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PREFACIO

AL ESTUDIANTE

Los autores de los libros viven con la esperanza de que alguien en realidad los lea.
Contrariamente a lo que usted podria creer, casi todo texto de matemaéticas de nivel
universitario esta escrito para usted y no para el profesor. Cierto es, que los temas
cubiertos en el texto se escogieron consultando a los profesores ya que ellos toman
la decision acerca de si hay que usarlos en sus clases, pero todo lo escrito en él esta
dirigido directamente al estudiante. Entonces quiero motivarle — no, en realidad
quiero decirle que — jlea este libro de texto! Pero no lo haga como leeria una no-
vela; no debe leerlo rapido y no debe saltarse nada. Piense en éste como un cuaderno
de gercicios. Por eso creo que las matematicas siempre deberian ser leidas con lapiz
y papel a la mano porque muy probablemente, tendra que trabajar a su manera los
ejemplos y hacer el analisis. Lea —mas bien, trabaje— todos los ejemplos de una
seccidn antes de intentar cualquiera de los ejercicios; los ejemplos se han construido
para mostrar lo que considero son los aspectos mas importantes de la seccién y, por
tanto, muestran los procedimientos necesarios para trabajar la mayor parte de los
problemas de los conjuntos de ejercicios. Yo les digo a mis estudiantes que cuando
lean un ejemplo, cubran su solucién y que intenten trabajar primero en ella, comparar
su respuesta con la solucién dada y luego resolver cualquier diferencia. He tratado de
incluir lo més importante de cada ejemplo, pero si algo no es claro usted podria siem-
pre intentarlo —y aqui es donde el papel y el lapiz entran otra vez— complete los
detalles o pasos que faltan. Puede no ser facil, pero es parte del proceso de aprendi-
zaje. La acumulacion de hechos seguidos por la lenta asimilacion del entendimiento
simplemente no se puede alcanzar sin luchar.

Concluyendo, le deseo buena suerte y éxito. Espero que disfrute el libroy el curso
que estéd por iniciar— cuando era estudiante de la licenciatura en matemaéticas, este
curso fue uno de mis favoritos porque me gustan las matematicas que estan conectadas
con el mundo fisico—. Si tiene algiin comentario o si encuentra algdn error cuando
lo lea o trabaje con él o si me quiere hacer llegar una buena idea para mejorar el libro
o el SRV, por favor pdngase en contacto conmigo o con mi editor en Brooks/Cole
Publishig Company: charlie.vanwagner@cengage.com

AL PROFESOR

{QUE ES LO NUEVO EN ESTA EDICION?

Primero, déjeme decirle que no ha cambiado. La estructura del capitulo por temas, el
ndmero y el orden de las secciones dentro de un capitulo, se conservan igual que en
las ediciones anteriores.

En caso de que examine este texto por primera vez, Ecuacionesdiferencialescon apli-
caciones de modelado, 9a. edicion, se puede utilizar ya sea para un curso de un semes-
tre o de un trimestre de ecuaciones diferenciales ordinarias. La versién completa del libro,
Ecuaciones diferenciales con problemas con valores en la frontera, 7a. edicion, se puede
utilizar para un curso de uno o dos semestres abarcando ecuaciones diferenciales ordina-
rias y ecuaciones diferenciales parciales. La version extendida contiene seis capitulos mas
que cubren sistemas auténomos planos y estabilidad, series y transformadas de Fourier,

ix
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ecuaciones diferenciales parciales, lineales y problemas con valores en la frontera y mé-
todos numéricos para ecuaciones diferenciales parciales. Para un curso de un semestre,
supongo que los estudiantes han concluido con éxito al menos un curso de dos semestres
de célculo. Puesto que esta leyendo esto, sin duda ya ha examinado la tabla de contenidos
para los temas que cubrird. En este prefacio no encontrara “un programa sugerido”. No
pretenderé ser tan sabio para decir lo que otros profesores den en sus clases. Siento que hay
mucho material aqui para escoger y formar un curso a su gusto. El texto tiene un equilibrio
razonable entre los métodos analiticos, cualitativos, y cuantitativos en el estudio de las ecua-
ciones diferenciales. Por lo que mi “filosofia subyacente” es: “Un libro para estudiantes de
licenciatura deberia estar escrito considerando siempre el entendimiento del estudiante, lo
que significa que el material deberia estar presentado en una forma directa, legible y til,
considerando el nivel tedrico compatible con la idea ‘de un primer curso’”.

Para las personas familiarizadas con las ediciones anteriores, me gustaria mencio-
narles algunas de las mejoras hechas en esta edicion.

» Problemas aportados Los conjuntos de ejercicios seleccionados concluyen con
uno o dos problemas aportados. Estos problemas se han probado en clase y los
han enviado profesores de cursos de ecuaciones diferenciales y muestran como
los profesores han complementado sus presentaciones de clase con proyectos
adicionales.

» Ejercicios Se ha actualizado un gran nimero de ejercicios agregando nuevos pro-
blemas para evaluar mejor y presentarles retos a los estudiantes. De igual forma,
se han mejorado algunos conjuntos de ejercicios quitando algunos problemas.

 Disefio Esta edicién se ha mejorado con un disefio a cuatro colores, lo que le
da profundidad de significado a todas las gréaficas y énfasis a frases impor-
tantes. Supervisé la creacion de cada parte del arte para asegurarme de que esta
matematicamente correcta conforme al texto.

e Nueva numeracion de figuras Me tomé muchas ediciones hacer esto, pero
finalmente me convenci de que la vieja numeracion de figuras, teoremas y
definiciones tenia que cambiarse. En esta revision he utilizado un sistema de
numeracion de doble-decimal. Por ejemplo, en la Gltima edicidn la figura 7.52
s6lo indica que es la 52a. del capitulo 7. En esta edicion, la misma figura se
numerd como la figura 7.6.5 donde

Capitulo Seccién

]

7.6.5<— Quinta figura en la seccién

Siento que este sistema proporciona una indicacién clara de donde estan las
cosas, sin necesidad de agregar el molesto nimero de péagina.

» Proyectos de ediciones anteriores Problemas y ensayos seleccionados de edi-
ciones pasadas del libro se pueden encontrar en el sitio web de la compafiia en
academic.cengage.com/math/zill.

RECURSOS PARA LOS ESTUDIANTES

* Student Resource and Solutions Manual, de Warren S. Wright, Dennis G.
Zill y Carol D. Wright (ISBN 0495385662 (que acompafia a Ecuaciones
diferenciales con aplicaciones de modelado, 9a. edicién), 0495383163 (que
acompafia a Ecuaciones diferenciales con problemas con valores en la fron-
tera, 7a. edicion) presentan repasos del material mas importante de algebra
y célculo, la solucidn de cada tercer problema de cada conjunto de ejercicios
(con excepcion de los problemas de analisis y las tareas para el laboratorio de
computacion), la sintaxis de las instrucciones importantes para célculo de sis-
temas algebraicos de Mathematica y Maple, listas de conceptos importantes,
asi como sugerencias Utiles de como iniciar ciertos problemas.

» Herramientas de ED (DE Tools) es un conjunto de simulaciones que propor-
cionan una exploracion iteractiva y visual de los conceptos que se presentan en
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este libro. Visite academic.cengage.com/math/zill para encontrar mas o para
contactar con los representantes de ventas de su localidad para que les pre-
gunte acerca de otras opciones para utilizar DE Tools con este libro.

MATERIAL DE APOYO PARA EL PROFESOR

Este libro cuenta con una serie de recursos para el profesor, los cuales estan disponibles
eninglésy sélo se proporcionan a los docentes que lo adopten como texto en sus cursos.
Para mayor informacion, pdngase en contacto con el area de servicio a clientes en las
siguientes direcciones de correo electrénico:

Cengage Learning México y Centroamérica  clientes.mexicoca@cengage.com

Cengage Learning Caribe clientes.caribe@cengage.com
Cengage Learning Cono Sur clientes.conosur@cengage.com
Cengage Learning Pacto Andino clientes.pactoandino@cengage.com

Los recursos disponibles se encuentran en el sitio web del libro:
http://latinoamerica.cengage.com/zill

Las direcciones de los sitios web referidas en el texto no son administradas por
Cengage Learning Latinoamérica, por lo que ésta no es responsable de los cambios 0

actualizaciones de las mismas.

RECONOCIMIENTOS

Componer un libro de texto de matematicas como éste y asegurarse de que sus miles de
simbolos y cientos de ecuaciones estén (en la mayoria) correctos es una enorme tarea,
pero puesto que yo me llamo “el autor” este es mi trabajo y responsabilidad. Sin em-
bargo, muchas personas ademas de mi invirtieron enormes cantidades de tiempo y energia
para lograr por fin su publicacién. Entonces me gustaria aprovechar esta oportunidad para
expresar mi mas sincero aprecio a cada uno —la mayoria de ellos no me conoce— en
Brooks/Cole Publishing Company, en Cengage Learning y en Hearthside Publication
Services quienes estuvieron implicados con la publicacion de esta nueva edicién. Sin
embargo, me gustaria seleccionar a algunas personas para un reconocimiento especial:
en Brooks/Cole/Cengage, a Cheryll Linthicum, jefa del proyecto de produccion, por su
buena voluntad para escuchar las ideas de autores y contestar pacientemente las muchas
preguntas de los autores; a Larry Didona por sus excelentes disefios de los forros; a Diane
Beasley por el disefio interior; a Vernon Boes por su supervision de todo el arte y el di-
sefio; a Charlie van Wagner, editor anfitrion; a Stacy Green por la coordinacion de todos
los suplementos; a Leslie Lahr, editora de desarrollo, por sus sugerencias y apoyo y por
conseguir y organizar los problemas aportados; y en Hearthside Production Services, a
Anne Seitz, editora de produccion, quien puso de nuevo todos los pedazos del rompeca-
bezas juntos. Mis mas especiales gracias van para John Samons por el trabajo excepcional
que hizo al revisar el texto y conseguir el manuscrito correcto.

También extiendo mi mas sincero aprecio a aquellas personas que invirtieron su
tiempo a pesar de sus ocupados horarios académicos para enviar un problema aportado.

Ben Fitzpatrick, Loyola Marymount University
Layachi Hadji, University of Alabama

Michael Prophet, University of Northern lowa

Doug Shaw, University of Northern lowa

Warren S. Wright, Loyola Marymount University
David Zeigler, California Sate University-Sacramento

Finalmente, conforme han pasado los afios, estos libros de texto se han mejorado
por un nimero incontable de caminos por las sugerencias y las criticas de los revisores.
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REPASO DEL CAPITULO 1

Las palabras ecuaciones y diferenciales ciertamente sugieren alguna clase de
ecuacion que contiene derivadas y’, y”, . . . Al igual que en un curso de algebra y
trigonometria, en los que se invierte bastante tiempo en la solucién de ecuaciones
tales como x? + 5x + 4 = 0 para la incdgnita X, en este curso una de las tareas
sera resolver ecuaciones diferenciales del tipo y” + 2y’ + y = 0 para la funcion
incognitay = ¢(X).

Nos dice algo el parrafo anterior, pero no la historia completa acerca del curso
que esta por iniciar. Conforme el curso se desarrolle verad que hay mas en el estudio
de las ecuaciones diferenciales, que solamente dominar los métodos que alguien ha
inventado para resolverlas.

Pero las cosas en orden. Para leer, estudiar y platicar de un tema especializado,
tiene que aprender la terminologia de esta disciplina. Esa es la idea de las dos
primeras secciones de este capitulo. En la Gltima seccién examinaremos brevemente
el vinculo entre las ecuaciones diferenciales y el mundo real. Las preguntas
préacticas como ¢qué tan rapido se propaga una enfermedad? ¢ Qué tan rapido
cambia una poblacion? implican razones de cambio o derivadas. Asi, la descripcién
matematica —o modelo matematico— de experimentos, observaciones o teorias
puede ser una ecuacion diferencial.
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1.1

DEFINICIONES Y TERMINOLOGIA

REPASO DE MATERIAL

e Definicion de derivada

e Reglas de derivacion

e Derivada como una razén de cambio

e Primera derivada y crecimiento/decrecimiento
e Segunda derivada y concavidad

INTRODUCCION La derivada dy/dx de una funcién y = ¢(x) es otra funcion ¢’(x) que se en-
cuentra con una regla apropiada. La funcion y = ¢™'+* es derivable en el intervalo (—o°, «), y usando
la regla de la cadena, su derivada es dy/dx = 0.2xe"'". Si sustituimos ¢”* en el lado derecho de la
ultima ecuacién por y, la derivada sera

d
2 0.2xy. 1)
dx

Ahora imaginemos que un amigo construyé su ecuacion (1); usted no tiene idea de cémo la hizo
y se pregunta ¢cudl es la funcién representada con el simbolo y? Se esta enfrentando a uno de los
problemas béasicos de este curso:

¢COmo resolver una ecuacion para la funcién desconociday = ¢(x)?

UNA DEFINICION  Laecuacion (1) es llamada ecuacién diferencial. Antes de pro-

seguir, consideremos una definicién mas exacta de este concepto.

DEFINICION 1.1.1 Ecuacion diferencial

Una ecuacion que contiene derivadas de una o mas variables respecto a una o
mas variables independientes, se dice que es una ecuacion diferencial (ED).

Para hablar acerca de ellas clasificaremos a las ecuaciones diferenciales por tipo,

orden y linealidad.

CLASIFICACION POR TIPO  Si una ecuacién contiene sélo derivadas de una o mas
variables dependientes respecto a una sola variable independiente se dice que es una

ecuacion diferencial ordinaria (EDO). Por ejemplo,

Una ED puede contener
mas de una variable dependiente,

NN
dy d*y dy dx dy
Disy—e, Z2-Dig-n, T ooy
ax YT @l ax Y Y a a7

son ecuaciones diferenciales ordinarias. Una ecuacion que involucra derivadas par-
ciales de una o mas variables dependientes de dos o mas variables independientes

se llama ecuacidn diferencial parcial (EDP). Por ejemplo,
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Pu  du u  du u u v
ox ot ot ady ox

son ecuaciones diferenciales parciales.”

En todo el libro las derivadas ordinarias se escribiran usando la notacion de Leibniz
dy/dx, d?y/dx?, d3/dx3, ... o la notacién primay’, y”,y’"’,.... Usando esta Gltima
notacion, las primeras dos ecuaciones diferenciales en (2) se pueden escribir en una
forma un poco mas compacta como y’ + 5y =e*y y” —y’ + 6y = 0. Realmente, la
notacion prima se usa para denotar solo las primeras tres derivadas: la cuarta derivada se
denota y® en lugar de y””. En general, la n-ésima derivada de y se escribe como dy/dx"
o y™. Aunque es menos conveniente para escribir o componer tipograficamente, la no-
tacion de Leibniz tiene una ventaja sobre la notacion prima en que muestra claramente
ambas variables, las dependientes y las independientes. Por ejemplo, en la ecuacion

funcién incégnita
ro variable dependiente
d
e +16x =0

T—\'uriub]c independiente

se ve inmediatamente que ahora el simbolo x representa una variable dependiente,
mientras que la variable independiente es t. También se debe considerar que en ingenie-
riay en ciencias fisicas, la notacion de punto de Newton (nombrada despectivamente
notacion de “puntito”) algunas veces se usa para denotar derivadas respecto al tiem-
po t. Asi la ecuacion diferencial d?s/dt? = —32 serd § = —32. Con frecuencia las
derivadas parciales se denotan mediante una notacion de subindice que indica las va-
riables independientes. Por ejemplo, con la notacidn de subindices la segunda ecuacion
en(3)serau, =u, — 2u,

CLASIFICACION POR ORDEN El orden de una ecuacién diferencial (ya sea
EDO o EDP) es el orden de la mayor derivada en la ecuacion. Por ejemplo,

segundo ordend—l2y dr primer orden
LA (572 L
X2 +5(dx) dy=e

es una ecuacion diferencial ordinaria de segundo orden. Las ecuaciones diferenciales
ordinarias de primer orden algunas veces son escritas en la forma diferencial M(x, y)dx
+ N(x, y) dy = 0. Por ejemplo, si suponemos que y denota la variable dependiente en
(y — x) dx + 4xdy = 0, entonces y’ = dy/dx, por lo que al dividir entre la diferencial
dx, obtenemos la forma alterna 4xy’ + y = x. Véanse los Comentarios al final de esta
seccion.

Simbolicamente podemos expresar una ecuacion diferencial ordinaria de n-ésimo
orden con una variable dependiente por la forma general

Fx, y, y',...,y") =0, (4)

donde F es una funcién con valores reales de n + 2 variables: x, y, y’', ..., y™. Por ra-
zones tanto practicas como teéricas, de ahora en adelante supondremos que es posible
resolver una ecuacion diferencial ordinaria en la forma de la ecuacidn (4) Gnicamente
para la mayor derivada y™ en términos de las n + 1 variables restantes.

“Excepto esta seccion de introduccion, en Un primer curso de ecuaciones diferenciales con aplicaciones de
modelado, novena edicion, sélo se consideran ecuaciones diferenciales ordinarias. En ese libro la palabra
ecuacion y la abreviatura ED se refiere solo a las EDO. Las ecuaciones diferenciales parciales o EDP se
consideran en el volumen ampliado Ecuaciones diferenciales con problemas con valores en la frontera.
séptima edicion.
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La ecuacién diferencial

n

d"y
dx"

=fCp YY), (5)

donde f es una funcién continua con valores reales, se conoce como la forma normal
de la ecuacion (4). Asi que cuando sea adecuado para nuestros propositos, usaremos las
formas normales

C/) ) dz,,\‘ . ’
= fx, ) y — =fyy)

dx dx?

para representar en general las ecuaciones diferenciales ordinarias de primer y segundo
orden. Por ejemplo, la forma normal de la ecuacién de primer orden 4xy’ +y = x s
y’' = (x — y)/4x; la forma normal de la ecuacion de segundo ordeny” —y’ + 6y = 0
esy” =y’ — 6y. Véanse los Comentarios.

CLASIFICACION POR LINEALIDAD Una ecuacion diferencial de n-ésimo orden
(4) se dice que es lineal si F es lineal eny, y’, ..., y®™. Esto significa que una EDO de
n-ésimo orden es lineal cuando la ecuacion (4) es a (X)y® +a_,(X)y® ™+ ---+a
(y" +a,(x)y —g(x) =00

dn dn*l
4,0 2+ a, () 2

dy
et =4 = g(x).
dx" dxnfl al(x) dx aO('x)y g(x) (6)

Dos casos especiales importantes de la ecuacion (6) son las ED lineales de primer
orden (n = 1) y de segundo orden (n = 2):

()QJr x)y = gx) ()j+ ()@Jr x)y = gx)
a,xdx apg(X)y 8gX y (12xdx2 a]xdx apg(xX)y 8gX). (7)

En la combinacidn de la suma del lado izquierdo de la ecuacion (6) vemos que las dos
propiedades caracteristicas de una EDO son las siguientes:

 Lavariable dependiente y y todas sus derivadas y’, y”, . . ., y™ son de primer
grado, es decir, la potencia de cada término que contiene y es igual a 1.

» Loscoeficientesdea, a,...,a dey,y’,...,y" dependen alo mas de la
variable independiente x.

Las ecuaciones
d

(y —x)dx+4xdy=0, y"'—2y+y=0, vy — +x——5y=¢"
X

son, respectivamente, ecuaciones diferenciales de primer, segundo y tercer orden. Aca-
bamos sélo de mostrar que la primera ecuacion es lineal en la variable y cuando se escribe
en la forma alternativa 4xy’ + y = x. Una ecuacion diferencial ordinaria no lineal es sim-
plemente no lineal. Funciones no lineales de la variable dependiente o de sus derivadas,
tales como seny 0 €', no se pueden presentar en una ecuacion lineal. Por tanto

término no lineal: término no lineal: término no lineal:

coeficiente depende dey funcién no linea dey el exponente es diferente de 1
l 0y l a4y l

(Lovy +2y=es  gGatseny=0y axe TV=0

son ejemplos de ecuaciones diferenciales ordinarias no lineales de primer, segundo y
cuarto orden respectivamente.

SOLUCIONES Como ya se ha establecido, uno de los objetivos de este curso es
resolver o encontrar soluciones de ecuaciones diferenciales. En la siguiente definicion
consideramos el concepto de solucién de una ecuacién diferencial ordinaria.
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DEFINICION 1.1.2 Solucién de una EDO

Cualquier funcion ¢, definida en un intervalo | y que tiene al menos n deriva-
das continuas en |, las cuales cuando se sustituyen en una ecuacion diferencial
ordinaria de n-ésimo orden reducen la ecuacién a una identidad, se dice que es
una solucion de la ecuacion en el intervalo.

En otras palabras, una solucion de una ecuacién diferencial ordinaria de n-ésimo orden
(4) es una funcién ¢ que posee al menos n derivadas para las que

F(x, p(x), ¢'(x), ..., d"(x)) = 0 paratodaxenl.

Decimos que ¢ satisface la ecuacion diferencial en I. Para nuestros propdsitos supondremos

que una solucién ¢ es una funcion con valores reales. En nuestro analisis de introduccion

vimos que y = ¢"'** es una solucion de dy/dx = 0.2xy en el intervalo (—, ).
Ocasionalmente serd conveniente denotar una solucion con el simbolo alternativo y(x).

INTERVALO DE DEFINICION No podemos pensar en la solucion de una ecuacion
diferencial ordinaria sin simultdneamente pensar en un intervalo. El intervalo | en la defi-
nicion 1.1.2 también se conoce con otros nombres como son intervalo de definicion, in-
tervalo de existencia, intervalo de validez, o dominio de la solucion y puede ser un
intervalo abierto (a, b), un intervalo cerrado [a, b], un intervalo infinito (a, ), etcétera.

I EJEMPLO 1 \Verificacion de una solucion

Verifique que la funcion indicada es una solucion de la ecuacion diferencial dada en
el intervalo (—oe, ).

a) L%;xyzi; yzﬁx“ b) v/ =2y +y=0; y=xe

SOLUCION Una forma de verificar que la funcion dada es una solucion, es ver, una
vez que se ha sustituido, si cada lado de la ecuacion es el mismo para toda x en el
intervalo.

a) De
d 1 1
lado izquierdo: d—i T 4-x%)= A_LX3’
1 12 1 1
lado derecho: xy?=x- <E x4> = x- (4_1 x2> — Zx3’

vemos que cada lado de la ecuacidn es el mismo para todo nimero real x. Observe
que y¥?2 = %xz es, por definicidn, la raiz cuadrada no negativa de 1716x4.

b) De las derivadas y' = xe* + e*y y” = xe* + 2e* tenemos que para todo nimero
real x,

lado izquierdo: y' =2y +y = (xe* + 2e*) — 2(xe* + e*) + xe* = 0,
lado derecho: 0. n
En el ejemplo 1, observe también, que cada ecuacion diferencial tiene la solucion

constante y = 0, —o < x < o, Una solucion de una ecuacion diferencial que es igual
a cero en un intervalo | se dice que es la solucién trivial.

CURVA SOLUCION La grafica de una solucién ¢ de una EDO se llama curva
solucion. Puesto que ¢ es una funcion derivable, es continua en su intervalo de de-
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a) funcién y = 1/x,x # 0

b) soluciény = 1/x, (0, )

FIGURA 1.1.1

La funciény = 1/x no

es la misma que la soluciény = 1/x

INTRODUCCION A LAS ECUACIONES DIFERENCIALES

finicién 1. Puede haber diferencia entre la grafica de la funcion ¢ y la gréfica de la
solucién ¢. Es decir, el dominio de la funcion ¢ no necesita ser igual al intervalo de
definicion I (o dominio) de la solucion ¢. El ejemplo 2 muestra la diferencia.

I EJEMPLO 2 Funcion contra solucion

El dominio de y = 1/x, considerado simplemente como una funcién, es el conjunto de
todos los nimeros reales x excepto el 0. Cuando trazamos la grafica de y = 1/x, dibuja-
mos los puntos en el plano xy correspondientes a un juicioso muestreo de nimeros toma-
dos del dominio. La funcion racional y = 1/x es discontinuaen x = 0, en la figura 1.1.1a
se muestra su grafica, en una vecindad del origen. La funciény = 1/x no es derivable en
x = 0, yaque el eje y (cuya ecuacion es x = 0) es una asintota vertical de la gréfica.
Ahoray = 1/x es también una solucion de la ecuacion diferencial lineal de primer
orden xy’ +y = 0 (Compruebe). Pero cuando decimos que y = 1/x es una solucion de
esta ED, significa que es una funcion definida en un intervalo | en el que es derivable y
satisface la ecuacion. En otras palabras, y = 1/x es una solucion de la ED en cualquier
intervalo que no contenga 0, tal como (—3, —1), (£, 10), (—, 0), 0 (0, ). Porque las
curvas solucion definidas pory = 1/x para —3 < x <—1y 1 < x < 10 son simple-
mente tramos, o partes, de las curvas solucion definidas pory = 1/x para —o < x <0
y 0 < x < oo, respectivamente, esto hace que tenga sentido tomar el intervalo | tan
grande como sea posible. Asi tomamos | ya sea como (—o°, 0) 0 (0, ). La curva so-
lucidn en (0, ) es como se muestra en la figura 1.1.1b. ]

SOLUCIONES EXPLICITAS E IMPLICITAS Usted debe estar familiarizado con
los términos funciones explicitas y funciones implicitas de su curso de célculo. Una
solucion en la cual la variable dependiente se expresa solo en términos de la variable
independiente y las constantes se dice que es una solucién explicita. Para nuestros
propositos, consideremos una solucion explicita como una formula explicitay = ¢(x)
que podamos manejar, evaluar y derivar usando las reglas usuales. Acabamos de ver
en los dos ultimos ejemplos que y = %x“, y = xe*, yy = 1/x son soluciones explici-
tas, respectivamente, de dy/dx = xy*2, y" — 2y’ +y =0,y xy’ +y = 0. Ademas, la
solucion trivial y = 0 es una solucion explicita de cada una de estas tres ecuaciones.
Cuando lleguemos al punto de realmente resolver las ecuaciones diferenciales ordi-
narias veremos que los métodos de solucion no siempre conducen directamente a una
solucion explicitay = ¢(x). Esto es particularmente cierto cuando intentamos resolver
ecuaciones diferenciales de primer orden. Con frecuencia tenemos que conformarnos
con una relacion o expresion G(x, y) = 0 que define una solucion ¢.

|DEFINICI()N 1.1.3 Solucion implicita de una EDO

Se dice que una relacion G(x, y) = 0 es una solucion implicita de una ecuacion
diferencial ordinaria (4) en un intervalo I, suponiendo que existe al menos una
funcion ¢ que satisface la relacion asi como la ecuacion diferencial en 1.

Esta fuera del alcance de este curso investigar la condicién bajo la cual la relacion
G(x, y) = 0 define una funcién derivable ¢. Por lo que supondremos que si implemen-
tar formalmente un método de solucién nos conduce a una relacion G(x, y) = 0, enton-
ces existe al menos una funcion ¢ que satisface tanto la relacion (que es G(x, ¢(X)) =
0) como la ecuacion diferencial en el intervalo I. Si la solucion implicita G(x, y) = O es
bastante simple, podemos ser capaces de despejar a'y en términos de x y obtener una o
mas soluciones explicitas. Véanse los Comentarios.



a) solucién implicita

x>+ y?=25

b) solucién explicita

yi=V25-x% -5<x<5

¢) solucidn explicita

Y= —V25-x, —5<x <5

FIGURA 1.1.2 Una solucién implicita
de dos soluciones explicitas de y’ = —x/y.

-

FIGURA 1.1.3 Algunas soluciones de
Xy’ —y = x?senx.
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I EJEMPLO 3 Comprobacion de una solucion implicita

La relacion x2 + y? = 25 es una solucién implicita de la ecuacién diferencial

dy X
dx y (8)
en el intervalo abierto (—5, 5). Derivando implicitamente obtenemos
d d d d
Le+oyp=205s 0o wmrnZoo

dx dx dx dx

Resolviendo la Gltima ecuacién para dy/dx se obtiene (8). Ademas, resolviendo
x? 4+ y? = 25 para y en términos de x se obtiene y = =\/25 — x°. Las dos funciones
V=) = V25 — x2yy =d(x) = —\V25 — x* satisfacen la relacion (que es,
X2+ ¢2=25)y x* + ¢2 = 25) y son las soluciones explicitas definidas en el inter-
valo (=5, 5). Las curvas solucién dadas en las figuras 1.1.2b y 1.1.2c son tramos de la
grafica de la solucion implicita de la figura 1.1.2a. ]

Cualquier relacién del tipo x2 + y2 — ¢ = 0 formalmente satisface (8) para cual-
quier constante c. Sin embargo, se sobrentiende que la relacion siempre tendré sentido
en el sistema de los nimeros reales; asi, por ejemplo, si ¢ = —25, no podemos decir
que x2 + y2 + 25 = 0 es una solucién implicita de la ecuacion. (;Por qué no?)

Debido a que la diferencia entre una solucion explicita y una solucién implicita
deberia ser intuitivamente clara, no discutiremos el tema diciendo siempre: “Aqui esta
una solucion explicita (implicita)”.

FAMILIAS DE SOLUCIONES El estudio de ecuaciones diferenciales es similar al
del calculo integral. En algunos libros una solucién ¢ es algunas veces llamada inte-
gral de la ecuacion y su grafica se llama curva integral. Cuando obtenemos una anti-
derivada o una integral indefinida en calculo, usamos una sola constante ¢ de integra-
cién. De modo similar, cuando resolvemos una ecuacion diferencial de primer orden
F(x,y,y") = 0, normalmente obtenemos una solucién que contiene una sola constante
arbitraria o parametro c. Una solucién que contiene una constante arbitraria representa
un conjunto G(x, y, ¢) = 0 de soluciones llamado familia de soluciones uniparamé-
trica. Cuando resolvemos una ecuacion diferencial de orden n, F(x,y,y’, ..., y®) = 0,
buscamos una familia de soluciones n-paramétrica G(x, y, c,, C,, ..., ¢ ) = 0. Esto
significa que una sola ecuacion diferencial puede tener un nimero infinito de solu-
ciones correspondiendo a un ndmero ilimitado de elecciones de los parametros. Una
solucién de una ecuacion diferencial que esta libre de la eleccién de pardmetros se
Ilama solucién particular. Por ejemplo, la familia uniparamétrica y = cx — X €0s X
es una solucioén explicita de la ecuacion lineal de primer orden xy’ —y = x?>sen x en
el intervalo (—o, «) (Compruebe). La figura 1.1.3 que se obtuvo usando un paquete
computacional de trazado de graficas, muestra las gréficas de algunas de las solu-
ciones en esta familia. La solucién y = —x cos x, la curva azul en la figura, es una
solucién particular correspondiente a ¢ = 0. En forma similar, en el intervalo (—oe, ),
y = c,e* + c,xe* es una familia de soluciones de dos parametros de la ecuacion lineal
de segundo orden y” — 2y’ +y = 0 del ejemplo 1 (Compruebe). Algunas soluciones
particulares de la ecuacion son la solucion trivial y = 0 (c, = ¢, = 0), y = xe*(c, = 0,
c,=1),y =5e*— 2xe*(c, = 5, ¢, = —2), etcétera.

Algunas veces una ecuacion diferencial tiene una solucién que no es miembro de una
familia de soluciones de la ecuacién, esto es, una soluciéon que no se puede obtener
usando un parametro especifico de la familia de soluciones. Esa solucion extra se llama
solucién singular. Por ejemplo, vemos que y = %x“ y'y = 0 son soluciones de la ecua-
cion diferencial dy/dx = xy*? en (—o, ). En la seccién 2.2 demostraremos, al resol-
verla realmente, que la ecuacién diferencial dy/dx = xy*? tiene la familia de solucio-
nes uniparamétrica y = (i X2 + 0)2. Cuando ¢ = 0, la solucién particular resultante es
y = %xf Pero observe que la solucién trivial y = 0 es una solucion singular, ya que
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c=-1,
x<0

b) solucion definida en tramos

FIGURA 1.1.4 Algunas soluciones de
xy" — 4y = 0.

no es un miembro de la familiay = (i x> + C)2 ya que no hay manera de asignarle un
valor a la constante c para obtenery = 0.

En todos los ejemplos anteriores, hemos usado x y y para denotar las variables
independiente y dependiente, respectivamente. Pero deberia acostumbrarse a ver y tra-
bajar con otros simbolos que denotan estas variables. Por ejemplo, podriamos denotar
la variable independiente por t y la variable dependiente por x:

I EJEMPLO 4 Usando diferentes simbolos

Las funciones x = ¢ cos 4ty x = c,sen 4t, donde c, y ¢, son constantes arbitrarias o
parametros, son ambas soluciones de la ecuacion diferencial lineal

x" + 16x = 0.
Para x = c, cos 4t las dos primeras derivadas respecto a t son x’ = —4c, sen 4ty
X" = —16¢, cos 4t. Sustituyendo entonces a X" y x se obtiene

x" + 16x = —16¢, cos 4t + 16(c, cos 41) = 0.
De manera parecida, para x = ¢, sen 4t tenemos x” = —16c, sen 4t, y asi
x" + 16x = —16¢,sen 4t + 16(c,sen 4t) = 0.

Finalmente, es sencillo comprobar directamente que la combinacién lineal de solucio-
nes, o la familia de dos parametros x = c, cos 4t + ¢, sen 4t, es también una solucion
de la ecuacion diferencial. [ |

El siguiente ejemplo muestra que una solucién de una ecuacion diferencial puede
ser una funcion definida por tramos.

I EJEMPLO 5 Unasolucion definida por tramos

Debe comprobar que la familia uni-paramétrica y = cx* es una familia de solucio-
nes uni-paramétrica de la ecuacion diferencial xy’ — 4y = 0 en el intervalo (—oo, ).
Véase la figura 1.1.4a. La funcion derivable definida por tramos

—x* x<0
y = 4
X, x=0

es una solucioén particular de la ecuacién pero no se puede obtener de la familiay = cx*
por una sola eleccidn de c; la solucién se construye a partir de la familia eligiendo ¢ =
—lparax <0yc = 1parax = 0. Véase lafigura 1.1.4b. ]

SISTEMAS DE ECUACIONES DIFERENCIALES Hasta este momento hemos ana-
lizado sdlo ecuaciones diferenciales que contienen una funcién incdgnita. Pero con fre-
cuencia en la teoria, asi como en muchas aplicaciones, debemos tratar con sistemas de
ecuaciones diferenciales. Un sistema de ecuaciones diferenciales ordinarias tiene
dos 0 méas ecuaciones que implican derivadas de dos o mas funciones incégnitas de
una sola variable independiente. Por ejemplo, si x y y denotan a las variables depen-
dientes y t denota a la variable independiente, entonces un sistema de dos ecuaciones
diferenciales de primer orden esta dado por
d>

x
E*ﬂn-\-))

©)

D _ oitxy)
— = o(t, x, y).
dt . )
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Una solucion de un sistema tal como el de la ecuacion (9) es un par de funciones
derivables x = ¢, (t), y = ¢,(t), definidas en un intervalo comin I, que satisface cada
ecuacion del sistema en este intervalo.

I COMENTARIOS

i) Algunos comentarios finales respecto a las soluciones implicitas de las ecua-
ciones diferenciales. En el ejemplo 3 pudimos despejar facilmente a y de la re-
lacion x2 + y2? = 25 en términos de x para obtener las dos soluciones explicitas,
$i1(X) = V25 — Xy &(X) = —V25 — X*, de la ecuacion diferencial (8). Pero
no debemos engafiarnos con este Gnico ejemplo. A menos que sea facil o impor-
tante o que se le indique, en general no es necesario tratar de despejar y expli-
citamente en términos de x, de una solucion implicita, G(x, y) = 0. Tampoco
debemos malinterpretar el posterior segundo enunciado en la definicién 1.1.3.
Una solucién implicita G(x, y) = 0 puede definir perfectamente bien a una fun-
cién derivable ¢ que es una solucién de una ecuacion diferencial; aunque no se
pueda despejar a y de G(x, y) = 0 con métodos analiticos como los algebraicos.
La curva solucion de ¢ puede ser un tramo o parte de la grafica de G(x, y)
= 0. Véanse los problemas 45 y 46 en los ejercicios 1.1. También lea el analisis
siguiente al ejemplo 4 de la seccién 2.2.

ii) Aunque se ha enfatizado el concepto de una solucion en esta seccidn, también
deberia considerar que una ED no necesariamente tiene una solucion. Véase el
problema 39 del ejercicio 1.1. El tema de si existe una solucion se tratara en la
siguiente seccion.

iii) Podria no ser evidente si una EDO de primer orden escrita en su forma di-
ferencial M(x, y)dx + N(x, y)dy = 0 es lineal o no lineal porque no hay nada
en esta forma que nos muestre qué simbolos denotan a la variable dependiente.
Véanse los problemas 9y 10 del ejercicio 1.1.

iv) Podria parecer poco importante suponer que F(x, y, ', ..., y™) = 0 puede
resolver para y™, pero hay que ser cuidadoso con esto. Existen excepciones y
hay realmente algunos problemas conectados con esta suposicion. VVéanse los
problemas 52 y 53 del ejercicio 1.1.

v) Puede encontrar el término soluciones de forma cerrada en libros de ED o
en clases de ecuaciones diferenciales. La traduccion de esta frase normalmente
se refiere a las soluciones explicitas que son expresables en términos de funcio-
nes elementales (o conocidas): combinaciones finitas de potencias enteras de X,
raices, funciones exponenciales y logaritmicas y funciones trigonométricas y
funciones trigonomeétricas inversas.

vi) Si toda solucion de una EDO de n-ésimo orden F(x,y,y’, . .., y™) = Oenun inter-
valo | se puede obtener a partir de una familia n-parametros G(x, y, ¢, C,,...,C,)
= 0 eligiendo apropiadamente los parametros ¢, i = 1, 2, ..., n, entonces diremos

que la familia es la solucién general de la ED. Al resolver EDO lineales impone-
mos algunas restricciones relativamente simples en los coeficientes de la ecuacion;
con estas restricciones podemos asegurar no sélo que existe una solucién en un
intervalo sino también que una familia de soluciones produce todas las posibles
soluciones. Las EDO no lineales, con excepcion de algunas ecuaciones de primer
orden, son normalmente dificiles o imposibles de resolver en términos de funciones
elementales. Ademas si obtenemos una familia de soluciones para una ecuacion
no lineal, no es obvio si la familia contiene todas las soluciones. Entonces a nivel
practico, la designacion de “solucion general” se aplica solo a las EDO lineales.
No se preocupe por el momento de este concepto, pero recuerde las palabras “solu-
cion general” pues retomaremos este concepto en la seccion 2.3 y nuevamente en el
capitulo 4.
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INTRODUCCION A LAS ECUACIONES DIFERENCIALES

EJERCICIOS 1.1

Las respuestas a los problemas con nimero impar comienzan en la pagina RES-1.

En los problemas 1 a 8 establezca el orden de la ecuacion dife-
rencial ordinaria dada. Determine si la ecuacién es lineal o no
lineal, comparando con la ecuacién (6).

1. (1 —x)y" —4xy'+ 5y =cosx

d? dy\*
2 xd_);_(_y)w:o

3. tsy(4) — t3y” +6y=0

4 d2u+du+ cos(r + u)

ez % _ ’

ot ar " "
d2y <dy>2
L= 1+ (=

5 dx? dx

L PRk

©odr? R?

7. (senB)y” — (cos 0)y’ =2
.2
8. x—<1 —%)x +x=0

En los problemas 9 y 10 establezca si la ecuacion diferencial
de primer orden dada es lineal en la variable dependiente com-
paréndola con la primera ecuacion dada en (7).

9. (y’—1)dx+ xdy =0;eny;enx

10. udv+ (v +uv — ue") du = 0;env;enu

En los problemas Il a 14, compruebe que la funcion indicada
es una solucion de la ecuacion diferencial dada. Suponga un
intervalo | de definicion adecuado para cada solucion.

11. 2y +y=0;, y=e"

dy 6 6
12. — + 20y = 24; = = _ 2,20
dt Y Y 5 5e

13. y" — 6y’ + 13y = 0; y = e*cos 2x

14. y" +y=tanx; y = —(cosx)In(sec x + tan x)

En los problemas 15 a 18 compruebe que la funcién indicada
y = ¢(x) es una solucion explicita de la ecuacién diferencial
de primer orden dada. Proceda como en el ejemplo 2, conside-
rando a ¢ simplemente como una funcion, dando su dominio.
Después considere a ¢p como una solucién de la ecuacion dife-
rencial, dando al menos un intervalo | de definicion.

15. (y—x)y=y—x+8, y=x+4Vx+2

16. y' =25 +y?% y=>5tanb5x

17. y =2xy?, y=1/(4 — x?

18. 2y’ =y3cosx; y = (1 — senx) 2

En los problemas 19 y 20 compruebe que la expresion indi-
cada es una solucion implicita de la ecuacidn diferencial dada.
Encuentre al menos una solucién explicitay = ¢(x) en cada
caso. Use alguna aplicacion para trazar graficas para obtener
la grafica de una solucion explicita. Dé un intervalo | de defi-
nicién de cada solucion ¢.

dx <2x— 1)
In =t
dt X-1

19, — =X — DA — 2X);

20. 2xydx + (X2 —y)dy=0; —-2x%y +y2=1

En los problemas 21 a 24 compruebe que la familia de funciones
indicada es unasolucién de la ecuacion diferencial dada. Suponga
un intervalo I de definicién adecuado para cada solucion.

dP ,
21. £ =pa-p; p=—2°
dt 1+ ¢

d 2 * 2 -2
2. 24 2xy=1;, y= e’“f e'dt + ce™™
dx 0

d? d
42y 4y = 0; y = cie** + cpxe**

23.
dx? dx

d? d? d
24. x3d—x)3}+ 2x2d—x)2)—xd—i+y= 12x%

y=cx '+ cx + c3xInx + 447

25. Compruebe que la funcién definida en tramos
j— _'xz’
y = XZ,
es una solucién de la ecuacidn diferencial xy’ — 2y = 0
en (—oo, ).

26. En el ejemplo 3 vimos que y = ¢i(x) =V25 — x* y
y = ¢(X) = —V25 — x* son soluciones de dy/dx =
—x/y en el intervalo (—5, 5). Explique por qué la funcién
definida en tramos

x <0

x=0

[ V25 =X —5<x<0
YT1-V25 -2 0=x<5

no es una solucién de la ecuacioén diferencial en el inter-
valo (=5, 5).



En los problemas 27 a 30 determine los valores de m tales que la
funcion y = e™ sea una solucion de la ecuacidn diferencial dada.

27. y +2y=0
29. y" —=5y" +6y=0

28. by’ =2y
30. 2y"+ 7y —4y =0

En los problemas 31y 32 determine los valores de m tales que
la funcion y = x™ sea una solucién de la ecuacién diferencial
dada.

31 xy"+ 2y =0

32. x¥y" —T7xy' + 15y =0

En los problemas 33 a 36 use el concepto de que y =c,
—oo < x < oo, es una funcidn constante si y solo si y’ = 0 para
determinar si la ecuacion diferencial tiene soluciones constantes.

33. 3xy’ +5y =10

4.y =y2+2y—3

3B.(y-1y =1

36. y' + 4y’ + 6y =10

En los problemas 37 y 38 compruebe que el par de funciones

indicado es una solucién del sistema dado de ecuaciones dife-
renciales en el intervalo (—o, ).

dx d’x
37, L or43 38 X4yt
a7 dr? yre
dy d?y
E=5x+3y; W=4x—e’;
x = e 2+ 3%, x =cos2t + sen2t + L e,

_g—zr + Seét t

y y=—cosZt—sen2t—%e

Problemas para analizar

39. Construya una ecuacion diferencial que no tenga ninguna
solucidn real.

40. Construya una ecuacion diferencial que usted asegure tenga
solo la solucion trivial y = 0. Explique su razonamiento.

41. ;Qué funcion conoce de calculo tal que su primera de-
rivada sea ella misma? ¢Que su primera derivada sea un
multiplo constante k de ella misma? Escriba cada res-
puesta en la forma de una ecuacion diferencial de primer
orden con una solucion.

