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Prefacio

En años recientes se ha visto la aparición de un buen número de textos en el tema de
Lenguajes Formales y Autómatas (Ver al final referencias [10], [7], [23], [8], [3], [21], etc.). Por
una parte, esto indica la importancia y riqueza que el tema tiene; por otra, ante tal variedad
de oferta todo nuevo libro en el área requiere una justificación que indique su aporte con
respecto a lo existente.

Este texto se sitúa en una generación de textos que tratan de poner el estudio de los
lenguajes formales y autómatas al alcance de estudiantes que no necesariamente son avezados
matemáticos buscando establecer nuevos teoremas, sino que buscan una iniciación a estos
temas, que además les sirva como un ejercicio en el arte de formalizar, en particular en
nociones relacionadas con la computación. Entre estos textos “accesibles”, encontramos, por
ejemplo, a [23]. Estos nuevos textos han reemplazado en muchas universidades a los “clásicos”
[6] y aún [10] -que ya era más accesible-, y han permitido que la teoŕıa de la computación se
estudie a nivel profesional en carreras relacionadas con computación y matemáticas.

El presente libro es resultado de una experiencia de impartir el curso de Teoŕıa de la
Computación por más de 10 semestres en el ITESM, 1 en Monterrey, México. Durante este
lapso, aunque ciertamente se fue enriqueciendo el contenido técnico, el principal refinamiento
consistió en ir detectando cuidadosamente las dificultades principales a las que se enfrenta-
ban los estudiantes, para poder estructurar y presentar el material de forma que aquellos
estuvieran en condiciones de comprenderlo de manera eficiente. Aqúı el énfasis no está tanto
en hacer el curso “más fácil” para los estudiantes, sino en asegurarse de que éstos cuenten
con los elementos para que ellos mismos reconstruyan estos contenidos dentro de su cabeza;
no se trata, pues, simplemente de “vaciar” información en la cabeza del estudiante. La teoŕıa
educativa que sustenta esta forma de trabajo esta basada en el “aprendizaje por reestruc-
turación” [18].

El texto está presentado de manera tal que es posible para el alumno estudiar el material
antes de cubrir el tema en clase; de hecho esta es la forma en que se utiliza en el ITESM,
contrariamente a muchas clases tradicionales, en las que el alumno se presenta a la exposición
del profesor y ya luego estudia el texto. En el ITESM la clase no se utiliza principalmente
para exposición del profesor, sino que se hacen ejercicios, problemas en equipo, miniexámenes
semanales, etc. Esta situación exige del texto que sea comprensible sin tener ninguna noción
del tema adquirida previamente, por lo que tuvimos que incluir explicaciones claras que
permitan al alumno reconstruir en su mente la idea intuitiva, y -sobre todo- ejemplos. A
lo largo del texto, cada una de las nociones presentadas es seguida inmediatamente por un
ejemplo ilustrativo.

Este texto es aplicable tanto al nivel de maestŕıa en computación o equivalente, como
a clases de nivel profesional (licenciaturas, ingenieŕıas). De hecho en el ITESM se aplica en
ambos niveles. La diferencia fundamental entre el enfoque del curso de nivel profesional y el

1Abreviatura de “Instituto Tecnológico y de Estudios Superiores de Monterrey”.



iii

de maestŕıa estriba en que el curso de nivel ingeniero enfatiza los aspectos de “saber hacer”,
(por ejemplo, saber comparar dos autómatas deterministas), mientras que el curso de nivel
maestŕıa enfatiza el “saber justificar” (por ejemplo, probar por inducción que una gramática
es correcta).

El material cuyo nivel es propiamente de maestŕıa es identificado por medio de una
barra vertical al margen, como en el presente párrafo. Esto incluye también las secciones de
ejercicios.

En breve, los puntos que caracterizan a este libro, y que en cierta medida lo hacen
particular, son:

La presentación didáctica ha sido -en nuestra opinión- más pulida que en la mayoŕıa
de textos en Teoŕıa de la Computación. Por ejemplo, primero se presentan las nociones
de manera intuitiva, y solamente después se procede a su formalización.

Es aplicable tanto al nivel de maestŕıa como en carreras de ingenieŕıa en computación,
mostrando en forma expĺıcita y gráfica qué secciones están destinadas a cada nivel.

Siendo un libro más orientado a estudiantes de ingenieŕıa que de matemáticas, se
enfatizan los temas que tienen comúnmente aplicación en su campo profesional, como
los autómatas finitos. Esta es la razón por la que se cubren con mucho más detalle estos
temas que otros de interés más teórico, como la calculabilidad en máquinas de Turing.
Sabemos de alumnos que han conseguido un buen empleo no universitario gracias a su
conocimiento de autómatas finitos.

Por la misma razón del punto anterior, ciertos temas que tradicionalmente se exponen
con una motivación matemática, como las propiedades de los “Lenguajes Regulares”,
en este texto se presentan en el contexto de métodos de diseño, lo que es consistente
con nuestro enfoque ingenieril. Es este aspecto lo que justifica el subt́ıtulo “un enfoque
de diseño” de este texto.

Ofrecemos metodoloǵıas para resolver ciertas clases de problemas, tales como el diseño
de expresiones regulares y gramáticas, que no son presentadas en otros libros de teoŕıa
de autómatas, o lo hacen de forma mucho más escueta. Inclusive algunos temas, tales
como las propiedades de cerradura de los lenguajes regulares a la unión de conjuntos,
se presentan aqúı como una herramienta de solución de problemas de diseño, y no
simplemente por el interés matemático del tema.

Presentamos errores frecuentes de los estudiantes de esta materia, permitiendo de este
modo que el lector se beneficie de una extensa experiencia directa en la enseñanza de
la materia.

Los algoritmos no se presentan en forma de “pseudocódigo”, es decir, usando estruc-
turas de control de lenguajes imperativos (p.ej. while, for, etc.), sino que damos una
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interpretación intuitiva de los resultados intermedios obtenidos por los algoritmos. Pen-
samos que este enfoque brinda una mejor comprensión de los algoritmos, pues es más
fácil recordar ideas que lineas de código.

¡El texto está en español en el original! (es decir, no se trata de una traducción de un
texto en inglés). Las traducciones son muchas veces desventajosas respecto al original.

El libro, en tanto que libro electrónico, es un archivo estándar de tipo PDF, con “hiperli-
gas” que permiten localizar rápidamente figuras, citas, páginas del texto, etc.

¡El libro es gratuito! En efecto, no se distribuye con fines de lucro. Esto no pretende
atentar contra la industria editorial, sino apoyar el aprendizaje del área de autómatas y
lenguajes en América Latina, región que no está sobrada de recursos como para querer
engrosar los flujos de capital hacia los grandes centros editoriales del mundo.

La estructura de este texto es la siguiente: después de una breve revisión de las nociones
preliminares de matemáticas, en los primeros caṕıtulos (2-3) veremos la clase más simple de
lenguajes, los Lenguajes Regulares, junto con las máquinas abstractas que les corresponden
–los Autómatas Finitos–, y al mismo tiempo introduciremos una metodoloǵıa de análisis de
las máquinas abstractas y de los lenguajes, metodoloǵıa que volveremos a utilizar en las
siguientes secciones del curso, para otros tipos de lenguajes y de máquinas.

En los caṕıtulos 4 y 5 veremos los Lenguajes Libres de Contexto y los Autómatas de Pila.

Finalmente, a partir del caṕıtulo 6 estudiaremos el tipo de máquinas más poderoso, las
Máquinas de Turing, que son en cierta forma el ĺımite teórico de lo que es posible de hacer
con máquinas procesadoras de información.

T́ıpicamente, en un curso de nivel profesional se inicia con el caṕıtulo de preliminares,
y se continúa con los caṕıtulos 2-3. Se enfatizan los caṕıtulos 4 y 5, aśı como la teoŕıa de
los compiladores. A continuación se cubren los aspectos básicos de las Máquinas de Turing
(inicio de caṕıtulo 6).

En el curso de maestŕıa, la revisión de preliminares casi se omite, y se cubren los caṕıtulos
2-3, sólo que en un nivel de profundidad mayor que en el caso del nivel profesional. 2 Luego
se procede a estudiar los Autómatas de Pila, las Máquinas de Turing y la Tesis de Church
(caṕıtulos 4, 5 y 6), con énfasis en las pruebas.

Agradezco la colaboración del Dr. José Luis Aguirre en la corrección de los errores en
versiones previas, aśı como en sugerencias para mejorar la exposición de ciertos temas. Tam-
bién agradezco al Comité del Fondo de Apoyo a Proyectos en Didáctica su apoyo financiero.
Finalmente doy las gracias a muchos alumnos que ayudaron a depurar el escrito mientras
sirvió como apuntes de la materia.

2Recordar que el material de nivel maestŕıa está indicado con una barra vertical en el margen.
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Caṕıtulo 1

Preliminares

En esta parte repasaremos brevemente algunas nociones y notaciones que serán necesarias
para comprender adecuadamente el resto del material de este libro. Debe, sin embargo,
quedar claro que este repaso queda fuera del área de autómatas y lenguajes formales. Por otra
parte, no es nuestra intención hacer una introducción para un lector que no tenga ninguna
base en matemática, especialmente en teoŕıa de conjuntos, sino que únicamente haremos
un repaso, ayudando al lector a detectar sus puntos débiles, además de recordar nociones
que pueden no estar frescas. Un objetivo adicional del presente caṕıtulo es uniformizar la
notación, que vaŕıa bastante de libro a libro. Para los lectores que requieran una introducción
más exhaustiva a la teoŕıa de conjuntos y temas afines, recomendamos textos como [19].

1.1. Conjuntos

El fundamento más importante para el estudio de los lenguajes y autómatas es la Teoŕıa
de Conjuntos. En efecto, siempre que hablemos de “formalizar” una noción, estaremos di-
ciendo en realidad “expresar en términos de la Teoŕıa de Conjuntos”. Es por esto que en este
caṕıtulo presentamos los conceptos más básicos de dicha Teoŕıa de Conjuntos.

La idea de un conjunto como una colección de individuos u objetos no es, para un
verdadero matemático, suficientemente precisa, y se parece a la noción de clase; sin embargo,
para nuestros propósitos es suficiente.

Un conjunto que vamos a utilizar con frecuencia es el de los números naturales, {1, 2, 3, . . .},
denotado por N.

Los conjuntos pueden expresarse de dos maneras básicamente:

En extensión, lo cual quiere decir que citamos expĺıcitamente cada uno de sus elementos,

3
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como en el conjunto {1, 3, 5} que contiene exactamente los números 1, 3 y 5.

En intención, dando una descripción precisa de los elementos que forman parte del
conjunto, en vez de citarlos expĺıcitamente. Por ejemplo, el conjunto del punto anterior
puede ser visto como {i ∈ N|impar(i), i < 6}, donde se supone que los números impares
cumplen la condición impar(i).

Representamos a los conjuntos con letras mayúsculas, como en A = {2, 4}. Los conjuntos
pueden contener conjuntos como elementos, como en B = {{a}, {b, c}}. El conjunto sin
elementos (vaćıo) se representa por ∅ o bien por {}.

La notación a ∈ B significa que a es elemento o está contenido en el conjunto B; por
ejemplo, {2, 3} ∈ {1, {2, 3}, 4}. Para indicar que a no está en B se escribe a 6∈ B.

El tamaño de un conjunto es el número de elementos que contiene, y se representa como
|A| para un conjunto A. Por ejemplo, el tamaño de {a, b, c} es 3, y el tamaño de ∅ es cero. Por
ejemplo, el tamaño de {{a}, {b, c}} es 2 y no 3, pues tiene 2 elementos, siendo el primero {a}
y el segundo {b, c}. La definición de “tamaño” parece muy clara, pero hay conjuntos que no
tienen un número determinado de elementos; estos se llaman “infinitos” y serán discutidos
más adelante.

Dos conjuntos A y B son iguales, A = B, si y sólo si tienen los mismos elementos, esto
es, x ∈ A ssi x ∈ B. 1 Por ejemplo, {1, {2, 3}} = {{3, 2}, 1}; vemos que en los conjuntos el
orden de los elementos es irrelevante.

Se supone que en los conjuntos no hay repeticiones de elementos, y que cada elemento del
conjunto es distinto de todos los otros elementos. Sin embargo, si decimos, por ejemplo, i ∈ A,
j ∈ A, no estamos suponiendo que i sea distinto de j, pues tanto i como j son elementos
cualquiera de A. Si necesitamos que sean distintos, hay que indicarlo expĺıcitamente, como
en la expresión i, j ∈ A, i 6= j.

La notación A ⊆ B significa que el conjunto A está “contenido” en el conjunto B, o más
técnicamente, que A es subconjunto de B. Por ejemplo, el conjunto {a, c} es subconjunto
de {a, b, c}, indicado como {a, c} ⊆ {a, b, c}. En otras palabras, A ⊆ B cuando siempre que
x ∈ A, tenemos también x ∈ B. Obsérvese que de acuerdo con esta definición, A ⊆ A para
cualquier conjunto A: todo conjunto es subconjunto de śı mismo. Un caso extremo es el
conjunto vaćıo, que es subconjunto de cualquier conjunto.

Para indicar que un subconjunto contiene menos elementos que otro, es decir, que es un
subconjunto propio de éste, se escribe A ⊂ B. Por ejemplo, {a, c} ⊂ {a, b, c}. Claramente,
A = B ssi A ⊆ B y B ⊆ A. Obsérverse también que si A ⊆ B, entonces |A| ≤ |B|, y si
A ⊂ B, entonces |A| < |B|.

Las relaciones de inclusión entre conjuntos se acostumbran representar gráficamente me-
diante los llamados “diagramas de Venn”, que denotan mediante áreas cerradas (por ejemplo

1“A ssi B” se lee “A si y sólo siB”, y significa que A implica B y también B implica A.
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C BA

Figura 1.1: Diagrama de Venn

elipses) los conjuntos. Por ejemplo, en la figura 1.1 se ilustra la situación donde un conjunto
A es subconjunto de B, y B es subconjunto de C.

En los diagramas de Venn es fácil visualizar relaciones que de otra forma pueden parecer
complejas; por ejemplo, si un conjunto A es subconjunto de B y éste es subconjunto de C,
se espera que A ⊆ C, como se aprecia intuitivamente en la figura 1.1, pues el área de A
está obviamente contenida dentro de la de C.

1.1.1. Operaciones

Llamamos operaciones a formas estándar de combinar o transformar objetos matemáticos.
Por ejemplo, una operación habitual es la suma, que en la expresión “3 + 7” combina los
objetos 3 y 7 dando como resultado el objeto 10. El 3 y el 7, que son los objetos que se
combinan, son los operandos, el “+” es la operación, y el 10 es el resultado. Una operación
es binaria cuando tiene dos operandos. Es unaria si tiene un sólo operando, como en la
operación de la ráız cuadrada.

Una operación “⊗” es conmutativa si x ⊗ y = y ⊗ x, como es el caso de la suma o la
multiplicación de números. Se dice que es asociativa si x⊗ (y⊗z) = (x⊗y)⊗z; por ejemplo,
la suma es asociativa, pero no la resta, pues podemos ver que 8− (4− 3) 6= (8− 4)− 3.

1.1.2. Operaciones con conjuntos

Sean A y B conjuntos. Se definen las siguientes operaciones con los conjuntos:

Unión de conjuntos, denotada por A ∪ B, que contiene los elementos del conjunto A y
también los del conjunto B, es decir, A ∪ B = {x|x ∈ A o x ∈ B}. Por ejemplo,
{1, 2, 3} ∪ {3, 4} = {1, 2, 3, 4}. La unión de conjuntos es conmutativa, lo cual se com-
prende fácilmente visualizando las áreas correspondientes en el diagrama de Venn de
la figura 1.2. 2 También es asociativa.

2En seguida se presenta una prueba matemática de esta propiedad.
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Intersección de conjuntos, escrita A ∩ B, que contiene los elementos que pertenecen si-
multáneamente al conjunto A y al conjunto B, es decir, A∩B = {x|x ∈ A y x ∈ B}.
Por ejemplo, {1, 2, 3} ∩ {3, 4} = {3}. En un diagrama de Venn la intersección de dos
elipses se ilustra por el área que ambas comparten, como es el área sombreada de la
figura 1.2. La intersección es conmutativa y asociativa.

Diferencia de conjuntos, A− B, que contiene los elementos de A que no están en B, esto
es, A − B = {x|x ∈ A y x 6∈ B}. Por ejemplo, {1, 2, 3} − {3, 4} = {1, 2}. La
resta o diferencia de conjuntos no siempre le “quita” elementos al primer conjunto;
por ejemplo {1, 2, 3}−{4, 5} = {1, 2, 3}. La diferencia de conjuntos no es ni asociativa
ni conmutativa, lo cual se puede probar fácilmente con un ejemplo (ver sección de
ejercicios).

Complemento de un conjunto, es un caso particular de la diferencia, cuando el primer
conjunto es considerado como el “universo” que contiene todos los elementos posibles.
Sea U un universo, entonces el complemento del conjunto A, denotada por Ac contiene
los elementos del universo que no están en A. Por ejemplo, si el universo son los
números naturales {1, 2, 3, . . .}, complemento de los números pares son los números
nones: {2, 4, 6, . . .}c = {1, 3, 5, . . .}. Claramente A ∪ Ac = U , para todo conjunto A;
además, A ∩ Ac = ∅.

Potencia de un conjunto A, denotada como 2A, contiene como elementos a todos los sub-
conjuntos de A, esto es, 2A = {x|x ⊆ A}. En otras palabras, 2A es un conjunto de
conjuntos. Por ejemplo, 2{1,2,3} = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. Re-
cuérdese que el conjunto vaćıo siempre forma parte de todo conjunto potencia. La
notación “2A” recuerda que el tamaño del conjunto potencia de A es 2 elevado a la
potencia del tamaño de A, esto es, |2A| = 2|A|.

Producto Cartesiano de dos conjuntos, A × B, es el conjunto de pares ordenados (a, b)
tales que a ∈ A y b ∈ B. Por ejemplo,

{1, 2} × {3, 4, 5} = {(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)}

El tamaño de un producto cartesiano A×B es |A| multiplicado por |B|, como se puede
verificar en el ejemplo anterior. El producto cartesiano no es conmutativo, pues no es
lo mismo un par (a, b) que uno (b, a), ni asociativo, pues no es lo mismo (a, (b, c)) que
((a, b), c).

Con ayuda de diagramas de Venn es fácil comprender las operaciones de conjuntos. Por
ejemplo, usando la figura 1.2 es fácil verificar una relación tan compleja como A ∩ B =
(Ac∪Bc)c, identificando las dos maneras de obtener el área sombreada de la figura, siguiendo
ya sea el lado izquierdo o derecho de la ecuación.

A un elemento (a, b, c) de un producto cartesiano A × B × C se le llama tripleta, y
similarmente a un elemento (a, b, c, d) de un producto cartesiano A×B ×C ×D se le llama
cuádruplo, a un elemento (a, b, c, d, e) de un producto cartesiano A × B × C ×D × E se le
llama qúıntuplo, etc.
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Figura 1.2: Intersección de dos conjuntos

Ahora probaremos la conmutatividad de la unión de conjuntos. Esto es, queremos probar
que A ∪B = B ∪ A para conjuntos cualesquiera A y B.

La igualdad A ∪B = B ∪A puede descomponerse en A ∪B ⊆ B ∪A y B ∪A ⊆ A ∪B,
por definiciones que hemos visto antes. Entonces vamos a probar una de ellas, por ejemplo
A ∪ B ⊆ B ∪ A, siendo la otra parte enteramente similar. Hemos visto que A ∪ B ⊆ B ∪ A
es equivalente a decir que si un elemento x es parte de A ∪ B, entonces x también debe
ser parte de B ∪A. En consecuencia, lo que tenemos que probar es lo siguiente: suponiendo
que x ∈ (A ∪ B), debemos llegar a concluir que x ∈ (B ∪ A). Vamos a hacer esta prueba
enseguida.

Como x ∈ (A ∪B), entonces, de acuerdo con la definición de unión, x ∈ A o bien x ∈ B
(o ambos a la vez). Si x ∈ A, entonces seguramente x ∈ A ∪ B, pues A ∪ B contiene todos
los elementos de A. Similarmente, si x ∈ B tendremos x ∈ A ∪B. Es decir, en los dos casos
podemos concluir que x ∈ A ∪B, que era lo que necesitábamos para nuestra prueba.

1.1.3. Equivalencias de conjuntos

La igualdad A∪B = B ∪A es una de las llamadas “equivalencias de conjuntos”, que son
muy útiles para reemplazar una expresión con operaciones de conjuntos por otra equivalente
pero más conveniente –por ejemplo más simple. En la lista siguiente presentamos algunas de
las equivalencias de más frecuente uso:

Leyes conmutativas A ∪B = B ∪ A, A ∩B = B ∩ A, para los conjuntos A y B.

Leyes distributivas A ∪ (B ∩C) = (A ∪B) ∩ (A ∪C), A ∩ (B ∪C) = (A ∩B) ∪ (A ∩C).

Leyes de De Morgan (A ∪B)C = AC ∩BC , (A ∩B)C = AC ∪BC .

Doble complemento (AC)C = A.

Ejemplo.- La intersección de conjuntos puede expresarse usando la unión y el comple-
mento, de la manera siguiente: A ∩B = ((A ∩B)C)C = (AC ∪BC)C .
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Las equivalencias de conjuntos pueden verificarse fácilmente usando los diagramas de
Venn, de la forma que hemos comentado antes, esto es, compaginando el área asociada a
cada uno de los lados de la ecuación.

1.1.4. Relaciones y funciones

Las nociones de relaciones y funciones pueden derivarse directamente del producto carte-
siano de conjuntos. En efecto, se llama relación a todo subconjunto de un producto carte-
siano; por ejemplo la relación “≤” contiene los pares de números naturales tales que el primer
componente es menor o igual al segundo, esto es, ≤ = {(1, 1), (1, 2), (1, 3), (2, 3), . . .}.

Esta definición matemática de relación no parece tener mucho que ver con la idea intu-
itiva de que una cosa “tiene relación con otra”, pero en realidad ambas nociones śı corre-
sponden. Por ejemplo, estamos familiarizados con la familia vista como una relación entre
personas. Consideremos más espećıficamente la relación “x es padre de y”. Dado un con-
junto de personas, por ejemplo P = {Leonor,Eĺıas,Arturo,Marta}, el producto cartesiano
P × P es {(Leonor, Leonor), (Leonor, Eĺıas), (Leonor, Arturo), (Leonor,Marta), (Elias,
Leonor), (Eĺıas,Eĺıas), (Eĺıas, Arturo), (Eĺıas, Marta), (Arturo,Leonor), (Arturo, Eĺıas),
(Arturo,Arturo), (Arturo, Marta), (Marta,Leonor), (Marta, Eĺıas), (Marta, Arturo), (Marta,
Marta)}. Un subconjunto de este producto cartesiano es, por ejemplo, {(Leonor, Arturo),
(Leonor, Marta), (Eĺıas, Arturo), (Eĺıas, Marta)}, cuyos pares (x, y) corresponden, en la fa-
milia del autor, a relaciones “x es padre de y”, pues Leonor y Eĺıas son padres de Arturo y
Marta.

Desde luego, en el ejemplo anterior de las relaciones familiares no cualquier subconjunto
del producto cartesiano podŕıa ser candidato a corresponder a la relación “x es padre de y”.
Por ejemplo, el par (Eĺıas,Eĺıas) seŕıa inaceptable, pues nadie puede ser padre de śı mismo, ni
siquiera en las liberales familias modernas. Cabŕıa preguntarnos qué caracteŕısticas debeŕıa
tener una relación para ser aceptable como “x es padre de y”. A continuación discutimos
algunas caracteŕısticas que las relaciones pueden tener o no, y que nos permitiŕıan contestar
a esta pregunta (ver sección de ejercicios).

Se llama inverso de una relación R, denotado por R−1, a aquella en donde se invierte el
orden de los pares ordenados, esto es:

R−1 = {(y, x) | (x, y) ∈ R}

Por ejemplo, el inverso de la relación {(1, 2), (2, 3), (1, 3)} es {(2, 1), (3, 2), (3, 1)}.

Se dice que una relación binaria en D×D es reflexiva cuando contiene todos los pares de
la forma (x, x), para x ∈ D. Por ejemplo, si D = {1, 2, 3}, la relación en {1, 2, 3} × {1, 2, 3}
con los elementos {(2, 2), (2, 3), (3, 3), (1, 2), (1, 1), (1, 3)} es reflexiva, pero {(2, 2), (2, 3),
(1, 2), (1, 1), (1, 3)} no lo es.
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Una relación es simétrica si y solo si siempre que contiene un par (x, y) también contiene
(y, x). Por ejemplo, {(2, 2), (1, 2), (1, 1), (2, 1)} es simétrica, pero {(2, 2), (2, 3), (3, 3), (1, 2),
(1, 1)} no lo es.

Una relación es transitiva cuando siempre que contiene los pares (x, y) y (y, z) tam-
bién contiene (x, z). Por ejemplo, la relación {(2, 3), (1, 2), (1, 1), (1, 3)} es transitiva, pero
{(2, 3), (1, 2), (1, 1)} no lo es.

Llamamos cerradura reflexiva de una relación R, la menor extensión de R, es decir, R∪∆,
tal que R ∪ ∆ es reflexiva, aunque inicialmente R no lo haya sido. En otras palabras, a R
se le agregan los pares ordenados que sean necesarios hasta que se vuelva reflexiva. Por
ejemplo, la cerradura reflexiva de R1 = {(2, 3), (1, 2), (1, 1), (1, 3)} es {(2, 3), (1, 2), (1, 1),
(1, 3), (2, 2), (3, 3)}. Decimos que la cerradura reflexiva es la menor extensión de la relación
original porque no deben añadirse más pares ordenados que los estrictamente necesarios para
volverla reflexiva. Por ejemplo, la relacion {(2, 3), (1, 2), (1, 1), (1, 3), (2, 2), (3, 3), (3,1)},
aunque cumple con ser una extensión de R1 y tambien con ser reflexiva, no es la cerradura
reflexiva de R1, porque tiene el par (3, 1) que no era indispensable agregar.

Similarmente definimos la cerradura simétrica de una relación, añadiendo los pares es-
trictamente necesarios para que se vuelva simétrica. Por ejemplo, la cerradura simétrica de
{(2, 3), (1, 2), (1, 1), (1, 3)} es {(2, 3), (1, 2), (1, 1), (1, 3), (3, 2), (2, 1), (3, 1)}.

La cerradura transitiva también se define de una manera enteramente similar. Por ejem-
plo, la cerradura transitiva de la relación {(1, 2), (3, 1), (2, 1)} es {(1, 2), (3, 1), (2, 1), (1, 1),
(2, 2), (3, 2)}.

Se pueden tener también combinaciones de varias cerraduras, como la cerradura reflexiva
y transitiva, que en el caso de {(2, 3), (1, 2), (1, 1), (1, 3)} seŕıa {(2, 3), (1, 2), (1, 1), (1, 3),
(2, 2), (3, 3)}.

Un caso particular de las relaciones son las funciones, que son relaciones en que no hay
dos pares ordenados que tengan el mismo primer componente. Es decir, los pares ordenados
asocian a cada primer componente un único segundo componente. Por ejemplo, la relación
{(1, 2), (2, 3), (1, 3)} no es una función, pero {(1, 2), (2, 3), (3, 3)} śı lo es.

Tomando como ejemplo las familias, la relación de hermanos no es una función, pero la
relación de cada quien con su padre śı lo es (cada quien tiene a lo más un padre).

La notación habitual para las funciones es f(a) = b, en vez de (a, b) ∈ f , para una función
f , pero en realidad ambas notaciones son equivalentes.

Muchas veces consideramos que las funciones “obtienen una salida a partir de una en-
trada”. Aśı, si f(1) = 2, se considera que a partir de la entrada 1 se obtiene la salida 2.
Esta manera de conceptualizar las funciones no se contrapone a la idea de funciones como
relaciones especiales (esto es, conjuntos de pares ordenados), sino que más bien en ciertas
situaciones es más útil tomar uno u otro punto de vista.
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Escribimos f : A→ B para indicar que si (a, b) ∈ f entonces a ∈ A y b ∈ B; decimos que
A es el dominio de la función y B es el codominio. Una función f : A→ B puede verse como
un mapeo que relaciona cada elemento del dominio A con un elemento del codominio B. Por
ejemplo, la función cuadrado : N → N relaciona cada número natural con su cuadrado, es
decir, cuadrado = {(1, 1), (2, 4), (3, 9), . . .}.

Se dice que una función es total cuando está definida para todos los elementos del dominio,
como en el ejemplo de la función cuadrado, mientras que una función es parcial cuando no
está definida para todos los elementos del dominio, como seŕıa el caso de la función de resta
en los naturales: resta : N × N → N, pues por ejemplo, resta(3, 5) no tiene un resultado en
los naturales, y por lo tanto el par (3, 5) no forma parte del dominio de la función.

Una función es inyectiva, también llamada uno a uno, cuando para cada elemento del
codominio hay un único elemento del dominio. Esto es, no se presenta el caso de que
dos pares como (x, z) y (y, z) tengan el mismo segundo elemento. Por ejemplo, la función
{(1, 2), (2, 3), (3, 3)} no es inyectiva, pero {(1, 2), (2, 3), (3, 1)} śı lo es.

Siguiendo el ejemplo de las familias, la función que asocia a cada persona con su padre
no es inyectiva, pues varios hermanos comparten un mismo padre.

Una función es sobreyectiva si cada elemento del codominio aparece en algún par orde-
nado. Por ejemplo, la función cuadrado que presentamos antes no es sobreyectiva, pues hay
muchos números, como el 7, que no son el cuadrado de ningún otro.

Si una función f es a la vez sobreyectiva e inyectiva, entonces su inverso f−1 es tam-
bién una función (total). A las funciones que cumplen con ambas propiedades se les llama
biyectivas.

Una secuencia es una sucesión ordenada de elementos, como “1, 3, 5, 7, 9”, que es la se-
cuencia de números naturales impares menores que 10, ordenados de menor a mayor. La
diferencia entre un conjunto y una secuencia es que en una secuencia el orden śı importa y
en un conjunto no. Aśı, 1, 2, 3 6= 2, 3, 1. Además, en una secuencia śı es relevante la repetición
de los elementos, por lo que 1, 2, 3 6= 1, 2, 2, 3.

1.1.5. Conjuntos infinitos

Además de los conjuntos “finitos” –esto es, con un número de elementos determinado–
también puede haber conjuntos infinitos, cuyo tamaño no puede expresarse con un número;
un ejemplo es el conjunto de los números naturales N = {1, 2, 3, . . .}. Aún a estos conjuntos
pueden aplicarse todas las operaciones antes descritas.

Sin embargo, la comparación de tamaños de conjuntos infinitos no es tan simple como
en el caso de los conjuntos finitos, pues no se puede expresar su tamaño como un número.
En estos casos se aplica lo que se conoce como “el principio del palomar”, que sirve para
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comprobar si dos conjuntos tienen o no el mismo tamaño. Supóngase que se quiere comprobar
si en un palomar la cantidad de palomas con que se cuenta es mayor, menor o igual a la
cantidad de lugares disponibles en el palomar. Una manera simple de verificarlo es asignar a
cada una de las palomas un sitio disponible, y si es posible hacerlo para todas las palomas, se
sabe que no hay más palomas que lugares. Similarmente se puede ver si no hay más lugares
que palomas. Aśı verificamos que el conjunto de palomas tiene el mismo tamaño que el de
lugares disponibles.

Esta idea tan sencilla puede aplicarse para comparar el tamaño de conjuntos infinitos.
Aśı se puede verificar, por ejemplo, que el conjunto de los pares tiene el mismo tamaño
que el de los naturales, un resultado dif́ıcil de aceptar intuitivamente. En efecto, sean N
y P los naturales y los pares, respectivamente. Es fácil ver que |P| ≤ |N|, pero es mucho
menos evidente que |N| ≤ |P|, cosa que vamos a mostrar usando el principio del palomar. A
cada número natural le debemos poder asignar un número par distinto; esto se puede hacer
de muchas maneras, pero una muy simple consiste en asignar a cada número el doble de
śı mismo; por ejemplo, al 7 le asignamos el par 14, etc. Como esto se puede hacer para todos
los números, y no va a haber dos números que compartan el mismo par, concluimos que no
hay más números naturales que pares.

Definición.- Un conjunto infinito es contable, también llamado enumerable, cuando sus
elementos pueden ponerse “en una fila”, o dicho de una manera más técnica, cuando sus
elementos pueden ponerse en correspondencia uno a uno con los números naturales. En
otras palabras, los conjuntos contables infinitos tienen el mismo tamaño que el conjunto de
los números naturales. Adicionalmente los conjuntos finitos también son contables.

Otro ejemplo de conjunto infinito contable es el conjunto de pares de números, esto es,

N × N = {(1, 1), (2, 1), (1, 2), (1, 3), (2, 2), (3, 1), (4, 1), . . .}

(La prueba de que es contable se deja como ejercicio, ver sección de ejercicios).

Aunque resulte sorprendente, hay conjuntos infinitos “más grandes” que los conjuntos
infinitos contables, en el sentido de que no van a alcanzar los elementos del conjunto contable
para asignar uno a cada elemento del conjunto “grande”. A estos conjuntos se les llama
incontables.

Un ejemplo de conjunto incontable es 2N, esto es, el conjunto potencia de los naturales;
el llamado “Teorema de Kantor” establece este hecho.

La prueba del Teorema de Kantor es muy simple y se basa en empezar suponiendo que
2N śı es contable, y se llega a una contradicción, concluyendo entonces que 2N en realidad es
incontable.

En efecto, si 2N es contable, sus elementos pueden ser puestos en una sucesión como sigue:

2N = {S1, S2, S3, . . .}

Supóngase ahora el conjunto D = {n ∈ N|n /∈ Sn}, que está formado por aquellos números
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n que no aparecen en el conjunto Sn que les corresponde. Como por hipótesis todos los sub-
conjuntos de los naturales fueron puestos en la sucesión S1, S2, . . ., tenemos que el conjunto
D, –que está formado de naturales– debe hallarse en dicha sucesión, es decir, debe ser igual
a Sk para una cierta k. Ahora nos preguntamos si k aparece o no en el conjunto D:

Si la respuesta es afirmativa, entonces, por la definición de D, tenemos que k /∈ Sk, lo
que es una contradicción;

Si la respuesta es negativa, entonces, por la definición de D, k ∈ Sk, lo que también es
una contradicción.

Concluimos que 2N es incontable.

Aún dentro de los conjuntos incontables hay unos conjuntos “más grandes” que otros.
En efecto, se sabe que para todo conjunto infinito A, se tiene que |A| < |2A|, por lo que hay
toda una jerarqúıa de “infinitos”:

|N| < |2N| < |22N| < . . .

1.2. Manejo lógico de enunciados

En el proceso de solución de problemas, un aspecto clave es comprender cabalmente el
enunciado, lo cual en ocasiones no es sencillo, ya sea por la complejidad de aquel, o bien
porque la forma poco rigurosa en que manejamos el lenguaje cotidiano puede provocar errores
de interpretación. Más aún, en muchas situaciones es necesario transformar el enunciado en
otro equivalente, de forma que la solución al problema planteado sea más sencilla.

Por ejemplo, consideremos el conjunto de números naturales tales que, si son pares o
terminan en 7, entonces contienen algún cero (0). Algunos de estos números son el 2307, el
400, aśı como el 1023 y el 175. Hay que comprender, por ejemplo, porqué el 175 corresponde
al enunciado. La idea es que un número cumple la condición cuando, ya sea contiene algún
cero, como el 1023, el 2307 o el 400, o bien ni es par ni termina en 7, como en el caso del
175.

Razonamientos lógicos como el anterior pueden sistematizarse haciendo uso de śımbolos
que representan afirmaciones, que se llaman proposiciones en el llamado Cálculo proposi-
cional, que es una rama de las matemáticas. 3

En el ejemplo presentado arriba es crucial comprender el significado lógico de la llamada
implicación: Si A es cierto, entonces también B es cierto. Esto se representa matemáticamente

3No estudiaremos aqúı el cálculo proposicional, limitándonos a revisar los aspectos realmente indispens-
ables para manejar el material de este texto. El lector interesado en estudiar el cálculo proposicional puede
consultar textos como [19].
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usando el śımbolo “⇒”, como en “A⇒ B”. La implicación A⇒ B es cierta siempre que B
es cierto –independientemente de si A es cierto o no–, y también cuando A es falso, como
era el caso del número 175 en el ejemplo presentado.

La implicación no es manejada rigurosamente en el lenguaje cotidiano. Por ejemplo, si un
papá dice a su niño: “Irás al cine si haces tu tarea”, en realidad no está dando información
sobre qué pasará en caso de que el niño no haga la tarea, aún cuando ambos interlocutores
sobreentienden que en ese caso el niño no irá al cine. Representando “ir al cine con el
śımbolo C y hacer la tarea con T , la frase se representaŕıa con la fórmula T ⇒ C. Si quisiera
el papá dar información para atender el caso en que no se hace la tarea, tendŕıa que decir
algo como “Sólo si haces tu tarea irás al cine”, representado por la implicación C ⇒ T ,
aunque en este caso se deja abierta la posibilidad de que el niño no vaya al cine aunque haya
hecho su tarea. . . Si el papá quisiera considerar todos los casos posibles, tendŕıa que decir
algo como “irás al cine si y sólo si haces tu tarea”.

Resumiendo, algunas formas en que se expresa frecuentemente la implicación “A ⇒ B”
son las siguientes:

“Si A entonces B”

“B si A”

“B cuando A”

“B siempre y cuando A”

“A sólo si B”

Otras frases tales como “Vamos a Yucatán o a Oaxaca” o “El clima es cálido y seco”
también se pueden representar con śımbolos matemáticos, mediante la llamada disyunción
(∨), para las frases unidas con “o”, o bien con la conjunción (∧), para las frases unidas con
“y”. Por ejemplo, si ir a Yucatán se representa con Y e ir a Oaxaca con O, la primera frase se
representaŕıa como Y ∨ O. Similarmente se pueden representar frases más complejas, como
“Si vamos a Yucatán el clima será cálido pero no seco, mientras que si vamos a Oaxaca
será cálido y seco”, con la fórmula (Y ⇒ (C ∧¬S)) ∧ (O ⇒ (C ∧ S)), donde el śımbolo “¬”
representa la negación de lo que sigue a su derecha.

Otro śımbolo lógico de utilidad es la llamada “doble implicación”, denotado por “⇔”,
que significa que sus dos argumentos son equivalentes lógicamente. Aśı, A⇔ B quiere decir
que A es cierto exactamente en los mismos casos en que B es cierto.

La implicación, la negación, la conjunción, etc., son llamados genéricamente conectivos
lógicos.
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1.2.1. Tablas de verdad

Una herramiente útil para comprender y utilizar los conectivos lógicos son las llamadas
tablas de verdad, que tienen en los renglones cada caso posible de valores “cierto” o “falso”
de las proposiciones elementales, y en las columnas a la derecha aparece el valor correspon-
diente de la proposición compuesta. Por ejemplo, en la siguiente tabla de verdad se define el
comportamiento de los conectivos lógicos de conjunción, disyunción, negación e implicación:

A B A ∧B A ∨B ¬A A⇒ B
0 0 0 0 1 1
0 1 0 1 1 1
1 0 0 1 0 0
1 1 1 1 0 1

En esta tabla de verdad el valor “cierto” se representa con 1 y el “falso” con 0. Podemos
ver ahi que, por ejemplo, el conectivo de disyunción da “cierto” en todos los casos menos
cuando los dos argumentos son falsos. Por cierto, esto contradice la manera en que a veces
se maneja la disyunción en el lenguaje cotidiano; por ejemplo, cuando se dice “O pagas lo
que debes o no te vuelvo a prestar”, se sobreentiende que ambas cosas no pueden ser ciertas
a la vez. Sin embargo, viendo la tabla de verdad en la columna del “A∨B”, vemos que tiene
el valor “cierto” cuando tanto A como B son ciertos.

Es importante entender que los valores que aparecen en la tabla de verdad presentada
arriba son definiciones, que por lo mismo no tienen que probarse. Desde luego que no son
valores arbitrarios, sino que pretenden precisar el significado que tienen intuitivamente la
disyunción, la conjunción, la negación y la implicación. En esa tabla de verdad también
podemos ver que la implicación es simplemente un conectivo que tiene valor cierto en todos
los casos menos cuando A es cierto y B falso. Esto es congruente con la interpretación que
dimos de la implicación párrafos antes.

Como en el caso de los conjuntos, en las fórmulas con proposiciones también hay equi-
valencias muy útiles, que nos permiten modificar enunciados, pero teniendo la garant́ıa de
que el enunciado modificado es equivalente al original. Vamos a considerar las siguientes
equivalencias:

Conmutatividad A ∧B = B ∧ A, A ∨B = B ∨ A.

Distributividad A ∧ (B ∨ C) = (A ∧B) ∨ (A ∧ C), A ∨ (B ∧ C) = (A ∨B) ∧ (A ∨ C).

Implicación A⇒ B = (¬A) ∨B.

Leyes de De Morgan ¬(A ∧B) = ¬A ∨ ¬B, ¬(A ∨B) = ¬A ∧ ¬B.

Doble negación ¬(¬A) = A.
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Doble implicación A⇔ B = (A⇒ B) ∧ (B ⇒ A)

Ejemplo.- El conjunto de números naturales tales que, si son pares o terminan en 7,
entonces contienen algún cero (0), que presentamos antes, puede ser expresado de una forma
más simple usando las equivalencias. Sea P que el número es par, T que termina en 7, C
que contiene algún cero. Entonces el enunciado original es:

(P ∨ T )⇒ C

Usando la equivalencia de la implicación, esta fórmula es equivalente a:

(¬(P ∨ T )) ∨ C

Aplicando una equivalencia de De Morgan, queda como:

(¬P ∧ ¬T ) ∨ C

Esto es, ya sea que el número contiene algún cero (proposición C), o bien ni es par (¬P ) ni
termina en 7 (¬T ).

Las equivalencias de conectivos lógicos se pueden probar haciendo las tablas de verdad
para las dos fórmulas que se supone que son equivalentes. Por ejemplo, probamos la equiv-
alencia de la implicación con la siguiente tabla de verdad, en la que se puede observar que
los valores de A⇒ B y de (¬A) ∨B son los mismos:

A B ¬A (¬A) ∨B A⇒ B
0 0 1 1 1
0 1 1 1 1
1 0 0 0 0
1 1 0 1 1

1.3. Pruebas por inducción

Una forma de prueba que utilizaremos repetidamente en este texto es la prueba por in-
ducción. Sirve para probar que una cierta propiedad es válida para todos los elementos de un
conjunto infinito contable. Hacemos notar que el material indicado como “nivel profesional”
no incluye pruebas por inducción a lo largo del libro. Esto es debido al enfoque predominan-
temente ingenieril que se da al material de profesional, dejando las pruebas por inducción
para los estudiantes de posgrado.

Supongamos que se quiere probar que una propiedad P es cierta para todos los elementos
de un conjunto infinito contable (C).
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Inicialmente se prueba que es cierta para el primer elemento de (C), sea c0, esto es, se
verifica P(c0). Este paso se llama “base de la inducción”.

Después se supone que la propiedad P es cierta para algún elemento ci de (C), y con
base en esta suposición, llamada “hipótesis de inducción”, se prueba que P también es cierta
para el siguiente elemento, ci+1.

Con base en los dos pasos anteriores se concluye que la propiedad P es cierta para todos
los elementos del conjunto (C). Esta conclusión no es gratuita. En efecto, supongamos un
elemento de (C), por ejemplo c45. Para probar que satisface la propiedad, ya sabemos que se
cumple para c0, y como tenemos que se cumple para el siguiente elemento, entonces también
se cumple para c1, y como también se cumple para el siguiente elemento, se cumplirá para c2,
y aśı sucesivamente, hasta llegar a c45. Lo mismo se puede hacer con cualquier otro elemento
de (C).

Como un ejemplo simple de la aplicación de la inducción matemática, supongamos que
queremos probar que todo número natural es menor que el doble de śı mismo, esto es,
n < 2n, n ∈ N. Lo hacemos en dos pasos:

(base) Primero comprobamos que para el caso del 1 se cumple, pues 1 < 2.

(inducción) Ahora, suponiendo que para un número i la propiedad se cumple, esto es,
i < 2i, debemos comprobar que también se cumple para el siguiente número, esto es,
i+1 < 2(i+1). En efecto, si i < 2i, entonces i+1 < 2i+1, pero 2i+1 < 2i+2 = 2(i+1),
por lo que i + 1 < 2(i + 1), como deb́ıamos probar.

Las pruebas por inducción no siempre son, como en los ejemplos que vimos en esta
sección, para probar propiedades de los números naturales. En nuestro caso, utilizaremos
pruebas por inducción para probar, por ejemplo, la corrección de gramáticas. Por otra parte,
existen muchas variantes de la inducción, como tener varias “bases”. No entraremos aqúı en
detalles de esto, postergando su estudio para las secciones donde se le utiliza directamente.

1.4. Lenguajes

Uno de los conceptos más importantes de este texto es el de Lenguaje. Para llegar a este
concepto es necesario definir antes otras nociones más elementales. Para todas las definiciones
utilizaremos extensivamente la teoŕıa elemental de conjuntos.
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1.4.1. Alfabeto, cadena de caracteres

La noción más primitiva es la de śımbolo, que es simplemente una representación distin-
guible de cualquier información. Los śımbolos pueden ser cualesquiera, como w, 9, #, etc.,
pero nosotros vamos a utilizar las letras a,b,c, etc. Un śımbolo es una entidad indivisible.

Un alfabeto es un conjunto no vaćıo de śımbolos. Aśı, el alfabeto del idioma español,
E = {a, b, c, . . . , z}, es sólo uno de tantos alfabetos posibles. En general utilizaremos la
notación Σ para representar un alfabeto.

Con los śımbolos de un alfabeto es posible formar secuencias o cadenas de caracteres, tales
como mxzxptlk, balks, r, etc. 4 Las cadenas de caracteres son llamadas también palabras.

Un caso particular de cadena es la palabra vaćıa, ε, la cual no tiene ninguna letra.

La longitud de una palabra es la cantidad de letras que contiene, contando las repeticiones;
se denota por |w| para una palabra w. Por ejemplo, |perro| es 5.

Cuando escribimos varias palabras o caracteres uno a continuación de otro, se supone que
forman una sola palabra (se concatenan). La notación usada para denotar la concatenación
de dos cadenas α y β es αβ. Por ejemplo, si w = abra y v = cada, entonces wvbra es la
palabra abracadabra.

La concatenación de palabras es asociativa, esto es, (xy)z = x(yz), pero no conmutativa
en el caso general. La longitud de una concatenación cumple la propiedad: |uv| = |u|+ |v|. 5

Una palabra v es subcadena de otra w cuando existen cadenas x, y - posiblemente vaćıas-
tales que xvy = w. Por ejemplo, “bora” es subcadena de “v́ıbora”, y ε es subcadena de toda
palabra.

El conjunto de todas las palabras que se pueden formar con un alfabeto Σ es denotado
convencionalmente por Σ∗. 6 Por ejemplo, si Σ = {a, b}, Σ∗ = {ε, a, aa, aaa, aaaa, . . . , b, bb,
. . . , ab, aba, abb, . . .}. El conjunto Σ∗ es infinito, pero enumerable. 7

1.4.2. Lenguajes, operaciones con lenguajes

Un lenguaje es simplemente un conjunto de palabras. Aśı, {abracadabra} es un lenguaje
(de una sola palabra), {ali, baba, y, sus, cuarenta, ladrones} es otro, Σ∗ es otro, etc. Puesto

4Las secuencias fueron definidas en la sección de preliminares. Formalmente, la palabra “casa” es la
secuencia de letras c, a, s, a.

5La prueba de estas propiedades requiere de una definición formal de las secuencias de caracteres, lo que
nos desviaŕıa demasiado de nuestros temas.

6Luego veremos una operación llamada Cerradura de Kleene, que se parece a la notación Σ∗, aunque hay
pequeñas diferencias técnicas.

7Ver sección de ejercicios.
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que los lenguajes son conjuntos, podemos efectuar con ellos todas las operaciones de los con-
juntos (unión, intersección, diferencia). Definiremos además la operación de concatenación
de lenguajes, escrita como L1 • L2, como una extensión de la concatenación de palabras:
L1 • L2 = {w|w = xy, x ∈ L1, y ∈ L2}.

Por ejemplo, dados los lenguajes L1 = {ca, ma} y L2 = {nta, sa}, la concatenación L1L2

seŕıa {canta, casa,manta, masa}. Como se ve en este ejemplo, para calcular la concatenación
de dos lenguajes hay que concatenar cada palabra del primero de ellos con cada una del
segundo.

