delta de Dirac (1.5)

f (x0−), f (x0+) límite izquierdo y derecho, 
respectivamente, de f en x0 (2.3)

f ′f
�

(x0), f ′
R(x0) derivada izquierda y derecha, 

respectivamente, de f en x0 (2.3.2)

�[ f ] o  f̂ transformada de Fourier de f (3.3)

�−1[ f ] transformada inversa de Fourier de 
f (3.3)

�ven[ f ] transformada de Fourier ventaneada 
f (3.4.6)

�ven, t0[ f ] transformada de Fourier ventaneada 
de f recorrida (3.4.6)

�C[ f ] o  f̂C(ω) transformada de Fourier en 
cosenos de f (3.5)

�S[ f ] o  f̂S(ω) transformada de Fourier en senos 
de f (3.5)

�[ f ] o 
∼
fC(n) transformada fi nita de Fourier en 

coseno de f (3.6)

�[ f ] o  
∼
fS(n) transformada fi nita de Fourier en 

seno de f (3.6)

�[u] transformada discreta de Fourier de 
N puntos (TDF) de {uj} (3.7)

σN(t) en el contexto de las series de Fourier, 
denota la N-ésima suma de Cesàro de 
f (3.8.2)

Z(t) en el contexto fi ltrado, denota una función 
fi ltro (3.8.2)

L2(R) espacio de funciones cuadrado 
integrables defi nidas en la recta real (3.8.2)

Pn(x) n-ésimo polinomio de Legendre (4.1)

Tn(x) n-ésimo polinomio de Chebyschev 
(4.4.1)

Ln(x) n-ésimo polinomio de  Laguerre (4.4.2)

Hn(x) n-ésimo polinomio de Hermite (4.4.3)

Ŵ(x) función gamma (4.2.1)

Jn(x) función de Bessel de la primera clase de 
orden n (4.2.2)

Yn(x) función de Bessel de la segunda clase de 
orden n (4.2.3)

γ algunas veces se utiliza para denotar la 
constante de Euler (4.2.3)

I0(x), K0(x) funciones de Bessel modifi cadas de 
primer y segunda clase, respectivamente, de 
orden cero (4.2.4)

χ[0,1] función característica de [0, 1] (4.5.2)

σm,n(t) = ψ(2m t − n) funciones utilizadas para 
construir las onduletas de Haar (4.5.2)

ψm,n(t) onduletas de Haar (4.5.2)

�2(u) Laplaciano de u (7.1)

Re(z) parte real de z (8.1)

Im(z) parte imaginaria de z (8.1)
–z complejo conjugado de z (8.1.2)

|z| magnitud (módulo) de z (8.1.2)

arg(z) argumento de z (8.1.5)

�Ŵ f (z)dz integral de una función compleja f 
sobre una curva Ŵ (10.2)

Re s( f, z0) residuo de f  en z0 (12.2)

f : D → D∗ f es un mapeo de D en D∗ (13.1)
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