42. ¢Qué funcion (o funciones) conoce de célculo tal que su
segunda derivada sea ella misma? ;Que su segunda de-
rivada sea el negativo de ella misma? Escriba cada res-
puesta en la forma de una ecuacion diferencial de segundo
orden con una solucién.

SECCION 1.1 DEFINICIONES Y TERMINOLOGIA ° 11

43. Dadoquey = senxes unasolucién explicitade laecuacion
diferencial de primer orden g_y = V1 — y?, encuentre
X

un intervalo de definicion 1. [Sugerencia: | no es el inter-
valo (—o, »).]

44, Analice por qué intuitivamente se supone que la ecuacién
diferencial lineal y” + 2y’ + 4y = 5 sen t tiene una solu-
cién de laformay = Asent + B cos t, donde Ay B son
constantes. Después determine las constantes especificas
AyBtalesquey = Asent + B costes unasolucién par-
ticular de la ED.

En los problemas 45 y 46 la figura dada representa la grafica
de una solucién implicita G(x, y) = 0 de una ecuacién dife-
rencial dy/dx = f(x, y). En cada caso la relacién G(x,y) = 0
implicitamente define varias soluciones de la ED. Reproduzca
cuidadosamente cada figura en una hoja. Use lapices de dife-
rentes colores para sefialar los tramos o partes, de cada grafica
que corresponda a las graficas de las soluciones. Recuerde que
una solucién ¢ debe ser una funcion y derivable. Utilice la
curva solucion para estimar un intervalo de definicién |
de cada solucioén ¢.

45,

FIGURA 1.1.5 Gréfica del problema 45.

46. y

FIGURA 1.1.6 Gréfica del problema 46.

47. Las graficas de los miembros de una familia uni-para-
métrica x*+ y* = 3cxy se llaman folium de Descartes.
Compruebe que esta familia es una solucién implicita de
la ecuacion diferencial de primer orden

dy _y(y? —2x)
dx  x(2y? — X%
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48.

49.

50.

51.

52.

53.

54.

55.

e CAPITULO 1

La grafica de la figura 1.1.6 es el miembro de la fami-
lia del folium del problema 47 correspondiente a ¢ = 1.
Analice: ;como puede la ED del problema 47 ayudar
a determinar los puntos de la gréfica de x® + y® = 3xy
donde la recta tangente es vertical? ;Cémo saber donde
una recta tangente que es vertical ayuda a determinar un
intervalo | de definicion de una solucion ¢ de la ED?
Lleve a cabo sus ideas y compare con sus estimaciones
de los intervalos en el problema 46.

En el ejemplo 3, el intervalo | mas grande sobre el cual
las soluciones explicitasy = ¢, (X) yy = ¢,(X) se encuen-
tran definidas en el intervalo abierto (—5, 5). ¢Por qué |
no puede ser el intervalo cerrado | definido por [—5, 5]?

En el problema 21 se da una familia uni-paramétrica de
soluciones de laED P’ = P(1—P). ¢Cualquier curva so-
lucion pasa por el punto (0, 3)? ;Y por el punto (0, 1)?

Analice y muestre con ejemplos cémo resolver ecuaciones
diferenciales de las formas dy/dx = f(x) y d?y/dx? = f(x).

La ecuacion diferencial x(y')? — 4y’ — 12x® = 0 tiene la
forma dada en la ecuacion (4). Determine si la ecuacion
se puede poner en su forma normal dy/dx = f(x, y).

La forma normal (5) de una ecuacion diferencial de
n-ésimo orden es equivalente a la ecuacion (4) si las dos
formas tienen exactamente las mismas soluciones. Forme
una ecuacion diferencial de primer orden para la que F(x,
y,y') = 0 no sea equivalente a la forma normal dy/dx =

f(x,y).

Determine una ecuacion diferencial de segundo orden
’ "y — — 2 1
E(x, AR .) = Qparala quey = c,X + C X" sea una fami-
lia de soluciones de dos parametros. Aseglrese de que su
ecuacion esté libre de los parametros arbitrarios c, y c,.

Informacion cualitativa respecto a una solucion y = ¢(x)
de una ecuacion diferencial con frecuencia puede obte-
nerse de la misma ecuacion. Antes de trabajar con los
problemas 55 a 58, recuerde el significado geométrico de
las derivadas dy/dx y d?y/dx2.

. L . d
Considere la ecuacion diferencial d—z =

a) Explique por qué una solucion de la ED debe ser una
funcion creciente en cualquier intervalo del eje de las x.

b) ¢(Aquésoniguales lim dy/dx y lim dy/dx. ;Qué

X —> —oo X —> o
le sugiere esto respecto a una curva solucion con-
forme x — +o0?

c) Determine un intervalo sobre el cual una curva solu-
cioén sea concava hacia abajo y un intervalo sobre el
que la curva sea concava hacia arriba.

d) Trace la gréfica de una soluciony = ¢(x) de la ecua-

cién diferencial cuya forma se sugiere en los incisos
a)ac).

56.

57.

58.

INTRODUCCION A LAS ECUACIONES DIFERENCIALES

Considere la ecuacion diferencial dy/dx = 5 -y.

a) Yasea por inspeccion o por el método sugerido en los
problemas 33 a 36, encuentre una solucién constante
de la ED.

b) Utilizando s6lo la ecuacion diferencial, determine los
intervalos en el eje y en los que una solucién cons-
tante y = ¢(x) sea creciente. Determine los intervalos
en el ejeyen los cualesy = ¢(x) es decreciente.

Considere la ecuacion diferencial dy/dx =
donde a y b son constantes positivas.

a) Ya sea por inspeccion o por los métodos sugeridos
en los problemas 33 a 36, determine dos soluciones
constantes de la ED.

b) Usando s6lo la ecuacion diferencial, determine los
intervalos en el eje y en los que una solucion no cons-
tante y = ¢(X) es creciente. Determine los intervalos
en los que y = ¢(X) es decreciente.

c) Utilizando sélo la ecuacién diferencial, explique por qué
y = a/2b es la coordenada y de un punto de inflexién de
la grafica de una solucién no constante y = ¢(x).

d) En los mismos ejes coordenados, trace las gréficas
de las dos soluciones constantes en el inciso a). Estas
soluciones constantes parten el plano xy en tres regio-
nes. En cada region, trace la gréfica de una solucion
no constante y = ¢(x) cuya forma se sugiere por los
resultados de los incisos b) y c).

y(@ - by),

Considere la ecuacion diferencial y' = y? + 4.

a) Explique por qué no existen soluciones constantes de
la ecuacion diferencial.

b) Describa la grafica de una solucion y = ¢(x). Por
ejemplo, ¢puede una curva solucion tener un extremo
relativo?

c) Explique por qué y = 0 es la coordenada y de un
punto de inflexion de una curva solucion.

d) Trace la gréfica de una soluciény = ¢(x) de la ecua-
cién diferencial cuya forma se sugiere en los incisos
a)ac).

Tarea para el laboratorio de computacion

En los problemas 59 y 60 use un CAS (por sus siglas en inglés,
Sistema Algebraico Computacional) para calcular todas las
derivadas y realice las simplificaciones necesarias para com-
probar que la funcidn indicada es una solucion particular de la
ecuacion diferencial.

59.

60.

y® — 20y"— + 158y” — 580y’ + 841y = 0;
y = xe% cos 2x

Xy + 2x%y" + 20xy’ — 78y = 0;
cos(5Inx) 3 sen(5 In X)
X X

y =20
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1.2

PROBLEMAS CON VALORES INICIALES

REPASO DE MATERIAL

e Forma normal de una ED
e Solucion de una ED
e Familia de soluciones

INTRODUCCION  Con frecuencia nos interesan problemas en los que buscamos una solucion y(x)
de una ecuacion diferencial tal que y(x) satisface condiciones prescritas, es decir, condiciones impues-

donde y,, y,, . .

Y'(X) =Yy

soluciones de la ED
M/

FIGURA 1.2.1 Solucién del PVI de
primer orden.

soluciones de la ED

N

FIGURA 1.2.2 Solucién del PVI de
segundo orden.

tas sobre una y(x) desconocida o sus derivadas. En algun intervalo | que contiene a x, el problema

n

Resolver: )n/ =f(xy.y.....y"")
dx 1)
SJjetO a y(X()) = y()y y,(Xo) = yl’ LR ) y<n71)()q)) = yn*ls

., Y,_, son constantes reales arbitrarias dadas se llama problema con valores ini-
ciales (PVI). Los valores de y(x) y de sus primeras n — 1 d_erlvadas en un solo punto X, y(x,) =Y,
YO I(x,) =y, _,, se llaman condiciones iniciales.

PVI DE PRIMER Y SEGUNDO ORDEN  EI problema dado en (1) también se llama
problema con valores iniciales de n-ésimo orden. Por ejemplo,

dy

Resolver: —=1fXxy)
dx (2)
Sujeto a: Y(%) = Yo
d’y _ ,
y Resolver: i fxy.y") 3)
Sujeto a: Y(X0) = Yo Y'(X0) = Vi

son problemas con valores iniciales de primer y segundo orden, respectivamente. Estos
dos problemas son faciles de interpretar en términos geométricos. Para la ecuacion (2)
estamos buscando una solucion de la ecuacion diferencial en un intervalo | que contenga
a x,, tal que su grafica pase por el punto dado (x,, y,). En la figura 1.2.1 se muestra en
azul una curva solucién. Para la ecuacion (3) queremos determinar una solucion y(x) de
la ecuacion diferencial y” = f(x, y, y’) en un intervalo I que contenga a x, de tal manera
que su grafica no solo pase por el punto dado (x,, y,), sino que también la pendiente a la
curvaen ese punto sea el niameroy,. En la figura 1.2.2 se muestra en azul una curva solu-
cidn. Las palabras condiciones iniciales surgen de los sistemas fisicos donde la variable
independiente es el tiempo t'y donde y(t) =y, Yy y'(t) =y, representan la posicion y la
velocidad respectivamente de un objeto al comienzo o al tiempo inicial t,.

Con frecuencia, resolver un problema con valores iniciales de n-ésimo orden tal
como (1) implica determinar primero una familia n-paramétrica de soluciones de la
ecuacion diferencial dada y después usando las n condiciones iniciales en x, deter-
minar los valores numéricos de las n constantes en la familia. La solucion particular
resultante esta definida en algin intervalo I que contiene al punto inicial x,.

I EJEMPLO 1 DosPVI de primer orden

En el problema 41 de los ejercicios 1.1 se le pidio que dedujera que y = ce* es una
familia uniparamétrica de soluciones de la ecuacién de primer orden y’ =y. Todas las
soluciones en esta familia estan definidas en el intervalo (—, ). Si imponemos una
condicidn inicial, digamos, y(0)=3, entonces al sustituir x = 0, y = 3 en la familia se
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FIGURA 1.2.3 Soluciones de los dos

PVI.

a) funcidn definida para toda x excepto

b) solucion definida en el intervalo que

FIGURA 1.2.4 Gréficas de la funcion
y de la solucién del PVI del ejemplo 2.

|
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|
|
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|
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|
_1‘
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|
|
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\
\
\
\
\
\
\
\
}
_1
\
\
\
\
\
\
\
\
\
[

contiene x =0

(0,-1)

1

X

determina la constante 3 = ce® = c por lo que y = 3e* es una solucion del PVI

y' =y y0) =3
Ahora si hacemos que la curva solucion pase por el punto (1, —2) en lugar de (0, 3),
entonces y(1) = —2 se obtendrda —2 = ceoc = —2e L Eneste casoy = —2e* ' es
una solucién del PVI

y =y y@l)=-2

En la figura 1.2.3 se muestran en azul oscuro y en rojo oscuro las dos curvas solucién.m

El siguiente ejemplo muestra otro problema con valores iniciales de primer orden.
En este ejemplo observe cdmo el intervalo de definicion | de la solucion y(x) depende
de la condicion inicial y(x,) = y,.

EJEMPLO 2 Intervalo I de definicidon de una solucién

En el problema 6 de los ejercicios 2.2 se le pedira mostrar que una familia uniparamé-
trica de soluciones de la ecuacion diferencial de primer ordeny’ + 2xy? = 0esy =
1/(x?* + c). Si establecemos la condicién inicial y(0) = —1, entonces al sustituir x =
0yy = —1en la familia de soluciones, se obtiene —1 = 1/coc = —1. Asiy =
1/(x*—1). Ahora enfatizamos las siguientes tres diferencias:

 Considerada como una funcion, el dominio dey = 1/(x? —1) es el conjunto de
todos los nimeros reales x para los cuales y (x) esté definida, exceptoenx = —1
yenx = 1. Véase la figura 1.2.4a.

 Considerada como una solucion de la ecuacion diferencial y' + 2xy?=0, el
intervalo | de definicion dey = 1/(x? — 1) podria tomarse como cualquier
intervalo en el cual y(x) esté definida y es derivable. Como se puede ver en
la figura 1.2.4a, los intervalos mas largos en los que y = 1/(x> — 1) es una
solucion son (—oe, —1), (—1,1) y (1, «).

 Considerada como una solucion del problema con valores iniciales y’ + 2xy?
=0,y(0) = —1, el intervalo | de definicién de y = 1/(x?> — 1) podria ser
cualquier intervalo en el cual y(x) esté definida, es derivable y contiene al
punto inicial x = 0; el intervalo mas largo para el cual esto es valido es (—1,
1). Véase la curva roja en la figura 1.2.4b. ]

Véanse los problemas 3 a 6 en los ejercicios 1.2 para continuar con el ejemplo 2.

I EJEMPLO 3 PVI de segundo orden

En el ejemplo 4 de la seccion 1.1 vimos que x = ¢, cos 4t + ¢, sen 4t es una familia de
soluciones de dos pardmetros de x” + 16x = 0. Determine una solucion del problema
con valores iniciales

a a
"+16x=0, x(=]=-2, x(-)=1
v aex=0, x(2)= -2 x(2)

SOLUCION Primero aplicamos x(7/2) = —2 en la familia de soluciones: c,Cos 2m
+ ¢, sen 2m = —2. Puesto que cos 2 = 1y sen 27 = 0, encontramos que ¢, = —2.
Después aplicamos x’(7r/2) = 1 en la familia uniparamétrica de soluciones x(t) = —2
cos 4t + ¢, sen 4t. Derivando y después haciendot = /2y x" = 1 se obtiene 8 sen 27 +
4c, cos 27 = 1, a partir del cual vemos que ¢, = % Portanto x = —2 cos 4t + ;11 sen 4t
es una solucion de (4). ]

(4)

EXISTENCIA Y UNICIDAD Al considerar un problema con valores iniciales sur-
gen dos importantes preguntas:

¢ Existe la solucion del problema?
Si existe la solucién, ¢es Unica?
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FIGURA 1.2.6 Region rectangular R.

1.2 PROBLEMAS CON VALORES INICIALES ° 15

Para el problema con valores iniciales de la ecuacion (2) pedimos:

¢La ecuacion diferencial dy/dx = f(x, y) tiene soluciones?

Existencia i
¢Alguna de las curvas solucion pasa por el punto (x,, y,)?

¢Cuando podemos estar seguros de que hay precisamente una

Unicidad {curva solucion que pasa a traves del punto (x,, y,)?

Observe que en los ejemplos 1 y 3 se usa la frase “una solucion” en lugar de “la solu-
cién” del problema. El articulo indefinido “una” se usa deliberadamente para sugerir la
posibilidad de que pueden existir otras soluciones. Hasta el momento no se ha demos-
trado que existe una Unica solucion de cada problema. El ejemplo siguiente muestra un
problema con valores iniciales con dos soluciones.

I EJEMPLO 4 uUn PVI puede tener varias soluciones

Cada una de las funcionesy = 0y y = T16x4 satisface la ecuacion diferencial dy/x =

xy*2y la condicién inicial y(0) = 0, por lo que el problema con valores iniciales

dy

—Z =X 1/2, 0)=0

RS AR (V)
tiene al menos dos soluciones. Como se muestra en la figura 1.2.5, las gréficas de las
dos soluciones pasan por el mismo punto (0, 0). ]

Dentro de los limites de seguridad de un curso formal de ecuaciones diferenciales
uno puede confiar en que la mayoria de las ecuaciones diferenciales tendran soluciones
y que las soluciones de los problemas con valores iniciales probablemente seran Unicas.
Sin embargo, en la vida real, no es asi. Por tanto es deseable conocer antes de tratar de
resolver un problema con valores iniciales si existe una solucion y cuando asi sea, si ésta
es la Unica solucion del problema. Puesto que vamos a considerar ecuaciones diferencia-
les de primer orden en los dos capitulos siguientes, estableceremos aqui sin demostrarlo
un teorema directo que da las condiciones suficientes para garantizar la existencia y uni-
cidad de una solucién de un problema con valores iniciales de primer orden de la forma
dada en la ecuacion (2). Esperaremos hasta el capitulo 4 para retomar la pregunta de la
existencia y unicidad de un problema con valores iniciales de segundo orden.

TEOREMA 1.2.1 Existencia de una solucién Unica

Sea R una region rectangular en el plano xy definidapora=x=b,c=y=d
que contiene al punto (x,, y,) en su interior. Si f(x, y) y df/dy son continuas en
R, entonces existe algun intervalo 1 : (x, — h, x, + h), h > 0, contenido en [a,
b], y una funcion dnica y(x), definida en I, que es una solucion del problema
con valores iniciales (2).

El resultado anterior es uno de los mas populares teoremas de existencia y unici-
dad para ecuaciones diferenciales de primer orden ya que el criterio de continuidad de
f(x, y) y de of /dy son relativamente faciles de comprobar. En la figura 1.2.6 se muestra
la geometria del teorema 1.2.1.

I EJEMPLO 5 Revision del ejemplo 4

Como vimos en el ejemplo 4 la ecuacion diferencial dy/dx = xy? tiene al menos dos
soluciones cuyas graficas pasan por el punto (0, 0). Analizando las funciones
of X

fxy) =xy"* y YRy
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vemos que son continuas en la mitad superior del plano definido por y > 0. Por tanto
el teorema 1.2.1 nos permite concluir que a traves de cualquier punto (x,, y,), Y, > 0 en
la mitad superior del plano existe algun intervalo centrado en x, en el cual la ecuacion
diferencial dada tiene una solucidn Unica. Asi, por ejemplo, aln sin resolverla, sabe-
mos que existe algin intervalo centrado en 2 en el cual el problema con valores inicia-
les dy/dx = xy*?, y(2) = 1 tiene una solucién Unica. [ |

En el ejemplo 1, el teorema 1.2.1 garantiza que no hay otras soluciones de los pro-
blemas con valores inicialesy’ =y, y(0) = 3yy’' =y, y(1)= —2distintasay = 3e*yy
= —2e*1, respectivamente. Esto es consecuencia del hecho de que f(x,y) = yy of/dy =
1 son continuas en todo el plano xy. Ademas podemos mostrar que el intervalo | en el
cual cada solucién esta definida es (—eo, ©).

INTERVALO DE EXISTENCIA Y UNICIDAD Suponga que y(x) representa una so-
lucién del problema con valores iniciales (2). Los siguientes tres conjuntos de nimeros
reales en el eje x pueden no ser iguales: el dominio de la funcién y(x), el intervalo | en
el cual la solucion y(x) esta definida o existe, y el intervalo I de existencia y unicidad.
El ejemplo 2 de la seccidn 1.1 muestra la diferencia entre el dominio de una funcion y
el intervalo | de definicion. Ahora suponga que (x,, y,) €s un punto en el interior de la
region rectangular R en el teorema 1.2.1. Esto da como resultado que la continuidad de
la funcion f(x, y) en R por si misma es suficiente para garantizar la existencia de al menos
unasolucion de dy/dx = f(x, y), y(x,) =y, definidaen algin intervalo I. El intervalo | de
definicidn para este problema con valores iniciales normalmente se toma como el inter-
valo mas grande que contiene x, en el cual la solucion y(x) esta definida y es derivable.
El intervalo | depende tanto de f(x, y) como de la condicion inicial y(x)) = y,. Veéanse
los problemas 31 a 34 en los ejercicios 1.2. La condicion extra de continuidad de la
primera derivada parcial of/dy en R nos permite decir que no s6lo existe una solucion
en algun intervalo |, que contiene x,, sino que esta es la Gnica solucion que satisface
y(X,) =Y, Sinembargo, el teorema 1.2.1 no da ninguna indicacion de los tamafios de los
intervalos | e | ; el intervalo de definicion | no necesita ser tan amplio como la region
Ry el intervalo de existencia y unicidad I, puede no ser tan amplio como I. El nimero
h > 0 que define el intervalo 1 : (x, — h, x, + h) podria ser muy pequefio, por lo que es
mejor considerar que la solucion y(x) es Gnica en un sentido local, esto es, una solucion
definida cerca del punto (x,, y,). Véase el problema 44 en los ejercicios 1.2.

I COMENTARIOS

(i) Las condiciones del teorema 1.2.1 son suficientes pero no necesarias. Esto signi-
fica que cuando f(x, y) y of /dy son continuas en una region rectangular R, debe siem-
pre seguir que existe una solucion de la ecuacion (2) y es Unica siempre que (x,, Y,)
sea un punto interior a R. Sin embargo si las condiciones establecidas en la hipdtesis
del teorema 1.2.1 no son validas, entonces puede ocurrir cualquier cosa: el problema
de laecuacion (2) puede tener una solucién y esta solucion puede ser Gnica o la ecua-
cion (2) puede tener varias soluciones o puede no tener ninguna solucién. Al leer
nuevamente el ejemplo 5 vemos que la hipétesis del teorema 1.2.1 no es valida en la
rectay = 0 para la ecuacion diferencial dy/dx = xy*?, pero esto no es sorprendente,
ya que como vimos en el ejemplo 4 de esta seccion, hay dos soluciones definidas en
un intervalo comun —h < x < h que satisface y(0) = 0. Por otra parte, la hip6tesis
del teorema 1.2.1 no es valida en la recta y = 1 para la ecuacion diferencial dy/
dx = |y — 1|. Sin embargo se puede probar que la solucién del problema con valores
iniciales dy/dx = |y — 1], y(0) = 1 es Unica ¢Puede intuir la solucién?

(ii) Es recomendable leer, pensar, trabajar y después recordar el problema 43 en
los ejercicios 1.2.
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EJERCICIOS 1.2

Las respuestas a los problemas con nimero impar comienzan en la pagina RES-1

En los problemas 1y 2,y = 1/(1 + c,e™) es una familia uni-
paramétrica de soluciones de la ED de primer ordeny’' =y —y2
Encuentre una solucion del PVI de primer orden que consiste en
esta ecuacion diferencial y la condicién inicial dada.

L y(0) = =3

En los problemas 3a 6,y = 1/(x? + c) es una familia unipara-
métrica de soluciones de la ED de primer ordeny’ + 2xy? = 0.
Determine una solucidon del PVI de primer orden que consiste
en esta ecuacion diferencial y la condicidn inicial dada. Dé el
intervalo | mas largo en el cual esta definida la solucion.

3.y =3 4. y(~2) =1
5.y(0) =1 6. y(i) = —4

2. y(-1) =2

En los problemas 7 a 10, x = c,cost + ¢, sen t es una familia
de soluciones de dos parametros de la ED de segundo orden
X" + x = 0. Determine una solucién del PVI de segundo or-
den que consiste en esta ecuacion diferencial y las condicio-
nes iniciales dadas.

7. x(0) = -1, x'(0)=38
8. x(m/2) =0, x'(w/2)=1
9. x(m/6) =1, X(m/6)=0

10. X(m/4) = V2, x'(w/4) =2V2

Enlos problemas 11 a 14,y = ce* + c,e*es una familia de solu-
ciones de dos pardmetros de la ED de segundo ordeny” —y = 0.
Determine una solucion del PVI de segundo orden que consiste
en esta ecuacion diferencial y las condiciones iniciales dadas.

y'(0) =2
12.y(1) =0, y'(1)=e

11. y(0) = 1,

13. y(-1) =5, y'(-1) = -5
14. y(0)=0, y'(0)=0

En los problemas 15 y 16 determine por inspeccién al menos
dos soluciones del PVI de primer orden dado.

15. y' =3y#, y(0)=0

16. xy' =2y, y@0)=0

En los problemas 17 a 24 determine una region del plano xy
para el que la ecuacidn diferencial dada tendria una solucion
unica cuyas graficas pasen por un punto (x,, y,) en la region.

dy

17.
dx

— \253
=Yy

dy
1 ==\
8 dx Xy

dy _ dy . _
19. XdX—y 20. dx y =X

21. (4 — y?)y' = x? 22. (1 + y3)y' = x?

23. (X2 +y2)y =y? 24. (y = x)y =y +x

En los problemas 25 a 28 determine si el teorema 1.2.1 ga-
rantiza que la ecuacion diferencial y’ = \/y? — 9 tiene una
solucién Unica que pasa por el punto dado.

25. (1, 4) 26. (5,3)
27. (2, —3) 28. (-1, 1)

29. a) Por inspeccion determine una familia uniparamétrica
de soluciones de la ecuacién diferencial xy’ = y. Com-
pruebe que cada miembro de la familia es una solucion
del problema con valores iniciales xy’ =y, y(0) = 0.

b) Explique el inciso a) determinando una regién R en el
plano xy para el que la ecuacion diferencial xy’ =y
tendria una solucién Unica que pase por el punto

(X, Y,) enR.
c) Compruebe que la funcidn definida por tramos
_J0, x<0
y X, x=0

satisface la condicion y(0)=0. Determine si esta fun-
cidn es también una solucion del problema con valo-
res iniciales del inciso a).

30. a) Compruebe que y = tan (x + ¢) es una familia uni-
paramétrica de soluciones de la ecuacién diferencial
y ' =1+Vy
b) Puesto que f(x,y) = 1 + y?y of/dy = 2y son conti-
nuas en donde quiera, la region R en el teorema 1.2.1
se puede considerar como todo el plano xy. Utilice la
familia de soluciones del inciso a) para determinar una
solucion explicita del problema con valores iniciales
deprimerordeny” = 1+ y? y(0) = 0. Auncuandox, =
0 esté en el intervalo (—2, 2), explique por qué la so-
lucion no esté definida en este intervalo.
c) Determine el intervalo | de definicion mas largo para la
solucion del problema con valores iniciales del inciso b).

31. a) Verifique quey = —1/(x + c) es una familia de so-
luciones uniparamétrica de la ecuacion diferencial
y =V

b) Puesto que f(x, y) = y?y df/dy = 2y son continuas
donde sea, la region R del teorema 1.2.1 se puede
tomar como todo el plano xy. Determine una solucion
de la familia del inciso a) que satisfaga que y(0) = 1.
Después determine una solucion de la familia del in-
ciso a) que satisfaga que y(0) = —1. Determine el
intervalo | de definicion mas largo para la solucion de
cada problema con valores iniciales.
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c) Determine el intervalo de definicion | mas largo para

32. a)

b)

33. a)

b)

c)

34. a)

la solucién del problema con valores iniciales y' = y?,
y(0) = 0. [Sugerencia: La solucién no es un miembro
de la familia de soluciones del inciso a)].

Demuestre que una solucion de la familia del inciso a)
del problema 31 que satisface y’ = y2, y(1) = 1, esy
=1/(2 —x).

Después demuestre que una solucién de la familia del
inciso a) del problema 31 que satisface y’ = y?, y(3)
=—-1,esy=1/(2 —x).

¢Son iguales las soluciones de los incisos a) y b)?

Verifique que 3x2 — y2 = ¢ es una familia de solu-
ciones uniparamétricas de la ecuacion diferencial
y dy/dx = 3x.

Bosqueje, a mano, la gréfica de la solucion implicita
3x2 —y? = 3. Determine todas las soluciones explici-
tasy = ¢(x) de la ED del inciso a) definidas por esta
relacion. Dé un intervalo | de definicidn de cada una
de las soluciones explicitas.

El punto (—2, 3) esta en la grafica de 3x>—y2 = 3 pero
¢cual de las soluciones explicitas del inciso b) satis-
face que y(—2) = 3?

Utilice la familia de soluciones del inciso a) del problema
33 para determinar una solucién implicita del proble-
ma con valores iniciales y dy/dx = 3x, y(2) = — 4. Des-
pués bosqueje, a mano, la grafica de la solucion explicita
de este problemay dé su intervalo | de definicion.

b) ¢Existen algunas soluciones explicitas de y dy/dx =

3x que pasen por el origen?

En los problemas 35 a 38 se presenta la grafica de un miembro
de la familia de soluciones de una ecuacion diferencial de se-
gundo orden d?y/dx?= f(x, y, y’). Relacione la curva solucién
con al menos un par de las siguientes condiciones iniciales.

a y1=1 y@=-2
b) y(=1) =0, y'(-1)= —4
0 ym=1 y@@=2

d) y(0)=-1, y'(0)=2

e) y(0)=-1, y(0) =0
f) y(0) = -4, y(©0)=-2

35.

-5+

FIGURA 1.2.7 Gréfica del problema 35.

36. Y

FIGURA 1.2.8 Gréfica del problema 36.

37. y

FIGURA 1.2.9 Gréfica del problema 37.

38. y

FIGURA 1.2.10 Gréfica del problema 38.

Problemas de analisis

En los problemas 39 y 40 utilice el problema 51 de los ejerci-
cios 1.1y (2) y (3) de esta seccion.

39. Encuentre una funciény = f(x) cuya grafica en cada punto
(%, y) tiene una pendiente dada por 8e% + 6x y la intersec-
cién con el eje y en (0,9).

40. Determine una funciony = f(x) cuya segunda derivada es y”
= 12x — 2 en cada punto (x, y) de su graficayy = —x + 5
es tangente a la grafica en el punto correspondiente a x = 1.

41. Considere el problema con valores iniciales y’ = x — 2y,
y(0) = % Determine cual de las dos curvas que se mues-
tran en la figura 1.2.11 es la Unica curva solucidn posible.
Explique su razonamiento.
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FIGURA 1.2.11 Gréficas del problema 41.

Determine un valor posible para x, para el que la grafica
de la solucidn del problema con valores iniciales y’ + 2y
= 3x -6, y(x,) = O es tangente al eje x en (x,, 0). Explique
su razonamiento.

Suponga que la ecuacion diferencial de primer orden
dy/dx = f(x, y) tiene una familia uniparamétrica de solu-
cionesy que f(x, y) satisface la hipétesis del teorema 1.2.1
en alguna region rectangular R del plano xy. Explique por
qué dos curvas solucion diferentes no se pueden intercep-
tar o ser tangentes entre si en un punto (x,,y,) en R.

Las funciones y(x) = . x}, —o<x<oy

) = 0, X<0
Y =xt x=0

tienen el mismo dominio pero son obviamente diferentes.
Véanse las figuras 1.2.12a y 1.2.12b, respectivamente.
Demuestre que ambas funciones son soluciones del pro-
blema con valores iniciales dy/dx = xy*?, y(2) = 1 en el

@1 | @y

a) b)
FIGURA 1.2.12 Dos soluciones del PVI del problema 44.

intervalo (—o°, ). Resuelva la aparente contradiccion
entre este hecho y el dltimo enunciado del ejemplo 5.

Modelo matematico

45, Crecimiento de la poblacién Al inicio de la siguiente

seccion veremos que las ecuaciones diferenciales se
pueden usar para describir o modelar diversos sistemas
fisicos. En este problema suponemos que un modelo de
crecimiento de la poblacién de una pequefia comunidad
esta dado por el problema con valores iniciales

%T = 0.15P(t) + 20, P(0) = 100,
donde P es el nimero de personas en la comunidad y el
tiempo t se mide en afios. /Qué tan rapido, es decir, con
qué razon estd aumentando la poblacién ent = 0? ; Qué tan
rapido esta creciendo la poblacidn cuando la poblacion es
de 500?

1.3 ECUACIONES DIFERENCIALES COMO MODELOS MATEMATICOS

REPASO DE MATERIAL

Segunda ley de Newton
Ley de Hooke

Leyes de Kirchhoff
Principio de Arquimedes

Unidades de medida para el peso, masa y densidad

INTRODUCCION  En esta seccion introduciremos la idea de una ecuacion diferencial como un
modelo matematico y analizaremos algunos modelos especificos en biologia, quimica y fisica. Ya
que hayamos estudiado algunos de los métodos de solucion de las ED en los capitulos 2 y 4, retoma-
remos y resolveremos algunos de estos modelos en los capitulos 3y 5.

MODELOS MATEMATICOS  Con frecuencia es deseable describir en términos mate-
maticos el comportamiento de algunos sistemas o fendmenos de la vida real, sean fisicos,
socioldgicos o hasta econdmicos. La descripcién matematica de un sistema de fenémenos
se llama modelo matematico y se construye con ciertos objetivos. Por ejemplo, pode-
mos desear entender los mecanismos de cierto ecosistema al estudiar el crecimiento de la
poblacién animal en ese sistema, 0 podemos desear datar fésiles y analizar el decaimiento
de una sustancia radiactiva ya sea en el fosil 0 en el estrato en que éste fue descubierto.
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La formulacién de un modelo matematico de un sistema se inicia con

i) identificacion de las variables que ocasionan el cambio del sistema.
Podremos elegir no incorporar todas estas variables en el modelo desde el
comienzo. En este paso especificamos el nivel de resolucion del modelo.

Después,

i)  se establece un conjunto de suposiciones razonables o hipétesis, acerca del
sistema que estamos tratando de describir. Esas hip6tesis también incluyen
todas las leyes empiricas que se pueden aplicar al sistema.

Para algunos objetivos quiza baste con conformarse con modelos de baja resolucién.
Por ejemplo, usted ya es consciente de que en los cursos basicos de fisica algunas veces
se desprecia la fuerza retardadora de la friccion del aire al modelar el movimiento de un
cuerpo que cae cerca de la superficie de la Tierra. Pero si usted es un cientifico cuyo trabajo
es predecir con exactitud la trayectoria de vuelo de un proyectil de largo alcance, debera
considerar la resistencia del aire y otros factores, tales como la curvatura de la Tierra.

Puesto que con frecuencia las hipotesis acerca de un sistema implican una razon
de cambio de una o mas de las variables, el enunciado matematico de todas esas hi-
potesis puede ser una 0 mas ecuaciones que contengan derivadas. En otras palabras,
el modelo matematico puede ser una ecuacién diferencial o un sistema de ecuaciones
diferenciales.

Una vez que se ha formulado un modelo matematico, ya sea una ecuacion diferen-
cial o un sistema de ecuaciones diferenciales, nos enfrentamos al problema no facil de
tratar de resolverlo. Si podemos resolverlo, entonces consideramos que el modelo es
razonable si su solucidn es consistente con los datos experimentales o con los hechos
conocidos acerca del comportamiento del sistema. Si las predicciones que se obtienen
son deficientes, podemos aumentar el nivel de resolucién del modelo o hacer hip6tesis
alternativas acerca de los mecanismos de cambio del sistema. Entonces se repiten los
pasos del proceso de modelado, como se muestra en el diagrama siguiente:

— Expresar las hipotesis en Formulacion
términos de las ecuaciones matematica

diferenciales

. I .
Si es necesario, modificar
las hip6tesis 0 aumentar Resolver las ED
la resolucion del modelo
1

Comprobar las
predicciones
del modelo con
hechos conocidos

Presentar las predicciones Obtener
~— H —— -
del modelo (por ejemplo soluciones
en forma grafica)

Por supuesto, al aumentar la resolucion, aumentamos la complejidad del modelo ma-
tematico y la probabilidad de que no podamos obtener una solucidn explicita.

Con frecuencia, el modelo matematico de un sistema fisico inducira la variable
tiempo t. Una solucion del modelo expresa el estado del sistema; en otras palabras,
los valores de la variable dependiente (o variables) para los valores adecuados de t que
describen el sistema en el pasado, presente y futuro.

DINAMICA POBLACIONAL Uno de los primeros intentos para modelar el cre-
cimiento de la poblacion humana por medio de las matematicas fue realizado en
1798 por el economista inglés Thomas Malthus. Basicamente la idea detras del mo-
delo de Malthus es la suposicion de que la razén con la que la poblacion de un pais
en un cierto tiempo es proporcional” a la poblacion total del pais en ese tiempo. En
otras palabras, entre mas personas estén presentes al tiempo t, habra mas en el fu-

“Si dos cantidades u y v son proporcionales, se escribe u o v. Esto significa que una cantidad es un
multiplo constante de otra: u = kv.
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turo. En términos matematicos, si P(t) denota la poblacién al tiempo t, entonces esta
suposicion se puede expresar como

dP dP

—x P 0 — =

dt dt
donde k es una constante de proporcionalidad. Este modelo simple, falla si se con-
sideran muchos otros factores que pueden influir en el crecimiento o decrecimiento
(por ejemplo, inmigracidn y emigracion), resultd, sin embargo, bastante exacto en
predecir la poblacion de los Estados Unidos, durante 1790-1860. Las poblaciones que
crecen con una razon descrita por la ecuacion (1) son raras; sin embargo, (1) aln se
usa para modelar el crecimiento de pequefias poblaciones en intervalos de tiempo
cortos (por ejemplo, crecimiento de bacterias en una caja de Petri).

kP, 1)

DECAIMIENTO RADIACTIVO El nucleo de un atomo estd formado por combina-
ciones de protones y neutrones. Muchas de esas combinaciones son inestables, esto
es, los atomos se desintegran o se convierten en atomos de otras sustancias. Se dice
que estos nucleos son radiactivos. Por ejemplo, con el tiempo, el radio Ra 226, inten-
samente radiactivo, se transforma en el radiactivo gas radén, Rn-222. Para modelar el
fendmeno del decaimiento radiactivo, se supone que la razén dA/dt con la que los
nucleos de una sustancia se desintegran es proporcional a la cantidad (mas precisa-
mente, el nimero de ndcleos), A(t) de la sustancia que queda al tiempo t:

dA o A dA

dt °  at
Por supuesto que las ecuaciones (1) y (2) son exactamente iguales; la diferencia radica
solo en la interpretacion de los simbolos y de las constantes de proporcionalidad. En el
caso del crecimiento, como esperamos en la ecuacion (1), k > 0, y para la desintegra-
cién como en la ecuacién (2), k < 0.

El modelo de la ecuacién (1) para crecimiento también se puede ver como la ecua-
cién dS/dt = rS, que describe el crecimiento del capital S cuando esté a una tasa anual
de interés r compuesto continuamente. EI modelo de desintegracion de la ecuacién
(2) también se aplica a sistemas bioldgicos tales como la determinacion de la “vida
media” de un medicamento, es decir, el tiempo que le toma a 50% del medicamento
ser eliminado del cuerpo por excrecion o metabolizacion. En quimica el modelo del
decaimiento, ecuacion (2), se presenta en la descripcion matematica de una reaccion
quimica de primer orden. Lo importante aqui es:

Una sola ecuacion diferencial puede servir como modelo matematico de muchos
fendmenos distintos.

KA. @)

Con frecuencia, los modelos matematicos se acompafian de condiciones que los de-
finen. Por ejemplo, en las ecuaciones (1) y (2) esperariamos conocer una poblacion inicial
P,y por otra parte la cantidad inicial de sustancia radioactiva A,. Si el tiempo inicial se
toma en t = 0, sabemos que P(0) = P,y que A(0) = A,. En otras palabras, un modelo
matematico puede consistir en un problema con valores iniciales 0, como veremos mas
adelante en la seccion 5.2, en un problema con valores en la frontera.

LEY DE ENFRIAMIENTO/CALENTAMIENTO DE NEWTON De acuerdo con
la ley empirica de Newton de enfriamiento/calentamiento, la rapidez con la que cam-
bia la temperatura de un cuerpo es proporcional a la diferencia entre la temperatura
del cuerpo y la del medio que lo rodea, que se llama temperatura ambiente. Si T(t)
representa la temperatura del cuerpo al tiempo t, T, es la temperatura del medio que lo
rodeay dT/dtes larapidez con que cambia la temperatura del cuerpo, entonces la ley de
Newton de enfriamiento/calentamiento traducida en una expresion matematica es
dT dT

aocT—Tm 0 &:k(Tme), ©))
donde k es una constante de proporcionalidad. En ambos casos, enfriamiento o calen-
tamiento, si T_ es una constante, se establece que k < 0.



22

CAPITULO 1

INTRODUCCION A LAS ECUACIONES DIFERENCIALES

PROPAGACION DE UNA ENFERMEDAD  Una enfermedad contagiosa, por ejem-
plo un virus de gripe, se propaga a través de una comunidad por personas que han estado
en contacto con otras personas enfermas. Sea que x(t) denote el nimero de personas que
han contraido la enfermedad y sea que y(t) denote el nimero de personas que aun no han
sido expuestas al contagio. Es I6gico suponer que la razén dx/dt con la que se propaga
la enfermedad es proporcional al nimero de encuentros, 0 interacciones, entre estos
dos grupos de personas. Si suponemos que el nimero de interacciones es conjuntamente
proporcional a x(t) y y(t), esto es, proporcional al producto xy, entonces

=2 4
pm kxy, 4)

donde k es la constante usual de proporcionalidad. Suponga que una pequefia comuni-
dad tiene una poblacién fija de n personas. Si se introduce una persona infectada den-
tro de esta comunidad, entonces se podria argumentar que x(t) y y(t) estan relacionadas
por x +y = n + 1. Utilizando esta Gltima ecuacion para eliminar y en la ecuacion (4)
se obtiene el modelo

dx
P kx(n + 1 — X). (5)

Una condicion inicial obvia que acompafa a la ecuacion (5) es x(0) = 1.

REACCIONES QUiMICAS La desintegracion de una sustancia radiactiva, caracterizada
por la ecuacién diferencial (1), se dice que es una reaccion de primer orden. En quimica
hay algunas reacciones que siguen esta misma ley empirica: si las moléculas de la sustancia
A se descomponen y forman moléculas mas pequefias, es natural suponer que la rapidez
con que se lleva a cabo esa descomposicion es proporcional a la cantidad de la primera sus-
tancia que no ha experimentado la conversidn; esto es, si X(t) es la cantidad de la sustancia
A gue permanece en cualquier momento, entonces dX/dt = kX, donde k es una constante
negativa ya que X es decreciente. Un ejemplo de una reaccion quimica de primer orden es
la conversion del cloruro de terbutilo, (CH,),CCI en alcohol t-butilico (CH,),COH:

(CH3);CCl + NaOH — (CH,);COH + NaCl.

Sélo la concentracion del cloruro de terbutilo controla la rapidez de la reaccion. Pero
en la reaccion

CH,Cl + NaOH — CH,OH + NaCl

se consume una molécula de hidréxido de sodio, NaOH, por cada molécula de cloruro
de metilo, CH,CI, por lo que se forma una molécula de alcohol metilico, CH,OH y una
molécula de cloruro de sodio, NaCl. En este caso, la razén con que avanza la reaccion
es proporcional al producto de las concentraciones de CH,Cl y NaOH que quedan. Para
describir en general esta segunda reaccidn, supongamos una molécula de una sustancia
A que se combina con una molécula de una sustancia B para formar una molécula de una
sustancia C. Si X denota la cantidad de un quimico C formado al tiempo ty si a y 8 son,
respectivamente, las cantidades de los dos quimicos Ay B ent = 0 (cantidades iniciales),
entonces las cantidades instantaneas no convertidas de Ay B al quimico Csona — Xy
B — X, respectivamente. Por lo que la razén de formacion de C esta dada por
& ka - X6 - X), ©)

donde k es una constante de proporcionalidad. Una reaccion cuyo modelo es la ecua-
cidn (6) se dice que es una reaccion de segundo orden.