Una operación más complicada es la llamada “estrella de Kleene” o “cerradura de Kleene”,
en honor al matemático norteamericano S. C. Kleene, quien la propuso.

Definición.- Si L es un lenguaje, L∗, llamado “cerradura de Kleene” de L, es el más
pequeño conjunto que contiene:

La palabra vaćıa, ε

El conjunto L

Todas las palabras formadas por la concatenación de miembros de L∗

Por ejemplo, si L = {abra, cadabra}, L∗ = {ε, abra, abraabra, abracadabra, cadabraabra,
. . .} 8

Obsérvese que la definición de la estrella de Kleene es recursiva, pues en la tercera regla
estamos suponiendo que ya hay palabras en L∗, las cuales concatenamos para producir una
nueva palabra. Esta noción se puede conceptualizar fácilmente de la siguiente forma: Supong-
amos que inicialmente L∗ contiene sólo la palabra vaćıa y los elementos de L. Entonces de
ah́ı tomamos dos elementos cualesquiera, que no necesitan ser distintos, y los concatenamos,
para producir una palabra, la cual añadimos a L∗ si no estaba ya. Continuando indefinida-
mente con esta acción, se iŕıan obteniendo todos los elementos de L∗. 9

Esta definición es congruente con la notación Σ∗ que se utilizó para definir el conjunto de
todas las palabras sobre un alfabeto, pues de hecho Σ∗ es la cerradura de Kleene del alfabeto,
tomando los śımbolos de éste como palabras de una letra.
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Figura 1.3: Los LR en la jerarqúıa de Chomsky

1.5. La jerarqúıa de Chomsky

Llamamos “clase de lenguajes” a conjuntos de lenguajes que comparten una cierta propiedad
dada. Esta noción es muy abstracta, pues ya los lenguajes son en śı mismos conjuntos de
secuencias de śımbolos, y las clases de lenguajes son entonces conjuntos de conjuntos de
secuencias de śımbolos.

La clasificación de lenguajes en clases de lenguajes es debida a N. Chomsky [4], quien
propuso una jerarqúıa de lenguajes, donde las clases más complejas incluyen a las más sim-
ples.

De las clases de lenguajes propuestas en la jerarqúıa de Chomsky, nosotros estudiaremos
las que aparecen en la figura 1.3, que son:

Los “Lenguajes Regulares”, que es la clase más pequeña, e incluye a los lenguajes más
simples. 10 Un ejemplo de lenguaje regular es el conjunto de todos los número binarios.

Los “Lenguajes Libres de Contexto”, que incluyen a los Lenguajes Regulares. Por ejem-
plo, la mayoŕıa de los lenguajes de programación son Lenguajes Libres de Contexto.

Los “Lenguajes Recursivamente Enumerables”, que incluyen a los Libres de Contexto
(y por lo tanto a los Lenguajes Regulares).

Todas estas clases de lenguajes son representables de manera finita (mediante cadenas
de caracteres que sirven como representación). Ahora bien, como veremos más adelante,

8Debe quedar claro que la descripción de L∗ en este ejemplo no es formal, pues los “. . . ” dejan abierta la
puerta a muchas imprecisiones.

9Claro que este proceso no terminaŕıa nunca, pues L∗ es infinito para cualquier L que tenga al menos un
elemento.

10Luego veremos en qué sentido son más simples que las otras clases de lenguajes.
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hay más lenguajes que posibles representaciones finitas, por lo que podemos saber que hay
lenguajes más allá de los Recursivamente Enumerables. Sin embargo, desde un punto de
vista práctico, los lenguajes más útiles son aquellos que tienen una representación finita, por
lo que los demás lenguajes son sólo de interés teórico.

En caṕıtulos posteriores veremos que cada una de estas clases de lenguajes está asociada
a un tipo de “autómata” capaz de procesar estos lenguajes. Esto ha hecho pensar que las
categoŕıas de lenguajes de Chomsky no son completamente arbitrarias.

1.6. Ejercicios

1. Expresar en extensión el conjunto {x|x ∈ N, x < 10}.

2. Expresar en intención el conjunto {4, 6, 8, 12, 14, 16}.

3. ¿Cuál es el tamaño del conjunto {∅} (esto es, cuántos elementos contiene)?

4. Sean los conjuntos A = {a, b}, B = {1, 2, 3}. Calcular las siguientes operaciones:

a) (A ∪B)− A

b) A ∪ (B − A)

c) 2A∪B

d) A× (A ∪B)

5. Calcular los conjuntos potencia de los siguientes conjuntos:

a) {a, b, c}
b) {a, {b, c}}
c) {∅}
d) {∅, {∅}}

6. Sea el conjunto A = {a, b, c}. Proponer:

a) Una relación en A× A

b) Una función en A→ A

c) Una relación en A× A que no sea función.

7. Proponer las caracteŕısticas, en términos de reflexividad, simetŕıa y transitividad, que
debe tener la relación “x es padre de y” (se entiende que “padre” incluye también a
“madre”).

8. Un juego infantil consiste en proponer simultáneamente ya sea “piedra”, “tijeras” o
“papel”. Se supone que tijera gana sobre papel, piedra sobre tijera, y papel sobre
piedra. Determinar si la relación “gana sobre”, que es un subconjunto de {piedra,
tijeras, papel} × {piedra, tijeras, papel} es:
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a) Reflexiva

b) Simétrica

c) Transitiva

9. Considérese la relación {(a, d), (b, d), (c, a), (d, d), (c, b)}. Calcular su cerradura:

a) Reflexiva

b) Simétrica

c) Transitiva

d) Reflexiva y transitiva

e) Transitiva y simétrica

f ) Reflexiva, transitiva y simétrica (estas son llamadas “relaciones de equivalencia”.

10. Considérese la relación {(a, d), (b, d), (d, d), (c, b)}, siendo el dominio y el codominio el
conjunto {a, b, c, d}. Indicar si esta relación es:

a) Una función

b) Función total

c) Función inyectiva

d) Función sobreyectiva

11. Considérese la función madre(x), que obtiene la madre (biológica) de cada persona.
Indica para esta función:

a) Cuáles son el dominio y el codominio

b) Si es una función total

c) Si es una función inyectiva, sobreyectiva o biyectiva

12. Considera el conjunto de números naturales tales que si son mayores que 5 o bien
terminan en 5, entonces contienen algún 1 o 2.

a) Propon 3 números que cumplan la condición y 3 que no la cumplan.

b) Expresa el enunciado como una fórmula proposicional, donde M significa “mayores
que 5”, T es “terminan en 5”, U es “contienen algún 1” y D es “contienen algún
2”.

c) Transforma la fórmula del inciso anterior de manera que no tenga una implicación,
y aplica una ley de De Morgan al resultado.

13. Dar tres ejemplos de lenguajes basados en el alfabeto {a, b, c}.

14. Explicar la diferencia -si la hay- entre un lenguaje vaćıo y uno que contiene sólo la
palabra vaćıa (tomar en cuenta que dos lenguajes son distintos sólamente cuando uno
de ellos contiene una palabra que el otro no contiene).
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15. ¿La palabra vaćıa es elemento de cualquier alfabeto? ¿Puede la palabra vaćıa ε formar
parte de un alfabeto? ¿Puede un alfabeto contener palabras?

16. Calcular la concatenación del lenguaje {ε, aba} con {a, bb, ε}.

17. Obtener {a, bb}∗ (dar los primeros 10 elementos).

18. Mostrar 3 elementos de 2{a,b}∗ .

19. Probar que la resta de conjuntos no es conmutativa ni asociativa.

20. Probar que la intersección de conjuntos es asociativa y también conmutativa.

21. Probar que la concatenación de lenguajes es asociativa pero no conmutativa.

22. Probar que el conjunto N × N = {(1, 1), (2, 1), (1, 2), (1, 3), (2, 2), (3, 1), (4, 1), . . .} es
contable.

23. Probar que el conjunto Σ∗ es infinito contable.

24. Probar por inducción la propiedad de los naturales 1 + 2 + 3 + . . . + n = n(n+1)
2

, para
todo n ∈ N
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Lenguajes regulares y sus máquinas
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Caṕıtulo 2

Autómatas finitos

El término máquina evoca algo hecho en metal, usualmente ruidoso y grasoso, que eje-
cuta tareas repetitivas que requieren de mucha fuerza o velocidad o precisión. Ejemplos
de estas máquinas son las embotelladoras automáticas de refrescos. Su diseño requiere de
conocimientos en mecánica, resistencia de materiales, y hasta dinámica de fluidos. Al diseñar
tal máquina, el plano en que se le dibuja hace abstracción de algunos detalles presentes en
la máquina real, tales como el color con que se pinta, o las imperfecciones en la soldadura.

El plano de diseño mecánico de una máquina es una abstracción de ésta, que es útil
para representar su forma f́ısica. Sin embargo, hay otro enfoque con que se puede modelar la
máquina embotelladora: cómo funciona, en el sentido de saber qué secuencia de operaciones
ejecuta. Aśı, la parte que introduce el ĺıquido pasa por un ciclo repetitivo en que primero
introduce un tubo en la botella, luego descarga el ĺıquido, y finalmente sale el tubo para
permitir la colocación de la cápsula (“corcholata”). El orden en que se efectúa este ciclo es
crucial, pues si se descarga el ĺıquido antes de haber introducido el tubo en la botella, el
resultado no será satisfactorio.

El modelado de una máquina en lo relacionado con secuencias o ciclos de acciones se
aproxima más al enfoque que adoptaremos en este curso. Las máquinas que estudiaremos
son abstracciones matemáticas que capturan solamente el aspecto referente a las secuencias
de eventos que ocurren, sin tomar en cuenta ni la forma de la máquina ni sus dimensiones,
ni tampoco si efectúa movimientos rectos o curvos, etc.

En esta parte estudiaremos las máquinas abstractas más simples, los autómatas finitos,
las cuales están en relación con los lenguajes regulares, como veremos a continuación.
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2.1. Modelado de sistemas discretos

Antes de definir los autómatas finitos, empezaremos examinando las situaciones de la
realidad que pueden ser modeladas usando dichos autómatas. De esta manera, iremos de lo
más concreto a lo más abstracto, facilitando la comprensión intuitiva del tema.

El modelado de fenómenos y procesos es una actividad que permite:

Verificar hipótesis sobre dichos procesos;

Efectuar predicciones sobre el comportamiento futuro;

Hacer simulaciones (eventualmente computarizadas);

Hacer experimentos del tipo “¿qué pasaŕıa si. . . ?”, sin tener que actuar sobre el proceso
o fenómeno f́ısico.

Llamamos eventos discretos a aquéllos en los que se considera su estado sólo en ciertos
momentos, separados por intervalos de tiempo, sin importar lo que ocurre en el sistema
entre estos momentos. Es como si la evolución del sistema fuera descrita por una secuencia
de fotograf́ıas, en vez de un flujo continuo, y se pasa bruscamente de una fotograf́ıa a otra.

Usualmente se considera que la realidad es continua, y por lo tanto los sistemas discretos
son solamente una abstracción de ciertos sistemas, de los que nos interesa enfatizar su aspecto
“discreto”. Por ejemplo, en un motor de gasolina se dice que tiene cuatro tiempos: Admisión,
Compresión, Ignición y Escape. Sin embargo, el pistón en realidad no se limita a pasar por
cuatro posiciones, sino que pasa por todo un rango de posiciones continuas. Aśı, los “cuatro
tiempos” son una abstracción de la realidad.

La noción más básica de los modelos de eventos discretos es la de estado. Un estado es
una situación en la que se permanece un cierto lapso de tiempo. Un ejemplo de la vida real es
el de los “estados civiles” en que puede estar una persona: soltera, casada, viuda, divorciada,
etc. De uno de estos estados se puede pasar a otro al ocurrir un evento o acción, que es el
segundo concepto básico de la modelación discreta. Aśı, por ejemplo, del estado “soltero” se
puede pasar al estado “casado” al ocurrir el evento “boda”. Similarmente, se puede pasar de
“casado” a “divorciado” mediante el evento “divorcio”. En estos modelos se supone que se
permanece en los estados un cierto tiempo, pero por el contrario, los eventos son instantáneos.
Esto puede ser más o menos realista, dependiendo de la situación que se está modelando.
Por ejemplo, en el medio rural hay bodas que duran una semana, pero desde el punto de
vista de la duración de una vida humana, este tiempo puede considerarse despreciable. En
el caso del evento “divorcio”, pudiera ser inadecuado considerarlo como instantáneo, pues
hay divorcios que duran años. En este caso, el modelo puede refinarse definiendo un nuevo
estado “divorciándose”, al que se llega desde “casado” mediante el evento “inicio divorcio”.
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Figura 2.1: Modelo de estados civiles de una persona

 HABLANDO

COLGADO

OTRO
  SUENA

OCUPADO

 TONO

YD

YC

YM

OD
OC

YD

YC

OM

OC
YM

  SONANDO

Figura 2.2: Modelo en eventos discretos de un teléfono

Es sumamente práctico expresar los modelos de estados y eventos de manera gráfica. Los
estados se representan por óvalos, y los eventos por flechas entre los óvalos, llamadas transi-
ciones. Dentro de cada estado se escribe su nombre, mientras que al lado de las transiciones
se escribe el nombre del evento asociado, como en la figura 2.1. El estado donde se inicia
tiene una marca “>”, en este caso “soltero”.

En la figura 2.2 se presenta un modelo simplificado del funcionamiento de un aparato
telefónico. En esta figura los nombres de los estados se refieren al aparato desde donde llamo,
contesto, etc., y en caso contrario se especifica que es el otro (“suena otro”, que se refiere al
aparato telefónico del interlocutor). En las transiciones, la “Y” inicial se refiere a acciones que
hace uno mismo (por ejemplo, “YD”, que es “yo descuelgo”), mientras que la “O” se refiere
al otro teléfono. La “C” de “YC” se refiere a “colgar”, mientras que la “M” es “marcar”.
Aśı, el significado de las transiciones YC, OC, YM, OM, YD y OD deben quedar claras.

En este ejemplo suponemos que el estado en que inicia el proceso (que llamaremos estado
inicial) es con el auricular colgado, sin sonar aún. A partir de esa situación, pueden ocurrir
varios eventos que nos lleven a un nuevo estado, como por ejemplo que empiece a sonar o
bien que alguien descuelgue para marcar un número.

Desde luego, elaborar modelos “adecuados” de un proceso real es un arte que requiere
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práctica, pero en general los siguientes lineamientos pueden ser útiles:

1. Diferenciar entre los eventos que se consideran instantáneos y aquellos que tienen una
duración considerable: estos últimos se asocian a los estados. Los estados son la base
de un diseño de los modelos que estamos estudiando, pues “recuerdan” las situaciones
básicas por las que pasa el proceso.

2. Las condiciones asociadas a los estados deben ser excluyentes, esto es, no deben veri-
ficarse varias simultáneamente. Por ejemplo, una persona no es soltera y casada a la
vez.

3. Las condiciones asociadas a los estados de un modelo bien hecho deben ser compren-
sivas, lo que quiere decir que entre todas ellas cubren todos los casos posibles. Por
ejemplo, en el modelo de estados civiles suponemos que una persona es ya sea soltera,
o bien casada, o bien divorciada, sin haber otras opciones. Si necesitamos considerar
el concubinato como otra condición, habŕıa que modificar el modelo.

4. Los eventos instantáneos son asociados a los eventos. En el ejemplo, el levantar el
auricular (que se supone una acción instantánea) es una transición, mientras que se
supone que puede transcurrir un tiempo antes de que el usuario marque un número,
por lo que hay un estado entre estos dos eventos.

En el ejemplo del teléfono, estamos considerando que al descolgar el auricular, el tono de
marcar está inmediatamente disponible, aunque en ciertas ciudades esta suposición puede
ser una simplificación inaceptable. En cambio, en el mismo ejemplo consideramos que la
persona que contesta el teléfono no lo hace inmediatamente, sino que hay un inicio y un fin
del timbre -aunque mi suegra acostumbra contestar el teléfono antes de que se complete el
primer timbrazo. Para los eventos con duración, es necesario identificar un evento de inicio
y otro de terminación, como en el ejemplo del divorcio que mencionamos antes. Desde luego,
la decisión de qué eventos son instantáneos y cuales tienen duración depende enteramente
de qué es importante en el problema particular que se desea modelar.

Los errores que más frecuentemente se cometen al hacer modelos de estados y eventos
son:

Confundir estados con eventos; por ejemplo, tener un estado “salir de casa”, que ra-
zonablemente corresponde a un evento instantáneo. 1

Proponer conjuntos de estados no excluyentes, esto es, que se traslapan, como seŕıa
tener estados “Se encuentra en Acapulco” y “Se encuentra fuera de Guadalajara”, pues
pueden verificarse ambos simultáneamente, lo que no es posible en los estados.

1Si no se quiere que “salir de casa” sea un evento instantáneo, se debe reexpresar de forma que su duración
sea evidente, como en “preparándose para salir de casa”.
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Figura 2.3: Modelo con estados finales

Proponer conjuntos de estados no comprensivos, donde falta algún caso o situación por
considerar.

En situaciones muy complejas, donde varios procesos evolucionan concurrentemente, el
modelado de eventos discretos por medio de estados y eventos no es adecuado, pues los
diagramas son demasiado grandes. En estos casos se requieren herramientas más sofisticadas,
como las llamadas “redes de Petri” [16].

2.1.1. Estados finales

El propósito de algunos modelos de estados y eventos es el de reconocer secuencias
de eventos “buenas”, de manera que se les pueda diferencias de las secuencias “malas”.
Supóngase, por ejemplo, que se quiere modelar el funcionamiento de una máquina automática
vendedora de bebidas enlatadas. Dicha máquina acepta monedas de valor 1, 2 y 5, y el precio
de cada lata es de 5. Vamos a considerar que el evento llamado “1” es la introducción de
una moneda de valor 1 en la máquina, el evento “2” para la moneda de valor 2, etc.

La primera cuestión que hay que resolver para diseñar nuestro modelo es decidir cómo son
los estados. Una buena idea seŕıa que cada estado recordara lo que se lleva acumulado hasta
el momento. El estado inicial, desde luego, recordaŕıa que se lleva acumulado 0. Con estas
ideas podemos hacer un diagrama de estados y eventos como el de la figura 2.3. Muchas
transiciones en dicho diagrama son evidentes, como el paso del estado “1” al “3” tras la
introducción de una moneda de valor 2. En otros casos hay que tomar una decisión de diseño
conflictiva, como en el caso en que en el estado “4” se introduzca una moneda de valor 2. En
el diagrama presentado, se decidió que en ese caso se va al estado “5”, lo que en la práctica
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Figura 2.4: Notación gráfica

puede querer decir que la máquina entrega un cambio al usuario, o bien simplemente se
queda con el sobrante.

Un aspecto muy importante del modelo de la figura 2.3 es que el estado “5” es un
estado especial, llamado estado final, e identificado por un óvalo de doble trazo. Los estados
finales indican que cuando se llega a ellos, la secuencia de eventos que llevó hasta ah́ı puede
considerarse como “aceptable”. Por ejemplo, en la máquina vendedora de latas, la secuencia
de eventos “meter 2”, “meter 1”, “meter 2” puede considerarse aceptable porque totaliza 5.
En la figura puede observarse que dicha secuencia hace pasar por los estados 0, 2, 3 y 5,
donde este último es final. De este modo el diagrama nos permite diferencias las secuencias
aceptables respecto a otras que no lo son, como la secuencia “meter 1”, “meter 2”, “meter
1”, que lleva al estado 4, que no es final. Obsérverse que la secuencia “meter 5”, “meter 5”,
“meter 5” también es aceptable –desde luego, desde el punto de vista de la máquina, aunque
seguramente no lo sea desde el punto de vista del cliente.

2.2. Máquinas de estados finitos

A partir de ahora vamos a considerar modelos de estados y eventos un poco más ab-
stractos que los que hemos visto antes. Retomemos el ejemplo de la máquina vendedora de
latas, que vimos en la sección 2.1.1. En ese modelo pudimos reconocer secuencias de eventos
“aceptables”, como la secuencia de monedas 2, 2, 1 con respecto a secuencias no aceptables,
como 1, 1, 1. A partir de ahora los nombres de los eventos van a estar formados por un car-
acter, y les llamaremos transiciones en vez de “eventos”. De este modo, en vez de un evento
“meter 1” vamos a tener una transición con el caracter “1”, por ejemplo. Desde luego, la
elección de qué caracter tomar como nombre de la transición es una decisión arbitraria.

Además, las secuencias de eventos van a representarse por concatenaciones de caracteres,
esto es, por palabras. Aśı, en el ejemplo de la máquina vendedora la palabra “1121” representa
la secuencia de eventos “meter 1”, “meter 1”, “meter 2”, “meter 1”.
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Figura 2.5: Componentes de una máquina abstracta

Desde el punto de vista abstracto que vamos a adoptar a partir de ahora, nuestras
máquinas pueden ser visualizadas como dispositivos con los siguientes componentes: (ver
figura 2.5)

Una cinta de entrada;

Una cabeza de lectura (y eventualmente escritura);

Un control.

La cabeza lectora se coloca en los segmentos de cinta que contienen los caracteres que
componen la palabra de entrada, y al colocarse sobre un caracter lo “lee” y manda esta
información al control; también puede recorrerse un lugar a la derecha (o a la izquierda
también, según el tipo de máquina). El control (indicado por una carátula de reloj en la
figura) le indica a la cabeza lectora cuándo debe recorrerse a la derecha. Se supone que hay
manera de saber cuando se acaba la entrada (por ejemplo, al llegar al blanco). La “aguja” del
control puede estar cambiando de posición, y hay algunas posiciones llamadas finales (como
la indicada por un punto, q3) que son consideradas especiales, por que permiten determinar
si una palabra es aceptada o rechazada, como veremos más adelante.

2.2.1. Funcionamiento de los autómatas finitos

Como se hab́ıa comentado antes, el funcionamiento de los autómatas finitos consiste en
ir pasando de un estado a otro, a medida que va recibiendo los caracteres de la palabra de
entrada. Este proceso puede ser seguido fácilmente en los diagramas de estados. Simplemente
hay que pasar de estado a estado siguiendo las flechas de las transiciones, para cada caracter
de la palabra de entrada, empezando por el estado inicial. Por ejemplo, supóngase que
tenemos el autómata de la figura 2.4 y la palabra de entrada “bb”. El autómata inicia su
operación en el estado q0 –que es el estado inicial–, y al recibir la primera b pasa al estado
q2, pues en el diagrama hay una flecha de q0 a q2 con la letra b. Luego, al recibir la segunda
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b de la palabra de entrada, pasará del estado q2 a él mismo, pues en la figura se puede ver
una flecha que de q2 regresa al mismo estado, con la letra b.

Podemos visualizar el camino recorrido en el diagrama de estados como una “trayecto-
ria” recorrida de estado en estado. Por ejemplo, para el autómata finito de la figura 2.4 la
trayectoria seguida para la palabra ab consiste en la secuencia de estados: q0, q1, q1.

Los estados son el único medio de que disponen los AF para recordar los eventos que
ocurren (por ejemplo, qué caracteres se han léıdo hasta el momento); esto quiere decir que
son máquinas de memoria limitada. En última instancia, las computadoras digitales son
máquinas de memoria limitada, aunque la cantidad de estados posibles de su memoria podŕıa
ser enorme.

2.3. Definición formal de autómatas finitos

Al describir una máquina de estados finitos en particular, debemos incluir las informa-
ciones que vaŕıan de un autómata a otro; es decir, no tiene sentido incluir descripciones
generales aplicables a todo autómata. Estas informaciones son exactamente las que aparecen
en un diagrama de estados y transiciones, como los que hemos presentado antes.

En esta sección vamos a presentar un formato matemático para representar las mismas
informaciones que contiene un diagrama de estados. Como se utiliza terminoloǵıa matemática
en vez de dibujos, decimos que se trata de una notación formal. En particular, utilizamos
nociones de la teoŕıa de conjuntos que fueron ya presentadas en el caṕıtulo 1.

Definición.- Una máquina de estados finitos M es un qúıntuplo (K, Σ, δ, s, F ), donde:

K es un conjunto de identificadores (śımbolos) de estados;

Σ es el alfabeto de entrada;

s ∈ K es el estado inicial;

F ⊆ K es un conjunto de estados finales;

δ : K ×Σ→ K es la función de transición, que a partir de un estado y un śımbolo del
alfabeto obtiene un nuevo estado. 2

La función de transición indica a qué estado se va a pasar sabiendo cuál es el estado actual
y el śımbolo que se está leyendo. Es importante notar que δ es una función y no simplemente
una relación; esto implica que para un estado y un śımbolo del alfabeto dados, habrá un y
sólo un estado siguiente. Esta caracteŕıstica, que permite saber siempre cuál será el siguiente

2que puede ser el mismo en el que se encontraba.
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estado, se llama determinismo. La definición dada arriba corresponde a los autómatas finitos
determińıstas, abreviado “AFD” 3

Ejemplo.- El autómata finito determinista de la figura 2.4 puede ser expresado formal-
mente como: M = (K, Σ, δ, q0, F ), donde:

K = {q0, q1, q2}

Σ = {a, b}

δ = {((q0, a), q1), ((q0, b), q2), ((q1, a), q1), ((q1, b), q1), ((q2, a), q0), ((q2, b), q2)}

F = {q1, q2}

La función de transición δ puede ser expresada mediante una tabla como la siguiente,
para este ejemplo:

q σ δ(q, σ)
q0 a q1

q0 b q2

q1 a q1

q1 b q1

q2 a q0

q2 b q2

Es fácil ver que la diferencia entre los diagramas de estado y los AFD en notación formal
es solamente de notación, siendo la información exactamente la misma, por lo que es sencillo
pasar de una representación a la otra.

Tanto en los diagramas de estado como en la representación formal hay que tener cuidado
en respetar las condiciones para que tengamos un autómata válido; en particular, el número
de transiciones que salen de cada estado debe ser igual a la cantidad de caracteres del
alfabeto, puesto que δ es una función que está definida para todas las entradas posibles. 4

Para el ejemplo de la figura 2.4, donde el alfabeto es {a, b}, de cada estado deben salir
exactamente dos transiciones, una con a y otra con b.

Otra condición es que debe haber exactamente un estado inicial. En cambio, la cantidad
de estados finales puede ser cualquiera, inclusive cero, hasta un máximo de |K| (la cantidad
de estados).

3Después veremos otros autómatas finitos, llamados no determińıstas.
4Recuérdese que una función no puede tener más de un resultado (en este caso, un estado de llegada)

para cada entrada (en este caso, un estado de salida y un caracter consumido).
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En la notación formal también hay que seguir las transiciones, que ahora no son represen-
tadas como flechas, sino como elementos del conjunto δ de transiciones. Tomando nuevamente
el autómata de la figura 2.4 y la palabra de entrada bb, la operación se inicia en el estado
inicial q0; luego, al recibir la primera b, usando la transición ((q0, b), q2) pasa a q2, y luego,
al recibir la segunda b de la palabra de entrada, por medio de la transición ((q2, b), q2) pasa
al estado q2 –de hecho permanece en él.

De una manera más general, si un AFD se encuentra en un estado q y recibe un caracter
σ pasa al estado q′ ssi δ(q, σ) = q′, esto es, si ((q, σ), q′) ∈ δ.

Palabras aceptadas

Los autómatas finitos que hemos visto pueden ser utilizados para reconocer ciertas pal-
abras y diferenciarlas de otras palabras.

Decimos que un AFD reconoce o acepta una palabra si se cumplen las siguientes condi-
ciones:

1. Se consumen todos los caracteres de dicha palabra de entrada, siguiendo las transiciones
y pasando en consecuencia de un estado a otro;

2. al terminarse la palabra, el estado al que llega es uno de los estados finales del autómata
(los que tienen doble ćırculo en los diagramas, o que son parte del conjunto F en la
representación formal).

Aśı, en el ejemplo de la figura 2.4, el autómata acepta la palabra bb, pues al terminar de
consumirla se encuentra en el estado q2, el cual es final.

El concepto de lenguaje aceptado es una simple extensión de aquel de palabra aceptada:

Definición.- El lenguaje aceptado por una máquina M es el conjunto de palabras acep-
tadas por dicha máquina.

Por ejemplo, el autómata de la figura 2.4 acepta las palabras que empiezan con a, aśı como
las palabras que contienen aa, y también las que terminan en b, como por ejemplo abab,
aaaaa, baaa, etc. En cambio, no acepta baba ni bba, babba, etc. Nótese que tampoco acepta
la palabra vaćıa ε. Para que un AFD acepte ε se necesita que el estado inicial sea también
final.

Formalización del funcionamiento de los AFD

El funcionamiento de los AF lo vamos a definir de manera análoga a como se simula el
movimiento en el cine, es decir, mediante una sucesión de fotograf́ıas. Aśı, la operación de un
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Figura 2.6: La configuración es como una fotograf́ıa de la situación de un autómata en medio
de un cálculo

AF se describirá en términos de la sucesión de situaciones por las que pasa mientras analiza
una palabra de entrada.

El equivalente en los AF de lo que es una fotograf́ıa en el cine es la noción de configuración,
como se ilustra en la figura 2.6. La idea básica es la de describir completamente la situación
en que se encuentra la máquina en un momento dado, incluyendo el contenido de la cinta,
la cabeza lectora y el control.

Las informaciones relevantes para resumir la situación de la máquina en un instante son:

1. El contenido de la cinta,

2. la posición de la cabeza lectora,

3. el estado en que se encuentra el control.

Una configuración seŕıa entonces un elemento de Σ∗ ×N ×K, donde el primer elemento
es el contenido de la cinta, el segundo describe la posición de la cabeza, y el tercero es el
estado.

Sólo nos interesará incluir en las configuraciones aquellas informaciones que tengan rel-
evancia en cuanto a la aceptación de la palabra al final de su análisis. Aśı, por ejemplo, es
evidente que, como la cabeza lectora no puede echar marcha atrás, los caracteres por los
que ya pasó no afectarán más el funcionamiento de la máquina. Por lo tanto, es suficiente
con considerar lo que falta por leer de la palabra de entrada, en vez de la palabra completa.
Esta solución tiene la ventaja de que entonces no es necesario representar la posición de la
cabeza, pues ésta se encuentra siempre al inicio de lo que falta por leer.

Entonces una configuración será un elemento de K × Σ∗. Por ejemplo, la configuración
correspondiente a la figura 2.5 seŕıa: (q1, abab).
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Para hacer las configuraciones más legibles, vamos a utilizar dobles corchetes en vez de
paréntesis, como en [[q1, abab]].

Vamos a definir una relación entre configuraciones, C1 `M C2, que significa que de la
configuración C1 la máquina M puede pasar en un paso a la configuración C2. Definimos
formalmente esta noción:

Definición.- [[q1, σw]] `M [[q2, w]] para un σ ∈ Σ si y sólo si existe una transición en M
tal que δ(q1, σ) = q2. (σ es el caracter que se leyó).

La cerradura reflexiva y transitiva de la relación `M es denotada por `∗M . Aśı, la expresión
C1 `∗M C2 indica que de la configuración C1 se puede pasar a C2 en algún número de pasos
(que puede ser cero, si C1 = C2). Ahora ya tenemos los conceptos necesarios para definir
cuando una palabra es aceptada.

Definición.- Una palabra w ∈ Σ∗ es aceptada por una máquina M = (K, Σ, δ, s, F ) ssi
existe un estado q ∈ F tal que [[s, w]] `∗M [[q, ε]]. Nótese que no basta con que se llegue a un
estado final q, sino que además ya no deben quedar caracteres por leer (lo que falta por leer
es la palabra vaćıa).

Ejemplo.- Probar que el AFD de la figura 2.4 acepta la palabra babb.

Solución.- Hay que encontrar una serie de configuraciones tales que se pueda pasar de
una a otra por medio de la relación `M . La única forma posible es la siguiente: 5

[[q0, babb]] `M [[q2, abb]] `M [[q0, bb]]

`M [[q2, b]] `M [[q2, ε]].

Como q2 ∈ F , la palabra es aceptada.

Definición.- Un cálculo en una máquina M es una secuencia de configuraciones C1, C2,
. . . , Cn, tales que Ci ` Ci+1. Generalmente escribimos los cálculos como C1 `M C2 `M . . .`M

Cn.

Teorema.- Dados una palabra w ∈ Σ∗ y una máquina M = (K, Σ, δ, s, F ), sólo hay un
cálculo [[s, w]] `M . . . `M [[q, ε]].

Prueba.- (por contradicción): Sean dos cálculos distintos:

[[s, w]] `M . . . `M [[p, σw′]] `M [[r, w′]] `M . . . [[qr, ε]]

[[s, w]] `M . . . `M [[p, σw′]] `M [[s, w′]] `M . . . [[qs, ε]]

5En los AFD’s, para cada palabra de entrada sólo hay una secuencia posible de configuraciones, precisa-
mente porque son deterministas.
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y sean [[r, w′]] y [[s, w′]] las primeras configuraciones distintas en los dos cálculos. 6 Esto
implica que δ(p, σ) = r y también δ(p, σ) = s, y como δ es función, se sigue que r = s, lo
que contradice la hipótesis. QED.

2.4. Métodos de diseño de AFDs

Considérese el problema de construir un AFD que acepte exactamente un lenguaje dado.
Este problema es comúnmente llamado “problema de diseño”. No es conveniente proceder
por “ensayo y error”, puesto que en general hay que considerar demasiadas posibilidades, y
es muy fácil equivocarse. Más aún, hay dos maneras de equivocarse al diseñar un AFD: 7

1. Que “sobren palabras”, esto es, que el autómata acepte algunas palabras que no debeŕıa
aceptar. En este caso decimos que la solución es incorrecta.

2. Que “falten palabras”, esto es, que haya palabras en el lenguaje considerado que no
son aceptadas por el AFD, cuando debeŕıan serlo. En este caso decimos que la solución
es incompleta.

Por ejemplo, supongamos que alguien propone el autómata de la figura 2.4 para el lengua-
je de las palabras en el alfabeto {a, b} que no tienen varias a’s seguidas. Esta solución es
defectuosa, porque:

1. Hay palabras, como “baa”, que tiene a’s seguidas y sin embargo son aceptadas por el
AFD;

2. Hay palabras, como “ba”, que no tienen a’s seguidas y sin embargo no son aceptadas
por el AFD.

Como se ve, es posible equivocarse de las dos maneras a la vez en un sólo autómata.

La moraleja de estos ejemplos es que es necesario diseñar los AFD de una manera más
sistemática.

El elemento más importante en el diseño sistemático de autómatas a partir de un lengua-
je consiste en determinar, de manera expĺıcita, qué condición “recuerda” cada uno de los
estados del AFD. El lector debe concientizarse de que este es un principio de diseño impor-
tant́ısimo, verdaderamente básico para el diseño metódico de autómatas.

6Es decir, los cálculos son iguales hasta cierto punto, que en el peor caso es la configuración inicial [[s, w]].
7Estos errores no son excluyentes, y es posible que se presenten ambos a la vez.
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Figura 2.7: Diseño de AFD para palabras con número impar de a’s

Recuérdese que la única forma de memoria que tienen los AFD es el estado en que
se encuentran. Aśı, el diseño del AFD inicia con la propuesta de un conjunto de estados
que “recuerdan” condiciones importantes en el problema considerado. Posteriormente se
proponen las transiciones que permiten pasar de un estado a otro; esta última parte es
relativamente sencilla una vez que se cuenta con los estados y sus condiciones asociadas.

Ejemplo.- Diseñar un AFD que acepte las palabras en el alfabeto {a, b} en que la cantidad
de a’s es impar.

Solución.- Las condiciones relevantes para este problema -que deben ser “recordadas” por
los estados correspondientes- son:

El número de a’s recibidas hasta el momento es par (estado P);

El número de a’s recibidas hasta el momento es impar (estado I);

Al iniciar la operación del autómata no se ha recibido aún ninguna a, por lo que debemos
encontrarnos en el estado P (el cero es un número par), y por lo tanto el estado P es inicial.

Para determinar qué estados son finales, debemos fijarnos en cuáles corresponden con el
enunciado original de las palabras aceptadas. En este caso vemos que el estado I es el que
corresponde, por lo que es final, mientras que P no corresponde y no es final.

Los estados P e I aparecen en la figura 2.7(a). Esta es la primera etapa del diseño de un
AFD. En nuestro método de diseño es importante trazar las transiciones únicamente después
de haber determinado cuáles son los estados y sus caracteŕısticas. Ahora ya podemos trazar
las transiciones, lo cual es una tarea relativamente sencilla, si ya tenemos el diseño de los
estados. Por ejemplo, si estamos en P y recibimos una a, claramente debemos irnos a I, porque
la cantidad de a’s pasa de ser par a impar. Similarmente se hacen las otras transiciones. El
resultado se muestra en la figura 2.7(b).

Ejemplo.- Diseñar un AFD que acepte exactamente el lenguaje en el alfabeto {0, 1} en
que las palabras no comienzan con 00.
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Figura 2.8: AF para palabras que no empiezan en “00”

Solución.- Para emprender el diseño en forma metódica, comenzamos por determinar
las condiciones que es importante recordar, y asociamos un estado a cada una de estas
condiciones, según la tabla siguiente:

Estado Condición
q0 No se han recibido caracteres
q1 Se ha recibido un cero al inicio
q2 Se han recibido dos ceros iniciales
q3 Se recibió algo que no son dos ceros iniciales

Claramente tanto q0 como q1 deben ser estados finales, mientras que q2 no debe ser final.
Ahora hay que completar el AF, agregando las transiciones que falten. A partir de q0, si
llega un 1 habrá que ir a un estado final en el que se permanezca en adelante; agregamos al
AF un estado final q3 y la transición de q0 a q3 con 1. El estado q3 tiene transiciones hacia
śı mismo con 0 y con 1. Finalmente, al estado q1 le falta su transición con 1, que obviamente
dirigimos hacia q3, con lo que el AF queda como se ilustra en la figura 2.8.

En este ejemplo se puede apreciar que en ocasiones es necesario completar el conjunto de
estados al momento de hacer las transiciones.

2.4.1. Diseño por conjuntos de estados

Es posible llevar un paso más allá el método de asociar una condición a cada estado:
vamos a asociar condiciones a grupos de estados más que a estados individuales. De esta
manera aumentaremos el grado de abstracción en la etapa inicial de diseño, haciendo posible
en consecuencia atacar problemas más complejos con menos posibilidades de equivocarse.

Este método consiste en identificar inicialmente condiciones asociadas al enunciado del
problema, aunque éstas no sean suficientemente espećıficas para asociarse a estados individ-
uales.

Describiremos este método mediante su aplicación a un ejemplo particular: Diseñar un
AFD que acepte las palabras del lenguaje en {0, 1} donde las palabras no contienen la
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Figura 2.9: Diseño de AFD por grupos de estados

subcadena 11 pero śı 00.

Inmediatamente a partir del enunciado identificamos las siguientes situaciones:

Las letras consumidas hasta el momento no contienen ni 00 ni 11.

Contienen 00 pero no 11

Contienen 11.

Estas condiciones cumplen dos requisitos que siempre se deben cumplir en este tipo de
diseños:

Las condiciones deben ser excluyentes, lo que quiere decir que no deben poder ser
ciertas dos o más al mismo tiempo.

Las condiciones deben ser comprensivas, lo que quiere decir que no faltan casos por
considerar.

Los grupos de estados, aśı como las transiciones que provocan que se pase de uno a
otro, se representan como “nubes” en la figura 2.9(a). En dicha figura también se ilustran
unas nubes “dobles” para indicar que son condiciones finales –en este ejemplo, la condición
“Contienen 00 pero no 11”–, aśı como la condición inicial con un śımbolo “>”.

Estos diagramas no son aún AFD, pero casi. Lo que falta por hacer es refinar cada grupo
de estados, considerando lo que ocurre al recibir cada uno de los posibles caracteres de
entrada. La forma en que se subdivide cada grupo de estados (“nube”) en estados individuales
se detalla a continuación:
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Las letras consumidas hasta el momento no contienen ni 00 ni 11.

1. Inicial, no se han recibido caracteres.

2. Se acaba de recibir un 0.

3. Se acaba de recibir un 1.

Contienen 00 pero no 11.

1. Se acaba de recibir un 0.

2. Se acaba de recibir un 1.

Contienen 11 (no hay subcondiciones).

Esto nos da un total de 6 estados, cada uno de los cuales tiene una condición muy
espećıfica asociada (son los estados “A” a “F” en la figura 2.9(b)). El siguiente paso es
hacer el diseño detallado de las transiciones, lo que por experiencia consideramos que es
relativamente fácil para cualquier alumno. El resultado se muestra en la figura 2.9(b). En
este diagrama se puede notar que los estados de una nube “final” son también finales; esto
debe verificarse siempre.

Hacemos notar que en este ejemplo en particular, encontrar directamente las condiciones
asociadas a los estados puede ser algo dif́ıcil; por ejemplo, encontrar directamente la condición
“Las letras consumidas hasta el momento no contienen ni 00 ni 11 y se ha recibido un 0”
(estado “B” en la figura 2.9(b)) requeriŕıa ciertamente más inventiva de la que tenemos
derecho a presuponer en el lector. En este sentido el diseñar primero los grupos de estados
permite manejar la complejidad del problema de manera más modular y gradual.

En cualquier caso, ya sea que se encuentren directamente las condiciones para cada estado,
o primero para grupos de estados, consideramos importante que primero se determinen los
estados con sus condiciones asociadas, y solamente después se tracen las transiciones, en
vez de ir proponiendo sin ningún orden los estados y las transiciones a la vez, lo que muy
frecuentemente conduce a errores.

2.4.2. Diseño de AFD por complemento

En ocasiones, para un cierto lenguaje L, es más sencillo encontrar un AFD para el lenguaje
exactamente contrario –técnicamente hablando, complementario Lc = Σ∗−L. En estos casos,
una solución sencilla es hallar primero un AFD para Lc, y luego hacer una transformación
sencilla para obtener el autómata que acepta L.

Si M = (K, Σ, δ, s, F ) es un autómata determinista que acepta un lenguaje regular L,
para construir un autómata M c que acepte el lenguaje complemento de L, esto es, Σ∗ − L,
basta con intercambiar los estados finales de M en no finales y viceversa. Formalmente,
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M c = (K, Σ, δ, s, K − F ). Aśı, cuando una palabra es rechazada en M , ella es aceptada en
M c y viceversa. 8

Ejemplo.- Obtener un AF para el lenguaje en {a, b}∗ de las palabras que no contienen la
cadena “abaab”.

Solución.- Primero obtenemos un AFD M1 para el lenguaje cuyas palabras śı contienen
la cadena “abaab”. Diseñamos M1 sistemáticamente usando grupos de estados, uno que
recuerda que la palabra no contiene aun abaab y otro que recuerda que ya se reconoció dicha
cadena, como aparece en la figura 2.10(a). Luego detallamos cada uno de estos grupos de
estados, introduciendo estados individuales que recuerdan lo que se lleva reconocido de la
cadena abaab, como se muestra en la figura 2.10(b) –el grupo de estados que recuerda que ya
se reconoció la cadena abaab tiene un sólo estado, pues no hay condiciones adicionales que
recordar. Finalmente, la solución será un AFD donde cambiamos los estados finales por no
finales y viceversa en M1, como se muestra en 2.10(c).

Desde luego, el ejemplo descrito es muy sencillo, pero luego veremos otras herramientas
que se pueden usar en combinación con la obtención del complemento de un AF, para resolver
en forma sistemática y flexible problemas de diseño aparentemente muy dif́ıciles.

2.5. Equivalencia de autómatas finitos.

Decimos que dos autómatas que aceptan el mismo lenguaje son equivalentes.

Definición.- Dos autómatas M1 y M2 son equivalentes, M1 ≈ M2, cuando aceptan exac-
tamente el mismo lenguaje.

Pero, ¿puede haber de hecho varios AF distintos9 que acepten un mismo lenguaje? La
respuesta es afirmativa, y una prueba consiste en exhibir un ejemplo.

Por ejemplo, los autómatas (a) y (b) de la figura 2.11 aceptan ambos el lenguaje a∗.

En vista de esta situación, dados dos AF distintos existe la posibilidad de que sean
equivalentes. Pero ¿cómo saberlo?

De acuerdo con la definición que hemos presentado, la demostración de equivalencia de
dos autómatas se convierte en la demostración de igualdad de los lenguajes que aceptan. Sin
embargo, demostrar que dos lenguajes son iguales puede complicarse si se trata de lenguajes
infinitos. Es por esto que se prefieren otros métodos para probar la equivalencia de autómatas.

8 Es muy importante notar que el método de diseño por complemento sólo se aplica a los autómatas
deterministas, y no a los llamados “no deterministas”, que veremos luego.

9¿Qué se quiere decir por “distintos”? ¿Si dos AF sólo difieren en los nombres de los estados se considerarán
distintos?
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Figura 2.10: Diseño del AF para palabras sin abaab
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q0

q1

q2

b

a

ba

a

b

(a)

r0

r1

b

a

a
b

(b)

Figura 2.11: Autómatas equivalentes

El método que aqúı propondremos para los AF se basa en el siguiente teorema:

Teorema de Moore.- Existe un algoritmo para decidir si dos autómatas finitos son equiv-
alentes o no.

El algoritmo mencionado en el teorema de Moore consiste en la construcción de un árbol
de comparación de autómatas. Este árbol permite convertir el problema de la comparación
de los lenguajes aceptados en un problema de comparación de estados de los autómatas.

Definición.- Decimos que dos estados q y q′ son compatibles si ambos son finales o ninguno
de los dos es final. En caso contrario, son estados incompatibles.

La idea del algoritmo de comparación de AFD1 y AFD2 consiste en averiguar si existe
alguna secuencia de caracteres w tal que siguiéndola simultáneamente en AFD1 y AFD2

se llega a estados incompatibles. Si dicha secuencia no existe, entonces los autómatas son
equivalentes.

El único problema con esta idea estriba en que hay que garantizar que sean cubiertas
todas las posibles cadenas de caracteres w, las cuales son infinitas en general. Por ello se
pensó en explorar todas las posibles combinaciones de estados mediante un árbol. Dicho árbol
de comparación se construye de la manera siguiente, para dos autómatas M = (K, Σ, δ, s, F )
y M ′ = (K ′, Σ′, δ′, s′, F ′):

1. Inicialmente la ráız del árbol es el par ordenado (s, s′) que contiene los estados iniciales
de M y M ′ respectivamente;

2. Si en el árbol hay un par (r, r′), para cada caracter en Σ se añaden como hijos suyos
los pares (rσ, r

′
σ) donde rσ = δ(r, σ), r′σ = δ(r′, σ), si no estén ya.

3. Si aparece en el árbol un par (r, r′) de estados incompatibles, se interrumpe la con-
strucción del mismo, concluyendo que los dos autómatas no son equivalentes. En caso
contrario se continúa a partir del paso 2.
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Figura 2.12: Árbol de comparación de AF

1 2

b

a

a

b

b

a

3

(a)

4 5

b

a

a

b

a,b
6

(b)

1,4
a

2,5

b

a

3,6

b

1,6

a

(c)

Figura 2.13: AFDs no equivalentes

4. Si no aparecen nuevos pares (rσ, r
′
σ) que no estén ya en el árbol, se termina el proceso,

concluyendo que los dos autómatas son equivalentes.

Ejemplo.- Sean los autómatas M y M ′ de la figuras 2.11(a) y (b) respectivamente. El árbol
de comparación se muestra en la figura 2.12. En dicho árbol se muestran adicionalmente,
con ĺınea punteada, las ramas que van a nodos ya existentes, como la que va de (q2, r0) a
(q0, r0). Estas ramas con ĺınas punteada no son, estrictamente hablando, parte del árbol,
pero pensamos que mejoran la comprensión del diagrama.

Se concluye que M y M ′ son equivalentes.

En el caso de que los autómatas que se comparan no sean equivalentes, la construcción del
árbol de comparación permite encontrar al menos una palabra en que los lenguajes aceptados
por ellos difieren. Considérense, por ejemplo, los autómatas de las figuras 2.13 (a) y (b). Una
parte del árbol de comparación se muestra en la figura 2.13(c), hasta donde se encuentra el
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primer par de estados incompatibles.

Analizando el árbol de la figura 2.13(c), vemos que para llegar desde la ráız del árbol
hasta el par incompatible (1,6), hay que gastar los caracteres b, b y a, esto es, la palabra bba.
Aśı llegamos a la conclusión de que el autómata de la figura 2.13(a) no acepta la palabra
bba, mientras que el de la figura 2.13(b) śı la acepta, y por lo tanto sus lenguajes aceptados
difieren al menos en la palabra bba.