MEZCLAS Al mezclar dos soluciones salinas de distintas concentraciones surge
una ecuacion diferencial de primer orden, que define la cantidad de sal contenida en
la mezcla. Supongamos que un tanque mezclador grande inicialmente contiene 300
galones de salmuera (es decir, agua en la que se ha disuelto una cantidad de sal). Otra
solucion de salmuera entra al tanque con una razon de 3 galones por minuto; la con-
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FIGURA 1.3.1 Tanque de mezclado.

FIGURA 1.3.2 Drenado de un tanque.
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centracion de sal que entra es 2 libras/galon. Cuando la solucion en el tanque esta
bien mezclada, sale con la misma rapidez con que entra. VVéase la figura 1.3.1. Si A(t)
denota la cantidad de sal (medida en libras) en el tanque al tiempo t, entonces la razon
con la que A(t) cambia es una razén neta:

dA razon de razon de
g ( entrada ) — < salida > = R,ra —Route- 7)

dt de la sal de la sal

La razon de entrada R, . con la que entra la sal en el tanque es el producto de la con-
centracion de entrada de sal por la razon de entrada del fluido. Observe que R, . esta
medida en libras por minuto:
concentracion
desal en  razdn de entrada razén de
el fluido, de la salmuera, entrada de la sal

! ! l
Rentra = (2 Ib/gal) - (3 gal/min) = (6 Ib/min).

Ahora, puesto que la solucién sale del tanque con la misma razén con la que entra,
el nimero de galones de la salmuera en el tanque al tiempo t es una constante de 300
galones. Por lo que la concentracion de la sal en el tanque asi como en el flujo de salida
es c(t) = A(t)/300 Ib/gal, por lo que la razon de salida R de sal es

concentracion de razén de
sal enel flujo razondesalida  salida
de salida de lasalmuera  de lasal

l l l
A AW,
R = FS((B Ib/gal) - @ gatimin) =28 1p/min,

La razoén neta, ecuacion (7) entonces sera

dA A dA 1
— =6 —— 0 —+ —A=6. (8)
dt 100 dt 100
Sir,,.Yr,, denotan las razones generales de entrada y salida de las soluciones
de salmuera,” entonces existen tres posibilidadesr__=r_ r >r_yr <fr_ .
DI -, entra sale’ " entra sale entra sale
En el analisis que conduce a la ecuacion (8) suponemos que r, . = r_. . En los dos
ultimos casos el nimero de galones de salmuera esta ya sea aumentando (r, . >r_.)
o disminuyendo (r, . <r_.)alarazonnetar, .- Véanse los problemas 10 a

12 en los ejercicios 1.3.

tra rsaI

DRENADO DE UN TANQUE En hidrodinamica, la ley de Torricelli establece que
la rapidez v de salida del agua a través de un agujero de bordes afilados en el fondo de
un tanque lleno con agua hasta una profundidad h es igual a la velocidad de un cuerpo
(en este caso una gota de agua), que esta cayendo libremente desde una altura h —
esto es, v = V/2gh, donde g es la aceleracion de la gravedad. Esta Gltima expresion
surge al igualar la energia cinética, %mv2 con la energia potencial, mgh, y despejar v.
Suponga que un tanque lleno de agua se vacia a través de un agujero, bajo la influencia
de la gravedad. Queremos encontrar la profundidad, h, del agua que queda en el tanque
al tiempo t. Considere el tanque que se muestra en la figura 1.3.2. Si el area del agujero
es A, (en pies?) y la rapidez del agua que sale del tanque es v = /2gh (en pies/s), en-
tonces el volumen de agua que sale del tanque, por segundo, es A,\/2gh (en pies¥s).
Asi, si V(t) denota al volumen de agua en el tanque al tiempo t, entonces

av
G = AV, ©

“No confunda estos simbolos con R,y R_, ., que son las razones de entrada y salida de sal.

entra
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a) Circuito en serie- LRC

Inductor
inductancia L: henrys (h)

di
caida de voltaje: L —~ at

L

Resistor
resistencia R: ohms (Q)
caida de voltaje: iR

Capacitor
capacitancia C: farads (f)

caida de voltaje: ca

FIGURA 1.3.3 Simbolos, unidades y
voltajes. Corriente i(t) y carga q(t) estan
medidas en amperes (A) y en coulombs
(C), respectivamente.
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FIGURA 1.3.4 Posicion de la piedra
medida desde el nivel del suelo.

donde el signo menos indica que V esta disminuyendo. Observe que aqui estamos
despreciando la posibilidad de friccion en el agujero, que podria causar una reduccion
de la razon de flujo. Si ahora el tanque es tal que el volumen del agua al tiempo t se
expresa como V(t) = A h, donde A  (en pies?) es el area constante de la superficie su-
perior del agua (véase la figura 1.3.2), entonces dV/dt = A  dh/dt. Sustituyendo esta
Ultima expresion en la ecuacion (9) obtenemos la ecuacion diferencial que deseabamos
para expresar la altura del agua al tiempo t:

dh A,

— = —— V2gh. 10

pm A, g (10)
Es interesante observar que la ecuacion (10) es valida aun cuando A , no sea constante.
En este caso, debemos expresar el area de la superficie superior del agua en funcién de
h, esto es, A, = A(h). Véase el problema 14 de los ejercicios 1.3.

CIRCUITOS EN SERIE Considere el circuito en serie simple que tiene un inductor,
un resistor y un capacitor que se muestra en la figura 1.3.3a. En un circuito con el
interruptor cerrado, la corriente se denota por i(t) y la carga en el capacitor al tiempo
t se denota por q(t). Las letras L, R 'y C son conocidas como inductancia, resistencia
y capacitancia, respectivamente y en general son constantes. Ahora de acuerdo con la
segunda ley de Kirchhoff, el voltaje aplicado E(t) a un circuito cerrado debe ser igual
a la suma de las caidas de voltaje en el circuito. La figura 1.3.3b muestra los simbolos
y formulas de las caidas respectivas de voltaje a través de un inductor, un capacitor y
un resistor. Como la corriente i(t) esta relacionada con la carga q(t) en el capacitor
mediante i = dqg/dt, sumamos los tres voltajes

inductor resistor capacitor
di d?q dq 1
L—=L—, iR=R— -
at - de a Y cf
e igualando la suma de los voltajes con el voltaje aplicado se obtiene la ecuacion dife-
rencial de segundo orden
d’q  _dg
L— +R— +—=qg=E(t
2+ R+ 2a-E0. (12)

En la seccién 5.1 examinaremos con detalle una ecuacion diferencial anéloga a
(112).

CUERPOS EN CAIDA  Para establecer un modelo matematico del movimiento de un
cuerpo que se mueve en un campo de fuerzas, con frecuencia se comienza con la segunda
ley de Newton. Recordemos de la fisica elemental, la primera ley del movimiento
de Newton establece que un cuerpo permanecera en reposo o continuard moviéndose
con una velocidad constante, a menos que sea sometido a una fuerza externa. En los
dos casos, esto equivale a decir que cuando la suma de las fuerzas F = > Fi esto es,
la fuerza neta o fuerza resultante, que actda sobre el cuerpo es cero, la aceleracion a del
cuerpo es cero. La segunda ley del movimiento de Newton indica que cuando la fuerza
neta que actla sobre un cuerpo no es cero, entonces la fuerza neta es proporcional a su
aceleracion a 0, mas exactamente, F = ma, donde m es la masa del cuerpo.
Supongamos ahora que se arroja una piedra hacia arriba desde el techo de un edi-
ficio como se muestra en la figura 1.3.4. ¢ Cual es la posicion s(t) de la piedra respecto
al suelo al tiempo t? La aceleracion de la piedra es la segunda derivada d?s/dt?. Si
suponemos que la direccion hacia arriba es positiva y que no hay otra fuerza, ademas
de la fuerza de la gravedad, que actie sobre la piedra, entonces utilizando la segunda
ley de Newton se tiene que
dzs d%s
dt2 = —mg 0 i = —0. (12)
En otras palabras, la fuerza neta es simplemente el peso F = F, = —W de la piedra cerca
de la superficie de la Tierra. Recuerde que la magnitud del peso es W = mg, donde mes la
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FIGURA 1.3.5 Cuerpo de masam
cayendo.

a) cable de suspension de un puente

b) alambres de teléfonos
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FIGURA 1.3.7 Elemento del cable.
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masa del cuerpoy g es la aceleracién debida a la gravedad. El signo menos en la ecuacion
(12) se usa porque el peso de la piedra es una fuerza dirigida hacia abajo, que es opuesta
a la direccion positiva. Si la altura del edificio es s, y la velocidad inicial de la roca es v,
entonces s se determina a partir del problema con valores iniciales de segundo orden

d?%s
dt?
Aunque no hemos indicado soluciones de las ecuaciones que se han formulado, ob-
serve que la ecuacién 13 se puede resolver integrando dos veces respecto a t la cons-
tante —g. Las condiciones iniciales determinan las dos constantes de integracion. De

la fisica elemental podria reconocer la solucién de la ecuacién (13) como la férmula
s(t) = —1gt? + Vot + s,

=g s(0)=s 50 =V, (13)

CUERPOS EN CAIDA Y RESISTENCIA DEL AIRE  Antes del famoso experimento
de la torre inclinada de Pisa de Galileo generalmente se creia que los objetos mas pe-
sados en caida libre, como una bala de cafidn, caian con una aceleracién mayor que los
objetos ligeros como una pluma. Obviamente, una bala de cafién y una pluma cuando
se dejan caer simultaneamente desde la misma altura realmente caen en tiempos dife-
rentes, pero esto no es porque una bala de cafidon sea mas pesada. La diferencia en los
tiempos es debida a la resistencia del aire. En el modelo que se presentd en la ecuacién
(13) se desprecio la fuerza de la resistencia del aire. Bajo ciertas circunstancias, un
cuerpo que cae de masa m, tal como una pluma con densidad pequefia y forma irregu-
lar, encuentra una resistencia del aire que es proporcional a su velocidad instantanea v.
Si en este caso, tomamos la direccidn positiva dirigida hacia abajo, entonces la fuerza
neta que esta actuando sobre la masa esta dada por F = F, + F, = mg — kv, donde el
peso F, = mg del cuerpo es una fuerza que actla en la direccion positiva y la resisten-
cia del aire F, = —kv es una fuerza, que se llama de amortiguamiento viscoso, que
actlia en la direccion contraria o hacia arriba. VVéase la figura 1.3.5. Ahora puesto que v
esta relacionada con la aceleracion a mediante a = dv/dt, la segunda ley de Newton
sera F = ma = m dv/dt. Al igualar la fuerza neta con esta forma de la segunda ley,
obtenemos una ecuacion diferencial para la velocidad v(t) del cuerpo al tiempo t,
dv

— = — kv.
m pm mg (14)

Aqui k es una constante positiva de proporcionalidad. Si s(t) es la distancia que el
cuerpo ha caido al tiempo t desde su punto inicial o de liberacion, entonces v = ds/dt
y a = dv/dt = d2s/dt2 En términos de s, la ecuacion (14) es una ecuacion diferencial
de segundo orden.

d?s _Us d2s ds

b — — + k— = mag. 15
Mgz — ™9 a Motz " “ar — M (19)

CABLES SUSPENDIDOS Suponga un cable flexible, alambre o cuerda pesada
que esta suspendida entre dos soportes verticales. Ejemplos fisicos de esto podria ser
uno de los dos cables que soportan el firme de un puente de suspension como el que
se muestra en la figura 1.3.6a 0 un cable telefénico largo entre dos postes como el que se
muestra en la figura 1.3.6b. Nuestro objetivo es construir un modelo matematico que
describa la forma que tiene el cable.

Comenzaremos por acordar en examinar solo una parte o elemento del cable entre
su punto mas bajo P, y cualquier punto arbitrario P,. Sefialado en color azul en la fi-
gura 1.3.7, este elemento de cable es la curva en un sistema de coordenada rectangular
eligiendo al eje y para que pase a través del punto mas bajo P, de la curva y eligiendo
al eje x para que pase a a unidades debajo de P,. Sobre el cable actuan tres fuerzas: las
tensiones T, y T, en el cable que son tangentes al cable en P, y P,, respectivamente,
y la parte W de la carga total vertical entre los puntos P, y P,. Sea que T, = [T ],
T, = |T,|,y W = |W/| denoten las magnitudes de estos vectores. Ahora la tension T, se
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descompone en sus componentes horizontal y vertical (cantidades escalares) T, cos 6
y T, sen 6. Debido al equilibrio estatico podemos escribir

T, =T,cos 0 y W = T, sen 6.

Al dividir la ultima ecuacion entre la primera, eliminamos T, y obtenemos tan
6 = W/T,. Pero puesto que dy/dx = tan 6, llegamos a

dy W (16)
dx T,

Esta sencilla ecuacion diferencial de primer orden sirve como modelo tanto para modelar
la forma de un alambre flexible como el cable telefénico colgado bajo su propio peso,
como para modelar la forma de los cables que soportan el firme de un puente suspendido.
Regresaremos a la ecuacion (16) en los ejercicios 2.2 y la seccion 5.3.

CUALES SON LOS METODOS En este libro veremos tres diferentes tipos de méto-
dos para el analisis de las ecuaciones diferenciales. Por siglos las ecuaciones diferenciales
han ocupado los esfuerzos de cientificos o ingenieros para describir algiin fendmeno fisico
0 para traducir una ley empirica o experimental en términos matematicos. En consecuen-
cia el cientifico, ingeniero o matematico con frecuencia pasaria muchos afios de su vida
tratando de encontrar las soluciones de una ED. Con una solucion en la mano, se prosigue
con el estudio de sus propiedades. A esta busqueda de soluciones se le llama método ana-
litico para las ecuaciones diferenciales. Una vez que comprendieron que las soluciones
explicitas eran muy dificiles de obtener y en el peor de los casos imposibles de obtener,
los matematicos aprendieron que las ecuaciones diferenciales en si mismas podrian ser
una fuente de informacion valiosa. Es posible, en algunos casos, contestar directamente
de las ecuaciones diferenciales preguntas como ¢en realidad la ED tiene soluciones? Si
una solucion de la ED existe y satisface una condicidn inicial, ¢es Unica esa solucion?
¢Cudles son algunas propiedades de las soluciones desconocidas? ¢Qué podemos decir
acerca de la geometria de las curvas de solucion? Este método es analisis cualitativo. Por
altimo, si una ecuacion diferencial no se puede resolver por métodos analiticos, aun asi
podemos demostrar que una solucion existe; la siguiente pregunta logica es ¢, de qué modo
podemos aproximarnos a los valores de una solucion desconocida? Aqui entra al reino
del analisis numérico. Una respuesta afirmativa a la Ultima pregunta se basa en el hecho de
que una ecuacion diferencial se puede usar como un principio basico para la construccion
de algoritmos de aproximacion muy exactos. En el capitulo 2 comenzaremos con consi-
deraciones cualitativas de las EDO de primer orden, después analizaremos los artificios
analiticos para resolver algunas ecuaciones especiales de primer orden y concluiremos
con una introduccion a un método numérico elemental. Véase la figura 1.3.8.

iHABLAME!

1d
Let yE,;;" =y =ateyloutsxtu=0

but wpx it ) o a4 - = 0
S w=cpdyy(x)+ oy, (x), From
i =L 0 - dy )
x
and Jy0=- 20,00+ 0 =

FI3,9")=0

a) analitico

g L= =

b) cualitativo ¢) numérico

FIGURA 1.3.8 Métodos diferentes para el estudio de ecuaciones diferenciales.
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COMENTARIOS

Cada ejemplo de esta seccion ha descrito un sistema dinamico, un sistema que
cambia o evoluciona con el paso del tiempo t. Puesto que el estudio de los siste-
mas dindmicos es una rama de las matematicas de moda en la actualidad, a veces
utilizaremos la terminologia de esa rama en nuestros analisis.

En términos mas precisos, un sistema dinamico consiste en un conjunto de
variables dependientes del tiempo, que se llaman variables de estado, junto con
una regla que permita determinar (sin ambiguedades) el estado del sistema (que
puede ser pasado, presente o futuro) en términos de un estado prescrito al tiempo
t,. Los sistemas dinamicos se clasifican ya sea como sistemas discretos o continuos
en el tiempo, o de tiempos discretos o continuos. En este curso s6lo nos ocupare-
mos de los sistemas dindmicos continuos en el tiempo, sistemas en los que todas
las variables estan definidas dentro de un intervalo continuo de tiempo. La regla o
modelo matematico en un sistema dinamico continuo en el tiempo es una ecuacion
diferencial o sistema de ecuaciones diferenciales. El estado del sistema al tiempo
t es el valor de las variables de estado en ese instante; el estado especificado del
sistema al tiempo t; son simplemente las condiciones iniciales que acompafian al
modelo matemético. La solucién de un problema con valores iniciales se llama
respuesta del sistema. Por ejemplo, en el caso del decaimiento radiactivo, la regla
es dA/dt = kA. Ahora, si se conoce la cantidad de sustancia radiactiva al tiempo t,,
digamos A(t,) = A,, entonces, al resolver la regla se encuentra que la respuesta del
sistema parat =t esA(t) = A e~ (véase laseccion 3.1). Larespuesta A(t) es
la Unica variable de estado para este sistema. En el caso de la piedra arrojada desde
el techo de un edificio, la respuesta del sistema, es decir, la solucién a la ecuacion
diferencial d?s/dt? = —g, sujeta al estado inicial s(0) = s, s'(0) = v,, es la funcion
S(t) = —3gt + Vot + sp; 0 = t = T, donde T representa el valor del tiempo en
que la piedra golpea en el suelo. Las variables de estado son s(t) y s'(t), la po-
sicion y la velocidad verticales de la piedra, respectivamente. La aceleracion,
s”(t), no es una variable de estado ya que s6lo se conocen la posicién y la velo-
cidad iniciales al tiempo t; para determinar, en forma unica, la posicion s(t) y la
velocidad s'(t) = v(t) de la piedra en cualquier momento del intervalot, <t <T.
La aceleracion, s”(t) = a(t) esta, por supuesto, dada por la ecuacion diferencial
s'(t) = —g, 0 <t <T.

Un Gltimo punto: No todos los sistemas que se estudian en este libro son
sistemas dinamicos. Examinaremos algunos sistemas estaticos en que el modelo
es una ecuacion diferencial.

EJERCICIOS 1.3

Las respuestas a los problemas con nimero impar comienzan en la pagina RES-1.

Dinamica poblacional

1. Con base en las mismas hipétesis detras del modelo de

laecuacion (1), determine una ecuacion diferencial para la
poblacion P(t) de un pais cuando se les permite a las
personas inmigrar a un pais con una razén constante
r > 0. ¢Cual es la ecuacion diferencial para la poblacion
P(t) del pais cuando se les permite a las personas emigrar
del pais con una razén constante r > 0?

. EI'modelo de poblacion dado en la ecuacion (1) fallaal no
considerar latasa de mortalidad; larazdn de crecimiento es
igual a la tasa de natalidad. En otro modelo del cambio de
poblacion de una comunidad se supone que la razon
de cambio de la poblacién es una razon neta, esto es, la

diferencia entre la tasa de natalidad y la de mortalidad en
la comunidad. Determine un modelo para la poblacién
P(t) si tanto la tasa de natalidad y la mortalidad son pro-
porcionales a la poblacion presente al tiempo t.

. Utilice el concepto de razon neta introducido en el pro-

blema 2 para determinar un modelo para una poblacion P(t)
si la tasa de natalidad es proporcional a la poblacion presen-
te al tiempo t, pero la tasa de mortalidad es proporcional al
cuadrado de la poblacidn presente al tiempo t.

. Modifique el problema 3 para la razén neta con la que la

poblacion P(t) de una cierta clase de pez cambia al supo-
ner que el pez esta siendo pescado con una razén cons-
tante h > 0.
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Ley de enfriamiento/calentamiento de Newton

5.

Una taza de café se enfria de acuerdo con la ley de enfria-
miento de Newton, ecuacion (3). Utilice los datos de la
gréficade latemperatura T(t) en lafigura 1.3.9 para estimar
las constantes T_, T,y k en un modelo de la forma de yn

problema con valores iniciales de primer orden: dT/dt = k
(T-T), T0O) =T,

T

2001
1501
100 1

50T

0 25 50 75
minutos

100 t

FIGURA 1.3.9 Curva de enfriamiento del problema 5.

La temperatura ambiente T_en la ecuacion (3) podria ser
una funcion del tiempo t. Suponga que en un medio am-
biente controlado, T _(t) es periddica con un periodo de
24 horas, como se muestra en la figura 1.3.10. Disefie un
modelo matematico para la temperatura T(t) de un cuerpo
dentro de este medio ambiente.

Ti() 4
120 +
100-
80
60
40

20-

0 12 24 36 48 t
media medio media medio media

noche dia  noche dia noche

FIGURA 1.3.10 Temperatura ambiente del problema 6.

Propagacion de una enfermedad/tecnologia

7.

Suponga que un alumno es portador del virus de la gripe y
regresa al apartado campus de su universidad de 1000 estu-
diantes. Determine una ecuacion diferencial para el nimero
de personas x(t) que contraeran la gripe si la razon con la que
la enfermedad se propaga es proporcional al nimero de inte-
racciones entre el nimero de estudiantes que tiene gripe y el
ndmero de estudiantes que adn no se han expuesto a ella.

Al tiempo denotado por t = 0, se introduce una innova-
cion tecnoldgica en una comunidad que tiene una canti-
dad fija de n personas. Determine una ecuacion diferen-

INTRODUCCION A LAS ECUACIONES DIFERENCIALES

cial para el nimero de personas x(t) que hayan adoptado
la innovacidn al tiempo t si se supone que la razon con la
que se propaga la innovacion es conjuntamente propor-
cional al nimero de personas que ya la han adoptado y al
ntmero de personas que no la han adoptado.

Mezclas

9.

10.

11.

12.

Suponga que un tanque grande de mezclado contiene ini-
cialmente 300 galones de agua en los que se disolvieron
50 libras de sal. Entra agua pura a una razén de 3 gal/min
y cuando la solucién esta bien revuelta, sale a la misma
razén. Determine una ecuacion diferencial que exprese
la cantidad A(t) de sal que hay en el tanque al tiempo t.
¢ Cuénto vale A(0)?

Suponga que un tanque grande de mezclado contiene ini-
cialmente 300 galones de agua, en los que se han disuelto
50 libras de sal. Otra salmuera introducida al tanque a
una razén de 3 gal/min y cuando la solucion estd bien
mezclada sale a una razon lenta de 2 gal/min. Si la con-
centracion de la solucidn que entra es 2 Ib/gal, determine
una ecuacion diferencial que exprese la cantidad de sal
A(t) que hay en el tanque al tiempo t.

¢Cudl es la ecuacion diferencial del problema 10, si la
solucién bien mezclada sale a una razén méas rapida de
3.5 gal/min?

Generalice el modelo dado en la ecuacion (8) de la pagina
23, suponiendo que el gran tanque contiene inicialmente
N, nimero de galones de salmuera, r, 'y son lasra-
zones de entrada y salida de la salmuera, respectivamente
(medidas en galones por minuto), c_ . es la concentra-
cion de sal en el flujo que entra, c(t) es la concentracion
de sal en el tanque asi como en el flujo que sale al tiempo
t (medida en libras de sal por galon), y A(t) es la cantidad
de sal en el tanque al tiempo t.

Drenado de un tanque

13.

Suponga que esta saliendo agua de un tanque a través de un
agujero circular de area A, que esta en el fondo. Cuando el
agua sale a través del agujero, la friccién y la contraccion
de la corriente cerca del agujero reducen el volumen de
agua que sale del tanque por segundo a cA,V2gh, donde
¢ (0 < ¢ < 1) es una constante empirica. Determine una
ecuacion diferencial para la altura h del agua al tiempo t
para el tanque cubico que se muestra en la figura 1.3.11. El
radio del agujero es de 2 pulg, y g = 32 pies/s.

agujero
circular

FIGURA 1.3.11 Tanque cubico del problema 13.
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14. Del tanque cénico rectangular recto que se muestra en la
figura 1.3.12 sale agua por un agujero circular que esta
en el fondo. Determine una ecuacion diferencial para
la altura h del agua al tiempo t. El radio del agujero es
2 pulg, g = 32 pies/s?, y el factor de friccidn/contraccion
esc = 0.6.

8 pies

FIGURA 1.3.12 Tanque cénico del problema 14.

Circuitos en serie

15. Un circuito en serie tiene un resistor y un inductor como
se muestra en la figura 1.3.13. Determine una ecuacion
diferencial para la corriente i(t) si la resistencia es R, la
inductancia es L y el voltaje aplicado es E(t).

R
FIGURA 1.3.13 Circuito en serie LR del problema 15.

16. Un circuito en serie contiene un resistor y un capacitor como
se muestra en la figura 1.3.14. Determine una ecuacion dife-
rencial que exprese la carga q(t) en el capacitor, si la resisten-
cia es R, la capacitancia es C y el voltaje aplicado es E(t).

| ]
I
C
FIGURA 1.3.14 Circuito RC en serie del problema 16.

Caida libre y resistencia del aire

17. Para movimientos de gran rapidez en el aire, como el del
paracaidista que se muestra en la figura 1.3.15, que esta
cayendo antes de que se abra el paracaidas la resistencia
del aire es cercana a una potencia de la velocidad ins-
tantanea v(t). Determine una ecuacién diferencial para
la velocidad v(t) de un cuerpo de masa m que cae, si la
resistencia del aire es proporcional al cuadrado de la ve-
locidad instantanea.

FIGURA 1.3.15 Resistencia del aire proporcional al
cuadrado de la velocidad del problema 17.

Segunda ley de Newton y Principio de Arquimedes

18. Un barril cilindrico de s pies de diametro y w Ib de peso,
esta flotando en agua como se muestra en la figura 1.3.16a.
Después de un hundimiento inicial el barril presenta un mo-
vimiento oscilatorio, hacia arriba y hacia abajo, a lo largo
de la vertical. Utilizando la figura 1.3.16b, defina una ecua-
cion diferencial para establecer el desplazamiento vertical
y(t), si se supone que el origen esta en el eje vertical y en
la superficie del agua cuando el barril esta en reposo. Use
el Principio de Arquimedes: la fuerza de flotacion o hacia
arriba que ejerce el agua sobre el barril es igual al peso del
agua desplazada. Suponga que la direccion hacia abajo es
positiva, que la densidad de masa del agua es 62.4 Ib/pies® y
que no hay resistencia entre el barril y el agua.

s/2
7/ s/2
- 1]
!ﬂ superflue_ oL _:_ Ty()
\‘I_/I [ R
\ Y
a) b)

FIGURA 1.3.16 Movimiento oscilatorio del barril
flotando del problema 18.

Segunda ley de Newton y ley de Hooke

19. Después de que se fija una masa m a un resorte, éste se estira
s unidades y cuelga en reposo en la posicion de equilibrio
como se muestra en la figura 1.3.17b. Después el sistema

f
resorte sin -% X(<0
deformar = --1-x=0

posicion de x(®) >0
equilibrio —-
a) b C)

FIGURA 1.3.17 Sistema resorte/masa del problema 19.



30

20.

e CAPITULO 1

resorte/masa se pone en movimiento, sea que x(t) denote la
distancia dirigida del punto de equilibrio a la masa. Como se
indica en la figura 1.3.17c, suponga que la direccion hacia
abajo es positiva y que el movimiento se efectlia en una recta
vertical que pasa por el centro de gravedad de la masa y que
las Unicas fuerzas que acttan sobre el sistema son el peso
de la masa y la fuerza de restauracion del resorte estirado.
Utilice la ley de Hooke: la fuerza de restauracion de un
resorte es proporcional a su elongacion total. Determine una
ecuacion diferencial del desplazamiento x(t) al tiempo t.

En el problema 19, ¢cuél es la ecuacidn diferencial para el
desplazamiento x(t) si el movimiento tiene lugar en un medio
que ejerce una fuerza de amortiguamiento sobre el sistema
resorte/masa que es proporcional a la velocidad instantanea
de la masa y actla en direccion contraria al movimiento?

Segunda ley de Newton y la ley
de la gravitacion universal

21.

22.

De acuerdo con la ley de la gravitacién universal de
Newton, la aceleracion de caida libre a de un cuerpo, tal
como el satélite que se muestra en la figura 1.3.18, que
esta cayendo desde una gran distancia hacia la superficie
no es la constante g. Més bien, la aceleracion a es inver-
samente proporcional al cuadrado de la distancia desde
el centro de la Tierra a = k/r? donde k es la constante de
proporcionalidad. Utilice el hecho de que en la superficie
de la Tierra, r = Ry a = g, para determinar k. Si la direc-
cién positiva se considera hacia arriba, utilice la segunda
ley de Newton y la ley de la gravitacién universal para
encontrar una ecuacion diferencial para la distancia r.

satélite de
masam 595

e(""d\e

FIGURA 1.3.18 Satélite ) J
del problema 21. Tierra de masa M

Suponga que se hace un agujero que pasa por el centro de la
Tierra'y que por él se deja caer una bola de masa m como se
muestra en la figura 1.3.19. Construya un modelo matema-
tico que describa el posible movimiento de la bola. Al tiempo
t sea que r denote la distancia desde el centro de la Tierraa la
masa m, que M denote la masa de la Tierra, que M, denote
la masa de la parte de la Tierra que esta dentro de una esfera
de radio r, y que & denote la densidad constante de la Tierra.

superficie

FIGURA 1.3.19 Agujero
que pasa a través de la Tierra del
problema 22.

INTRODUCCION A LAS ECUACIONES DIFERENCIALES

Modelos matematicos adicionales

23.

24,

25.

26.

217.

Teoria del aprendizaje En la teoria del aprendizaje, se
supone que la rapidez con que se memoriza algo es propor-
cional a la cantidad que queda por memorizar. Suponga que
M denota la cantidad total de un tema que se debe memorizar
y que A(t) es la cantidad memorizada al tiempo t. Determine
una ecuacion diferencial para determinar la cantidad A(t).

Falta de memoria Con los datos del problema anterior
suponga que la razén con la cual el material es olvidado
es proporcional a la cantidad memorizada al tiempo t.
Determine una ecuacion diferencial para A(t), cuando se
considera la falta de memoria.

Suministro de un medicamento Se inyecta un medica-
mento en el torrente sanguineo de un paciente a una razon
constante de r gramos por segundo. Simultaneamente, se
elimina el medicamento a una razon proporcional a la
cantidad x(t) presente al tiempo t. Determine una ecua-
cién diferencial que describa la cantidad x(t).

Tractriz  Unapersona P que parte del origen se mueve en
ladireccién positivadel eje x, jalando unpesoalo largo de la
curva C, llamada tractriz, como se muestra en la figura
1.3.20. Inicialmente el peso se encontraba en el eje y, en
(0, s) y es jalado con una cuerda de longitud constante s, que
se mantiene tensa durante el movimiento. Determine una
ecuacion diferencial para la trayectoria C de movimiento.
Suponga que la cuerda siempre es tangente a C.

y

0.9) ¢

FIGURA 1.3.20 Curva tractriz del problema 26.

Superficie reflectora Suponga que cuando la curva
plana C que se muestra en la figura 1.3.21 se gira respecto
al eje x genera una superficie de revolucion, con la pro-
piedad de que todos los rayos de luz paralelos al eje x que
inciden en la superficie son reflejados a un solo punto O
(el origen). Utilice el hecho de que el angulo de incidencia
es igual al angulo de reflexion para determinar una ecua-

tangente

X

FIGURA 1.3.27 Superficie reflectora del problema 27.
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cion diferencial que describa la forma de la curva C. Esta
curva C es importante en aplicaciones como construccion de
telescopios o antenas de satélites, faros delanteros de auto-
moviles y colectores solares. [Sugerencia: La inspeccion de
la figura muestra que podemos escribir ¢ = 26. ;Por qué?
Ahora utilice una identidad trigonométrica adecuada.]

Problemas de analisis

28.

29.

30.

31.

32.

Repita el problema 41 de los ejercicios 1.1 y después
proporcione una solucién explicita P(t) para la ecuacion
(1). Determine una familia uniparamétrica de soluciones
de (1).

Lea nuevamente la oracion que se encuentra a continuacion
de la ecuacion (3) y suponga que T_ es una constante posi-
tiva. Analice por qué se podria esperar que k < 0 en ambos
casos de enfriamiento y de calentamiento. Podria empezar
por interpretar, digamos, T(t) > T_en una forma gréafica.

Lea nuevamente el analisis que condujo a la ecuacion (8).
Si suponemos que inicialmente el tanque conserva, diga-
mos 50 libras de sal, es porque se le esta agregando sal
continuamente al tanque para t > 0, A(t) serd una funcién
creciente. Analice como podria determinar a partir de la
ED, sin realmente resolverla, el nimero de libras de sal
en el tanque después de un periodo largo.

Modelo de poblacion La ecuacion diferencial

(:j—lz = (kcos t)P, donde k es una constante positiva,

modela la poblacién humana, P(t), de cierta comunidad.
Analice e interprete la solucion de esta ecuacion. En otras
palabras, ¢qué tipo de poblacion piensa que describe esta
ecuacion diferencial?

Fluido girando Como se muestra en la figura 1.3.22 un
cilindro circular recto parcialmente lleno con un fluido esta
girando con una velocidad angular constante w respecto al
eje vertical que pasa por su centro. El fluido girando forma
una superficie de revolucion S. Para identificar S, primero
establecemos un sistema coordenado que consiste en un
plano vertical determinado por el eje y y el eje x dibujado
en forma perpendicular al eje y de tal forma que el punto de
interseccion de los ejes (el origen) esta localizado en el punto
inferior de la superficie S. Entonces buscamos una funcion
y = f(x) que represente la curva C de interseccion de la su-
perficie S y del plano coordenado vertical. Sea que el punto
P(x, y) denote la posicidn de una particula del fluido girando,
de masa m, en el plano coordenado. VVéase la figura 1.3.22b.

a) En P hay una fuerza de reaccion de magnitud F de-
bida a las otras particulas del fluido que es perpen-
dicular a la superficie S. Usando la segunda ley de
Newton la magnitud de la fuerza neta que actta sobre
la particula es mw?x. ¢ Cudl es esta fuerza? Utilice la
figura 1.3.22b para analizar la naturaleza y el origen

de las ecuaciones
F cos 6 =mg, F sen 0 = mw*x
b) Use el inciso a) para encontrar una ecuacion diferen-

cial que defina la funcion y = f(x).

33.

34.

curva C de interseccion
del plano xy y la
superficie de

revolucion Y

N\

| recta tangente
alacurvaCenP

b)
FIGURA 1.3.22 Fluido girando del problema 32.

Cuerpo en caida En el problema 21 suponga que r =
R + s donde s es la distancia desde la superficie de la
Tierra al cuerpo que cae. {Cémo es la ecuacion diferencial
que se obtuvo en el problema 21 cuando s es muy pequefia
en comparacion con R? [Sugerencia: Considere la serie
binomial para

(R+s)2=R2(1+s/R)2]
Gotas de lluvia cayendo En meteorologia el término
virga se refiere a las gotas de lluvia que caen o a particulas
de hielo que se evaporan antes de llegar al suelo. Suponga
que en algn tiempo, que se puede denotar por t = 0, las
gotas de lluvia de radio r, caen desde el reposo de una nube
Yy Se comienzan a evaporar.

a) Si se supone que una gota se evapora de tal manera
que su forma permanece esférica, entonces también
tiene sentido suponer que larazon a la cual se evapora
la gota de lluvia, esto es, la razon con la cual ésta
pierde masa, es proporcional a su area superficial.
Muestre que esta Ultima suposicion implica que la
razén con la que el radio r de la gota de lluvia dismi-
nuye es una constante. Encuentre r(t). [Sugerencia:
Véase el problema 51 en los ejercicios 1.1.]

b) Si la direccion positiva es hacia abajo, construya un
modelo matematico para la velocidad v de la gota de
lluvia que cae al tiempo t. Desprecie la resistencia del
aire. [Sugerencia: Cuando la masa m de un cuerpo esta
cambiando con el tiempo, la segunda ley de Newton es

d
F= p (mv), donde F es la fuerza neta que actda so-

bre el cuerpo y mv es su cantidad de movimiento.]
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35. Deja que nieve EIl “problema del quitanieves” es un clé-
sico que aparece en muchos libros de ecuaciones diferenciales
y que fue probablemente inventado por Ralph Palmer Agnew.

“Un dia comenzd a nevar en forma intensa y cons-
tante. Un quitanieve comenzd a medio dia, y avanzo
2 millas la primera hora y una milla la segunda. (A
qué hora comenz6 a nevar?”

INTRODUCCION A LAS ECUACIONES DIFERENCIALES

Se encuentra en el libro Differential Equations, de Ralph
Palmer Agnew, McGraw-Hill Book Co., busquelo y después
analice la construccion y solucién del modelo matematico.

36. Lea nuevamente esta seccion y clasifique cada modelo
matematico como lineal o no lineal.

REPASO DEL CAPITULO 1

Las respuestas a los problemas con nimero impar
comienzan en la pagina RES-1.

En los problemas 1 y 2 llene el espacio en blanco y después
escriba este resultado como una ecuacion diferencial de pri-
mer orden que no contiene al simbolo ¢, y que tiene la forma
dy/dx = f(x, y). El simbolo c, representa una constante.

d

1. —
I cie

10x —

d ,
2. E(S + C]gfz)‘) =

En los problemas 3 y 4 llene el espacio en blanco y después
escriba este resultado como una ecuacion diferencial lineal de
segundo orden que no contiene a las constantes ¢, y ¢, y que
tiene la forma F(y, y”) = 0. Los simbolos ¢ , ¢, y k representan
las constantes.

2
3. —(cy cos kx + ¢, senkx) =
dx

d2
4. e (c; cosh kx + ¢, senhkx) =

En los problemas 5y 6 calcule y' y y” y después combine
estas derivadas con y como una ecuacion diferencial lineal de
segundo orden que no contiene los simbolos ¢, y ¢, y que tiene
la forma F(y, y’, y") = 0. Estos simbolos c, y c, representan

constantes.
5.y =ce*+cxe 6. y = ce*cos x + c,e*senx

En los problemas 7 a 12 relacione cada una de las siguientes
ecuaciones diferenciales con una o mas de estas soluciones.

a)y=0, b) y=2, C) y = 2% d) y=2x%
7. xy' =2y 8.y =2

9.y =2y—-4 10. xy' =y

11. y"+ 9y =18 12. xy" —y'=0

En los problemas 13 y 14 determine por inspeccion al menos
una solucion de la ecuacion diferencial dada.

13. y' =y’ 14. y' =y(y — 3)
En los problemas 15 y 16 interprete cada enunciado como una
ecuacion diferencial.

15. Enlagréaficadey = ¢(x) la pendiente de la recta tangente
en el punto P(x, y) es el cuadrado de la distancia de P(x,
y) al origen.

16. En la gréfica de y = ¢(x) la razén con la que la pendiente
cambia respecto a x en un punto P(x, y) es el negativo de
la pendiente de la recta tangente en P(X, y).

17. a) Dé el dominio de la funciony = x5,

b) Dé el intervalo | de definicion més largo en el cual
y = x?# es solucion de la ecuacion diferencial 3xy’ —
2y = 0.

Compruebe que la familia uniparamétrica y> — 2y
= x2—x + c es una solucién implicita de la ecuacion
diferencial (2y — 2)y’ = 2x — 1.

b) Encuentre un miembro de la familia uniparamétrica en
el inciso a) que satisfaga la condicion inicial y(0) = 1.

c) Utilice su resultado del inciso b) para determinar una
funcion explicitay = ¢(x) que satisfaga y(0) = 1. Dé
el dominio de la funcién ¢. (Esy = ¢(x) una solucion
del problema con valores iniciales? Si es asi, dé su in-
tervalo | de definicidn; si no, explique por qué.

18. a)

19. Dado quey = x—2/x es una solucién de laED xy’ +y
= 2x. Determine x, y el intervalo | mas largo para el cual
y(x) es una solucién del PVI de primer orden xy’ +y =
2x, y(x,) = 1.

20. Suponga que y(x) denota una solucion del PVI de primer
ordeny’ = x2 + y?, y(1) = —1y que y(x) tiene al menos
una segunda derivada en x = 1. En alguna vecindad de x
= 1 utilice la ED para determinar si y(x) esta creciendo o
decreciendo y si la gréfica y(x) es concava hacia arriba
0 hacia abajo.

21. Una ecuacion diferencial puede tener mas de una familia
de soluciones.

a) Dibuje diferentes miembros de las familiasy = ¢,(x)
=x+cyy=d9¢,x)=—x+c,

b) Compruebe quey = ¢,(X) y Y = ¢,(x) son dos solu-
ciones de la ecuacion diferencial no lineal de primer
orden (y")? = 4x2

c) Construya una funcion definida en tramos que sea una
solucidn de la ED no lineal del inciso b) pero que no es
miembro de la familia de soluciones del inciso a).

22. ¢Cuél es la pendiente de la recta tangente a la grafica de
una solucion de y’ = 6V/y + 5x3 que pasa por (—1, 4)?



En los problemas 23 a 26 verifique que la funcion indicada es
una solucion particular de la ecuacion diferencial dada. Dé un
intervalo | de definicion para cada solucion.

23. y"+y=2c0sXx — 2senx;
24. y" +y=secx; y=xsenx + (cosx)In(cos x)

y = X Sen x + X cos x

25. x¥%y" +xy" +y=0; y=sen(Inx)

26. x2y" + xy’ +y = sec(In x);
y = cos(In x) In(cos(In x)) + (In x) sen(In x)

En los problemas 27 a 30, y = ¢ e* + c,e * —2x es una familia
de soluciones de dos pardmetros de la ED de segundo orden
y" —2y" — 3y = 6x + 4. Determine una solucién del PVI de
segundo orden que consiste en esta ecuacion diferencial y en
las condiciones iniciales dadas.

27. y(0)=0,y'(0)=0 28.y(0)=1,y'(0)= -3

2. y)=4y'1)=-2 30 y(-1)=0y'(-1)=1

31. Enlafigura 1.R.1, se presenta la gréfica de una solucién
de un problema con valores iniciales de segundo orden
dzy/dx? = f(x, v, ¥'), ¥2) =y, y'(2) = y,. Utilice la
grafica para estimar los valores de y, y y,.

y
5,
Wl —t— g 1 %
54
FIGURA 1.R.T Gréfica para el problema 31.

32.

33.

34.

REPASO DEL CAPITULO ° 33

Un tanque que tiene la forma de cilindro circular recto,
de 2 pies de radio y 10 pies de altura, esta parado sobre
su base. Inicialmente, el tanque esta Illeno de agua y ésta
sale por un agujero circular de % pulg de radio en el fondo.
Determine una ecuacion diferencial para la altura h del
agua al tiempo t. Desprecie la friccion y contraccion
del agua en el agujero.

El nimero de ratones de campo en una pastura esta dado
por la funcion 200 — 10t, donde el tiempo t se mide en
afios. Determine una ecuacion diferencial que gobierne
una poblacion de buhos que se alimentan de ratones si la
razén a la que la poblacion de buhos crece es proporcio-
nal a la diferencia entre el nimero de bdhos al tiempo ty
el nimero de ratones al mismo tiempo t.

Suponga que dA/dt = —0.0004332 A(t) representa un
modelo matematico para el decaimiento radiactivo del
radio-226, donde A(t) es la cantidad de radio (medida en
gramos) que queda al tiempo t (medido en afos). ; Cuanto
de la muestra de radio queda al tiempo t cuando la mues-
tra esta decayendo con una razon de 0.002 gramos por
afio?



ECUACIONES DIFERENCIALES

34

DE PRIMER ORDEN

2.1 Curvas solucion sin una solucion
2.1.1 Campos direccionales
2.1.2 ED de primer orden auténomas
2.2 Variables separables
2.3 Ecuaciones lineales
2.4 Ecuaciones exactas
2.5 Soluciones por sustitucion
2.6 Un método numérico
REPASO DEL CAPITULO 2

La historia de las matemaéticas tiene muchos relatos de personas que han dedicado
gran parte de su vida a la solucién de ecuaciones, al principio de ecuaciones
algebraicas y después de ecuaciones diferenciales. En las secciones 2.2 a 2.5
estudiaremos algunos de los métodos analiticos mas importantes para resolver
ED de primer orden. Sin embargo, antes de que empecemos a resolverlas,
debemos considerar dos hechos: es posible que una ecuacion diferencial no tenga
soluciones y que una ecuacion diferencial tenga una solucién que con los
métodos existentes actuales no se puede determinar. En las secciones 2.1y 2.6

no resolveremos ninguna ED pero mostraremos como obtener informacion
directamente de la misma ecuacion. En la seccion 2.1 podemos ver como, a partir
de la ED, obtenemos informacién cualitativa de la misma respecto a sus graficas,
lo que nos permite interpretar los dibujos de las curvas solucion. En la seccion 2.6
usamos ecuaciones diferenciales para construir un procedimiento numérico para
soluciones aproximadas.
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2.1 CURVAS SOLUCION SIN UNA SOLUCION

pendiente = 1.2

a) elemento lineal en un punto.

y curva
solucion

T (2.3)

tangente

b) el elemento lineal es tangente
a la curva solucién que
pasa por el punto.

FIGURA 2.1.T Elelemento lineal es
tangente a la curva solucion en (2, 3).

INTRODUCCION
de primer orden dy/dx = f(x, y), y que ademas no podemos encontrar ni inventar un método para
resolverla analiticamente. Esto no es tan malo como se podria pensar, ya que la ecuacion diferencial
en si misma a veces puede “decirnos” concretamente como se “comportan” sus soluciones.

Iniciaremos nuestro estudio de las ecuaciones diferenciales de primer orden con dos formas
cualitativas de analizar una ED. Estas dos formas nos permiten determinar, de una manera aproximada,
cdmo es una curva solucion sin resolver realmente la ecuacion.

REPASO DE MATERIAL

e Laprimera derivada como pendiente de una recta tangente.
e El signo algebraico de la primera derivada indica crecimiento o decrecimiento.

Imaginemos por un momento que nos enfrentamos con una ecuacion diferencial

2.1.1 CAMPOS DIRECCIONALES

ALGUNAS PREGUNTAS FUNDAMENTALES En la seccion 1.2 vimos que si f(x,
y) y of/dy satisfacen algunas condiciones de continuidad, se pueden responder preguntas
cualitativas acerca de la existencia y unicidad de las soluciones. En esta seccion veremos
otras preguntas cualitativas acerca de las propiedades de las soluciones. ;Cémo se com-
porta una solucion cerca de un punto dado? ¢Cémo se comporta una solucién cuando x
— 0? Con frecuencia, estas preguntas se pueden responder cuando la funcion f depende
solo de la variable y. Sin embargo, comenzaremos con un simple concepto de célculo:

Una derivada dy/dx de una funcion derivable y = y(x) da las pendientes de las
rectas tangentes en puntos de su grafica.

PENDIENTE Debido a que una solucion y = y(x) de una ecuacion diferencial de
primer orden
dy

o= Ty) @

es necesariamente una funcidn derivable en su intervalo | de definicion, debe también
ser continua en 1. Por tanto la curva solucion correspondiente en | no tiene cortes y debe
tener una recta tangente en cada punto (X, y(x)). La funcioén f en la forma normal (1) se
Ilama funcién pendiente o funcion razén. La pendiente de la recta tangente en (x, y(x))
en una curva solucion es el valor de la primera derivada dy/dx en este punto y sabemos
de la ecuacion (1) que es el valor de la funcién pendiente f(x, y(x)). Ahora suponga-
mos que (X, y) representa cualquier punto de una region del plano xy en la que esta
definida la funcion f. El valor f(x, y) que la funcién f le asigna al punto representa la
pendiente de una recta o que la visualizaremos como un segmento de recta llamado
elemento lineal. Por ejemplo, considere la ecuacién dy/dx = 0.2xy, donde f(x, y) =
0.2xy. En el punto (2, 3) la pendiente de un elemento lineal es f(2, 3) = 0.2(2)(3)
= 1.2. La figura 2.1.1a muestra un segmento de recta con pendiente 1.2 que pasa por
(2, 3). Como se muestra en la figura 2.1.1b, si una curva solucién también pasa por el
punto (2, 3), lo hace de tal forma que el segmento de recta es tangente a la curva; en otras
palabras, el elemento lineal es una recta tangente miniatura en ese punto.

CAMPO DIRECCIONAL Si evaluamos sistematicamente a f en una malla rectan-
gular de puntos en el plano xy y se dibuja un elemento lineal en cada punto (x, y) de la
malla con pendiente f(x, y), entonces al conjunto de todos estos elementos lineales se
le Ilama campo direccional o campo de pendientes de la ecuacion diferencial dy/dx
= f(x, y). Visualmente, la direccion del campo indica el aspecto o forma de una familia
de curvas solucion de la ecuacion diferencial dada y, en consecuencia, se pueden ver
a simple vista aspectos cualitativos de la solucion, por ejemplo, regiones en el plano



FIGURA 2.1.2 Las curvas solucion
siguen el flujo de un campo direccional.
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a) Campo direccional para
dyldx = 0.2xy.
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FIGURA 2.1.3 Campo direccional y
curvas solucion.
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en las que una solucion presenta un comportamiento poco comun. Una sola curva
solucion que pasa por un campo direccional debe seguir el patron de flujo del campo:
el elemento lineal es tangente a la curva cuando intercepta un punto de la malla. La
figura 2.1.2 muestra un campo direccional generado por computadora de la ecuacion
diferencial dy/dx = sen(x + y) en una region del plano xy. Observe cémo las tres cur-
vas solucidn que se muestran a colores siguen el flujo del campo.

I EJEMPLO 1 Campo direccional

El campo direccional para la ecuacién diferencial dy/dx = 0.2xy que se muestra en la figura
2.1.3a se obtuvo usando un paquete computacional en el que se definié unamalla’5 X 5 (mh,
nh) con my n enteros, haciendo—-5=m =05, -5 =n =5,y h = 1. Observe en la figura
2.1.3a que en cualquier punto del eje de las x (y = 0) y del eje y (x = 0), las pendientes son
f(x,0) = 0yf(0,y) = 0, respectivamente, por lo que los elementos lineales son horizontales.
Ademés observe que en el primer cuadrante para un valor fijo de x los valores de f(x, y) =
0.2xy aumentan conforme crece y; analogamente, para una y los valores de f(x, y)
= 0.2xy aumentan conforme x aumenta. Esto significa que conforme x y y crecen, los ele-
mentos lineales seran casi verticales y tendran pendiente positiva (f(x, y) = 0.2xy > 0 para
x>0,y > 0). En el segundo cuadrante, |f(x, y)| aumenta conforme crecen |x| y y crecen,
por lo que nuevamente los elementos lineales seran casi verticales pero esta vez tendran
pendiente negativa (f(x, y) = 0.2xy < 0 parax < 0,y > 0). Leyendo de izquierda a dere-
cha, imaginemos una curva solucion que inicia en un punto del segundo cuadrante, se
mueve abruptamente hacia abajo, se hace plana conforme pasa por el eje y y después,
conforme entra al primer cuadrante, se mueve abruptamente hacia arriba; en otras palabras,
su forma seria concava hacia arriba y similar a una herradura. A partir de esto se podria
inferir que y — oo conforme x — o0, Ahora en el tercer y el cuarto cuadrantes, puesto que
f(x,y) = 0.2xy > 0y f(x, y) = 0.2xy < 0, respectivamente, la situacion se invierte: una
curva solucion crece y después decrece conforme nos movamos de izquierda a derecha.
Vimos en la ecuacion (1) de la seccion 1.1 que y = ¢*** es una solucién explicita de
dy/dx = 0.2xy; usted deberia comprobar que una familia uniparamétrica de soluciones
de la misma ecuacién esta dada por: y = ce”'**. Con objeto de comparar con la figura 2.1.3a,
en la figura 2.1.3b se muestran algunos miembros representativos de esta familia. ]

I EJEMPLO 2 Campo direccional

Utilice un campo direccional para dibujar una curva solucién aproximada para el pro-
blema con valores iniciales dy/dx = seny, y(0) = — g

SOLUCION  Antes de proceder, recuerde que a partir de la continuidad de f(x, y) = senyy
of/ay = cosy el teorema 1.2.1 garantiza la existencia de una curva solucién Unica que pase
por un punto dado (x,, y,) en el plano. Ahora nuevamente seleccionando en nuestro paguete
computacional la opcion para una region rectangular 5 X 5 y dando puntos (debidos a la
condicion inicial) en la regién con separacién vertical y horizontal de 3 unidad, es decir,
en puntos (mh, nh), h = %, my n enteros tales como —10 = m = 10, —10 = n = 10. En
la figura 2.1.4 se presenta el resultado. Puesto que el lado derecho de dy/dx = seny es 0
eny = 0,yeny = —r, los elementos lineales son horizontales en todos los puntos cuyas
segundas coordenadas sony = 0 0y = —r. Entonces tiene sentido que una curva solucién

que pasa por el punto inicial (O, —%), tenga la forma que se muestra en la figura. ]

CRECIMIENTO/DECRECIMIENTO La interpretacién de la derivada dy/dx como
una funcion que da la pendiente juega el papel principal en la construccion de un
campo direccional. A continuacion se usaré otra contundente propiedad de la primera
derivada, es decir, si dy/dx > 0 (o dy/dx < 0) para toda x en un intervalo I, entonces
una funcién derivable y = y(x) es creciente (o decreciente) en I.
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FIGURA 2.1.4 Campo direccional
del ejemplo 2.
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I COMENTARIOS

Dibujar a mano un campo direccional es directo pero tardado; por eso es proba-
ble que en la vida solo una o dos veces se realice esta tarea, pero generalmente
es mas eficiente realizarlo usando un paquete computacional. Antes de las calcu-
ladoras, de las computadoras personales y de los programas se utilizaba el mé-
todo de las isoclinas para facilitar el dibujo a mano de un campo direccional.
Para la ED dy/dx = f(x, y), cualquier miembro de la familia de curvas f(x, y)
= ¢, donde c es una constante, se llama isoclina. Se dibujan elementos lineales
que pasen por los puntos en una isoclina dada, digamos, f(x, y) = c, todos con la
misma pendiente c,. En el problema 15 de los ejercicios 2.1 tiene dos oportuni-
dades para dibujar un campo direccional a mano.

2.1.2 ED DE PRIMER ORDEN AUTONOMAS

ED DE PRIMER ORDEN AUTONOMAS En la seccion 1.1 dividimos la clase
de las ecuaciones diferenciales ordinarias en dos tipos: lineales y no lineales. Ahora
consideraremos brevemente otra clase de clasificacion de las ecuaciones diferenciales
ordinarias, una clasificacion que es de particular importancia en la investigacion cua-
litativa de las ecuaciones diferenciales. Una ecuacion diferencial ordinaria en la que la
variable independiente no aparece explicitamente se llama auténoma. Si el simbolo x
denota a la variable independiente, entonces se puede escribir una ecuacion diferencial
auténoma de primer orden como f(y, y’) = 0 o en la forma normal como

dy
= o @

Supondremos que la funcion f en la ecuacion (2) y su derivada f’ son funciones conti-
nuas de y en algun intervalo I. Las ecuaciones de primer orden

f(y) f(x,y)
d J
dy dy
—==1+y? — =0.
dx 1+y y i 0.2xy

son respectivamente auténoma y no auténoma.

Muchas ecuaciones diferenciales que se encuentran en aplicaciones o ecuaciones
que modelan leyes fisicas que no cambian en el tiempo son auténomas. Como ya
hemos visto en la seccion 1.3, en un contexto aplicado, se usan cominmente otros
simbolos diferentes de y y de x para representar las variables dependientes e indepen-
dientes. Por ejemplo, si t representa el tiempo entonces al examinar a

dA dx dA 1

a7
Pova ZFomnr1-% Cokar-T1), Lo6- -
dt g - 00 gy =K ) Gt 100

donde k, n'y T_son constantes, se encuentra que cada ecuacion es independiente del
tiempo. Realmente, todas las ecuaciones diferenciales de primer orden introducidas en
la seccion 1.3 son independientes del tiempo y por tanto son auténomas.

PUNTOS CRITICOS Las raices de la funcion f en la ecuacion (2) son de especial
importancia. Decimos que un ndmero real ¢ es un punto critico de la ecuacion dife-
rencial auténoma (2) si es una raiz de f, es decir, f(c) = 0. Un punto critico también
se llama punto de equilibrio o punto estacionario. Ahora observe que si sustituimos
la funcion constante y(x) = c en la ecuacion (2), entonces ambos lados de la ecuacion
son iguales a cero. Esto significa que:

Si ¢ es un punto critico de la ecuacién (2), entonces y(x) = ¢ es una solucién
constante de la ecuacién diferencial auténoma.

Una solucion constante y(x) = ¢ se llama solucion de equilibrio; las soluciones de
equilibrio son las Unicas soluciones constantes de la ecuacion (2).
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eje P

a

b

FIGURA 2.1.5 Esquema de fase de
dP/dt = P(a — bP).

i \Wo)

a) region R.

b) subregiones Ry, R,y Ry de R.

FIGURA 2.1.6 Lasrectasy(x) =c,y
y(X) = c, dividen a R en tres subregiones
horizontales.
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Como ya lo hemos mencionado, podemos decir cuando una solucion no constante
y = y(x) de la ecuacion (2) esta creciendo o decreciendo determinando el signo alge-
braico de la derivada dy/dx; en el caso de la ecuacién (2) hacemos esto identificando
los intervalos del eje y en los que la funcién f(y) es positiva o negativa.

I EJEMPLO 3 UnaED auténoma

La ecuacién diferencial

dP

i P(a — bP),
donde a y b son constantes positivas, tiene la forma normal dP/dt = f(P), la de la ecua-
cion (2) con ty P jugando los papeles de x y y respectivamente y por tanto es autbnoma.
De f(P) = P(a—bP) = 0 vemos que 0 y a/b son puntos criticos de la ecuacion, asi que
las soluciones de equilibrio son P(t) = 0y P(t) = a/b. Poniendo los puntos criticos en
una recta vertical, dividimos esta recta en tres intervalos definidos por —o0c <P < 0,0 <
P <a/h,a/b <P < . Las flechas en la recta que se presenta en la figura 2.1.5 indican
el signo algebraico de f(P) = P(a — bP) en estos intervalos y si una solucién constante
P(t) esté creciendo o decreciendo en un intervalo. La tabla siguiente explica la figura:

Intervalo  Signo de f(P) P(t) Flecha

(=, 0) menos decreciente apunta hacia abajo
(0, a/b) mas creciente apunta hacia arriba
(a/b, ) menos decreciente apunta hacia abajo

La figura 2.1.5 se llama un esquema de fase unidimensional, o simplemente
esquema de fase, de la ecuacion diferencial dP/dt = P(a — bP). La recta vertical se
Ilama recta de fase.

CURVAS SOLUCION  Sin resolver una ecuacion diferencial auténoma, normalmen-
te podemos decir gran cantidad de detalles respecto a su curva solucion. Puesto que
la funcion f en la ecuacion (2) es independiente de la variable x, podemos suponer
que f esta definida para —o < x < 0 0 para 0 = x < o, También, puesto que fy su
derivada f’ son funciones continuas de y en algun intervalo | del eje y, los resultados
principales del teorema 1.2.1 valen en alguna franja o region R en el plano xy corres-
pondiente a |, y asi pasa por algun punto (x,, y,) en R por el que pasa una curva solucion
de la ecuacion (2). Véase la figura 2.1.6a. Para realizar nuestro analisis, supongamos
que la ecuacion (2) tiene exactamente dos puntos criticos ¢, y ¢, y que ¢, < c,. Las grafi-
cas de las soluciones y(x) = ¢, y y(x) = c, son rectas horizontales y estas rectas dividen
la region R en tres subregiones R , R, y R,, como se muestra en la figura 2.1.6b. Aqui se
presentan sin prueba alguna de nuestras conclusiones respecto a una solucion no cons-
tante y(x) de la ecuacion (2):

» Si(x,Y,) esunasubregion R, i = 1, 2, 3, y y(x) es una solucion cuya grafica
pasa a través de este punto, entonces y(x) permanece en la subregion R, para
toda x. Como se muestra en la figura 2.1.6b, la solucion y(x) en R, esta acotada
por debajo con ¢, y por arriba con c,, es decir, ¢, <y(x) < c, paratoda x. La
curva solucion esta dentro de R, para toda x porque la grafica de una solucion no
constante de la ecuacién (2) no puede cruzar la grafica de cualquier solucion de
equilibrio y(x) = ¢, 0 y(x) = c,. Véase el problema 33 de los ejercicios 2.1.

 Por continuidad de f debe ser f(y) > 0 o f(y) < 0 para toda x en una
subregion R,, i = 1, 2, 3. En otras palabras, f(y) no puede cambiar de signo
en una subregién. Véase el problema 33 de los ejercicios 2.1.
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FIGURA 2.1.7 Esquema de fase y
curvas solucion en cada una de las tres
subregiones.
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* Puesto que dy/dx = f(y(x)) es ya sea positiva 0 negativa en una subregion R,
i =1, 2,3, unasolucion y(x) es estrictamente monotona, es decir, y(x) esta
creciendo o decreciendo en la subregion R.. Por tanto y(x) no puede oscilar, ni
puede tener un extremo relativo (méaximo o minimo). Véase el problema 33
de los ejercicios 2.1.

* Siy(x) esta acotada por arriba con un punto critico ¢, (como en la subregion
R, donde y(x) < c, para toda x), entonces la grafica de y(x) debe tender a la
grafica de la solucion de equilibrio y(x) = ¢, conforme x — % 0 X — —x. Si
y(x) esta acotada, es decir, acotada por arriba y por debajo por dos puntos
criticos consecutivos (como en la subregion R, donde ¢, < y(x) < c, para
toda x), entonces la gréafica de y(x) debe tender a las gréficas de las soluciones
de equilibrio y(x) = ¢, y y(x) = c,, conforme x = enunay x — —en
la otra. Si y(x) esta acotada por debajo por un punto critico (como en la
subregion R, donde ¢, < y(x) para toda x), entonces la grafica de y(x) debe
tender a la grafica de la solucion de equilibrio y(x) = ¢, conforme ya sea
X —> 0 0 X — —o0, Véase el problema 34 de los ejercicios 2.1.

Considerando estos hechos, analicemos la ecuacion diferencial del ejemplo 3.

I EJEMPLO 4 Volver atratar el ejemplo

Los tres intervalos determinados en el eje P o recta de fase con los puntos criticos P =
0y P = a/b ahora corresponden en el plano tP a tres subregiones definidas por:

R:—wo<P<0, R,:0<P<a/b, y Riya/b <P <o,

1

donde — < t < o, El esquema de fase de la figura 2.1.7 nos dice que P(t) esta de-
creciendo en R, creciendo en R, y decreciendo en R,. Si P(0) = P, es un valor inicial,
entonces en R, R, y R, tenemos, respectivamente, que:

i) Para P, < 0, P(t) esta acotada por arriba. Puesto que P(t) esta decreciendo
sin limite conforme aumenta t, y asi P(t) — 0 conforme t — —oo. Lo que
significa que en el eje t negativo, la grafica de la solucion de equilibrio P(t)
= 0, es una asintota horizontal para una curva solucidn.

i)  Para0 <P, < a/b, P(t) esta acotada. Puesto que P(t) esta creciendo,
P(t) — a/b conforme t — oo y P(t) — 0 conforme t — —co. Las graficas
de las dos soluciones de equilibrio, P(t) = 0y P(t) = a/b, son rectas
horizontales que son asintotas horizontales para cualquier curva solucién
que comienza en esta subregion.

iii) ParaP > a/b, P(t) esta acotada por debajo. Puesto que P(t) esta
decreciendo, P(t) — a/b conforme t — . La gréfica de la solucién de
equilibrio P(t) = a/b es una asintota horizontal para una curva solucion.

En lafigura 2.1.7 la recta de fase es el eje P en el plano tP. Por claridad la recta de
fase original de la figura 2.1.5 se ha reproducido a la izquierda del plano en el cual se
han sombreado las regiones R, R, y R.. En la figura se muestran las graficas de las
soluciones de equilibrio P(t) = a/b y P(t) = 0 (el eje t) como las rectas punteadas
azules; las graficas sélidas representan las gréaficas tipicas de P(t) mostrando los tres
casos que acabamos de analizar. ]

En una subregion tal como R, en el ejemplo 4, donde P(t) esta decreciendo y no
esta acotada por debajo, no se debe tener necesariamente que P(t) — —cc. No inter-
prete que este Gltimo enunciado significa que P(t) — —o conforme t — o; podriamos
tener que P(t) — —o conforme t — T, donde T > 0 es un ndmero finito que depende
de la condicion inicial P(t) = P,. Considerando términos dinamicos, P(t) “explota”
en un tiempo finito; considerando la grafica, P(t) podria tener una asintota vertical en
t =T > 0. Para la subregion R, vale una observacion similar.

La ecuacion diferencial dy/dx = sen y en el ejemplo 2 es auténoma y tiene un nd-
mero infinito de puntos criticos, ya que seny = 0 en'y = nar, con n entero. Ademas, sabe-
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mos que debido a que la solucién y(x) pasa por (0, —%) estd acotada por arribay por debajo

por dos puntos criticos consecutivos (—a < y(x) < 0) y decrece (seny < 0 para —7 <
y < 0), la gréfica de y(x) debe tender a las graficas de las soluciones de equilibrio como
asintotas horizontales: y(x) — —r conforme x — oy y(x) — 0 conforme x — —oo,

I EJEMPLO 5 Curvas solucion de una ED auténoma

La ecuacion auténoma dy/dx = (y — 1)? tiene un solo punto critico 1. Del esquema
de fase de la figura 2.1.8a concluimos que una solucion y(x) es una funcion creciente
en las subregiones definidas por —c0c <y <1y 1l <y < oo, donde —o0 < x < o, Para
una condicion inicial y(0) =y, < 1, una solucion y(x) esta creciendo y esta acotada
por arriba por 1y asi y(x) — 1 conforme x — c; para y(0) =y, > 1, una solucion y(x)
esta creciendo y esta acotada.

Ahora y(x) = 1 —1/(x + c) es una familia uniparamétrica de soluciones de la
ecuacion diferencial (vea el problema 4 de los ejercicios 2.2). Una condicion ini-
cial dada determina un valor para c. Para las condiciones iniciales, y(0) = -1 < 1
y y(0) = 2 > 1, encontramos, respectivamente, que y(x)=1— 1/(x + %), yx)=1-1/(x
— 1). Como se muestra en las figuras 2.1.8b y 2.1.8c, la grafica de cada una de estas
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FIGURA 2.1.8 Comportamiento de las soluciones cercadey = 1.

funciones racionales tienen una asintota vertical. Pero tenga en mente que las solucio-
nes de los problemas con valores iniciales

dy dy
- Yo Dh O =1 - VoD O =2
estan definidas en intervalos especiales. Estos son, respectivamente,
1 1 1
=1- -1 <x< X)=1—- —— —o<x<1
yx) =1 X+ 70 2 © y Yy ]

Las curvas solucion son las partes de las gréficas de las figuras 2.1.8b y 2.1.8¢c que
se muestran en azul. Como lo indica el esquema de fase, para la curva solucion de la
figura 2.1.8b, y(x) — 1 conforme x — <0 para la curva solucidn de la figura 2.1.8c, y(x)
— o conforme x — 1 por la izquierda. ]

ATRACTORES Y REPULSORES Suponga que y(x) es una solucién no constante de
la ecuacidn diferencial autbnoma dada en (1) y que ¢ es un punto critico de la ED.
Basicamente hay tres tipos de comportamiento que y(x) puede presentar cerca de c. En
la figura 2.1.9 hemos puesto a ¢ en las cuatro rectas verticales. Cuando ambas puntas
de flecha en cualquier lado del punto ¢ apuntan hacia ¢, como se muestra en la figura
2.1.9a, todas las soluciones y(x) de la ecuacion (1) que comienzan en el punto inicial
(X, Y,) suficientemente cerca de ¢ presentan comportamiento asintotico lim __ y(x) = c.
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Por esta razon se dice que el punto critico ¢ es asintdticamente estable. Utilizando una
analogia fisica, una solucién que comienza en ¢ se parece a una particula cargada que,
con el tiempo, se transforma en una particula de carga contraria 'y asi ¢ también se conoce
como un atractor. Cuando ambas puntas de flecha a los lados de la flecha del punto ¢
apuntan alejandose de c, como se muestra en la figura 2.1.9b, todas las soluciones y(x) de
la ecuacion (1) que comienzan en un punto inicial (x,, y,) se alejan de ¢ conforme crece x.
En este caso se dice que el punto critico ¢ es inestable. Un punto critico inestable se co-
noce como un repulsor, por razones obvias. En las figuras 2.1.9c y 2.1.9d se muestra el
punto critico ¢ que no es ni un atractor ni un repulsor. Pero puesto que ¢ presenta carac-
teristicas tanto de atractor como de repulsor, es decir, una solucidn que comienza desde
un punto inicial (x,, y,) que esta suficientemente cerca de c es atraida hacia ¢ por un lado
y repelida por el otro, este punto critico se conoce como semiestable. En el ejemplo 3 el
punto critico a/b es asintéticamente estable (un atractor) y el punto critico O es inestable
(un repulsor). El punto critico 1 del ejemplo 5 es semiestable.

ED AUTONOMAS Y CAMPOS DIRECCIONALES  Si una ecuacion diferencial de
primer orden es auténoma, entonces vemos del miembro derecho de su forma normal
dy/dx = f(y) que las pendientes de los elementos lineales que pasan por los puntos en
la malla rectangular que se usa para construir un campo direccional para la ED que s6lo
depende de la coordenada y de los puntos. Expresado de otra manera, los elementos li-
neales que pasan por puntos de cualquier recta horizontal deben tener todos la misma
pendiente; por supuesto, pendientes de elementos lineales a lo largo de cualquier recta
vertical, variaran. Estos hechos se muestran examinando la banda horizontal amarilla y
la banda vertical azul de la figura 2.1.10. La figura presenta un campo direccional para la
ecuacion auténoma dy/dx = 2y — 2. Recordando estos hechos, examine nuevamente
la figura 2.1.4.

EJERCICIOS 2.1

Las respuestas a los problemas con nimero impar comienzan en la pagina RES-1.

2.1.1 CAMPOS DIRECCIONALES 2 ﬂ_e,omxyz
dx
En los problemas 1 a 4 reproduzs:ae_l campo direccional dado ge- a) y(—6)=0 b) y(0) =1
nerado por computadora. Después dibuje a mano, una curva solu- ¢) y(0) = -4 d) y(8) = —4
cion aproximada que pase por cada uno de los puntos indicados.
Utilice lapices de colores diferentes para cada curva solucion.
y
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FIGURA 2.1.13 Campo direccional del problema 3.
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FIGURA 2.1.14 Campo direccional del problema 4.

En los problemas 5 a 12 use un paquete computacional para
obtener un campo direccional para la ecuacién diferencial
dada. Dibuje a mano una curva solucion aproximada que pase
por los puntos dados.

5y =x 6.y =x+y
a) y(0)=0 a) y(=2)=2
b) y(0) = =3 b) y(1) = -3
dy _ dy _ 1
7. de = —X 8. ax y
a) y(1)=1 a) y(0) =1
b) y(0) =4 b) y(-2)=—1
9. % =02x2+y 10. g—i = xeY
a) y(0)=; a) y(0) = -2
b) y(2) = -1 b) y(1) =25
A ) dy v
11. y' =y 0052x 12.dX 1 <
a) y(2) =2 a) y(-}) =2
b) y(-1) =0 b) y(3) =

CAPITULO 2 ECUACIONES DIFERENCIALES DE PRIMER ORDEN

En los problemas 13 y 14 la figura dada representa la grafica
de f(y) y de f(x), respectivamente. Dibuje a mano un campo
direccional sobre una malla adecuada para dy/dx = f(y) (pro-
blema 13) y después para dy/dx = f(x) (problema 14).

13. f

14.

FIGURA 2.1.16 Gréfica del problema 14.

15. En los incisos a) y b) dibuje isoclinas f(x, y) = c (vea los
ganais de la pagina 37) para la ecuacion diferencial
dada usando los valores de c indicados. Construya un campo
direccional sobre una malla dibujando con cuidado elemen-
tos lineales con la pendiente adecuada en los puntos elegi-
dos de cada isoclina. En cada caso, utilice esta direccion
para dibujar una curva solucion aproximada para el PVI que
consiste en la ED y en la condicién inicial y (0) = 1.

a) dy/dx = x + y; c un entero que satisface -5 =c=5
b) dy/dx=x*+y%,c=%c=1c=%c=4

Problemas para analizar

16. a) Considere el campo direccional de la ecuacion dife-
rencial dy/dx = x(y — 4)? — 2, pero no use tecnologia
para obtenerlo. Describa las pendientes de los elemen-
tos linealesen lasrectasx = 0,y = 3,y =4yy =5,

b) Considere el PVI dy/dx = x(y — 4)* - 2, y(0) =y,
donde y, < 4. Analice, basandose en la informacion
del inciso a), ¢si puede una solucion y(x) — o con-
forme x — o0?

17. Para la ED de primer orden dy/dx = f(x, y) una curva en
el plano definido por f(x, y) = 0 se llama ceroclina de
la ecuacion, ya que un elemento lineal en un punto de la
curva tiene pendiente cero. Use un paquete computacional
para obtener un campo direccional en una malla rectangu-



lar de puntos dy/dx = x* — 2y y después superponga la
gréficade laceroclinay = %XZ sobre el campo direccional.
Analice el campo direccional. Analice el comportamiento
de las curvas solucion en regiones del plano definidas por
y < 3x2y pory > %2 Dibuje algunas curvas solucion
aproximadas. Trate de generalizar sus observaciones.

18. a) Identifique las ceroclinas (vea el problema 17) en los
problemas 1, 3 y 4. Con un lapiz de color, circule
todos los elementos lineales de las figuras 2.1.11,
2.1.13y 2.1.14, que usted crea que pueden ser un ele-

mento lineal en un punto de la ceroclina.

b) ¢Qué son las ceroclinas de una ED auténoma de pri-
mer orden?

2.1.2 ED DE PRIMER ORDEN AUTONOMAS

19. Considere la ecuacion diferencial de primer orden dy/dx
=y -y?y la condicion inicial y(0) = y,. A mano, dibuje
la grafica de una solucion tipica y(x) cuando y, tiene los
valores dados.

a) y,>1
0 —1<y,<0

b) 0<y,<1
d) y,<-1

20. Considere la ecuacion diferencial autonoma de primer
orden dy/dx = y?> - y*y la condicion inicial y(0) = y,. A
mano, dibuje la gréfica de una solucién tipica y(x) cuando
y, tiene los valores dados.

a) y,>1 b) 0<y,<1
0 —1<y,<0 d) y,<-1

En los problemas 21 a 28 determine los puntos criticos y el es-
quema de fase de la ecuacion diferencial autbnoma de primer
orden dada. Clasifique cada punto critico como asintética-
mente estable, inestable o semiestable. Dibuje a mano curvas
solucion tipicas en las regiones del plano xy determinadas por
las graficas de las soluciones de equilibrio.

21.%(:y2—3y 22.%:yz_ys
23-%(=(y—2)4 24-%{=1O+3y—y2
25. g—i=y2(4 )% 3—§=y(2 —y@-y)
27.%(=yln(y+2) 28. %:@

En los problemas 29 y 30 considere la ecuacion diferencial
auténoma dy/dx = f(y), donde se presenta la gréafica de f.
Utilice la gréfica para ubicar los puntos criticos de cada una
de las ecuaciones diferenciales. Dibuje un esquema de fase de
cada ecuacion diferencial. Dibuje a mano curvas solucion
tipicas en las subregiones del plano xy determinadas por las
graficas de las soluciones de equilibrio.

29.

30.
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FIGURA 2.1.17 Gréfica del problema 29.

FIGURA 2.1.18 Gréfica del problema 30.

Problemas para analizar

31.

32.

33.

34.

35.

Considere la ED auténoma dy/dx = (2/m)y — sen y.
Determine los puntos criticos de la ecuacion. Proponga
un procedimiento para obtener un esquema de fase de la
ecuacion. Clasifique los puntos criticos como asintética-
mente estable, inestable o semiestable.

Un punto critico ¢ de una ED de primer orden auténoma
se dice que estd aislada si existe alglin intervalo abierto
que contenga a ¢ pero no otro punto critico. ;Puede exis-
tir una ED autonoma de la forma dada en la ecuacion (1)
para la cual todo punto critico no esté aislado? Analice:
no considere ideas complicadas.

Suponga que y(x) es una solucidn no constante de la ecua-
cion diferencial auténoma dy/dx = f(y) y que c es un punto
critico de la ED. Analice. ¢Por qué no puede la grafica de
y(x) cruzar la gréfica de la solucién de equilibrio y = c?
¢Por qué no puede f(y) cambiar de signo en una de las re-
giones analizadas de la pagina 38? ¢Por qué no puede y(x)
oscilar o tener un extremo relativo (maximo 0 minimo)?

Suponga que y(x) es una solucién de la ecuacion auto-
noma dy/dx = f(y) y estd acotada por arriba y por debajo
por dos puntos criticos consecutivos ¢, < c,, COMo una
subregion R, de la figura 2.1.6b. Si f(y) > 0 en la region,
entonces lim __ y(x) = c,. Analice por qué no puede exis-
tir un nimero L < c, tal que lim __ y(x) = L. Como parte

de su analisis, considere qué pasa con y’(x) conforme
X —> 0,

Utilizando la ecuacion auténoma (1), analice cdmo se
puede obtener informacion respecto a la ubicacion de
puntos de inflexion de una curva solucién.
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36.

37.

° CAPITULO 2 ECUACIONES DIFERENCIALES DE PRIMER ORDEN

Considere la ED dy/dx = y?—y — 6. Use sus ideas del pro-
blema 35 para encontrar los intervalos en el eje y para los
que las curvas solucion son concavas hacia arriba y en los que
las curvas solucion son concavas hacia abajo. Analice por
qué cada curva solucion de un problema con valores ini-
ciales dy/dx = y? — y - 6, y(0) = y,, donde —2 <y, <
3, tiene un punto de inflexion con la misma coordenada
y. ¢Cual es la coordenada y? Con cuidado dibuje la curva
solucion para la que y(0) = —1. Repita para y(2) = 2.

Suponga que la ED auténoma en la ecuacion (1) no tiene
puntos criticos. Analice el comportamiento de las solu-
ciones.

Modelos matematicos

38.

39.

40.

Modelo de poblacién La ecuacion diferencial en el
ejemplo 3 es un muy conocido modelo de poblacion.
Suponga que la ED se cambia por

dP
o = PP — b,

donde a y b son constantes positivas. Analice qué le pasa
a la poblacion P conforme pasa el tiempo.

Modelo de poblacion Otro modelo de poblacion esta
dado por

dP
— =KkP - h,
dt

donde h y k son constantes positivas. ¢Para qué valor ini-
cial P(0) = P, este modelo predice que la poblacion des-
aparecera?

Velocidad terminal En la secciéon 1.3 vimos que la
ecuacion diferencial autébnoma

— =mg — kv.
M = Mg — kv

donde k es una constante positiva y g es la aceleracion
de la gravedad, es un modelo para la velocidad v de un

41.

42,

cuerpo de masa m que esta cayendo bajo la influencia de
la gravedad. Debido a que el término —kv representa la
resistencia del aire, la velocidad de un cuerpo que cae de
una gran altura no aumenta sin limite conforme pasa el
tiempo t. Utilice un esquema de fase de la ecuacion dife-
rencial para encontrar la velocidad limite o terminal del
cuerpo. Explique su razonamiento.

Suponga que el modelo del problema 40 se modifica de tal
manera que la resistencia del aire es proporcional a v?, es
decir

m— = mg — kv2.
a MY
Vea el problema 17 de los ejercicios 1.3. Utilice un es-
quema de fase para determinar la velocidad terminal del
cuerpo. Explique su razonamiento.

Reacciones quimicas Cuando se combinan ciertas cla-
ses de reacciones quimicas, la razon con la que se forman
los nuevos componentes se modela por la ecuacion dife-
rencial auténoma

dXx
o~ Ka=X)(B = X),

donde k > 0 es una constante de proporcionalidad y g >
a > 0. Aqui X(t) denota el nimero de gramos del nuevo
componente al tiempo t.

a) Utilice un esquema de fase de la ecuacion diferencial

para predecir el comportamiento de X(t) conforme
t— oo

b) Considere el caso en que « = B. Utilice un esquema
de fase de la ecuacion diferencial para predecir el
comportamiento de X(t) conforme t — oo cuando X(0)
< a. Cuando X(0) > a.

c) Compruebe que una solucién explicita de la ED en
elcasoenquek =1lya =BesX(t) =a — 1/(t +
c). Determine una solucion que satisfaga que X(0) =
a/2. Después determine una solucién que satisfaga
que X(0) = 2a. Trace la gréafica de estas dos solucio-
nes. ¢El comportamiento de las soluciones conforme
t — oo concuerdan con sus respuestas del inciso b)?

2.2

VARIABLES SEPARABLES

REPASO DE MATERIAL

e Formulas bésicas de integracion (véase al final del libro).
e Técnicas de integracion: integracién por partes y por descomposicién en fracciones parciales.

INTRODUCCION Comenzaremos nuestro estudio de como resolver las ecuaciones diferenciales
con las mas simple de todas las ecuaciones diferenciales: ecuaciones diferenciales de primer orden con
variables separables. Debido a que el método que se presenta en esta seccién y que muchas de las técni-
cas para la solucidn de ecuaciones diferenciales implican integracidn, consulte su libro de calculo para
recordar las formulas importantes (como S du/u) y las técnicas (como la integracion por partes).
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SOLUCION POR INTEGRACION Considere la ecuacion diferencial de primer
orden dy/dx = f(x, y). Cuando f no depende de la variable y, es decir, f(x, y) = g(x),
la ecuacion diferencial

dy _
a9 @

se puede resolver por integracién. Si g(x) es una funcion continua, al integrar ambos
lados de la ecuacion (1) se obtiene y = [g(x) dx = G(x) + ¢, donde G(x) es una anti-
derivada (integral indefinida) de g(x). Por ejemplo, si dy/dx = 1 + e, entonces su
soluciones y = [(1 + e*)dxoy = x + 1e* + c.

UNA DEFINICION  La ecuacion () asi como su método de solucién, no son mas
que un caso especial en el que f, en la forma normal dy/dx = f(x, y) se puede factori-
zar como el producto de una funcion de x por una funcion de y.

DEFINICION 2.2.1 Ecuacion separable

Una ecuacion diferencial de primer orden de la forma

dy
ax g(h(y)

Se dice que es separable o que tiene variables separables.

Por ejemplo, las ecuaciones

dy 2 +4y dy

] X — = —+

Ix y2xe’ y ix y + sen X
son respectivamente, separable y no separable. En la primera ecuaciéon podemos fac-
torizar f(x, y) = y?xe3>**4% como

g(x) h(y)
I
f(xy) = yxe*¥ = (xe™)(yeV),

pero en la segunda ecuacion no hay forma de expresar ay + sen x como un producto
de una funcidn de x por una funcién dey.

Observe que al dividir entre la funcion h(y), podemos escribir una ecuacién sepa-
rable dy/dx = g(x)h(y) como

o _ 2
pCy) ax g(x), )

donde, por conveniencia p(y) representa a I/h(y). Podemos ver inmediatamente que la
ecuacion (2) se reduce a la ecuacion (1) cuando h(y) = 1.
Ahora si y = ¢(x) representa una solucion de la ecuacion (2), se tiene que

P(@(x))¢'(x) = g(x), y por tanto
f P(¢(X)'(X) dx = f g(x) dx. @)
Pero dy = ¢ '(x)dx, por lo que la ecuacién (3) es la misma que
fp(y) dy = fg(X)dx o Hy)=G6X +c, (4)

donde H(y) y G(x) son antiderivadas de p(y) = 1/h(y) y g(x), respectivamente.
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METODO DE SOLUCION La ecuacion (4) indica el procedimiento para resolver
ecuaciones separables. Al integrar ambos lados de p(y) dy = g(x) dx, se obtiene una fa-
milia uniparamétrica de soluciones, que usualmente se expresa de manera implicita.

NOTA No hay necesidad de emplear dos constantes cuando se integra una ecuacion
separable, porque si escribimos H(y) + ¢, = G(x) + c,, entonces la diferenciac,-c, se
puede reemplazar con una sola constante ¢, como en la ecuacion (4). En muchos casos
de los capitulos siguientes, sustituiremos las constantes en la forma mas conveniente
para una ecuacion dada. Por ejemplo, a veces se pueden reemplazar los maltiplos o las
combinaciones de constantes con una sola constante.

I EJEMPLO 1 Solucion de una ED separable

Resuelva (1 + x) dy — ydx = 0.

SOLUCION Dividiendo entre (1 + X)y, podemos escribir dy/y = dx/(1 + x), de
donde tenemos que

J3-1s
y 1 +X

Inly| =1In|1 + X| + ¢,

y = e‘““““q = e‘“'”"‘ « €1 < leyes de exponentes

[1+Xx]=1+x x=—1
[1+x]=-1+x%, x<-1

=1+ x| e
= *=eb(1 + x). (_{
Haciendo c igual a ¢ se obtiene y = c¢(1 + x).

SOLUCION ALTERNATIVA Como cada integral da como resultado un logaritmo, la
eleccion mas prudente para la constante de integracion es In|c|, en lugar de c. Rees-
cribiendo el segundo renglén de la solucion como Inly| = In|1 + x| + In|c| nos permi-
te combinar los términos del lado derecho usando las propiedades de los logaritmos.
De Inly| = Injc(1 + x)| obtenemos inmediatamente que y = ¢(1 + x). Aun cuando no
todas las integrales indefinidas sean logaritmos, podria seguir siendo mas conveniente
usar In|c|. Sin embargo, no se puede establecer una regla firme. ]

En la seccion 1.1 vimos que una curva solucién puede ser solo un tramo o un arco
de la gréfica de una solucidn implicita G(x, y) = 0.

I EJEMPLO 2 Curvasolucién

L d X
Resuelva el problema con valores iniciales d—:/( = —)—/, y(4) = =3.

SOLUCION Si reescribe la ecuacion comoy dy = —xdx, obtiene

2 X2
fydy=—fxdx y y3=—5+cl.

Podemos escribir el resultado de la integracion como x* + y? = c?, sustituyendo a la
constante 2c, por ¢ Esta solucion de la ecuacion diferencial representa una familia de
circunferencias concéntricas centradas en el origen.