Para probar que este método constituye un algoritmo de decisión para verificar la equiv-
alencia de dos autómatas, hay que mostrar los puntos siguientes:

1. La construcción del árbol siempre termina (no se “cicla”)

2. Si en el árbol aparecen pares de estados incompatibles (uno final y el otro no final),
entonces los lenguajes aceptados por los autómatas son efectivamente distintos.

3. Si se comparan dos autómatas que no son equivalentes, entonces en el árbol aparecerán
estados incompatibles.

El punto 1 se prueba fácilmente porque, los nodos del árbol siendo todos distintos, son un
subconjunto de K×K ′, que es finito, por lo que el árbol no puede extenderse indefinidamente.

Para probar el punto 2 basta con recorrer en el árbol la trayectoria que lleva al par
de estados incompatibles, (r, r′), r ∈ F , r′ 6∈ F ′. Simplemente concatenamos los caracteres
de entrada σ en dicha trayectoria, y obtendremos una palabra wtal que si la aplicamos
como entrada al autómata M llegaremos al estado r, es decir, w será aceptada. En cambio,
si aplicamos la misma w a M ′, llegaremos al estado r′, que no es final, por lo que w no
será aceptada. Esto muestra que los lenguajes aceptados por M y por M ′ difieren en al
menos una palabra, w.

En cuanto al punto 3, si los lenguajes L(M) y L(M ′) son diferentes, entonces existe
al menos una palabra, sea w, tal que es aceptada por uno y rechazada por el otro. En
consecuencia, siguiendo la palabra w en el árbol, caracter por caracter, debemos llegar a un
par incompatible. 10

Por otra parte, el punto 3 implica que si no hay pares incompatibles en el árbol, entonces
los lenguajes son idénticos. En efecto, por propiedades de la lógica elemental, al negar la
conclusión de 3 se obtiene la negación de su premisa. QED.

10Reflexione porqué se está seguro de que es posible seguir w sobre el árbol, caracter por caracter. ¿No
podŕıa “atorarse” el proceso?.
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2.6. Simplificación de Autómatas finitos

Una de las mejores cualidades de los AFD es que existen métodos mecánicos para sim-
plificarlos, hasta poder llegar al AFD más sencillo posible para un lenguaje dado.

En el caso de los AFD, vamos a entender por simplificación la reducción en el número de
estados, pero aceptando el mismo lenguaje que antes de la simplificación. Más aún, llamare-
mos minimización a la obtención de un autómata con el menor número posible de estados.
11

Como un primer ejemplo, considérense los AFD de las figuras 2.11 (a) y (b). En el AFD de
(a), los estados q0 y q2 son en cierto modo redundantes, porque mientras se estén recibiendo
a’s, el AFD continúa en q0 o en q2, y cuando se recibe una b se pasa a q1. Se puede pensar
entonces en eliminar uno de ellos, por ejemplo q2, y obtener el autómata de la figura 2.11(b),
que tiene un estado menos.

Esta idea de “estados redundantes” se formaliza en lo que sigue:

Definición.- Dos estados son equivalentes, q1 ≈ q2, ssi intercambiar uno por otro en
cualquier configuración no altera la aceptación o rechazo de toda palabra.

Formalmente escribimos: Dos estados p y q son equivalentes si cuando [[s, uv]] `∗M [[q, v]]
`∗M [[r, ε]] y [[p, v]] `∗M [[t, ε]] entonces r y t son estados compatibles.

Esta definición quiere decir que, si p ≈ q, al cambiar q por p en la configuración, la
palabra va a ser aceptada (se acaba en el estado final t ) si y sólo si de todos modos iba a
ser aceptada sin cambiar p por q (se acaba en el estado final r ).

El único problema con esta definición es que, para verificar si dos estados dados p y q
son equivalentes, habŕıa que examinar, para cada palabra posible de entrada, si intercam-
biarlos en las configuraciones altera o no la aceptación de esa palabra. Esto es evidentemente
imposible para un lenguaje infinito. La definición nos dice qué son los estados equivalentes,
pero no cómo saber si dos estados son equivalentes. Este aspecto es resuelto por el siguiente
lema:

Lema: Dado un AFD M = (K, Σ, δ, q, F ) y dos estados q1, q2 ∈ K, tendremos que q1 ≈ q2

ssi (K, Σ, δ, q1, F ) ≈ (K, Σ, δ, q2, F ). 12

Es decir, para saber si dos estados q1 y q2 son equivalentes, se les pone a ambos como
estado inicial de sendos autómatas M1 y M2, y se procede a comparar dichos autómatas.
Si éstos últimos son equivalentes, quiere decir que los estados q1 y q2 son equivalentes. Por
ejemplo, para el autómata de la figura 2.11(a), para verificar si q0 ≈ q2, habŕıa que comparar

11El hecho de que para todo lenguaje regular existe un AFD mı́nimo, es un hecho para nada evidente, que
rebasa los alcances de este libro. Esto se discute en la referencia [7].

12No damos la prueba, ver sección de ejercicios.
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Figura 2.14: Cambio de estado inicial

dicho AFD con el de la figura 2.14, en el que se cambió el estado inicial por el otro estado
que se quiere comparar. En este ejemplo, dicha comparación de AFDs da un resultado de
equivalencia, por lo que se concluye que los estados son redundantes.

Una vez que se sabe que dos estados son equivalentes, se puede pensar en eliminar uno de
ellos, para evitar redundancias y hacer más eficiente al AFD. Sin embargo, la eliminación de
un estado en el AFD plantea el problema de qué hacer con las flechas que conectan al estado
eliminado con el resto del autómata. Esta cuestión se resuelve con los siguientes criterios:

1. Las flechas que salen del estado eliminado son eliminadas;

2. Las flechas que llegan al estado eliminado son redirigidas hacia su estado equivalente.

Por ejemplo, en el autómata de la figura 2.11(a), si verificamos que q0 y q2 son equiva-
lentes, y pensamos eliminar q2, hay que redirigir la flecha que va de q0 a q2 para que vaya al
mismo q0 (se vuelve un ciclo). Aśı se llega al autómata de la figura 2.11(b).

La eliminación de estados redundantes de un AFD es una manera de simplificar AFDs, y
puede usarse iteradamente para simplificar al mı́nimo. Sin embargo, el trabajo que implica
es mucho, y para AFDs grandes, examinar cada par de estados es poco práctico.

Vamos, en consecuencia, a examinar métodos más organizados para localizar los estados
redundantes y minimizar los AFDs.

2.6.1. Tabla de estados distinguibles

Vamos a definir la noción de estados distinguibles, que intuitivamente quiere decir que si
dos estados son distinguibles, ya no pueden ser equivalentes. La definición es inductiva:

Los estados p y q son distinguibles si son incompatibles (es decir, uno es final y el otro
no final). Esta es la base de la inducción.
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Figura 2.15: AFD a simplificar

Si tenemos transiciones δ(p0, σ) = p y δ(q0, σ) = q donde p y q son distinguibles,
entonces también p0 y q0 son distinguibles. Este es el paso inductivo.

Por ejemplo, considérese el AFD de la figura 2.15. Claramente los estados 1 y 3 son
distinguibles, porque no son compatibles. Puede ser menos obvio ver que los estados 4 y 3
son distinguibles, pero podemos ver que, aunque ambos son finales, el caracter b nos lleva de
4 a 2, y similarmente de 3 a 1, y vemos que 2 y 1 son distinguibles al no ser compatibles.

En ocasiones se requieren varios pasos intermedios para determinar que un par de estados
es distinguible (esto no ocurre en el ejemplo recién visto).

Teorema.- Dos estados son equivalentes (o “redundantes”) ssi no son distinguibles. Este
resultado se prueba en la referencia [7]. Su utilidad estriba en que es relativamente sencillo
verificar si dos estados son distinguibles.

Una manera de organizar el trabajo de verificar qué pares de estados de un AFD son
distinguibles, consiste en construir una tabla en que los renglones y las columnas son los
nombres de los estados, y en cada cruce de renglón con columna se indica con una × cuando
son distinguibles.

Por ejemplo, para el AFD de la figura 2.15, empezamos con la tabla vaćıa de la figura
2.16(a). Obsérvese que en la tabla se omite la diagonal principal, pues no tiene caso confrontar
cada estado contra śı mismo. En la tabla 2.16(b) se aprecian signos “×” en las celdas (2,1),
(3,1), (4,1) y (5,1) que se obtienen directamente del hecho de que son pares de estados
incompatibles –por lo tanto distinguibles. En la figura 2.16(c) se ha agregado una marca en
la casilla (4,2), que viene del hecho de que con el caracter b las transiciones nos llevan de
2 a 1, y de 4 a 2, pero el par (2,1) ya estaba marcado como distinguible. Finalmente, en la
tabla 2.16(d) se pusieron marcas en (4,3), (5,2) y (5,3), haciendo análisis similares. Es fácil
convencerse de que no hay forma de hacer distinguibles los pares (3,2) y (5,4), los cuales, de
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Figura 2.16: Tabla de estados distinguibles

acuerdo con el teorema presentado, son pares de estados equivalentes.

Una vez que detectamos los pares de estados equivalentes, podemos proceder a eliminar
uno de ellos, de la forma que hemos visto. En el ejemplo de la figura 2.16(d), como hay dos
pares de estados redundantes, el AFD mı́nimo tiene 3 estados.

En autómatas grandes, el procedimiento puede volverse algo complicado, pues es necesario
examinar repetidamente cada celda de la tabla para verificar que los cuadros aún no marcados
siguen sin ser distinguibles, hasta que en una de las iteraciones ya no se agregue ninguna
marca a la tabla.

2.6.2. Simplificación por clases de equivalencia

Existe otro método de simplificación de estados, de hecho más comúnmente usado que el
que hemos presentado, debido a que permite organizar más sistemáticamente el trabajo.

Este algoritmo, que llamaremos “simplificación por clases de equivalencia”, sigue un
orden de operaciones inverso a la eliminación gradual de estados redundantes que hemos
visto antes: en vez de ir reduciendo el número de estados, comienza con grupos de estados,
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o “clases”, que se van dividiendo en clases más pequeñas, hasta que el proceso de división
ya no pueda continuarse.

La idea es formar clases de estados de un autómata que, hasta donde se sabe en ese mo-
mento, podŕıan ser equivalentes. Sin embargo, al examinar las transiciones de varios estados
de una misma clase, puede a veces inferirse que después de todo no deben permanecer en
la misma clase. En ese momento la clase en consideración se “divide”. Luego se examinan
las transiciones de las clases que se formaron, a ver si es necesario dividirlas nuevamente, y
aśı en adelante, hasta que no se halle evidencia que obligue a dividir ninguna clase.

Al terminar el proceso de división de clases, cada una de las clases representa un estado
del autómata simplificado. Las transiciones del autómata simplificado se forman a partir de
las transiciones de los estados contenidos en cada clase.

Antes de formalizar el proceso, vamos a explicarlo con ayuda de un ejemplo.

(a) AFD a simplificar (b) Clases iniciales

(c) Clases al final (d) AFD simplificado

Figura 2.17: Simplificación por clases de equivalencia

Ejemplo.- Considérese el AFD de la figura 2.17(a). Las primeras dos clases de equivalencia
que se forman contienen, respectivamente, a los estados finales y a los estados no finales,
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los cuales evidentemente no podŕıan ser equivalentes (esto es, estar en una sola clase de
equivalencia 13). Estas dos clases se encuentran indicadas en la figura 2.17(b).

Ahora vamos a examinar si todos los estados de cada clase tienen transiciones “similares”,
lo que en nuestro caso quiere decir que van a una misma clase de equivalencia. Por ejemplo,
tomemos los estados 3 y 4 de 2.17(b). Al recibir el śımbolo a, desde 3 nos vamos a la
clase {2, 3, 4, 5}, lo que también ocurre desde el estado 4. Hasta aqúı 3 y 4 se comportan
similarmente. Ahora examinamos las transiciones con b: desde 3 nos iŕıamos a la clase {1},
mientras que desde 4 iŕıamos a la clase {2, 3, 4, 5}. Conclúımos que 3 y 4 no pueden coexistir
en una misma clase de equivalencia, por lo que la clase {2, 3, 4, 5} debe dividirse. Haciendo el
mismo análisis con los demás estados, dividimos {2, 3, 4, 5} en {2, 3} y {4, 5}, como aparece
en la figura 2.17(c). En este punto ya no es posible dividir alguna de las 3 clases existentes,
pues las transiciones de sus estados son “similares”. Concluimos que estas son las clases de
equivalencia más finas que pueden formarse.

Tomando las clases de equivalencia de 2.17(c) como estados, formamos el AFD que
aparece en 2.17(d). Obsérvese que las transiciones de 2.17(d) son las de cualquiera de los
estados contenidos en cada clase; simplemente registramos a qué clase de equivalencia se
llega con cada śımbolo de entrada. El estado inicial corresponde a la clase de equivalencia
que contenga el antiguo estado inicial, y los estados finales del nuevo AFD vienen de las
clases de equivalencia que contienen estados finales del antiguo AFD.

Formalmente, el procedimiento es como sigue, para un AFD (K, Σ, δ, s, F ):

1. Inicialmente se tienen las clases F y K − F

2. Repetir para cada clase:

Sea q un estado de la clase. Para cada uno de los otros estados, q′, verificar si
δ(q, σ) va a dar a la misma clase de equivalencia que δ(q′, σ), para cada caracter
σ.

Si la respuesta es śı, la clase no necesita dividirse.

Si la respuesta es no, dividir la clase en dos subclases: la que agrupa a los estados
que tuvieron transiciones “similares” a q, y la de los estados con transiciones
“diferentes” a q (que no van a dar a la misma clase de equivalencia con un mismo
śımbolo σ).

Por ejemplo, consideremos la clase {2, 3, 4, 5} de la figura 2.17(b). Tomando como refer-
encia al estado 2, nos damos cuenta de que el estado 3 tiene transiciones similares (con a a
la clase {2, 3, 4, 5}, con b a la clase {1}), mientras que los estados 4 y 5 tienen transiciones
diferentes a las de 2 (con a y con b van a la clase {2, 3, 4, 5}); esto ocasiona que la clase
{2, 3, 4, 5} se parta en dos. Luego habŕıa que examinar las nuevas clases, {1}, {2, 3} y {4, 5};
en este caso sucede que ya no se necesita dividir ninguna de ellas.

13¿Porqué?
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1, 2, 3, 4, 5

2, 3, 4, 5 1

2, 3 4, 5

b

Figura 2.18: Clases de equivalencia organizadas en árbol

En la práctica, en vez de trazar ĺıneas sobre el diagrama de estados, es conveniente
organizar la información de las clases de equivalencia en árboles, en donde cada nodo contiene
los estados de una clase de equivalencia. Inicialmente están todos los estados del AFD en
una clase, como en la ráız del árbol en la figura 2.18, para el AFD de la figura 2.17(a), e
inmediatamente se dividen en finales y en no finales, como en el seguiente nivel en esa misma
figura. Luego, para el nodo {2, 3, 4, 5} examinamos si las transiciones con los caracteres de
entrada, en este caso a y b, llevan a las mismas clases, y verificamos que en el caso de
b los estados 2 y 3 van a un no final, mientras que 4 y 5 van a un final, por lo que ese
nodo se divide en dos, como se aprecia en el tercer nivel de la figura. Ah́ı también se puede
apreciar un śımbolo b bajo el nodo {2, 3, 4, 5}, indicando a causa de qué caracter la clase de
equivalencia se dividió. Examinando las transiciones en las clases de equivalencia que quedan
en las hojas del árbol, vemos que ya no hay razón para dividirlas más. Finalmente, las clases
de equivalencia resultantes son {1}, {2, 3} y {4, 5}, que corresponden a los 3 estados que
tendrá el AFD minimizado.

2.7. Autómatas finitos con salida

Hasta donde hemos visto, la única tarea que han ejecutado los autómatas finitos es la
de aceptar o rechazar una palabra, determinando aśı si pertenece o no a un lenguaje. Sin
embargo, es posible definirlos de manera tal que produzcan una salida diferente de “si”
o “no”. Por ejemplo, en el contexto de una máquina controlada por un autómata, puede
haber distintas señales de salida que correspondan a los comandos enviados a la máquina
para dirigir su acción. En los compiladores, 14 el analizador lexicográfico es un autómata
finito con salida, que recibe como entrada el texto del programa y manda como salida los
elementos lexicográficos reconocidos (“tokens”). Hay dos formas de definir a los autómatas
con salida, según si la salida depende de las transiciones o bien del estado en que se encuentra
el autómata. En el primer caso, se trata de los autómatas de Mealy, y en el segundo, de los
autómatas de Moore, propuestos respectivamente por G. Mealy [13] y E. Moore [15].

14Haremos una breve descripción de los compiladores en la sección 5.6.
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Figura 2.19: Autómatas de Moore y Mealy

2.7.1. Máquinas de Moore

En las máquinas de Moore la salida depende del estado en que se encuentra el autóma-
ta. Dicha salida es producida una vez, y cuando se llega a otro estado (o al mismo) por
efecto de una transición, se produce el śımbolo de salida asociado al estado al que se llega.
Algunos estudiantes encuentran útil la analoǵıa de los autómatas de Moore con nociones de
electricidad: es como si cada estado tuviera un “nivel de voltaje” que se produce en la salida
mientras el control se encuentre en dicho estado.

Las máquinas de Moore se representan gráficamente como cualquier AFD, al que se
añade, al lado de cada estado, la salida asociada, que es una cadena de caracteres. Por
ejemplo, consideremos un autómata que invierte la entrada binaria recibida (esto es, cambia
un 1 por 0 y un 0 por 1). Dicho autómata se representa gráficamente en la figura 2.19(a).

Para formalizar los autómatas de Moore una idea sencilla es añadir a un AFD estándar
una función que asocie a cada estado una palabra de salida; llamaremos λ a esta función.
También vamos a agregar un alfabeto de salida Γ, que puede ser distinto al de entrada. Todos
los demás aspectos permanecen igual que en un AFD.

Definición.- Una máquina de Moore es un séxtuplo (K, Σ, Γ, δ, λ, q0), en donde K, Σ y
δ son como en los AFD, y q0 es el estado inicial; además tenemos a Γ que es el alfabeto de
salida, y λ, que es una función de K a Γ∗, que obtiene la salida asociada a cada estado; la
salida es una cadena de caracteres tomados de Γ.

Ejemplo.- La siguiente máquina de Moore formaliza el diagrama de la figura 2.19(a):
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K = {q0, q1}, Σ = Γ = {0, 1}, λ(q0) = 0, λ(q1) = 1, y δ está tabulada como:

q δ(q, 0) δ(q, 1)
q0 q1 q0

q1 q1 q0

La salida de una máquina de Moore M ante una entrada a1 . . . an es la concatenación de
λ(q0) λ(q1) . . . λ(qn), donde qi = δ(qi−1, ai), ai ∈ Σ, para 1 ≤ i ≤ n.

2.7.2. Máquinas de Mealy

En las máquinas de Mealy la salida producida depende de la transición que se ejecuta, y
no solamente del estado. Por esto, en la notación gráfica las etiquetas de las flechas son de
la forma σ/w, donde σ es el caracter que se consume de entrada, y w es la palabra que se
produce en la salida. Por ejemplo, el diagrama para el inversor binario, implementado como
máquina de Mealy, se presenta en la figura 2.19(b).

Para formalizar las máquinas de Mealy, una idea podŕıa ser aumentarle a las transiciones
la palabra producida en la salida. Sin embargo, por modularidad se prefiere definir una
función de salida λ, pero que, a diferencia de las máquinas de Moore, ahora toma como
entrada un estado y un caracter de entrada. En efecto, podemos darnos cuenta de que es lo
mismo que la salida dependa del estado y un caracter, a que dependa de una transición. 15

Definición.- Una máquina de Mealy es un séxtuplo (K, Σ, Γ, δ, λ, q0), en el que todos los
componentes tienen el mismo significado que arriba, a excepción de λ, que es una función
λ : K × Σ→ Γ∗, esto es, toma un elemento de K × Σ –que incluye un estado y un caracter
de entrada– y produce una palabra formada por caracteres de Γ.

Ejemplo.- El inversor de Mealy de la figura 2.19(b) se puede representar formalmente de
la siguiente forma:

K = {q0}, Σ = {0, 1}, δ(q0) = q0, y λ(q0, 1) = 0, λ(q0, 0) = 1.

La salida de una máquina de Mealy ante una entrada a1 . . . an es λ(q0, a1) λ(q1, a2) . . .
λ(qn−1, an), donde qi = δ(qi−1, ai), para 1 ≤ i ≤ n.

Obsérvese que, a diferencia de las máquinas de Moore, en las máquinas de Mealy la salida
depende de la entrada, además de los estados. Podemos imaginar que asociamos la salida a
las transiciones, más que a los estados.

Los criterios para diseñar tanto máquinas de Moore como de Mealy son básicamente los
mismos que para cualquier otro AFD, por lo que no presentaremos aqúı métodos especiales

15Esto suponiendo que no hay varias transiciones distintas entre dos mismos estados.
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x f f(x)

Figura 2.20: Función como “caja negra”

de diseño.

2.7.3. Equivalencia de las máquinas de Moore y Mealy

Aunque muchas veces, para un mismo problema, la máquina de Mealy es más simple que
la correspondiente de Moore, ambas clases de máquinas son equivalentes. Si despreciamos la
salida de las máquinas de Moore antes de recibir el primer caracter (o sea, con entrada ε), es
posible encontrar, para una máquina de Moore dada, su equivalente de Mealy, en el sentido
de que producen la misma salida, y viceversa.

La transformación de una máquina de Moore en máquina de Mealy es trivial, pues hace-
mos λMealy(q, a) = λMoore(δMoore(q, a)), es decir, simplemente obtenemos qué salida pro-
ducirá una transición de Mealy viendo la salida del estado al que lleva dicha transición en
Moore. Por ejemplo, la máquina de Mealy de la figura 2.19(b) se puede transformar de esta
manera a la máquina de Moore que aparece en la figura 2.19(c).

La transformación de una máquina de Mealy en Moore es más complicada, pues en
general hay que crear estados adicionales; remitimos al alumno a la referencia [7].

2.7.4. Cálculo de funciones en AF

Ya que las máquinas de Mealy y de Moore pueden producir una salida de caracteres dada
una entrada, es natural aplicar dichas máquinas al cálculo de funciones, donde la función es
vista como una forma de relacionar una entrada, que es una palabra de un cierto alfabeto Σ,
con una salida, que es otra palabra formada por caracteres del alfabeto de salida Γ. Podemos
aśı ver una función como una “caja negra”, como se ilustra en la figura 2.20, que a partir
del argumento x entrega un resultado f(x).

Ejemplo.- Representamos los números naturales en el sistema unario, es decir, 3 es 111,
5 es 11111, etc. Queremos una máquina de Mealy que calcule la función f(x) = x + 3. Esta
máquina está ilustrada en la figura 2.21(a). En efecto, al recibirse el primer caracter, en la
salida se entregan cuatro caracteres; en lo subsecuente por cada caracter en la entrada se
entrega un caracter en la salida, hasta que se acabe la entrada. Debe quedar claro que los
tres caracteres que le saca de ventaja la salida al primer caracter de entrada se conservan
hasta el final de la entrada; de este modo, la salida tiene siempre tres caracteres más que la
entrada, y en consecuencia, si la entrada es x, la salida será x + 3.
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(a) f(x) = x + 3 (b) Función f(x) = 2x

Figura 2.21: Funciones aritméticas en Mealy

(a) f(x) = 2x + 3 (b) f(x) = nx + m

Figura 2.22: Funciones lineales en Mealy

Seŕıa interesante ver si los AF pueden calcular funciones aritméticas más complejas que
la simple suma de una constante. Por ejemplo, ¿se podrá multiplicar la entrada en unario
por una constante?

La respuesta es śı. El AF de la figura 2.21(b) entrega una salida que es la entrada
multiplicada por dos. Aun más, el AF de la figura 2.22(a) calcula la función f(x) = 2x + 3.

Estos resultados pueden ser generalizados para mostrar que una máquina de Mealy puede
calcular cualquier función lineal. En efecto, el esquema de AF de la figura 2.22(b) muestra
cómo calcular una función f(x) = nx + m.

Cerca del final de este texto veremos que un AF no puede calcular funciones mucho más
complejas que las que hemos visto; ni siquiera pueden calcular la función f(x) = x2.

Formalización del cálculo de funciones

Decimos que una máquina M calcula una función f : Σ∗ → Σ∗ si dada una entrada
x ∈ Σ∗ la concatenación de los caracteres que entrega a la salida es y ∈ Σ∗, donde y = f(x).

La definición anterior puede ser formalizada en términos de las configuraciones y del paso
de una configuración a otra. En efecto, la “concatenación de los caracteres a la salida” puede
ser tomada en cuenta en la configuración, añadiendo a ésta un argumento adicional en el
que se vaya “acumulando” la salida entregada. Esto nos lleva a una definición modificada de
configuración.

Definición.- Una configuración de una máquina de Mealy (K, Σ, Γ, δ, λ, s) es una tripleta
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abbab

a,ba,b

21

Figura 2.23: AFN para palabras que contienen abbab

[[q, α, β]] ∈ K × Σ∗ × Γ∗, donde q es el estado en que se encuentra el AF, α es lo que resta
por leer de la palabra, y β es lo que se lleva acumulado a la salida.

De este modo el funcionamiento del autómata que permite concatenar caracteres a la sal-
ida se define de una manera muy simple, utilizando la relación del paso de una configuración
a otra, escrita “`”, como sigue:

Definición.- [[p, σu, v]] ` [[q, u, vξ]] si q = δ(p, σ) y ξ = λ(q, σ).

Por ejemplo, dado el AF de Mealy de la figura 2.19(b), tenemos que [[q0, 101, 0]] `
[[q0, 01, 00]].

Utilizando la cerradura transitiva y reflexiva de la relación “`”, que se denota por “`∗”,
podemos definir formalmente la noción de función calculada:

Definición.- Una máquina M = (K, Σ, Γ, δ, λ, s) calcula una función f : Σ∗ → Σ∗ si dada
una entrada x ∈ Σ∗, se tiene:

[[s, x, ε]] `∗ [[q, ε, y]]

donde q ∈ K, siempre que y = f(x).

Por ejemplo, para el AF de Mealy de la figura 2.19(b), se pasa de una configuración inicial
[[q0, 1101, ε]] a una configuración final [[q0, ε, 0010]] en cuatro pasos, lo que quiere decir que
la función que calcula –sea f– es tal que f(1101) = 0010.

2.8. Autómatas finitos no deterministas

Una extensión a los autómatas finitos deterministas es la de permitir que de cada nodo
del diagrama de estados salga un número de flechas mayor o menor que |Σ|. Aśı, se puede
permitir que falte la flecha correspondiente a alguno de los śımbolos del alfabeto, o bien que
haya varias flechas que salgan de un sólo nodo con la misma etiqueta. Inclusive se permite
que las transiciones tengan como etiqueta palabras de varias letras o hasta la palabra vaćıa. A
estos autómatas finitos se les llama no determińısticos o no deterministas (abreviado AFN),
por razones que luego veremos.

Al retirar algunas de las restricciones que tienen los autómatas finitos determińısticos, su
diseño para un lenguaje dado puede volverse más simple. Por ejemplo, un AFN que acepte
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las palabras en {a, b} que contienen la subcadena abbab se ilustra en la figura 2.23.

Hacemos notar en este punto que, dado que los AFN tienen menos restricciones que los
AFD, resulta que los AFD son un caso particular de los AFN, por lo que todo AFD es de
hecho un AFN. 16

Hasta aqúı sólo vemos ventajas de los AFN sobre los AFD. Sin embargo, en los autómatas
no determińısticos se presenta una dificultad para poder saber qué camino tomar a partir
de un estado dado cuando se presenta un śımbolo, pues puede haber varias opciones. Por
ejemplo, tomando el autómata de la figura 2.23, si se nos presenta una palabra como abbaba,
no sabremos si tomar la transición del estado 1 al 2, gastando abbab, y ya en 2 gastar a, o
bien gastar en 1 todas las letras de la palabra de entrada, siguiendo las transiciones de 1 a
śı mismo. El problema en este ejemplo es particularmente grave porque en uno de los casos
se llega a un estado final y en el otro no. Veremos más adelante cómo enfrentar este tipo de
situaciones.

Además, puede ocurrir que, estando en un nodo n, y habiendo un śımbolo de entrada a,
no exista ninguna flecha que salga de n con etiqueta a (esto no ocurre en el ejemplo de la
figura 2.23).

Estas diferencias con los AFD se deben reflejar en la definición formal de los AFN, como
se hace en seguida.

2.8.1. Representación formal de los AFN

Definición.- Un autómata finito no determinista es un qúıntuplo (K, Σ, ∆, s, F ) donde
K, Σ, s y F tienen el mismo significado que para el caso de los autómatas determińısticos,
y ∆, llamado la relación de transición, es un subconjunto finito de K × Σ∗ ×K.

Por ejemplo, el AFN de la figura 2.23 quedaŕıa representado matemáticamente por el
siguiente qúıntuplo:

({1, 2}, {a, b}, {(1, a, 1), (1, b, 1), (1, abbab, 2), (2, a, 2), (2, b, 2)}, 1, {2})

El punto esencial es que ∆ es una relación, no una función. Obsérvese también que el
segundo elemento de la relación de transición es una palabra, no un caracter del alfabeto.
Esto significa que cada tripleta (q1, w, q2) ∈ ∆, que es una transición representada como una
flecha de etiqueta w en el diagrama de estados, permite pasar de q1 a q2 “gastando” en la
entrada una subcadena w. 17

Vamos a definir la noción de palabra aceptada en términos de la representación gráfica

16Sin embargo, la representación formal de los AFN no es idéntica a la de los AFD.
17Nótese que w puede ser la palabra vaćıa.
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de los autómatas no determińısticos.

Definición.- Una palabra w es aceptada por un autómata no determińıstico ssi existe una
trayectoria en su diagrama de estados, que parte del estado inicial y llega a un estado final,
tal que la concatenación de las etiquetas de las flechas es igual a w. 18

Ejemplo.- Verificar si la palabra baabbaba es aceptada por el AFN de la figura 2.23.
Solución: La palabra baabbaba puede ser dividida en cuatro pedazos, p1 = b, p2 = a, p3 =
abbab, y p4 = a, cuya concatenación produce la palabra original. Ahora bien, podemos seguir
la siguiente secuencia de estados (trayectoria) en el AFN dado:

Estado Cadena que consume Produce estado
1 b 1
1 a 1
1 abbab 2
2 a 2

Aśı probamos que la cadena baabbaba śı es aceptada por el autómata. Probar que una ca-
dena no es aceptada por un autómata no determińıstico es más dif́ıcil, pues hay que mostrar
que no existe ninguna trayectoria que satisfaga los requisitos; la cantidad de trayectorias
posibles puede ser muy grande como para examinar una por una. En este ejemplo en partic-
ular es posible ver que la cadena ababab no es aceptada por el autómata, pues la transición
que liga el estado inicial 1 con el final 2 incluye dos b’s seguidas, que no hay en la palabra
dada, por lo que no es posible llegar al estado final y la palabra no podrá ser aceptada.

2.8.2. Diseño de AFN

Como sugerimos al inicio de esta sección, en los AFN es posible aplicar métodos modulares
de diseño, que permiten manejar mejor la complejidad de los problemas. Son estos métodos
modulares los que describiremos en esta sección. 19

AFN para la unión de lenguajes

Si ya contamos con dos AFN, sean M1 y M2, es posible combinarlos para hacer un nuevo
AFN que acepte la unión de los lenguajes que ambos autómatas aceptaban.

18 Se puede expresar la definición de palabra aceptada en términos de la noción de configuración (ver
ejercicios).

19En muchos libros estos temas se agrupan, desde un punto de vista más matemático que ingenieril, en una
sección de “propiedades de los lenguajes regulares”, pero nosotros hemos preferido aplicarlos directamente
a mejorar las habilidades de diseño de AFN de los alumnos de computación.
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Figura 2.24: AFN para la unión de dos lenguajes

Sean M1 = (K1, Σ1, ∆1, s1, F1) y M2 = (K2, Σ2, ∆2, s2, F2) dos autómatas que aceptan
los lenguajes L1, L2.

20 Podemos entonces construir un AFN M3 que acepte L1 ∪ L2 de la
siguiente manera: Sea q un nuevo estado que no está en K1 ni en K2. Entonces hacemos un
autómata M3 cuyo estado inicial es q, y que tiene transiciones vaćıas de q a s1 y a s2. Esta
simple idea le permite escoger en forma no determinista entre irse al autómata M1 o a M2,
según el que convenga: si la palabra de entrada w está en L1, entonces escogemos irnos a
M1,,,,, y similarmente a M2 para L2.

Formalmente M3 = (K1 ∪K2 ∪ {q}, Σ1 ∪Σ2, ∆1 ∪∆2 ∪ {(q, ε, s1), (q, ε, s2)}, q, F1 ∪ F2).
En la figura 2.24 se representa gráficamente M3.

Ejemplo.- Diseñar un autómata no determinista que acepte las palabras sobre {a, b} que
tengan un número par de a o que terminen en bb.

Solución.- En la figura 2.25(a) se presenta un AFN que acepta las palabras que con-
tienen un número par de a’s, y en 2.25(b) otro que acepta las palabras que terminan en bb.
Finalmente, en 2.25(c) está el AFN que acepta el lenguaje dado.

AFN para la concatenación de lenguajes

Similarmente al caso anterior, sean M1 = (K1, Σ1, ∆1, s1, F1) y M2 = (K2, Σ2, ∆2, s2, F2)
dos autómatas que aceptan los lenguajes L1, L2 respectivamente. Podemos entonces construir
un AFN M3 que acepte L1L2 de la siguiente manera: Añadimos unas transiciones vaćıas que
van de cada uno de los estados finales de M1 al estado inicial de M2; también se requiere
que los estados finales de M1 dejen de serlo.

Formalmente M3 = (K1 ∪K2, Σ1 ∪ Σ2, ∆1 ∪∆2 ∪ {(p, ε, s2)|p ∈ F1}, s1, F2)

El funcionamiento de M3 es como sigue: cuando se recibe una palabra w = w1w2, w1 ∈ L1,
w2 ∈ L2, entonces se empieza procesando w1 exactamente como lo haŕıa M1, hasta llegar

20Sin pérdida de generalidad podemos suponer que K1 y K2 son disjuntos.
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Figura 2.25: Combinación de AFNs

hasta alguno de los antiguos estados finales de M1; entonces se empieza procesando w2 como
lo haŕıa M2; forzosamente debe ser posible llegar a un estado final de M2, ya que por hipótesis
M2 acepta w2. En la figura 2.26 se representa M3.

Ejemplo.- Construir un AFN que acepte el lenguaje en {a, b} donde las a’s vienen en
grupos de al menos dos seguidas, y los grupos de a’s que son repeticiones de aaa están a
la derecha de los que son repeticiones de aa, como en baabaaa, aaa, baab o baaaaa. Esta
condición no se cumple, por ejemplo, en bbaaabaa ni en aaabaaaa.

Solución.- Un AFN, ilustrado en la figura 2.27(a), acepta palabras que contienen b’s y
grupos de aa en cualquier orden. Otro AFN –figura 2.27(b)– acepta un lenguaje similar, pero
con grupos de aaa. La solución es su concatenación, que se presenta en la figura 2.27(c).
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Figura 2.26: AFN para la concatenación de dos lenguajes
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Figura 2.27: Concatenación de dos AFN
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Figura 2.28: AFN a transformar en AFD

2.8.3. Equivalencia de AFD Y AFN

Los autómatas finitos determińısticos (AFD) son un subconjunto propio de los no deter-
mińısticos (AFN), lo que quiere decir que todo AFD es un AFN. 21 Podŕıa entonces pensarse
que los AFN son “más poderosos” que los AFD, en el sentido de que habŕıa algunos lenguajes
aceptados por algún AFN para los cuales no habŕıa ningún AFD que los acepte. Sin embargo,
en realidad no sucede aśı.

Teorema.- Para todo AFN N , existe algún AFD D tal que L(N) = L(D).

Este resultado, sorprendente, pero muy útil, puede probarse en forma constructiva, pro-
poniendo para un AFN cómo construir un AFD que sea equivalente.

El método que usaremos para pasar de un AFN a un AFD se basa en la idea de considerar
el conjunto de estados en los que podŕıa encontrarse el AFN al haber consumido una cierta
entrada.

El método de los conjuntos de estados

Dado un AFN M , consideremos la idea de mantener un conjunto de estados Qi en los que
seŕıa posible estar en cada momento al ir consumiendo las letras de una palabra de entrada.

Por ejemplo, considérese el AFN de la figura 2.28. Queremos analizar qué sucede cuando
este AFN recibe la palabra baaaaab. Para ello, vamos llevando registro de los conjuntos de
estados en los que podŕıa encontrarse el AFN. Inicialmente, podŕıa encontrarse en el estado
inicial q0, pero sin “gastar” ningún caracter podŕıa estar también en el estado q1, o sea que el
proceso arranca con el conjunto de estados Q0 = {q0, q1}. Al consumirse el primer caracter,
b, se puede pasar de q0 a q0 o bien a q1 (pasando por el ε), mientras que del q1 sólo se
puede pasar a q1. Entonces, el conjunto de estados en que se puede estar al consumir la b es
Q1 = {q0, q1}. Y aśı en adelante. La tabla siguiente resume los conjuntos de estados por los
que se va pasando para este ejemplo:

21Salvo por el hecho de que δ es una función y ∆ una relación.
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Entrada Estados
{q0, q1}

b {q0, q1}
a {q2, q4}
a {q0, q1, q3}
a {q1, q2, q4}
a {q0, q1, q3, q4}
a {q1, q2, q3, q4}
b {q1}

Puesto que el último conjunto de estados {q1} incluye a un estado final, se concluye que
la palabra de entrada puede ser aceptada. Otra conclusión –mucho más útil que la anterior–
es darse cuenta de que si consideramos a los conjuntos de estados Qi como una especie de
“mega-estados” de cierto autómata, entonces hemos estado en realidad siguiendo los pasos
de ejecución de un AFD con “mega-estados”.

Una vez que comprendemos lo anterior, nos damos cuenta de que, si en vez de considerar
una palabra en particular, como fue baaaaab, consideramos cada posible caracter que puede
llegar al estar en un “mega-estado”, entonces podremos completar un AFD, que deberá ser
equivalente al AFN dado. 22 Para poder ser exhaustivos, necesitamos organizar las entradas
posibles de manera sistemática.

Vamos a describir inicialmente el método sobre un ejemplo. Considérese el problema de
transformar a AFD el AFN de la figura 2.28. Vamos a considerar el conjunto de estados del
AFN en los que podŕıa encontrarse éste en cada momento. El conjunto inicial de estados
estará formado por los estados del AFN de la figura 2.28 en los que se pudiera estar antes
de consumir el primer caracter, esto es, q0 y q1. Dicho conjunto aparece en la figura 2.29(a).

A partir de ah́ı, tras recibir un caracter a, el AFN pudiera encontrarse ya sea en q2 o en
q4, los cuales inclúımos en un nuevo conjunto de estados, al que se llega con una transición
con a, como se ilustra en la figura 2.29(b); similarmente, a partir del conjunto inicial de
estados {q0, q1} con la letra b llegamos al mismo conjunto {q0, q1}, lo cual se representa con
un “lazo” a śı mismo en la figura 2.29(b).

Con este mismo procedimiento se siguen formando los conjuntos de estados; por ejemplo,
a partir de {q2, q4}, con una a se pasa a {q3, q0, q1}. Continuando aśı, al final se llega al
diagrama de la figura 2.29(c).

Un detalle importante a observar en este procedimiento es que en ocasiones no hay estados
adonde ir; por ejemplo, a partir del conjunto de estados {q2, q4}, con b no llegamos a ningún
estado. En casos como éste, consideramos que habrá una transición con b a un nuevo conjunto
de estados vaćıo, esto es {}, como se aprecia en la figura 2.29(c). Por supuesto, este estado
vaćıo tendrá transiciones con a y con b a śı mismo.

22La equivalencia formal se discute más adelante.
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Ahora tomemos una pausa y respiremos hondo. Si nos alejamos del dibujo de manera
que no observemos que son conjuntos de estados, sino que vemos los ćırculos como estados,
nos daremos cuenta de que ¡hemos construido un AFD!. Unicamente falta determinar cuáles
de los nuevos estados son finales y cuáles no. Obviamente, si uno de los conjuntos de estados
contiene un estado final del antiguo AFN, esto muestra que es posible que en ese punto el
AFN hubiera aceptado la palabra de entrada, si ésta se terminara. Por lo tanto, los estados
finales del nuevo autómata serán aquellos conjuntos de estados que contengan algún estado
final. Aśı, en el AFD de la figura 2.29(d) marcamos los estados finales; además borramos los
estados del antiguo AFN de cada uno de los ćırculos, y bautizamos cada conjunto de estados
como un estado.

Una transformación inofensiva

Cuando queremos aplicar el método descrito en los párrafos precedentes, una dificultad
que puede presentarse es que algunas flechas del autómata tienen como etiquetas palabras de
varias letras, y desde luego no podemos tomar “un pedazo” de una transición. Esta situación
se aprecia en el AFN de la figura 2.30. En efecto, si a partir del estado inicial intentamos
consumir la entrada “a”, vemos que no hay una transición que permita hacerlo, aún cuando
hay una transición (q0, aa, q1) cuya etiquete empieza con a.

Una solución a esta dificultad es normalizar a 1 como máximo la longitud de las palabras
que aparecen en las flechas. Esto puede hacerse intercalando |w| − 1 estados intermedios en
cada flecha con etiqueta w. Aśı, por ejemplo, de la transición (q1, aaa, q1) de la figura 2.30,
se generan las transiciones siguientes: (q1, a, q2), (q2, a, q3), (q3, a, q1), donde los estados q2 y
q3 son estados nuevos generados para hacer esta transformación.

Con esta transformación se puede pasar de un AFN cualquiera M a un AFN M ′ equiva-
lente cuyas transiciones tienen a lo más un caracter. Esta transformación es “inofensiva” en
el sentido de que no altera el lenguaje aceptado por el AFN. 23

Por ejemplo, para el AFN de la figura 2.30 se tiene el AFN transformado de la figura
2.28.

Formalización del algoritmo de conversión

Vamos ahora a precisar el método de conversión de AFN a AFD con suficiente detalle
como para que su programación en computadora sea relativamente sencilla. Sin embargo,
no vamos a describir el algoritmo en términos de ciclos, instrucciones de asignación, condi-
cionales, etc., que son t́ıpicos de los programas imperativos. Más bien vamos a presentar un
conjunto de definiciones que capturan los resultados intermedios en el proceso de conversión
de AFN a AFD. Estas definiciones permiten programar en forma casi directa el algoritmo

23Probar que esta transformación preserva la equivalencia (ver ejercicios).
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Figura 2.29: Transformación de AFN a AFD
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Figura 2.30: AFN con transiciones de varias letras
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Figura 2.31: AFN con transiciones vaćıas

de conversión, si se utiliza un lenguaje de programación adecuado, preferentemente de tipo
funcional, como por ejemplo Scheme [22].

Vamos a ir presentando las definiciones partiendo de la más sencilla, hasta llegar a la
más compleja.

Primero introducimos una función transicion(q, σ), que a partir de un estado q y un
caracter dado σ obtiene el conjunto de estados a los que se puede llegar desde q directa-
mente gastando el caracter σ. Por ejemplo, tomando el AFN de la figura 2.31, tenemos que
transicion(q0, b) = {q0, q1}. Similarmente, transicion(q1, b) = {q1}, y transicion(q3, a) = {}.
Se puede definir matemáticamente de la forma siguiente:

transicion(q, σ) = {p | (q, σ, p) ∈ ∆}

Sin embargo, esta definición no toma en cuenta el hecho de que a veces es posible tener
transiciones que no gastan ningún caracter -aquellas marcadas con ε. Aśı, en la figura 2.28,
se puede pasar de q2 a q0 y luego continuar “gratis” de q0 a q1, por lo que en realidad se tiene
que considerar a q1 como uno de los estados a los que se puede llegar desde {q1, q2} gastando
una a. Por lo tanto, hay que modificar la definición anterior.

Vamos a definir una función auxiliar cerr -ε(q) que es el conjunto de estados a los que
se puede llegar desde el estado q pasando por transiciones vaćıas. Además, si con una tran-
sición vaćıa se llega a otro estado que también tiene transiciones vaćıas, hay que continuar
añadiendo a cerr -ε(q) los estados a los que se llegue, hasta que no sea posible añadir nuevos
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estados. Por ejemplo, en la figura 2.31, cerr -ε(q1) = {q1, q2, q4}, cerr -ε(q2) = {q2, q4}, y
cerr -ε(q0) = {q0}.

cerr -ε(q) se acostumbra llamar cerradura al vaćıo porque matemáticamente es la cer-
radura de q con la relación {(x, y) | (x, ε, y) ∈ ∆}. 24

La función cerr -ε(q) se puede definir como sigue:

Definición.- La cerradura al vaćıo cerr -ε(q) de un estado q es el más pequeño conjunto
que contiene:

1. Al estado q;

2. Todo estado r tal que existe una transición (p, ε, r) ∈ ∆, con p ∈ cerr -ε(q).

Es fácil extender la definición de cerradura al vaćıo de un estado para definir la cerradura
al vaćıo de un conjunto de estados:

Definición.- La cerradura al vaćıo de un conjunto de estados CERR-ε({q1, . . . , qn}) es
igual a cerr -ε(q1)∪, . . . ,∪ cerr-ε(qn).

Ejemplo.- Sea el AFN de la figura 2.31. Entonces CERR-ε({q1, q3}) = {q1, q2, q3, q4}.

Con la función de cerradura al vaćıo ya estamos en condiciones de proponer una versión de
la función transicion que tome en cuenta las transiciones vaćıas. Llamaremos a esta función
“transicion-ε”, y la definimos de forma que transicion-ε(q, σ) sea el conjunto de estados a
los que se puede llegar desde q gastando σ, inclusive pasando por transiciones vaćıas. El
algoritmo es como sigue, para un estado q y un caracter σ:

1. Calcular Q0 = cerr -ε(q)

2. Para cada estado de Q0, obtener transicion(q, σ), y unir todos los conjuntos obtenidos,
dando por resultado un conjunto Q1.

3. transicion-ε(q, σ) = CERR-ε(Q1).

Por ejemplo, tomando la figura 2.31, para calcular transicion-ε(q1, a), los pasos seŕıan
como sigue:

1. Q0 = {q1, q2, q4}

2. transicion(q1, a) = {q1}, transicion(q2, a) = {q2, q3}, y transicion(q4, a) = {}, por lo
que uniendo estos conjuntos, Q1 = {q1, q2, q3}.

24Consultar la definición de cerradura de una relación en el caṕıtulo de preliminares.
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3. transicion-ε(q1, a) = CERR-ε({q1, q2, q3}) = {q1, q2, q3, q4}.

Como última definición, es directo extender la función transicion-ε(q, σ), que se apli-
ca a un estado y un caracter, a una función que se aplique a un conjunto de estados y
un caracter; llamamos a esta función TRANSICION -ε(Q, σ), para un conjunto de estados
Q y un caracter σ. Simplemente aplicamos transicion-ε(q, σ) para cada uno de los esta-
dos q ∈ Q, y juntamos los resultados en un solo conjunto. Por ejemplo, en la figura 2.31
TRANSICION -ε({q0, q2}, a) = {q0, q2, q3, q4}.

Finalmente resumimos el proceso global de transformación de un AFN a un AFD en el
siguiente algoritmo.

Algoritmo de transformación AFN – AFD:

Dado un AFN (K, Σ, ∆, s, F ), un AFD equivalente se obtiene por los siguientes pasos:

1. El conjunto de estados inicial es cerr -ε(s).

2. El alfabeto del AFD es el mismo del AFN.

3. Para cada conjunto de estados Q ya presente, hacer:

a) Añadir el conjunto de estados TRANSICION -ε(Q, σ) para cada caracter σ del
alfabeto, si no ha sido creado aún.

b) Añadir transiciones ((Q, σ), Qσ) para cada conjunto de estados Qσ creado en el
paso anterior.

4. Los conjuntos de estados que contengan un estado en F serán finales.

Recuérdese que lo que llamamos “conjunto de estados” en el algoritmo se refiere a con-
junto de estados del AFN original, pero que serán simplemente estados en el AFD que se
está creando.

Ahora bien, se supone que el AFD que hemos construido acepta el mismo lenguaje que el
AFN original. Para garantizar la infalibilidad del procedimiento descrito falta aún justificar
los siguientes puntos:

1. El procedimiento de construcción del AFD termina siempre

2. El grafo es un AFD

3. El AFD aśı construido acepta el mismo lenguaje que el AFN original.
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La construcción de este grafo tiene que acabarse en algún momento, porque la cantidad
de nodos está limitada a un máximo de 2|K|, donde K son los estados del AFN (¿Porqué?).