Ahoracuandox = 4,y = —3, setiene 16 + 9 = 25 = ¢, Asi, el problema con valo-
res iniciales determina la circunferencia x* + y? = 25 de radio 5. Debido a su sencillez
podemaos escribir de esta solucion implicita como una solucion explicita que satisfaga la



FIGURA 2.2.1 Curvas solucién para
el PVI del ejemplo 2.
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condicidn inicial. Vimos en el ejemplo 3 de la seccion 1.1, esta soluciéon como y =
d,(X) 0y = —\/25 — x2, =5 < x < 5. Una curva solucion es la grafica de una fun-
cion derivable. En este caso la curva solucion es la semicircunferencia inferior, que se
muestra en azul oscuro en la figura 2.2.1 que contiene al punto (4, —3). ]

PERDIDA DE UNA SOLUCION  Se debe tener cuidado al separar las variables ya
que las variables que sean divisores podrian ser cero en un punto. Concretamente,
si r es una raiz de la funcién h(y), entonces sustituyendo y = r en dy/dx = g(x)h(y)
se encuentra que ambos lados son iguales a cero; es decir, y = r es una solucion
constante de la ecuacijén diferencial. Pero después de que las variables se separan,
y
h(y)
representar a la familia de soluciones que se ha obtenido después de la integracion
y simplificacion. Recuerde que una solucion de este tipo se llama solucion singular.

el lado izquierdo de g (x) dx esta indefinido en r. Por tanto, y = r podria no

I EJEMPLO 3 Pérdida de una solucién

dy 5
= =y2—4
Resuelva dx y
SOLUCION Poniendo la ecuacién en la forma
dy i i
——=d — dy = dx. 5
-4 o ° [y—Z y+2]7 ©

La segunda ecuacion en la ecuacion (5) es el resultado de utilizar fracciones parciales
en el lado izquierdo de la primera ecuacion. Integrando y utilizando las leyes de los
logaritmos se obtiene

l1n|y— 2| —1ln|y+ 2| =x+¢
4 4

-2
‘ =4x + ¢, 0 y— <o +ehre,
y+2

y—2
+2

0 In

Aqui hemos sustituido 4c, por c,. Por ultimo, después de sustituir +e por ¢y despe-
jando y de la Gltima ecuacion, obtenemos una familia uniparamétrica de soluciones

1 + ce™
YT e ©

Ahora, si factorizamos el lado derecho de la ecuacién diferencial como dy/dx =
(y — 2)(y + 2), sabemos del analisis de puntos criticos de la seccion 2.1 quey = 2yy
= —2 son dos soluciones constantes (de equilibrio). La soluciény = 2 es un miembro
de la familia de soluciones definida por la ecuacion (6) correspondiendo al valor
¢ = 0. Sin embargo, y = —2 es una solucién singular; ésta no se puede obtener de la
ecuacion (6) para cualquier eleccién del parametro c. La Gltima solucién se perdio al
inicio del proceso de solucidn. El examen de la ecuacion (5) indica claramente que
debemos excluiry = =2 en estos pasos. ]

I EJEMPLO 4 Un problema con valores iniciales

Resuelva (¥ — y) cos xg—i = &sen2x, Yy(0) =0.
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G(x, y) = c, donde
G(x,y)=¢ +yeV+e+2cosx
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FIGURA 2.2.3 Curvas de nivel
c=2yc=4.
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SOLUCION Dividiendo la ecuacién entre e cos x se obtiene

ezy_yd _ sen2X

dx.
e cos X

Antes de integrar se realiza la division del lado izquierdo y utilizamos la identidad
trigonométrica sen 2x = 2 sen x cos x en el lado derecho. Entonces tenemos que

integracion de partes — f (e —ye™) dy =2 fsenx dx

se obtiene ey+yeY+e V= —2c0SX + C. @)

La condicidn inicial y = 0 cuando x = 0 implica que ¢ = 4. Por tanto una solucion del
problema con valores iniciales es

e/+yeY+eVYy=4—2cosx. 8 m
USO DE COMPUTADORA Los Comentarios al final de la seccién 1.1 mencionan
que puede ser dificil utilizar una solucién implicita G(x, y) = 0 para encontrar una solu-
cion explicitay = ¢(x). La ecuacidn (8) muestra que la tarea de despejar y en términos
de x puede presentar mas problemas que solamente el aburrido trabajo de presionar
simbolos; jen algunos casos simplemente no se puede hacer! Las soluciones implicitas
tales como la ecuacion (8) son un poco frustrantes; ya que no se aprecia ni en la grafica
de la ecuacién ni en el intervalo una solucion definida que satisfaga que y(0) = 0. El
problema de “percibir” cudl es la solucion implicita en algunos casos se puede resol-
ver mediante la tecnologia. Una manera* de proceder es utilizar la aplicacion contour
plot de un sistema algebraico de computacion (SAC). Recuerde del célculo de varias
variables que para una funcion de dos variables z = G(x, y) las curvas bi-dimensionales
definidas por G(x, y) = ¢, donde c es una constante, se llaman las curvas de nivel de la
funciodn. En la figura 2.2.2 se presentan algunas de las curvas de nivel de la funcion G(x,
y) =€ +yeV + e ¥+ 2cos x que se han reproducido con la ayuda de un SAC. La fa-
milia de soluciones definidas por la ecuacion (7) son las curvas de nivel G(x, y) = c. En
la figura 2.2.3 se muestra en color azul la curva de nivel G(x, y) = 4, que es la solucion
particular de la ecuacidn (8). La otra curva de la figura 2.2.3 es la curva de nivel G(x, y)
= 2, que es miembro de la familia G(x, y) = ¢ que satisface que y(7/2) = 0.

Si al determinar un valor especifico del parametro ¢ en una familia de soluciones
de una ecuacion diferencial de primer orden llegamos a una solucion particular, hay una
inclinacion natural de la mayoria de los estudiantes (y de los profesores) a relajarse y estar
satisfechos. Sin embargo, una solucion de un problema con valores iniciales podria no ser
Unica. Vimos en el ejemplo 4 de la seccion 1.2 que el problema con valores iniciales

g = 172 —
3" YO =0 ©)

tiene al menos dos soluciones,y =0y y = 1—16 x*. Ahora ya podemos resolver esa ecua-
cion. Separando las variables e integrando y=*/2 dy = xdx obtenemos

2 2 2
2y”2=x—+cl 0 y=<x—+c>.
2 4

Cuando x = 0, entonces y = 0, asi que necesariamente, ¢ = 0. Por tanto y = 11—6x4. Se
perdid la solucion trivial y = 0 al dividir entre y*/2. Ademas, el problema con valores
iniciales, ecuacion (9), tiene una cantidad infinitamente mayor de soluciones porque
para cualquier eleccién del parametro a = 0 la funcién definida en tramos

“En la seccion 2.6 analizaremos algunas otras maneras de proceder que estan basadas en el concepto de una
solucion numérica.
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FIGURA 2.2.4  Soluciones de la
ecuacion (9) definida en tramos.
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|0, Xx<a
y L —a)» x=a

satisface tanto a la ecuacion diferencial como a la condicion inicial. Véase la fi-
gura 2.2.4.

SOLUCIONES DEFINIDAS POR INTEGRALES Si g es una funcién continua en
un intervalo abierto | que contiene a a, entonces para toda x en 1,

EJX t)dt =
5 ), GO = 900,

Usted podria recordar que el resultado anterior es una de las dos formas del teorema
fundamental del calculo. Es decir, [* g(r) dr es una antiderivada de la funcion g. En
ocasiones esta forma es conveniente en la solucion de ED. Por ejemplo, si g es continua
en un intervalo | que contiene a x, y a x, entonces una solucion del sencillo problema
con valores iniciales dy/dx = g(x), y(x,) = Y, que esta definido en | esta dado por

yx) = Yo + f g(t) dt
X

Usted deberia comprobar que y(x) definida de esta forma satisface la condicidn inicial.
Puesto que una antiderivada de una funcién continua g no siempre puede expresarse
en términos de las funciones elementales, esto podria ser lo mejor que podemos hacer
para obtener una solucidn explicita de un PVI. El ejemplo siguiente ilustra esta idea.

I EJEMPLO 5 Un problema con valores iniciales

Resuel Y gn y3) =5
esuelva dx B .

SOLUCION La funcion g(x) = ¢ es continua en (—o, %), pero su antiderivada
no es una funcion elemental. Utilizando a t como una variable muda de integracion,

podemos escribir
f d dt = f e tdt
3 dt 3
X X
y(t)L = f e tdt
i 3
X
yo) — y(3) = f e tdt
3
y(x) = y(3) + f e dt.
3
Utilizando la condicion inicial y(3) = 5, obtenemos la solucion

X

y(x) =5 + f et dt. u
3

El procedimiento que se mostrd en el ejemplo 5 también funciona bien en las ecua-

ciones separables dy/dx = g(x)f(y) donde, f(y) tiene una antiderivada elemental pero g(x)

no tiene una antiderivada elemental. VVéanse los problemas 29 y 30 de los ejercicios 2.2.
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I COMENTARIOS

i) Como acabamos de ver en el ejemplo 5, algunas funciones simples no tienen
una antiderivada que es una funcion elemental. Las integrales de estas clases de
funciones se llaman no elementales. Por ejemplo [ edry [sen x> dx son integra-
les no elementales. Retomaremos nuevamente este concepto en la seccion 2.3.

ii) En algunos de los ejemplos anteriores vimos que la constante de la familia
uniparamétrica de soluciones de una ecuacion diferencial de primer orden se
puede redefinir cuando sea conveniente. También se puede presentar con faci-
lidad el caso de que dos personas obtengan distintas expresiones de las mismas
respuestas resolviendo correctamente la misma ecuacion. Por ejemplo, sepa-
rando variables se puede demostrar que familias uniparamétricas de soluciones
de laED (I + y?) dx + (1+ x?) dy = 0 son

X+y _ .

1 — xy

arctan X + arctany = C 0

Conforme avance en las siguientes secciones, considere que las familias de so-
luciones pueden ser equivalentes, en el sentido de que una se puede obtener de
otra, ya sea por redefinicion de la constante o utilizando algebra o trigonometria.
Vea los problemas 27 y 29 de los ejercicios 2.2.

EJE RCICIOS 2.2 Las respuestas a los problemas con nimero impar comienzan en la pagina RES-1.
En los problemas 1 a 22 resuelva la ecuacion diferencial dada dy ady
por separacion de variables. 21. dx XVIE-—y 2. (e+e )dx =y

En los problemas 23 a 28 encuentre una solucion explicita del

dy problema con valores iniciales dado.

d
1. —y= sen 5X

2. ==X+ 1)7?
dx ax XD dx R
L= + =
3. dx+e¥dy=0 4.dy —(y—1)%dx =0 23 dt 40+ 1), X(m/4) = 1
dy dy dy y2—1
5 x-== 6. —= + 2xy? = = =
Xax Y ax =0 2 X —1 y@ =2
dy 3x+2y X dy -y —2X— dy
. p— X — = —+ X=y 2 2 — — — = —
7. dx e 8.eydx e e 25, de y —xy, y(—1) 1
dx [y + 1\ dy <2y + 3)2 dy s
9. — = 10. — = =24 = -5
yInxay ( X ) dx  \4x + 5 0. G T YO =S
11. cscy dx + sec’x dy = 0 27. VI =y dx — VI — xdy = 0, y(0)=\/7§
12. sen 3x dx + 2y €0s°%3x dy =0 8. (1 + X4) dy + X(l + 4yz) dx = 0, y(l) =0
13. (e¥ + 1)% 7 dx + (e* + 1)%*dy = 0 En los problemas 29y 30 Qrc_)ceda como en el ejemplo 5y de-
termine una solucion explicita del problema con valores ini-
14. x(1 + y»)¥2dx = y(1 + x?)*2 dy ciales dado.
dy .
29. —=ye X, yé4) =1
d
15. B _ys 16. 92 — k0 - 70) dx
dr dt dy
30. == =y?senx’ y(—2) =1
17 d—P—P—P2 18O|—'\I+N—Ntet+2 o e YO
Cdt "t B 31. a) Encuentre unasolucidn al problema con valores inicia-
les que consiste en la ecuacion diferencial del ejemplo
19 &Y _Xxy+3x—y-—3 , dy_xyt+2y-x-2 3y de las condiciones iniciales y(0) = 2, y(0) = —2,

dx xy—2x+4y—8  dx xy—3y+x-—3 yy(l)=1.



32.

33.

34.

b) Encuentre la solucion de la ecuacidn diferencial en el
ejemplo 4 cuando se utiliza In ¢, como la constante de
integracion del lado izquierdo en la solucion'y 4 In ¢,
se sustituye por In c. Después resuelva los mismos pro-
blemas con valores iniciales que en el inicio a).

d
Encuentre una solucién dexd—zl( =y? —y que pase por
los puntos indicados.

a) 0, 1) b)) 00 o (LY d (2

Encuentre una solucidn singular del problema 21 y del
problema 22.

Demuestre que una solucién implicita de
2xsen’ydx — (¥ + 10)cosydy = 0

esta dada por In(x? 4+ 10) + csc y = c. Determine las so-
luciones constantes si se perdieron cuando se resolvio la
ecuacion diferencial.

Con frecuencia, un cambio radical en la forma de la solucion
de una ecuacion diferencial corresponde a un cambio muy
pequefio en la condicidn inicial o en la ecuacion misma. En
los problemas 35 a 38 determine una solucion explicita del
problema con valores iniciales dado. Utilice un programa de
graficacion para dibujar la grafica de cada solucion. Compare
cada curva solucion en una vecindad de (0, 1).

dy

3B, ==(y—17? =
dx (y—D5 yO =1
dy
6. —=(y—1)7? =1
dx (y— D% y@0 =101
37. dy =(y—1*+001, y0) =1
dx ’
38. dy =y —12=001, yO0) =1
dx ’
39. Toda ecuacion auténoma de primer orden dy/dx = f(y) es

40.

separable. Encuentre las soluciones explicitas y,(x), Y,(X),
Y,(X) ¥ ¥,(x) de la ecuacion diferencial dy/dx =y - y?, que
satisfagan, respectivamente las condiciones iniciales y,(0) =
2,y,00)=2,y,00) = — 1 yy,(0) = —2. Utilice un programa
de graficacion para cada solucion. Compare estas graficas
con las bosquejadas en el problema 19 de los ejercicios 2.1.
Dé el intervalo de definicion exacto para cada solucion.

a) La ecuacion diferencial autdnoma de primer orden
dy/dx =1/(y —3) no tiene puntos criticos. No obs-
tante, coloque 3 en la recta de fase y obtenga un es-
quema de fase de la ecuacion. Calcule d?y/dx? para
determinar dénde las curvas solucion son concavas
hacia arriba y dénde son concavas hacia abajo (vea
los problemas 35 y 36 de los ejercicios 2.1). Utilice
el esquema de fase y la concavidad para que, a mano,
dibuje algunas curvas solucion tipicas.

b) Encuentre las soluciones explicitas y,(x), y,(X), Y,(X)
y y,(x) de la ecuacion diferencial del inciso a) que
satisfagan, respectivamente las condiciones iniciales

41.

42,
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y,(0) = 4,y,00) = 2,y,(1) =2 yy,(—1) = 4. Trace
la grafica de cada solucion y compare con sus dibu-
jos del inciso a). Indique el intervalo de definicién
exacto de cada solucion.

a) Determine una solucion explicita del problema con
valores iniciales
dy 2x+1
dx 2y y(=2) L
b) Utilice un programa de graficaciéon para dibujar la
grafica de la solucién del inciso a). Use la grafica para
estimar el intervalo | de definicion de la solucién.

c) Determine el intervalo | de definiciéon exacto me-
diante métodos analiticos.

Repita los incisos a) al ¢) del problema 41 para el PVI que
consiste en la ecuacion diferencial del problema 7 y de la
condicion inicial y(0) = 0.

Problemas para analizar

43.

44,

45,

46.

47.

48.

a) Explique por qué el intervalo de definicion de la solu-
cion explicitay = ¢,(x) del problema con valores ini-
ciales en el ejemplo 2 es el intervalo abierto (=5, 5).

b) ¢Alguna solucidn de la ecuacién diferencial puede
cruzar el eje x? ¢Usted cree que x> + y2 = 1 es una
solucién implicita del problema con valores iniciales

dy/dx = —x/y, y(1) = 0?

a) Sia > 0 analice las diferencias, si existen, entre las
soluciones de los problemas con valores iniciales
que consisten en la ecuacion diferencial dy/dx = x/y
y de cada una de las condiciones iniciales y(a) = a,
y@ = —-ay(-a)=ayy(-a)= —a

b) ¢Tiene unasolucion el problema con valores iniciales
dy/dx = x/y, y(0) = 0?

c) Resuelva dy/dx = x/y, y(1) = 2 e indique el inter-
valo de definicién exacto de esta solucion.

En los problemas 39 y 40 vimos que toda ecuacion di-

ferencial auténomade primer orden dy/dx = f(y) es se-

parable. ;Ayudaeste hechoenlasolucidn del problema

con valores iniciales % = V1 +y?sen?y, y(0) =3?
X

Analice. A mano, dibuje una posible curva solucién del

problema.

Sin usar tecnologia. ;Cémo podria resolver

dy
+ x| — = +y?
(Vx+x = Vo +y
Lleve a cabo sus ideas.

Determine una funcion cuyo cuadrado més el cuadrado
de su derivada es igual a 1.

a) La ecuacion diferencial del problema 27 es equiva-
lente a la forma normal

dy _ [1-y?

dx 1 — x?
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en la region cuadrada del plano xy definida por |x| <
1, ly| < 1. Pero la cantidad dentro del radical es no ne-
gativa también en las regiones definidas por [x| > 1,
ly| > 1. Dibuje todas las regiones del plano xy para las
que esta ecuacién diferencial tiene soluciones reales.

b) Resuelva la ED del inciso a) en las regiones definidas
por [x| > 1, |y| > 1. Después determine una solucion
implicita y una explicita de la ecuacién diferencial su-
jetaay(2) = 2.

Modelo matematico

49,

Puente suspendido En la ecuacion (16) de la seccion
1.3 vimos que un modelo matematico para la forma de un
cable flexible colgado de dos postes es

dy _W
dx T,

donde W denota la porcion de la carga vertical total entre
los puntos P, y P, que se muestran en la figura 1.3.7. La
ED, ecuacidn (10) es separable bajo las siguientes condi-
ciones que describen un puente suspendido.

Supongamos que los ejes x y y estdn como se mues-
tra en la figura 2.2.5, es decir, el eje x va a lo largo de la
superficie de la carretera y el eje y pasa por (0, a), que
es el punto méas bajo de un cable en la regién que abarca
el puente, que coincide con el intervalo [-L/2, L/2]. Enel
caso de un puente suspendido, la suposicion usual es que la
carga vertical en (10) es s6lo una distribucion uniforme de
la superficie de la carretera a lo largo del eje horizontal. En
otras palabras, se supone que el peso de todos los cables es
despreciable en comparacion con el peso de la superficie de
la carreteray que el peso por unidad de longitud de la super-
ficie de la carretera (digamos, libras por pie horizontal) es
una constante p. Utilice esta informacion para establecer y
resolver un adecuado problema con valores iniciales a par-
tir del cual se determine la forma (una curva con ecuacion
y = ¢(x)) de cada uno de los dos cables en un puente sus-
pendido. Exprese su solucion del PVI en términos del pan-
deo hy de la longitud L. VVéase la figura 2.2.5.

(10)

cable

L/2 L/2 X
f——————L longitud
superficie de la carretera (carga)

FIGURA 2.2.5 Forma de un cable del problema 49.

Tarea para el laboratorio de computacion

50. a) Utiliceun SACYy el concepto de curvas de nivel para

dibujar las gréaficas representativas de los miembros

51.

52.

de la familia de soluciones de la ecuacion diferencial
dy ~ 8x+5
dx  3y2+1
de las curvas de nivel asi como con diferentes regiones
rectangulares definidaspora=x=b,c =y =d.

b) En diferentes ejes coordenados dibuje las gréficas
de las soluciones particulares correspondientes a las
condiciones iniciales: y(0) = —1; y(0) = 2; y(—1) =
4;y(—1) = -3

. Experimente con diferentes nimeros

a) Determine una solucion implicita del PVI
2y +2)dy — (4@ + 6x)dx = 0, y(0) = —3.

b) Utilice el inciso a) para encontrar una solucion expli-
citay = ¢(x) del PVI.

c) Considere su respuesta del inciso b) como una sola
funcién. Use un programa de graficacién o un SAC
para trazar la gréfica de esta funcion y después utilice
la gréafica para estimar su dominio.

d) Con la ayuda de un programa para determinar raices
de un SAC, determine la longitud aproximada del in-
tervalo de definicion mas grande posible de la solu-
cion y = ¢(x) del inciso b). Utilice un programa de
graficacion o un SAC para trazar la grafica de la curva
solucion para el PVI en este intervalo.

a) Utilice un SAC y el concepto de curvas de nivel para
dibujar las gréaficas representativas de los miembros
de la familia de soluciones de la ecuacion diferencial
dy x(1-x
dx  y(-2+y)
ros de curvas de nivel asi como en diferentes regiones
rectangulares del plano xy hasta que su resultado se
parezca a la figura 2.2.6.

b) En diferentes ejes coordenados, dibuje la gréfica de
la solucién implicita correspondiente a la condicion
inicial y(0) = 2. Utilice un lapiz de color para indicar
el segmento de la grafica que corresponde a la curva
solucién de una solucion ¢ que satisface la condicion
inicial. Con ayuda de un programa para determinar rai-
ces de un SAC, determine el intervalo | de definicion
aproximado mas largo de la solucién ¢. [Sugerencia:
Primero encuentre los puntos en la curva del inciso a)
donde la recta tangente es vertical.]

c) Repita el inciso b) para la condicién inicial y(0) = —2.

Experimente con diferentes nime-

4 ™

5
8 —\

FIGURA 2.2.6 Curvas de nivel del problema 52.
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2.3

ECUACIONES LINEALES

REPASO DE MATERIAL
o Repase la definicién de las ED en las ecuaciones (6 ) y (7) de la seccién 1.1

INTRODUCCION  Continuamos con nuestra busqueda de las soluciones de las ED de primer orden
examinando ecuaciones lineales. Las ecuaciones diferenciales lineales son una familia especialmente
“amigable” de ecuaciones diferenciales en las que, dada una ecuacion lineal, ya sea de primer orden
o de un miembro de orden superior, siempre hay una buena posibilidad de que podamos encontrar
alguna clase de solucion de la ecuacién que podamos examinar.

UNA DEFINICION  En la ecuacién (7) de la seccion 1.1, se presenta la forma de
una ED lineal de primer orden. Aqui, por conveniencia, se reproduce esta forma en la
ecuacion (6) de la seccion 1.1, para el caso cuandon = 1.

DEFINICION 2.3.1 Ecuacion lineal

Una ecuacion diferencial de primer orden de la forma

d
2109 . + 3009y = 909 ®

se dice que es una ecuacion lineal en la variable dependiente y.

Se dice que la ecuacion lineal (1) es homogénea cuando g(x) = 0; si no es no
homogénea.

FORMA ESTANDAR Al dividir ambos lados de la ecuacion (1) entre el primer coefi-
ciente, a,(x), se obtiene una forma mas util, la forma estandar de una ecuacion lineal:

dy

3 H POy =109, @)
Buscamos una solucién de la ecuacion (2) en un intervalo 1, en el cual las dos funcio-
nes P y f sean continuas.

En el anlisis que se presenta a continuacion ilustraremos una propiedad y un proce-
dimiento y terminaremos con una férmula que representa la forma de cada solucion de la
ecuacion (2). Pero mas importantes que la formula son la propiedad y el procedimiento,
porque ambos conceptos también se aplican a ecuaciones lineales de orden superior.

LA PROPIEDAD La ecuacion diferencial (2) tiene la propiedad de que su solucion
es la suma de las dos soluciones,y =y_ + Yy donde y, es una solucion de la ecuacion
homogénea asociada

dy

o H PRy =0 ©

Yy, esuna solucién particular de ecuacién no homogénea (2). Para ver esto, observe que

d d
&_ [y. + yp] + PXLY: + yp] = [% + P(X)yc] + [F))/(E + P(X)yp] = f(x).

Y Y
0 f(x)
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Ahora la ecuacion (3) es también separable. Por lo que podemos determinar y_al es-
cribir la ecuacion (3) en la forma

d

73’ + PO dx = 0

e integramos. Despejando y, se obtiene y_= ce /"™, Por conveniencia escribimos
y, = cy,(x), donde y, = e /P¥%_A continuacion se utiliza el hecho de que dy, /dx +
P(x)y, = O, para determinar Yy

EL PROCEDIMIENTO Ahora podemos definir una solucion particular de la ecua-
cién (2), siguiendo un procedimiento Ilamado variacion de parametros. Aqui, la idea
béasica es encontrar una funcién, u tal que y, = ux)y,(x) = u(x)e’"% sea una solucion
de la ecuacion (2). En otras palabras, nuestra suposicion para y, €s lamisma quey, =
cy,(x) excepto que ¢ se ha sustituido por el “parametro variable” u. Sustituyendo y, =
uy, en la ecuacion (2) se obtiene

Regla del producto cero
l
dy, , du _ B o]+ 2 =
Uix +, ix + P(x)uy, = f(x) 0 Ul G + PX)y;| + Y, X = f(x)
r tant L f(x)
por tanto yldx .

Entonces separando las variables e integrando se obtiene

du = f(—x)dx y u= f T® dx
Yi(¥) Yi(¥)
Puesto que y,(x) = e~/P0% vemos que 1/y,(x) = e/"®%, Por tanto

yp —uy, = (f f(x) dx)efp(x)dx — e—fP(x)dx J efP(x)dxf(X) dX,

Yi(¥)
y y=ce JPOdx 4 @ [PO)dx f /PO (x) dx. “)
H_/ N
Ye Yp

Por tanto, si la ecuacion (2) tiene una solucidn, debe ser de la forma de la ecuacion (4).
Reciprocamente, es un ejercicio de derivacion directa comprobar que la ecuacion (4)
es una familia uniparamétrica de soluciones de la ecuacion (2).

No memorice la férmula que se presenta en la ecuacion (4). Sin embargo recuerde
el término especial

e\P(x;dx (5)

ya que se utiliza para resolver la ecuacion (2) de una manera equivalente pero mas
facil. Si la ecuacion (4) se multiplica por (5),

e/POdy = ¢ + f /PO (x) dx, (6)

y después se deriva la ecuacion (6),
dix [ejp(x)dxy] = elPoodxf (), @
se obtiene e P<X>dx%( + P(x)e/Pwdxy = @Peodxf(x) (8)

Dividiendo el Gltimo resultado entre e/°®%se obtiene la ecuacion (2).
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METODO DE SOLUCION EI método que se recomienda para resolver la ecuacién
(2) consiste en realidad en trabajar con las ecuaciones (6) a (8) en orden inverso. En otras
palabras, si la ecuacion (2) se multiplica por la ecuacion (5), obtenemos la ecuacién (8). Se
reconoce que el lado izquierdo de la ecuacion (8) es la derivada del producto de e/P®% por
y. Esto nos conduce a la ecuacion (7). Entonces, integrando ambos lados de la ecuacion
(7) se obtiene la solucién (6). Como podemos resolver la ecuacion (2) por integracion,
después de multiplicar por e/?® esta funcion se llama factor integrante de la ecuacién
diferencial. Por conveniencia resumiremos estos resultados. Nuevamente le indicamos
que no debe memorizar la formula (4) sino seguir cada vez el siguiente procedimiento.

SOLUCION DE UNA ECUACION LINEAL DE PRIMER ORDEN

i) Ponga la ecuacidn lineal de la forma (1) en la forma estandar (2).

ii) Identifique de la identidad de la forma estandar P(x) y después
determine el factor integrante e/P®dx,

iii) Multiplique la forma estandar de la ecuacion por el factor integrante. El
lado izquierdo de la ecuacién resultante es automéaticamente la derivada

del factor integrante y y:
d , -
= [efP(x)dxy] — e’P(X’dxf(X).

iv) Integre ambos lados de esta Gltima ecuacion.

I EJEMPLO T Solucién de una ED lineal homogénea

dy
R lva -2 — = 0.
esuelva » 3y =0

SOLUCION Esta ecuacion lineal se puede resolver por separacion de variables. En
otro caso, puesto que la ecuacion ya esta en la forma estandar (2), vemos que P(x) =
—3y por tanto el factor integrante es /(-39 = e=3_ Multiplicando la ecuacion por este
factor y reconociendo que

dy d
g —=—3e Yy =0 es lamismaque — [e ¥y] = 0.
dx y que [e™y]
Integrando ambos lados de la Ultima ecuacion se obtiene e~*y = ¢. Despejando y se
obtiene la solucion explicitay = ce®, —oo < x < oo, ]

I EJEMPLO 2 Solucién de una ED lineal no homogénea

dy
R | - _ = 6.
esuelva dx 3y=6

SOLUCION La ecuacion homogénea asociada a esta ED se resolvié en el ejemplo 1.
Nuevamente la ecuacion esta ya en la forma estandar (2) y el factor integrante aln es
e/=3d = @=3_ Ahora al multiplicar la ecuacién dada por este factor se obtiene

‘ d
E*Sxd_i — 3e*3xy = 66*3X, que es la misma que & [efsxy] = 6o~
Integrando ambos lados de la Gltima ecuacion se obtiene ey = —2e™3* + ¢ 0

y = —2+ ce¥, —oo <X <o, [ |
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y
4 / / A\
1
-1
) — y=-2
-3
. J
—1 1 2 3 4

FIGURA 2.3.1 Algunas soluciones
y' —3y=6.

La solucion final del ejemplo 2 es la suma de dos soluciones:y =y_+ Yy dondey,
= ce* es lasolucion de la ecuacion homogénea del ejemplo 1y y = —2es una solu-
cion particular de la ecuacion no homogéneay’ — 3y = 6. No necesita preocuparse de
si una ecuacion lineal de primer orden es homogénea o no homogénea; cuando sigue
el procedimiento de solucion que se acaba de describir, la solucidn de una ecuacion
no homogénea necesariamente produce y =y, + Y, Sin embargo, la diferencia entre
resolver una ED homogeénea y una no homogénea serd mas importante en el capitulo 4,
donde se resolveran ecuaciones lineales de orden superior.

Cuando a,, a, y g en la ecuacion (1) son constantes, la ecuacion diferencial es
auténoma. En el ejemplo 2 podemos comprobar de la forma normal dy/dx = 3(y + 2)
que —2 es un punto critico y que es inestable (un repulsor). Asi, una curva solucion
con un punto inicial ya sea arriba o debajo de la gréfica de la solucion de equilibrio
y = —2 se aleja de esta recta horizontal conforme x aumenta. La figura 2.3.1, obtenida
con la ayuda de una aplicacion para trazo de graficas, muestra la graficadey = —2
junto con otras curvas solucion.

CONSTANTE DE INTEGRACION Observe que en el andlisis general y en los
ejemplos 1y 2 no se ha considerado una constante de integracion en la evaluacién de
la integral indefinida en el exponente e/P®%, Sj consideramos las leyes de los expo-
nentes y el hecho de que el factor integrante multiplica ambos lados de la ecuacion
diferencial, usted podria explicar por qué es innecesario escribir [P(x)dx + c. Vea el
problema 44 de los ejercicios 2.3.

SOLUCION GENERAL Suponga que las funciones P y f en la ecuacion (2) son
continuas en un intervalo I. En los pasos que conducen a la ecuacion (4) mostramos
que si la ecuacion (2) tiene una solucion en I, entonces debe estar en la forma dada en
la ecuacion (4). Reciprocamente, es un ejercicio directo de derivacion comprobar que
cualquier funcion de la forma dada en (4) es una solucidn de la ecuacion diferencial (2)
en |. En otras palabras (4) es una familia uniparamétrica de soluciones de la ecuacion
(2) y toda solucién de la ecuacion (2) definida en | es un miembro de esta familia. Por
tanto llamamos a la ecuacion (4) la solucién general de la ecuacion diferencial en
el intervalo I. (Véase los Comentarios al final de la seccion 1.1.) Ahora escribiendo la
ecuacion (2) en la forma normal y’ = F(x, y), podemos identificar F(x, y) = —P(X)y
+ f(x) y 0F/dy = —P(x). De la continuidad de P y f en el intervalo | vemos que F y
dF/ady son también continuas en I. Con el teorema 1.2.1 como nuestra justificacion,
concluimos que existe una y sélo una solucion del problema con valores iniciales
dy

g T POy =00, y06) = Yo ©)

definida en algun intervalo 1, que contiene a x. Pero cuando x esta en |, encontrar una
solucidn de (9) es exactamente lo mismo que encontrar un valor adecuado de c en la
ecuacion (4), es decir, a toda x, en | le corresponde un distinto c. En otras palabras,
el intervalo de existencia y unicidad 1, del teorema 1.2.1 para el problema con valores
iniciales (9) es el intervalo completo I.

I EJEMPLO 3 Solucién general

dy
Resuelva x—= — 4y = x%*,
esuelva X — 4y

SOLUCION Dividiendo entre x, obtenemos la forma estandar

dy

4
I ;y = xoeX. (10)
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En esta forma identificamos a P(x) = —4/xy f(x)= x%¢* y ademas vemos que P y f son
continuas en (0, «). Por tanto el factor integrante es

podemos utilizar In x en lugar de In x| ya que x > 0

e—4dxx = g—4Inx — glx™* = y—4

Aqui hemos utilizado la identidad basica b= = N, N > 0. Ahora multiplicamos la
ecuacion (10) por x~*y reescribimos

dy d
X4 —= —4x79y = x&* como — [x ] = xeX
dx y dx y
De la integracion por partes se tiene que la solucion general definida en el intervalo (0,
®) s Xty = xe* — eX+ coy = x%e* — x‘e* + oxt ]

Excepto en el caso en el que el coeficiente principal es 1, la reformulacién de la
ecuacion (1) en la forma estandar (2) requiere que se divida entre a,(x). Los valores
de x para los que a,(x) = 0 se llaman puntos singulares de la ecuacion. Los puntos
singulares son potencialmente problematicos. En concreto, en la ecuacion (2), si P(x)
(que se forma al dividir a (x) entre a,(x)) es discontinua en un punto, la discontinuidad
puede conducir a soluciones de la ecuacion diferencial.

I EJEMPLO 4 Solucién general

d
Determine la solucion general de (x> — 9) d—i/( + xy = 0.

SOLUCION Escribimos la ecuacién diferencial en la forma estandar

dy
-+
dx x*—-9

y=0 (11)

e identificando P(x) = x/(x? — 9). Aunque P es continua en (—, —3), (=3, 3) y (3,
o), resolveremos la ecuacion en el primer y tercer intervalos. En estos intervalos el
factor integrante es

efxdx/(x2—9) — elzfzxdx/(xz—% — e§|n|x1—9\ — 2 — 9.
Después multiplicando la forma estandar (11) por este factor, obtenemos

d
&[Vx2—9y} =0.

Integrando ambos lados de la Ultima ecuacion se obtiene Vv X —9y==¢ por
tanto para cualquiera x > 3 0 X < —3 la solucion general de la ecuacion es
c

Y -

Observe en el ejemplo 4 que x = 3y x = —3 son puntos singulares de la ecuacion

y que toda funcién en la solucion general y = ¢/Vx2 = 9 esdiscontinua en estos pun-

tos. Por otra parte, x = 0 es un punto singular de la ecuacién diferencial en el ejemplo

3, pero en la solucién general y = x%* — x*e* + cx* es notable que cada funcion de esta

familia uniparamétrica es continua en x = 0y esta definida en el intervalo (—o, ») y no

solo en (0, ), como se indica en la solucion. Sin embargo, la familiay = x®e*— x*e* + cx*

definida en (—o0, «) no se puede considerar la solucion general de la ED, ya que el punto
singular x = 0 aln causa un problema. VVéase el problema 39 en los ejercicios 2.3.



58 ° CAPITULO 2 ECUACIONES DIFERENCIALES DE PRIMER ORDEN

y
p
4
5 c>0 \/
/)
=2 c<0
4l ¢c=0
. J
-4 -2 2 4
FIGURA 2.3.2 Algunas soluciones
y +y=x
y
+—o
F—t—t >
FIGURA 2.3.3 {(x) discontinua.

I EJEMPLO 5 Un problema con valores iniciales

dy
— 4+ = =4,
Resuelva X TY=x y() =4

SOLUCION La ecuacion esta en forma estandar, y P(x) = 1y f(x) = x son continuas
en (—o, ). El factor integrante es e/® = e, entonces integrando

d
&[e?‘y] = xe*

se tiene que ey = xe* — e* + c¢. Despejando y de esta Ultima ecuacion se obtiene la
solucion general y = x — 1 + ce * Pero de la condicion general sabemos quey = 4
cuando x = 0. El sustituir estos valores en la solucién general implica que ¢ = 5. Por
tanto la solucién del problema es

y=x—1+5e"* —o0oIx<ox (12) m

La figura 2.3.2, que se obtuvo con la ayuda de un programa de graficacién, mues-
tra la gréfica de (12) en azul oscuro, junto con las gréficas, de las otras soluciones re-
presentativas de la familia uniparamétricay = x — 1 +ce™. En esta solucion general
identificamos y_ = ce™yy = x— 1. Es interesante observar que conforme x aumenta,
las gréaficas de todos los miembros de la familia son cercanas a la grafica de la solucién
particulary = x — 1 que se muestra con una linea s6lida de la figura 2.3.2. Esto es de-
bido a que la contribucion de y, = ce™ a los valores de una solucion es despreciable al
aumentar los valores de x. Decimos que y, = ce™ es un término transitorio, ya que y,
— 0 conforme x — . Mientras que este comportamiento no es caracteristico de todas
las soluciones generales de las ecuaciones lineales (véase el ejemplo 2), el concepto de
un transitorio es frecuentemente importante en problemas aplicados.

COEFICIENTES DISCONTINUOS En aplicaciones, los coeficientes P(x) y f(x)
en (2) pueden ser continuos por tramos. En el siguiente ejemplo f(x) es continua por
tramos en [0, e°) con una sola discontinuidad, en particular un salto (finito) discontinuo
en x = 1. Resolvemos el problema en dos partes correspondientes a los dos interva-
los en los que f esta definida. Es entonces posible juntar las partes de las dos soluciones
en x = 1 asi que y(x) es continua en [0, «).

I EJEMPLO 6 Un problema con valores iniciales

I, 0=x=1,
0, X > 1.

d
Resuelva d—i +y=1f(X), y0) =0 donde f(x)= {
SOLUCION En la figura 2.3.3 se muestra la grafica de la funcion discontinua f.

Resolvemos la ED para y(x) primero en el intervalo [0, 1] y después en el intervalo
(1, ). Para 0 = x = 1 se tiene que

dy + 1 0, el equivalente d [e*y] = ¢e*
— = , uiv , — = e~
dx y q dx y

Integrando esta Gltima ecuacion y despejando y se obtiene y = 1 + c,e™*. Puesto que
y(0) = 0, debemos tener que ¢, = —1y portantoy = 1 — e 0 = x = 1. Entonces
para x > 1 la ecuacion

Y y-o

dx y
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FIGURA 2.3.5 Algunas soluciones

dey’ — 2xy = 2.
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conduce ay = c,e. Por tanto podemos escribir

l—e* 0=x=1,
c,e x> 1.

Invocando a la definicion de continuidad en un punto, es posible determinar c, asi la
ultima funcion es continua en x = 1. El requisito de 1im . y(x) = y(1) implica que
ce'=1-e'oc,=e—1 Como se muestraen lafigura 2.3.4, la funcion

(e — e x> 1 (13)

es continua en (0, ). ]

_{l—ex, 0=x=1,

Es importante considerar la ecuacion (13) y la figura 2.3.4 como un bloque pe-
quefo; le pedimos que lea y conteste el problema 42 de los ejercicios 2.3.

FUNCIONES DEFINIDAS POR INTEGRALES Al final de la seccion 2.2 analiza-
mos el hecho de que algunas funciones continuas simples no tienen antiderivadas que
sean funciones elementales y que las integrales de esa clase de funciones se llaman no
elementales. Por ejemplo, usted puede haber visto en calculo que [ dx y fsen x? dx
no son integrales elementales. En matematicas aplicadas algunas funciones importan-
tes estan definidas en términos de las integrales no elementales. Dos de esas funciones
especiales son la funcién error y la funcion error complementario:

X

, 2 (7,
erf(x) = et dt y erfc(X) = 7 f e tdt. (14)
T Jx

2
Vo
Del conocido resultado [; et dt = /2" podemos escribir 2/V/7) [; et dt = 1.
Entonces de la forma [ ** = [~ + [ "~ se ve de la ecuacion (14) que la funcion error
complementario, erfc(x), se relaciona con erf(x) por erf(x) + erfc(x) = 1. Debido a su
importancia en probabilidad, estadistica y en ecuaciones diferenciales parciales apli-
cadas se cuenta con extensas tablas de la funcién error. Observe que erf(0) = 0 es un
valor obvio de la funcion. Los valores de erf(x) se pueden determinar con un sistema
algebraico de computacion (SAC).

I EJEMPLO 7 Lafuncion error

- d
Resuelva el problema con valores iniciales d_i —2xy =2, y0) =1.

SOLUCION Puesto que la ecuacion ya se encuentra en la forma normal, el factor
integrante es e~ dx, y asf de
d X
™ [e™Xy] = 2e™* obtenemos Yy = 2eXZJ e Udt + ceX. (15)
0
Aplicando y(0) = 1 en la Gltima expresion obtenemos ¢ = 1. Por tanto, la solucién del
problema es

X
y = Zexzf etdt+ e oy=e[l + Vmerf(x].
0
En la figura 2.3.5 se muestra en azul oscuro, la gréfica de esta solucion en el intervalo

(—©0, ) junto con otros miembros de la familia definida en la ecuacion (15), obtenida
con la ayuda de un sistema algebraico de computacion. ]

“Este resultado normalmente se presenta en el tercer semestre de calculo.
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USO DE COMPUTADORAS Algunos sistemas algebraicos de computacién como
Mathematica y Maple permiten obtener soluciones implicitas o explicitas para algunos
tipos de ecuaciones diferenciales, usando la instruccion dsolve.”

I COMENTARIOS

i) En general, una ED lineal de cualquier orden se dice que es homogénea cuando
g(x) = 0 en la ecuacion (6) de la seccion 1.1. Por ejemplo, la ED lineal de se-
gundo ordeny” — 2y’ + 6y = 0 es homogénea. Como se puede ver en este ejem-
plo y en el caso especial de la ecuacion (3) de esta seccidn, la solucién trivial
y = 0 es siempre una solucion de una ED lineal homogénea.

ii) A veces, una ecuacion diferencial de primer orden es no lineal en una variable
pero es lineal en la otra variable. Por ejemplo, la ecuacién diferencial

dy 1

dx  x+ y?

es no lineal en la variable y. Pero su reciproca

_ dx

dy dy
se reconoce como lineal en la variable x. Usted deberia comprobar que el factor
integrante es e/CY% = e~¥ e integrando por partes se obtiene la solucion ex-
plicita x = —y? — 2y — 2 + ce’ para la segunda ecuacion. Esta expresion es,
entonces, una solucién implicita de la primera ecuacion.

iii) Los matematicos han adoptado como propias algunas palabras de ingenieria
que consideran adecuadas para describir. La palabra transitorio, que ya hemos
usado, es uno de estos términos. En futuros analisis ocasionalmente se presenta-
ran las palabras entrada y salida. La funcion f en la ecuacion (2) es la funcion
de entrada o de conduccioén; una solucién y(x) de la ecuacion diferencial para
una entrada dada se llama salida o respuesta.

iv) El término funciones especiales mencionado en relacion con la funcion error
también se aplica a la funcion seno integral y a la integral seno de Fresnel
introducidas en los problemas 49 y 50 de los ejercicios 2.3. “Funciones especia-
les” es una rama de las matematicas realmente bien definidas. En la seccion 6.3
se estudian funciones mas especiales.

% 4F W o %=\

*Ciertas instrucciones se deletrean igual, pero las instrucciones en Mathematica inician con una letra
mayuscula (Dsolve) mientras que en Maple la misma instruccién comienza con una letra mintscula
(dsolve). Cuando analizamos la sintaxis de las instrucciones, nos comprometimos y escribimos, por
ejemplo dsolve.

E] ERCICIOS 2.3 Las respuestas a los problemas con niimero impar comienzan en la pagina RES-2.
En los problemas 1 a 24 determine la solucién general de la 5.y + 3x%y =x? 6.y + 2xy = x8
ecuacion diferencial dada. Indique el intervalo | més largo en o . , ,
el que esté definida la solucion general. Determine si hay al- Toxy rxy =1 8.y =2y +x+5
A o . d q

gunos términos transitorios en la solucion general. 9. x a o _ w2 senx 10. x ay +oy=3

dy dy dx dx

L2 = 2. = +2y=0
ax Y ax dY L Y
11, x—+4y=x"—X 12. (1 +Xx) Xy =X+ x
dx dx
5 4y dy

.&+y:e3x 4, 3&+12y=4 13. x%y" + x(x + 2)y = e*



14. xy" + (1 + X)y = e *sen 2x
15. ydx —4(x +y%)dy =0
16. ydx = (ye¥ — 2x) dy

17. cos X% + (senX)y =1
dx
18. cos>x sen X% + (cos’x)y =1
dx
dy B
19. (x + 1)&+ X+ 2)y = 2xe™*

20. (x+2)2%(=5—8y—4xy

dr
21. — + rsec § = cos 6

de
22.d—P+2tP=P+4t—2

dt

dy
23. X =+ (3x+ )y =e ¥
3xOIX (3x )y =¢€

dy
- D=2y =(x+ 1)
24. ¢ =D 2y =0+ D)

En los problemas 25 a 30 resuelva el problema con valores ini-
ciales. Indique el intervalo | méas largo en el que esta definida
la solucién.

25. xy' +y=¢e% yl)=2
dx
26. y— — X = 2y? H=>5
y dy x =12y, y()
di ) . .
27- L& + Rl = E, |(0) = |(),
L, R, E e i, constantes
dT
28. pr =k(T—-Ty; TO) =T,

k, T,y T, constantes
y(1) = 10

y(0) = -1

En los problemas 31 a 34 proceda como en el ejemplo 6 para
resolver el problema con valores iniciales dado. Utilice un pro-
grama de graficacion para trazar la funcién continua y(x).

31. Q + 2y = f(x), y(0) = 0, donde

29. (x + 1)%(+y=1nx,

30. y' + (tan x)y = cos?x,

dx
I, 0=x=3
feg = {o, X >3
dy
32. dx +y = f(x),y(0) = 1, donde
fo =l 0=x=1
-1, X>1
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d
33. d—i + 2xy = f(x), y(0) = 2, donde
X, 0=x<1
f(x) ={
0, XxX=1

d
34. (1 +x3) % + 2xy = f(x), y(0) = 0, donde

X, 0=x<1
f) =
—X, X=1

35. Proceda en una forma similar al ejemplo 6 para resolver el pro-
blema con valores iniciales y’ + P(X)y = 4x, y(0) = 3, donde

2
P — 5
) {_ 2/

Utilice un programa de graficacion para para trazar la gra-
fica de la funcion continua y(x).

0=x=1,
x> 1.

36. Considere el problema con valores iniciales y’ + ey =
f(x), y(0) = 1. Exprese la solucidn del PVI para x > 0
como una integral no elemental cuando f(x) = 1. ;Cual
es la solucidn cuando f(x) = 0? ¢ Y cuéndo f(x) = e?

37. Exprese la solucion del problema con valores iniciales
y'=2xy = 1,y(1) = 1, en términos de erf(x).

Problemas para analizar

38. Lea nuevamente el andlisis siguiente al ejemplo 2. Cons-
truya una ecuacion diferencial lineal de primer orden
para la que todas las soluciones no constantes tienden a la
asintota horizontal y = 4 conforme x — o,

39. Lea nuevamente el ejemplo 3 y después analice, usando
el teorema 1.2.1, la existencia y unicidad de una solucion
del problema con valores iniciales que consiste en xy’
— 4y = x8%*y de la condicion inicial dada.

a) y0)=0 b)y@0)=y,y,>0
C) Y(X)) =Yy X%X,>0,y,>0

40. Lea nuevamente el ejemplo 4 y después determine la solu-
cion general de la ecuacion diferencial en el intervalo (—3, 3).

41. Lea nuevamente el andlisis siguiente al ejemplo 5.
Construya una ecuacion diferencial lineal de primer orden
para la que todas las soluciones son asintdticas a la recta
y = 3x — 5 conforme x — oo,

42. Lea nuevamente el ejemplo 6 y después analice por qué
es técnicamente incorrecto decir que la funcion en (13) es
una “solucion” del PVI en el intervalo [0, «).

43. a) Construya una ecuacion diferencial lineal de primer

orden de la formaxy’ + a (x)y = g(x) para la cual y,

=c¢/xyy, = x%. Dé unintervalo en el que y = x* +

c¢/x® es la solucién general de la ED.

b) Dé una condicion inicial y(x) =y, para la ED que
se determind en el inciso a) de modo que la solucion
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44,

45,
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del PVIseay = x*— 1/x% Repitasi lasoluciénesy =
x%+ 2/x%. Dé un intervalo de definicion | de cada una
de estas soluciones. Trace la gréfica de las curvas so-
lucion. ¢Hay un problema con valores iniciales cuya
solucion esté definida en (—oo, «)?
c) ¢Es Unico cada PVI encontrado en el inciso b)? Es decir,
puede haber més de un solo PVI para el cual, digamos,
y = x¥— 1/x%, x en algan intervalo 1, es la solucién?

Al determinar el factor integrante (5), no usamos una
constante de integracion en la evaluacion de [P(x) dx.
Explique por qué usar [P(x) dx + ¢ no tiene efecto en la
solucién de (2).

Suponga que P(x) es continua en algun intervalo | y aes un
ndmero en 1. ;Qué se puede decir acerca de la solucion del
problema con valores inicialesy” + P(x)y = 0, y(a) = 0?

Modelos matematicos

46.

47.

Series de decaimiento radiactivo El siguiente siste-
ma de ecuaciones diferenciales se encuentra en el estudio
del decaimiento de un tipo especial de series de elemen-
tos radiactivos:

dx_ —AX

dt :

dy

a - )\IX - Azy,

donde A, y A, son constantes. Analice como resolver este sis-
tema sujeto a x(0) = x;, y(0) = y,. Lleve a cabo sus ideas.

Marcapasos de corazén Un marcapasos de corazon
consiste en un interruptor, una bateria de voltaje cons-
tante E,, un capacitor con capacitancia constante C y
un corazén como un resistor con resistencia constante
R. Cuando se cierra el interruptor, el capacitor se carga;
cuando el interruptor se abre, el capacitor se descarga en-
viando estimulos eléctricos al corazén. Todo el tiempo

el corazdn se esta estimulando, el voltaje E a través del
corazon satisface la ecuacion diferencial lineal
dE 1

dt  RC

Resuelva la ED sujeta a E(4) = E,.

Tarea para el laboratorio de computacién

48.

49,

50.

a) Exprese la solucion del problema con valores inicia-
lesy’ — 2xy = —1, y(0) = V7 /2, en términos de
erfc(x).

b) Utilice las tablas de un SAC para determinar el valor
de y(2). Use un SAC para trazar la gréfica de la curva
solucidn para el PVI en (—oo, ).

a) La funcion seno integral esta definida por
Si(x) = [3 (sent/t) dt, donde el integrando esta defi-
nido igual a 1 ent = 0. Exprese la solucion y(x) del
problema con valores iniciales x®’ + 2x?% = 10 sen
X, ¥(1) = 0 en términos de Si(x).

b) Use un SAC para trazar la gréfica de la curva solu-
cion para el PVI para x > 0.

c) Use un SAC para encontrar el valor del maximo ab-
soluto de la solucidn y(x) para x > 0.

a) La integral seno de Fresnel estd definida por
S(x) = [,sen(rt?/2) dt. Exprese la solucion y(x) del
problema con valores iniciales y' — (sen x?)y = 0,
y(0) = 5, en términos de S(x).

b) Use un SAC para trazar la gréfica de la curva solu-
cion para el PVI en (—o, ).

c) Sesabe que S(x) — % conforme x =y S(x) = — 3
conforme x — —oo . ; A donde tiende la solucién y(x)
cuando x — ? ;Y cuando x — —o0?

d) Use un SAC para encontrar los valores del maximo
absoluto y del minimo absoluto de la solucion y(x).

2.4 ECUACIONES EXACTAS

REPASO DE MATERIAL
e Calculo de varias variables.

o Derivacion parcial e integracion parcial.
o Diferencial de una funcidon de dos variables.

INTRODUCCION Aunque la sencilla ecuacion diferencial de primer orden
ydx +xdy =10
es separable, podemos resolver la ecuacion en una forma alterna al reconocer que la expresion del
lado izquierdo de la ecuacion es la diferencial de la funcién f(x, y) = xy, es decir
d(xy) = y dx + x dy.
En esta seccidn analizamos ecuaciones de primer orden en la forma diferencial M(x, y) dx + N(x, y) dy

= 0. Aplicando una prueba simple a M y a N, podemos determinar si M(x, y) dx + N(x, y) dy es una
diferencial de una funcidn f(x, y). Si la respuesta es si, construimos f integrando parcialmente.
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DIFERENCIAL DE UNA FUNCION DE DOS VARIABLES Siz = f(x, Y) es una
funcion de dos variables con primeras derivadas parciales continuas en una region R
del plano xy, entonces su diferencial es

of of
= —dx + —dy. 1
dz ™ dx ay dy )]

En el caso especial cuando f(x, y) = ¢, donde ¢ es una constante, entonces la ecuacion
(1) implica que

—dx+ —dy =0. 2
y y

En otras palabras, dada una familia de curvas f(x, y) = ¢, podemos generar una ecua-
cién diferencial de primer orden si calculamos la diferencial de ambos lados de la
igualdad. Por ejemplo, si x> — 5xy + y® = ¢, entonces la ecuacién (2) da la ED de
primer orden

(2x — By) dx + (—5x + 3y?) dy = 0. ©)]

UNA DEFINICION Por supuesto, que no todas las ED de primer orden escritas en
la forma M(x, y) dx + N(x, y) dy = 0 corresponden a una diferencial de f(x, y) = c. Por
tanto para nuestros objetivos es muy importante regresar al problema anterior; en par-
ticular, si nos dan una ED de primer orden tal como la ecuacion (3), ¢hay alguna forma
de reconocer que la expresion diferencial (2x — 5y) dx + (—5x + 3y?) dy es la diferen-
cial d(x? — 5xy + y®)? Si la hay, entonces una solucion implicita de la ecuacion (3) es
x? — bxy + y® = c. Podemos contestar esta pregunta después de la siguiente definicion.

| DEFINICION 2.4.1 Ecuacion exacta

Una expresion diferencial M(x, y) dx + N(x, y) dy es una diferencial exacta en
una region R del plano xy si ésta corresponde a la diferencial de alguna funcién
f(x, y) definida en R. Una ecuacion diferencial de primer orden de la forma

M(Xx, y) dx + N(x,y)dy = 0

se dice que es una ecuacion exacta si la expresion del lado izquierdo es una
diferencial exacta.

Por ejemplo x2y® dx + x%®2 dy = 0 es una ecuacion exacta, ya que su lado iz-
quierdo es una diferencial exacta:

d(33y3) = xy® dx + x3y? dy.

Observe que si hacemos las identificaciones M(x, y) = x2y®y N(x, y) = x%?, entonces
oM /ay = 3x?y? = dN/ox. El teorema 2.4.1, que se presenta a continuacion, muestra
que la igualdad de las derivadas parciales dM/dy y aN/dx no es una coincidencia.

| TEOREMA 2.4.1 Criterio para una diferencial exacta

Sean M(x, ¥) y N(x, y) continuas y que tienen primeras derivadas parciales con-
tinuas en una region rectangular R definida por a < x < b, ¢ <y < d. Entonces
una condicion necesaria y suficiente para que M(x, y) dx + N(x, y) dy sea una
diferencial exacta es

oM aN

ay  ox (4)
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PRUEBA DE LA NECESIDAD Por simplicidad suponemos que M(x, y) y N(x, y) tie-
nen primeras derivadas parciales continuas para todo (x, y). Ahora si la expresion
M(x, y) dx + N(x, y) dy es exacta, existe alguna funcion f tal que para toda x en R,

f i
M(x y) dx + N(x y) dy = j—xdx + j—ydy.

of
Por tanto M =— N(X y) = —,
() =20 Ny =
@_i(a_f> _ ot _i(a_f) _ N
y ay 9y \ox gy aX  IX \ay X’
La igualdad de las parciales mixtas es una consecuencia de la continuidad de las pri-
meras derivadas parciales de M(x, y) y N(x, y). ]

La parte de suficiencia del teorema 2.4.1 consiste en mostrar que existe una fun-
cién f para la que 9f/ax = M(x, y) y of/dy = N(x, y) siempre que la ecuacién (4) sea
valida. La construccidn de la funcidn f en realidad muestra un procedimiento basico
para resolver ecuaciones exactas.

METODO DE SOLUCION  Dada una ecuacion en la forma diferencial M(x, y) dx +
N(x, y) dy = 0, determine si la igualdad de la ecuacidn (4) es valida. Si es asi, entonces
existe una funcién f para la que

of
X M(x, y).

Podemos determinar f integrando M(X, y) respecto a X mientras y se conserva cons-
tante:

fixy) = fl\/l(x, y) dx + g(y), ©)
donde la funcién arbitraria g(y) es la “constante” de integracion. Ahora derivando
(5) respecto a y y suponiendo que of/dy = N(x, y):
of

9 vy =
a/:a/fM(x,y)dX+9(Y) = N y).

Se obtiene g'(y) = Nx, y) — ainy(x, y) dx. (6)

Por Gltimo, se integra la ecuacion (6) respecto a y y se sustituye el resultado en la
ecuacion (5). La solucién implicita de la ecuacion es f(x, y) = c.

Haremos algunas observaciones en orden. Primero, es importante darse cuenta de
que la expresion N(x, y) — (3/3y) | M(x, y) dx en (6) es independiente de X, ya que

9 9 aN 9 (9 N oM

Segunda, pudimos iniciar bien el procedimiento anterior con la suposicién de que of/dy
= N(X, y). Después, integrando N respecto a y y derivando este resultado, encontraria-
mos las ecuaciones que, respectivamente, son analogas a las ecuaciones (5) y (6),

f(xy) = fN(x. yydy +h(x) 'y  h'(x)=Mxy) - %(J N(x, y) dy.

En ninguno de ambos casos se deben memorizar estas formulas.
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I EJEMPLO 1 Resolviendo una ED exacta

Resuelva 2xy dx + (x2 — 1) dy = 0.

SOLUCION  Con M(x, y) = 2xy y N(x, y) = x? — 1 tenemos que

oM _
ay

oN
2X = —.
JX

Asi la ecuacion es exacta y por el teorema 2.4.1 existe una funcion f(x, y) tal que

of of
- = X2 -1
ay

Al integrar la primera de estas ecuaciones, se obtiene:

f(x,y) = X%y + g (y).

Tomando la derivada parcial de la Gltima expresion con respecto a y y haciendo el
resultado igual a N(x, y) se obtiene

of
—=xX+gy)=x¥-1 <
ay X+ g'(y) = x N(x, y)

Se tiene que g'(y) = —1y g(y) = —vy. Por tanto f(x, y) = x2y — vy, asi la solucién de
la ecuacion en la forma implicita es x?y — y = c. La forma explicita de la solucion se
ve facilmente como y = c¢/(1 — x?) y esta definida en cualquier intervalo que no con-
tenganiax=1niax = —1. [ |

NOTA La solucién de la ED en el ejemplo 1 no es f(x, y) = x2y —y. Sino que es
f(x, y) = c; si se usa una constante en la integracion de g’(y), podemos escribir la
solucién como f(x, y) = 0. Observe que la ecuacién también se podria haber resuelto
por separacion de variables.

I EJEMPLO 2 Solucién de una ED exacta

Resuelva (e% — y cos xy) dx + (2xe® — x cos xy + 2y) dy = 0.
SOLUCION  La ecuacion es exacta ya que

oM oN
— = 2e¥ + Xy sen Xy — cos Xy = —.
ay ax

Por tanto existe una funcion f(x, y) para la cual
of of
M =— N = —
xy)=-" ¥y Nxy ay

Ahora, para variar, comenzaremos con la suposicion de que of /dy = N(x, y); es decir

of
— = 2xe¥ — + 2
2y X XCOS Xy + 2y

f(x,y)=2xf92ydy—xfcosxydy+nydy.
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A J/

FIGURA 2.4.1 Algunas gréaficas
de los miembros de la familia
y?(1 — x?) — cos?X = c.

Recuerde que la razdon por la que x sale del simbolo | es que en la integracion respecto
a'y se considera que x es una constante ordinaria. Entonces se tiene que
f(x,y) = xe¥ — senxy + y2+ h(x)
of

PV ey —ycosxy + h'(X) =e¥ —ycosxy, < Mxy)

y asi h’(x) = 0 o h(x) = c. Por tanto una familia de soluciones es
xe? —sen xy +y>+c = 0. [ |

I EJEMPLO 3 Problema con valores iniciales

dy xy? — cos xsenx
R va —=—————5— = 2.
esuelva dx YA - ) y(0)
SOLUCION Al escribir la ecuacion diferencial en la forma
(cosxsenx — xy?) dx + y(1 — x3) dy =0,

reconocemos que la ecuacion es exacta porque

oM dN
— = —2Xy = —.
ay ax
of
- = 1 2
Ahora oy y(l — x)

y2
fy) =5 @0 = x?) + h(x)

of
P —xy? + h'(x) = cos xsen x — xy?

La Gltima ecuacion implica que h'(x) = cos x sen x. Integrando se obtiene

hx) = —J(cos X)(—sen X dx) = —%coszx.

2
1
Por tanto y5(1 - X3 - ECOSZX =c 0 y2(1 — X*) — cos’X = ¢, @)

donde se sustituye 2c, por c. La condicion inicial y = 2 cuando x = 0 exige que
4(1) — cos? (0) = c, y por tanto ¢ = 3. Una solucién implicita del problema es enton-
ces y?(1 — x?) — cos?x = 3.

En la figura 2.4.1, la curva solucion del PVI es la curva dibujada en azul oscuro, y
forma parte de una interesante familia de curvas. Las gréaficas de los miembros de la fa-
milia uniparamétrica de soluciones dadas en la ecuacion (7) se puede obtener de diferen-
tes maneras, dos de las cuales son utilizando un paquete de computacion para trazar gra-
ficas de curvas de nivel (como se analizo en la seccion 2.2) y usando un programa de
graficacion para dibujar cuidadosamente la gréfica de las funciones explicitas obtenidas
para diferentes valores de ¢ despejando ay de y? = (¢ + cos?X) /(1 — x?) paray. ]

FACTORES INTEGRANTES Recuerde de la seccién 2.3 que el lado izquierdo de la
ecuacion lineal y' + P(x)y = f(x) se puede transformar en una derivada cuando mul-
tiplicamos la ecuacion por el factor integrante. Esta misma idea basica algunas veces
funciona bien para una ecuacion diferencial no exacta M(x, y) dx + N(x, y) dy = 0.
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Es decir, algunas veces es posible encontrar un factor integrante w(x, y) de manera
que, después de multiplicar el lado izquierdo de

(X Y)M(X, y) dx + u(x, y)N(x,y) dy = 0 8)

es una diferencial exacta. En un intento por encontrar w, regresamos al criterio (4) de
la exactitud. La ecuacion (8) es exacta si'y solo si (uM), = (uN),, donde los subindi-
ces denotan derivadas parciales. Por la regla del producto de la derivacion la Ultima
ecuacion es la misma que pM +uM=puN +pNo

pN—=p M= (M —N)u. ©)

Aungue M, N, M 'y N, son funciones conocidas de x y y, la dificultad aqui al determinar
la incdgnita w(x, y) de la ecuacion (9) es que debemos resolver una ecuacion diferencial
parcial. Como no estamos preparados para hacerlo, haremos una hipétesis para simpli-
ficar. Suponga que w es una funcidn de una variable; por ejemplo, u depende sélo de x.
En este caso, u, = du/dxy w, = 0, asf la ecuacion (9) se puede escribir como

du M, — N,

dx N
Estamos auin en un callejon sin salida si el cociente (M, — N,)/N depende tanto de x
como de y. Sin embargo, si después de que se hacen todas las simplificaciones alge-
braicas el cociente (My — N )/N resulta que depende sélo de la variable x, entonces la
ecuacion (10) es separable asi como lineal. Entonces de la seccién 2.2 o de la seccion
2.3 tenemos que w(x) = e/M—NoMd - Anjlogamente, de la ecuacion (9) tenemos que
si u depende s6lo de la variable y, entonces

du N — M,
dy M
En este caso, si (N, — My)/M es una funcion solo de y, podemos despejar w de la
ecuacion (11).
Resumiendo estos resultados para la ecuacion diferencial.
M(x, y) dx + N(x,y) dy = 0. (12)
e Si (My — N )/N es una funcién sélo de x, entonces un factor integrante para
la ecuacion (12) es

(10)

M. (11)

lm—md

p) =e N (13)
e Si(N, — M )/M es una funcién sélo de y, entonces un factor integrante de (12) es
X y
INer
wy) =e M (14)

I EJEMPLO 4 UnaED no exacta hecha exacta

La ecuacion diferencial no lineal de primer orden
Xy dx + (2x2 + 3y? — 20)dy = 0

es no exacta. ldentificando M = xy, N = 2x? + 3y2 — 20, encontramos que las deriva-
das parciales M, =XxyN, = 4x. El primer cociente de la ecuacion (13) no nos conduce
a nada, ya que

M, — N, X — 4x _ —3x
N 2 +3y2—20 2x2+ 3y2—20

depende de x y de y. Sin embargo, la ecuacion (14) produce un cociente que depende

solo dey:
Ny —M, 4x—x 3x 3

M xy xy y
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El factor integrante es entonces e/3%/y = g3y = e’ = y3 Después de multiplicar la
ED dada por w(y) = y?, la ecuacion resultante es

xy*dx + (2x2y® + 3y5 — 20y®) dy = 0.

Usted deberia comprobar que la Gltima ecuacion es ahora exacta asi como mostrar,
usando el método que se presentd en esta seccion, que una familia de soluciones es

Xyt 4+ 1ye — syt =c. .

I COMENTARIOS

i) Cuando pruebe la exactitud de una ecuacion, se debe asegurar que tiene exac-
tamente la forma M(x, y) dx + N(x, y) dy = 0. Algunas veces una ecuacion dife-
rencial se escribe como G(x, y) dx = H(x, y) dy . En este caso, primero rescriba
como G(x, y) dx — H(x, y) dy = 0y después identifique M(x, y) = G(X, ¥) y N(x,
y) = —H(X, y) antes de utilizar la ecuacion (4).

ii) En algunos libros de ecuaciones diferenciales el estudio de las ecuaciones
exactas precede al de las ED lineales. Entonces el método que acabamos de des-
cribir para encontrar los factores integrantes se puede utilizar para deducir un
factor integrante paray’ + P(x) y = f(x). Reescribiendo la Gltima ecuacion en la
forma diferencial (P(x)y — f(x)) dx + dy = 0, vemos que

M

v~ N by
N . .

A partir de la ecuacion (13) hemos obtenido el conocido factor integrante e/P¥dx
utilizado en la seccion 2.3.

E] ERCICIOS 2.4 Las respuestas a los problemas con niimero impar comienzan en la pagina RES-2.

En los problemas 1 a 20 determine si la ecuacion diferencial 12, 3xy +e)dx + (X3 +xe¥y —2y)dy =0

dada es exacta. Si lo es, resuélvala. )
y

1 @2x=1)dx+ @y +7)dy=0 13. Xd—X=2xe>‘—y+6x2
2. 2x+y)dx — (x + 6y)dy =0 » (1_§+X>d_y+ —3_1
3. (5x + 4y) dx + (4x — 8y®) dy = 0 ' y ax Y T x
4. (seny —ysenx)dx + (cosx + xcosy —y)dy =0 1 dx
15. <x2y3— 2)—+x3y2=0

5. (2xy? = 3)dx + (2x%y +4)dy =0 1+ 9x*/ dy

1 oW 9y —
6. <2y—)—(+cos 3x)%+%—4x3+3ysen3x=0 16. 5y — 2y’ —2y=0

17. (tanx —senxseny) dx + cosxcosydy =0
7. X2 —yH)dx+ (x2—2xy)dy =0

y 18. (2y sen Xcos X — Yy + 2y%e¥’)dx
8. <1 + lnx+)—(>dx= (1 — Inx) dy

= (x — sen® X — 4xye¥’)dy
9. (x —y* + y2senx) dx = (3xy? + 2y cos x) dy
10. (X% + y%) dx + 3xy2dy = 0 19. (4t%y — 1522 —y)dt + (t* + 3y2—t)dy =0

1o y t
S+ + +———|dy =
(t v+ y2) « <yey t+ y2> =0

e

11. (ylny—e‘xy)dx+<§+xlny>dy=0 2



En los problemas 21 a 26 resuelva el problema con valores
iniciales.
21, (x +yPdx + (2xy +x2—=1)dy =0, y(1)=1
22, (e*+y)dx+(2+x+yeV)dy=0, y(0 =1
23. (dy +2t —5)dt+ (6y +4t—1)dy=0, y(-1)=2
3y? —-t2> dy t
24. =+ — = =
( v at T oy 0, y(1)=1
25. (y?cos x — 3x%y — 2x) dx
+ (2ysenx — x>+ Iny)dy =0, y(0)=-¢e

26< ! + x—2x>g— (y + X), y(0) =1
A\Txy cos ydx y(y + senXx), y

En los problemas 27 y 28 determine el valor de k para el que
la ecuacion diferencial es exacta.

27. (y® + kxy* — 2x) dx + (3xy? + 20x?%°)dy = 0

28. (6xy® + cosy) dx + (2kx?y? — xseny)dy =0

En los problemas 29 y 30 compruebe que la ecuacion dife-
rencial dada es no exacta. Multiplique la ecuacion diferencial
dada por el factor integrante indicado w(x, y) y compruebe que
la nueva ecuacion es exacta. Resuelva.

29. (—xysenx + 2y cos x) dx + 2x cos x dy = 0;
r(x,y) = xy

30. (x2+ 2xy —y?) dx + (y? + 2xy — x3) dy = 0;
r(xy) = (x+y)?

En los problemas 31 a 36 resuelva la ecuacion diferencial dada
determinando, como en el ejemplo 4, un factor integrante ade-
cuado.

31. (2y?+3x)dx +2xydy =0
32. yx+y+1)dx+ (x+2y)dy=0
33. 6xydx + (4dy + 9x*)dy =0

2
34. cos xdx + <1 +§> senXdy = 0

35. (10 -6y +e*)dx—2dy =0
36. (y? + xy®)dx + (5y2 — xy + y®seny)dy =0
En los problemas 37 y 38 resuelva el problema con valores

iniciales determinando, como en el ejemplo 5, un factor inte-
grante adecuado.

37. xdx + (xX3y +4y)dy =0, y4) =0
38. (x* +y?—5)dx=(y+xy)dy, y0)=1

39. a) Demuestre que una familia de soluciones uniparamé-
trica de soluciones de la ecuacion

(4xy + 3x2)dx + (2y + 2x2)dy =0
esx® + 2x%y +y? =c.
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b) Demuestre que las condiciones iniciales y(0) = -2y
y(1) = 1 determinan la misma solucién implicita.

c¢) Encuentre las soluciones explicitas y,(x) y y,(x) de la
ecuacion diferencial del inciso a) tal que y,(0) = —2
y y,(1) = 1. Utilice un programa de graficacion para
trazar la grafica de y,(x) y y,(X).

Problemas para analizar

40. Considere el concepto de factor integrante utilizado en
los problemas 29 a 38. ;Son las dos ecuaciones Mdx + N
dy = 0y uM dx + uN dy = 0 necesariamente equivalen-
tes en el sentido de que la solucion de una es también una
solucion de la otra? Analice.

41. Lea nuevamente el ejemplo 3 y después analice por qué
podemos concluir que el intervalo de definicion de la so-
lucion explicita del PVI (curva azul de la figura 2.4.1) es
(-1, 1).

42. Analice como se pueden encontrar las funciones M(x, y) y
N(x, y) tal que cada ecuacién diferencial sea exacta. Lleve
a cabo sus ideas.

1
a) M(xvy)dx + <xeXy + 2xy + )—(> dy =0

X
X +y

b) <x”2y”2 + )dx + Nx, y)ydy =0

43. Algunas veces las ecuaciones diferenciales se re-
suelven con una idea brillante. Este es un pe-
quefio ejercicio de inteligencia: aunque la ecuacion
(X — VX + y») dx +ydy =0 no es exacta, demuestre
cémo el reacomodo (x dx + y dy) /VX* + y* = dxy la
observacién %d(x2 + y?) = xdx + y dy puede conducir a
una solucion.

44, Verdadero o falso: toda ecuacion de primer orden separa-
ble dy/dx = g(x)h(y) es exacta.

Modelos matematicos

45. Cadena cayendo Una parte de una cadena de 8 pies de
longitud esta enrollada sin apretar alrededor de una cla-
vija en el borde de una plataforma horizontal y la parte
restante de la cadena cuelga descansando sobre el borde
de la plataforma. Vea la figura 2.4.2. Suponga que la lon-
gitud de la cadena que cuelga es de 3 pies, que la cadena
pesa 2 Ib/pie y que la direccion positiva es hacia abajo.
Comenzando ent = 0 segundos, el peso de la cadena que
cuelga causa que la cadena sobre la plataforma se desenro-
Ile suavemente y caiga al piso. Si x(t) denota la longitud de
la cadena que cuelga de la mesa al tiempo t > 0, entonces
v = dx/dt es su velocidad. Cuando se desprecian todas las
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fuerzas de resistencia se puede demostrar que un modelo
matematico que relaciona a v con x esta dado por

b)

dv
XV— + V2 = 32x.
dx

Rescriba este modelo en forma diferencial. Proceda
como en los problemas 31 a 36 y resuelva la ED para
v en términos de x determinando un factor integrante
adecuado. Determine una solucién explicita v(x).

Determine la velocidad con que la cadena abandona
la plataforma.

clavija

borde de la
plataforma

x(t)

FIGURA 2.4.2 Cadena desenrollada del problema 45.

Tarea para el laboratorio de computacion

46. Lineas de flujo

a)

b)

La solucién de la ecuacion diferencial

2Xy
(XZ + y2)2

y2 _ X2
es una familia de curvas que se pueden interpretar
como lineas de flujo de un fluido que discurre alrede-
dor de un objeto circular cuya frontera esta descrita
por la ecuacion x? + y2 = 1. Resuelva esta ED y ob-
serve que la solucidn f(x, y) = c parac = 0.

Use un SAC para dibujar las lineas de flujo parac = 0,
+0.2, =0.4, +0.6 y 0.8 de tres maneras diferentes.
Primero, utilice el contourplot de un SAC. Segundo,
despeje x en términos de la variable y. Dibuje las dos
funciones resultantes de y para los valores dados de
¢, y después combine las gréficas. Tercero, utilice el
SAC para despejar y de una ecuacion cubica en térmi-
nos de Xx.

dx+[1+

2.5

SOLUCIONES POR SUSTITUCION

REPASO DE MATERIAL

e Técnicas de integracion.
e Separacion de variables.
e Solucion de ED.

INTRODUCCION  Normalmente resolvemos una ecuacion diferencial reconociéndola dentro de
una cierta clase de ecuaciones (digamos separables, lineales o exactas) y después aplicamos un proce-
dimiento, que consiste en pasos matematicos especificos para el tipo de ecuacién que nos conducen
a la solucion de la misma. Pero no es inusual que nos sorprenda el tener una ecuacion diferencial que
no pertenece a alguna de las clases de ecuaciones que sabemos como resolver. Los procedimientos
que se analizan en esta seccidn pueden ser Utiles en este caso.

SUSTITUCIONES Con frecuencia el primer paso para resolver una ecuacion diferen-
cial es transformarla en otra ecuacion diferencial mediante una sustitucion. Por ejemplo,
suponga que se quiere transformar la ecuacion diferencial de primer orden dy /dx = f(x,
y) sustituyendo y = g(x, u), donde u se considera una funcion de la variable x. Si g tiene
primeras derivadas parciales, entonces, usando la regla de la cadena

dy agdx
—=—=—+
dx  oxdx

ag du
ou dx

bt ﬂ— (X, u) + gy (x u)d—u
obtenemos dX_gX , Ou(X, ax

Al sustituir dy/dx por la derivada anterior y sustituyendo y en f(x, y) por g (x, u), obte-

nemos laED dy/dx = f(x, y) que se conviertenen g (x,u) + g,(x, u) d— =f(x,g(x,u)),la

du
cual, resuelta para — ix

ciénu = ¢

du
, tiene la forma - = F(x, u). Si podemos determlnar una solu-

(x) de esta Ultima ecuacion, entonces una solucién de la ecuacion diferen-

cial original es y(x) = g(x, ¢(x)).

En el andlisis siguiente examinaremos tres clases diferentes de ecuaciones dife-
renciales de primer orden que se pueden resolver mediante una sustitucion.




2.5 SOLUCIONES POR SUSTITUCION ° 71

ECUACIONES HOMOGENEAS Si una funcion f tiene la propiedad f(tx, ty) =
tef(x, y) para algin nimero real «, entonces se dice que es una funcién homogénea de
grado a. Por ejemplo f(x, y) = x3 + y® es una funcién homogeénea de grado 3, ya que

f(tx, ty) = (x)° + (ty)* = £5(x* + y°) = t*f(x, y),

mientras que f(x, y) = x® + y® + 1 es no homogénea. Una ED de primer orden en
forma diferencial

M(x, y) dx + N(x,y) dy = 0 Q)

se dice que es homogénea” si ambas funciones coeficientes M y N son ecuaciones ho-
mogéneas del mismo grado. En otras palabras, la ecuacién (1) es homogénea si

M(tx, ty) = t*M(x,y) 'y N(tx, ty) = t*N(x, y).
Ademas, si My N son funciones homogéneas de grado «, podemos escribir

M(x,y) = x*M(1,u) vy N(x,y)=x*N(l,u) dondeu = ylx, 2

M(x,y) = y*M(v, 1) y N(x,y)=y*N(v,1) dondev = x/y. 3)

Vea el problema 31 de los ejercicios 2.5. Las propiedades (2) y (3) sugieren las sus-
tituciones que se pueden usar para resolver una ecuacion diferencial homogénea. En
concreto, cualquiera de las sustituciones y = ux 0 x = vy, donde u y v son las nuevas
variables dependientes, reduciran una ecuacién homogénea a una ecuacion diferencial
de primer orden separable. Para mostrar esto, observe que como consecuencia de (2)
una ecuacion homogénea M(x, y)dx + N(x, y)dy = 0 se puede reescribir como

x*M(1, u) dx + X*N(1,u) dy = 0 o bien M, u)dx + N(1,u)dy = 0,

donde u = y/x 0y = ux. Sustituyendo la diferencial dy = u dx + x du en la Gltima
ecuacion y agrupando términos, obtenemos una ED separable en las variables u y x:
M(1, u) dx + N(1, u)[udx + xdu] =0
[M(1, u) + uN(L, u)] dx + xN(1,u)du =0

dx N N(1, u) du B
X M(1,u) + uN(1, u)

En este momento le damos el mismo consejo que en las secciones anteriores. No memo-
rice nada de aqui (en particular la dltima férmula); mas bien, cada vez siga el procedi-
miento. Pruebe a partir de la ecuacion (3) que las sustituciones x = vy y dx = vdy + y dv
también conducen a una ecuacion separable siguiendo un procedimiento similar.

I EJEMPLO T Solucién de una ED homogénea

Resuelva (x? + y?) dx + (x2 — xy) dy = 0.

SOLUCION Examinando a M(x, y) = x2 + y2 y a N(x, y) = X2 — Xy se muestra que
estas funciones coeficientes son homogeéneas de grado 2. Si hacemos y = ux, entonces

“Aqui la palabra homogénea no significa lo mismo que en la seccion 2.3. Recuerde que una ecuacion lineal
de primer orden a,(x)y’ + ag(x)y = g(x) & homogénea cuando g(x) = 0.
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dy = u dx + x du, de modo que después de sustituir, la ecuacion dada se convierte en
O+ uxd)dx + (2 —uxd)[udx + xdu] =0
(1 +uwdx+x(1 —uwdu=0

1 —u dx
du+—=0

1+

2

X

u
-1+ du + d_X = (). < divisioén larga
I +u X

Después de integrar la Gltima ecuacion se obtiene
—u -+ 21In|1 + u| + In|x| = In|c]|

—X-I— 21n
X

1+ X’ + 1n| X| = 1n|C|. < sustituyendo de nuevo U = y/x
X

Utilizando las propiedades de los logaritmos, podemos escribir la solucién anterior como

(x +y)?
CX

= % 0 (X + y)? = cxe¥™ [ ]

1n‘

Aunque cualquiera de las soluciones indicadas se puede usar en toda ecuacion
diferencial homogénea, en la practica se intenta con x = vy cuando la funcion M(x, y)
sea més fécil que N(x, y). También podria ocurrir que después de utilizar una sustitu-
cién, podemos encontrar integrales que son dificiles o imposibles de evaluar en forma
cerrada; y el cambiar las sustituciones puede facilitar el problema.

ECUACION DE BERNOULLI La ecuacion diferencial

dy PP
ax ' Py = f(x)y", 4)

donde n es cualquier namero real, se llama ecuacion de Bernoulli. Observe que para
n=0yn =1, laecuacion (4) es lineal. Paran #+ 0 y n # 1 la sustitucion u = y* "
reduce cualquier ecuacion de la forma (4) a una ecuacion lineal.

I EJEMPLO 2 Solucién de una ED de Bernoulli

dy
— +y =Xy
Resuelva X dx y = X%y

SOLUCION Primero reescribimos la ecuaciéon como

dy 1
4y = 2
dx xy i

al dividir entre x. Con n = 2 tenemos u = y oy = u~!. Entonces sustituimos

dy dydu du
dy _gdydu = —y??= < Regla de la cadena

dx dudx dx
en la ecuacion dada y simplificando. El resultado es

du

lu——x
dx x ’



A

J

FIGURA 2.5.1 Algunas soluciones de

y' =(—2x+y)?—-17.
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El factor integrante para esta ecuacion lineal en, digamos, (0, ) es

effdx/x = g hx = elnx’l = x 1

d
Integrando —[x'u = -1
g dx[ ]
se obtiene x'u = —x + cou = —x? + cx. Puesto que u = y ¢, tenemos quey = 1/u,
asi una solucién de la ecuacién dadaesy = 1/(—x? + cx). [ ]

Observe que no hemos obtenido una solucion general de la ecuacion diferencial
no lineal original del ejemplo 2 ya que y = 0 es una solucion singular de la ecuacion.

REDUCCION A SEPARACION DE VARIABLES Una ecuacion diferencial de la
forma

dy ;

— =f(Ax+ By + C 5

Ix [+ By+C) ®)
Se puede siempre reducir a una ecuacion con variables separables por medio de la
sustitucién u = Ax + By + C, B # 0. El ejemplo 9 muestra la técnica.

I EJEMPLO 3 Un problema con valores iniciales

d
Resuelva d_i =(=2x+y)?—17, y0) =0.

SOLUCION Sihacemosu = —2x + y, entonces du/dx = —2 + dy/dx, por lo que la
ecuacion diferencial se expresa como
du du

—t+t2=u—-7 0

—— — 2
dx dx u 0

La Ultima ecuacion es separable. Utilizando fracciones parciales

du i1 !
TEETE 8[u—3_u+3]du_dx

y después de integrar se obtiene

u-—3
u-+3

— e6x+6c, — Ceﬁx «— sustituycndo b por C

=Xx+cC o
u+3‘ !

Despejando u de la dltima ecuacion y resustituyendo a u en términos de x y y, se ob-
tiene la solucion

_3(1 + ce) oyt 3(1 + ce®) 6

1 — ce™ © y 1 —ce* ' ©)

Por ultimo, aplicando la condicion inicial y(0) = 0 a la tltima ecuacién en (6) se ob-

tiene ¢ = —1. La figura 2.5.1, obtenida con la ayuda de un programa de graficacion,
3(1 — e)

muestra en azul oscuro la grafica de la solucion particular y = 2x + W

con las graficas de algunos otros miembros de la familia de soluciones (6). ]

junto
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EJERCICIOS 2.5

Las respuestas a los problemas con nimero impar comienzan en la pagina RES-2.

Cada una de las ED de los problemas 1-14 es homogénea.

En los problemas 1 a 10 resuelva la ecuacion diferencial dada
usando las sustituciones adecuadas.

1. x—y)dx +xdy=0 2. x+y)dx+xdy=0
3. xdx+(y—2x)dy =0 4. ydx =2(x +y)dy
5 (y2+yx)dx —x2dy =0

6. (y2+yx)dx + x2dy =0

dy y-—x

7. —=——

dx y+x

g Q_x+3y

Tdx 3x+y

9. —ydx+ (x+ Vxy)dy =0

10. x—X=y+\/>ﬁ,

En los problemas 11 a 14 resuelva el problema con valores
iniciales dado.

dy

233
dx y =%

11. xy? y(1) =2

dx
242y —=xy, y(—-)=1
12. (x y)dy Xy, y(=1)

13. (x +ye)dx —xe¥*dy =0, y(1)=0
14. ydx + x(Inx —Iny —1)dy =0, y(l) =e

Cada unade las ED de los problemas 15 a 22 es una ecuacion
de Bernoulli.

En los problemas 15 a 20 resuelva la ecuacion diferencial
dada usando una sustitucién adecuada.

dy 1 dy
15 x—+y=— 16. — —y =¢y?
5 de y v 6 dx ey
dy dy
17. == = y(xy3 — 18. x—= — (1 + x)y = xy>
ax Yoy = 18 xol = (1 + Xy = xy
dy dy
19. 2 +y* = 20. + ) = P —
9 tdt y* =ty 0. 3(1 t)dt 2ty(y 1)

En los problemas 21 y 22 resuelva el problema con valores
iniciales dado.

dy
2 7 — 4 —1
21. X » 2xy =3y, y(1) =,

22 yllzﬁ + y3/2 — 1’

dx y(0) =4

Cada una de las ED de los problemas 23 a 30 es de la forma
dada en la ecuacion (5).

En los problemas 23 a 28 resuelva la ecuacion diferencial
dada usando una sustitucion adecuada.

dy dy 1-—-x-y
23, —=(x+y+1)7? 24, — = ————
3 dx x+y+D dx X+y

_ e dy _

25. dx—tan xX+y 26. dX—sen(X+y)

7. Yonvvymwas s Lorr e

En los problemas 29 y 30 resuelva el problema con valores

iniciales dado.

29 %— xX+y
© dx cos Y),

dy  3x+2y
dx 3x+2y+72

y(0) = /4

30. y(—1) = —1

Problemas para analizar

31. Explique por qué es posible expresar cualquier ecuacion di-
ferencial homogénea M(x, y) dx + N(x, y) dy = O en la forma

)
= =F(2).
dx X
Podria comenzar por demostrar que
M(x, y) = x*M(1, y/x) y N(x, y) = x*N(1, y/x).