El segundo punto se justifica dando la definición completa del AFD: (KD, Σ, δD, sD, FD),
donde:

Cada elemento de KD es uno de los conjuntos de estados que aparecen en el grafo;

El alfabeto Σ es el mismo que el del AFN original;

Hay una tripleta (p, σ, q) en δD y sólo una por cada flecha con etiqueta σ que va del
conjunto de estados p al conjunto q ;

El estado inicial sD del AFD es igual a cerr-ε(s), donde s es el estado inicial del AFN;

FD es el conjunto de conjuntos de estados tales que en ellos aparece al menos un estado
final del AFN.

Finalmente, queda pendiente probar que el AFD (que llamaremos D) acepta el mismo
lenguaje que el AFN original N = (K, Σ, ∆, s, F ). 25 Esta prueba se puede dividir en dos
partes:

L(N) ⊆ L(D). Si una palabra w = σ0σ1 . . . σn, σi ∈ Σ∪{ε}, es aceptada por N , entonces
existe una secuencia estados q0, q1, . . . , qn+1, por los que pasa N en el cálculo:

[[q0, σ0σ1 . . . σn]] ` [[q1, σ1 . . . σn]] ` . . . ` [[qn, σn]] ` [[qn+1, ε]]

Esta misma secuencia de estados puede seguirse en D, de la manera siguiente (vamos a
denotar con Q mayúsculas los “estados” de D):

Iniciamos el recorrido de N en q0 –su estado inicial– y el recorrido de D en cerr-ε(q0),
que es el estado inicial de D. Hay dos posibilidades:

1. Si en N estamos en un estado q ∈ K –que aparece en Q ∈ KD – y se presenta una
transición vaćıa de q a q′, en D vamos a permanecer en Q, que va a contener tanto a
q como a q′.

2. Si en N estamos en un estado q ∈ K que aparece en Q ∈ KD, y de q pasamos a qσ con
el caracter σ, entonces en D pasamos a Qσ = TRANSICION -ε(QD, σ), que va a ser
un “estado” de D que va a contener a qσ (¿Porqué?).

25Se supone que N ya sufrió la “transformación inofensiva” definida el la página 66.
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Siguiendo este procedimiento, cuando la palabra de entrada se acaba al final del cálculo,
en una configuración [[qf , ε]], qf ∈ K, habremos llegado en D a un estado Qf ∈ KD que debe
contener a qf , y que por ello es estado final, aceptando aśı la palabra de entrada.

L(D) ⊆ L(N). Se puede seguir el procedimiento inverso al del punto anterior para re-
construir, a partir de un cálculo que acepta w en D, la secuencia de estados necesaria en N
para aceptar w. Los detalles se dejan como ejercicio. QED

2.8.4. Más diseño de AFN: Intersección de lenguajes

Los problemas de diseño de AFN en que se combinan dos condiciones que se deben cumplir
simultáneamente son particularmente dif́ıciles de resolver. Un ejemplo de estos problemas
seŕıa: “obtener un AFN que acepte las palabras que contengan la cadena abb un número
impar de veces y ba un número par de veces”.

En los métodos de diseño de AFD propusimos trabajar con grupos de estados, y desde
luego esto es aplicable también a los AFN. Sin embargo, seŕıa aún mejor contar con un
método modular que nos permitiera combinar de una manera sistemática las soluciones
parciales para cada una de las condiciones. Ahora bien, esto es posible, si consideramos la
siguiente propiedad de la intersección de conjuntos:

L1 ∩ L2 = (Lc
1 ∪ Lc

2)
c

Esta fórmula sugiere un procedimiento práctico para obtener un AFN que acepte la
intersección de dos lenguajes dados. Esto se ilustra en el siguiente ejemplo.

Ejemplo.- Obtener un AF para el lenguaje en el alfabeto {a, b} en que las palabras son de
longitud par y además contienen un número par de a’s. Este problema parece bastante dif́ıcil,
pero se vuelve fácil utilizando la fórmula de intersección de lenguajes. En efecto, empezamos
calculando los AFD para los lenguajes que cumplen independientemente las dos condiciones.
El AFD M1 de la figura 2.32(a) acepta las palabras de longitud par, mientras que M2 de
2.32(b) acepta las palabras con un número par de a’s.

Ahora obtenemos los AFD que aceptan el complemento de los lenguajes de M1 y M2,
cambiando los estados finales por no finales y viceversa; sean MC

1 y MC
2 .

Es muy importante notar que sólo es posible complementar AFD’s y no cualquier AFN.
En efecto, si en un AFN simplemente cambiamos estados finales por no finales y viceversa, en
general llegaremos a un resultado erróneo (esto es, el autómata resultante no es equivalente
al original). 26

26Verif́ıquese esto tratando de hacer directamente la complementación del AFN
({1}, {a, b}, {(1, a, 1)}, 1, {1}), el cual originalmente acepta las palabras con a’s, pero al cambiar fi-
nales por no finales ya no acepta ninguna palabra, en vez de aceptar las palabras con b’s, como podŕıamos
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Figura 2.32: Intersección de dos AFN

Combinamos estos autómatas utilizando el procedimiento para la unión de lenguajes,
dando un AFN M3 (figura 2.32(c)), el cual es convertido a un AFD M4. Finalmente, este
AFD es simplificado y “complementado”, dando MC

4 (figura 2.32(d)), que es el autómata
buscado.

2.9. Ejercicios

1. Trazar un diagrama de estados y eventos que modele:

a) El paso de una persona de un estado civil a otro: considere al menos los estados
civiles “soltero”, “casado”, “divorciado”, “viudo”. Considere al divorcio como un
proceso con duración (no instantáneo).

b) El proceso de conexión de una terminal a un servidor Unix, desde el punto de
vista del usuario (esto es, recibir mensaje pidiendo nombre de usuario, suministrar
nombre de usuario, recibir petición de “password”, etc.).

c) El proceso de retiro de dinero en un cajero automático.

haber supuesto.
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2. Diseñar directamente 27 AFD’s que acepten los siguientes lenguajes; para cada ejemplo,
establecer claramente lo que “recuerda” cada estado antes de trazar las transiciones.
Escribir además cada AFD resultante usando la notación formal.

a) Las palabras en {a, b} que contienen un número par de a.

b) Las palabras del lenguaje en {0, 1} con a lo más un par de unos consecutivos.

c) las palabras del lenguaje en {a, b} que tienen un número impar de ocurrencias de
la subcadena ab.

3. Diseñar usando el método del complemento un AFD que acepte las palabras en {a, b}
que no inicien con abab.

4. Utilizar el método de los grupos de estados (“nubes”) para diseñar directamente (sin
pasar por AFN) AFD’s para los siguientes lenguajes:

a) lenguaje en {0, 1} donde las palabras no contienen la subcadena 11 pero śı 00.

b) lenguaje en {a, b} donde las palabras son de longitud par y tienen un número par
de a.

c) lenguaje en {a, b} donde las palabras que contienen aba terminan en bb.

5. Minimizar cada uno de los AFD’s del problema anterior:

a) Por eliminación de estados redundantes, usando la tabla.

b) Por clases de equivalencia.

6. Se puede usar el algoritmo de minimización para comparar dos AFD M1 y M2: dos
AFD son equivalentes ssi sus AFD mı́nimos son iguales. Aqúı la igualdad de M1 y
M2 se entiende en cuanto a la estructura de los AFD, pero los nombres de los estados
pueden ser diferentes.

7. Para simplificar un autómata M = (K, Σ, δ, s, F ), que tiene dos estados equivalentes
qi, qk ∈ K, se quiere eliminar uno de ellos, sea qk. Definir formalmente cada uno de
los componentes del autómata M ′, en que se ha eliminado de M el estado qk. Poner
especial cuidado en definir las transiciones en M ′.

8. Calcular en detalle los autómatas M1, M2 y M3 del ejemplo de la sección 2.4.2.

9. En comunicaciones digitales, la derivada de un tren de pulsos, p.ej. “0011100”, es una
señal que tiene “1” en las cifras que cambian, y “0” en las que permanecen constantes,
como “0010010” para el ejemplo. Diseñe un autómata de Moore para obtener la deriva-
da de la entrada.

10. Diseñar un autómata de Mealy o de Moore que recibe un flujo de “1” y “0”, y cada
vez que recibe una secuencia “11” la reemplaza por “00”.

27Aqui “directamente” quiere decir que no se haga por transformación de otro tipo de soluciones, tales
como las AFN.
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11. Decimos que los lenguajes de dos AFD son “casi iguales” si difieren únicamente en
una palabra. Dados M1 y M2, un procedimiento para decidir si L(M1) es casi igual a
L(M2) consiste en:

a) Hacer la comparación de M1 y M2, y detectar una palabra aceptada por M1 pero
no por M2, sea w.

b) Hacer un AFN que acepte únicamente w, sea Mw.

c) Combinar M2 con Mw, dando un AFN M ′
2 que acepta L(M2) ∪ {w}

d) Convertir M ′
2 a AFD, dando M ′′

2

e) Comparar M ′′
2 con M1.

Pruebe la receta anterior con los AFD siguientes:

a) M1 = ({1, 2}, {a, b}, {((1, a), 2)((1, b), 2), ((2, a), 2), ((2, b), 2)}, 1, {1})
b) M2 = ({3, 4, 5}, {a, b}, {((3, a), 4), ((3, b), 5), ((4, a), 5), ((4, b), 5), ((5, a), 5), ((5, b), 5)},

3, {4})

12. Decimos que dos AFD M1 y M2 son iguales –atención: no “equivalentes”– si sólo difieren
eventualmente en el nombre de los estados. Definir formalemente la igualdad de AFDs
como una relación de isomorfismo entre los estados de ambos.

13. Definir “lenguaje aceptado” para los AFN en términos de las configuraciones y del
paso de una configuración a otra.

14. Dada la representación formal de un AFD (K, Σ, δ, s, F ), obtener la representación
formal de un AFN tal que los diagramas de ambos sean idénticos (esto es, hacer los
ajustes necesarios para poder considerar al AFD como AFN).

15. Sean dos autómatas finitos no deterministas AFN1 y AFN2

a) ¿Cómo es posible determinar si el lenguaje que acepta AFN1 es subconjunto del
que acepta AFN2? Justifique su respuesta. Ayuda: Utilizar la propiedad de los
conjuntos A ⊆ B ssi A ∪B = B.

b) Aplicar el procedimiento anterior para determinar si los AFN siguientes aceptan
o no lenguajes complementarios:

1) ({1, 2}, {a, b}, {(1, a, 1), (1, b, 1), (1, aa, 2), (2, a, 2), (2, b, 2)}, 1, {2})
2) ({1, 2, 3}, {a, b}, {(1, a, 2), (1, b, 1), (2, a, 3), (2, b, 1), (3, a, 3), (3, b, 3)}, 1, {1, 2})

16. Probar que al reemplazar toda transición (p, uv, q) por (p, u, i) y (i, v, q), creando un
nuevo estado no final i, el AFN seguirá aceptando todas las palabras que aceptaba antes
de hacer la transformación. (Sugerencia: hay que examinar los cálculos que permit́ıan
aceptar una palabra antes de la transformación, y mostrar que en el AFN transformado
debe haber un cálculo modificado que permite aceptar la misma palabra).
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17. Suponga una variante de los autómatas finitos, los autómatas con aceptación (AA), en
que, además de los estados finales, hay estados de aceptación, tales que si el autómata
pasa por uno de ellos, aunque sea una vez, la palabra será aceptada, independiente-
mente del tipo de estado al que se llegue al agotar la palabra.

a) Dibuje un AA que acepte las palabras sobre {a, b} que comienzan por “bb” o
terminan con “aaa”. (Marque los estados de aceptación por nodos ⊕).

b) Defina formalmente los AA, aśı como la noción de lenguaje aceptado por un
AA, usando para ello la relación entre configuraciones C1 ` C2. (Evite en sus
definiciones el uso de “. . . ”).

c) Pruebe que los AA son equivalentes a los AF, dando un procedimiento para con-
struir un AF a partir de cualquier AA dado.

d) Pruebe su procedimiento del inciso anterior transformando el AA del primer inciso
a AF.

18. Suponga otra variante de los autómatas finitos deterministas, los autómatas con rec-
hazo (AR), en que, además de los estados finales, hay estados de rechazo, tales que si
el autómata pasa por uno de ellos, aunque sea una vez, la palabra es rechazada, inde-
pendientemente de que al final se llegue o no a un estado final o de rechazo. Se supone
que si no se pasa por un estado de rechazo, la aceptación de una palabra depende de
que al final se llegue a un estado final.

a) Dibuje un AR que acepte las palabras sobre {a, b} que no contengan las cadenas
“abaab” ni “abba”. Marque los estados de rechazo por nodos ⊗.

b) Defina formalmente los AR, aśı como la noción de lenguaje aceptado por un
AR, usando para ello la relación entre configuraciones C1 ` C2. (Evite en sus
definiciones el uso de “. . . ” ).

19. Un autómata finito casi determinista (AFCD) es un AFN en el cual nunca hay la posi-
bilidad de elegir entre dos caminos a tomar. Los AFCD son de hecho una abreviatura
de los AFD, donde se omiten los “infiernos”, y se pueden incluir varios caracteres en
un arco. Un ejemplo de AFCD está en la siguiente figura 2.33. ¿Es posible probar que

q 10q
bab

a b

Figura 2.33: Ejemplo de AFCD

un AFN dado es AFCD? Si es aśı, proponga un método sistemático para probarlo.

20. Suponga unos autómatas no deterministas con salida (AFNDS), en que las flechas son
de la forma “w/y”, donde “w” y “y” son palabras formadas respectivamente con el
alfabeto de entrada y de salida (pueden ser la palabra vaćıa).
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a) Defina formalmente los AFNDS.

b) Defina formalmente la noción de función calculada.

c) Se dice que un AFNDS es “confluente” cuando la salida obtenida es la misma
independientemente de qué trayectoria se siga cuando haya varias opciones.

1) Pruebe que todo autómata de Mealy, visto como AFNDS, es confluente.

2) ¿Es posible decidir si un AFNDS es confluente? Pruebe su respuesta pro-
poniendo un procedimiento para decidir, o mostrando porqué es imposible.

21. Un estado “q” de un AFD es “inaccesible” si no hay ninguna trayectoria que, partiendo
del estado inicial, llegue a “q”. Esta, sin embargo, no es una definición formal.

a) Definir formalmente cuándo un estado “q” es inaccesible, utilizando para ello la
relación de paso entre configuraciones.

b) Proponer un procedimiento para obtener el conjunto de los estados accesibles en
un AFD. (Ayuda: considerar cómo evoluciona el conjunto de “estados accesibles”
ante posibles transiciones).

22. Decimos que un AFN “se traba” cuando no hay una transición que indique adonde ir
ante el śımbolo de entrada. Pruebe que es posible/no es posible saber, dado un AFN
M en particular, si M podŕıa o no “trabarse” para alguna palabra w (proponga un
método de decisión).

23. Para una palabra w, un sufijo de w es cualquier subcadena s con que termina w, es
decir zs = w, tal que w, z, s ∈ Σ∗. Si L es un lenguaje, Sufijo(L) es el conjunto de
sufijos de las palabras de L. Demuestre que si hay un AFN que acepte R, Sufijo(R)
también es aceptado por algún AFN.

24. Hemos visto que es posible diseñar modularmente un AFN que acepte la intersección
de los lenguajes aceptados por M1 y M2. ¿Será también posible combinar M1 y M2 de
manera que obtengamos un AFN que acepte la diferencia L1 − L2 de sus lenguajes?
Proponga un método para hacerlo.

25. ¿Es regular el reverso de un lenguaje regular? (El reverso de una palabra σ1σ2 . . . σn es
σn . . . σ1).

26. Consideremos el problema de saber si el lenguaje aceptado por un AFD M es vaćıo o
no lo es.

a) Una primera idea seŕıa simplemente verificar si el conjunto de estados finales es
vaćıo ¿Porqué no funciona esta idea ?

b) Proponer un procedimiento que permita decidir si L(M) = ∅ (Ayuda: Utilizar la
comparación de autómatas).

c) Aplicar el procedimiento de (b) para verificar si el lenguaje del siguiente AFD
M es vaćıo: ({1, 2, 3}, {a, b}, {((1, a), 2), ((1, b), 1), ((2, a), 2), ((2, b), 1), ((3, a), 2),
((3, b), 1)}, 1, {3})

27. Probar el lema de la sección 2.6.
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Caṕıtulo 3

Expresiones Regulares y Gramáticas
Regulares

En este caṕıtulo estudiaremos la clase de lenguajes aceptados por los AF, la de los
lenguajes regulares, que es al mismo tiempo una de las de mayor utilidad práctica. Como se
aprecia en la figura 1.3, los Lenguajes Regulares son los más simples y restringidos dentro
de la jerarqúıa de Chomsky que presentamos anteriormente. Estos lenguajes pueden además
ser descritos mediante dos representaciones que veremos: las Expresiones Regulares y las
Gramáticas Regulares.

3.1. Lenguajes Regulares

Los lenguajes regulares se llaman aśı porque sus palabras contienen “regularidades” o
repeticiones de los mismos componentes, como por ejemplo en el lenguaje L1 siguiente:

L1 = {ab, abab, ababab, abababab, . . .}

En este ejemplo se aprecia que las palabras de L1 son simplemente repeticiones de “ab”
cualquier número de veces. Aqúı la “regularidad” consiste en que las palabras contienen “ab”
algún número de veces.

Otro ejemplo más complicado seŕıa el lenguaje L2:

L2 = {abc, cc, abab, abccc, ababc, . . .}

La regularidad en L2 consiste en que sus palabras comienzan con repeticiones de “ab”,

79
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seguidas de repeticiones de “c”. Similarmente es posible definir muchos otros lenguajes basa-
dos en la idea de repetir esquemas simples. Esta es la idea básica para formar los lenguajes
Regulares.

Adicionalmente a las repeticiones de esquemas simples, vamos a considerar que los lengua-
jes finitos son también regulares por definición. Por ejemplo, el lenguaje L3 = {anita, lava, la, tina}
es regular.

Finalmente, al combinar lenguajes regulares uniéndolos o concatenándolos, también se
obtiene un lenguaje regular. Por ejemplo, L1 ∪L3 = {anita, lava, la, tina, ab, abab, ababab,
abababab, . . .} es regular. También es regular una concatenación como L3L3 = {anitaanita,
anitalava, anitala, anitatina, lavaanita, lavalava, lavala, lavatina, . . .} 1

3.1.1. Definición formal de Lenguajes Regulares

Definición.- Un lenguaje L es regular si y sólo si se cumple al menos una de las condiciones
siguientes:

L es finito;

L es la unión o la concatenación de otros lenguajes regulares R1 y R2, L = R1 ∪ R2 o
L = R1R2 respectivamente.

L es la cerradura de Kleene de algún lenguaje regular, L = R∗.

Esta definición nos permite construir expresiones en la notación de conjuntos que repre-
sentan lenguajes regulares.

Ejemplo.- Sea el lenguaje L de palabras formadas por a y b, pero que empiezan con a,
como aab, ab, a, abaa, etc. Probar que este lenguaje es regular, y dar una expresión de
conjuntos que lo represente.

Solución.- El alfabeto es Σ = {a, b}. El lenguaje L puede ser visto como la concatenación
de una a con cadenas cualesquiera de a y b; ahora bien, éstas últimas son los elementos de
{a, b}∗, mientras que el lenguaje que sólo contiene la palabra a es {a}. Ambos lenguajes son
regulares. 2 Entonces su concatenación es {a}{a, b}∗, que también es regular.

1Recuérdese que la concatenación de dos lenguajes L1 y L2 se define como el conjunto de las palabras
formadas concatenando una de L1 con una de L2, ver sección 1.4.2.

2En efecto, {a} es finito, por lo tanto regular, mientras que {a, b}∗ es la cerradura de {a, b}, que es regular
por ser finito.
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3.2. Expresiones regulares

La notación de conjuntos nos permite describir los lenguajes regulares, pero nosotros
quisiéramos una notación en que las representaciones de los lenguajes fueran simplemente
texto (cadenas de caracteres). Aśı las representaciones de los lenguajes regulares seŕıan sim-
plemente palabras de un lenguaje (el de las representaciones correctamente formadas). Con
estas ideas vamos a definir un lenguaje, el de las expresiones regulares, en que cada palabra
va a denotar un lenguaje regular.

Definición.- Sea Σ un alfabeto. El conjunto ER de las expresiones regulares sobre Σ
contiene las cadenas en el alfabeto Σ∪ {“∧”, “+”, “•”, “∗”, “(”, “)”, “Φ”} que cumplen con
lo siguiente:

1. “∧” y “Φ” ∈ ER

2. Si σ ∈ Σ, entonces σ ∈ ER.

3. Si E1, E2 ∈ ER, entonces “(”E1“+”E2“)” ∈ ER, “(”E1“•”E2“)” ∈ ER, “(”E1“)∗”
∈ ER.

Las comillas “ ” enfatizan el hecho de que estamos definiendo cadenas de texto, no
expresiones matemáticas 3. Es la misma diferencia que hay entre el caracter ASCII “0”, que
se puede teclear en una terminal, y el número 0, que significa que se cuenta un conjunto sin
ningún elemento.

Ejemplos.- Son ER en {a, b, c} las siguientes: “a”, “((a+ b))∗”, “((a• b)• c)”. No son ER:
“ab”, “((a • b(c)∗)”.

3.2.1. Significado de las ER

Las ER son simplemente fórmulas cuyo propósito es representar cada una de ellas un
lenguaje. Aśı, el significado de una ER es simplemente el lenguaje que ella representa.

Por ejemplo, la ER “Φ” representa el conjunto vaćıo {}.

Para comprender intuitivamente la manera en que las ER representan lenguajes, consid-
eremos el proceso de verificar si una palabra dada w pertenece o no al lenguaje representado
por una ER dada. Vamos a decir que una palabra “empata” con una expresión regular si es
parte del lenguaje que esta representa.

La palabra vaćıa ε “empata” con la ER ∧.

3Este último es el caso de las expresiones de conjuntos para describir los conjuntos regulares.
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Una palabra de una letra como “a” empata con una ER consistente en la misma letra
“a”, “b” empata “b”, etc.

Luego, una palabra w = uv, esto es w está formada de dos pedazos u y v, empata con
una expresión (U • V ) a condición de que u empate con U y v empate con V . Por ejemplo,
abc empata con (a • (b • c)) porque abc puede ser dividida en a y bc, y a empata con a en la
ER, mientras que bc empata con (b • c) separando b y c de la misma manera.

Similarmente, cuando la ER es de la forma (U + V ), puede empatar con una palabra w
cuando esta empata con U o bien cuando empata con V . Por ejemplo, bc empata (a+(b•c)).

Una palabra w empata con una expresión U∗ cuando w puede ser partida en pedazos
w = w1w2, . . . de tal manera que cada pedazo wi empata con U . Por ejemplo, caba empata
con (((c + b) • a))∗ porque puede partirse en los pedazos ca y ba, y ambos empatan con
((c + b) • a), lo cual es fácil de verificar.

A continuación definiremos formalmente la correspondencia entre la representación (una
ER) y el lenguaje representado.

Definición.- El significado de una ER es una función L : ER→ 2Σ∗
(esto es, una función

que toma como entrada una expresión regular y entrega como salida un lenguaje), definida
de la manera siguiente:

1. L(“Φ”) = ∅ (el conjunto vaćıo)

2. L(“∧”) = {ε}

3. L(“σ”) = {σ}, σ ∈ Σ.

4. L(“(”R“•”S“)” ) = L(R)L(S), R, S ∈ ER

5. L( “(”R“+”S“)” ) = L(R) ∪ L(S), R, S ∈ ER

6. L( “(”R“)∗” ) = L(R)∗, R ∈ ER

Para calcular el significado de una ER en particular, se aplica a ella la función L. Las
ecuaciones dadas arriba se aplican repetidamente, hasta que el śımbolo L desaparezca.

Ejemplo.- El significado de la ER “(((a + b))∗ • a)” se calcula de la manera siguiente:

L(“(((a + b))∗ • a)”) = L(“((a + b))∗”)L(“a”) -usando 4,

= L(“(a + b)”)∗{a} -por 6 y 3,

= (L(“a”) ∪L(“b”))∗{a} -aplicando 5,

= ({a} ∪ {b})∗{a} = {a, b}∗{a} -usando 3 y simplificando.
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Este es el lenguaje de las palabras sobre {a, b} que terminan en a.

Con objeto de hacer la notación menos pesada, vamos a simplificar las ER de la manera
siguiente:

Omitiremos las comillas “ ”.

Se eliminan los paréntesis innecesarios. Se supone una precedencia de operadores en el
orden siguiente: primero “∗”, luego “•” y finalmente “+”. Además se supone que los
operadores “•” y “+” son asociativos.

Eventualmente omitiremos el operador “•”, suponiendo que éste se encuentra impĺıcito
entre dos subexpresiones contiguas.

Ejemplos.- a, (a + b)∗, abc, ac∗ son tomados como “a”, “((a + b))∗”, “((a • b) • c)” y
“(a • (c)∗)”, respectivamente.

Ejemplo.- Encontrar una expresión regular para el lenguaje en {a, b}∗ en el que inmedi-
atamente antes de toda b aparece una a.

Solución.- Una posible ER es (a + ab)∗

Una solución aceptable para este tipo de problemas debe cumplir dos caracteŕısticas:

1. Corrección.- Las palabras que represente la ER propuesta deben satisfacer la descrip-
ción del problema (por ejemplo, para el problema del ejemplo, la solución a∗(a + b)∗

no es adecuada porque representa algunas palabras, como abb, que no satisfacen la
condición de que toda b esté inmediatamente precedida por una a;

2. Completez.- La ER propuesta debe representar todas las palabras que satisfagan la
condición. Aśı, para el problema del ejemplo, la solución (ab)∗ no es adecuada porque
hay palabras tales como aab, pertenecientes al lenguaje, que no son representadas por
dicha ER.

3.2.2. Metodoloǵıa de diseño de las ER

Al tratar de encontrar una ER para un lenguaje dado, mientras más complejo sea el
lenguaje es obvio que resulta más dif́ıcil encontrar por pura intuición dicha ER. En estos casos
puede ser conveniente trabajar en forma metódica. Una técnica que funciona en muchos casos
consiste en determinar primero la estructura de la ER, dejando unos “huecos” pendientes
para resolverse luego. Estos huecos, que llamaremos contextos, son también lenguajes para
los que habrá que encontrar una ER.
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Ejemplo.- Obtener una ER para el lenguaje en el alfabeto {a, b, c} en que las palabras con-
tienen exactamente una vez dos b contiguas. Por ejemplo, las palabras aabb, babba, pertenecen
al lenguaje, pero no aaba, abbba ni bbabb.

Para resolver este problema, expresamos primero la estructura de la ER de la manera
siguiente:

< contexto1 > bb < contexto2 >

Podemos ver que en esta expresión aparecen directamente las bb que deben estar en la ER,
rodeadas por otras dos ER, que son < contexto1 > y < contexto2 >. Ahora el problema es
determinar qué ER corresponden a < contexto1 > y < contexto2 >, lo cual es un subproblema
del problema original.

El lenguaje de < contexto1 > comprende a las palabras que no tienen bb y además no
terminan en b. 4 Esto es equivalente a decir que toda b está seguida de una a o una c. Esto
quiere decir que la ER de este contexto va ser de la forma:

(. . . b(a + c) . . .)∗

donde los detalles que faltan están representados por las “. . .”. Lo que falta por considerar
es que puede haber cualquier cantidad de a’s o c’s en el < contexto1 >, por lo que dicho
contexto queda como:

(b(a + c) + a + c)∗

Similarmente se puede obtener la expresión para < contexto2 >, que es (a + c + (a + c)b)∗,
por lo que finalmente la ER del problema es:

(b(a + c) + a + c)∗bb(a + c + (a + c)b)∗

Un importante elemento de metodoloǵıa -que se aplicó en este ejemplo- consiste en trans-
formar los enunciados de lenguajes de manera que sean más fácilmente representables por
ER. En particular, los enunciados “negativos”, del tipo “. . . las palabras que no contengan
bb” son particularmente dif́ıciles, porque en las ER no hay ningún operador para representar
“lo que no forma parte del lenguajes”, sino que los operadores (como la unión o la estrella de
Kleene) tienden a añadir más palabras. En consecuencia, es necesario convertir un enunciado
sobre lo que no se permite en otro enunciado sobre lo que śı se permite. Por ejemplo, si en un
lenguaje las palabras no deben contener la cadena “bb”, ¿qué es lo que śı pueden contener?
Aqúı podemos hacer un análisis por casos, considerando que podemos tener una b sola, o
también una b seguida de una a. Como hay dos casos, podemos pensar en utilizar el operador
“+” para combinar esos casos, y aśı en adelante.

También puede ser útil modificar la forma lógica en que se enuncian los lenguajes. Por
ejemplo, el enunciado “palabras que si empiezan en 00, terminan en 11”, puede modificarse
de la manera siguiente: “palabras que ya sea no empiezan en 00 o bien terminan en 11”,
utilizando la conocida equivalencia de lógica P ⇒ Q ≡ ¬P ∨Q. Lo que aqúı se gana es que

4Pues si terminaran en b, esta última b se juntaŕıa a la bb de la mitad, violando la condición del problema.
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hacemos evidente la estructura de casos, que se puede resolver usando el operador “+” de las
ER. Por supuesto, además apareció en este enunciado una parte expresada negativamente,
“. . . no empiezan en 00”, pero ésta es fácil de transformar en un enunciado positivo, como
por ejemplo “. . . son la palabra vaćıa, o bien empiezan en 1, o bien empiezan en 01”, el cual
también se resuelve fácilmente por casos.

Ejemplo.- Obtener una ER que represente el lenguaje en {a, b} tal que si una palabra
contiene la subcadena aa, entonces no debe contener bb.

Solución: Transformando lógicamente el enunciado, representamos la condición “contiene
la subcadena aa” por el śımbolo Caa, y la condición “no contiene bb” por ¬Cbb. Entonces la
condición del problema es:

Caa ⇒ ¬Cbb

Por las equivalencias lógicas vistas en la sección 1.2, esta condición es equivalente a:

¬Caa ∨ ¬Cbb

Es decir que las palabras no contienen aa o bien no contienen bb. Esto corresponde a la
estructura:

< sin aa > + < sin bb >

Vamos a resolver la primera parte, siendo la otra enteramente similar. Para que las
palabras no contengan aa, pueden contener cualquier secuencia con b, o bien secuencias
en que toda a esté separada de otra a por al menos una b. Como la cantidad de a’s es
cualquiera, necesariamente debemos hacer intervenir una estrella de Kleene, como en la
estructura siguiente:

. . . (b + . . . a . . .)∗ . . .

Una idea para precisar más esta estructura seŕıa pensar que antes y después de la a debe
haber una b, como en la expresión (b + bab)∗. Aunque esta ER es correcta, no es completa,
pues hay palabras como ab que no son representadas por ella. Entonces pensaremos que
después de la a esté la b que la separa de otras eventuales a’s. La estructura aśı se precisa: 5

. . . (b + ab)∗ . . .

Ahora bien, pensando en qué puede aparecer al inicio y al final de una palabra, la subex-
presión (b+ ab)∗ por śı misma es ya capaz de representar palabras que comiencen ya sea con
a o con b, por lo que podemos omitir el contexto del lado izquierdo. En cambio, (b + ab)∗ no

5 Los “contextos” aqúı fueron representados simplemente con “. . .”. El uso de puntos suspensivos o de
nombres para representar un contexto es simplemente cuestión de conveniencia en cada caso.
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es capaz de representar palabras terminadas en a, como ba. Habŕıa que añadir esta posibili-
dad. Pero si hacemos que el contexto derecho sea a, vamos a excluir palabras tales como ab.
Entonces el contexto derecho puede ser a o b, que se resuelve con la expresión a + b, dando
como resultado:

(b + ab)∗(a + b)

Pero aún esta expresión presenta un problema, que es el no poder representar a la palabra
vaćıa. Esto se puede resolver de dos maneras: la menos elegante, que es simplemente añadir
“+∧” a la ER, quedando como (b+ab)∗(a+ b)+∧, o una solución más elegante que consiste
en observar que la expresión (b + ab)∗ ya representaba palabras terminadas en b, por lo que
en realidad el contexto derecho consistiŕıa en agregar una a o nada en absoluto, quedando
la ER como (b + ab)∗(a + ∧). Este es un resultado correcto y completo. Dejamos pendiente
la solución del contexto < sin bb >.

En la sección de ejercicios de este caṕıtulo se proponen muchos problemas de diseño
de ER. Es importante emprender estos ejercicios siguiendo los elementos de metodoloǵıa
que hemos presentado (adaptar expresiones conocidas, diseñar estructuras con “contextos”,
transformar los enunciados), y no dejándose llevar por la primera “corazonada genial”, que
generalmente nos lleva a expresiones erróneas, principalmente por incompletez.

3.2.3. Equivalencias de Expresiones Regulares

Las expresiones regulares no representan en forma única a un lenguaje -esto es, la función
L : ER →2Σ∗

descrita arriba no es inyectiva. Esto quiere decir que puede haber varias ER
para un mismo lenguaje, lo cual desde luego no es conveniente, pues al ver dos ER distintas
no podemos aún estar seguros de que representan dos lenguajes distintos. Por ejemplo, las
ER (a + b)∗ y (a∗b∗)∗ representan el mismo lenguaje.

Peor aún, a diferencia de los AFD que vimos en el caṕıtulo 2, no existen procedimientos
algoŕıtmicos para comparar directamente dos ER; la comparación tiene que hacerse pasando
por una conversión a AFD que veremos más adelante.

Sin embargo, en algunos casos resulta útil aplicar ecuaciones de equivalencia entre las
ER, que son expresiones de la forma ER1 = ER2, cuyo significado es que el lenguaje de ER1

es el mismo que el de ER2 (contienen las mismas palabras).

Por ejemplo, la equivalencia R + S = S + R quiere decir que la suma de expresiones
regulares es conmutativa, por lo que si tenemos dos ER espećıficas, como a∗ y b∗ab, entonces
la ER a∗+b∗ab será equivalente a la ER b∗ab+a∗, y ambas representarán las mismas palabras.

La equivalencia R + S = S + R puede ser muy obvia, pues se basa directamente en la
conmutatividad de la unión de conjuntos, pero hay otras como (R∗S)∗ = ∧+ (R + S)∗S que
son mucho menos intuitivas.
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A continuación damos una lista de las principales equivalencias de ER, clasificadas en 9
grupos:

1. R + S = S + R, (R + S) + T = R + (S + T ), R + Φ = Φ + R = R, R + R = R

2. R • ∧ = ∧ •R = R, R • Φ = Φ •R = Φ, (R • S) • T = R • (S • T )

3. R • (S + T ) = R • S + R • T , (S + T ) •R = S •R + T •R

4. R∗ = R∗ •R∗ = (R∗)∗ = (∧+ R)∗, Φ∗ = ∧∗ = ε

5. R∗ = ∧+ RR∗

6. (R + S)∗ = (R∗ + S∗)∗ = (R∗S∗)∗ = (R∗S)∗R∗ = R∗(SR∗)∗ 6= R∗ + S∗

7. R∗R = RR∗, R(SR)∗ = (RS)∗R

8. (R∗S)∗ = ∧+ (R + S)∗S, (RS∗)∗ = ∧+ R(R + S)∗

9. R = SR + T ssi R = S∗T , R = RS + T ssi R = TS∗

La prueba de varias de estas equivalencias sigue un mismo esquema, que vamos a ejem-
plificar demostrando R(SR)∗ = (RS)∗R (grupo 7). Esta equivalencia se puede probar en dos
partes: R(SR)∗ ⊆ (RS)∗R y (RS)∗R ⊆ R(SR)∗.

1a. parte.- Sea x ∈ R(SR)∗. Entonces x es de la forma x = r0s1r1s2r2 . . . snrn. Pero
esta misma palabra puede agruparse de otra manera: x = (r0s1)(r1s2) . . . (rn−1sn)rn. Por lo
tanto, x ∈ (RS)∗R.

2a. parte.- Se prueba similarmente. QED.

Las equivalencias de estos 9 grupos pueden usarse para verificar que dos ER denotan el
mismo lenguaje. La técnica a usar para verificar que P = Q, donde P, Q ∈ ER, es formar
una serie de equivalencias P = R1 = R2 = . . . = Rn = Q, usando las equivalencias dadas
arriba para hacer reemplazamientos.

Ejemplo: Verificar que las ER (ab + a)∗a y a(ba + a)∗ son equivalentes, usando las equiv-
alencias presentadas arriba.

Solución:

(ab + a)∗a = (a + ab)∗a -por (1);

= (a∗ab)∗a∗a -por (6);

= ([a∗a]b)∗[a∗a] -agrupamos términos;
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∗Σ ∗Σ2

Figura 3.1: Representaciones de lenguajes

= [a∗a](b[a∗a])∗ -por (7);

= aa∗(baa∗)∗ - aplicando (7) a los términos entre corchetes;

= [a][a∗(baa∗)∗] -agrupando;

= a(a + ba)∗ - por (6);

= a(ba + a)∗ - por (1).

El uso de estas equivalencias para verificar que dos ER denotan el mismo lenguaje en
general no es muy práctico, pues en muchos casos es dif́ıcil ver intuitivamente qué equivalencia
conviene aplicar, además de que hay el riesgo de que al aplicarla nos alejemos de la solución
en vez de acercarnos a ella. Para empeorar la situación, no hay metodoloǵıas generales que
nos ayuden a diseñar estas pruebas. Es por esto que normalmente probaremos la equivalencia
de dos ER usando el procedimiento de conversión a AFD que veremos en la sección 3.4.

3.3. Ĺımites de las representaciones textuales

Nos podemos preguntar qué tantos lenguajes se pueden representar con las ER. En otras
secciones mostraremos que dichos lenguajes coinciden con los que pueden ser aceptados por
algún autómata finito. Por lo pronto, en esta sección vamos a establecer un ĺımite que existe
no sólamente para las ER, sino para cualquier forma de representar lenguajes mediante texto.

En la figura 3.1 se ilustra el mapeo que pretendemos entre los lenguajes, que son elementos
del conjunto 2Σ∗

, y las cadenas de caracteres que los representan, que son elementos de Σ∗.
Desde luego, quisiéramos que una cadena de caracteres no pudiera representar a más de un
lenguaje, pues de otro modo no sabŕıamos a cuál de ellos representa. En cambio, es aceptable
que un lenguaje tenga varios representantes.

Por ejemplo, el conjunto de todas las palabras formadas por a’s y b’s, que es el conjunto
infinito {ε, a, b, ab, ba, aaa, aab, . . .}, puede ser representado mediante la cadena de caracteres
“{a, b}∗”, que es una palabra formada por caracteres del alfabeto {“a”,“b”,“{”,“}”,“∗”, “,”
}. Como vemos en este ejemplo, una cadena de caracteres de 6 caracteres puede representar
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todo un lenguaje infinito.

En vista del éxito obtenido, quisiéramos tener, para cada lenguaje posible, ya sea fini-
to o infinito, un representante que fuera una de estas cadenas finitas de caracteres. Existe
sin embargo un problema: para poder hacer lo anterior se necesitaŕıa que hubiera tantos
representantes (cadenas de caracteres) como lenguajes representados. Ahora bien, aunque
parezca sorprendente, ¡hay más lenguajes posibles que cadenas de caracteres para represen-
tarlos! Esto se debe a que la cantidad de lenguajes posibles es incontable, mientras que las
representaciones de dichos lenguajes son contables.

Vamos a probar el siguiente

Teorema.- El conjunto de los lenguajes en un alfabeto Σ finito es incontable.

Nos apoyaremos en el célebre teorema de Cantor, que establece que el conjunto potencia
de los números naturales, 2N, es incontable. En efecto, observamos que el conjunto de todos
los lenguajes, que es 2Σ∗

, tiene el mismo tamaño que 2N, pues N y Σ∗ son del mismo tamaño,
que es lo mismo que decir que Σ∗ es contable, lo cual es sencillo de probar 6 Aśı podemos
concluir que, como 2N es incontable, 2Σ∗

también lo es. QED.

Se sabe que los conjuntos incontables son propiamente más “grandes” que los contables,
en el sentido de que un conjunto contable no puede ser puesto en correspondencia uno a
uno con uno incontable, pero śı con subconjuntos de éste. Aśı resulta que la cantidad de
lenguajes a representar es mayor que la cantidad de cadenas de caracteres que pudieran
ser representaciones de aquellos. La conclusión es que no todos los lenguajes pueden ser
representados en forma finita.

3.4. Equivalencia de expresiones regulares y autómatas

finitos

Aún cuando por varios ejemplos hemos visto que lenguajes representados por expre-
siones regulares son aceptados por autómatas finitos, no hemos probado que para cualquier
expresión regular exista un autómata finito equivalente, y viceversa. Esto se establece en el
siguiente

Teorema de Kleene.- Un lenguaje es regular si y sólo si es aceptado por algún autómata
finito.

Vamos a presentar una prueba de esta afirmación, no tanto por el interés matemático que
tiene, sino porque nos brinda procedimientos estándar extremadamente útiles para transfor-
mar una expresión regular en autómata finito y viceversa.

6La prueba es uno de los ejercicios al final de esta sección.
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Figura 3.2: Una gráfica de transición

3.4.1. Conversión de ER a AF

La prueba de que si un lenguaje es regular entonces es aceptado por un AF consiste en
dar un procedimiento para transformar en forma sistemática una expresión regular en un
autómata finito que acepte su lenguaje. Dicho procedimiento se describe a continuación:

La idea es hacer una transformación gradual que vaya conviertiendo la ER en AF.

Para hacer la transformación gradual de ER a AFN se requiere utilizar alguna repre-
sentación de los lenguajes regulares que sea intermedia entre las ER y los AFN.

Una posible solución es el uso de las gráficas de transición. Estas últimas son esencial-
mente AFN en que las etiquetas de las flechas tienen expresiones regulares, en lugar de
palabras. Las gráficas de transición (GT) son por lo tanto qúıntuplos (K, Σ, ∆, s, F ) en
donde ∆ ∈ K × ER×K.

En la figura 3.2 se ilustra un ejemplo de GT. En este ejemplo en particular es fácil ver
que debe aceptar palabras que tienen primero una sucesión de a’s, luego repeticiones de ab,
y finalmente repeticiones de b’s. Esta GT se representaŕıa formalmente como el qúıntuplo:

({q0, q1}, {a, b}, {(q0, a, q0), (q0, (ab)∗, q1), (q1, b, q1)}, q0, {q1})

Los AFN son un subconjunto propio de las GT, puesto que las palabras en las etiquetas
de un AFN pueden ser vistas como expresiones regulares que se representan a śı mismas.

Ahora procederemos a describir el procedimiento de transformación de ER a AFN.

A partir de una ER es trivial obtener una GT que acepte el mismo lenguaje. En efecto,
sea R una ER; entonces, si

G1 = ({q0, q1}, Σ, {(q0, R, q1)}, q0, {q1})

entonces L(G) = L(R). Por ejemplo, la GT asociada a la ER (a + ba)∗bb se ilustra en la
figura 3.3(a).

Lo que falta por hacer es transformar gradualmente G1 en G2, luego en G3, etc., hasta
llegar a un Gn tal que en las flechas no haya más que caracteres solos (o bien la palabra
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Cuadro 3.1: Eliminación de operadores para pasar de ER a AF

Reemplazar Por
� � � �

� �

�

�

�

i j
�

k
� εεεε

R

vaćıa). En efecto, Gn ∈AFN. Este es un proceso de eliminación gradual de los operadores de
las ER.

Para eliminar los operadores de las ER en Gi, aplicamos reemplazamientos de ciertas
transiciones por otras, hasta que no sea posible aplicar ninguno de estos reemplazamientos.
Las transformaciones elementales se ilustran en la Tabla 3.1.

Ejemplo.- Dada la ER (a + ba)∗bb, obtener el AFN que acepta el lenguaje de dicha ER.

Solución: Aplicamos una sucesión de transformaciones, ilustradas en las figuras 3.3(a)-(d).

La equivalencia de G1, G2, . . . , Gn se asegura por el hecho de que cada una de las
transformaciones preserva la equivalencia.

3.4.2. Conversión de AF a ER

La prueba de la parte “si” del teorema consiste en dar un procedimiento para trans-
formar en forma sistemática un autómata finito en una expresión regular equivalente. Un
procedimiento para hacerlo consiste en ir eliminando gradualmente nodos de una GT, que
inicialmente es el AFN que se quiere transformar, hasta que únicamente queden un nodo
inicial y un nodo final.

Dicho procedimiento comprende los siguientes pasos:

1. El primer paso en este procedimiento consiste en añadir al autómata finito un nuevo
estado inicial i, mientras que el antiguo estado inicial q0 deja de ser inicial, y un nuevo
estado final f , mientras que los antiguos estados finales qi ∈ F dejan de ser finales;
además se añade una transición vaćıa del nuevo estado inicial al antiguo, (i, ε, q0), y
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Figura 3.3: Transformación ER→AF
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Figura 3.4: Eliminación de nodos

varias transiciones de los antiguos estados finales al nuevo: {(qi, ε, f)|qi ∈ F}. Esta
transformación tiene por objeto que haya un estado inicial al que no llegue ninguna
transición, y un solo estado final, del que no salga ninguna transición. Esta condición
se requiere para llevar a cabo el siguiente paso. 7 Desde luego, hay muchos autómatas
que ya cumplen estas condiciones sin necesidad de añadir un nuevo estado inicial o un
nuevo estado final.

2. El segundo paso consiste en eliminar nodos intermedios en la GT. Se llama nodo inter-
medio a aquel que se encuentra en una trayectoria entre el estado inicial y el final. El
procedimiento de eliminación de nodos intermedios es directo. La idea es que al suprim-
ir el nodo en cuestión, no se alteren las cadenas que hay que consumir para pasar de
uno a otro de los nodos vecinos. En otras palabras, al suprimir dicho nodo, se deben
reemplazar las transiciones que antes tomaban ese nodo como punto intermedio para
ir de un nodo vecino a otro, por otras transiciones que vayan del nodo vecino origen
al nodo vecino destino, pero ahora sin pasar por el nodo eliminado. Para comprender
cabalmente el procedimiento, hay que seguir el ejemplo dado más adelante. En la figura
3.4(a) se representa un nodo q intermedio que se quiere eliminar, y los nodos entre los
que se encuentra. Este esquema se adapta a todos los casos que pueden presentarse. En
dicha figura, αi,βi, γi son expresiones regulares. Para eliminar el nodo q, reemplazamos
la parte de la GT descrita en la figura 3.4(a) por el subgrafo representado en la figura

7Mas adelante se presenta un ejemplo de cada una de las operaciones involucradas en este procedimiento.
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3.4(b). Los nodos intermedios se pueden eliminar en cualquier orden.

3. Cuando después de aplicar repetidamente el paso 2 ya no sea posible hacerlo, tendremos
una GT de la forma de la figura 3.4(c). Esta GT se puede transformar en otra con una
sola transición, fusionando todas las transiciones en una sola, con etiqueta R1 + R2 +
. . . + Rn. Esta etiqueta será la ER buscada.

Ejemplo.- Obtener una ER para el AFD de la figura siguiente:

Paso 1.- Añadir un nuevo estado inicial y uno final

ε

ε

ε

Paso 2.- Eliminación de nodos intermedios. Eliminamos primero el nodo q1. Para ello,
consideramos qué trayectorias o “rutas” pasan por el nodo a eliminar. Por ejemplo, en la
figura de arriba vemos solamente una trayectoria que pasa por q1, la cual va de q0 a f . Ahora
nos proponemos eliminar el nodo q1, pero sin modificar “lo que se gasta” para pasar de q0

a f . Es fácil ver que para pasar de q0 a f se gasta primero una a y luego algún número de
repeticiones de a o b (para llegar de q1 a f no se gasta nada). Esto corresponde a la ER
a(a + b)∗, que será la etiqueta de la nueva “ruta directa” de q0 a f , sin pasar, por q1, como
se aprecia en la siguiente figura:

ε

ε

Paso 3.- Después eliminamos el nodo q2:
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0qi
ε

f

a(a+b)

bb

*

*

*

bb  a

Paso 4.- Eliminamos q0:

i f

(bb  a)  a(a+b)

(bb  a)  bb

*

* * *

* *

Paso 5.- Finalmente fusionamos las expresiones que están en paralelo:

i f
(bb  a)  a(a+b)  +(bb  a)  bb* * * * * *

Por lo que finalmente la ER buscada es (bb∗a)∗a(a + b)∗ + (bb∗a)∗bb∗.

La corrección de cada paso de transformación se desprende del hecho de que tanto la
eliminación de nodos como la fusión de transiciones que se hace al final, preservan ambos la
igualdad del lenguaje aceptado.

Con este resultado establecemos la completa equivalencia entre las ER y los autómatas
finitos (no deterministas). Al establecer la equivalencia de los AFN con las ER, automáti-
camente queda establecida la equivalencia entre las ER y los AFD. Este es un resultado de
gran trascendencia tanto teórica como práctica, pues por una parte muestra la importancia
de la clase de los lenguajes regulares, y por otra ofrece un grupo de herramientas prácticas,
tales como la minimización de AFD, que pueden ser puestas al servicio de las ER.

3.5. Gramáticas regulares

En esta sección veremos otra manera de representar los lenguajes regulares, además de
las Expresiones Regulares que ya vimos.
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3.5.1. Gramáticas formales

La representación de los lenguajes regulares que aqúı estudiaremos se fundamenta en la
noción de gramática formal. Intuitivamente, una gramática es un conjunto de reglas para
formar correctamente las frases de un lenguaje; aśı tenemos la gramática del español, del
francés, etc. La formalización que presentaremos de la noción de gramática es debida a N.
Chomsky [4], y está basada en las llamadas reglas gramaticales.

Una regla es una expresión de la forma α → β, en donde tanto α como β son cadenas
de śımbolos en donde pueden aparecer tanto elementos del alfabeto Σ como unos nuevos
śımbolos, llamados variables. Los śımbolos que no son variables son constantes. 8 Por
ejemplo, una posible regla gramatical es X → aX. La aplicación de una regla α→ β a una
palabra uαv produce la palabra uβv. En consecuencia, las reglas de una gramática pueden
ser vistas como reglas de reemplazo. Por ejemplo, si tenemos una cadena de śımbolos bbXa,
le podemos aplicar la regla X → aX, dando como resultado la nueva cadena bbaXa.

3.5.2. Gramáticas regulares

Nosotros nos vamos a interesar por el momento en las gramáticas cuyas reglas son de la
forma A → aB o bien A → a, donde A y B son variables, y a es un caracter terminal. A
estas gramáticas se les llama regulares.

Ejemplo.- Sea una gramática con las siguientes reglas:

1. S → aA

2. S → bA

3. A→ aB

4. A→ bB

5. A→ a

6. B → aA

7. B → bA

La idea para aplicar una gramática es que se parte de una variable, llamada śımbolo
inicial, y se aplican repetidamente las reglas gramaticales, hasta que ya no haya variables en
la palabra. En ese momento se dice que la palabra resultante es generada por la gramática,
o en forma equivalente, que la palabra resultante es parte del lenguaje de esa gramática.

8En la terminoloǵıa de los compiladores, se les llama “terminales” a los elementos de Σ, y “no terminales”
a las variables.
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Por ejemplo, en la gramática que acabamos de presentar, si consideramos que las variables
son S (que será el śımbolo inicial), A y B, y las constantes a y b, partiendo de S podemos
producir bA (por la segunda regla), luego de bA podemos pasar a ba (por la quinta regla).
Como ba tiene sólo constantes, podemos concluir que la palabra ba es parte del lenguaje
generado por la gramática dada. De hecho el lenguaje generado por esta gramática es el de
las palabras en {a, b} de longitud par terminadas en a. 9

Formalizamos estas nociones con las siguientes definiciones:

Definición.- Una gramática regular es un cuádruplo (V, Σ, R, S) en donde:

V es un alfabeto de variables,

Σ es un alfabeto de constantes,

R, el conjunto de reglas, es un subconjunto finito de V × (ΣV ∪ Σ).

S, el śımbolo inicial, es un elemento de V .

Por ejemplo, la gramática que presentamos arriba se representaŕıa formalmente como:

({S, A,B}, {a, b}, {(S, aA), (S, bA), (A, aB), (A, bB), (A, a), (B, aA), (B, bA)}, S)

Usualmente las reglas no se escriben como pares ordenados (A, aB), como lo requeriŕıa la
definición anterior, sino como A→ aB; esto es simplemente cuestión de facilidad de notación.

La aplicación de una gramática se formaliza con las siguientes nociones:

Una cadena uXv deriva en un paso una cadena uαv, escrito como uXv ⇒ uαv, si hay
una regla X → α ∈ R en la gramática.

Una cadena w ∈ Σ∗ (esto es, formada exclusivamente por constantes) es derivable a partir
de una gramática G si existe una secuencia de pasos de derivación S ⇒ α1 ⇒ α2 ⇒ . . . ⇒
w.

A una secuencia de pasos de derivación le llamamos simplemente derivación.

Dicho de otra manera, una palabra w ∈ Σ∗ es derivable a partir de G ssi S
∗⇒ w, donde

∗⇒ denota la cerradura reflexiva y transitiva de ⇒.

Definición.- El lenguaje generado por una gramática G, L(G), es igual al conjunto de las
palabras derivables a partir de su śımbolo inicial.

Esto es, L(G) = {w ∈ Σ∗|S ∗⇒ w}.
9Más adelante veremos cómo probar rigurosamente que una gramática efectivamente corresponde a un

lenguaje dado.
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Frecuentemente es fácil mostrar que una palabra dada w es derivable a partir del śımbolo
inicial S; por ejemplo, en la gramática presentada arriba, se puede mostrar que S ⇒ . . .⇒
bababa (esto es, que la palabra bababa puede ser derivada a partir del śımbolo inicial S, por
lo que bababa ∈ L(G). Dejamos este ejemplo como ejercicio (ver sección de ejercicios).

Ejemplo.- Proponer una gramática que genere el lenguaje de las palabras en {a, b} que
contienen la subcadena bb, como abb, ababba, etc.

Vamos a utilizar las variables de una manera similar a como se utilizaban en los AF los
estados, esto es, como memorias para “recordar” situaciones. Aśı tendremos las siguientes
variables:

A, que recuerda que aún no se produce ninguna b.

B, que recuerda que se produjo una b.

C, que recuerda que ya se produjeron las dos b’s.

Ahora podemos proponer reglas, preguntándonos a qué situación se llega al producir una
a o b. Por ejemplo, a partir de A, si se produce una a se debe llegar a la misma A, pero si
llega una b se llegará a la variable B. Con estas ideas se proponen las siguientes reglas:

1. A→ aA

2. A→ bB

3. B → aA

4. B → bC

5. C → aC

6. C → bC

Finalmente, para terminar la producción de una palabra hecha solamente de constantes
es necesaria al menos una regla que no produzca variables en su lado derecho. Tal regla no
se encuentra aún en la gramática dada. Como las palabras correctas tienen bb, pensamos que
una regla adicional podŕıa ser C → a y también C → b. En efecto, con tales reglas podemos
producir, por ejemplo, la palabra abba, mediante la derivación siguiente:

A⇒ aA⇒ abB ⇒ abbC ⇒ abba

Sin embargo, también podemos verificar que la palabra abb, que pertenece al lenguaje,
no puede producirse con las reglas dadas. Hace falta aún otra regla, B → b, con la que se
completa nuestra gramática.
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Al diseñar gramáticas regulares, podemos incurrir en los mismos errores que en los AF,
es decir, que sean incorrectas (producen palabras que no debeŕıan) o bien incompletas (no
pueden generar palabras que pertenecen al lenguaje), o bien ambas cosas a la vez.

No vamos a examinar métodos particulares de diseño de gramáticas regulares; en vez de
ello mejor vamos a examinar métodos por los que es muy simple convertir las gramáticas
regulares a AF y viceversa.

3.5.3. Autómatas finitos y gramáticas regulares

De manera similar a como hicimos en la sección anterior, aqúı vamos a establecer la
equivalencia entre las gramáticas regulares y los lenguajes regulares -y por ende los autómatas
finitos. Este resultado es establecido por el siguiente

Teorema.- La clase de los lenguajes generados por alguna gramática regular es exacta-
mente la de los lenguajes regulares.

La prueba de este teorema consiste en proponer un procedimiento para, a partir de una
gramática dada, construir un autómata finito, y viceversa.

Dicho procedimiento es directo, y consiste en asociar a los śımbolos no terminales de la
gramática (las variables) los estados de un autómata. Aśı, para cada regla A → bC en la
gramática tenemos una transición (A, b, C) en el autómata.

Sin embargo, queda pendiente el caso de las reglas A → b. Para estos casos, se tienen
transiciones (A, b, Z), donde Z es un nuevo estado para el que no hay un no terminal asociado;
Z es el único estado final del autómata.

Ejemplo.- Obtener un autómata finito para la gramática regular G siguiente:

1. S → aA

2. S → bA

3. A→ aB

4. A→ bB

5. A→ a

6. B → aA

7. B → bA
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Figura 3.5: Autómata obtenido de la gramática

q 10q

b

2q q

b

a, b

a a a

b

3

Figura 3.6: AFD que acepta palabras que no contienen 3 a’s seguidas

Dicho autómata aparece en la figura 3.5.

Similarmente, es simple obtener, a partir de un AFD (K, Σ, δ, s, F ), la gramática regular
correspondiente. Para cada transición de la forma ((p, σ), q) ∈ δ, habrá en la gramática una
regla Xp → σXq, donde Xi es la variable en la gramática que corresponde al estado i del
AFD. Queda, sin embargo, pendiente cómo obtener las reglas de la forma Xp → σ, que son
las que permiten terminar una derivación. Nos damos cuenta de que la aplicación de este
tipo de reglas debe corresponder al consumo del último caracter de una palabra aceptada
en el AFD. Ahora bien, al terminar una palabra aceptada en un AFD, necesariamente nos
encontraremos en un estado final. De ah́ı conclúımos que hay que incorporar a la gramática,
por cada transición ((p, σ), q), donde q ∈ F , una regla adicional Xp → σ, además de la regla
Xp → σXq que se mencionó anteriormente.

Ejemplo.- Para el AFD de la figura 3.6, la gramática regular correspondiente contiene las
reglas:

1.- Q0 → aQ1 8.- Q3 → bQ3

2.- Q0 → bQ0 9.- Q0 → a
3.- Q1 → aQ2 10.- Q0 → b
4.- Q1 → bQ0 11.- Q1 → a
5.- Q2 → aQ3 12.- Q1 → b
6.- Q2 → bQ0 13.- Q2 → b
7.- Q3 → aQ3
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Nótese que en este ejemplo el AFD acepta la palabra vaćıa, mientras que la GR no es
capaz de generarla. De hecho ninguna GR puede generar ε. En estos casos nos tenemos que
contentar con generar un lenguaje igual al aceptado por el AFD excepto por la palabra vaćıa.

3.6. Limitaciones de los lenguajes regulares

Los AF están limitados a los estados de que disponen como único medio para “recordar”
la serie de śımbolos recibidos hasta un momento dado. Puesto de otra manera, debemos
considerar que, en un AF, la única traza de los śımbolos recibidos es el estado en que se
encuentra. Por lo mismo, varias secuencias distintas de caracteres que llevan a un mismo
estado son consideradas como indistinguibles. Por ejemplo, para el AFD de la figura 2.4, las
secuencias de caracteres bab y bbbbb son indistinguibles, pues ambas llevan al estado q2. Esta
limitación de los AF los hace finalmente incapaces de distinguir las palabras aceptables de
las no aceptables en ciertos lenguajes, más complicados que los lenguajes regulares.

Por ejemplo, para el lenguaje {anbn} no es posible construir un autómata finito que lo
acepte, ni representarlo por una expresión regular o gramática regular. En efecto, supongamos
que un AFD está recorriendo una palabra anbn, entonces al terminar el grupo de a’s el
autómata debe recordar cuántas encontró, para poder comparar con el número de b’s. Ahora
bien, como la cantidad de a’s que puede haber en la primera mitad de la palabra es arbitraria,
dicha cantidad no puede recordarse con una cantidad de memoria fija, como es la de los
autómatas finitos.

3.6.1. El teorema de bombeo

Formalmente, vamos a establecer un teorema que precisa cuál es la limitación de los
autómatas finitos.

Teorema.- Si L es un lenguaje regular infinito, entonces existen cadenas x, y, z tales que
y 6= ε, y xynz ∈ L, para algún n ≥ 0. (Teorema de bombeo).

Lo que este resultado establece es que, suponiendo que cierto lenguaje es regular, en-
tonces forzosamente dicho lenguaje debe contener palabras en que una subcadena se repite
cualquier número de veces. Es decir, hay palabras del lenguaje en que podemos insertar
repetidamente (“bombear”) una subcadena (y en el teorema) sin que el autómata se dé cuen-
ta. Esta situación permite hacer pruebas por contradicción de que un lenguaje dado no es
regular.

Pero veamos en primer lugar la prueba del teorema de bombeo. Supongamos que L es un
lenguaje regular. Entonces existe un autómata M que lo acepta. Sea m el número de estados
de M . Ahora supongamos una palabra en L, w = σ1σ2 . . . σn, σi ∈ Σ, donde n ≥ m. Como
w debe ser aceptada, debe hacer un cálculo de la forma:



102 CAPÍTULO 3. EXPRESIONES REGULARES Y GRAMÁTICAS REGULARES

[[q1, σ1σ2 . . . σn]] `M [[q2, σ2 . . . σn]] `∗M [[qn+1, ε]]

Como M tiene solamente m estados, y el cálculo tiene longitud n + 1, por el principio de
correspondencia debe haber algunos estados que se repitan en el cálculo, es decir, qi = qj,
para 0 ≤ i < j ≤ n + 1. Entonces podemos detallar más el calculo anterior, el cual tiene la
forma:

[[q1, σ1σ2 . . . σi . . . σn]] `∗M [[qi, σi . . . σn]] `∗M [[qj, σj . . . σn]] `∗M [[qn+1, ε]]

Como M regresa al mismo estado, la parte de la entrada que se consumió entre qi y qj, que
es σi . . . σj−1 puede ser eliminada, y por lo tanto la palabra σ1 . . . σi−1σj . . . σn será aceptada
de todas maneras, mediante el cálculo siguiente:

[[q1, σ1 . . . σi−1σj . . . σn]] `∗M [[qj, σj . . . σn]] `∗M [[qn+1, ε]]

De igual manera, la subcadena σi . . . σj−1 puede ser insertada cualquier número de veces;
entonces el autómata aceptará las palabras de la forma:

σ1σ2 . . . σi−1(σi . . . σj−1)
kσj . . . σn

Entonces, haciendo x = σ1σ2 . . . σi−1, y = σi . . . σj−1 y z = σj . . . σn tenemos el teorema
de bombeo. Esto termina la prueba. QED.

Ejemplo.- Como un ejemplo de la aplicación de este teorema, probaremos que el lenguaje
{anbn} no es regular. En efecto, supongamos que fuera regular. Entonces, por el teorema de
bombeo, debe haber palabras de la forma xyz, a partir de una cierta longitud, en que la
parte y puede repetirse cuantas veces sea. Existen 3 posibilidades:

1. Que y no contenga caracteres distintos a “a”, es decir, y = aa . . . a. En este caso, al
repetir varias veces y, habrá más a’s que b’s y la palabra no tendrá la forma deseada. Es
decir, suponiendo que {anbn} es regular hemos llegado a la conclusión de que contiene
palabras con más a’s que b’s, lo cual es una contradicción.

2. Que y no contenga caracteres distintos de b. Este caso es similar al caso (1).

3. Que y contenga a’s y b’s, es decir, y = aa . . . abb . . . b. Pero en este caso, al repetirse
y, las a’s y b’s quedarán en desorden en la palabra, la cual no tendrá la forma anbn.
También en este caso hay contradicción.
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Por lo tanto el suponer que {anbn} es regular nos lleva a contradicción. Se concluye que
{anbn} no es regular.

Es muy importante notar que para las pruebas por contradicción usando el teorema de
bombeo hay que explorar exhaustivamente todas las posibles maneras de dividir la palabra w
en xyz, y encontrar contradicción en cada posible división. Con una sola división posible en
que no se encuentre una contradicción, la prueba fracasa. Al fracasar la prueba, no se puede
concluir ni que el lenguaje es regular ni que no lo es; simplemente no se llega a ninguna
conclusión.

Otros lenguajes que tampoco son regulares son : {ww}, que es el lenguaje cuyas palabras
tienen dos mitades iguales, {wwR} , que es el lenguaje cuyas palabras tienen dos mitades
simétricas 10 ; el lenguaje de las palabras paĺındromas, que se leen igual al derecho y al revés,
como por ejemplo ANITALAVALATINA, 11 el lenguaje de los paréntesis bien balanceados,
como ()(()), ()()(), ((())), etc.

3.7. Ejercicios

1. Convertir la ER a∗ab + b(a + ∧) en notación “fácil” a ER estricta.

2. Encontrar Expresiones Regulares que representen los siguientes lenguajes (se presentan
en orden de dificultad creciente):

a) Conjunto de palabras en {0, 1} terminadas en 00.

b) Conjunto de palabras en {0, 1} que contengan tres ceros consecutivos, como
“0001000”, “000001”, etc.

c) El lenguaje {101, 1110}.
d) El lenguaje {w ∈ Σ∗|w = anbak, n, k ≥ 0}
e) Conjunto de palabras en {a, b} que no contienen dos b consecutivas, como “ababab”,

“aaaa”, etc.

f ) Conjunto de cadenas en {a, b} que no contienen ni aa ni bb.

g) El lenguaje sobre {0, 1} en que las palabras no vaćıas empiezan o terminan en
cero.

h) El conjunto de las palabras en {a, b} tales que toda a está precedida por alguna
b, como por ejemplo “ε”, “b”, “bba”, “babaa”, etc. 12

i) Conjunto de palabras en {0, 1} con a lo más un par de ceros consecutivos y a lo
más un par de unos consecutivos.

10 wR es el reverso de w, es decir, (abaa)R = aaba
11¡Atención! este lenguaje no es igual a {wwR}
12La b que precede a la a no necesita estar inmediatamente antes.
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j ) El lenguaje sobre {a, b} en que todas las palabras son de longitud impar.

k) Conjunto de cadenas en {a, b} que contienen un número impar de b.

l) El lenguaje en {0, 1} en que las palabras contienen más de tres ceros.

m) El lenguaje en {0, 1} en que las palabras no contienen un cero exactamente (pero
pueden contener dos, tres, etc.), como “1111”, “1010”, etc.

n) Conjunto de palabras en {0, 1} tales que no hay ningún par de ceros consecutivos
después 13 de un par de unos consecutivos, como “0000110”, “0001000”, etc.

ñ) {w ∈ {a, b, c}∗ | |w| 6= 3}
o) El lenguaje en {0, 1} en que las palabras contienen un número de ceros distinto

de 3, por ejemplo “010”, “1111”, “00100”, etc.

p) {w ∈ {a, b, c}∗ | w 6= αabcβ}, donde α y β representan cualquier cadena de
caracteres (esto es, las palabras en este lenguaje no deben contener la subcadena
abc).

q) Lenguaje en {a, b} tal que |w| es par, y además la cantidad de a’s que aparecen
en w es par.

r) El lenguaje sobre {a, b} en que las palabras contienen la subcadena “baaab” o
bien la subcadena “abbba”.

s) El lenguaje sobre {a, b} en que las palabras pueden contener pares de a’s con-
secutivas, pero no grupos de 3 a’s consecutivas; por ejemplo, “baabaab”, pero no
“baaaab”.

t) El lenguaje en {a, b} en que toda “b” tiene a su izquierda y a su derecha una “a”
(no necesariamente junto), y además el número de “b” es impar.

u) Lenguaje de las palabras en {a, b} que no contienen la subcadena “abaab”.

3. Demostrar la siguiente equivalencia por identidades de Expresiones Regulares:

(ab∗)∗a = a + a(a + b)∗a

4. Verificar si los siguientes pares de ER son equivalentes, usando equivalencias o bien
encontrando un contraejemplo:

a) a∗ + b∗ y (a + b)∗

b) a∗ y (aa∗)∗a∗

5. Probar que a∗ + b∗ no es equivalente a (a + b)∗

6. Convertir la ER (a + ab)∗aba(a + ba)∗ a AFN.

7. Convertir a ER el AFD siguiente: ({1, 2, 3}, {a, b}, {((1, a), 1), ((1, b), 2), ((2, a), 3),
((2, b), 1), ((3, a), 2), ((3, b), 3)}, 1, {1, 3}).

13En cualquier posición a la derecha
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8. Demostrar la siguiente equivalencia (ab∗)∗a = a + a(a + b)∗a por equivalencia de
autómatas (Primero hay que convertir las ER a AFN, luego estos a AFD, los cuales
pueden ser comparados).

9. Encuentre una Expresión Regular que represente las palabras en {a, b}∗ que no con-
tienen ni la subcadena “aaa” ni “bab” y que son de longitud impar, por el método
siguiente:

a) Encontrar un AF que acepte las palabras que contienen “aaa”

b) Encontrar un AF que acepte las palabras que contienen “bab”

c) Encontrar un AF que acepte las palabras de longitud par

d) Combinar los AF de (a),(b) y (c) en un AF que acepta las palabras que contienen
“aaa” o “bab” o son de longitud par

e) Obtener un AF que acepte el complemento de lo que acepta (d)

f ) Convertir el AF de (e) a ER

10. Para la gramática de la página 96, mostrar una derivación de la palabra bababa.

11. Comprobar si la ER (a + ∧)(ba)∗(b + ∧) es equivalente a la GR cuyas reglas son:
A → bB,B → aA, A → a, B → b, convirtiendo ambas a AFN, luego a AFD, y
comparando.

12. Verificar si es vaćıa la intersección del lenguaje representado por la ER (∧+b)(a+ab)∗,
con el lenguaje representado por la GR cuyas reglas son: S → aS, S → bT, T →
aS, T → bU, U → aU, U → bU, U → a, U → b, utilizando el método siguiente: Primero
se convierten a AFD tanto la ER como la GR. Luego se calcula su intersección, uti-
lizando el método expuesto en el caṕıtulo precedente. Finalmente, el resultado del
paso anterior, que es un AFD, se compara con el AFD ({q0}, {a, b}, {((q0, a), q0),
((q0, b), q0)}, q0, {}), que acepta el lenguaje vaćıo.

13. Probar las equivalencias:

a) R • Φ = Φ •R = Φ, para una ER R

b) Φ∗ = ∧

14. Demostrar que para todo alfabeto Σ, el lenguaje Σ∗ es contable. (Ayuda: Tratar de
ordenar las cadenas de Σ∗ de menor a mayor).

15. Suponer que añadimos a las ER un operador, “−” que significa que R1−R2 representa
las palabras representadas por R1 pero no por R2.

a) Definir formalmente el significado del operador “−”, usando el mapeo L(ER)
como se hizo con los demás operadores de las ER.

b) Usando este operador, proponer una ER para el lenguaje en {a, b} donde las
palabras no contienen la subcadena “abaab” ni la subcadena “bbbab”.
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c) Probar que el operador “−” no aumenta el poder de las ER, en el sentido de que
para toda ER con operador “−” hay una ER equivalente sin “−”.

16. Lo mismo del problema anterior, con un operador de intersección, “&” tal que R1&R2

representa las palabras representadas simultáneamente por R1 y por R2. En este caso
proponer una ER para el lenguaje en {a, b} donde las palabras contienen la subcadena
“abaab” y un número impar de b’s.

17. Proponer una definición formal de configuración, cálculo y palabra aceptada para las
GT.

18. Describir formalmente la construcción del autómata (K, Σ, ∆, s, F ) a partir de la
gramática regular (V, Σ, R, S).

19. Hacer la prueba de corrección de la gramática de la página 100. Esto proveerá una
prueba de corrección del AFD de la figura 3.6.

20. Usando el teorema de bombeo pruebe que los lenguajes siguientes no son regulares

a) {anbm | m > n} (Ayuda: En algún momento se puede necesitar considerar las
palabras de la forma anbn+1).

b) {anbn+mcm}.
c) {anbm | |n−m| ≤ 3}
d) {a, b}∗ − {anbn}

21. Pruebe que los siguientes lenguajes son / no son regulares:

a) A = {w ∈ {a, b}∗ | |w| ≥ 7}
b) {anbn} ∩ A

c) {w 6= anbn} (Ayuda: use los métodos para combinar AFN’s)

d) {anbn | n ≤ 7}

22. Sean dos lenguajes, LA y LB tales que LA es subconjunto de LB.

a) Si LA es regular, ¿también lo será necesariamente LB? (Probar)

b) Si LB es regular, ¿también lo será necesariamente LA? (Probar)

23. Sean dos lenguajes no regulares, LA y LB.

a) ¿Su unión podŕıa eventualmente ser regular? (Ayuda: considere dos lenguajes
complementarios).

b) ¿Su intersección podŕıa eventualmente ser regular? (Ayuda: considere intersec-
ciones finitas).

c) ¿Su concatenación podŕıa ser regular? (Ayuda: tomar {anbm|n ≥ m} como LA, y
buscar un LB “adecuado”).
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24. Supóngase un tipo de gramáticas que llamaremos “semirregulares”, por asemejarse a
las gramáticas regulares, en que las reglas son de alguna de las siguientes formas:

a) A→ σB

b) A→ Bσ

c) A→ σ

donde σ es un terminal, y A y B son no terminales. ¿Serán equivalentes a las gramáticas
regulares? Pruebe su respuesta.

25. Suponga las Expresiones Regulares con Salida (ERS), que son como las ER, pero tienen
asociada una salida a la entrada que representan. Se tiene la siguiente sintaxis: ER/S
significa que cuando se recibe una palabra representada por ER, se produce una salida
S. Las subexpresiones de una ERS se consideran similarmente. Por ejemplo, en la ERS
“(a/1 + b/0)∗/00”, por cada “a” que se recibe se saca un “1”; por cada “b”, un “0”,
y al terminarse la cadena de entrada se produce un “00”. El operador “/” tiene la
precedencia más alta, o sea que la ERS “ab/0” significa que el “0” está asociado a
la “b”; puede ser necesario usar parentesis para establecer la precedencia deseada. En
general hay que distinguir entre el alfabeto de entrada ({a, b} en el ejemplo) y el de
salida ({0, 1} en el ejemplo).

a) Defina una ERS que al recibir cada par de “aa” consecutivas emita un “0”, mien-
tras que al recibir un par de “bb” consecutivas emita un “1”. (“aaa” contiene sólo
un par).

b) Defina formalmente el conjunto de las ERS (Las ERS que se definiŕıan son las
ERS “formales”, con todos los parentesis y operadores necesarios, sin tomar en
cuenta cuestiones de precedencia de operadores, simplificaciones, etc.).

c) Proponga un procedimiento general para pasar de ERS a autómatas de Mealy.

d) Muestre su funcionamiento con la ERS del inciso (a).
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Lenguajes libres de contexto y sus
máquinas

109





Caṕıtulo 4

Gramáticas y lenguajes libres de
contexto

Los Lenguajes Libres de Contexto (abreviado LLC) forman una clase de lenguajes más
amplia que los Lenguajes Regulares, de acuerdo con la Jerarqúıa de Chomsky (ver sección
1.5). Estos lenguajes son importantes tanto desde el punto de vista teórico, por relacionar
las llamadas Gramáticas Libres de Contexto con los Autómatas de Pila, como desde el punto
de vista práctico, ya que casi todos los lenguajes de programación están basados en los LLC.
En efecto, a partir de los años 70’s, con lenguajes como Pascal, se hizo común la práctica
de formalizar la sintaxis de los lenguajes de programación usando herramientas basadas en
las Gramáticas Libres de Contexto, que representan a los LLC. Por otra parte, el análisis
automático de los LLC es computacionalmente mucho más eficiente que el de otras clases de
lenguajes más generales.

Retomaremos aqúı las nociones relacionadas con las gramáticas, que fueron introducidas
en la sección 3.5, pero haciendo las adaptaciones necesarias para los LLC.

Una regla es una expresión de la forma α → β, en donde tanto α como β son cadenas
de śımbolos en donde pueden aparecer tanto elementos del alfabeto Σ (llamados constantes)
como unos nuevos śımbolos, llamados variables. 1

Una gramática es básicamente un conjunto de reglas. 2

Consideremos, por ejemplo, la siguiente gramática para producir un pequeño subconjunto
del idioma español:

1. < frase >→ <sujeto > <predicado >

1Tratándose de los compiladores, se les llama “terminales” a los elementos de Σ, y “no terminales” a las
variables.

2Adelante precisaremos las definiciones.
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2. <sujeto >→ <articulo > <sustantivo >

3. <articulo >→ el | la

4. <sustantivo >→ perro | luna

5. <predicado >→ <verbo >

6. <verbo >→ brilla | corre

donde el śımbolo “|” separa varias alternativas. 3 En esta gramática se supone que las
variables son < frase >, <sujeto >, <articulo >, <sustantivo >, <predicado > y <verbo >,
mientras que las constantes son el , la, perro y luna. La variable < frase > será considerada
el śımbolo inicial.

Como vimos en la sección 3.5, la idea para aplicar una gramática es que se parte de una
variable, llamada śımbolo inicial, y se aplican repetidamente las reglas gramaticales, hasta
que ya no haya variables en la palabra. En ese momento se dice que la palabra resultante
es generada por la gramática, o en forma equivalente, que la palabra resultante es parte del
lenguaje de esa gramática.

Por ejemplo, podemos usar la gramática que acabamos de presentar, para generar la frase
“el perro corre”. En efecto, partiendo del śımbolo inicial < frase >, aplicando la primera regla
podemos obtener <sujeto > <predicado >. Luego, reemplazando <sujeto > por medio de la
segunda regla, obtenemos <articulo > <sustantivo > <predicado >; aplicando la tercera
regla, llegamos a el <sustantivo > <predicado >. Por la cuarta regla se llega a el perro
<predicado >; por la quinta a el perro <verbo >, y finalmente, por la sexta, llegamos a el
perro corre.

Desde luego, usando esta misma gramática podemos producir frases que tienen menos
sentido, como “la perro brilla”. Para asegurar la coherencia en el uso de art́ıculos, sustantivos
y verbos se requeriŕıa una gramática más sofisticada, y aún aśı seŕıa posible producir frases
sin sentido. 4

4.1. Gramáticas y la jerarqúıa de Chomsky

Es posible restringir la forma de las reglas gramaticales de manera que se acomoden
a patrones predeterminados. Por ejemplo, se puede imponer que el lado izquierdo de las
reglas sea una variable, en vez de una cadena arbitraria de śımbolos. Al restringir las reglas
de la gramática se restringen también las palabras que se pueden generar; no es extraño

3La notación “|” es en realidad una abreviatura; una regla X → α|β es equivalente a las dos reglas X → α
y X → β.

4Muchos poĺıticos son versados en estas artes. . .
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que las reglas de formas más restringidas generan los lenguajes más reducidos. N. Chomsky
propuso [4] varias formas estándares de reglas que se asocian a varias clases de lenguajes, que
ordenó de manera tal que forman una jerarqúıa, es decir, los lenguajes más primitivos están
incluidos en los más complejos. 5 Aśı tenemos las siguientes clases de gramáticas, asociadas
a familias de lenguajes:

1. Gramáticas regulares, o de tipo 3: las reglas son de la forma A→ aB o bien A→ a,
donde A y B son variables y a es constante. 6 Estas gramáticas son capaces de describir
los lenguajes regulares.

2. Gramáticas Libres de Contexto (GLC), o de tipo 2: las reglas son de la forma X → α,
donde X es una variable y α es una cadena que puede contener variables y constantes.
Estas gramáticas producen los lenguajes Libres de Contexto (abreviado “LLC”).

3. Gramáticas sensitivas al contexto o de tipo 1: las reglas son de la forma αAβ → αΓβ,
donde A es una variable y α,β y Γ son cadenas cualesquiera que pueden contener
variables y constantes.

4. Gramáticas no restringidas, o de tipo 0, con reglas de la forma α → β, donde α no
puede ser vaćıo, que generan los lenguajes llamados “recursivamente enumerables”. 7

Los lenguajes de tipo 0 incluyen a los de tipo 1, estos a los de tipo 2, etc. En la figura
1.3 ya se hab́ıa presentado la relación entre los lenguajes de tipo 0, 2 y 3.

4.2. Lenguajes y gramáticas libres de contexto (LLC y

GLC)

Podemos ver que la gramática del español dada arriba es una GLC, pero no podŕıa ser
una gramática regular, pues hay varias reglas que no corresponden al formato de las reglas
de las gramáticas regulares. Se ve por lo tanto que el formato de las reglas es menos ŕıgido
en las GLC que en las gramáticas regulares, y aśı toda gramática regular es GLC pero no
viceversa.

Por ejemplo, el lenguaje {anbn} –que no es regular, como vimos en la sección 3.6– tiene
la gramática libre de contexto con las siguientes reglas:

1. S → aSb

2. S → ab

5La jerarqúıa de Chomsky fue presentada inicialmente en la sección 1.5.
6Estas gramáticas ya fueron discutidas en el caṕıtulo 3.5.
7Las dos últimas clases de lenguajes serán discutidas en el caṕıtulo 6.
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Como vimos en el caso de las gramáticas regulares, aplicar una regla X → α de una
gramática consiste en reemplazar X por α en una palabra. Por ejemplo, la regla S → aSb
se puede aplicar a una palabra aaSbb para obtener la palabra aaaSbbb, en donde es fácil ver
que reemplazamos S por aSb.

Al proceso de aplicar una regla se le conoce como “paso de derivación”, y se denota
usando una flecha gruesa “⇒”, como en aaSbb ⇒ aaaSbbb (aplicando una regla S → aSb).
Una secuencia de pasos de derivación a partir de una variable especial de la gramática
llamada “śımbolo inicial” se llama simplemente derivación. Por ejemplo, una derivación de
la palabra “aaabbb” utilizando la gramática de {anbn} seŕıa (suponiendo que S es el śımbolo
inicial):

S ⇒ aSb⇒ aaSbb⇒ aaabbb

Como un ejemplo adicional, la gramática con las reglas siguientes permite generar expre-
siones aritméticas con sumas y multiplicaciones de enteros:

1. E → E + T

2. E → T

3. T → T ∗ F

4. T → F

5. F → CF

6. F → C

7. C → 0|1|2|3|4|5|6|7|8|9

El śımbolo inicial aqúı es E, las constantes son +, ∗ y las cifras 0 . . . 9; E, T, F, C son
variables.

Con esta gramática podemos generar, por ejemplo, la expresión 25 + 3 ∗ 12 de la manera
siguiente:
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EXPRESION JUSTIFICACION
E Śımbolo inicial, inicia derivación
⇒ E + T Aplicación 1a. regla
⇒ T + T 2a. regla, sobre la E
⇒ F + T 4a. regla, sobre la T izquierda
⇒ CF + T 5a. regla, sobre F
⇒ 2F + T 7a. regla
⇒ 2C + T 6a. regla
⇒ 25 + T 7a. regla
⇒ 25 + T ∗ F 3a. regla
⇒ 25 + F ∗ F 4a. regla
⇒ 25 + C ∗ F 6a. regla, sobre la F izquierda
⇒ 25 + 3 ∗ F 7a. regla
⇒ 25 + 3 ∗ CF 5a. regla
⇒ 25 + 3 ∗ 1F 7a. regla
⇒ 25 + 3 ∗ 1C 6a. regla
⇒ 25 + 3 ∗ 12 7a. regla

Más adelante veremos una herramienta, los “árboles de derivación”, que permiten en-
contrar más fácilmente y visualizar mejor la derivación de las palabras a partir del śımbolo
inicial, aunque su formalización es menos directa que la simple derivación paso a paso que
hemos mostrado.

4.3. Formalización de las GLC

Definición.- Una gramática libre de contexto es un cuádruplo (V, Σ, R, S) en donde:

V es un alfabeto de variables, también llamadas no-terminales.

Σ es un alfabeto de constantes, también llamadas terminales. Suponemos que V y Σ
son disjuntos, esto es, V ∩ Σ = ∅.

R, el conjunto de reglas, es un subconjunto finito de V × (V ∪ Σ)∗.

S, el śımbolo inicial, es un elemento de V .

Ejemplo.- La gramática de {anbn} que presentamos antes se representa formalmente como:

({S}, {a, b}, {(S, aSb), (S, ab)}, S)

Usualmente las reglas no se escriben como pares ordenados (X, α), sino como X → α;
esto es simplemente cuestión de notación.
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Definición.- Una cadena α ∈ (V ∪Σ)∗ es derivable a partir de una gramática (V, Σ, R, S)
si hay al menos una secuencia de pasos de derivación que la produce a partir del śımbolo
inicial S, esto es:

S ⇒ . . .⇒ α

Definición.- El lenguaje L(G) generado por una gramática (V, Σ, R, S) es el conjunto de
palabras hechas exclusivamente de constantes, que son derivables a partir del śımbolo inicial:

L = {w ∈ Σ∗|S ⇒ . . .⇒ w}

Es posible formalizar la definición de lenguaje aceptado sin tener que recurrir a los puntos
suspensivos “. . . ”, que son un recurso poco elegante en la formalización matemática desde el
punto de vista de que recurren a la imaginación del lector para reemplazarlos por la sucesión
que se representa. A continuación damos esta formalización alternativa.

Las reglas permiten establecer una relación entre cadenas en (V ∪ |Σ)∗, que es la relación
de derivación, ⇒G para una gramática G. Esta relación se define de la siguiente manera:

Definición.- α ⇒G β ssi existen cadenas x, y ∈ (V ∪ Σ)∗, tales que α = xuy, β = xvy, y
existe una regla u→ v en R.

La cerradura reflexiva y transitiva de ⇒G se denota por ⇒∗
G. Una palabra w ∈ Σ∗ es

derivable a partir de G si existe una secuencia de derivación S ⇒∗
G w.

Definición.- El lenguaje generado por una gramática G, esto es, L(G), es igual a {w ∈
Σ∗ | S ⇒∗

G w}.

4.4. Diseño de GLC

El problema del diseño de GLC consiste en proponer, dado un lenguaje L, una GLC
G tal que su lenguaje generado es exactamente L. Decimos que una GLC G es correcta
con respecto al lenguaje dado L cuando el lenguaje generado por G no contiene palabras
que estén fuera de L, es decir, L(G) ⊆ L, donde L(G) denota el lenguaje generado por
G. Similarmente, decimos que G es completa cuando G es capaz de generar al menos las
palabras de L, es decir, L ⊆ L(G) Al diseñar gramáticas, es posible cometer las mismas dos
clases de errores que hemos mencionado para el diseño de expresiones regulares y autómatas
finitos:

1. Que “sobren palabras”, esto es, que la gramática genere algunas palabras que no debeŕıa
generar. En este caso, la gramática seŕıa incorrecta.
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2. Que “falten palabras”, esto es, que haya palabras en el lenguaje considerado para las
que no hay ninguna derivación. En este caso, la gramática seŕıa incompleta.

Aún cuando no hay métodos tan sistemáticos para diseñar las GLC como los que vi-
mos para diseñar Expresiones Regulares o Autómatas Finitos, es posible al menos reutilizar
gramáticas conocidas, y ya sea modificarlas para ajustar el lenguaje generado, o combinar
varias en una sola. Este último es un método particularmente eficaz, en el que profundizare-
mos en esta sección.

4.4.1. Adaptación de GLC

Muchas veces es posible hacer modificaciones sencillas a una gramática conocida para
obtener la del lenguaje requerido. Por ejemplo, supóngase que queremos obtener una gramática
que genere el lenguaje {anbm|n > m}. Una buena idea seŕıa partir de la gramática que hemos
visto anteriormente, para el lenguaje similar {anbn}, cuya gramática tiene las siguientes re-
glas:

1. S → aSb

2. S → ab

Observamos que es necesario prever alguna regla para producir cualquier cantidad de a’s
antes de las b’s, pues hay palabras como aaaab que necesitan ser generadas. Para esto pro-
ponemos una regla S → aS. Aplicando iteradamente esta regla podemos producir palabras
como la mencionada:

S ⇒ aS ⇒ aaS ⇒ aaaS ⇒ aaaab

Sin embargo, aún añadiendo esta regla subsiste el problema de que podŕıamos generar
palabras incorrectas, pues cualquier palabra con igual cantidad de a’s y de b’s se genera
utilizando únicamente las reglas de la gramática para {anbn}.

Hay al menos dos maneras de solucionar este problema:

1. Podemos pensar en que la a que asegura que haya más a’s que b’s se produzca al inicio
de la derivación, mediante la inclusión de un nuevo śımbolo inicial, sea S0, que produce
aS, mediante una regla S0 → aS. Por ejemplo, generaŕıamos aaaab del modo siguiente:

S0 ⇒ aS ⇒ aaS ⇒ aaaS ⇒ aaaab

2. Otra manera es producir la a que garantiza más a’s que b’s al final de la derivación,
reemplazando la regla S → ab por S → a. La misma palabra se derivaŕıa como:

S ⇒ aS ⇒ aaS ⇒ aaaSb⇒ aaaab
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4.4.2. GLC para unión de lenguajes

Muchos lenguajes pueden ser expresados en forma útil como la unión de otros dos lengua-
jes, para los cuales conocemos las gramáticas que los generan. Por ejemplo, el lenguaje
{anbm|n 6= m} se puede expresar como la unión de los lenguajes:

{anbm|n 6= m} = {anbm|n < m} ∪ {anbm|n > m}

Para cada uno de los lenguajes que se unen es fácil obtener una gramática –de hecho ya
hemos diseñado aqúı gramáticas para lenguajes como éstos.

La manera de combinar dos gramáticas con śımbolos iniciales S1 y S2 respectivamente,
para producir la unión de los lenguajes originales, consiste en crear un nuevo śımbolo inicial
S (S1 y S2 dejan de ser iniciales), tomar las reglas tanto de una gramática como de otra,
y añadir dos nuevas reglas, S → S1 y S → S2, para que el nuevo śımbolo inicial sea capaz
de generar cualquiera de los dos antiguos śımbolos iniciales; a partir del primer paso, se
continúa la derivación utilizando alguna de las dos gramáticas originales, sin utilizar las
reglas de la otra. Para garantizar esto último se supone que las dos gramáticas originales no
tienen ninguna variable en común.

Definimos formalmente la gramática que genera la unión de lenguajes de la manera
siguiente: Sean G1 = (V1, Σ1, R1, S1) y G2 = (V2, Σ2, R2, S2) dos GLC; se puede suponer,
sin pérdida de generalidad, que las variables de G1 y G2 son disjuntas. La GLC que genera
L(G1) ∪ L(G2) es

G = (V1 ∪ V2 ∪ {S}, Σ1 ∪ Σ2, R1 ∪R2 ∪ {S → S1, S → S2}, S)

.

En efecto, para una palabra w ∈ L(G1) la derivación comienza aplicando S → S1, y
después se continúa con la derivación a partir de S1

8 Similarmente se hace para una palabra
w ∈ L(G2).

Por ejemplo, para el lenguaje {anbm|n 6= m} = {anbm|n < m} ∪ {anbm|n > m}, las
gramáticas originales tendŕıan reglas:

{anbm|n > m} {anbm|n < m}
1) S1 → aS1b 4) S2 → aS2b
2) S1 → aS1 5) S2 → S2b
3) S1 → a 6) S2 → b

La gramática combinada tendŕıa las reglas 1-6, mas las reglas S → S1 y S → S2. El
śımbolo inicial es S. Aśı, por ejemplo, para derivar la palabra aaaab seguimos los pasos:

8recuérdese que por hipótesis w ∈ L(G1).
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S ⇒ S1 ⇒ aS1 ⇒ aaS1 ⇒ aaaS1 ⇒ aaaaS1 ⇒ aaaab

4.4.3. Mezcla de gramáticas

En ocasiones es necesario combinar dos gramáticas, de una manera similar a la unión que
acabamos de presentar, pero permitiendo que las gramáticas a combinar tengan un mismo
śımbolo inicial. Llamamos a esto mezcla de gramáticas.

Ejemplo.- Diseñar una GLC para el lenguaje {anbm, n ≤ m ≤ 2n}, esto es, donde la
cantidad de b’s está entre la cantidad de a’s y el doble de ésta, como en las palabras aabbb,
aabb y aabbbb. Una solución es “mezclar” una GLC para el lenguaje {anbn con otra para el
lenguaje {anb2n, cuyas GLC son respectivamente:

{anbn} {anb2n}
1) S → aSb 3) S → aSbb
2) S → ε 4) S → ε

La GLC “mezclada” contendŕıa simplemente la unión de todas las reglas de las dos
gramáticas. 9 Aśı, por ejemplo, para generar la palabra aabbb, se tendŕıa la siguiente derivación:

S ⇒1 aSb⇒3 aaSbbb⇒2 aabbb

En esta derivación puede apreciarse que es posible obtener una palabra “intermedia”
entre aabb y aabbbb, como es aabbb simplemente aplicando algunas veces la regla 1, y otras
la regla 3, según se requiera para la palabra que hay que derivar.

4.4.4. GLC para la concatenación de lenguajes

En ocasiones un lenguaje L puede ser expresado como la concatenación de otros dos L1

y L2, esto es, L = L1L2. Por ejemplo, el lenguaje {anbm|n > m} puede ser expresado como
la concatenación de ak con {anbn}, y desde luego es fácil encontrar una gramática para ak,
mientras que la de {anbn} ya la conoćıamos. 10 Ahora bien, hay una manera de combinar
modularmente las gramáticas de L1 y L2 para obtener la de L.

9Desde luego, siendo las reglas 2 y 4 idénticas, resultan en una sóla regla al unir las gramáticas, pues en
los conjuntos no hay repetición.

10Ya hab́ıamos obtenido la gramática de {anbm|n > m} por modificación de otra gramática, pero el método
aqúı mostrado tiene la ventaja de que es modular.
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En efecto, para obtener las reglas de la nueva gramática, simplemente juntamos las reglas
de las originales –las cuales tienen śımbolos iniciales S1 y S2– y agregamos una nueva regla
S → S1S2, haciendo además a S el nuevo śımbolo inicial.

Ejemplo.- Definimos el lenguaje de los “prefijos paĺındromos” como aquel formado por
palabras que tienen una parte izquierda de más de un caracter que es paĺındromo (se lee
igual de izquierda a derecha que de derecha a izquierda). Por ejemplo, las palabras aabab,
aba y aabaa 11 son prefijos paĺındromos, mientras que las palabras baa, a y abbb no lo son.
Proponer una GLC que genere exactamente el lenguaje de los prefijos paĺındromos en el
alfabeto {a, b}.

El problema parece dif́ıcil, pero podemos considerar cada palabra de este lenguaje como
formada por dos partes: la parte paĺındroma y el resto de la palabra. Dicho de otra forma, el
lenguaje LPP de los prefijos paĺındromos es igual a la concatenación de LP y LR, donde LP

es el lenguaje de los paĺındromos y LR genera la parte restante de las palabras. El lenguaje
de los paĺındromos en {a, b} tiene una gramática muy simple, con las siguientes reglas:

1. S → aSa

2. S → bSb

3. S → a (paĺındromos impares)

4. S → b (paĺındromos impares)

5. S → ε (paĺındromos pares)

Por ejemplo, la palabra aabaa se puede derivar de la siguiente manera:

S ⇒1 aSa⇒1 aaSaa⇒4 aabaa

Por otra parte, como la “parte restante” que viene después de la parte paĺındroma puede
ser cualquier cosa, está claro que LR es simplemente {a, b}∗, que por ser regular es LLC,
y que tiene una GLC con las reglas: T → aT , T → bT , T → ε. La GLC de LPP es la
combinación de ambas gramáticas, de acuerdo con la fórmula de concatenación dada más
arriba.

Formalmente, si tenemos las gramáticas G1 = (V1, Σ1, R1, S1) y G2 = (V2, Σ2, R2, S2), el
lenguaje L(G1)L(G2) es generado por la siguiente GLC:

G = (V1 ∪ V2 ∪ {S}, Σ1 ∪ Σ2, R1 ∪R2 ∪ {S → S1S2}, S)

.

11Esta última puede ser vista de dos maneras distintas como prefijo paĺındromo.
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S

S   S

(   S   ) (   )

S   S

(   ) (   )

Figura 4.1: Paréntesis bien balanceados

4.5. Arboles de derivación

Las GLC tienen la propiedad de que las derivaciones pueden ser representadas en forma
arborescente. Por ejemplo, considérese la gramática siguiente para producir el lenguaje de
los paréntesis bien balanceados, que tiene palabras como (()), ()(), (()())(), pero no a (() ni
)(: 12

1. S → SS

2. S → (S)

3. S → ()

Usando esta gramática, la palabra (()())() puede ser derivada de la manera que se ilustra
en la figura 4.1. En dicha figura se puede apreciar la estructura que se encuentra impĺıcita en
la palabra (()())(). A estas estructuras se les llama árboles de derivación, o también árboles
de compilación –por usarse extensivamente en los compiladores– y son de vital importancia
para la teoŕıa de los compiladores de los lenguajes de programación.