32. Ponga la ecuacion diferencial homogénea
(5x2 — 2y?) dx —xydy =0
en la forma dada en el problema 31.

33. a) Determine dos soluciones singulares de la ED en el

problema 10.

b) Silacondicion inicial y(5) = 0 es como se indicé para
el problema 10, entonces ¢cudl es el intervalo | de de-
finiciébn mas grande en el cual esta definida la solu-
cién? Utilice un programa de graficacion para obtener
la gréfica de la curva solucion para el PVI.

34. En el ejemplo 3 la solucién y(x) es no acotada conforme
x — *o0, Sin embargo, y(x) es asintética a una curva con-
forme x — —o y a una diferente curva conforme x — oo,
¢Cuales son las ecuaciones de estas curvas?

35. La ecuacion diferencial dy/dx = P(x) + Q(xX)y + R(x)y?
se conoce como la ecuacién de Riccati.

a) Una ecuacion de Riccati se puede resolver por dos
sustituciones consecutivas, siempre y cuando conoz-



camos una solucion particular, y,, de la ecuacion.
Muestre que la sustituciony =y, + u reduce la ecua-
cion de Riccati a una ecuacion de Bernoulli (4) con
n = 2. La ecuacion de Bernoulli se puede entonces
reducir a una ecuacion lineal sustituyendow = u2.

Determine una familia uniparamétrica de soluciones
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de una cadena que se desliza por el borde de una plata-
forma horizontal es

dv
Xv— + v2 = 32x.
dx

b)

En ese problema se le pidi6 que resolviera la ED convir-

de la ecuacion diferencial tiéndola en una ecuacién exacta usando un factor inte-
dy 41 grante. Esta vez resuelva la ED usando el hecho de que es
=5y ty? una ecuacion de Bernoulli.
dx Xt X

donde y, = 2/x es una solucion conocida de la ecua-

cion.

38. Crecimiento de la poblacién En el estudio de la pobla-
cion dindmica uno de los mas famosos modelos para un

crecimiento poblacional limitado es la ecuacion logistica

36. Determine una sustitucion adecuada para resolver

xy" =y In(xy).

Modelos matematicos

37. Cadena cayendo En el problema 45 de los ejercicios
2.4 vimos que un modelo matemaético para la velocidad v

P(a — bP
ot (a ),

donde a y b son constantes positivas. Aunque retomaremos
esta ecuacion y la resolveremos utilizando un método al-
ternativo en la seccion 3.2, resuelva la ED por esta primera
vez usando el hecho de que es una ecuacion de Bernoulli.

2.6

UN METODO NUMERICO

prim

todo

func
mas

INTRODUCCION  Una ecuacion diferencial dy/dx = f(x, y) es una fuente de informacién. Comen-
zaremos este capitulo observando que podriamos recolectar informacion cualitativa de una ED de

er orden respecto a sus soluciones aun antes de intentar resolver la ecuacion. Entonces en las sec-

ciones 2.2 a 2.5 examinamos a las ED de primer orden analiticamente, es decir, desarrollamos algunos
procedimientos para obtener soluciones explicitas e implicitas. Pero una ecuacion diferencial puede
tener una solucidn aun cuando no podamos obtenerla analiticamente. Asi que para redondear el esquema
de los diferentes tipos de andlisis de las ecuaciones diferenciales, concluimos este capitulo con un me-

con el cual podemos “resolver” la ecuacion diferencial numéricamente; esto significa que la ED se

utiliza como el principio basico de un algoritmo para aproximar a la solucidn desconocida.

En esta seccién vamos a desarrollar Gnicamente el mas sencillo de los métodos numéricos, un

método que utiliza la idea de que se puede usar una recta tangente para aproximar los valores de una

i6n en una pequefa vecindad del punto de tangencia. En el capitulo 9 se presenta un tratamiento
extenso de los métodos numéricos.

USANDO LA RECTA TANGENTE Suponemos que el problema con valores iniciales

Y =10y, yx) =Y, 1)

tiene una solucién. Una manera de aproximar esta solucion es usar rectas tangentes. Por
ejemplo, sea que y(x) denote la solucion incégnita para el problema con valores inicia-
les y’ = 0.1Vy + 0.4x?, y(2) = 4. Laecuacion diferencial no lineal en este PVI no
se puede resolver directamente por cualquiera de los métodos considerados en las sec-
ciones 2.2, 2.4 y 2.5; no obstante, aln podemos encontrar valores numeéricos aproxi-
mados de la incognita y(x). En concreto, supongamos que deseamos conocer el valor
de y(2, 5). El PVI tiene una solucién y como el flujo del campo direccional de la ED
en la figura 2.6.1a sugiere, una curva solucién debe tener una forma similar a la curva
que se muestra en azul.

El campo direccional de la figura 2.6.1a se gener6 con elementos lineales que pasan
por puntos de una malla de coordenadas enteras. Puesto que la curva solucién pasa por el
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curva solucion

—T

L(x)

FIGURA 2.6.2  Aproximacion de y(x,)
usando una recta tangente.

punto inicial (2, 4), el elemento lineal en este punto es una recta tangente con pendiente
dada por f(2,4) = 0.1V4 + 0.4(2)2 = 1.8. Como se muestra en la figura 2.6.1a y el
“zoom in” (acercamiento) de la figura 2.6.1b, cuando x esta cerca de 2, los puntos en la
curvasolucion estan cerca de los puntos de la recta tangente (el elemento lineal). Utilizando
el punto (2, 4), la pendiente (2, 4) = 1.8 y la forma punto pendiente de una recta, encon-
tramos que una ecuacion de la recta tangente esy = L(x), donde L(x) = 1.8x + 0.4. Esta
ultima ecuacion se llama linealizacion de y(x) en x = 2 que se puede utilizar para aproxi-
mar los valores dentro de una pequefa vecindad de x = 2. Siy, = L(x,) denota la coorde-
nada y en la recta tangente y y(x,) es la coordenada y de la curva solucion correspondiente
a una coordenada x, x, que esta cerca de x = 2, entonces y(x,) =~ y,. Si elegimos, x, = 2.1,
entoncesy, = L(2.1) = 1.8(2.1) + 0.4 = 4.18, entonces y(2.1) =~ 4.18.

e

st S

S

ot S S

foo

£ -
NS
-2

a) campo direccional para y = 0. b) elemento lineal

en (2,4).
FIGURA 2.6.1 Amplificacion de una vecindad del punto (2, 4).

METODO DE EULER Para generalizar el procedimiento que acabamos de ilustrar,
usamos la linealizacion de una solucion incognita y(x) de (1) en x = x:

LX) = Yo + (X0, Yo)(X = Xo)- O]
La gréfica de esta linealizacion es una recta tangente a la grafica de y = y (x) en el punto

(X, Y,)- Ahora hacemos que h sea un incremento positivo del eje X, como se muestra en
la figura 2.6.2. Entonces sustituyendo x por x, = x, + h en la ecuacion (2), obtenemos

L) =Yoo+ (X Yo)% +h—%) 0o y;=yYo+ hf(x,Vy),

donde y, = L(x,). El punto (x,, y,) en la recta tangente es una aproximacion del
punto (x,, y(x,)) sobre la curva solucion. Por supuesto, la precision de la aproxima-
cion L(x,) = y(x) oy, = y(x ) depende fuertemente del tamafio del incremento h.
Normalmente debemos elegir este tamafio de paso para que sea “razonablemente
pequefio”. Ahora repetimos el proceso usando una segunda “recta tangente” en (x,,
y,)-* ldentificando el nuevo punto inicial como (x,, y,) en lugar de (x,, y,) del analisis
anterior, obtenemos una aproximacion y, =~ y(x,) correspondiendo a dos pasos de lon-
gitud h a partir de x,, es decir, x, = x, + h =x, + 2h,y

y(%) =y + 2h) = y(x + h) =y, =y, + hf(x,y).
Continuando de esta manera, vemos quey,, Y,, Y, - . . , Se puede definir recursivamente
mediante la formula general

ynAl = Yn + hf (Xnv yn)! (3)

dondex, = x,+nh,n=0,1,2,...Esteprocedimiento de uso sucesivo de las “rectas
tangentes” se Illama método de Euler.

“Esta no es una recta tangente real, ya que (x,, y,) esta sobre la primera tangente y no sobre la curva solucion.



TABLA 2.1 h=0.1
Xn yn
2.00 4.0000
2.10 4.1800
2.20 4.3768
2.30 4.5914
2.40 4.8244
2.50 5.0768
TABLA 2.2 h=0.05
Xﬂ yﬂ
2.00 4.0000
2.05 4.0900
2.10 4.1842
2.15 4.2826
2.20 4.3854
2.25 4.4927
2.30 4.6045
2.35 4.7210
2.40 4.8423
2.45 4.9686
2.50 5.0997

2.6 UN METODO NUMERICO o 77

I EJEMPLO 1 Meétodo de Euler

Considere el problema con valores iniciales y’ = 0.1VYy + 0.4x%, y(2) = 4 Utilice
el método de Euler para obtener una aproximacion de y(2.5) usando primero h = 0.1
y después h = 0.05.

SOLUCION Con la identificacién f(x,y) = 0.1Vy + 0.4x? la ecuacién (3) se con-
vierte en

Yor1 = Yo + N(0.1VY, + 0.4%).
Entonces parah = 0.1, x, = 2, y, = 4y n = 0 encontramos
Vi = Yo + h(0.1Vy, + 0.4%) = 4 + 0.1(0.1V4 + 0.4(2)?) = 4.18,

que, como ya hemos visto, es una estimacion del valor y(2.1). Sin embargo, si usamos el
paso de tamafio mas pequefio h = 0.05, le toma dos pasos alcanzar x = 2.1. A partir de

y; = 4 + 0.05(0.1V4 + 0.4(2)%) = 4.09

Y, = 409 + 0.05(0.1V/4.09 + 0.4(2.05)?) = 4.18416187

tenemos y, = y(2.05) y y, = y(2.1). El resto de los calculos fueron realizados usando
un paquete computacional. En las tablas 2.1 y 2.2 se resumen los resultados, donde
cada entrada se ha redondeado a cuatro lugares decimales. Vemos en las tablas 2.1y
2.2 que le toma cinco pasos con h = 0.1y 10 pasos con h = 0.05, respectivamente,
para llegar a x = 2.5. Intuitivamente, esperariamos que y, = 5.0997 correspondiente
ah = 0.05 sea la mejor aproximacion de y(2.5) que el valory, = 5.0768 correspon-
dienteah = 0.1. ]

En el ejemplo 2 aplicamos el método de Euler para una ecuacion diferencial para
la que ya hemos encontrado una solucion. Hacemos esto para comparar los valores de
las aproximaciones y_en cada caso con los valores verdaderos o reales de la solucion
y(x,) del problema con valores iniciales.

I EJEMPLO 2 Comparacion de los valores aproximados y reales

Considere el problema con valores inicialesy’ = 0.2xy, y(1) = 1. Utilice el método de Euler
para obtener una aproximacion de y(1.5) usando primero h = 0.1y después h = 0.05.

SOLUCION Con la identificacion f(x, y) = 0.2xy, la ecuacion (3) se convierte en

Voo =, T h(0.2x”yn)

donde x, = 1y y, = 1. De nuevo con la ayuda de un paquete computacional obtenga
los valores de las tablas 2.3y 2.4.

TABLA 2.4 h=0.05

X, y,  Valorreal Error absoluto % Error relativo
1.00 1.0000 1.0000 0.0000 0.00
1.05 1.0100 1.0103 0.0003 0.03
TABLA 23 h=01 110  1.0206  1.0212 0.0006 0.06
o . 1.15 1.0318 1.0328 0.0009 0.09
X, A Valor real  Error absoluto % Error relativo 120 10437 1.0450 0.0013 0.12
1.00  1.0000 1.0000 0.0000 0.00 1.25 1.0562 1.0579 0.0016 0.16
1.10  1.0200 1.0212 0.0012 0.12 1.30 1.0694 1.0714 0.0020 0.19
1.20 1.0424 1.0450 0.0025 0.24 1.35 1.0833 1.0857 0.0024 0.22
1.30  1.0675 1.0714 0.0040 0.37 1.40 1.0980 1.1008 0.0028 0.25
1.40  1.0952 1.1008 0.0055 0.50 1.45 1.1133 1.1166 0.0032 0.29
1.50 1.1259 1.1331 0.0073 0.64 1.50 1.1295 1.1331 0.0037 0.32
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FIGURA 2.6.3 Comparacion de los
métodos de Runge-Kutta (RK4) y de
Euler.

En el ejemplo 1 se calcularon los valores verdaderos o reales de la solucion cono-
ciday = e*'®-b_(Compruebe.) El error absoluto se define como

valor real — aproximado ‘

El error relativo y el error relativo porcentual son, respectivamente,

error absoluto error absoluto
Srrur aenrnnY e e % 100.

valor real ‘ y valor real ‘

Es evidente de las tablas 2.3 y 2.4 que la precision de las aproximaciones mejora
conforme disminuye el tamafio del paso h. También nosotros vemos esto aun cuando
el error relativo porcentual esté creciendo en cada paso, no parece estar mal. Pero no
debe engafiarse por un ejemplo. Si simplemente cambiamos el coeficiente del lado de-
recho de la ED del ejemplo 2 de 0.2 a 2 entonces en x_= 1.5 los errores relativos por-
centuales crecen dramaticamente. Véase el problema 4 del ejercicio 2.6.

UNA ADVERTENCIA EI método de Euler es s6lo uno de los diferentes métodos en
los que se puede aproximar una solucién de una ecuacidn diferencial. Aunque por su
sencillez es atractivo, el método de Euler rara vez se usa en calculos serios. Aqui se ha
presentado sélo para dar un primer esbozo de los métodos numéricos. En el capitulo 9
trataremos en detalle el analisis de los métodos numéricos que tienen mucha precision,
en especial el método de Runge-Kutta conocido como el método RK4.

SOLUCIONADORES NUMERICOS Independientemente de si se puede realmente
encontrar una solucion explicita o implicita, si existe una solucién de una ecuacion
diferencial, ésta se representa por una curva suave en el plano cartesiano. La idea ba-
sica detras de cualquier método numérico para las ecuaciones diferenciales ordinarias
de primer orden es de alguna manera aproximar los valores de y de una solucion para
valores de x preseleccionados. Comenzamos con un punto inicial dado (x,, y,) de una
curva solucién y procedemos a calcular en un modelo paso por paso una secuencia
de puntos (x, y,), (X, ¥,),-.., (X, ¥,) cuyas coordenadas y, y, se aproximan a las coor-
denadas y, y(x,) de los puntos (x,, Y(X,)), (X,, Y(X,)), ..., (X, Y(X,)) que yacen sobre la
grafica de la solucion normalmente desconocida y(x). Tomando las coordenadas x mas
cercanas (es decir, para valores pequefios de h) y uniendo los puntos (x,, y,), (X,, ¥,),...,
(x,, y,) con segmentos de recta cortos, obtenemos una curva poligonal cuyas caracte-
risticas cualitativas esperamos sean cercanas a las de una curva solucion real. El dibujo
de curvas es muy adecuado en una computadora. A un programa de coémputo escrito
para implementar un método numérico o para mostrar una representacion visual de
una solucion aproximada que ajusta los datos numéricos producidos por este segundo
método se le conoce como un solucionador numérico. Comercialmente hay disponi-
bles muchos solucionadores numéricos ya sea que estén integrados en un gran paquete
computacional, tal como en un sistema algebraico computacional o que sean un pa-
quete autbnomo. Algunos paquetes computacionales simplemente dibujan las aproxi-
maciones numéricas generadas, mientras que otros generan pesados datos numéricos
asi como la correspondiente aproximacién o curvas solucién numérica. En la figura
2.6.3 se presenta a manera de ilustracion la conexion natural entre los puntos de las
graficas producidas por un solucionador numérico, las graficas poligonales pintadas
con dos colores son las curvas solucién numérica para el problema con valores inicia-
lesy’ = 0.2xy, y(0) = 1enel intervalo [0, 4] obtenidas de los métodos de Euler y RK4
usando el tamafio de paso h = 1. La curva suave en azul es la gréfica de la solucion
exacta y = "™ del PVI. Observe en la figura 2.6.3 que, aun con el ridiculo tamafio
de paso de h = 1, el método RK4 produce la “curva solucién” mas creible. La curva
solucién numérica obtenida del método RK4 es indistinguible de la curva solucidn real
en el intervalo [0, 4] cuando se usa el tamafio de paso usual de h = 0.1.
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FIGURA 2.6.4 Una curva solucién
que no ayuda mucho.

2.6 UN METODO NUMERICO e 79

USANDO UN SOLUCIONADOR NUMERICO No es necesario conocer los di-
ferentes métodos numeéricos para utilizar un solucionador numérico. Un solucionador
usualmente requiere que la ecuacion diferencial se pueda expresar en la forma normal
dy/dx = f(x, y). Los solucionadores numéricos que sélo generan curvas requieren que se
les proporcione f(x, y) y los datos iniciales x, y y, y que se indique el método numérico
deseado. Si la idea es aproximarse al valor numérico de y(a), entonces un solucionador
numeérico podria requerir ademas expresar un valor de h o, del mismo modo, dar el nd-
mero de pasos que quiere tomar para llegar de x = x; a x = a. Por ejemplo, si queremos
aproximar y(4) para el PVI que se muestra en la figura 2.6.3, entonces, comenzando en
x = 0 le tomaria cuatro pasos llegar a x = 4 con un tamafio de paso de h = 1; 40 pasos
son equivalentes a un tamafio de paso de h = 0.1. Aunque aqui no investigaremos todos
los problemas que se pueden encontrar cuando se intenta aproximar cantidades matema-
ticas, al menos debe estar consciente del hecho de que el solucionador numérico puede
dejar de funcionar cerca de ciertos puntos o dar una incompleta o engafiosa imagen
cuando se aplica a ciertas ecuaciones diferenciales en la forma normal. La figura 2.6.4
muestra la grafica que se obtuvo al aplicar el método de Euler a un problema con valores
iniciales de primer orden dy/dx = f(x, y), y(0) = 1. Se obtuvieron resultados equiva-
lentes utilizando tres diferentes solucionadores numéricos, sin embargo la gréfica di-
ficilmente es una posible curva solucién. (¢Por qué?) Hay diferentes caminos de solucién
cuando un solucionador numérico tiene dificultades; las tres mas obvias son disminuir el
tamafio del paso, usar otro método numérico e intentar con un solucionador diferente.

EJERCICIOS 2.6

Las respuestas a los problemas con nimero impar comienzan en la pagina RES-2.

En los problemas 11 y 12 utilice un solucionador para obtener

En los problemas 1y 2 use el método de Euler para obtener
una aproximacién a cuatro decimales del valor indicado,
ejecute a mano la ecuacion de recursion (3), usando primero
h = 0.1y después usando h = 0.05.

1Ly =2x—-3y+1,y1) =5, y(l.2)
2.y =x+y%y(0)=0; y(0.2)

En los problemas 3 y 4 use el método de Euler para obte-
ner una aproximacion a cuatro decimales del valor indicado.
Primero utilice h = 0.1y después utilice h = 0.05. Determine
una solucion explicita para cada problema con valores inicia-
les y después construya tablas similares a las tablas 2.3y 2.4.

3.y =v,y0)=1; y(1.0)
4.y =2xy,y(1) = 1; y(L.5)

En los problemas 5 a 10 use un solucionador numérico y el
método de Euler para obtener una aproximacion a cuatro de-
cimales del valor indicado. Primero utilice h = 0.1 y después
utilice h = 0.05.

5 y =e7y0)=0; y(@0.5)

y(0.5)
7.y =(x—-y)?%y0) =05 y(0.5)
8.y =xy+ Vyy(0) =1 y(05)
9.y =xy? — 2—'( y(1) =1; y(1.5)

10. y' =y —y%y(0) = 0.5; y(0.5)

6. y =x2+y%4y0) =1

una curva solucion numérica para el problema con valores iniciales
dado. Primero utilice el método de Euler y después el método RK4.
Utilice h = 0.25 en cada caso. Superponga ambas curvas solucion
en los mismos ejes coordenados. Si es posible, utilice un color
diferente para cada curva. Repita, usando h = 0.1y h = 0.05.

11. y" = 2(cos X)y,
12, y" = y(10 — 2y),

y(0) =1
y(0) =1

Problemas para analizar

13. Use un solucionador numérico y el método de Euler para
aproximar y(0.1), donde y(x) es la solucion de y’ = 2xy?,
y(0) = 1. Primero use h = 0.1 y después use h = 0.05.
Repita, usando el método RK4. Analice qué podria cau-
sar que las aproximaciones a y(1.0) difieran mucho.

Tarea para el laboratorio de computacién

14. a) Utilice un solucionador numérico y el método RK4
para trazar la grafica de la solucién del problema con
valores inicialesy’ = —2xy + 1, y(0) = 0.
b) Resuelvael problema con valores iniciales por uno de
los procedimientos analiticos desarrollados en las
secciones anteriores en este capitulo.

c) Use la solucidn analitica y(x) que encontro en el in-
ciso b) y un SAC para determinar las coordenadas de
todos los extremos relativos.
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REPASO DEL CAPITULO 2

Las respuestas a los problemas con nimero impar
comienzan en la pagina RES-3.

Responda los problemas 1 a 4 sin consultar las respuestas del libro.
Llene los espacios en blanco o responda si es verdadero o falso.

1.

La ED lineal, y’ — ky = A, donde k y A son constantes,

es autébnomo. El punto critico de la ecuacién

es un (atractor o repulsor) para k > 0y un
(atractor o repulsor) para k < 0.

d
. El problema xY 4y =0, y(0) = Kk, tiene un nimero

dx
infinito de soluciones parak =
lucién parak =

y no tiene so-

LaED lineal,y" + ky = k,, donde k, y k, son constantes
distintas de cero, siempre tiene una solucién constante.

La ED lineal, a,(x)y" + a,(x)y = 0 es también separable.

En los problemas 5 y 6 construya una ecuacion diferencial de
primer orden dy/dx = f(y) cuyo esquema de fase es consis-
tente con la figura dada.

5.

FIGURA 2.R.1 Gréfica del problema 5.

y

FIGURA 2.R.2 Gréfica del problema 6.

El ndmero 0 es un punto critico de la ecuacion diferen-

cial auténoma dx/dt = x", donde n es un entero positivo.

¢Para qué valores de n es 0 asintdticamente estable?

¢Semiestable? ¢Inestable? Repita para la ecuacion dife-

rencial dx/dt = —x".

Considere la ecuacion diferencial dP / dt = f(P), donde
f(P)=—0.5P* — 1.7P + 3.4.

La funcion f(P) tiene una raiz real, como se muestra en la

figura 2.R.3. Sin intentar resolver la ecuacion diferencial,

estime el valor de lim__ P().

FIGURA 2.R.3 Gréfica del problema 8.

. La figura 2.R.4 es una parte de un campo direccional de

una ecuacion diferencial dy/dx = f(x, y). Dibuje a mano
dos diferentes curvas solucién, una que es tangente al ele-
mento lineal que se muestra en negro y el otro que es tan-
gente al elemento lineal que se muestra de color (rojo).
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FIGURA 2.R.4 Parte de un campo direccional del problema 9.

10. Clasifique cada ecuacion diferencial como separable,

exacta, lineal, homogénea o Bernoulli. Algunas ecuacio-
nes pueden ser de mas de una clase. No las resuelva.

dy _x-y day _ 1
D ax . x b) dx y— x
dy dy 1
+1)—==-y+ == ———
o &+ dx y+10 9 dx XX —y)
dy _y*+y dy _ )
°) dx X2+ x 2 dx_5y+y
dy

g9) ydx=(y—xy)dy h) x&=yex’y—x

i) xyy +y?=2x ) o2xyy +y?=2x?

k) ydx+xdy=0

)] <x2+2—)2/>dx=(3—lnx2)dy

m) d—y=)—(+¥+1 n) lg+e2x3+y220
dx y X X2 dx



En los problemas resuelva la ecuacion diferencial dada.

11.
12.

13.

14.

15.

16.
17.
18.

(y?+ 1) dx = y sec?x dy
y(Inx —Iny)dx = (xInx — xIny — y) dy
(6x + 1)y2g +3%+2y0=0
dx
dx _ 4y* + 6xy
dy  3y2 + 2x

_g+ _4|
t t Q t*Int

(x+y+1y =1
(x2 + 4) dy = (2x — 8xy) dx

(2r2cos 6 sen 6 + r cos 6) d
+ (4r +sen 6 — 2rcos? f) dr = 0

En los problemas 19 y 20 resuelva el problema con valores
iniciales dado e indique el intervalo | mas largo en el que la
solucion esta definida.

19.

20.

21.

22.

23.

dy (77T>
— + — _ = —
senx dx (cosx)y =0, y 5 2
Wyt + yr = = —1
at ( )y =0, y0) = —
a) Sinresolver, explique por qué el problema con valores
iniciales
dy _
- VY Y00 =Y

no tiene solucion paray, < 0.

b) Resuelva el problema con valores iniciales del inciso
a) paray, > 0y determine el intervalo | mas largo en
el que la solucion esta definida.

a) Determine una solucién implicita del problema con
valores iniciales
dy _y?—x
Y IY X vy = VA
™ Xy y()

b) Determine una solucion explicita del problema del
inciso a) e indique el intervalo de solucién mas largo
de I en el que la solucidn esta definida. Aqui puede
ser (til un programa de graficacion.

En lafigura 2.R.5 se presentan las gréficas de algunos miem-
bros de una familia de soluciones para una ecuacion dife-
rencial de primer orden dy/dx = f(x, y). Las graficas de dos
soluciones implicitas, una que pasa por el punto (1, —1) y la
otra que pasa por (—1, 3) se muestran en rojo. Reproduzca
la figura en una hoja. Con lapices de colores trace las curvas
solucion para las soluciones y = y,(X) y y = y,(x) definidas
por las soluciones implicitas tales comoy, (1) = —1yy,(—1)
= 3, respectivamente. Estime los intervalos en los que las
solucionesy =y,(X) y Y = Y,(x) estan definidas.

REPASO DEL CAPITULO2 e 81

FIGURA 2.R.5 Gréfica para el problema 23.

24. Utilice el método de Euler con tamafio de paso h = 0.1
para aproximar y(1.2), donde y(x) es una solucion del pro-
blema con valores iniciales y’ = 1 + x\/y, y(1) = 9.

En los problemas 25 y 26 cada figura representa una parte de
un campo direccional de una ecuacion diferencial de primer
orden dy/dx = f(y). Reproduzca esta figura en una hoja y des-
pués termine el campo direccional sobre la malla. Los puntos
de la malla son (mh, nh) donde i = 5m y n son enteros, —7
=m=7,—7=n = 7. En cada campo direccional dibuje a
mano una curva solucion aproximada que pase por cada uno
de los puntos s6lidos mostrados en rojo. Analice: ¢parece que
la ED tiene puntos criticos en el intervalo —3.5 = m = 3.5?
Si es asi, clasifique los puntos criticos como asintdticamente
estables, inestables o semiestables.

25. y
s T N
3 L
2 LN
1 8 ~
Ay
X
N
_1 S
b -
72 —_
. . I
N T J
-3 -2 -1 1 2 3

FIGURA 2.R.6 Parte de un campo direccional del problema 25.

26. g 7 N
s
3 7
!
2 t
\
1 . X

~ ° *

-1 X
\
-2 1
'
-3 L4 /
’

\ J

-3 -2 -1 1 2 3

FIGURA 2.R.7 Parte de un campo direccional del problema 26.
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3.1 Modelos lineales

3.2 Modelos no lineales

3.3 Modelado con sistemas de ED de primer orden
REPASO DEL CAPITULO 3

En la seccion 1.3 vimos como se podria utilizar una ecuacion diferencial de

primer orden como modelo matematico en el estudio de crecimiento poblacional,
decaimiento radiactivo, interés compuesto continuo, enfriamiento de cuerpos,
mezclas, reacciones quimicas, drenado del fluido de un tanque, velocidad de un
cuerpo que cae y corriente en un circuito en serie. Utilizando los métodos del
capitulo 2 ahora podemos resolver algunas de las ED lineales (seccion 3.1) y ED
no lineales (seccion 3.2) que aparecen comunmente en las aplicaciones. El capitulo
concluye con el siguiente paso natural: en la seccién 3.3 examinamos cdmo surgen
sistemas de ED como modelos matematicos en sistemas fisicos acoplados (por
ejemplo, una poblacion de predadores como los zorros que interactlan con una
poblacion de presas como los conejos).
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3.1 MODELOS LINEALES

seccion 2.3.

P(t) - PO 0.4055t

N

FIGURA 3.1.1 Tiempo en que se
triplica la poblacion.

REPASO DE MATERIAL

e Ecuacion diferencial como modelo matematico en la seccién 1.3.
e Leer nuevamente “Solucion de una ecuacion diferencial lineal de primer orden”, pagina 55 en la

INTRODUCCION  En esta seccion resolvemos algunos de los modelos lineales de primer orden
que se presentaron en la seccion 1.3.

CRECIMIENTO Y DECAIMIENTO El problema con valores iniciales

o X0 =% @
donde k es una constante de proporcionalidad, sirve como modelo para diferentes fe-
ndémenos que tienen que ver con crecimiento o decaimiento. En la seccion 1.3 vimos
que en las aplicaciones biolégicas la razén de crecimiento de ciertas poblaciones (bac-
terias, pequefios animales) en cortos periodos de tiempo es proporcional a la poblacion
presente en el tiempo t. Si se conoce la poblacion en algun tiempo inicial arbitrario t,,
la solucién de la ecuacion (1) se puede utilizar para predecir la poblacion en el futuro,
es decir, a tiempos t > t . La constante de proporcionalidad k en la ecuacion (1) se de-
termina a partir de la solucion del problema con valores iniciales, usando una medida
posterior de x al tiempo t, > t . En fisica y quimica la ecuacion (1) se ve en la forma de
una reaccion de primer orden, es decir, una reaccion cuya razon, o velocidad, dx/dt es
directamente proporcional a la cantidad x de sustancia que no se ha convertido o que
queda al tiempo t. La descomposicion, o decaimiento, de U-238 (uranio) por radiacti-
vidad en Th-234 (torio) es una reaccion de primer orden.

I EJEMPLO T Crecimiento de bacterias

Inicialmente un cultivo tiene un nimero P de bacterias. En t = 1 h se determina que
el nimero de bacterias es P . Si la razon de crecimiento es proporcional al nimero
de bacterias P(t) presentes en el tiempo t, determine el tiempo necesario para que se
triplique el nimero de bacterias.

SOLUCION Primero se resuelve la ecuacion diferencial (1), sustituyendo el simbolo
x por P. Con t, = 0 la condicion inicial es P(0) = P,. Entonces se usa la observacion
empirica de que P(1) = 3P, para determinar la constante de proporcionalidad k.

Observe que la ecuacion diferencial dP/dt = kP es separable y lineal. Cuando se
pone en la forma estandar de una ED lineal de primer orden,

dP
— — kP =0,
dt
se ve por inspeccién que el factor integrante es e . Multiplicando ambos lados de la

ecuacion e integrando se obtiene, respectivamente,
d
—[eMP] =0 e MP =c.
el Cl y

Por tanto P(t) ce*. Ent = 0 se tiene que P, = ce® = ¢, por tanto P(t) = Pe*. En

t = 1 se tiene que 3P, = P ¥ 0 €=} De la Gltima ecuacion se obtiene k = 1n § =

0.4055, por tanto P(t) = P e®“*" Para determinar el tiempo en que se ha triplicado el

nimero de bacterias, resolvemos 3P, = P°®* para t. Entonces 0.4055t = 1n 3, 0
(= In3

~0.4055

Vea la figura 3.1.1. ]

~ 2.71h.
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ekt k>0
crecimiento

ekt k<0
crecimiento

FIGURA 3.1.2 Crecimiento (k > 0) y
decaimiento (k < 0).

Observe en el ejemplo 1 que el nimero real P, de bacterias presentes en el tiempo
t = 0 no tiene que ver en el calculo del tiempo que se requirié para que el nimero de bac-
terias en el cultivo se triplique. EI tiempo necesario para que se triplique una poblacion
inicial de, digamos, 100 0 1 000 000 de bacterias es de aproximadamente 2.71 horas.

Como se muestra en la figura 3.1.2, la funcién exponencial ¢ aumenta conforme
crece t para k > 0y disminuye conforme crece t para k < 0. Asi los problemas que descri-
ben el crecimiento (ya sea de poblaciones, bacterias o aun de capital) se caracterizan por un
valor positivo de k, en tanto que los problemas relacionados con decaimiento (como en la
desintegracion radiactiva) tienen un valor k negativo. De acuerdo con esto, decimos que k
es una constante de crecimiento (k > 0) o una constante de decaimiento (k < 0).

VIDA MEDIA En fisica la vida media es una medida de la estabilidad de una sus-
tancia radiactiva. La vida media es, simplemente, el tiempo que tarda en desintegrarse
0 transmutarse en otro elemento la mitad de los atomos en una muestra inicial A,.
Mientras mayor sea la vida media de una sustancia, mas estable es la sustancia. Por
ejemplo, la vida media del radio altamente radiactivo Ra-226 es de aproximadamente
1 700 afios. En 1 700 afios la mitad de una cantidad dada de Ra-226 se transmuta en
radon, Rn-222. El is6topo mas comun del uranio, U-238, tiene una vida media de
4 500 000 000 afios. En aproximadamente 4.5 miles de millones de afios la mitad
de una cantidad de U-238 se transmuta en plomo 206.

I EJEMPLO 2 Vida media del plutonio

Un reactor de cria convierte uranio 238 relativamente estable en el isétopo plutonio
239. Después de 15 afios, se ha determinado que 0.043% de la cantidad inicial A de
plutonio se ha desintegrado. Determine la vida media de ese isotopo, si la razén de
desintegracion es proporcional a la cantidad que queda.

SOLUCION Sea A(t) la cantidad de plutonio que queda al tiempo t. Como en el ejem-
plo 1, la solucion del problema con valores iniciales

dA

p kA, A(0) = Ay
es A(t) = A Si se ha desintegrado 0.043% de los atomos de A, queda 99.957%.
Para encontrar la constante k, usamos 0.99957A, = A(15), es decir, 099957
A, = A" Despejando k se obtiene k = % 1n 0.99957 = —0.00002867. Por tanto
At) = A e 0% Ahora la vida media es el valor del tiempo que le corresponde a
A(t) = 3 A, Despejando t se obtiene ;A = A g™0%%02%" g = g 00000287, De |a tltima
ecuacion se obtiene

In2

0.00002867 24,180 afos. [
FECHADO CON CARBONO Alrededor de 1950, el quimico Willard Libby invent6
un método que utiliza al carbono radiactivo para determinar las edades aproximadas
de fosiles. La teoria del fechado con carbono, se basa en que el is6topo carbono 14 se
produce en la atmédsfera por accion de la radiacién cosmica sobre el nitrdgeno. La razon
de la cantidad de C-14 con el carbono ordinario en la atmdsfera parece ser constante vy,
en consecuencia, la cantidad proporcional del is6topo presente en todos los organismos
vivos es igual que la de la atmésfera. Cuando muere un organismo cesa la absorcion
del C-14 sea por respiracion o alimentacion. Asi, al comparar la cantidad proporcional de
C-14 presente, por ejemplo en un f6sil con la razon constante que hay en la atmosfera, es
posible obtener una estimacion razonable de la edad del fosil. EI método se basa en que
se sabe que la vida media del C-14 radiactivo es de aproximadamente 5 600 afios. Por
este trabajo, Libby obtuvo el Premio Nobel de quimica en 1960. EI método de Libby se
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ha utilizado para fechar los muebles de madera en las tumbas egipcias y las envolturas
de lino de los rollos del Mar Muerto y la tela del enigmatico sudario de Turin.

I EJEMPLO 3 Edad de un fosil

Se encuentra que un hueso fosilizado contiene la centésima parte de la cantidad de
C-14 encontrada en la materia viva. Determine la edad del fésil.

SOLUCION Elpuntode partidaes, de nuevo, A(t) = Ae*. Paradeterminar el valor de la
constante de decaimiento k, usamos el hecho de que 3 Ao = A(5600) 0 3Aq = Age®60k,
De 5600k = In % = —In 2, obtenemos k = —(1n 2)/5600 = —0.00012378, por tanto
A(t) = A 0127 Con A(t) = o5 A0 teNemMos == Ag = Age 200012378 por o que

1000
—0.00012378t = In 505 = —In 1000. Asi la edad del fésil es aproximadamente

In 1000

= ——— =~ 55800 afios. [ |
0.00012378

En realidad, la edad determinada en el ejemplo 3 esta en el limite de exactitud del
método. Normalmente esta técnica se limita a aproximadamente 9 vidas medias
del is6topo, que son aproximadamente 50 000 afios. Una razon para esta limitante es que
el andlisis quimico necesario para una determinacion exacta del C-14 que queda, presenta
obstaculos formidables cuando se alcanza el punto de ;};; A,. También, en este método
se necesita destruir gran parte de la muestra. Si la medicion se realiza indirectamente,
basandose en la radiactividad existente en la muestra, es muy dificil distinguir la radia-
cion que procede del fésil de la radiacion de fondo normal.* Pero recientemente, con los
aceleradores de particulas los cientificos han podido separar al C-14 del estable C-12.
Cuando se calcula larelacion exacta de C-14 a C-12, la exactitud de este método se puede
ampliar hasta 70 000 a 100 000 afios. Hay otras técnicas isotopicas, como la que usa
potasio 40 y argdn 40, adecuadas para establecer edades de varios millones de afios.” A
veces, también es posible aplicar métodos que se basan en el empleo de aminoéacidos.

LEY DE NEWTON DEL ENFRIAMIENTO/CALENTAMIENTO En la ecuacién
(3) de la seccién 1.3 vimos que la formulacion matematica de la ley empirica de
Newton del enfriamiento/calentamiento de un objeto, se expresa con la ecuacién dife-
rencial lineal de primer orden
dT
— = k(T — Ty, 2
o = KT =T @
donde k es una constante de proporcionalidad, T(t) es la temperatura del objeto para
t>0,y T _eslatemperatura ambiente, es decir, la temperatura del medio que rodea al
objeto. En el ejemplo 4 suponemos que T _ es constante.

I EJEMPLO 4 Enfriamiento de un pastel

Al sacar un pastel del horno, su temperatura es 300° F. Tres minutos después su tempe-
ratura es de 200° F. ;Cuanto tiempo le tomaré al pastel enfriarse hasta la temperatura
ambiente de 70° F?

“El nimero de desintegraciones por minuto por gramo de carbono se registra usando un contador Geiger.
El nivel minimo de deteccidn es de aproximadamente 0.1 desintegraciones por minuto por gramo.

El fechado con potasio-argdn se usa en el registro de materiales tales como minerales, piedras, lava

y materiales extraterrestres como rocas lunares y meteoritos. La edad de un f6sil se puede estimar
determinando la edad del estrato en que se encontraba la roca.
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300 -
150 \\ T=70

15 30 t

a)
T(¢) t (min)
75° 20.1
74° 213
73° 228
72° 24.9
71° 28.6
70.5° 323

b)

FIGURA 3.1.3 Latemperatura
de enfriamiento del pastel tiende a la

temperatura ambiente.

SOLUCION En la ecuacion (2) identificamos T, = 70. Debemos resolver el problema
con valores iniciales

dT

i k(T — 70), T(0) = 300 3)
y determinar el valor de k tal que T(3) = 200.

La ecuacion (3) es tanto lineal como separable. Si separamos las variables
dT
T-170

se obtiene In|T — 70| = kt + ¢,y asi T = 70 + c,.. Cuando t = 0, T = 300, asi
300 = 70 + ¢, da ¢, = 230. Por tanto T = 70 + 230 €*. Por Ultimo, la medicion de
T(3) = 200 conduce a € = 33, o k=31In3; = —0.19018. Asi

= kdt,

T(t) = 70 + 230 019018, )

Observamos que la ecuacion (4) no tiene una solucion finitaa T(t) = 70 porque , _ 7(7)
= 70. No obstante, en forma intuitiva esperamos que el pastel se enfrie al transcurrir
un intervalo razonablemente largo. ¢Qué tan largo es “largo”? Por supuesto, no nos
debe inquietar el hecho de que el modelo (3) no se apegue mucho a nuestra intuicion
fisica. Los incisos a) y b) de la figura 3.1.3 muestran claramente que el pastel estara a
la temperatura ambiente en aproximadamente una media hora. ]

La temperatura ambiente en la ecuacion (2) no necesariamente es una constante,
pudiera ser una funcion T_(t) del tiempo t. Vea el problema 18 de los ejercicios 3.1.

MEZCLAS Al mezclar dos fluidos a veces surgen ecuaciones diferenciales lineales
de primer orden. Cuando describimos la mezcla de dos salmueras en la seccion 1.3,
supusimos que la razén con que cambia la cantidad de sal A’(t) en el tanque de mezcla
es una razén neta

dA
—— = (razon de entrada de sal) — (razon de salida de sal) = Ryyya— Rege.~ (5)

dt

En el ejemplo 5 resolveremos la ecuacion (8) de la seccion 1.3.

I EJEMPLO 5 Mezcla de dos soluciones de sal

Recordemos que el tanque grande de la seccion 1.3 contenia inicialmente 300 galones
de una solucion de salmuera. Al tanque entraba y salia sal porque se bombeaba una
solucion a un flujo de 3 gal/min, se mezclaba con la solucion original y salia del tanque
con un flujo de 3 gal/min. La concentracién de la solucion entrante era 2 Ib/gal, por
consiguiente, laentradade saleraR_ = (2 Ib/gal) - (3 gal/min) = 6 Ib/miny salia del
tanque con unarazén R__ = (A/300 Ib/gal) - (3 gal/min) = A/100 Ib/min. A partir de
esos datos y de la ecuacion (5) obtuvimos la ecuacidn (8) de la seccion 1.3. Permitanos
preguntar: si habia 50 Ib de sal disueltas en los 300 galones iniciales, ;cuanta sal habra
en el tanque pasado un gran tiempo?

SOLUCION Para encontrar la cantidad de sal A(t) en el tanque al tiempo t, resolve-

mos el problema con valores iniciales
OI—AJrLA—6 A0) =50
dt 100 ’ ’

Aqui observamos que la condicion adjunta es la cantidad inicial de sal A(0) = 50 en
el tanque y no la cantidad inicial de liquido. Ahora como el factor integrante de esta



a)
¢ (min) A (Ib)
50 266.41
100 397.67
150 47727
200 525.57
300 572.62
400 589.93

b)

FIGURA 3.1.4 Librasdesalenel
tanque como una funcidn del tiempo t.

FIGURA 3.1.5 Circuito en serie LR.

R

FIGURA 3.1.6 Circuito en serie RC.