Se puede considerar que un árbol de derivación es más abstracto que una derivación
“lineal” –es decir, una sucesión S ⇒ . . . ⇒ w– en el sentido de que para un solo árbol de
derivación puede haber varias derivaciones lineales, según el orden en que se decida “ex-
pandir” los no terminales. Por ejemplo, para el árbol de la figura arriba, hay al menos las
derivaciones siguientes (anotamos como sub́ındice de ⇒ el número de regla aplicado):

1. S ⇒1 SS ⇒2 (S)S ⇒3 (S)()⇒1 (SS)()⇒3 (S())()⇒3 (()())().

2. S ⇒1 SS ⇒3 S()⇒2 (S)()⇒1 (SS)()⇒3 (()S)()⇒3 (()())().
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Formalmente, un árbol de derivación es un grafo dirigido arborescente 13 definido de la
manera siguiente:

Definición.- Sea G = (V, Σ, R, S) una GLC. Entonces un árbol de derivación cumple las
siguientes propiedades:

1. Cada nodo tiene una etiqueta 14

2. La ráız tiene etiqueta S.

3. La etiqueta de los nodos que no son hojas debe estar en V , y las de las hojas en Σ∪{ε}.

4. Si un nodo n tiene etiqueta A, y los nodos n1, . . . , nm son sus hijos (de izquierda a
derecha), con etiquetas respectivamente A1, . . . , Am, entonces A→ A1, . . . , Am ∈ R.

Definición.- La cadena de caracteres que resulta de concatenar los caracteres termi-
nales encontrados en las etiquetas de los nodos hoja, en un recorrido en orden del árbol
de derivación, se llama el producto del árbol.

Es decir, al efectuar un recorrido en orden del árbol de derivación recuperamos la cadena
a partir de la cual se construyó dicho árbol. Aśı, el problema de “compilar” una cadena de
caracteres consiste en construir el árbol de derivación a partir del producto de éste.

4.5.1. Ambigüedad en GLC

La correspondencia entre los árboles de derivación y sus productos no es necesariamente
biuńıvoca. En efecto, hay GLC en las cuales para ciertas palabras hay más de un árbol de
derivación. Sea por ejemplo la siguiente GLC, para expresiones aritméticas sobre las variables
x y y.

1. E → E + E

2. E → E ∗ E

3. E → x

4. E → y

Con esta gramática, para la expresión x + y ∗ x existen los dos árboles de derivación de
las figuras 4.2(a) y (b).

12Esta gramática puede ser diseñada adaptando la de {anbn}, reemplazando a por ( y b por ), y agregando
la primera regla, que toma en cuenta la posibilidad de tener varios grupos de paréntesis anidados.

13Un grafo arborescente se caracteriza por no tener ciclos, y por el hecho de que existe una trayectoria
única para llegar de la ráız a un nodo cualquiera.

14Formalmente, una etiqueta es una función que va del conjunto de nodos al conjunto de śımbolos de
donde se toman las etiquetas, en este caso V ∪ Σ ∪ {ε}.
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x + y * x

E

E

(a)

x + y * x

E

E

(b)

Figura 4.2: Dos árboles para x + y ∗ x

En este ejemplo, el hecho de que existan dos árboles de derivación para una misma expre-
sión es indeseable, pues cada árbol indica una manera distinta de estructurar la expresión.
En efecto, en el árbol de la izquierda, al resultado de la suma (x + y) se multiplica con x,
mientras que en el de la derecha sumamos x al resultado de multiplicar x con y; por lo tanto
el significado que se asocia a ambas expresiones puede ser distinto.

Se dice que una gramática es ambigua ssi alguna palabra del lenguaje que genera tiene
más de un árbol de derivación. Nótese que la ambigüedad, como la estamos definiendo, es
una propiedad de la gramática, no de su lenguaje generado. Para un mismo lenguaje puede
haber una gramática ambigua y una no ambigua.

Existen técnicas para eliminar la ambigüedad de una GLC; en general estas técnicas con-
sisten en introducir nuevos no-terminales de modo que se eliminen los árboles de derivación
no deseados. Para nuestro ejemplo de los operadores aritméticos, es clásica la solución que
consiste en introducir, además de la categoŕıa de las Expresiones (no-terminal E), la de los
términos (T ) y factores (F ), dando la gramática con las reglas siguientes:

1. E → E + T

2. E → T

3. T → T ∗ F

4. T → F

5. F → (E)

6. F → x

7. F → y

Con esta nueva GLC, el árbol de derivación de la figura 4.2(a) se elimina, quedando
finalmente una adaptación del árbol de 4.2(b) a la GLC con términos y factores, lo cual se
deja como ejercicio al lector.
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Sin embargo, estas técnicas de eliminación de ambigüedad no son siempre aplicables, y de
hecho hay algunos LLC para los que es imposible encontrar una gramática libre de contexto
no ambigua; estos lenguajes se llaman inherentemente ambiguos. Un ejemplo, dado en [7]
junto con la prueba correspondiente, es el siguiente:

L = {anbncmdm} ∪ {anbmcmdm}, n≥1, m≥1

4.5.2. Derivaciones izquierda y derecha

En una gramática no ambigua G, a una palabra w ∈ L(G) corresponde un sólo árbol
de derivación AG; sin embargo, puede haber varias derivaciones para obtener w a partir del
śımbolo inicial, S ⇒ . . .⇒ w. Una manera de hacer única la manera de derivar una palabra
consiste en restringir la elección del śımbolo que se va a “expandir” en curso de la derivación.
Por ejemplo, si tenemos en cierto momento de la derivación la palabra (S())(S), en el paso
siguiente podemos aplicar alguna regla de la gramática ya sea a la primera o a la segunda de
las S. En cambio, si nos restringimos a aplicar las reglas solo al no terminal que se encuentre
más a la izquierda en la palabra, entonces habrá una sola opción posible.

Desde luego, el hecho de elegir el no terminal más a la izquierda es arbitrario; igual
podemos elegir el no terminal más a la derecha.

Definición.- Se llama derivación izquierda de una palabra w a una secuencia S ⇒ w1 ⇒
. . . ⇒ wn ⇒ w en donde, para pasar de wi a wi+1, se aplica una regla al no terminal de wi

que se encuentre más a la izquierda. Similarmente se puede definir una derivación derecha.

Ejemplo.- Para la gramática no ambigua con reglas S → AB, A→ a, B → b, la palabra
ab se produce con la derivación izquierda:

S ⇒ AB ⇒ aB ⇒ ab

mientras que también se puede producir con la derivación derecha:

S ⇒ AB ⇒ Ab⇒ ab

Teorema.- Para una gramática no ambigua G, y una palabra w ∈ L(G), existe solamente
una derivación izquierda S ⇒∗ w.

Prueba: La derivación izquierda corresponde a un recorrido en preorden del árbol de
derivación, expandiendo los no terminales que vamos encontrando en el camino. Ahora bien,
se sabe que existe un solo recorrido en preorden para un árbol dado.
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4.6. Pruebas de corrección y completez

Es posible en general hacer pruebas matemáticas de que una gramática corresponde a
un lenguaje dado. Esto tiene la gran ventaja de que dicha correspondencia ya no es una
simple convicción intuitiva, sino que adquiere el rango de certeza matemática. En ciertas
aplicaciones, donde es extremadamente importante asegurarse de que no hay errores, las
pruebas que garantizan esta certeza son de un gran valor.

Las pruebas que permiten establecer la correspondencia entre un lenguaje y una gramática
dados requieren dos partes:

1. Prueba de corrección, que garantiza que todas las palabras que se producen al utilizar
la gramática efectivamente corresponden a la descripción del lenguaje dado;

2. Prueba de completez, que se asegura de que al producir palabras con la gramática, no
falten palabras del lenguaje dado.

En general las pruebas de corrección son más sencillas y siguen un patrón más predecible
que las de completez, como podremos constatar en los ejemplos que siguen. Las pruebas
de corrección se hacen por inducción, más precisamente por inducción en la longitud de la
derivación.

La idea de una prueba por inducción basada en la longitud de la derivación es esencial-
mente mostrar que todas las palabras por las que se pasa en medio del proceso de derivación
cumplen una propiedad, que es básicamente el enunciado del lenguaje. Dichas pruebas siguen
el siguiente esquema:

1. Lo primero que hay que hacer es establecer un enunciado, relacionado con la definición
del lenguaje considerado, pero algo modificado de manera que se pueda aplicar a las
palabras intermedias en el proceso de derivación, las cuales pueden contener variables
tanto como constantes.

2. Luego se prueba, como base de la inducción, que para las palabras intermedias de la
derivación producidas en al menos k0 pasos, la propiedad se cumple.

3. A continuación se hace el paso de inducción propiamente dicho. Para esto primero se
supone que la propiedad se cumple tras haber hecho i pasos de derivación (esto es la
hipótesis de inducción), y luego se prueba que también se cumple al hacer un paso más
de derivación (esto es, para las palabras derivadas en i+1 pasos). Al concluir este paso,
se ha probado que todas las palabras intermedias en el proceso de derivación cumplen
con la propiedad.

4. Finalmente, hay que particularizar la propiedad para la última palabra de la derivación,
que es la que sólo contiene constantes. Con esto se termina la prueba.
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Ejemplo.- Probar la corrección de la gramática siguiente que genera el lenguaje P de los
paréntesis bien balanceados (presentamos las reglas):

1. S → (S)

2. S → SS

3. S → ()

Prueba de corrección.- Para hacer la prueba por inducción en la longitud de la derivación,
necesitamos primero generalizar el enunciado de forma que sea aplicable a las palabras con
variables que aparecen a la mitad de la derivación. Esto es, necesitamos un lenguaje extendido
donde se admita que las palabras contengan variables. Hacemos la siguiente definición:

PX = {α ∈ (V ∪ Σ)∗|elim(S, α) ∈ P}

Es decir, eliminando las “S” de las palabras de PX , obtenemos palabras de paréntesis
bien balanceados.

Base de la inducción.- En 0 pasos, se tiene (trivialmente) una palabra en PX .

Hipótesis de inducción.- En k pasos, se generan palabras en PX , de la forma αSβ, con
α, β ∈ V ∗.

Paso de inducción.- A la palabra αSβ, generada en k pasos, se le pueden aplicar las
reglas 1-3. Evidentemente la aplicación de las reglas 2 y 3 genera palabras αSSβ y αβ en
LX. Aunque es menos evidente, la aplicación de la regla 1 produce palabras α(S)β, que
también están en LX .

Finalmente, la última regla que debe aplicarse es la 3, lo que nos da una palabra con los
paréntesis bien balanceados. QED

Las pruebas de completez muestran que todas las palabras del lenguaje en cuestión
pueden efectivamente ser generadas utilizando la gramática dada. Esto puede ser en ocasiones
dif́ıcil, y no hay “recetas” tan uniformes como para las pruebas de corrección.

Nótese que la completez y la corrección de una gramática son propiedades independientes,
y una gramática dada puede tener una, las dos o ninguna. Por ejemplo, si eliminamos la regla
2 de la gramática, de todas maneras la prueba de corrección que acabamos de hacer seguiŕıa
funcionando, pero en cambio no habrá completez, porque algunas palabras, como (())(()) no
pueden ser generadas por la gramática.

Vamos a presentar un ejemplo de prueba de completez para la gramática de los paréntesis
bien balanceados dada más arriba, para mostrar el tipo de consideraciones que hay que hacer
para llevar a término la prueba.



4.7. GRAMÁTICAS LIBRES Y SENSITIVAS AL CONTEXTO 127

Prueba de completez.- En el caso que nos ocupa, vamos a hacer una prueba por inducción
sobre la longitud de la palabra.

Base de la inducción: La gramática puede generar todas las palabras de longitud 2 (Por
la regla 3).

Hipótesis de inducción: La gramática puede generar todas las palabras de longitud menor
o igual a k. (Claramente k es par).

Paso de inducción: Notamos que para una palabra dada w en P (esto es, que tiene los
paréntesis bien balanceados), |w| = k + 2 sólo hay dos posibilidades: 15.

1. w se puede partir en w1 y w2, w = w1w2, de forma tal que w1, w2 ∈ P .

2. w no se puede partir en dos partes.

En el caso 1, aplicando inicialmente la regla S → SS, se debe poder generar w1 a partir
de la S de la izquierda, por hipótesis de inducción, ya que |w1|≤k. Similarmente para w2,
con la S de la derecha.

En el caso 2, w = (w′), donde w′ ∈ P , es decir, al quitar los dos paréntesis más externos se
tiene una palabra con paréntesis bien balanceados (¿Porqué?). Como |w′| = k, por hipótesis
de inducción w′ se puede generar con la gramática. La palabra w se puede entonces generar
aplicando primero la regla S → (S), y luego continuando con la derivación de w′ que existe
por hipótesis de inducción.

Esto completa la prueba. QED

4.7. Gramáticas libres y sensitivas al contexto

Las GLC deben su nombre a una comparación con otro tipo de gramáticas, las llamadas
sensitivas al contexto, definidas arriba, donde para una regla α1Aα2 → α1βα2 , el śımbolo
A solo puede generar β cuando se encuentra rodeado por el “contexto” α1 . . . α2. En cambio,
en las GLC no es necesario especificar un contexto, por esto se llaman “libres de contexto”.

Las gramáticas sensitivas al contexto son estrictamente más poderosas que las GLC; un
ejemplo es el lenguaje de las cadenas de la forma anbncn, para el que no hay ninguna GLC.
En cambio, una gramática sensitiva al contexto seŕıa la siguiente (sólo damos las reglas): 16

15El paso de inducción se hace en k + 2 y no en k + 1 porque todas las palabras en P tienen longitud par
16Esta gramática produce palabras de al menos 6 caracteres, o sea de el lenguaje {anbncn|n > 1}.
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1. S → aBTc 6. Y X → AX
2. T → ABTc 7. AX → AB
3. T → ABc 8. aA→ aa
4. BA→ BX 9. aB → ab
5. BX → Y X 10. bB → bb

En esta gramática, las reglas 1 a 3 generan A, a, B y c no necesariamente en orden (las
A y B van a estar alternadas). Luego las reglas 4 a 7 permiten reordenar las A y B, para que
todas las A queden antes que todas las B, 17 y finalmente las reglas 8 a 10 permiten generar
los terminales solamente cuando las letras están en el orden correcto. Como un ejemplo, la
palabra aaabbbccc se puede generar de la forma siguiente:

S ⇒1 aBTc ⇒2 aBABTcc ⇒3 aBABABccc ⇒4 aBXBXBccc ⇒5 aY XY XBccc
⇒6 aAXAXBccc ⇒7 aABABBccc ⇒4 aABXBBccc ⇒5 aAY XBBccc ⇒6 aAAXBBccc
⇒7 aAABBBccc ⇒8 aaABBBccc ⇒8 aaaBBBccc ⇒9 aaabBBccc ⇒10 aaabbBccc ⇒10

aaabbbccc.

4.8. Transformación de las GLC y Formas Normales

En muchas situaciones se considera conveniente modificar las reglas de la gramática,
de manera que cumplan las reglas con propiedades tales como no producir la cadena vaćıa
del lado derecho, o bien simplemente por cuestiones de estandarización o facilidad de im-
plementación computacional. Desde luego, cuando hablamos de “modificar las reglas de la
gramática”, se entiende que esto debe hacerse sin modificar el lenguaje generado.

Por ejemplo, la presencia de reglas que producen vaćıo en la gramática puede ser fuente de
dificultades tales como la ambigüedad, o la posibilidad de tener derivaciones arbitrariamente
largas. Tomemos por ejemplo la siguiente gramática para los paréntesis bien balanceados
(damos sólo las reglas):

1. S → SS

2. S → (S)

3. S → ε

Con esta gramática es posible hacer derivaciones arbitrariamente largas de una palabra
tan sencilla como “()”(el sub́ındice de las flechas indica la regla utilizada):

17De hecho bastaŕıa con una regla BA→ AB, salvo que ésta no cumple con el formato de las gramáticas
sensitivas al contexto.
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S ⇒1 SS ⇒1 SSS ⇒1 . . .⇒3 SSS ⇒3 SS ⇒3 S ⇒2 (S)⇒3 ()

Si pudiéramos tener una gramática equivalente, pero sin reglas que produzcan la cadena
vaćıa, ya no seŕıa posible hacer derivaciones arbitrariamente largas. Esto puede ser una
ventaja a la hora de determinar si una palabra se deriva o no de una gramática (ver sección
4.10).

4.8.1. Eliminación de reglas A→ ε

Consideremos nuevamente la gramática para los paréntesis bien balanceados. Si queremos
una GLC equivalente, pero sin emplear producciones vaćıas (como S → ε), una idea seŕıa
analizar “en reversa” la derivación de donde viene la S que queremos cambiar por ε. Sólo
hay otras dos reglas en la gramática, de modo que esa S tuvo que ser generada ya sea por
S → (S) o por S → SS. En el caso de S → (S), una solución seŕıa, en vez de hacer la
derivación

S ⇒ . . .⇒ αSβ ⇒ α(S)β ⇒ α()β, α ∈ Σ∗, β ∈ (Σ ∪ V )∗

mejor hacer directamente la derivación

S ⇒ . . .⇒ αSβ ⇒ α()β

agregando una regla S ⇒ () a la gramática. Y en caso de que la S provenga de la regla
S → SS, se puede cambiar la derivación

S ⇒ . . .⇒ αSβ ⇒ αSSβ ⇒ αSβ

por la derivación

S ⇒ . . .⇒ αSβ ⇒ αSβ

usando una nueva regla S → S, o mejor aún, simplemente reemplazarla por

S ⇒ . . .⇒ αSβ

sin ninguna regla adicional (la parte de la derivación αSβ ⇒ αSSβ ⇒ αSβ desaparece por
completo, pues no sirve de nada).

Resumiendo, la idea que permite eliminar las reglas A → ε es la de irse un paso atrás,
para examinar de dónde provino el no-terminal A que queremos eliminar, y por cada regla
B → αAβ de la gramática agregar una regla B → αβ , en que directamente ya se reemplazó A
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por ε. Una vez hecho esto, se pueden suprimir todas las reglas de la forma A → ε, pues
resultan redundantes.

Por ejemplo, sea la GLC de los paréntesis bien balanceados:

S → (S), S → SS, S → ε.

Aplicando mecánicamente la transformación a dicha gramática, se tiene:

S → (S), S → SS, S → (), S → S

La regla S → S es evidentemente inútil y se puede eliminar, pero dejemos esto para el
siguiente párrafo, en que nos ocuparemos de la eliminación de reglas de esa forma.

Otra cuestión más importante aún debe haber saltado a la vista escrutadora del lector
perspicaz: ¡la nueva GLC no es exactamente equivalente a la anterior! En efecto, la GLC
original generaba la palabra vaćıa ε, mientras que la GLC transformada no la genera. Desde
luego, el hecho de que una GLC contenga reglas de la forma A→ ε no significa que el lenguaje
contenga forzosamente a la palabra vaćıa; considérese por ejemplo la siguiente gramática:

S → (A), A→ (A), A→ AA, A→ ε

cuyo lenguaje no contiene a la palabra vaćıa.

En caso de que el lenguaje en cuestión realmente contenga a la palabra vaćıa, no es
posible estrictamente eliminar todas las producciones vaćıas sin alterar el significado de la
gramática. En estos casos vamos a expresar el lenguaje como la unión {ε}∪L(G′), donde G′

es la gramática transformada. Este pequeño ajuste no modifica los resultados que obtuvimos
arriba.

4.8.2. Eliminación de reglas A→ B

Supongamos ahora que se tiene la gramática con las reglas siguientes:

S → (S), S → BB, S → (), B → S

Claramente esta GLC es equivalente a la gramática dada anteriormente para generar los
paréntesis bien balanceados. La única diferencia es que, en vez de utilizar la regla S → SS, se
tiene una regla S → BB, y luego las B se transforman en S por la regla B → S. Pero, ¿para
que usar esos intermediarios, como B en este caso, cuando es posible generar directamente
SS a partir de S? La idea de eliminar las reglas de la forma A → B viene de observar que
dichas reglas no producen nada útil, simplemente introducen śımbolos intermediarios, que
es posible eliminar. A continuación veremos cómo.
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Supongamos que hay reglas A→ B y B → Γi en la gramática, entonces es posible añadir
reglas A→ Γi sin modificar el lenguaje. Ahora bien, si hacemos esto siempre que sea posible,
las reglas de la forma A→ B se vuelven inútiles, pues toda derivación:

. . .⇒ αAβ ⇒ αBβ ⇒ αΓiβ ⇒ . . .

puede transformarse en:

. . .⇒ αAβ ⇒ αΓiβ ⇒ . . .

sin modificar el lenguaje. Esto prueba que la gramática modificada es equivalente a la original.

Por ejemplo, aplicando esta transformación a la gramática del ejemplo, la regla “inútil”,
que tratamos de eliminar, es B → S. Se producen las nuevas reglas siguientes:

B → (S), al combinar B → S con S → (S)

B → BB, al combinar B → S con S → BB

B → (), al combinar B → S con S → ()

La gramática queda entonces con las reglas:

S → (S), S → BB, S → (), B → (S), B → BB, B → ()

4.8.3. Eliminación de reglas inaccesibles

Considérese una gramática con reglas:

S → aXbb, X → bSa, Y → SX

Es fácil comprender que la tercera regla es inútil, porque no hay nadie que produzca la
Y necesaria para que dicha regla se aplique. A reglas como éstas se les llama inaccesibles.

Definición.- Una regla X → α de una gramática (V, Σ, R, S) es inaccesible si no hay una
derivación S ⇒ α1Xα2, donde α1, α2 ∈ (V ∪ Σ)∗.

En términos prácticos, si vemos que una variable X no aparece en el lado derecho de
ninguna regla de la gramática, podemos asegurar sin arriesgarnos que la regla X → α es
inaccesible.

Para eliminar una regla inaccesible no se necesita hacer ninguna otra modificación a
la gramática mas que simplemente borrarla. La equivalencia de la gramática sin la regla
inaccesible y la original está garantizada por el hecho de que dicha regla no participa en
ninguna derivación.
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4.8.4. Formas Normales

En ocasiones es necesario expresar una GLC siguiendo un formato más preciso de las
reglas que la simple forma A→ α. Estos “estándares” reciben el nombre de formas normales.
Vamos a estudiar una de las formas normales más conocidas, la forma normal de Chomsky
(FNCH).

La FNCH consiste en que las reglas pueden tener dos formas:

1. A→ a, a ∈ Σ

2. A→ BC, con B, C ∈ V

Esta forma normal, aparentemente tan arbitraria, tiene por objeto facilitar el análisis
sintáctico de una palabra de entrada, siguiendo la estrategia siguiente: Se trata de construir
el árbol de derivación de w de arriba hacia abajo (llamada “top-down” en inglés), y por
consiguiente se supone inicialmente que el śımbolo inicial S puede producir la palabra w. En
seguida se procede a dividir la palabra de entrada w en dos pedazos, w = αβ , para luego
tomar alguna regla S → AB , y tratar de verificar si se puede derivar a a partir de A y b a
partir de B, es decir: S ⇒ . . .⇒ w ssi:

1. w ∈ Σ, hay una regla S → w

2. w = αβ, hay una regla S → AB, con A⇒ . . .⇒ α, y B ⇒ . . .⇒ β

Por ejemplo, considérese la siguiente gramática para el lenguaje de los paréntesis bien
balanceados, en forma normal de Chomsky (damos sus reglas): 18

1. S → XY

2. X → (

3. Y → SZ

4. Z →)

5. S → SS

6. S → XZ

Supongamos que tenemos una palabra como (())(), y queremos verificar si se puede derivar
a partir de esta gramática. Hay que “partir” dicha palabra en dos pedazos, y escoger alguna

18Luego veremos cómo calcular esta forma normal.



4.8. TRANSFORMACIÓN DE LAS GLC Y FORMAS NORMALES 133

S

S S

X Y

S(

X

(

Z

)

X

(Z

Z

)

)

Figura 4.3: Arbol de la palabra (())()

regla que produzca dos variables. Escogemos la quinta regla, S → SS, y partimos la palabra
en los pedazos (()) y (). Para que SS pueda generar (())() ahora se necesitará que la primera
S pueda generar (()), y la segunda pueda generar (). Estos son subproblemas muy similares
al problema inicial. Tomemos el primero, es decir, a partir de S generar (()). Escogemos la
regla S → XY , y partimos la palabra en ( y ()). Ahora X tiene la responsabilidad de generar
( y Y la de generar ()). Por la segunda regla, X genera directamente (. Ahora tomamos el
problema de generar ()) a partir de Y . Escogemos la regla S → SZ, y la separación en los
pedazos () y ). Entonces Z produce directamente ), y queda por resolver cómo S produce ().
Para ello, escogemos la regla S → XZ, y finalmente X produce ( y Z se encarga de ), con
lo que terminamos el análisis. El árbol de compilación se presenta en la figura 4.3.

Esta manera de generar dos nuevos problemas similares al problema inicial, pero con
datos más pequeños, es t́ıpicamente un caso de recursión. Este hecho permite pensar en
un sencillo procedimiento recursivo para “compilar” palabras de un LLC. Sea CC(A, u) la
función que verifica si A ⇒ . . . ⇒ u. Entonces un algoritmo de análisis sintáctico seŕıa el
siguiente:

CC(A, w) :

1. Si |w| > 1, dividirla en u y v, w = uv;
Para cada regla de la forma A→ UV , intentar CC(U, u) y CC(V, v)

2. Si |w| = 1, buscar una regla A→ w.

Si en el punto 1 la división de la palabra no nos llevó a una compilación exitosa (es decir,
los llamados recursivos CC(U, u) y CC(V, v) no tuvieron éxito), puede ser necesario dividir
la palabra de otra manera. Dicho de otra forma, puede ser necesario ensayar todas las formas
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posibles de dividir una palabra en dos partes, antes de convencerse de que ésta pertenece o
no a nuestro lenguaje. Aún cuando esto puede ser muy ineficiente computacionalmente, es
innegable que el algoritmo es conceptualmente muy sencillo.

El siguiente problema a examinar es si efectivamente es posible transformar una GLC
cualquiera G en otra GLC G′ que está en la FNCH. Vamos a efectuar esta transformación en
dos etapas: en una primera etapa, llevaremos G a una forma intermedia Gtemp, para pasar
después de Gtemp a G′.

En Gtemp las reglas son de las formas:

1. A→ a, con a ∈ Σ

2. A→ β, con β ∈ V V ∗

En Gtemp, los lados derechos de las reglas son, ya sea un terminal, o una cadena (no vaćıa)
de no-terminales. La manera de llevar una GLC cualquiera a la forma intermedia consiste en
introducir reglas A → a, B → b, etc., de modo que podamos poner, en vez de un terminal
a, el no-terminal A que le corresponde, con la seguridad de que después será posible obtener
a a partir de A. Por ejemplo, considérese la siguiente GLC:

1.- S → aX

2.- S → bY

3.- X → Y a

4.- X → ba

5.- Y → bXX

6.- Y → aba

Como se ve, el obstáculo para que esta GLC esté en la forma intermedia es que en los
lados derechos de varias reglas (1, 2, 3, 5) se mezclan los terminales y los no-terminales.
Por otra parte, hay reglas (4, 6) que en el lado derecho tienen varios terminales. Entonces
añadimos las reglas:

7.- A→ a
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8.- B → b

y modificamos las reglas (1,2,3,5), reemplazando a por A y b por B:

1′.- S → AX

2′.- S → BY

3′.- X → Y A

4′.- X → BA

5′.- Y → BXX

6′.- Y → ABA

con lo que la gramática ya está en la forma intermedia. La equivalencia de la nueva
gramática con respecto a la original es muy fácil de probar.

Luego, para pasar de Gtemp a la FNCH, puede ser necesario dividir los lados derechos
de algunas reglas en varias partes. Si tenemos una regla X → X1X2 . . . Xn, la dividimos
en dos reglas, una X → X1W y otra W → X2 . . . Xn, donde W es una nueva variable,
es decir, no debe formar previamente parte de la gramática. Cada vez que se aplica esta
transformación, el lado derecho de la regla afectada se reduce en longitud en una unidad,
por lo que, aplicándola repetidas veces, se debe poder llegar siempre a reglas cuyo lado
derecho tiene exactamente dos no-terminales. Para el ejemplo visto arriba, la regla 5′ se
convierte en:

5′′.- Y → BW

5′′′.- W → XX

Similarmente se puede transformar la regla 6′, dejando la gramática (reglas 1′, 2′, 3′, 4′,
5′′, 5′′′, 6′′, 6′′′, 7, 8) en la FNCH.
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4.9. Limitaciones de los LLC

En esta sección veremos cómo verificar que un lenguaje dado no es LLC. Esto puede ser
muy útil, para evitarnos el trabajo de tratar inútilmente de diseñar GLCs de lenguajes que
no tienen ninguna. Una herramienta para esto es aplicar el llamado “teorema de bombeo”,
que se presenta enseguida.

4.9.1. Teorema de bombeo para los LLC

Teorema.- Existe para cada G ∈ GLC un número k tal que toda w ∈ L(G), donde |w| > k,
puede ser escrita como w = uvxyz, de tal manera que v y y no son ambas vaćıas, y que
uvnxynz ∈ L(G) para cualquier n≥0.

Este teorema es similar en esencia al teorema de bombeo para los lenguajes regulares.
Nos dice que siempre hay manera de introducir (“bombear”) subrepticiamente subcadenas
a las palabras de los LLC. Nos sirve para probar que ciertos lenguajes no son LLC.

Prueba.- Basta con probar que hay una derivación

S ⇒∗ uAz ⇒∗ uvAyz ⇒∗ uvxyz = w

pues al aparecer el mismo no-terminal en dos puntos de la derivación, es posible insertar ese
“trozo” de la derivación cuantas veces se quiera (incluyendo cero). Esa parte de la derivación,
que tiene la forma uAz ⇒∗ uvAyz, es una especie de “ciclo” sobre el no-terminal A, que
recuerda lo que ocurŕıa con el teorema de bombeo para los lenguajes regulares.

Para probar que existen en la derivación ciclos de la forma uAz ⇒∗ uvAyz, la idea
será verificar que el tamaño vertical del árbol (su profundidad) es mayor que la cantidad de
no-terminales disponibles. En consecuencia, algún no-terminal debe repetirse.

Primero, la cantidad de no-terminales para una gramática (V, Σ, R, S) es |V |.

A continuación examinemos el problema de verificar si los árboles de derivación pueden
tener una profundidad mayor que |V |.

Sea m = max({|α| |A→ α ∈ R}). Ahora bien, un árbol de profundidad p tiene a lo más
mp hojas (¿porqué?), y por lo tanto un árbol Aw para w, con |w| > mp tiene profundidad
mayor que p. Aśı, toda palabra de longitud mayor que m|V | tendrá necesariamente una
profundidad mayor que |V |, y por lo tanto, algún no-terminal estará repetido en la derivación;
sea A ese no-terminal. Vamos a representar el árbol de derivación en la figura 4.4.

Como se ve, hay un subárbol del árbol de derivación (el triángulo intermedio en la figu-
ra 4.4) en el que el śımbolo A es la ráız y también una de las hojas. Está claro que ese
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Figura 4.4:

subárbol puede ser insertado o quitado cuantas veces se quiera, y quedará siempre un árbol
de derivación válido; cada vez que dicho subárbol sea insertado, las subcadenas v e y se repe-
tirán una vez más. Esto completa la prueba. En la figura se aprecia porqué es importante
que v e y no sean ambas vaćıas. QED

Ejemplo.- El lenguaje {anbncn} no es LLC. Esto se prueba por contradicción. Supóngase
que {anbncn} es LLC. Entonces, de acuerdo con el teorema de bombeo, para una cierta k,
ak/3bk/3ck/3 puede ser escrita como uvxyz, donde v y y no pueden ser ambas vaćıas. Existen
dos posibilidades:

1. v o y contienen varias letras (combinaciones de a, b o c). Pero, según el teorema, uv2xy2z
es de la forma anbncn, lo cual es imposible, ya que al repetir v o y, forzosamente las
letras quedarán en desorden;

2. Tanto v como y (el que no sea vaćıo) contienen un sólo tipo de letra (repeticiones de a,
b o c). En este caso, si uvxyz es de la forma anbncn, uv2xy2z no puede ser de la misma
forma, pues no hemos incrementado en forma balanceada las tres letras, sino a lo más
dos de ellas.

En ambos casos se contradice la hipótesis de que {anbncn} es LLC.

Al haberse probado que el lenguaje {anbncn} no es LLC, podemos probar que la inter-
sección de dos LLC no es necesariamente un LLC:

Teorema.- La intersección de dos LLC no es necesariamente LLC.

Prueba.- Los lenguajes L1 y L2 formados por las palabras de la forma anbncm y ambncn

respectivamente son LLC. Sin embargo, su intersección es el lenguaje {anbncn}, que acabamos
de probar que no es LLC.

Algo similar ocurre con respecto a la operación de complemento del lenguaje, que si se
recuerda, en el caso de los lenguajes regulares, su complemento daba otro lenguaje regular:

Teorema.- El complemento de un LLC no necesariamente produce otro LLC.

Prueba.- Si el complemento de un LLC fuera también LLC, lo mismo ocurriŕıa con la
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intersección, ya que, de acuerdo con las identidades de la teoŕıa de conjuntos, L1 ∩ L2 =
(Lc

1 ∪ Lc
2)

c. 19

Debe tenerse cuidado al interpretar estos resultados. En efecto, esto no quiere decir, por
ejemplo, que el complemento de un LLC necesariamente no será LLC. En el siguiente ejemplo
se da un caso espećıfico.

Ejemplo.- Probar que el complemento del lenguaje {anbn} es LLC. Para esto, vamos a
clasificar las palabras de L = {anbn}c en dos categoŕıas:

1. Las que contienen la cadena “ba”, esto es, w = αbaβ

2. Las que no contienen “ba”, esto es, w 6= αbaβ

Claramente esta clasificación es exhaustiva. El objetivo de esta clasificación es distinguir
las causas por las que una palabra en {a, b}∗ no es de la forma anbn: la primera es que tiene
letras en desorden –esto es, contiene la cadena “ba”– como en “abba”; la segunda es que,
no habiendo letras en desorden, la cantidad de a’s y b’s no es la misma, como en “aaaa”,
“abbb”, etc.

El caso (1) es muy simple, pues el lenguaje L1 cuyas palabras contienen la cadena “ba”
es regular y por lo tanto LLC.

Es fácil ver que el caso (2) corresponde al lenguaje L2 = {anbm|n 6= m}, pues como
no tiene b inmediatamente antes que a, todas las a están antes de todas las b. L2 puede
ser expresado como la unión de dos lenguajes LLC, como se vio en un ejemplo presentado
anteriormente, y por la cerradura de los LLC a la unión, se concluye que L1 es LLC.

Finalmente, {anbn}c = L1∪L2, y por la cerradura de los LLC a la unión, se concluye que
L es LLC.

4.10. Propiedades de decidibilidad de los LLC

Hay ciertas preguntas sobre los lenguajes libres de contexto y sus gramáticas que es
posible contestar, mientras que hay otras preguntas que no se pueden contestar en el caso
general. Vamos a examinar primero dos preguntas que śı se pueden contestar con seguridad
y en un tiempo finito. Para estas preguntas es posible dar un algoritmo o “receta” tal
que, siguiéndolo paso por paso, se llega a concluir un śı o un no. Tales algoritmos se llaman
algoritmos de decisión, pues nos permiten decidir la respuesta a una pregunta. Las preguntas
que vamos a contestar son las siguientes:

19Lc es una abreviatura para Σ∗ − L.
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Teorema.- Dadas una gramática G y una palabra w, es posible decidir si w ∈ L(G)
cuando las reglas de G cumplen la propiedad: “Para toda regla A → α, |α| > 1, o bien
α ∈ Σ, es decir, el lado derecho tiene varios śımbolos, o si tiene exactamente un śımbolo,
éste es terminal.”

Prueba: La idea para probar el teorema es que cada derivación incrementa la longitud de
la palabra, porque el lado derecho de las reglas tiene en general más de un śımbolo. En vista
de que la longitud de la palabra crece con cada paso de derivación, sólo hay que examinar
las derivaciones hasta una cierta longitud finita. Por ejemplo, la gramática de los paréntesis
bien balanceados cumple con la propiedad requerida:

1. S → ()

2. S → SS

3. S → (S)

Como en esta gramática el lado derecho mide 2 o más śımbolos, la aplicación de cada regla
reemplaza un śımbolo por dos o más. Por lo tanto, para saber si hay una derivación de la
palabra ()(()), que mide 6 śımbolos, sólo necesitamos examinar las derivaciones (izquierdas)
de 5 pasos a lo más -y que terminan en una palabra hecha únicamente de terminales. Estas
derivaciones son las siguientes:

1 paso:
S ⇒ ()

2 pasos:
S ⇒ (S)⇒ (())

3 pasos:
S ⇒ (S)⇒ ((S))⇒ ((()))
S ⇒ SS ⇒ ()S ⇒ ()()

4 pasos:
S ⇒ (S)⇒ ((S))⇒ (((S)))⇒ (((())))
S ⇒ (S)⇒ (SS)⇒ (()S)⇒ (()())
S ⇒ SS ⇒ ()S ⇒ ()(S)⇒ ()(())
S ⇒ SS ⇒ (S)S ⇒ (())S ⇒ (())()

5 pasos:
S ⇒ (S)⇒ ((S))⇒ (((S)))⇒ ((((S))))⇒ ((((()))))
S ⇒ (S)⇒ ((S))⇒ ((SS))⇒ ((()S))⇒ ((()()))
S ⇒ (S)⇒ (SS)⇒ (()S)⇒ (()(S))⇒ (()(()))
S ⇒ (S)⇒ (SS)⇒ ((S)S)⇒ ((())S)⇒ ((())())
S ⇒ SS ⇒ ()S ⇒ ()(S)⇒ ()((S))⇒ ()((()))
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S ⇒ SS ⇒ ()S ⇒ ()SS ⇒ ()()S ⇒ ()()()
S ⇒ SS ⇒ (S)S ⇒ (())S ⇒ (())(S)⇒ (())(())
S ⇒ SS ⇒ (S)S ⇒ ((S))S ⇒ ((()))S((()))()
S ⇒ SS ⇒ SSS ⇒ ()SS ⇒ ()()S ⇒ ()()()

Es fácil ver que éstas son las únicas posibles derivaciones. 20

Con base en este grupo de derivaciones es simple probar que la palabra “(()()(” -de 6
caracteres de longitud- no pertenece al lenguaje generado por la gramática, pues si aśı fuera,
estaŕıa entre alguna de las palabras derivadas en 5 pasos o menos.

En el caso general se incluyen reglas de la forma A → a, con a ∈ Σ. Para empezar
observamos que las reglas de la forma A → a producen exclusivamente un terminal, por lo
que, en el peor caso, se aplicaron tantas veces reglas de este tipo como letras tenga la palabra
generada. Por ejemplo, sea la gramática de las expresiones aritméticas:

1. E → E + E

2. E → E ∗ E

3. E → x

4. E → y

Esta gramática tiene reglas, como E → x y E → y que tienen en su lado derecho un
caracter. Entonces, dada una expresión aritmética como x ∗ y + x, que tiene 5 śımbolos, a
lo más se usan ese tipo de reglas en 5 ocasiones (de hecho se ve que en una derivación de
x ∗ y + x ese tipo de reglas se usa exactamente en 3 ocasiones). Ahora bien, para generar 5
terminales con reglas de la forma A→ a se requieren 5 no-terminales. Esos 5 no-terminales
se generan con las reglas de la forma A→ a, donde |a| > 1. En el peor de los casos, |a| = 2,
por lo que se requerirán 4 pasos de derivación para llegar a los 5 no-terminales. Eso da un
total de 5+4 = 9 pasos de derivación. Aśı, si queremos determinar en forma segura si la
palabra x ∗ y + x pertenece o no al lenguaje generado por la gramática, sólo tenemos que
examinar las derivaciones de longitud menor o igual a 9.

En general, para una palabra w de longitud l hay que examinar las derivaciones de
longitud hasta 2 ∗ l− 1. Si la palabra se encuentra al final de alguna de esas derivaciones, la
palabra pertenece al lenguaje, y en caso contrario no pertenece al lenguaje. Esto termina la
prueba del teorema. QED

Nótese que en el enunciado del teorema nos estamos restringiendo a las GLC que satis-
facen la condición: para toda regla A → α, |α| > 1, o bien α ∈ Σ, es decir, el lado derecho
tiene varios śımbolos, o si tiene exactamente un śımbolo, éste es terminal. Cabe preguntarse

20Ejercicio: hallar el método que se siguió para obtener las derivaciones mostradas, y probar que no se
puede “escapar” ninguna derivación.
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si esto constituye una limitación, en el sentido de que hay muchas GLC que no cumplen
dicha condición. De hecho la respuesta es no, pues existe un procedimiento para pasar de
una GLC arbitraria a una GLC que satisfaga la condición del teorema.

Corolario .- Dada cualquier GLC G, es posible decidir si w ∈ L(G).

La prueba de este corolario consiste en dar un procedimiento para transformar una GLC
cualquiera G en una GLC G′ que satisface las condiciones del teorema arriba enunciado.

4.11. Ejercicios

1. Proponer una gramática libre de contexto que genere las palabras binarias que comien-
zan con 1.

2. Considerar el lenguaje en {a, b} en que las palabras tienen la misma cantidad de a’s
que de b’s. Proponer:

a) Una GLC incorrecta para este lenguaje, esto es, que genere palabras que no de-
beŕıa;

b) Una GLC incompleta, esto es, que no pueda generar algunas de las palabras de
este lenguaje;

c) Una GLC que sea a la vez incorrecta e incompleta para este lenguaje.

d) Una GLC correcta y completa;

e) Una derivación izquierda de la palabra abaababb usando esta última gramática.

3. Proponer gramáticas libres de contexto para los siguientes lenguajes:

a) El lenguaje {aibjck | ¬(i = j = k)}
b) El lenguaje en {a, b}∗ en que las palabras tienen la misma cantidad de a’s y b’s.

c) Las palabras en {a, b, c} en que hay más a’s que c’s (la cantidad de b’s puede ser
cualquiera).

d) Un lenguaje de paréntesis, llaves y corchetes bien balanceados. Por ejemplo, las
palabras “()[]”, “([])” y “()[[]]” son correctas, mientras que “[[]” y “([)]” no lo son.
Nótese que en esta última palabra los paréntesis solos están balanceados, aśı como
los corchetes solos, pero su combinación no lo está.

e) {aibjck | i = j − k}
f ) El lenguaje {anbn+mcm} (Ayuda: usar la concatenación de lenguajes).

g) El lenguaje {anbkcm, n ≤ k ≤ n + m} (Ayuda: usar la mezcla de gramáticas, y la
solución al problema anterior).

4. Transformar las gramáticas del problema 3 a la forma normal de Chomsky. Para esto,
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a) Eliminar las producciones vaćıas,

b) Las reglas “inútiles”,

c) Las reglas inaccesibles,

d) Poner en la “forma intermedia” (sólo variables o sólo constantes en el lado derecho
de las reglas).

e) Limitar a 2 la longitud máxima del lado derecho de las reglas.

5. Mostrar que la siguiente gramática es / no es ambigua: G = (V, Σ, R, S), con:

V = {PROG, IF, STAT}
Σ = {if, then, else, condición, stat}
R = {PROG→ STAT, STAT→ if condición then STAT,
STAT→ if condición then STAT else STAT, STAT→ stat}
S = PROG

6. Contestar las siguientes preguntas, justificando la respuesta:

a) ¿La concatenación de un lenguaje regular con uno libre de contexto será necesari-
amente libre de contexto?

b) ¿Todo lenguaje libre de contexto tendrá algún subconjunto que sea regular?

c) ¿Todo lenguaje libre de contexto será subconjunto de algún lenguaje regular?

d) Si A ∪B es libre de contexto, ¿será A libre de contexto?

e) ¿La intersección de un lenguaje regular con un libre de contexto será regular?

f ) ¿La unión de un lenguaje libre de contexto con un lenguaje regular es libre de
contexto?

g) ¿La intersección de un lenguaje libre de contexto con un lenguaje regular es reg-
ular?

h) ¿El reverso de un lenguaje libre de contexto es también libre de contexto? (Ayuda:
considerar una transformación para obtener el reverso del lado derecho de las
reglas).

7. Probar la corrección de las gramáticas propuestas en el ejercicio 3. Poner especial
cuidado al generar el enunciado generalizado, aśı como al aplicarlo a los casos especiales.

8. Sea L = {anbmcpdq | n = m = p + q}. ¿Es L libre de contexto? Proponga (y explique)
una GLC o pruebe que no es posible.

9. Probar mediante el teorema de bombeo que el lenguaje {anbn+mcn+m+k, n, m, k =
1, 2, 3, . . .} no es libre de contexto. (Ayuda: las cadenas v e y se pueden repetir 0
veces).

10. Llamamos “útil” a un śımbolo no terminal A de una gramática libre de contexto que
cumple con dos propiedades:
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a) S ⇒∗ aAb, a, b ∈ (V ∪Σ)∗, donde V es el alfabeto de las variables y Σ (terminales
y no terminales),

b) A⇒∗ w, w ∈ Σ∗.

Dada una cierta GLC y un śımbolo no terminal A, ¿Es decidible si A es útil o no lo
es? Pruebe la respuesta, y en caso afirmativo proponga el método de decisión.

11. ¿El lenguaje {w = aibmcn | i > m > n} es libre de contexto? Probar la respuesta.
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Caṕıtulo 5

Autómatas de Pila

Puesto que los autómatas finitos no son suficientemente poderosos para aceptar los LLC,
1 cabe preguntarnos qué tipo de autómata se necesitaŕıa para aceptar los LLC.

Una idea es agregar algo a los AF de manera que se incremente su poder de cálculo.

Para ser más concretos, tomemos por ejemplo el lenguaje de los paréntesis bien balancea-
dos, que sabemos que es propiamente LLC. 2 ¿Qué máquina se requiere para distinguir las
palabras de paréntesis bien balanceados de las que tienen los paréntesis desbalanceados?
Una primera idea podŕıa ser la de una máquina que tuviera un registro aritmético que le
permitiera contar los paréntesis; dicho registro seŕıa controlado por el control finito, quien le
mandaŕıa śımbolos I para incrementar en uno el contador y D para decrementarlo en uno. A
su vez, el registro mandaŕıa un śımbolo Z para indicar que está en cero, o bien N para indicar
que no está en cero. Entonces para analizar una palabra con paréntesis lo que haŕıamos seŕıa
llevar la cuenta de cuántos paréntesis han sido abiertos pero no cerrados; en todo momento
dicha cuenta debe ser positiva o cero, y al final del cálculo debe ser exactamente cero. Por
ejemplo, para la palabra (())() el registro tomaŕıa sucesivamente los valores 1, 2, 1, 0, 1, 0.
Recomendamos al lector tratar de diseñar en detalle la tabla describiendo las transiciones
del autómata.

Como un segundo ejemplo, considérese el lenguaje de los paĺındromos (palabras que se
leen igual al derecho y al revés, como ANITALAVALATINA). Aqúı la máquina contadora
no va a funcionar, porque se necesita recordar toda la primera mitad de la palabra para
poder compararla con la segunda mitad. Más bien pensaŕıamos en una máquina que tuviera
la capacidad de recordar cadenas de caracteres arbitrarias, no números. Siguiendo esta idea,
podŕıamos pensar en añadir al AF un almacenamiento auxiliar, que llamaremos pila, donde
se podrán ir depositando caracter por caracter cadenas arbitrariamente grandes, como se
aprecia en la figura 5.1. A estos nuevos autómatas con una pila auxiliar los llamaremos

1¡Cuidado! Esto no impide que un LLC en particular pueda ser aceptado por un AF, cosa trivialmente
cierta si tomamos en cuenta que todo lenguaje regular es a la vez LLC.

2“Propiamente LLC” quiere decir que el lenguaje en cuestión es LLC pero no regular.
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b a a b a b

q0�

q1�

q2�

q3�

a
a

Figura 5.1: Autómata con una pila auxiliar

Autómatas de Pila, abreviado AP.

5.1. Funcionamiento de los Autómatas de Pila (infor-

mal)

La pila funciona de manera que el último caracter que se almacena en ella es el primero
en salir (“LIFO” por las siglas en inglés), como si empiláramos platos uno encima de otro, y
naturalmente el primero que quitaremos es el último que hemos colocado. Un aspecto crucial
de la pila es que sólo podemos modificar su “tope”, que es el extremo por donde entran o
salen los caracteres. Los caracteres a la mitad de la pila no son accesibles sin quitar antes
los que están encima de ellos.

La pila tendrá un alfabeto propio, que puede o no coincidir con el alfabeto de la palabra de
entrada. Esto se justifica porque puede ser necesario introducir en la pila caracteres especiales
usados como separadores, según las necesidades de diseño del autómata.

Al iniciar la operación de un AP, la pila se encuentra vaćıa. Durante la operación del
AP, la pila puede ir recibiendo (y almacenando) caracteres, según lo indiquen las transiciones
ejecutadas. Al final de su operación, para aceptar una palabra, la pila debe estar nuevamente
vaćıa.

En los AP las transiciones de un estado a otro indican, además de los caracteres que se
consumen de la entrada, también lo que se saca del tope de la pila, asi como también lo que
se mete a la pila.

Antes de formalizar los AP, vamos a utilizar una notación gráfica, parecida a la de los
diagramas de los autómatas finitos, como en los AP de las figuras 5.2 (a) y (b). Para las
transiciones usaremos la notación “w/α/β”, donde w es la entrada (secuencia de caracteres)
que se consume, α es lo que se saca de la pila, y β lo que se mete a la pila.

Por ejemplo, la transición “a/ε/b” indica que se consume de la entrada un caracter a, no
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se saca nada de la pila, y se mete b a la pila. Se supone que primero se ejecuta la operación
de sacar de la pila y luego la de meter.

Al igual que los AF, los AP tienen estados finales, que permiten distinguir cuando una
palabra de entrada es aceptada.

De hecho, para que una palabra de entrada sea aceptada en un AP se deben cumplir
todas las condiciones siguientes:

1. La palabra de entrada se debe haber agotado (consumido totalmente).

2. El AP se debe encontrar en un estado final.

3. La pila debe estar vaćıa.

5.2. Diseño de AP

El problema de diseño de los AP consiste en obtener un AP M que acepte exactamente
un lenguaje L dado. Por exactamente queremos decir, como en el caso de los autómatas
finitos, que, por una parte, todas las palabras que acepta efectivamente pertenecen a L, y
por otra parte, que M es capaz de aceptar todas las palabras de L.

Aunque en el caso de los AP no hay metodoloǵıas tan generalmente aplicables como era
el caso de los autómatas finitos, siguen siendo válidas las ideas básicas del diseño sistemático,
en particular establecer claramente qué es lo que “recuerda” cada estado del AP antes de
ponerse a trazar transiciones a diestra y siniestra. Para los AP, adicionalmente tenemos que
establecer una estrategia clara para el manejo de la pila.

En resumen, a la hora de diseñar un AP tenemos que repartir lo que requiere ser “recor-
dado” entre los estados y la pila. Distintos diseños para un mismo problema pueden tomar
decisiones diferentes en cuanto a qué recuerda cada cual.

Ejemplo.- Diseñar un AP que acepte exactamente el lenguaje con palabras de la forma
anbn, para cualquier número natural n.

Una idea que surge inmediatamente es la de utilizar la pila como “contador” para recordar
la cantidad de a’s que se consumen, y luego confrontar con la cantidad de b’s. Una primera
versión de este diseño utiliza un sólo estado q, con transiciones a/ε/a y b/a/ε de q a śı mismo,
como en la figura 5.2(a).

Para verificar el funcionamiento del autómata, podemos simular su ejecución, listando
las situaciones sucesivas en que se encuentra, mediante una tabla que llamaremos “traza de
ejecución”. Las columnas de una traza de ejecución para un AP son: el estado en que se
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εa/  /a

εb/a/

q

(a) Incorrecto

b/a/ ε

εa/  /a εb/a/

21
qq

(b) Correcto

Figura 5.2: AP para el lenguaje anbn

encuentra el autómata, lo que falta por leer de la palabra de entrada, y el contenido de la
pila.

Por ejemplo, la traza de ejecución del AP del último ejemplo, para la palabra aabb, se
muestra a continuación: 3

Estado Por leer Pila
q aabb ε
q abb a
q bb aa
q b a
q ε ε

Conclúımos que el AP efectivamente puede aceptar palabras como anbn. Sin embargo, hay
un problema: ¡el AP también acepta palabras como abab, que no tienen la forma deseada! (es
fácil construir la traza de ejecución correspondiente para convencerse de ello). El problema
viene de que no hemos recordado cuando se terminan las a y principian las b, por eso ha sido
posible mezclarlas en abab. Una solución es utilizar los estados para memorizar las situaciones
de estar consumiendo a o estar consumiendo b. El diagrama de estados correspondiente se
muestra en la figura 5.2(b).

Ejemplo.- Proponer un AP que acepte el lenguaje de los paĺındromos con un número
par de śımbolos, esto es, palabras que se leen igual de izquierda a derecha y de derecha a
izquierda, y que tienen por tanto la forma wwR, donde wR es el reverso de w (esto es, invertir
el orden), en el alfabeto {a, b}. Por ejemplo, las palabras abba, aa y bbbbbb pertenecen a este
lenguaje, mientras que aab y aabaa no.

Una estrategia de solución para diseñar este AP seŕıa almacenar en la pila la primera
mitad de la palabra, y luego irla comparando letra por letra contra la segunda mitad. Ten-
dŕıamos dos estados s y f , para recordar que estamos en la primera o segunda mitad de la
palabra. En la figura 5.2 se detalla este AP.

3Suponemos que el tope de la pila está del lado izquierdo, aunque en este ejemplo da lo mismo.



5.2. DISEÑO DE AP 149

b/  /bε

a/  /aε

ε/ε/ε

a/a/

b/b/ ε

ε

fs

Figura 5.3: AP para el lenguaje {wwR}

Se puede apreciar en el AP de dicha figura la presencia de una transición de s a f , en que
ni se consumen caracteres de la entrada, ni se manipula la pila. Esta transición parece muy
peligrosa, porque se puede “disparar” en cualquier momento, y si no lo hace exactamente
cuando hemos recorrido ya la mitad de la palabra, el AP podrá llegar al final a un estado
que no sea final, rechazando en consecuencia la palabra de entrada. Entonces, ¿cómo saber
que estamos exactamente a la mitad de la palabra?

Conviene en este punto recordar que en un autómata no determinista una palabra es
aceptada cuando existe un cálculo que permite aceptarla, independientemente de que un
cálculo en particular se vaya por un camino erróneo. Lo importante es, pues, que exista un
cálculo que acepte la palabra en cuestión. Por ejemplo, la siguiente tabla muestra un cálculo
que permite aceptar la palabra w = abba:

Estado Falta leer Pila Transición
s abba ε
s bba a 1
s ba ba 2
f ba ba 3
f a a 5
f ε ε 4

5.2.1. Combinación modular de AP

En los AP también es posible aplicar métodos de combinación modular de autómatas,
como hicimos con los autómatas finitos. En particular, es posible obtener AP que acepten la
unión y concatenación de los lenguajes aceptados por dos AP dados.

En el caso de la unión, dados dos AP M1 y M2 que aceptan respectivamente los lenguajes
L1 y L2, podemos obtener un AP que acepte la unión L1∪L2, introduciendo un nuevo estado
inicial s0 con transiciones ε/ε/ε a los dos antiguos estados iniciales s1 y s2, como se ilustra
en la figura 5.4. 4

4El procedimiento de combinación de AP para obtener la unión de autómatas puede ser descrito en forma
más precisa utilizando la representación formal de los AP, que se estudia en la siguiente sección; sin embargo,
hacer esto es directo, y se deja como ejercicio (ver sección de ejercicios).
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Figura 5.4: Unión de AP

Ejemplo.- Obtener un AP que acepte el lenguaje {anbm|n 6= m}. Claramente este lenguaje
es la unión de {anbm|n > m} con {anbm|n < m}, por lo que basta obtener los AP de cada
uno de ellos, y combinarlos con el método descrito.

Ejemplo.- Diseñar un AP que acepte el lenguaje L = {aibjck|¬(i = j = k)}. Nos damos
cuenta de que L es la unión de dos lenguajes, que son:

L = {aibjck|i 6= j} ∪ {aibjck|j 6= k}

Para cada uno de estos dos lenguajes es fácil obtener su AP. Para el primero de ellos, el AP
almacenaŕıa primero las a’s en la pila, para luego ir descontando una b por cada a de la pila;
las a’s deben acabarse antes de terminar con las b’s o bien deben sobrar a’s al terminar con
las b’s; las c’s no modifican la pila y simplemente se verifica que no haya a o b después de la
primera c. Dejamos los detalles como ejercicio para el lector.

También es posible obtener modularmente un AP que acepte la concatenación de los
lenguajes aceptados por dos AP dados. De hecho ya vimos en el caṕıtulo 4 que la unión de
dos lenguajes libres de contexto es también libre de contexto, pues tiene una gramática libre
de contexto.

Sin embargo, la construcción de un AP que acepte la concatenación de dos lenguajes a
partir de sus respectivos AP M1 y M2, es ligeramente más complicada que para el caso de la
unión. La idea básica seŕıa poner transiciones vaćıas que vayan de los estados finales de M1

al estado inicial de M2. Sin embargo, existe el problema: hay que garantizar que la pila se
encuentre vaćıa al pasar de M1 a M2, pues de otro modo podŕıa resultar un AP incorrecto.
Para esto, es posible utilizar un caracter especial, por ejemplo “@”, que se mete a la pila
antes de iniciar la operación de M1, el cual se saca de la pila antes de iniciar la operación de
M2. Los detalles se dejan como ejercicio (ver sección de ejercicios).
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5.3. Formalización de los AP

Un autómata de pila es un séxtuplo (K, Σ, Γ, ∆, s, F ), donde:

K es un conjunto de estados

Σ es el alfabeto de entrada

Γ es el alfabeto de la pila

s ∈ K es el estado inicial

F ⊆ K es un conjunto de estados finales,

∆ ⊆ (K × Σ∗ × Γ∗)× (K × Γ∗) es la relación de transición.

Ahora describiremos el funcionamiento de los AP. Si tenemos una transición de la forma
((p, u, β), (q, γ)) ∈ ∆, el AP hace lo siguiente:

Estando en el estado p, consume u de la entrada;

Saca β de la pila;

Llega a un estado q;

Mete γ en la pila

Las operaciones t́ıpicas en las pilas –t́ıpicamente llamadas en inglés el “push” y el “pop”–
pueden ser vistas como casos particulares de las transiciones de nuestro AP; en efecto,
si sólo queremos meter la cadena γ a la pila, se haŕıa con la transición ((p, u, ε), (q, γ))
(“push”), mientras que si sólo queremos sacar caracteres de la pila se hará con la transición
((p, u, β), (q, ε)) (“pop”).

Ahora formalizaremos el funcionamiento de los AP, para llegar a la definición del lenguaje
aceptado por un AP. Para ello seguiremos el mismo método que usamos en el caso de los
AF, método que reposa completamente en la noción de configuración.

Definición.- Una configuración es un elemento de K × Σ∗ × Γ∗.

Por ejemplo, una configuración podŕıa ser [[q, abbab,⊗aa#a]] –obsérvese que seguimos
la misma notación que para representar las configuraciones de los AF. Puede verse que las
transiciones se definen como una relación, no como una función, por lo que de entrada se les
formaliza como autómatas no deterministas.

Ahora definimos la relación ` entre configuraciones de la manera siguiente:
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Definición.- Sea M = (K, Σ, Γ, ∆, s, F ) un AP, entonces [[p, ux, βα]]| `M [[q, x, γα]] ssi
existe ((p, u, β), (q, γ)) ∈ ∆. En general vamos a omitir el sub́ındice de `M , quedando sim-
plemente como `. La cerradura reflexiva y transitiva de ` es `∗.

Definición.- Un AP M = (K, Σ, Γ, ∆, s, F ) acepta una palabra w ∈ Σ∗ ssi [[s, w, ε]] `∗M
[[p, ε, ε]], donde p ∈ F . L(M) es el conjunto de palabras aceptadas por M .

Ejemplo.- Formalizar el AP de la figura 5.2, que acepta el lenguaje {wwR}, w ∈ {a, b}.

Solución.- El AP es el séxtuplo (K, Σ, Γ, ∆, s, F ), donde

K = {s, f}, F = {f}, Σ = {a, b, c}, Γ = {a, b}

∆ está representada en la siguiente tabla:

(s, a, ε) (s, a)
(s, b, ε) (s, b)
(s, ε, ε) (f, ε)
(f, a, a) (f, ε)
(f, b, b) (f, ε)

5.4. Relación entre AF y AP

Teorema.- Todo lenguaje aceptado por un AF es también aceptado por un AP

Este resultado debe quedar intuitivamente claro, puesto que los AP son una extensión
de los AF.

Prueba: Sea (K, Σ, ∆, s, F ) un AF; el AP (K, Σ, ∅, ∆′, s, F ), con ∆′ = {((p, u, ε), (q, ε)) |
(p, u, q) ∈ ∆} acepta el mismo lenguaje.

5.5. Relación entre AP y LLC

Ahora vamos a establecer el resultado por el que iniciamos el estudio de los AP, es decir,
verificar si son efectivamente capaces de aceptar los LLC.

Teorema.- Los autómatas de pila aceptan exactamente los LLC.

Vamos a examinar la prueba de esta afirmación, no solamente por el interés por la rig-
urosidad matemática, sino sobre todo porque provee un método de utilidad práctica para
transformar una GLC en un AP. La prueba de este teorema se puede dividir en dos partes:
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1. Si M es un AP, entonces L(M) es un LLC

2. Si L es un LLC, entonces hay un AP M tal que L(M) = L

Vamos a presentar únicamente la prueba con la parte 2, que consideramos de mayor rele-
vancia práctica. La otra parte de la prueba (que también es un procedimiento de conversión)
puede consultarse en la referencia [21].

Sea una gramática G = (V, Σ, R, S). Entonces un AP M que acepta exactamente el
lenguaje generado por G se define como sigue:

M = ({p, q}, Σ, V ∪ Σ, ∆, p, {q})

donde ∆ contiene las siguientes transiciones:

1. Una transición ((p, ε, ε), (q, S))

2. Una transición ((q, ε, A), (q, x)) para cada A→ x ∈ R

3. Una transición ((q, σ, σ), (q, ε)) para cada σ ∈ Σ

Ejemplo.- Obtener un AP que acepte el LLC generado por la gramática con reglas:

1. S → aSa

2. S → bSb

3. S → c

Las transiciones del AP correspondiente están dadas en la tabla siguiente:

1 (p, ε, ε) (q, S)
2 (q, ε, S) (q, aSa)
3 (q, ε, S) (q, bSb)
4 (q, ε, S) (q, c)
5 (q, a, a) (q, ε)
6 (q, b, b) (q, ε)
7 (q, c, c) (q, ε)

El funcionamiento de este AP ante la palabra abcba aparece en la siguiente tabla:
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Estado Falta leer Pila
p abcba ε
q abcba S
q abcba aSa
q bcba Sa
q bcba bSba
q cba Sba
q cba cba
q ba ba
q a a
q ε ε

Vamos a justificar intuitivamente el método que acabamos de introducir para obtener un
AP equivalente a una gramática dada. Si observamos las transiciones del AP, veremos que
solamente tiene dos estados, p y q, y que el primero de ellos desaparece del cálculo en el primer
paso; de esto conclúımos que el AP no utiliza los estados para “recordar” caracteŕısticas de
la entrada, y por lo tanto reposa exclusivamente en el almacenamiento de caracteres en la
pila. En efecto, podemos ver que las transiciones del tipo 2 (transiciones 2-4 del ejemplo),
lo que hacen es reemplazar en la pila una variable por la cadena que aparece en el lado
derecho de la regla correspondiente. Dado que la (única) transición de tipo 1 (transición 1
del ejemplo) coloca el śımbolo inicial en la pila, a continuación lo que hacen las reglas de
tipo 2 es realmente efectuar toda la derivación dentro de la pila de la palabra de entrada,
reemplazando un lado izquierdo de una regla por su lado derecho. Una vez hecha la derivación
de la palabra de entrada, –la cual estaŕıa dentro de la pila, sin haber aún gastado un solo
caracter de la entrada– podemos compararla caracter por caracter con la entrada, por medio
de las transiciones de tipo 3.

Existe sin embargo un problema técnico: si observamos la “corrida” para la palabra abcba,
nos daremos cuenta de que no estamos aplicando las reglas en el orden descrito en el párrafo
anterior, esto es, primero la transición del grupo 1, luego las del grupo 2 y finalmente las del
grupo 3, sino que más bien en la cuarta ĺınea de la tabla se consume un caracter a (aplicación
de una transición del grupo 3) seguida de la aplicación de una transición del grupo 2. Esto
no es casualidad; lo que ocurre es que las variables no pueden ser reemplazadas por el lado
derecho de una regla si dichas variables no se encuentran en el tope de la pila. En efecto,
recuérdese que los AP solo pueden accesar el caracter que se encuentra en el tope de la pila.
Por esto, se hace necesario, antes de reemplazar una variable por la cadena del lado derecho
de una regla, “desenterrar” dicha variable hasta que aparezca en el tope de la pila, lo cual
puede hacerse consumiendo caracteres de la pila (y de la entrada, desde luego) mediante la
aplicación de transiciones del tipo 3.

De la construcción del AP que hemos descrito, conclúımos con la siguiente proposición:

S ⇒∗ w ssi [[p, w, ε]] `∗M(G) [[q, ε, ε]]
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Figura 5.5: Diagrama de un compilador

donde M(G) denota al AP construido a partir de la gramática G por el procedimiento
recién descrito.

Todav́ıa nos queda por probar que para todo AP hay una gramática equivalente. A este
respecto remitimos al lector a la referencia [10].

La equivalencia de los AP y de las GLC permite aplicar todas las propiedades de los LLC
para resolver problemas de diseño de AP.

5.6. Compiladores LL

El método que hemos visto para obtener un AP a partir de una GLC puede ser consid-
erado como una manera de construir un compilador para el lenguaje correspondiente a la
GLC dada.

De una manera muy general, un compilador –como los que se usan para traducir un
lenguaje de programación al lenguaje de máquina– está compuesto por las partes que se
ilustran en la figura 5.5. Sus principales partes son:

Un analizador léxico, que recibe los caracteres del archivo de entrada, y entrega los lla-
mados “tokens”, que representan los elementos del lenguaje –tales como las palabras
claves (como “begin”, “integer”, etc.), los operadores (tales como “+”), los identifi-
cadores propuestos por el usuario, y otros elementos. Generalmente varios caracteres
corresponden a un sólo “token”. Aśı, los demás componentes del compilador ya no
consideran la entrada como una secuencia de caracteres, sino como una secuencia de
“tokens”. Un beneficio adicional del analizador léxico es que “filtra” caracteres inútiles
desde el punto de vista de la traducción que se quiere hacer, como por ejemplo los
comentarios del programador. El analizador léxico puede ser considerado como un
autómata con salida (como los autómatas de Moore y de Mealy de la sección 2.7), y
son muchas veces construidos a partir de la definición de “tokens” mediante Expre-
siones Regulares.
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Un analizador sintáctico, que toma como entrada los “tokens” y verifica que su secuen-
cia corresponde a la definición del lenguaje dada por medio de una gramática libre de
contexto. Mediante el uso de herramientas adecuadas, como el generador de compi-
ladores “yacc” [9], es posible producir un analizador sintáctico a partir de la definición
del lenguaje mediante una gramática.

Un generador de código, que guiado por el analizador sintáctico, produce realmente
el resultado de la compilación, que es la traducción del lenguaje fuente al lenguaje
deseado (generalmente lenguaje ensamblador).

Una tabla de śımbolos, que registra las definiciones de identificadores dadas por el
usuario en su programa, y las utiliza posteriormente para resolver las referencias que
se hacen a ellos en el programa a traducir.

Para una descripción detallada de los compiladores y de las técnicas usadas para con-
struirlos, véase la referencia [1].

5.6.1. Principio de previsión

Desde luego, para tener un verdadero compilador se requiere que se trate de un AP
determinista, pues seŕıa inaceptable que un mismo compilador diera resultados diferentes al
compilar varias veces un mismo programa.

Una manera de forzar a que un AP no determinista se vuelva determinista consiste en
proveer un método para decidir, cuando hay varias transiciones aplicables, cual de ellas va a
ser efectivamente aplicada. En el caso de los compiladores esto se puede hacer mediante el
llamado principio de previsión.

El principio de previsión consiste en que podamos “observar” un caracter de la palabra
de entrada que aún no ha sido léıdo (esto es llamado en inglés “lookahead”, mirar hacia
adelante). El caracter léıdo por adelantado nos permite en algunas ocasiones decidir ade-
cuadamente cual de las transiciones del AP conviene aplicar.

Ejemplo.- Supóngase la GLC con reglas S → aSb, S → ε, que representa el lenguaje
{anbn}. La construcción del AP correspondiente es directa y la dejamos como ejercicio.
Ahora bien, teniendo una palabra de entrada aabb, la traza de ejecución comenzaŕıa de la
manera siguiente:

Estado Falta leer Pila
p aabb ε
q aabb S

En este punto, no se sabe si reemplazar en la pila S por ε o por aSb, al ser transiciones
aplicables tanto ((q, ε, S), (q, ε)) como ((q, ε, S), (q, aSb)). En cambio, si tomamos en cuenta
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que el siguiente caracter en la entrada será a, es evidente que no conviene reemplazar S
por ε, pues entonces la a de entrada no podŕıa ser cancelada. Entonces hay que aplicar la
transición ((q, ε, S), (q, aSb)). Continuamos la ejecución:

Estado Falta leer Pila
. . . . . . . . .
q aabb aSb
q abb Sb
q abb aSbb
q bb Sbb

Al ver que el siguiente caracter de entrada será una b, nos damos cuenta de que no
conviene reemplazar en la pila S por aSb, pues la b de la entrada no podrá cancelarse contra
la a de la pila. Entonces aplicamos la otra transición disponible, que es ((q, ε, S), (q, ε)). La
ejecución continúa:

Estado Falta leer Pila
. . . . . . . . .
q bb bb
q b b
q ε ε

con lo cual la palabra de entrada es aceptada. Resumiendo, en este ejemplo la regla para
decidir sobre la transición a aplicar, basándose en la previsión del siguiente caracter a leer,
fue esta: si el siguiente caracter es a, reemplazar en la pila S por aSb, y si es b, reemplazar
S por ε. Esta regla puede ser representada mediante la siguiente tabla:

a b ε
S aSb ε

En esta tabla, las columnas (a partir de la segunda) se refieren al siguiente caracter que
ha de ser léıdo (la “previsión”), habiendo una columna marcada “ε” por si en vez de haber un
caracter siguiente se encuentra el fin de la palabra. La primera columna contiene la variable
que se va a reemplazar en la pila por lo que indique la celda correspondiente en la tabla. 5

A un AP aumentado con su tabla de previsión se le llama “compilador LL” por las siglas
en inglés “Left to right Leftmost derivation”, porque efectivamente dentro de la pila se lleva
a cabo una derivación izquierda. El lector puede comprobar esto en el ejemplo anterior. A
un compilador LL que considera una previsión de un caracter, como lo que hemos visto, se

5Ejercicio: hacer nuevamente la traza de ejecución para la palabra abb, utilizando la tabla de previsión.
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le llama “LL(1)”; en general, un compilador de tipo LL que toma en cuenta una previsión
de k caracteres es LL(k).

La razón por la que es necesario a veces hacer una previsión de más de un caracter es
porque para ciertas gramáticas no es suficiente una predicción de un solo caracter. Con-
sidérese, por ejemplo, la gramática con reglas S → aSb, S → ab, que también genera el
lenguaje {anbn}. Hacemos el inicio de la ejecución del AP correspondiente:

Estado Falta leer Pila
p aabb ε
q aabb S

En este punto, reemplazando S por aSb o por ab de todos modos se produce la a de la
previsión, por lo que dicha predicción no establece ninguna diferencia entre las transiciones
((q, ε, S), (q, aSb)) y ((q, ε, S), (q, ab)). Este ejemplo en particular puede sacarse adelante
haciendo una transformación de la gramática, conocida como “factorización izquierda”, que
consiste en añadir a la gramática una variable nueva (sea por ejemplo A), que produce “lo
que sigue después del caracter común”, en este caso a. Aśı, la gramática queda como (sus
reglas):

1. S → aA

2. A→ Sb

3. A→ b

Con esta gramática ya es posible decidir entre las distintas transiciones considerando una
previsión de un solo caracter, como se aprecia en la siguiente ejecución del AP correspondi-
ente:

Estado Falta leer Pila Comentario
p aabb ε
q aabb S
q aabb aA
q abb A Se decide reemplazar A por Sb.
q abb Sb
q abb aAb
q bb Ab Se decide reemplazar A por b.
q bb bb
q b b
q ε ε

La tabla de previsión entonces debe haber sido:
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a b ε
S aA
A Sb b

Ahora veremos de una manera más sistemática cómo construir la tabla de previsión.
Supongamos una GLC sin producciones vaćıas –lo cual prácticamente no representa una
pérdida de generalidad. Necesitamos hacer las siguientes definiciones:

Definición.- Supongamos una gramática (V, Σ, R, S). El operador first : (V ∪Σ)+ → 2Σ,
cuyo argumento es una cadena de śımbolos (al menos uno) que puede contener variables y
constantes, y cuyo resultado es un conjunto de caracteres, obtiene todos los caracteres con
los que puede empezar una cadena derivable a partir de su argumento. Por ejemplo, para
la GLC con reglas S → aA, A → Sb, A → b, nos damos cuenta de que las cadenas que se
pueden derivar a partir de S tienen que empezar con a, porque lo único que puede producir
S es aA, que empieza con a. Por ello, first(S) = {a}.

first(α) se calcula sistemáticamente a partir de las siguientes propiedades:

Si α = σ, σ ∈ Σ, entonces first(α) = {σ}

Si α = xv, x ∈ (V ∪ Σ), v ∈ (V ∪ Σ)∗, first(α) = first(x)

Si A ∈ V , first(A) = first(α1) ∪ . . . ∪ first(αn), para todas las reglas A → αi, para
i = 1 . . . n.

Ejemplos.- Seguimos utilizando la gramática S → aA, A→ Sb, A→ b.

first(aA) = first(a) = {a}, aplicando la segunda y luego primera regla.

first(Ab) = first(A) por la segunda regla; first(A) = first(b) ∪ first(Sb) por la
tercera regla, y first(Sb) = first(S) = first(aA) = first(a) = {a}, por lo que
finalmente first(Ab) = {a, b}.

Ahora estamos en condiciones de dar un procedimiento para construir la tabla de pre-
visión: supongamos que estamos tratando de llenar una celda de la tabla donde el renglón
corresponde a la variable X y la columna a la constante σ. Si hay en la gramática una regla
X → α donde σ ∈ first(α), el lado derecho α se pone en dicha celda:

. . . σ . . . ε

. . . . . . . . . . . .
X α . . . . . .
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Por ejemplo, con este procedimiento se obtiene la siguiente tabla de previsión para la
gramática con reglas S → aA, A→ Sb, A→ b:

a b ε
S aA
A Sb b

Esta tabla es idéntica a la que hab́ıamos supuesto anteriormente para la misma gramática.

Puede ocurrir que en una celda de la tabla de previsión queden los lados derechos de
varias reglas; esto es, si la celda corresponde a la columna de la constante σ y al renglón
de la variable X, y hay dos reglas distintas X → α y X → β, donde σ ∈ first(α) y
σ ∈ first(β), entonces tanto α como β tendŕıan derecho a estar en esa celda de la tabla.
Cuando esto ocurre, simplemente se concluye que la tabla no se puede construir y que la
gramática no es del tipo LL(1).

5.7. Compiladores LR(0)

Como se puede apreciar en toda la sección precedente, los compiladores de tipo LL
son esencialmente “predictores” que tratan de llevar a cabo la derivación en la pila, siempre
reemplazando las variables por lo que éstas deban producir. Pero aún en gramáticas bastante
sencillas, se vuelve demasiado dif́ıcil adivinar, aún con la ayuda de la previsión, qué regla de
reemplazo hay que aplicar a una variable en el tope de la pila. Por esto, se han propuesto
otros compiladores, llamados LR (“Left to right Rightmost derivation”), que no tratan de
adivinar una derivación, sino que tratan de ir “reconociendo” cadenas que correspondan
al lado derecho de una regla gramatical, para reemplazar por el lado izquierdo. Aśı, estos
compiladores encuentran la derivación “en reversa”, reemplazando lados derechos de reglas
por lados izquierdos, hasta llegar eventualmente al śımbolo inicial. Entonces, los compiladores
LR recorren el árbol de derivación de abajo hacia arriba, por lo que se llaman también
compiladores ascendentes.

De hecho, el reconocimiento del lado derecho de una regla no se hace respecto a la entrada,
sino respecto al tope de la pila, pero para esto se necesita primero haber pasado caracteres
de la entrada a la pila. Las dos operaciones básicas de un compilador LR son:

Desplazamiento que consiste en pasar un caracter de la entrada al tope de la pila,

Reducción que consiste en reemplazar en el tope de la pila el lado derecho de una regla
gramatical por el lado izquierdo de la misma. 6

6De hecho se toma el reverso del lado derecho de una regla, ver más adelante.
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Estas operaciones se aplican, en un orden “adecuado”, hasta que en la pila quede sólo
el śımbolo inicial. Desde luego, la dificultad está en encontrar las secuencias de desplaza-
mientos y reducciones que llevan a la situación final deseada. La idea de cómo combinar los
desplazamientos con las reducciones se comprende en el siguiente ejemplo: Supongamos la
gramática para el lenguaje {anbn} con las reglas S → aA, A→ Sb, A→ b. Dada la palabra
aabb, se tendŕıa una traza de ejecución como sigue:

Falta leer Pila Acción
aabb ε Desplazar
abb a Desplazar
bb aa Desplazar
b baa Reducir por A→ b
b Aaa Reducir por S → aA
b Sa Desplazar
ε bSa Reducir por A→ Sb
ε Aa Reducir por S → aA
ε S Exito

Obsérverse, en el quinto renglón de la tabla, que en el tope de la pila está la cadena Aa,
mientras que el lado derecho de la regla que corresponde es aA. Vemos aśı que lo que se saca
de la pila es el lado derecho de la regla, pero “volteado” de izquierda a derecha; técnicamente
decimos que el reverso del lado derecho de una regla coincide con el tope de la pila. Esto se
refleja en las definiciones que damos en seguida.

En este ejemplo en particular es relativamente fácil discernir cuando hacer cada una de las
acciones. Sin embargo, en otros ejemplos es mucho más dif́ıcil determinar qué acción llevar
a cabo; existe un procedimiento para construir una tabla de previsión para compiladores
LR(1), que puede ser consultado en la referencia [1].

Ahora formalizaremos el procedimiento para construir el AP de tipo LR a partir de una
GLC (V, Σ, R, S):

Hay 4 estados: i (inicial), f (final), p y q.

Hay una transición ((i, ε, ε), (p, #)) ∈ ∆. Esta transición coloca un “marcador” # en
el fondo de la pila, para luego reconocer cuando la pila se ha vaciado.

Se tienen transiciones ((p, σ, ε), (p, σ)) ∈ ∆ para cada σ ∈ Σ. Estas transiciones per-
miten hacer la acción de desplazar.

Hay transiciones ((p, ε, αR), (p, A)) ∈ ∆ para cada regla A→ α ∈ R, donde αR es el
reverso de α, esto es, α “volteado” de izquierda a derecha. Estas transiciones efectúan
las reducciones.
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Figura 5.6: AP de tipo LR

Tenemos una transición ((p, ε, S), (q, ε)) ∈ ∆; esta transición reconoce cuando se
llegó al śımbolo inicial.

Finalmente hay una transición ((q, ε, #), (f, ε)) ∈ ∆; esta transición se asegura de que
se haya vaciado la pila antes de aceptar la palabra.

Este procedimiento es directo. Por ejemplo, en la figura 5.6 se representa el autómata
correspondiente a la GLC que hemos estado considerando, esto es, S → aA,A→ Sb, A→ b.
Más que en la construcción del AP, las dificultades pueden estar en el uso del AP, pues al ser
éste no determinista, en ciertas situaciones puede presentarse un conflicto, en que no se sepa
si desplazar un caracter más a la pila o bien reducir por alguna regla. Y aún en este caso
puede haber varias reducciones posibles. Por ejemplo, sugerimos hacer la traza de ejecución
en el AP de la figura 5.6 de la palabra aabb.

Una posible solución a estos conflictos puede ser adoptar una poĺıtica en que –por
ejemplo– la reducción tenga preferencia sobre el desplazamiento. Esto funciona adecuada-
mente en el ejemplo recién presentado, pero no funciona en otros casos. En el caso general,
es necesario usar técnicas más complicadas, que incluyen previsión de caracteres (esto es,
LR(1), LR(2), etc.); dichas técnicas pueden consultarse en la referencia [1].

5.8. Ejercicios

1. Sea un autómata de pila M = (K, Σ, Γ, ∆, s, F ) que acepta el lenguaje de paréntesis
bien formados, incluyendo los paréntesis redondos “(”, “)”, aśı como los paréntesis
cuadrados “[”, “]”, es decir: L(M) = {e, (), [], ()[], [](), (()), ([]), [()], [[]], . . .}.

a) Dibujar el diagrama del AP que acepta el lenguaje descrito.

b) Representar formalmente, dando K, Σ, Γ, ∆, s y F .

c) Dar un cálculo producido por la palabra errónea “([]]”, con las columnas “Estado”,
“Por leer” y “pila”, como en los ejemplos dados.
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2. Proponga un autómata de pila para el lenguaje:

{aibjck | i = j − k} 7

3. Considere el lenguaje en {a, b}∗ en que las palabras tienen la misma cantidad de a’s
que de b’s, que es generado por la siguiente gramática:

1.- S → aSb

2.- S → bSa

3.- S → SS

4.- S → ε

a) Diseñar directamente (sin convertir a partir de una gramática) un AP que acepte
dicho lenguaje, usando una pila que almacene el exceso de a’s o de b’s (basta con
dibujar el diagrama de estados).

b) Construir otro AP, convirtiendo la GLC dada a AP de tipo LL.

c) Lo mismo que el anterior, para un AP de tipo LR.

d) Para cada uno de los incisos anteriores, hacer una traza de ejecución para la
palabra “abbaba”, en forma de una tabla, usando las columnas “estado”, “por
leer”, “pila”, y “acción aplicada”.

4. Considere el lenguaje {anbmcpdq | n + m = p + q}

a) Proponga un AP que lo acepte.

b) Suponga la siguiente GLC (sus reglas) que genera dicho lenguaje:

1) <AD>→ a <AD> d

2) <AD>→ b <BD> d

3) <AD>→ e

4) <AD>→ a <AC> c

5) <BD>→ b <BD> d

6) <BD>→ b <BC> c

7) <BD>→ e

8) <BC>→ b <BC> c

9) <BC>→ e

10) <AC>→ a <AC> c

11) <AC>→ b <BC> c

12) <AC>→ e

El śımbolo inicial es <AD>. Pruebe la corrección de la GLC por inducción sobre
la longitud de la derivación.

7Ayuda: al despejar en la ecuación la j el problema parece ser más fácil, pues permite aplicar un diseño
modular.
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c) Obtenga un AP de tipo LL(1) a partir de esta gramática.

d) Lo mismo, para un AP de tipo LR(0).

e) Para los dos incisos anteriores, obtener una traza de ejecución, en forma de tabla
con columnas “estado”, “por leer”, “pila” y “acción”, para la palabra de entrada
“aaacdd”.

5. Para el AP de la figura 5.6, y la palabra de entrada aabb:

a) Construir una traza de ejecución, con columnas “estado”, “falta leer”, “pila”, y
“acción”.

b) Localizar los renglones de la tabla anterior donde se presenta un conflicto, e indicar
si es de desplazamiento contra reducción o bien de una reducción contra otra
reducción.

6. Considere el lenguaje L = {anbn+mcm}

a) Proponga una GLC que genere L.

b) Elimine de la gramática las producciones vaćıas y las inútiles, si las hay

c) Pruebe por inducción que la gramática es correcta.

d) Obtenga el AP correspondiente, del tipo LL.

e) Obtenga la tabla de previsión LL(1), calculando primero el “first” de cada vari-
able de la gramática.

f ) Obtenga un AP de tipo LR para la gramática.

g) Indique si hay o no conflictos “shift-reduce” o “reduce-reduce” en el AP del inciso
anterior, utilizando la traza de ejecución para la palabra de entrada abbbcc. ¿Es
posible escribiendo resolver los conflictos con los criterios de preferir “reduce”
a “shift”, para los conflictos shift-reduce, y en caso de conflicto reduce-reduce
preferir la transición que reduzca más śımbolos?

7. Completar y detallar formalmente el procedimiento de combinación modular de AP
para la concatentación de lenguajes, delineado en la sección 5.2.1.

8. Formalice el procedimiento para obtener un AP que acepte la unión de los lenguajes
aceptados respectivamente por (K1, Σ1, Γ1, ∆1, s1, F1) y (K2, Σ2, Γ2, ∆2, s2, F2).

9. Considere una variante de los autómatas pushdown, que podŕıamos llamar “autómatas
de fila”, en los que en vez de la pila, que se accesa en orden UEPS (“LIFO”), se tiene
una fila que se accesa en orden PEPS (“FIFO”).

a) Dé una definición formal de los autómatas de fila.

b) Pruebe que el lenguaje {anbn} es aceptado por algún autómata de fila.

c) ¿Piensa que los autómatas de pila y de fila son equivalentes? Justifique de manera
informal.
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10. Considere una variante de los autómatas de pila, los AP “por estado final” (APEF),
en los que para aceptar una palabra basta con que al final de ésta el autómata se
encuentre en un estado final, sin necesidad de que la pila esté vaćıa.

a) Dé una definición formal de los APEF, incluyendo la definición de lenguaje acep-
tado.

b) Proponga un APEF que acepte el lenguaje {anbn}.

11. Proponga máquinas lo menos poderosas que sea posible para que acepten los siguientes
lenguajes:

a) {(), [], <>, ([]), [< ()(<>) > ()], . . .}
b) {(), (()), ((())), (((()))), . . .}
c) {(), ()(), ()()(), . . .}

12. Las máquinas reales tienen siempre ĺımites a su capacidad de almacenamiento. Aśı,
la pila infinita de los autómatas de pila puede ser limitada a un cierto tamaño fijo.
Suponga una variante de los AP, los APn, en que la pila tiene un tamaño fijo n.

a) Proponga una definición de APn y de palabra aceptada por un APn.

b) Pruebe (constructivamente) que los APn son equivalentes a los AF. (Ayuda:
se puede asociar a cada par (q, σ1σ2 . . . σn), donde q es un estado del APn y
σ1σ2 . . . σn es el contenido de la pila, un estado del AF).

c) Pruebe su método con el APn de pila de tamaño 2 (caben dos caracteres), con
relación de transición como sigue: ∆ = {((q0, a, e), (q0, a)), ((q0, b, a), (q1, e)),
(q1, b, a), (q1, e))}, donde q0 es inicial y q1 es final.
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Parte III
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Caṕıtulo 6

Máquinas de Turing

Aśı como en secciones anteriores vimos cómo al añadir al autómata finito básico una
pila de almacenamiento auxiliar, aumentando con ello su poder de cálculo, cabŕıa ahora
preguntarnos qué es lo que habŕıa que añadir a un autómata de pila para que pudiera
analizar lenguajes como {anbncn}. Partiendo del AP básico (figura 6.1(a)), algunas ideas
podŕıan ser:

1. Añadir otra pila;

2. Poner varias cabezas lectoras de la entrada;

3. Permitir la escritura en la cinta, además de la lectura de caracteres.

Aunque estas ideas –y otras aún más fantasiosas– pueden ser interesantes, vamos a enfocar
nuestra atención a una propuesta en particular que ha tenido un gran impacto en el desarrollo
teórico de la computación: la Máquina de Turing.

A. Turing propuso [24] en los años 30 un modelo de máquina abstracta, como una
extensión de los autómatas finitos, que resultó ser de una gran simplicidad y podeŕıo a la
vez. La máquina de Turing es particularmente importante porque es la más poderosa de
todas las máquinas abstractas conocidas (esto último será discutido en la sección 6.5).

6.1. Funcionamiento de la máquina de Turing

La máquina de Turing (abreviado MT, ver figura 6.1(b)) tiene, como los autómatas que
hemos visto antes, un control finito, una cabeza lectora y una cinta donde puede haber
caracteres, y donde eventualmente viene la palabra de entrada. La cinta es de longitud
infinita hacia la derecha, hacia donde se extiende indefinidamente, llenándose los espacios con
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Figura 6.1:

el caracter blanco (que representaremos con “t”). La cinta no es infinita hacia la izquierda,
por lo que hay un cuadro de la cinta que es el extremo izquierdo, como en la figura 6.1(b).

En la MT la cabeza lectora es de lectura y escritura, por lo que la cinta puede ser
modificada en curso de ejecución. Además, en la MT la cabeza se mueve bidireccionalmente
(izquierda y derecha), por lo que puede pasar repetidas veces sobre un mismo segmento de
la cinta.

La operación de la MT consta de los siguientes pasos:

1. Lee un caracter en la cinta

2. Efectúa una transición de estado

3. Realiza una acción en la cinta

Las acciones que puede ejecutar en la cinta la MT pueden ser:

Escribe un śımbolo en la cinta, o

Mueve la cabeza a la izquierda o a la derecha

Estas dos acciones son excluyentes, es decir, se hace una o la otra, pero no ambas a la
vez.

La palabra de entrada en la MT está escrita inicialmente en la cinta, como es habitual
en nuestros autómatas, pero iniciando a partir de la segunda posición de la cinta, siendo el
primer cuadro un caracter blanco. Como la cinta es infinita, inicialmente toda la parte de la
cinta a la derecha de la palabra de entrada está llena del caracter blanco (t).
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q

b/b
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Figura 6.2: MT que acepta palabras que empiezan con a

Por definición, al iniciar la operación de la MT, la cabeza lectora está posicionada en el
caracter blanco a la izquierda de la palabra de entrada, el cual es el cuadro más a la izquierda
de la cinta.

Decimos que en la MT se llega al “final de un cálculo” cuando se alcanza un estado
especial llamado halt en el control finito, como resultado de una transición. Representaremos
al halt por “h”. 1 Al llegar al halt, se detiene la operación de la MT, y se acepta la palabra
de entrada. Aśı, en la MT no hay estados finales. En cierto sentido el halt seŕıa entonces el
único estado final, sólo que además detiene la ejecución.

Cuando queremos que una palabra no sea aceptada, desde luego debemos evitar que la
MT llegue al halt. Podemos asegurarnos de ello haciendo que la MT caiga en un ciclo infinito
(ver ejemplos adelante).

El lenguaje aceptado por una MT es simplemente el conjunto de palabras aceptadas por
ella. 2

Al diseñar una MT que acepte un cierto lenguaje, en realidad diseñamos el autómata
finito que controla la cabeza y la cinta, el cual es un autómata con salida (de Mealy, ver
sección 2.7). Aśı, podemos usar la notación gráfica utilizada para aquellos autómatas para
indicar su funcionamiento. En particular, cuando trazamos una flecha que va de un estado
p a un estado q con etiqueta σ/L, quiere decir que cuando la entrada al control finito (esto
es, el caracter léıdo por la cabeza de la MT) es σ, la cabeza lectora hace un movimiento a
la izquierda, indicada por el caracter L (left, en inglés); similarmente cuando se tiene una
flecha con σ/R el movimiento es a la derecha. Cuando la flecha tiene la etiqueta σ/ξ, donde
ξ es un caracter, entonces la acción al recibir el caracter σ consiste en escribir el caracter ξ
en la cinta. Con estos recursos es suficiente para diseñar algunas MT, como en el siguiente
ejemplo.

Ejemplo.- Diseñar (el control finito de) una MT que acepte las palabras en {a, b} que
comiencen con a. La solución se muestra en la figura 6.2. Si la primera letra es una “a”, la
palabra se acepta, y en caso contrario se hace que la MT caiga en un ciclo infinito, leyendo y
escribiendo “b”. Nótese que la acción inmediatamente antes de caer en el “halt” es irrelevante;
igual se pod́ıa haber puesto “a/a” o “a/R” como etiqueta de la flecha.

1No traduciremos el término “halt”, que en inglés significa detener, porque es tradicional usar exactamente
este nombre en máquinas de Turing.

2Más adelante daremos definiciones formales.
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Figura 6.3: MT que acepta palabras que terminan con a

Ejemplo.- Diseñar una MT que acepte las palabras en {a, b} que terminen con a. Aunque
este ejemplo parece bastante similar al precedente, en realidad es más complicado, pues para
ver cual es la última letra, hay que ir hasta el blanco a la derecha de la palabra, luego regresar
a la última letra y verificar si es una “a”. Una solución se muestra en la figura 6.3.

Ejemplo.- Probar que hay lenguajes que no son libres de contexto, pero que pueden ser
aceptados por una máquina de Turing. Proponemos el lenguaje anbncn, que se sabe que no
es LLC. Ahora construiremos una MT que lo acepte. La estrategia para el funcionamiento
de dicha MT consistirá en ir haciendo “pasadas” por la palabra, descontando en cada una de
ellas una a, una b y una c; para descontar esos caracteres simplemente los reemplazaremos
por un caracter “∗”. Cuando ya no encontremos ninguna a, b o c en alguna pasada, si queda
alguna de las otras dos letras la palabra no es aceptada; en caso contrario se llega a halt. Es
útil, antes de emprender el diseño de una MT, tener una idea muy clara de cómo se quiere
que funcione. Para eso se puede detallar el funcionamiento con algún ejemplo representativo,
como en la tabla siguiente, para la palabra aabbcc. La posición de la cabeza se indica por el
śımbolo “4”.
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t a a b b c c t
4
t a a b b c c t
4

t ∗ a b b c c t
4

t ∗ a b b c c t
4

t ∗ a b b c c t
4

t ∗ a ∗ b c c t
4

. . . . . . . . .
t ∗ a ∗ b ∗ c t

4
. . . . . . . . .

t ∗ a ∗ b ∗ c t
4
t ∗ a ∗ b ∗ c t
4
. . . . . . . . .

Lo que falta por hacer es diseñar los estados de la MT, lo cual es relativamente simple y
que dejamos como ejercicio (ver sección de ejercicios).

6.2. Formalización de la MT

Habiendo en la sección precedente hecho un recuento intuitivo de las caracteŕısticas fun-
damentales de la MT, ahora procedemos a su formalización, esto es, a su modelización
matemática en términos de la teoŕıa de conjuntos.

Una MT es un qúıntuplo (K, Σ, Γ, δ, s) donde:

K es un conjunto de estados tal que h ∈ K;

Σ es el alfabeto de entrada, donde t /∈ Σ;

Γ es el alfabeto de la cinta, donde t ∈ Γ y Σ ⊆ Γ

s ∈ K es el estado inicial;

δ : (K − {h} × Γ)→ K × (Γ ∪ {L, R}) es la función de transición.
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La expresión de la función de transición parece algo complicada, pero puede entenderse
de la siguiente manera: la función de transición del control finito debe considerar como
entradas el estado actual, que es un elemento de K –pero que no puede ser h– aśı como el
caracter léıdo en la cinta, que es elemento de Γ. Por eso a la izquierda de la flecha aparece
la expresión δ : (K − {h} × Γ). Luego, el resultado de la función de transición debe incluir
el siguiente estado, que es elemento de K. Otro resultado de la función de transición es la
acción a ejecutar por la MT, que puede ser una escritura o un movimiento a la izquierda
o a la derecha. La acción “mover cabeza a la izquierda” se representa por el śımbolo L, y
similarmente R para la derecha. En el caso de la escritura, en vez de usar un śımbolo o
comando especial, simplemente se indica el caracter que se escribe, el cual es un elemento de
Γ. Desde luego, para que no haya confusión se requiere que ni L ni R estén en Γ. Resumiendo,
el resultado de la función de transición debe ser un elemento de K × (Γ ∪ {L, R}).

Aśı, si δ(q, a) = (p, b), donde b ∈ Γ, esto quiere decir que estando la MT en el estado q
con la cabeza lectora sobre un caracter a, la función de transición enviará al autómata a un
estado p, y adicionalmente escribirá el caracter b. Similarmente si δ(q, a) = (p, L), la cabeza
de la MT hará un movimiento a la izquierda además de la transición de estado.

Por ejemplo, sea la MT siguiente: K = {s, h}, (sólo está el estado inicial, además del
“halt”), Σ = {a}, Γ = {a,t}, δ(s, a) = (s, R), δ(s,t) = (h,R). Puede verse por la función de
transición que esta MT ejecuta un ciclo repetitivo en que mueve la cabeza hacia la derecha
en tanto siga leyendo un caracter a, y se detiene (hace halt) en cuanto llega a un blanco.

Nótese que, puesto que δ es una función, en principio debe tenerse por cada estado y
cada caracter una transición. Esto quiere decir que cada estado debe tener una cantidad
de flechas de salida igual a |Γ|. Por ejemplo, si Γ = {t, a, b}, y K = {q, h}, entonces debe
haber flechas de salida de q con a, de q con b y también de q con t. 3 En la práctica, sin
embargo, una gran cantidad de flechas tiende a hacer menos comprensible un diagrama, por
lo que solamente incluiremos las flechas “necesarias”, suponiendo en consecuencia que las
demás flechas pueden tener una salida cualquiera, sin afectar esto el funcionamiento de la
MT. Por ejemplo, a partir del estado inicial podemos suponer, sin arriesgarnos, que no es
posible encontrar más que el caracter blanco, por lo que no tiene caso dibujar flechas del
estado inicial con a, con b, etc. 4

6.2.1. Configuración

Como en otros autómatas que hemos visto en secciones anteriores, en las MT la configu-
ración resume la situación en que se encuentra la MT en cualquier punto intermedio de un
cálculo, de manera tal que con sólo las informaciones contenidas en la configuración podamos
reconstruir dicha situación y continuar el cálculo.

3Nótese que h es una excepción, pues no debe tener ninguna flecha de salida.
4Desde luego, si se regresa al estado inicial después de haber ejecutado otras transiciones, śı será posible

encontrar otros caracteres.
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Las informaciones necesarias para resumir la situación de una MT en medio de un cálculo
son:

Estado en que se encuentra la MT

Contenido de la cinta

Posición de la cabeza

Ahora el problema es cómo representar formalmente cada uno de los tres componentes de
la configuración, tratando de hacerlo en la forma más similar posible a como representamos
la configuración para otros tipos de autómatas.

No hay problema con el estado en que se encuentra la MT, que es directamente un
elemento de K. Respecto al contenido de la cinta, existe la dificultad de que como es infinita,
no podemos representarla toda por una cadena de caracteres, que siempre será de tamaño
finito. Vamos a tomar la solución de tomar en cuenta únicamente la parte de la cinta hasta
antes de donde empieza la sucesión infinita de blancos, pues esta última realmente no contiene
ninguna información útil. Por ejemplo, en la figura 6.4(a) dicha parte de la cinta es “t a t
t b b a b”.

El siguiente problema es cómo caracterizar la posición de la cabeza lectora. Recordemos
la solución que hab́ıamos adoptado para los AF y AP, en que representábamos de una vez
el contenido de la cinta y la posición de la cabeza limitándose a representar con una cadena
lo que falta por leer de la palabra –esto es, tirando a la basura la parte a la izquierda de
la cabeza lectora. El problema es que esta solución no funciona, pues en el caso de las MT
hay movimiento de la cabeza a la izquierda, por lo que los caracteres a la izquierda de la
cabeza podŕıan eventualmente ser léıdos de nuevo o hasta modificados. Otra solución seŕıa
representar la posición por un número entero que indicara la posición actual con respecto
a alguna referencia. Sin embargo, adoptaremos la solución consistente en dividir la cinta
dentro de la configuración en tres pedazos:

La parte de la cinta a la izquierda de la cabeza, que es un elemento de Γ∗.

El cuadro en la posición de la cabeza lectora, que es un elemento de Γ.

La parte de la cinta a la derecha de la cabeza lectora, hasta antes de la sucesión de
blancos que se extiende indefinidamente a la derecha.

La parte a la derecha de la cabeza lectora es, desde luego, un elemento de Γ∗, pero
podemos hacer una mejor caracterización de ella considerando que el último caracter de
ella no es blanco. Aśı, seŕıa un elemento de Γ∗(Γ − {t}). Sin embargo, hay un problema
técnico: esta expresión no incluye la cadena vaćıa, la cual puede producirse cuando todos
los caracteres a la derecha de la cabeza son blancos. La solución es simplemente añadir este
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Figura 6.4: Contenido de la cinta en una configuración
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a a b b

Figura 6.5: Configuración en MT

caso, por lo que finalmente la parte a la derecha de la cabeza lectora es un elemento de
Γ∗(Γ− {t}) ∪ {ε}.

Por ejemplo, la cinta de la figura 6.4(a) se representa con las cadenas de caracteres tatt,
b y bab (parte izquierda, cuadro bajo la cabeza, y parte derecha, respectivamente), mientras
que la cinta de la figura 6.4(b) seŕıa representada por ε, t y tttb at b.

Finalmente, la configuración es un elemento de:

K × Γ∗ × Γ× (Γ∗(Γ− {t}) ∪ {ε}

(Ver figura 6.5)

Como en los AF y los AP, en las MT vamos a indicar las configuraciones encerradas entre
dobles corchetes, como en [[q, aa, a, bb]], que indica que la MT en cuestión se encuentra en el
estado q, habiendo a la izquierda de la cabeza una cadena “aa”, bajo la cabeza una “a”, y a
su derecha –antes de la secuencia infinita de blancos– una cadena “bb”. Para simplificar aún
más la notación, podemos indicar por un caracter subrayado la posición de la cabeza lectora;
aśı en vez de tener cuatro componentes la configuración tendrá únicamente dos, como por
ejemplo en [[q, aaabb]], que es equivalente al ejemplo que acabamos de dar.
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6.2.2. Relación entre configuraciones

Vamos a definir una relación binaria “C1 ` C2” que nos indica que la MT puede pasar
de la configuración C1 a la configuración C2.

Definición.- La relación ` en C×C –donde C es el conjunto de configuraciones– se define
por casos, de la siguiente manera:

Caso escritura:

[[p, w, a, u]] ` [[q, w, b, u]]

ssi δ(p, a) = (q, b), donde b ∈ Γ

Caso de movimiento a la izquierda, parte derecha no vaćıa:

[[p, wd, a, u]] ` [[q, w, d, au]]

ssi δ(p, a) = (q, L), donde a 6= t o bien u 6= ε

Caso de movimiento a la izquierda, parte derecha vaćıa:

[[p, wd,t, ε]] ` [[q, w, d, ε]]

ssi δ(p,t) = (q, L)

Caso de movimiento a la derecha, parte derecha no vaćıa:

[[p, w, a, du]] ` [[q, wa, d, u]]

ssi δ(p, a) = (q, R)

Caso de movimiento a la derecha, parte derecha vaćıa:

[[p, w, a, ε]] ` [[q, wa,t, ε]]

ssi δ(p, a) = (q, R)

Ejemplos:

Si δ(q1, a) = (q2, b), [[q1, bba]] ` [[q2, bbb]]
Si δ(q1, a) = (q2, R), [[q1, bab]] ` [[q2, bab]]

[[q1, bab]] ` [[q2, babt]]
Si δ(q1, a) = (q2, L), [[q1, aabab]] ` [[q2, aabab]]

[[q1, abb]] ` [[q2, abb]]
[[q1, abtt]] ` [[q2, abt]]
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6.2.3. Configuración “colgada”

En el caso de que la cabeza lectora se encuentre en el cuadro de la cinta más a la izquierda,
y se trate de hacer un movimiento a la izquierda, se produce un error llamado “configuración
colgada”, que tiene como consecuencia que la MT no pueda seguir funcionando, y desde
luego no podrá ser aceptada la palabra de entrada.

Formalmente, si tenemos una configuración de la forma [[p, ε, a, u]] y la transición es
δ(p, a) = (q, L), no existe una configuración C tal que [[p, ε, a, u]] ` C.

En general vamos a evitar el uso intencional de las configuraciones colgadas, de modo
que si no queremos que una palabra sea aceptada, se hará que la MT se cicle en vez de
“colgarse”.

6.2.4. Cálculos en MT

Igual que en otros tipos de autómatas que hemos visto anteriormente, en las MT un
cálculo es una secuencia C1, C2, . . . , Cn de configuraciones tal que Ci ` Ci+1. Un cálculo puede
ser visto en términos computacionales como una “traza de ejecución”, que nos describe de una
manera muy exacta la forma en que una MT responde ante una entrada en particular. Por
ejemplo, sea la MT siguiente (dada ya como ejemplo anteriormente): K = {s}, Σ = {a,t},
δ(s, a) = (s, R), δ(s,t) = (h,t). Ante la configuración [[s, a, a, aa]] se presenta el cálculo
siguiente:

[[s, aaaa]] ` [[s, aaaa]] ` [[s, aaaa]] ` [[s, aaaat]] ` [[h, aaaat]]

Se puede llegar de una configuración Ci a Cj, para i ≤ j en cero o varios pasos; esto
se indica en forma compacta utilizando la cerradura reflexiva y transitiva de la relación `,
denotada por `∗, quedando Ci `∗ Cj.

6.2.5. Palabra aceptada

Con las definiciones dadas ahora estamos en condiciones de definir formalmente las no-
ciones de palabra aceptada y lenguaje aceptado:

Definición.- Una palabra w ∈ Σ∗, es aceptada por una MT M si

[[s, ε,t, w]] `∗ [[h, α, a, β]]

donde a,∈ Γ, α, β ∈ Γ. Como se ve, el único criterio para que la palabra de entrada w se
acepte es que se llegue a halt en algún momento, independientemente del contenido final
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de la cinta, el cual es visto como “basura”. Por ejemplo, la MT del último ejemplo acepta
cualquier palabra de entrada.

Decimos de que un lenguaje L es Turing-aceptable si hay alguna MT que da halt para
toda entrada w ∈ L.

6.3. MT para cálculos de funciones

Hasta el momento hemos visto las MT como analizadoras de palabras cuyo fin es deter-
minar si la palabra de entrada pertenece o no al lenguaje aceptado. Sin embargo, las MT
también pueden ser utilizadas para calcular resultados u operaciones a partir de la entrada.
En vez de considerar como “basura” el contenido de la cinta al llegar al halt, podŕıamos verlo
como un resultado calculado. Para poder interpretar sin ambigüedad el contenido final de la
cinta como resultado, vamos a requerir que cumpla con un formato estricto, caracterizado
por los siguientes puntos:

La palabra de salida no debe contener ningún caracter blanco (t).

La palabra de salida comienza en el segundo caracter de la cinta, teniendo a su izquierda
un blanco y a su derecha una infinidad de blancos.

La cabeza estará posicionada en el primer blanco a la derecha de la palabra de salida.

Se puede apreciar que el formato para la palabra de salida es muy similar al de la palabra
de entrada, salvo que en la primera, la cabeza está posicionada en el caracter a la derecha
de la palabra.

Ejemplo.- Supongamos la función reverse, que invierte el orden en que aparecen las letras
en la palabra de entrada; aśı, reverse(aabb) = bbaa. Si inicialmente el contenido de la cinta
es de la forma taabbt . . ., donde el caracter subrayado indica la posición de la cabeza, la
cinta al final debe quedar como: tbbaat . . ..

Es muy importante ceñirse estrictamente a este formato, y no caer en ninguno de los
siguientes errores (frecuentes, desgraciadamente):

Aparece algún espacio blanco dentro del resultado, como en la cinta tbbaatabt . . ..

El resultado no está posicionado empezando en el segundo cuadro de la cinta, como en
tttbbaat . . ..

La cabeza no está ubicada exactamente en el cuadro a la derecha del resultado, como
en la cinta tbbaat . . ..
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Aparece “basura” (caracteres no blancos) en la cinta, a la derecha o izquierda del
resultado, como en la cinta tbbaatttbt . . ..

Para precisar estas nociones, utilizamos la noción formal de configuración : Una MT
calcula un resultado u ∈ Σ∗ a partir de una entrada w ∈ Σ∗ si:

[[s, ε,t, w]] `∗ [[h, u,t, ε]]

Como se sabe, las funciones en matemáticas sirven precisamente para describir la relación
entre un resultado y una entrada. Podemos relacionar esta noción con la definición anterior
de la manera siguiente: Una MT M calcula una función f : Σ∗ → Σ∗ si para toda entrada
w, M calcula un resultado u tal que f(w) = u.

Si hay una MT que calcula una función f , decimos que f es Turing-calculable.

Ejemplo.- Construir una máquina de Turing que reste dos números naturales en unario,
esto es, f(x, y) = x− y. Desde luego, como las MT reciben un solo argumento, para realizar
una función de dos argumentos como la resta en realidad se recibe un solo argumento que
contiene un śımbolo para separar dos partes de la entrada. Por ejemplo, la resta de 5 − 3
quedaŕıa indicada por la cadena “11111− 111”, lo que seŕıa el argumento de entrada; desde
luego, el resultado en este caso seŕıa la cadena “11”. La cabeza lectora al final debe estar
posicionada en el blanco a la derecha del residuo. En caso de que el sustraendo sea mayor
que el minuendo, el resultado es cero. A esta forma de resta sin resultados negativos se le
llama a veces “monus” en vez de “menos”.

La estrategia para construir esta MT seŕıa ir “descontando” cada 1 del minuendo contra
otro 1 del sustraendo, reemplazando ambos por un caracter arbitrario –sea “∗”. Cuando se
termine el sustraendo, se borran los caracteres inútiles de manera que queden sólo los restos
del minuendo. Para evitar tener que recorrer el residuo, descontamos caracteres del minuendo
de derecha a izquierda. Resumiendo, tendŕıamos una secuencia de configuraciones de la cinta
como las siguientes (la última ĺınea indica la configuración en la que debe dar halt).
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t 1 1 1 − 1 1 t
4
t 1 1 1 − 1 1 t
4
. . . . . . . . .

t 1 1 1 − 1 1 t
4

t 1 1 1 − 1 1 t
4

t 1 1 1 − 1 ∗ t
4

. . . . . . . . .
t 1 1 ∗ − 1 ∗ t

4
. . . . . . . . .

t 1 ∗ ∗ − ∗ ∗ t
4

. . . . . . . . .
t 1 t t t t t t

4

Dejamos como ejercicio hacer el diagrama de estados del control finito de esta MT (ver
sección de ejercicios).

6.4. Problemas de decisión

Un caso particular de funciones es aquel en que el resultado sólo puede ser śı o no. Si
representamos el śı con 1 y el no con 0, estamos considerando funciones g : Σ∗ → {1, 0}. En
este caso, la MT sirve para decidir si la entrada tiene una propiedad P o no la tiene.

Por ejemplo, si la propiedad P consiste en que la entrada es de longitud par, para una
palabra de entrada como aaba la salida seria 1, y para bab seŕıa 0.

La MT correspondiente debe generar los cálculos siguientes:

[[s, ε,t, w]] `∗ [[h,t1,t, ε]]

si |w| es par, y
[[s, ε,t, w]] `∗ [[h,t0,t, ε]]

si |w| es non.

Un diseño para la MT que decide si una entrada en el alfabeto Σ = {a, b} es de longitud
par aparece en la figura 6.6. La estrategia en este diseño es primero recorrer la cabeza al
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Figura 6.6: MT que decide si la entrada es de longitud par

extremo derecho, y luego ir borrando los caracteres de entrada, de derecha a izquierda, y
“recordando” mediante los estados 3 y 5 si la cantidad de letras es, hasta el momento, par
o impar, respectivamente. Al terminar de borrar la palabra de entrada, según que se haya
terminado en el estado 3 o 5, se escribe 1 o 0 en la cinta, y se llega a halt.

Definición.- Decimos que un lenguaje L es Turing-decidible si hay alguna MT que entrega
un resultado 1 si la entrada w está en L, y un resultado 0 en caso contrario.

Debe quedar claro que para que una MT entregue como resultado 1 o 0, es condición
indispensable que la palabra de entrada haya sido aceptada. Esto tiene la consecuencia
siguiente:

Proposición.- Un lenguaje es Turing-decidible solamente si es Turing-aceptable.

Si un lenguaje no es Turing-decidible se dice que es indecidible. Más adelante veremos
lenguajes indecidibles.

6.4.1. Relación entre aceptar y decidir

Las siguientes propiedades que relacionan “Turing-decidible” con “Turing-aceptable” son
útiles para comprender mejor ambas nociones:

1. Todo lenguaje Turing-decidible es Turing-aceptable

2. Si L es Turing-decidible, Lc es Turing-decidible

3. L es decidible ssi L y Lc son Turing-aceptables
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La prueba de 1 es muy sencilla, pues para decidir un lenguaje L, la MT debe primero
que nada llegar al halt para toda palabra de w ∈ L, con lo que necesariamente acepta w.

También el punto 2 es sencillo, pues dada una MT M que decide el lenguaje L, producimos
una máquina M ′ que decide Lc cambiando en M el resultado 1 por 0 y viceversa.

La prueba de 3 es más complicada. De hecho no probaremos que si L y Lc son Turing-
aceptables entonces L es decidido por alguna MT, sino más bien que hay un procedimiento
mecánico para decidir L. Se supone que, por la llamada Tesis de Church, que veremos luego,
ambos enunciados son equivalentes. Supongamos que tenemos dos MT, M y M c, que aceptan
respectivamente los lenguajes L y Lc. Ponemos a funcionar ambas máquinas “en paralelo”,
analizando ambas la misma palabra w. Ahora bien, si w ∈ L, eventualmente M llegará al
halt. Si w /∈ L, entonces w ∈ Lc, y en algún momento M c se detendrá. Ahora consideremos
una MT adicional M∗, que “observa” a M y a M c, y que si M se para, entrega una salida
1, mientras que si M c se para, entrega una salida 0. Es evidente que para toda palabra w,
M∗ decidirá 1 o 0, por lo que el lenguaje es decidible.

6.5. Tesis de Church

Ha habido diversos intentos de encontrar otros modelos de máquinas u otros formalismos
que sean más poderosos que las MT, en el mismo sentido que las MT son más poderosas que
los AF y los AP. (Decimos que una tipo de máquina MA es más poderoso que un tipo MB

cuando el conjunto de lenguajes aceptados por alguna máquina en MB es un subconjunto
propio de los aceptados por MA). Por ejemplo, independientemente de Turing, Emil Post
propuso aún otro modelo de máquina abstracta, basada en la idea de un diagrama de flujo
[12].

También se han tratado de hacer “extensiones” a la MT, para hacerla más poderosa.
Por ejemplo, se propusieron MT no deterministas. Sin embargo, todos los intentos han sido
infructuosos al encontrarse que dichas extensiones son equivalentes en poder de cálculo a la
MT original [10].

El mismo A. Turing propuso, en la llamada “Tesis de Turing”, que todo aquello que puede
ser calculado, podrá ser calculado en una MT, y que no podrá haber una máquina abstracta
que calcule algo que la MT no pueda calcular [11]. Más aún, A. Church, a la sazón inventor
del cálculo lambda –uno de los sistemas competidores de la MT–, propuso la conjetura de que
en realidad no puede haber ningún modelo de cómputo más poderoso que los desarrollados
hasta entonces, que inclúıan la MT, su cálculo lambda, aśı como otras máquinas abstractas,
como la máquina de Post.

Hasta nuestros d́ıas la llamada “tesis de Church” no ha podido ser probada ni refutada.
La tesis de Church, sin embargo, no se considera un teorema que pudiera ser eventualmente
probado, sino simplemente una hipótesis de trabajo.
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6.5.1. Comparación de las MT con otras máquinas

Podemos considerar comparaciones de la MT con:

1. Extensiones a la MT

a) MT con varias cintas, varias cabezas

b) MT con no determinismo

2. Otras máquinas de cinta

3. Otros paradigmas (máquinas de Post, Gramáticas)

De todas estas posibilidades, sólo consideraremos las máquinas de Post. Las compara-
ciones restantes pueden ser encontradas en la referencia [10].

Las pruebas que vamos a considerar se basan en el principio de la simulación. Esta consiste
informalmente en que la máquina simuladora actúa como lo haŕıa la máquina simulada.

Formalmente consiste en un mapeo µ que asocia a cada configuración de la máquina
simuladora Mora una configuración de la máquina simulada Mada, y a cada acción de Mora una
acción de Mada, de modo tal que se cumpla la correspondencia de los tres puntos señalados
arriba.

6.6. Máquinas de Post

En esta sección presentaremos los elementos de la máquina propuesta por E. Post, de
manera similar a como aparecen en [12].

Conceptualmente las máquinas de Post tienen poca relación con el modelo básico de
máquinas que hemos visto hasta el momento –básicamente derivaciones de los AF. Las
máquinas de Post (MP) están basadas en el concepto de diagramas de flujo, tan habituales en
nuestros d́ıas por la enseñanza de la programación en lenguajes imperativos (C, Pascal, etc.).
La utilidad práctica de los diagramas de flujo es una de las razones para incluir el estudio de
las máquinas de Post en este texto, aún cuando en muchos otros textos se prefiere comparar
a las MT con los “sistemas de reescritura”, con el “cálculo lambda” y otras alternativas.

En un diagrama de flujo se van siguiendo las flechas que nos llevan de la ejecución de
una acción a la siguiente; a este recorrido se le llama “flujo de control”. Algunas acciones
especiales son condicionales, en el sentido de que tienen varias flechas de salida, dependiendo
la que uno tome del cumplimiento de cierta condición. 5

5Pensamos que el lector está habituado a los diagramas de flujo, por lo que no abundaremos en ejemplos
y explicaciones.
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Más espećıficamente, los diagramas de flujo de Post, llamados “Máquinas de Post” (MP),
consideran unas acciones muy elementales cuyo efecto eventualmente es alterar el valor

de una única variable x. La variable x es capaz de almacenar una cadena de caracteres
arbitrariamente grande.

x ← xa

x ← xb
�

x ← x@

START

REJECT

ACCEPT

x   tail(x) ←

a b # @ εεεεε

Inicio

Rechazo

Acepta

Condicion

Asignacion

Figura 6.7: Acciones en MP

En la figura 6.7 presentamos un resumen de las acciones de la MP, las cuales son: 6

Inicio. La acción START indica el punto en que empieza a recorrerse el diagrama de flujo.

Rechazo. La acción REJECT indica que la palabra de entrada no es aceptada (es rechaz-
ada). Además termina la ejecución del diagrama.

Acepta. La acción ACCEPT indica que la palabra de entrada es aceptada. También ter-
mina la ejecución del diagrama.

Condicional. La acción x ← tail(x) tiene el efecto de quitar el primer caracter de la
palabra almacenada en la variable x; la continuación del diagrama dependerá de cuál
fue el caracter que se quitó a x, habiendo varias salidas de la condicional, indicadas
con sendos śımbolos, que corresponden al caracter que se quitó a la variable. En otras
palabras, si la palabra de entrada es σ1, σ2, . . . , σn, el camino que tomemos para seguir
el diagrama será el indicado con un śımbolo que coincida con σ1. Hay además una
salida marcada con ε, para el caso de que la variable x contenga la palabra vaćıa (antes
de tratar de quitarle el caracter).

Asignación. Las acciones de la forma x← xa, donde a ∈ Σ, tienen el efecto de añadir a la
variable x el caracter a por la derecha. Aśı, si x = α antes de la asignación, después de
ella tendremos x = αa. Hay una instrucción x← xa para cada caracter a ∈ Σ.

6Hemos utilizado los nombres en inglés para las acciones de la MP, simplemente por compatibilidad con
la gran mayoŕıa de los textos disponibles.
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x   tail(x) ←

a�
b

ε�ε

START
�

x ←  xa

x   tail(x) ←

REJECT

ACCEPT

x   tail(x) ←

REJECT

a�

bε�ε

a� ε�ε
b

x    x@←�←

@
�

x    x@←�←

@
�

@
�

x←xb

Figura 6.8: MP para {anbn}

Ejemplo.- La MP de la figura 6.8 acepta el lenguaje {anbn}. En efecto, siguiendo dicha
figura, podemos ver que la variable x toma los siguientes valores al recorrer el diagrama de
flujo:

Acción Valor de x
START aabb
x← x@ aabb@

x← tail(x) abb@
x← tail(x) bb@

x← xa bb@a
x← tail(x) b@a
x← tail(x) @a

x← xb @ab
x← tail(x) ab

x← x@ ab@
x← tail(x) b@
x← tail(x) @
x← tail(x) ε

x← x@ @
x← tail(x) ε
ACCEPT

Como se puede observar en este listado, las letras a, b y el caracter @ salen de la variable x
por la izquierda, por la acción de x← tail(x), y luego entran por la derecha, como resultado
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de una acción x ← xσ, donde σ es el caracter u se añade a la derecha. En la MP de este
ejemplo, comparando las ĺıneas 2 y 10 del listado podemos ver que en la 10 ya se ha eliminado
una a y una b. Iterando en el diagrama es posible cancelar cada a con cada b hasta que se
agoten las letras.

6.6.1. Formalización de las MP

Recordemos antes que nada que la formalización de una máquina abstracta reviste dos
aspectos: uno es formalizar los componentes de una máquina en particular, esto es, las
informaciones que hacen diferente a una máquina de las demás de su clase, 7 mientras que
el otro aspecto es el de caracterizar el funcionamiento de las máquinas que tratamos de
formalizar. En el primer aspecto, las MP podŕıan ser caracterizadas como grafos, donde los
nodos seŕıan las acciones, y los vértices seŕıan las flechas del diagrama de Post. Esto es, una
MP seŕıa básicamente un conjunto de nodos N , clasificados de acuerdo con las acciones que
tienen asociadas, aśı como una función de transición que determine cuál es el nodo siguiente
en el diagrama. Aśı tendremos:

Definición.- Una MP es una tripleta (N, Σ, δ), donde:

N = NA∪NC ∪{START, ACCEPT, REJECT}, siendo NA el conjunto de nodos de
asignación y NC el conjunto de nodos condicionales. En otras palabras, los nodos están
clasificados según la acción que tienen asociada. Adicionalmente NA está clasificado
según la letra que se añade por la derecha, es decir, NA = NAσ1 ∪NAσ2 ∪ . . . NAσn

Como de costumbre, Σ es el alfabeto, que no incluye el caracter @.

δ es la función de transición que nos indica cuál es el siguiente nodo al que hay que ir:

δ : N − {ACCEPT,REJECT} × Σ ∪ {@, ε} → N − {START}

Como se ve, el nodo destino de δ depende del nodo anterior y de un caracter (el caracter
suprimido, en el caso de la acción condicional –en todas las demás acciones el caracter es
irrelevante y el destino debe ser el mismo para todo caracter).

Ahora trataremos de formalizar el funcionamiento de las MP. Como habitualmente, nos
apoyaremos en la noción de configuración. En la configuración debemos resumir todas las
informaciones que caracterizan completamente la situación en que se encuentra una MP a
mitad de un cálculo. En la configuración de una MP vamos a considerar, evidentemente,
el punto en que nos encontramos al recorrer el diagrama de flujo –lo que formalmente se
representaŕıa como un nodo n ∈ N . 8 Además necesitamos considerar el contenido de la
variable, que es una palabra formada por letras del alfabeto, pudiendo aparecer además el

7Este era el caso de las qúıntuplas (K, Σ, δ, s, F ) para los AF.
8Al decir que estamos en un nodo n, significa que aún no se ejecuta la acción del nodo n.
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caracter especial @. Entonces la configuración es un elemento de N×(Σ∪{@})∗. Por ejemplo,
una configuración seŕıa [[n, ab@aa]].

La relación entre dos configuraciones C1 `M C2, que significa que se puede pasar en la
MP M de la configuración C1 a C2, se define de la manera siguiente:

Definición.- [[m, au]] ` [[n, bw]], a, b ∈ Σ ∪ {ε, @}, u, w ∈ (Σ ∪ {@})∗ ssi δ(m, a) = n, y

1. Si m ∈ NT , u = bw

2. Si m ∈ NAσ, a = b, w = uσ

3. Si m = s, a = b, u = w

Definición.-Una palabra w ∈ Σ∗ es aceptada por una MP M ssi [[START, w]] `∗M
[[ACCEPT, v]].

Una palabra puede no ser aceptada ya sea porque se cae en un REJECT o bien porque
la MP cae en un ciclo infinito.

Ejercicio.- Definir similarmente a como se hizo con las MT la noción de función calculada.

6.6.2. Equivalencia entre MP y MT

El mismo Post comprobó la equivalencia entre sus diagramas de flujo y las máquinas de
Turing, lo que contribuyó a reforzar la conjetura establecida por A. Church –esto es, que la
MT es la más poderosa expresión de lo algoŕıtmicamente calculable.

Teorema de Post.- Para toda MT hay una MP que acepta el mismo lenguaje, o que
calcula la misma función, y viceversa.

La prueba del teorema de Post se hace mostrando que una MT puede ser simulada por
una MP, y viceversa. Al simular MT en MP mostramos que estas últimas son al menos
tan poderosas como las primeras (en el sentido de que pueden hacer todo lo que haga MT);
similarmente en el sentido contrario. Al establecer ambas direcciones de la prueba se muestra
la equivalencia MP-MT. Por “simular” entendemos que, por cada acción de la MT, la MP
haga una acción correspondiente, de manera tal que al final del cálculo, una palabra sea
aceptada en Post ssi es aceptada también en Turing; similarmente para el sentido contrario
de la prueba.

La simulación de la MT involucra los siguientes aspectos:

Codificar las configuraciones de la MT en configuraciones de la MP
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Para cada acción de MT, encontrar un diagrama en MP que haga lo mismo.

La codificación de la configuración de la MT en una configuración “equivalente” de la
MP involucra considerar cómo codificar cada una de las informaciones de la configuración
de MT. En particular, hay que pensar cómo expresar en MP el contenido de la cinta de MT,
aśı como la posición de la cabeza lectora.

Sea una configuración [[q, w, u, v]] en MT. Entonces en la variable de la MP tendŕıamos:
uv@w. Como se ve, el primer caracter de la variable es el mismo caracter sobre el que está la
cabeza lectora en la MT; luego sigue a la derecha la misma cadena que en la MT. En cambio,
la parte izquierda de la cinta en MT es colocada en la variable de MP separada por el caracter
especial “@”. Por ejemplo, si en MT tenemos una cinta de la forma abaabbb, la variable de
MP contendrá la cadena abbb@aba.

Ahora hay que considerar cómo “traducir” las acciones de una MT a acciones correspon-
dientes en una MP. Consideramos los siguientes casos:

Escritura de caracter: Sea una transición δ(p, d) = (q, σ), donde σ ∈ Γ. Al paso entre
configuraciones de MT:

[[p, abcdefg]] ` [[q, abcσefg]]

corresponde el paso de x a x′ como sigue:

x = defg@abc x = σefg@abc

Para hacer la transformación indicada (de x a x′) en MP, hay que encontrar un dia-
grama que la efectúe. Un diagrama que cumple con esta función aparece en la figura
6.9.

Movimiento a la derecha: Al paso entre configuraciones de MT:

[[p, abcdefg]] ` [[q, abcdefg]]

corresponde el paso de x a x′:

x = defg@abc x′ = efg@abcd

Este paso de x a x′ se puede hacer con el (muy simple) diagrama de MP de la figura
6.10.

Movimiento a la izquierda: A un paso entre configuraciones en MT:

[[p, abcdefg]] ` [[q, abcdefg]]

corresponde el paso de x a x′:

x = defg@abc x′ = cdefg@ab

El diagrama de la MP que hace dicha operación es dejado como ejercicio (medianamente
dif́ıcil) al lector (ver sección de ejercicios).
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x   tail(x) 

x   tail(x) 

x   tail(x) 

{defg@abc}

{efg@abc}

x    x@

x    x σ

{efg@abc@}

{efg@abc@   }σ

x    x u

u=@u = @

x    x @

{abc@  efg}σ

{abc@   efg@}σ

x    x u

u=@u = @
{  efg@abc}σ

Figura 6.9: Escritura en MP

x    x← ζζ

x   tail(x) ←

ζ

É

É

Figura 6.10: Movimiento a la derecha en MP
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La prueba de equivalencia MT-MP en el otro sentido –esto es, la simulación por parte
de una MT de una MP– es mucho más simple. Primero se toma el contenido inicial de la
variable de entrada como palabra de entrada de la MT. Luego cada una de las operaciones
de MP (x ← xσ, x ← tail(x), ACCEPT , REJECT ) pueden ser simuladas por la MT
correspondiente. Dejamos nuevamente los detalles de esta prueba al lector (ver sección de
ejercicios).

6.7. Ĺımites de las MT

Aunque parezca incréıble, hay problemas que no se pueden resolver como una secuencia
determinista de operaciones elementales, que es lo esencial de las MT. Estos problemas son
llamados algoŕıtmicamente irresolubles. Vamos a concentrar nuestra atención en problemas
del tipo: dados una palabra w y (la descripción de) un lenguaje L, decidir si w ∈ L, que son
llamados “problemas de pertenencia de palabras” (word problems). Decimos que un lenguaje
L es decidible si hay una MT para decidir el problema de la pertenencia de palabras. Muchos
otros problemas que no son del tipo mencionado pueden sin embargo expresarse en términos
de éstos mediante una transformación adecuada; por ejemplo, el problema de determinar si
dos gramáticas G1 y G2 son equivalentes, puede expresarse de la manera siguiente: Para toda
w ∈ L(G1), decidir si w ∈ L(G2).

6.7.1. El problema del paro de MT

Ahora vamos a considerar un problema irresoluble que históricamente tuvo mucha im-
portancia porque fue el primer problema que se probó irresoluble. Una vez que se cuenta con
un primer problema irresoluble, la prueba de que otros problemas son irresolubles consiste
en probar que éstos pueden ser reducidos al problema de referencia. Este primer problema
irresoluble es el del paro de la MT.

El problema del paro de la MT consiste en determinar algoŕıtmicamente –esto es, medi-
ante una MT– si una MT dada M va a parar o no cuando analiza la palabra de entrada w.
Desde luego, como una MT analiza el comportamiento de otra, se requiere que esta última
sea dada como entrada a la primera; esto puede ser hecho mediante una codificación de la
MT que debe analizarse. Una manera simple de codificar una MT es considerando la cade-
na de śımbolos de su representación como cuádruplo (K, Σ, δ, s). Denotaremos con d(M) la
codificación de una MT M . 9

Teorema.- No existe ninguna MT tal que, para cualquier palabra w y cualquier MT M ,
decida si w ∈ L(M).

9Esta solución para codificar una MT no es perfecta, pues el alfabeto usado para codificar una MT
arbitraria no puede determinarse de antemano; no haremos por el momento caso de este detalle técnico.
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d(M)
w

M para con w

M no para con w

1

0

Figura 6.11: El problema del paro de una MT

En la figura 6.11 se muestra cómo debeŕıa funcionar la MT que resolveŕıa el problema
del paro.

Prueba 10 Por contradicción.- Sea A la MT de la figura 6.12(a). Entonces construimos
otra MT B, como se representa en la figura 6.12(b), esto es, se tiene una única entrada con
la codificación d(M) de la MT M , y se pasa esta palabra a una MT copiadora, que duplica la
entrada d(M). La salida de la copiadora será dos veces d(M). Esto es pasado como entrada
a una máquina A′ que es A modificada 11 de la siguiente manera: a la salida 1 de A la
cambiamos de forma que en vez de dar el halt se cicle; debe quedar claro que esto siempre
puede hacerse. Ahora bien, comparando A con A′ se ve que la salida 1 corresponde al hecho
de que M para con d(M).

Finalmente supongamos que aplicamos la máquina B a una entrada formada por la misma
máquina codificada, esto es, d(B). Entonces cuando B se cicla, esto corresponde a la salida
que indica que “B se para con d(B)”, lo cual es contradictorio. Similarmente, B entrega un
resultado 0 –esto es, se para– en el caso que corresponde a “B no se para con d(B)”, que
también es contradictorio. Esto se ilustra en la figura 6.12(c).

Utilizando el problema del paro de la MT como referencia, se ha probado que otros
problemas son también insolubles. Entre los más conocidos, tenemos los siguientes:

El problema de la equivalencia de las gramáticas libres de contexto.

La ambigüedad de las GLC.

El problema de la pertenencia de palabras para gramáticas sin restricciones.

No haremos la prueba de estos resultados; remitimos al lector a las referencias [10], [7].

6.8. MT en la jerarqúıa de Chomsky

En conclusión, las MT no son capaces de aceptar todos los lenguajes posibles en 2Σ∗
. Sin

embargo, este hecho puede ser establecido simplemente a partir de la enumerabilidad de las

10Esta prueba es debida a M. Minsky [14], aunque la primera prueba data de Turing [24].
11Obsérvese que la segunda repetición de d(M) es de hecho la palabra w que se supone que es sometida a

M .
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(c) Contradicción

Figura 6.12: Prueba del paro de MT

MT: puesto que las MT son cuádruplos (K, Σ, δ, s) -y por lo tanto elementos de un producto
cartesiano-, al ser enumerable cada uno de los componentes necesariamente el cuádruplo es
también enumerable. En efecto:

Los conjuntos de los estados posibles son enumerables si estandarizamos los nombres
de los estados a q0, q1, q2, etc., lo cual evidentemente no altera ningún aspecto del
funcionamiento de la MT (ver sección de ejercicios).

Similarmente, un alfabeto estándar σ0, σ1, σ2, etc., puede codificar cualquier alfabeto
en particular. Aśı, también los alfabetos son enumerables.

La función de transición es parte de otros productos cartesianos de estados y caracteres,
por lo que es también enumerable.

Los estados iniciales trivialmente son enumerables, siguiendo la estandarización del
primer punto.
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Ahora bien, al ser enumerables las MT, resulta que no puede mapearse un elemento de
2Σ∗

con una MT distinta, y por lo tanto hay lenguajes que no tienen una MT que los acepte.

Desde luego, el resultado anterior no ayuda a localizar exactamente qué lenguajes no
son aceptados por ninguna MT; esto ya se hab́ıa hecho para algunos lenguajes en la sección
precedente.

Resulta útil entonces ubicar la parte de los lenguajes que śı pueden aceptar las MT con
respecto a otras clases de lenguajes, siguiendo la estructura de clases de lenguajes llamada
“jerarqúıa de Chomsky”, que presentamos en las secciones 1.5 y 4.1

Recordando la jerarqúıa de Chomsky, que clasifica los lenguajes en categoŕıas, y la forma
en que se asocian distintos tipos de máquinas a dichas categoŕıas de lenguajes, ahora estamos
en condiciones de refinar la tabla que fue presentada en la sección 4.1, de la manera siguiente
(indicamos entre paréntesis las secciones de este libro donde se presenta cada tema):

Tipo de Lenguaje que Gramática que
autómata procesa lo genera

Autómatas finitos Lenguajes Regulares Gramáticas regulares
(2.2) (3) (3.5)

Autómatas de Pila Lenguajes Libres de Contexto Gram. libres de contexto
(5) (4) (4)

Autóm. linealmente acotados Leng. Sensitivos al Contexto Gram. sensitivas al contexto
(4.7) (4.7)

Máq. de Turing decidiendo Lenguajes Recursivos
(6.4)

Máq. de Turing aceptando Leng.Recursiv. Enumerables Gram. no restringidas
(6.2.5) (4.1)

En esta tabla hemos diferenciado la clase de lenguajes que pueden ser decididos por una
MT, que son llamados “recursivos”, de los lenguajes que pueden ser aceptados por una MT,
que son los “recursivamente enumerables”, aunque no hemos definido ninguno de ellos más
que por su relación con las MT. 12

Asimismo hemos mencionado, por completez, la clase de los lenguajes Sensitivos al Con-
texto, que fueron citados en la sección 4.7, aunque no hemos estudiado los autómatas “lin-
ealmente acotados” en este libro; pueden estudiarse en las referencias [21] o [7].

De acuerdo con la presentación de la jerarqúıa de Chomsky que hicimos al estudiar las
gramáticas en la sección 4.1, las MT son equivalentes en poder de cálculo a las gramáticas
no restringidas. La prueba de esto puede ser consultada en diversas referencias [10], [7].

12“Recursivamente enumerables” es solamente otro nombre para “Turing aceptable”, usado en textos como
[7].
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Aśı, de acuerdo con la Tesis de Church, los lenguajes recursivamente enumerables son el
más extenso conjunto de lenguajes que pueden ser algoŕıtmicamente analizados.

6.9. Ejercicios

1. Diseñe un diagrama de estados para la MT del ejemplo de la sección 6.2.5, esto es para
aceptar el lenguaje anbncn. Obtenga también la representación formal de dicha MT.

2. Diseñe un diagrama de máquina de Turing para calcular la función |log2n|, usando las
máquinas básicas vistas. Describa las acciones efectuadas sobre la cinta.

3. Complete el diseño de la MT para el ejemplo de la sección 6.3, esto es para calcular
restas de números en unario. Exprese esta MT usando la representación formal.

4. Diseñar una MT que decida si la entrada es de longitud par, para palabras en {a, b}∗.

5. Proponga una MT (o diagrama) que:

a) Acepte las palabras de la forma anbm, n,m > 0.

b) Decida si en una palabra anbm se cumple m < n.

6. Proponer una MT (su diagrama) que:

a) Acepte el lenguaje vaćıo (∅)
b) Decida el lenguaje vaćıo

c) Acepte el lenguaje {ε}
d) Decida el lenguaje {ε}

7. Representar formalmente la MP de la figura 6.8.

8. Probar la enumerabilidad de los conjuntos de estados con nombres uniformizados q0,
q1, q2, etc. Ayuda: Considere una representación binaria de cada conjunto de estados,
tomando 1 si el estado en cuestión está presente, y 0 si no está.

9. Una variante de la MT consiste en hacer que la máquina haga un movimiento y también
escriba en cada acción. Dichas máquinas son de la forma (K, Σ, δ, s), pero δ es una
función de (K×S) a (K∪{h})×Σ×{L, R, S}, donde el “movimiento” S significa que
la cabeza permanece en el lugar en que estaba. Dé la definición formal de la relación
` (“produce en un paso”).

10. Supongamos unas “MTCE” que son como las MT, pero en vez de tener una cinta
infinita a la derecha, tienen una “cinta estirable”, que inicialmente contiene sólo cuadros
en la cinta para la palabra de entrada y para un blanco a cada lado de dicha palabra,
y que cuando se se mueve a la derecha fuera de la cinta, automáticamente es creado
un nuevo cuadrito, según se va requiriendo. Formalizar las MTCE, en particular la
definición de palabra aceptada.



196 CAPÍTULO 6. MÁQUINAS DE TURING

11. Definir formalmente, en términos de configuraciones de MP y MT, qué quiere decir
que una acción de MP “hace lo mismo” que la acción correspondiente de MT. (Este
problema completa el enunciado del Teorema de Post).

12. Un autómata de dos pilas (A2P) es una extensión directa de un autómata de pila, pero
que tiene dos pilas en vez de una, como en la figura 6.13. Formalice los A2P en la forma

w

Figura 6.13: Automáta de dos pilas (A2P)

más similar posible a los AP vistos en clase. Defina formalmente las nociones de:

a) Configuración.

b) Palabra aceptada y lenguaje aceptado.

c) Proponga un A2P que acepte el lenguaje {anbncn}.
d) ¿Tienen los A2P el poder de cálculo de las MT? (Es decir, ¿todo lenguaje Turing-

aceptable es aceptado por algún A2P?). Pruebe su respuesta. Ayuda: mostrar
cómo simular una MT con A2P.

e) Adapte las definiciones de A2P, configuración y palabra aceptada para A2Pn.

f ) Dos A2Pn son equivalentes ssi aceptan el mismo lenguaje. Demuestre que el prob-
lema de la equivalencia de los A2Pn es / no es decidible.

START
�

REJECT

ACCEPTx tail(x)
�

←

a b

ε�

x tail(x)
�

←

b
a

ACCEPT

ε�

Figura 6.14: Máquina de Post

13. Suponga un subconjunto MP1 de las máquinas de Post, con la restricción de que no
tienen las instrucciones x← xσ. Ahora bien, MP1 es equivalente a AF.

a) Demuestre esta afirmación constructivamente, proponiendo un método sistemático
para pasar de una MP1 a un AF que acepte el mismo lenguaje.
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b) Pruebe el método propuesto en (a) con la MP1 dada en la figura 6.14.

c) Pruebe si la MP1 del inciso anterior acepta o no el lenguaje (abb ∗ a)∗, basándose
en algún procedimiento sistemático (explicar cuál es dicho procedimiento sis-
temático).

d) Si en una variante MP2 se permiten asignaciones x ← σ, donde σ ∈ Σ∗, ¿a
qué tipo de autómata corresponde MP2? ¿Porqué?

14. Si a las máquinas de Post les cambiamos ligeramente las asignaciones para que sean
de la forma x← σx , ¿siguen siendo equivalentes a las MT? Pruebe su afirmación; ya
sea:

a) Si son equivalentes, probando que pueden hacer lo mismo (por ejemplo, por sim-
ulación).

b) Si no son equivalentes a Turing, pero son equivalentes a alguna máquina inferior,
probando dicha equivalencia.

c) Si no son equivalentes a Turing, encontrando algún lenguaje que una śı puede
aceptar y la otra no (habŕıa que probar esto).

15. Suponga una variante de las máquinas de Turing, las MT2 en que se tienen dos cintas
(cinta 1 y cinta 2) en vez de una; ambas son infinitas hacia la derecha y tienen sendas
cabezas lectoras. Por cada transición, se leen a la vez los caracteres de las dos cintas,
y el control finito determina la acción a realizar (simultáneamente) en las cintas, que
pueden ser movimientos o escrituras, como en una MT normal. Las acciones en las dos
cintas son independientes, esto es, en la cinta 1 puede tener una acción L y en la cinta
2 escribir, etc., en un solo movimiento. La palabra de entrada se escribe en la cinta 1.

a) Proponga una definición formal de las MT2

b) Defina las nociones de configuración y palabra aceptada.

c) Defina función calculada, suponiendo que el resultado queda en la cinta 2.

16. Suponga una variante de las MT, las MTS en que se puede al mismo tiempo escribir
en la cinta y hacer los movimientos a la izquierda y a la derecha (L y R); cuando se
quiere solamente escribir (sin mover la cabeza) se hace un movimiento nulo (N).

a) Defina las MTS, aśı como su funcionamiento (hasta definir palabra aceptada).

b) Pruebe que las MTS son tan poderosas como la MT clásica (muestre cómo obtener
a partir de una MT la MTS equivalente).

c) Pruebe ahora lo rećıproco, mostrando cómo obtener una MT clásica a partir de
una MTS dada.

17. Conteste las siguientes preguntas, justificando la respuesta:

a) ¿El complemento de un lenguaje Turing-decidible es también Turing-decidible?

b) ¿El complemento de un lenguaje Turing-decidible es Turing-aceptable?
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c) ¿Todo lenguaje Turing-decidible será subconjunto de algún lenguaje libre de con-
texto?

d) ¿La intersección de un Turing-aceptable con un libre de contexto será libre de
contexto?

18. Es sabido que el problema de la equivalencia de MT es indecidible. Sin embargo, para
algunos subconjuntos de las MT śı es posible decidir la equivalencia. Para las sigu-
ientes MT (no deterministas), probar rigurosamente su equivalencia / no equivalencia
respecto a la aceptación / rechazo de palabras (es decir, que los lenguajes aceptados
son iguales), describiendo el método utilizado para esta prueba:

MT1 = ({f, g, j, k,m}, {a, b}, {a, b,t}, δ1, f)

f t g L
g t h t
g a L L
g b f L
f a f L
f b f L
j a m L
j b k L
k a m L
k b f L
k t h t
m a m L
m b k L

MT2 = ({o, q, n, p}, {a, b}, {a, b,t}, δ2, q)

q t o L
o t h t
o a n L
o b p L
n a n L
n b o L
p a p L
p b p L

19. Si limitamos el tamaño de la cinta de una máquina de Turing a una cantidad fija k de
cuadros, dando una variante que llamaremos MTk,

a) ¿disminuye por ello el poder de cálculo? ¿A qué tipo de autómatas seŕıan equiv-
alentes las MTk ? Pruebe su respuesta.

b) ¿Es posible decidir si dos MTk son equivalentes? Pruebe su respuesta, y en el caso
afirmativo, proponga el método de decisión correspondiente.
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20. Realizar el diagrama de MP que simula el movimiento de la cabeza a la izquierda en
una MT (esto es parte de la prueba de equivalencia de MP y MT).

21. Completar la prueba de equivalencia de las MP y las MT, detallando la simulación de
la MP en una MT, siguiendo las ideas esbozadas en la página 191.
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[8] D. Kelley.- Teoŕıa de Autómatas y Lenguajes Formales, Prentice Hall Hispanoamericana,
1995.

[9] J. Levine, T. Mason, D. Brown.- Lex & Yacc, O’Reilly & Associates, 1992.

[10] H.R. Lewis, Ch.H. Papadimitriou.- Elements of the Theory of Computation, Prentice
Hall, 1981.

[11] P. Linz.- An Introduction to Formal Languages and Automata, D. C. Heath and Com-
pany, 1990.

[12] Z. Manna.- Mathematical Theory of Computation, McGraw Hill, 1974.

[13] G. Mealy.- A method for synthesizing sequential circuits, BSTJ n.34, 1955, pp1045-1079.

[14] M. Minsky.- Computation: Finite and Infinite Machines, Prentice Hall, 1967.

[15] E. Moore.- Gedanken-experiments on sequential machines, en “Automata Studies” (C.
Shannon, J. McCarthy eds.), Princeton Univ. Press, 1956.

[16] J.L. Peterson.- Petri Net Theory and the Modeling of Systems, Prentice Hall, 1981.

201



202 BIBLIOGRAFÍA
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máquinas

de Mealy, 55
de Moore, 53
de Post, 185

Mealy, 53
mezcla de gramáticas, 119
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