[ |
[
C
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ecuacion diferencial lineal es /%, podemos escribir la ecuacién como
d
hal [emooA] — @{gl/lo0
dt

Integrando la Ultima ecuacion y despejando A se obtiene la solucién general
A(t) = 600 + ce "%, Conformet = 0, A = 50, de modo que ¢ = —550. Entonces, la
cantidad de sal en el tanque al tiempo t esta dada por

A(t) = 600 — 550110, (6)
La solucion (6) se uso para construir la tabla de la figura 3.1.4b. En la ecuacion (6) y en
la figura 3.1.4a también se puede ver, que A(t) — 600 conforme t — oo, Por supuesto que

esto es lo que se esperaria intuitivamente en este caso; cuando ha pasado un gran tiempo
la cantidad de libras de sal en la solucién debe ser (300 gal)(2 Ib/gal) = 600 Ib. ]

En el ejemplo 5 supusimos que la razén con que entra la solucién al tanque es
la misma que la razén con que sale. Sin embargo, el caso no necesita ser siempre el
mismo; la salmuera mezclada se puede sacar con una razon r_,. que es mayor o menor
que larazonr, con laque entra la otra salmuera. Por ejemplo, si la solucion bien mez-
clada del ejemplo 5 sale con una razén menor, digamos de r_, = 2 gal/min, entonces
se acumulara liquido en el tanque con una razénde r, . —r_ = (3 — 2) gal/min =
1 gal/min. Después de t minutos (1 gal/min) - (t min) = t gal se acumularan, por lo que
en el tanque habra 300 + t galones de salmuera. La concentracion del flujo de salida es

entonces c(t) = A/(300 + t) y larazén con que sale lasal esR_ = c(t) - r_,, 0
Rae = (300 n tlb/gal) - (2 gal/min) = 300 & tIb/m|n.
Por tanto, la ecuacion (5) se convierte en
dA 2A dA 2
— =6 0 — + A=6
dt 300 + t dt 300 +t

Debe comprobar que la solucion de la Gltima ecuacion, sujeta a A(0) = 50, es A(t) =
600 + 2t — (4.95 X 107)(300 + t) % Vea el analisis siguiente a la ecuacion (8) de la
seccién 1.3, del problema 12 en los ejercicios 1.3 y en los problemas 25 a 28 de los
ejercicios 3.1.

CIRCUITOS EN SERIE Para un circuito en serie que s6lo contiene un resistor y un
inductor la segunda ley de Kirchhoff establece que la suma de la caida de voltaje a
través del inductor (L(di/dt)) mas la caida de voltaje a través del resistor (iR) es igual
al voltaje aplicado (E(t)) al circuito. Vea la figura 3.1.5.

Por tanto obtenemos la ecuacion diferencial lineal para la corriente i(t),

L d + R = E(t 7
o+ R = EO), (7)

donde L y R son constantes conocidas como la inductancia y la resistencia, respectiva-
mente. La corriente i(t) se llama, también respuesta del sistema.

La caida de voltaje a través de un capacitor de capacitancia C es g(t)/C, donde q
es la carga del capacitor. Por tanto, para el circuito en serie que se muestra en la figura
3.1.6, la segunda ley de Kirchhoff da

1
R + —=q= E(). 8
24 = EQ) ®)
Pero la corriente i y la carga g estan relacionadas por i = dq/dt, asi la ecuacion (8) se
convierte en la ecuacion diferencial lineal
dg 1

R a + Eq = E(t). 9)
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I EJEMPLO 6 Circuito en serie

Una bateria de 12 volts se conecta a un circuito en serie en el que el inductor es de | henry
y la resistencia es de 10 ohms. Determine la corriente i, si la corriente inicial es cero.

SOLUCION De la ecuacion (7) debemos resolver
1 di

— — + 10i = 12,
2 dt

sujeta a i(0) = 0. Primero multiplicamos la ecuacion diferencial por 2, y vemos que el
factor integrante es 2. Entonces sustituyendo

%[e?oti] = 242

Integrando cada lado de la Gltima ecuacion y despejando i se obtiene i(t) = £ + ce 2.
Ahora i(0) = 0 implica que O =§+ coc=— g Por tanto la respuesta es
i(t) = & — 6 g—20t

i)=z2—zce . u

P De la ecuacion (4) de la seccidn 2.3, podemos escribir una solucion general de (7):

— ) e (RIL
PO 1 : |(t) = L

| fe(R’L)‘E(t) dt + ce RLX, (120)
|

| . ., .

| En particular, cuando E(t) = E, es una constante, la ecuacion (I0) se convierte en

|

|

|

—t it) = % + ce” (LY (12)

a) Observamos que conforme t — oo, el segundo término de la ecuacion (11) tiende a
cero. A ese término usualmente se le llama término transitorio; los demas términos
se llaman parte de estado estable de la solucion. En este caso, E /R también se llama

- corriente de estado estable; para valores grandes de tiempo resulta que la corriente

4 esta determinada tan sélo por la ley de Ohm (E = iR).

Po "
I COMENTARIOS

La solucion P(t) = P e®“* del problema con valores iniciales del ejemplo 1 des-
b) cribe la poblacién de una colonia de bacterias a cualquier tiempo t > 0. Por
supuesto, P(t) es una funcién continua que toma todos los nlmeros reales del
p intervalo P, = P < . Pero puesto que estamos hablando de una poblacion, el
sentido comun indica que P puede tomar s6lo valores positivos. Ademas, no es-
perariamos que la poblacion crezca continuamente, es decir, cada segundo, cada
microsegundo, etc., como lo predice nuestra solucion; puede haber intervalos de
tiempo [t,, t,], en los que no haya crecimiento alguno. Quiza, entonces, la grafica
Po - que se muestra en la figura 3.1.7a es una descripcion mas real de P que la gréfi-
ca de una funcion exponencial. Usar una funcion continua para describir un feno-
Lo meno discreto con frecuencia es mas conveniente que exacto. Sin embargo, para
ciertos fines nos podemos sentir satisfechos si el modelo describe con gran exac-
titud el sistema, considerado macroscopicamente en el tiempo como se mues-
©) tra en las figuras 3.1.7b y 3.1.7c, mas que microscopicamente, cComo se muestra
FIGURA 3.1.7 El crecimiento en la figura 3.1.7a.
poblacional es un proceso discreto.
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EJERCICIOS 3.1

Las respuestas a los problemas con nimero impar comienzan en la pagina RES-3.

Crecimiento y decrecimiento

1.

10.

Se sabe que la poblacion de una comunidad crece con una
razén proporcional al nimero de personas presentes en el
tiempo t. Si la poblacion inicial P, se duplicé en 5 afios,
¢En cuanto tiempo se triplicara y cuadruplicara?

Suponga que se sabe que la poblacion de la comunidad del
problema 1 es de 10 000 después de tres afios. ;Cual era la
poblacion inicial P,? ,Cual sera la poblacion en 10 afios?
¢Qué tan répido esta creciendo la poblacién ent = 10?

La poblacion de un pueblo crece con una razén propor-
cional a la poblacion en el tiempo t. La poblacién inicial
de 500 aumenta 15% en 10 afos. ¢Cual seréa la poblacion
pasados 30 afios? ¢Qué tan rapido esta creciendo la po-
blacién en t = 30?

La poblacién de bacterias en un cultivo crece a una razon
proporcional a la cantidad de bacterias presentes al tiempo
t. Después de tres horas se observa que hay 400 bacterias
presentes. Después de 10 horas hay 2 000 bacterias pre-
sentes. ¢Cual era la cantidad inicial de bacterias?

El isotopo radiactivo del plomo Pb-209, decae con una
razén proporcional a la cantidad presente al tiempo t y
tiene un vida media de 3.3 horas. Si al principio habia
1 gramo de plomo, ¢cuéanto tiempo debe transcurrir para
que decaiga 90%?

Inicialmente habia 100 miligramos de una sustancia ra-
diactiva. Después de 6 horas la masa disminuy6 3%. Si la
razén de decaimiento, en cualquier momento, es propor-
cional a la cantidad de la sustancia presente al tiempo t,
determine la cantidad que queda después de 24 horas.

Calcule la vida media de la sustancia radiactiva del pro-
blema 6.

a) El problema con valores iniciales dA/dt = kA, A(0)
= A, es el modelo de decaimiento de una sustancia
radiactiva. Demuestre que, en general, la vida media T
de la sustanciaes T = —(In 2)/k.

b) Demuestre que la solucién del problema con valores
iniciales del inciso a) se puede escribir como A(t) =
A2

¢) Siuna sustancia radiactiva tiene la vida media T dada
en el inciso a), ¢cuanto tiempo le tomara a una canti-
dad inicial A, de sustancia decaer a A ?

Cuando pasa un rayo vertical de luz por un medio trans-
parente, la razon con que decrece su intensidad | es pro-
porcional a I(t), donde t representa el espesor, en pies, del
medio. En agua limpia de mar, la intensidad a 3 pies de-
bajo de la superficie es 25% de la intensidad inicial I
del rayo incidente. ¢Cual es la intensidad del rayo a 15
pies debajo de la superficie?

Cuando el interés es compuesto continuamente, la can-
tidad de dinero aumenta con una razén proporcional a

la cantidad presente S al tiempo t, es decir, dS/dt = rS,

donde r es la razon de interés anual.

a) Calcule la cantidad reunida al final de 5 afios cuando
se depositan $5 000 en una cuenta de ahorro que rinde
el 53% de interés anual compuesto continuamente.

b) ¢En cuéntos afios se habra duplicado el capital inicial?

c) Utilice una calculadora para comparar la cantidad ob-
tenida en el inciso a) con la cantidad S = 5000(1 +
1(0.0575))° que se relne cuando el interés se com-
pone trimestralmente.

Fechado con carbono

11. Los arquedlogos utilizan piezas de madera quemada o

carbon vegetal, encontradas en el lugar para fechar pin-
turas prehistdricas de paredes y techos de una caverna en
Lascaux, Francia. Vea la figura 3.1.8. Utilice la informa-
cién de la pagina 84 para precisar la edad aproximada de
una pieza de madera quemada, si se determiné que 85.5%
de su C-14 encontrado en los arboles vivos del mismo tipo
se habia desintegrado.
-

3.y

s

FIGURA 3.1.8 Pintura rupestre en las cuevas de Altamira, Espafia.

12. El sudario de Turin muestra el negativo de la imagen del

cuerpo de un hombre que parece que fue crucificado, mu-
chas personas creen que es el sudario del entierro de Jesus
de Nazaret. Vea la figura 3.1.9. En 1988 el Vaticano con-
cedioé permiso para fechar con carbono el sudario. Tres la-
boratorios cientificos independientes analizaron el pafio y
concluyeron que el sudario tenia una antigiiedad de 660
afios,* una antigiiedad consistente con su aparicion histo-

FIGURA 3.1.9 Ejemplar de uno de las decenas de libros
que se han escrito sobre la certeza de la antigliedad
del sudario de Turin.

“Algunos eruditos no estan de acuerdo con este hallazgo. Para mas
informacion de este fascinante misterio vea la pagina del Sudario de Turin
en la pagina http://www.shroud.com
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rica. Usando esta antigiiedad determine qué porcentaje de
la cantidad original de C-14 quedaba en el pafio en 1988.

Ley de Newton enfriamiento/calentamiento

13.

14.

15.

16.

17.

18.

19.

Un termémetro se cambia de una habitacién donde la tempe-
ratura es de 70° F al exterior, donde la temperatura del aire
es de 10° F. Después de medio minuto el termémetro indica
50° F. ¢Cual es la lectura del termémetro en t = 1 min?
¢ Cuénto tiempo le tomara al termémetro alcanzar los 15° F?

Un termdmetro se lleva de una habitacion hasta el am-
biente exterior, donde la temperatura del aire es 5° F.
Después de 1 minuto, el termémetro indica 55° F y des-
pués de 5 minutos indica 30° F. ;Cudl era la temperatura
inicial de la habitacion?

Una pequefia barra de metal, cuya temperatura inicial era
de 20° C, se deja caer en un gran tanque de agua hir-
viendo. ;Cuanto tiempo tardara la barra en alcanzar los
90° C si se sabe que su temperatura aumento 2° en 1 se-
gundo? ¢ Cuénto tiempo tardara en alcanzar los 98° C?

Dos grandes tanques A y B del mismo tamafio se llenan con
fluidos diferentes. Los fluidos en los tanques Ay B se man-
tienen a 0° C y a 100° C, respectivamente. Una pequefia
barra de metal, cuya temperatura inicial es 100° C, se su-
merge dentro del tanque A. Después de 1 minuto la tem-
peratura de la barra es de 90° C. Después de 2 minutos se
saca la barra e inmediatamente se transfiere al otro tanque.
Después de 1 minuto en el tanque B la temperatura se eleva
10° C. ¢Cuénto tiempo, medido desde el comienzo de todo
el proceso, le tomara a la barra alcanzar los 99.9° C?

Un termémetro que indica 70° F se coloca en un horno pre-
calentado a una temperatura constante. A través de una ven-
tana de vidrio en la puerta del horno, un observador registra
que el termometro lee 110° F después de  minuto y 145° F
después de 1 minuto. ¢Cual es la temperatura del horno?

Al tiempo t = 0 un tubo de ensayo sellado que contiene
una sustancia quimica est& inmerso en un bafio liquido. La
temperatura inicial de la sustancia quimica en el tubo de
ensayo es de 80° F. El bafio liquido tiene una temperatura
controlada (medida en grados Fahrenheit) dada por T _(t) =
100 — 40e~%* t = 0, donde t se mide en minutos.

a) Suponga que k = —0.1 en la ecuacion (2). Antes de
resolver el PVI, describa con palabras como espera
que sea la temperatura T(t) de la sustancia quimica a
corto plazo. Y a largo plazo.

b) Resuelva el problema con valores iniciales. Use un
programa de graficacion para trazar la grafica de T(t)
en diferentes intervalos de tiempo. ¢Las graficas con-
cuerdan con sus predicciones del inciso a)?

Un cadaver se encontrd dentro de un cuarto cerrado en una
casa donde la temperatura era constante a 70° F. Al tiempo
del descubrimiento la temperatura del corazén del cadaver
se determiné de 85° F. Una hora después una segunda me-

20.

dicion mostré que la temperatura del corazon era de 80° F.
Suponga que el tiempo de la muerte corresponde at = 0
y que la temperatura del corazon en ese momento era de
98.6° F. Determine ¢cuantas horas pasaron antes de que se
encontrara el cadaver? [Sugerencia: Sea que t, > 0 denote
el tiempo en que se encontro el cadaver.]

La razén con la que un cuerpo se enfria también depende
de su area superficial expuesta S. Si S es una constante
entonces una modificacion de la ecuacion (2) es

dar
— =kgT-T,
dt S m)l

donde k <0y T_es una constante. Suponga que dos tazas
A'y B estén llenas de café al mismo tiempo. Inicialmente
la temperatura del café es de 150° F. El rea superficial del
café en la taza B es del doble del &rea superficial del café
en la taza A. Después de 30 min la temperatura del café en
lataza Aesde 100° F. Si T = 70° F, entonces ¢cual es la
temperatura del café de la taza B después de 30 min?

Mezclas

21.

22.

23.

24,

25.

26.

217.

Un tanque contiene 200 litros de un liquido en el que se
han disuelto 30 g de sal. Salmuera que tiene 1 g de sal
por litro entra al tanque con una razén de 4 L/min; la so-
lucion bien mezclada sale del tanque con la misma razon.
Encuentre la cantidad A(t) de gramos de sal que hay en el
tanque al tiempo t.

Resuelva el problema 21 suponiendo que al tanque entra
agua pura.

Un gran tanque de 500 galones esta lleno de agua pura.
Le entra salmuera que tiene 2 Ib de sal por galdn a razén
de 5 gal/min. La solucién bien mezclada sale del tanque
con la misma razon. Determine la cantidad A(t) de libras
de sal que hay en el tanque al tiempo t.

En el problema 23, ¢cuél es la concentracion c(t) de sal en
el tanque al tiempo t? ¢ Y al tiempo t = 5 min? ;Cudl es la
concentracion en el tanque después de un largo tiempo, es
decir, conforme t — «? ¢ Para qué tiempo la concentracion
de sal en el tanque es igual a la mitad de este valor limite?

Resuelva el problema 23 suponiendo que la solucién sale
con una razon de 10 gal/min. ;Cuéndo se vacia el tanque?

Determine la cantidad de sal en el tanque al tiempo ten el
ejemplo 5 si la concentracion de sal que entra es variable
y esta dada por ¢, (t) = 2 + sen(t/4) Ib/gal. Sin trazar la
gréfica, infiera a qué curva solucion del PVI se pareceria.
Después utilice un programa de graficacion para trazar la
gréafica de la solucidn en el intervalo [0, 300]. Repita para
el intervalo [0, 600] y compare su gréfica con la que se
muestra en la figura 3.1.4a.

Un gran tanque esta parcialmente lleno con 100 galones
de fluido en los que se disolvieron 10 libras de sal. La sal-



28.

muera tiene  de sal por gal6n que entra al tanque a razén
de 6 gal/min. La solucién bien mezclada sale del tanque a
razon de 4 gal/min. Determine la cantidad de libras de sal
que hay en el tanque después de 30 minutos.

En el ejemplo 5, no se dio el tamafio del tanque que tiene
la solucion salina. Suponga, como en el analisis siguiente
al ejemplo 5, que la razén con que entra la solucion al tan-
que es de 3 gal/min pero que la solucion bien mezclada
sale del tanque a razon de 2 gal/min. Esta es la razon por
la cual la salmuera se estd acumulando en el tanque a
razén de 1 gal/min, cualquier tanque de tamafio finito ter-
minara derramandose. Ahora suponga que el tanque esta
destapado y tiene una capacidad de 400 galones.

a) ¢Cuando se derramara el tanque?

b) ¢Cuéntas libras de sal habré en el tanque cuando co-
mienza a derramarse?

c) Suponga que el tanque se derrama, que la salmuera
continda entrando a razén de 3 gal/min, que la solu-
cién estd bien mezclada y que la solucion sigue sa-
liendo a razon de 2 gal/min. Determine un método
para encontrar la cantidad de libras de sal que hay en
el tanque al tiempo t = 150 min.

d) Calcule la cantidad de libras de sal en el tanque con-
forme t — <. ;Su respuesta coincide con su intuicion?

e) Utilice un programa de graficacion para trazar la gra-
fica de A(t) en el intervalo [0, 500).

Circuitos en serie

29.

30.

31.

32.

33.

Se aplica una fuerza electromotriz de 30 V a un circuito
en serie LR con 0.1 henrys de inductancia y 50 ohms
de resistencia. Determine la corriente i(t), si i(0) = 0.
Determine la corriente conforme t — o,

Resuelva la ecuacion (7) suponiendo que E(t) = E, sen wt
y que i(0) = i,

Se aplica una fuerza electromotriz de 100 volts a un cir-
cuito en serie RC, en el que la resistencia es de 200 ohms
y la capacitancia es de 10~ farads. Determine la carga q(t)
del capacitor, si q(0) = 0. Encuentre la corriente i(t).

Se aplica una fuerza electromotriz de 200 V a un circuito
en serie RC, en el que la resistencia es de 1000 ohms y
la capacitancia es de 5 X 107 farads. Determine la carga
q(t) en el capacitor, si i(0) = 0.4 amperes. Determine la
carga y la corriente en t = 0.005 s. Encuentre la carga
conforme t — oo,

Se aplica una fuerza electromotriz
120, 0=t=20
E(t) =
® {0, t> 20

a un circuito en serie LR en el que la inductancia es de
20 henrys y la resistencia es de 2 ohms. Determine la co-
rriente i(t), si i(0) = 0.

34.
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Suponga que un circuito en serie RC tiene un resistor va-
riable. Si la resistencia al tiempo t esta dada por R = k;
+ k,t, donde k, y k, son constantes positivas, entonces la
ecuacion (9) se convierte en

dg 1
k, + kt) — + =q = E(t).
(K ) dt Cq ®

Si E(t) = E; y q(0) = q,, donde E, y q, son constantes,
muestre que

k1 1/Ck,
qt) = E,C + (q — EoC)<k1 n k2t> :

Modelos lineales adicionales

35.

36.

Resistencia del aire En la ecuacién (14) de la seccién
1.3 vimos una ecuacion diferencial que describe la velo-
cidad v de una masa que cae sujeta a una resistencia del
aire proporcional a la velocidad instantanea es

m av_ mg — kv,

dt '

donde k > 0 es una constante de proporcionalidad. La
direccion positiva se toma hacia abajo.

a) Resuelva la ecuacion sujeta a la condicion inicial
v(0) = v,

b) Utilice la solucion del inciso a) para determinar la
velocidad limite o terminal de la masa. Vimos cémo
determinar la velocidad terminal sin resolver la ED
del problema 40 en los ejercicios 2.1.

c) Sila distancia s, medida desde el punto en el que se
suelta la masa se relaciona con la velocidad v por
ds/dt = v(t), determine una expresion explicita para
s(t), si s(0) = 0.

¢Qué tan alto? (Sin resistencia del aire) Suponga que
una pequefa bala de cafion que pesa 16 libras se dispara
verticalmente hacia arriba, como se muestra en la figura
3.1.10, con una velocidad inicial de v, = 300 pies/s. La res-
puesta a la pregunta “;Qué tanto sube la bala de cafion?”,
depende de si se considera la resistencia del aire.

a) Suponga que se desprecia la resistencia del aire. Si
la direccién es positiva hacia arriba, entonces un
modelo para la bala del cafién esta dado por d?s/dt?
= —( (ecuacidn (12) de la seccidén 1.3). Puesto que
ds/dt = v(t) la Gltima ecuacién diferencial es la

RN
/7~ \

[

z
D ool

I
A

nivel del |
suelo ©

FIGURA 3.1.10 Determinacion
de la altura maxima de la bala de
cafon del problema 36.
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37.

38.

39.
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misma que la ecuacion dv/dt = —g, donde se toma
g = 32 pies/s?. Encuentre la velocidad v(t) de la bala
de cafién al tiempo t.

b) Utilice el resultado que se obtuvo en el inciso a) para
determinar la altura s(t) de la bala de cafion medida
desde el nivel del suelo. Determine la altura maxima
que alcanza la bala.

¢Qué tan alto? (Resistencia lineal del aire) Repita el
problema 36, pero esta vez suponga que la resistencia del
aire es proporcional a la velocidad instantanea. Esta es
la raz6n por la que la altura maxima que alcanza la bala
del cafion debe ser menor que la del inciso b) del pro-
blema 36. Demuestre esto suponiendo que la constante de
proporcionalidad es k = 0.0025. [Sugerencia: Modifique
ligeramente la ED del problema 35.]

Paracaidismo Una paracaidista pesa 125 libras y su
paracaidas y equipo juntos pesan otras 35 libras. Después
de saltar del avion desde una altura de 15 000 pies, la
paracaidista espera 15 segundos y abre su paracaidas.
Suponga que la constante de proporcionalidad del mo-
delo del problema 35 tiene el valor k = 0.5 durante la
caida libre y k = 10 después de que se abri6 el paracai-
das. Suponga que su velocidad inicial al saltar del avion
es igual a cero. ;Cudl es la velocidad de la paracaidista
y qué distancia ha recorrido después de 20 segundos de
que salto del avién? Vea la figura 3.1.11. ;Cémo se com-
para la velocidad de la paracaidista a los 20 segundos con
su velocidad terminal? ¢Cudnto tarda en llegar al suelo?
[Sugerencia: Piense en funcién de dos diferentes PVI.]

caida libre

=

la resistencia del ﬁ
aire es 0.5v

el paracaidas

la resistencia del se abre
airees 10v v

FIGURA 3.1.11
Calculo del tiempo
que tarda en llegar al
suelo del problema 38.

Evaporacion de una gota de lluvia  Cuando cae una gota
de Iluvia, ésta se evapora mientras conserva su forma esfé-
rica. Si se hacen suposiciones adicionales de que la rapidez
ala que se evapora la gota de lluvia es proporcional a su area
superficial y que se desprecia la resistencia del aire, enton-
ces un modelo para la velocidad v(t) de la gota de lluvia es

dv N 3(K/p)
dt  (K/p)t + 1y
Aqui p es la densidad del agua, r, es el radio de la gota de

lluviaent = 0, k < 0 es la constante de proporcionalidad
y la direccién hacia abajo se considera positiva.

40.

41.

42.

43.

a) Determine v(t) si la gota de lluvia cae a partir del re-
poso.

b) Vuelva a leer el problema 34 de los ejercicios 1.3
y demuestre que el radio de la gota de lluvia en el
tiempo tes r(t) = (k/p)t + r,.

¢) Sir,=0.01piesy r = 0.007 pies, 10 segundos des-
pués de que la gota cae desde una nube, determine el
tiempo en el que la gota de lluvia se ha evaporado por
completo.

Poblacién fluctuante La ecuacion diferencial dP/dt =
(k cos t)P, donde k es una constante positiva, es un modelo
matematico para una poblacion P(t) que experimenta fluc-
tuaciones anuales. Resuelva la ecuacion sujeta a P(0) = P,.
Utilice un programa de graficacion para trazar la grafica de
la solucion para diferentes elecciones de P,

Modelo poblacional En un modelo del cambio de po-
blacién de P(t) de una comunidad, se supone que

dP dB dD

dt  dt  dt’

donde dB/dt y dD/dt son las tasas de natalidad y mortan-
dad, respectivamente.

a) Determine P(t) si dB/dt = k Py dD/dt = k,P.
b) Analice los casos k, > k,, k, =k, y k <k,

Modelo de cosecha constante  Un modelo que describe
la poblacion de una pesqueria en la que se cosecha con
una razén constante esta dada por

dP

Ezkp—h,

donde k y h son constantes positivas.
a) Resuelva la ED sujetaa P(0) = P,.

b) Describa el comportamiento de la poblacién P(t)
conforme pasa el tiempo en los tres casos P, > h/k,
P,=h/ky0 <P ,<h/k

c) Utilice los resultados del inciso b) para determinar
si la poblacién de peces desaparecera en un tiempo
finito, es decir, si existe un tiempo T > 0 tal que P(T)
= 0. Si la poblacién desaparecera, entonces deter-
mine en qué tiempo T.

Propagacion de una medicina  Un modelo matematico
para la razén con la que se propaga una medicina en el
torrente sanguineo esta dado por

dx

— =71 — kx

dt
donde r y k son constantes positivas. Sea x(t) la funcion
que describe la concentracion de la medicina en el to-
rrente sanguineo al tiempo t.

a) Ya que la ED es auténoma, utilice el concepto de
esquema de fase de la seccion 2.1 para determinar el
valor de x(t) conforme t — oo,
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45,

b) Resuelva la ED sujeta a x(0) = 0. Dibuje la grafica
de x(t) y compruebe su prediccion del inciso a). ¢En
cuanto tiempo la concentracion es la mitad del valor
limite?

Memorizacion Cuando se considera la falta de memo-
ria, la razén de memorizacion de un tema esta dada por

dA

a = kl(M - A) - sz,
donde k;, > 0, k, > 0, A(t) es la cantidad memorizada al
tiempo t, M es la cantidad total a memorizarsey M — A es
la cantidad que falta por memorizar.

a) Puesto que la ED es auténoma, utilice el concepto de es-
quema de fase de la seccién 2.1 para determinar el valor
limite de A(t) conforme t — . Interprete el resultado.

b) Resuelvala ED sujetaa A(0) = 0. Dibuje la gréafica de
A(t) y compruebe su prediccion del inciso a).

Marcapasos de corazén En lafigura 3.1.12 se muestra
un marcapasos de corazén, que consiste en un interruptor,
una bateria, un capacitor y el corazén como un resistor.
Cuando el interruptor S esta en P, el capacitor se carga;
cuando S esta en Q, el capacitor se descarga, enviando
estimulos eléctricos al corazén. En el problema 47 de los
ejercicios 2.3 vimos que durante este tiempo en que se
estan aplicado estimulos eléctricos al corazon, el voltaje
E a través del corazon satisface la ED lineal
d 1
dt RC
a) Suponga que en el intervalo de tiempo de duracion
t, 0 <t <t, el interruptor S esta en la posicion P
como se muestra en la figura 3.1.12 y el capacitor
se estd cargando. Cuando el interruptor se mueve a
la posicion Q al tiempo t, el capacitor se descarga,
enviando un impulso al corazon durante el intervalo
de tiempo de duracion t,: t, =t <t + t,. Por lo que
el intervalo inicial de carga descarga0 <t <t +t,
el voltaje en el corazdn se modela realmente por la
ecuacion diferencial definida por tramos.

dE 0, 0o=t<ty

— =1 1
dt —ocE hSt<ttt

_ corazc’)n

©

. Q
interruptor
P

S C}i
=)

FIGURA 3.1.12 Modelo de un marcapasos del problema 45.
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Al moverse S entre P y Q, los intervalos de carga y
descarga de duraciones t, y t, se repiten indefinida-
mente. Supongaquet, = 4s,t, =2s,E =12V, E(0)
=0, E(4) = 12, E(6) = 0, E(10) = 12, E(12) = 0,
etc. Determine E(t) para0 =t < 24.

b) Suponga para ilustrar que R = C = 1. Utilice un pro-
grama de graficacién para trazar la gréfica de la solu-
cién del PVI del inciso a) para 0 = t < 24.

46. Caja deslizandose a) Una caja de masa m se desliza

hacia abajo por un plano inclinado que forma un an-
gulo 6 con la horizontal como se muestra en la figura
3.1.13. Determine una ecuacién diferencial para la
velocidad v(t) de la caja al tiempo t para cada uno de
los casos siguientes:

i) No hay friccién cinética y no hay resisten-
cia del aire.

ii) Hay friccion cinética y no hay resistencia
del aire.

iii) Hay friccion cinética y hay resistencia del
aire.

En los casos ii) y iii) utilice el hecho de que la fuerza
de friccién que se opone al movimiento es wN, donde
w es el coeficiente de friccidn cinéticay N es la com-
ponente normal del peso de la caja. En el caso iii)
suponga que la resistencia del aire es proporcional a
la velocidad instanténea.

b) Enelinciso a), suponga que la caja pesa 96 libras, que
el &ngulo de inclinacion del plano es 6 = 30°, que el
coeficiente de friccion cinética es u = V3/4, y que
la fuerza de retardo debida a la resistencia del aire es
numéricamente igual a }v. Resuelva la ecuacion dife-
rencial para cada uno de los tres casos, suponiendo
que la caja inicia desde el reposo desde el punto mas
alto a 50 pies por encima del suelo.

friccion

movimiento

FIGURA 3.1.13 Caja deslizandose hacia abajo del plano
inclinado del problema 46.

47. Continuacion de caja deslizandose a) En el problema

46 sea s(t) la distancia medida hacia abajo del plano
inclinado desde el punto més alto. Utilice ds/dt =
v(t) y la solucion de cada uno de los tres casos del
inciso b) del problema 46 para determinar el tiempo
que le toma a la caja deslizarse completamente hacia
abajo del plano inclinado. Aqui puede ser Gtil un pro-
grama para determinar raices con un SAC.
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b) En el caso en que hay friccion (u # 0) pero no hay Después encuentre el tiempo que tarda en deslizarse
resistencia del aire, explique por qué la caja no se el plano.
ggsgéaelhac:ioabmago a(i?omaernr?t?andd(:aldesgi il arnedpgseol 48. Qué sube...a) Es bien conocido que el modelo que
éns o dep'uncl'nac'sén 0 sai IfaceataS#O _ . desprecia la resistencia del aire, inciso a) del pro-
gu inclinact satls =M blema 36, predice que el tiempo t, que tarda la bala
c) La caja se deslizara hacia abajo del plano con- de cafion en alcanzar su altura maxima es el mismo
forme tan 6 = w si a ésta se le proporciona una tiempo t, que tarda la bala de cafion en llegar al suelo.
velocidad inicial v(0) = v, > 0. Suponga que Ademas la magnitud de la velocidad de impacto v,
w = \V3/4y 6 = 23°. Compruebe que tan 6 = p. es igual a la velocidad inicial v, de la bala de cafion.
¢Qué distancia se deslizara hacia abajo del plano Compruebe ambos resultados.
siv, = 1 pie/s? b) Después, utilizando el modelo del problema 37 que
d) Utilice losvaloresu = V/3/4y 6 = 23° para aproxi- considera la resistencia del aire, compare el valor de
mar la menor velocidad inicial v, que puede tener la t,con t,y el valor de la magnitud de v, con v,. Aqui
caja, para que a partir del reposo a 50 pies arriba puede ser util un programa para d_etermlnar raices
del suelo, se deslice por todo el plano inclinado. con un SAC (o una calculadora graficadora).
3.2 MODELOS NO LINEALES
REPASO DE MATERIAL
e Ecuaciones (5), (6) y (10) de la seccién 1.3 y problemas 7, 8, 13, 14 y 17 de los ejercicios 1.3.
e Separacion de variables de la seccion 2.2.
INTRODUCCION  Terminamos nuestro estudio de ecuaciones diferenciales de primer orden sim-
ples con el andlisis de algunos modelos no lineales.
DINAMICA POBLACIONAL Si P(t) es el tamafio de una poblacién al tiempo t, el
modelo del crecimiento exponencial comienza suponiendo que dP/dt = kP para cierta
k > 0. En este modelo, la tasa especifica o relativa de crecimiento, definida por
dP/dt
5 )
es una constante k. Es dificil encontrar casos reales de un crecimiento exponencial durante
largos periodos, porgue en cierto momento los recursos limitados del ambiente ejerceran
restricciones sobre el crecimiento de la poblacion. Por lo que para otros modelos, se puede
esperar que la razon (1) decrezca conforme la poblacién P aumenta de tamafio.

La hipotesis de que la tasa con que crece (o decrece) una poblacion sélo depende del
namero presente P y no de mecanismos dependientes del tiempo, tales como los fenéme-
nos estacionales (vea el problema 18, en los ejercicios 1.3), se puede enunciar como:

f(P) dP/dt dP
—— =f(P 0 — = Pf(P). 2
5 =f(P) 5 = PP @)
]

Esta ecuacion diferencial, que se adopta en muchos modelos de poblacion de anima-

les, se llama hipétesis de dependencia de densidad.
ECUACION LOGISTICA Supobngase que un medio ambiente es capaz de sostener,
como maximo, una cantidad K determinada de individuos en una poblacion. La cantidad K
p se llama capacidad de sustento del ambiente. Asi para la funcion f en la ecuacion (2) se
tiene que f(K) = 0y simplemente hacemos f(0) = r. En la figura 3.2.1 vemos tres funcio-
FIGURA 3.2.1 La suposicién mas nes que satisfacen estas dos condiciones. La hipotesis mas sencilla es que f(P) es lineal,

simple para f(P) es una recta (color azul).

es decir, f(P) = c,P + c,. Si aplicamos las condiciones f(0) = r y f(K) = 0, tenemos
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que ¢, = ryc, = —r/K, respectivamente, y asi f adopta la forma f(P) = r — (r/K)P.
Entonces la ecuacion (2) se convierte en
drP r
—=P(r—-=P|.
Pl -we) @
Redefiniendo las constantes, la ecuacién no lineal (3) es igual a
dP
— = P(a — bP). 4
o~ Pla—bp) 4)

Alrededor de 1840, P. F. Verhulst, matematico y bidlogo belga, investigd mo-
delos matematicos para predecir la poblacion humana en varios paises. Una de las
ecuaciones que estudio fue la (4), cona > 0y b > 0. Esa ecuacion se llamo ecuacién
logistica y su solucién se denomina funcion logistica. La grafica de una funcion lo-
gistica es la curva logistica.

La ecuacion diferencial dP/dt = kP no es un modelo muy fiel de la poblacion
cuando ésta es muy grande. Cuando las condiciones son de sobrepoblacidn, se presen-
tan efectos negativos sobre el ambiente como contaminacion y exceso de demanda de
alimentos y combustible, esto puede tener un efecto inhibidor en el crecimiento para
la poblacién. Como veremos a continuacion, la solucion de (4) esta acotada conforme
t — oo, Si se rescribe (4) como dP/dt = aP — bP?, el término no lineal —bP? b > 0 se
puede interpretar como un término de “inhibicion” o “competencia”. También, en la
mayoria de las aplicaciones la constante positiva a es mucho mayor que b.

Se ha comprobado que las curvas logisticas predicen con bastante exactitud el cre-
cimiento de ciertos tipos de bacterias, protozoarios, pulgas de agua (Dafnia) y moscas
de la fruta (Drosofila) en un espacio limitado.

SOLUCION DE LA ECUACION LOGISTICA Uno de los métodos para resolver
la ecuacion (4) es por separacion de variables. Al descomponer el lado izquierdo de
dP/P(a — bP) = dt en fracciones parciales e integrar, se obtiene

1/a. b/a. )
<—+—b dP = dt

1 1
=In|P| = =Inja—bP|=t+c
a a

In ‘ =at + ac
a— bP
P
= et
a—bp
De la Gltima ecuacion se tiene que
ac,e* ac,

P(t) =

1 + bc e N bc, + e

Si P(0) = P, P, # a/b, encontramos que ¢, = P b(a — bP) y asi, sustituyendo y
simplificando, la solucion se convierte en

aP,

bP, + (a — bPpye " ©)

P(t) =

GRAFICAS DE P(t) La forma basica de la funcion logistica P(t) se puede obtener
sin mucho esfuerzo. Aunque la variable t usualmente representa el tiempo y raras veces
se consideran aplicaciones en las que t < 0, sin embargo tiene cierto interés incluir este
intervalo al mostrar las diferentes graficas de P. De la ecuacién (5) vemos que

P, _a

— conforme t—o y P(t)—0 conforme t— —oo,

PO~ " b
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b)

FIGURA 3.2.2 Curvas logisticas para
diferentes condiciones iniciales.

>

a1
o
o
LIS N BN O B B |

t (dias) x (nimero de infectados)

50 (observados)
124
276
507
735
882
953

[s>RANoREe BN e Y I

—_

b)

FIGURA 3.2.3  El nlmero de
estudiantes infectados x(t) tiende a 1000
conforme pasa el tiempo t.

La linea punteada P = a/2b de la figura 3.2.2 corresponde a la ordenada de un punto
de inflexion de la curva logistica. Para mostrar esto derivamos la ecuacion (4) usando
la regla del producto:

@p dP P dp
(b E )+ @a-mE L a-pp
ae ( dt> @=bP g =4t @ )

= P(a — bP)(@ — 2bP)

el Y2

Recuerde del célculo que los puntos donde d?P/dt? = 0 son posibles puntos de in-
flexion, pero obviamente se pueden excluir P = 0y P = a/b. Por tanto P = a/2b es
el unico valor posible para la ordenada en la cual puede cambiar la concavidad de la
grafica. Para 0 < P < a/2b se tiene que P”" > 0,y a/2b < P < a/b implica que P" <
0. Asi cuando se lee de izquierda a derecha, la gréafica cambia de concava hacia arriba a
céncava hacia abajo, en el punto que corresponde a P = a/2b. Cuando el valor inicial
satisface a 0 < P, < a/2b, la gréfica de P(t) adopta la forma de una S, como se ve en
lafigura 3.2.2a. Paraa/2b < P, < a/b la grafica aln tiene la forma de S, pero el punto
de inflexion ocurre en un valor negativo de t, como se muestra en la figura 3.2.2b.

En la ecuacion (5) de la seccion 1.3 ya hemos visto a la ecuacion (4) en la forma
dx/dt = kx(n + 1 -x), k > 0. Esta ecuacion diferencial presenta un modelo razonable
para describir la propagacién de una epidemia que comienza cuando se introduce una
persona infectada en una poblacién estatica. La solucion x(t) representa la cantidad
de personas que contraen la enfermedad al tiempo t.

I EJEMPLO T Crecimiento logistico

Suponga que un estudiante es portador del virus de la gripe y regresa a su aislado cam-
pus de 1000 estudiantes. Si se supone que la razon con que se propaga el virus es pro-
porcional no solo a la cantidad x de estudiantes infectados sino también a la cantidad
de estudiantes no infectados, determine la cantidad de estudiantes infectados después
de 6 dias si ademas se observa que después de cuatro dias x(4) = 50.

SOLUCION Suponiendo que nadie deja el campus mientras dura la enfermedad, de-
bemos resolver el problema con valores iniciales

% = kx(1000 — x), x(0) = 1.

Identificando a = 1000k y b = k, vemos de inmediato en la ecuacion (5) que

B 1000k 1000
k + 999ke 1000kt 1 + 999g~ 1000k
Ahora, usamos la informacién x(4) = 50y calculamos k con

_ 1000
1 + 999400

X(t)

50

In =22 = —0.9906. Por tanto

9199
1000
x(t) = 1+ ggge—o.99ost'

Encontramos — 1000k = %

. B 1000 B .
Finalmente, X(6) = 1+ 9996599 — 276 estudiantes.

En la tabla de la figura 3.2.3b se dan otros valores calculados de x(t). ]
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MODIFICACIONES DE LA ECUACION LOGISTICA Hay muchas variaciones de
la ecuacion logistica. Por ejemplo, las ecuaciones diferenciales

dP dP

at P(@a—bP) —h y n P(a— bP) + h (6)
podrian servir, a su vez, como modelos para la poblacién de una pesqueria donde el
pez se pesca o0 se reabastece con una razén h. Cuando h > 0 es una constante, las
ED en las ecuaciones (6) se analizan facilmente cualitativamente o se resuelven ana-
liticamente por separacidn de variables. Las ecuaciones en (6) también podrian servir
como modelos de poblaciones humanas que decrecen por emigracion o que crecen por
inmigracion, respectivamente. La razén h en las ecuaciones (6) podria ser funcién del
tiempo t o depender de la poblacion; por ejemplo, se podria pescar periédicamente o
con una razoén proporcional a la poblacion P al tiempo t. En el Gltimo caso, el modelo
seriaP’ = P(a—hP) —cP, ¢ > 0. La poblacion humana de una comunidad podria cam-
biar debido a la inmigracion de manera tal que la contribucidn debida a la inmigracion
es grande cuando la poblacién P de la comunidad era pequefia pero pequefia cuando
P es grande; entonces un modelo razonable para la poblacion de la comunidad seria
P’ = P(a — bP) + ce ™", ¢ > 0, k> 0. Vea el problema 22 de los ejercicios 3.2. Otra
ecuacion de la forma dada en (2),

dP
— = P(a— bInP), (7
dt
es una modificacion de la ecuacion logistica conocida como la ecuacion diferencial
de Gompertz. Esta ED algunas veces se usa como un modelo en el estudio del cre-
cimiento o decrecimiento de poblaciones, el crecimiento de tumores solidos y cierta

clase de predicciones actuariales. Vea el problema 22 de los ejercicios 3.2.

REACCIONES QUIMICAS Suponga que a gramos de una sustancia quimica A se
combinan con b gramos de una sustancia quimica B. Si hay M partes de Ay N partes
de B formadas en el compuesto y X(t) es el nimero de gramos de la sustancia quimica
C formada, entonces el nimero de gramos de la sustancia quimica A y el nimero de
gramos de la sustancia quimica B que quedan al tiempo t son, respectivamente,

N
— X —
M + N M+ N
La ley de accion de masas establece que cuando no hay ningiin cambio de temperatura,

la razon con la que reaccionan las dos sustancias es proporcional al producto de las
cantidades de A y de B que aln no se han transformado al tiempo t:

dXx M N

E“(a_M+NX><b_M+NX)' ®
Si se saca el factor M/(M + N) del primer factor y N/(M + N) del segundo y se intro-
duce una constante de proporcionalidad k > 0, la expresién (8) toma la forma

a X.

y b

dx

o~ e = X8 - X, (©)
donde « = a(M + N)/My B8 = b(M + N)/N. Recuerde de (6) de la seccién 1.3
que una reaccidn quimica gobernada por la ecuacion diferencial no lineal (9) se
dice que es una reaccion de segundo orden.

I EJEMPLO 2 Reaccion quimica de segundo orden

Cuando se combinan dos sustancias quimicas A y B se forma un compuesto C. La
reaccion resultante entre las dos sustancias quimicas es tal que por cada gramo de A
se usan 4 gramos de B. Se observa que a los 10 minutos se han formado 30 gramos
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X
S X =40
10 20 30 40 ©
a)
t (min) X (g)
10 30 (medido)
15 3478
20 3725
25 38.54
30 39.22
35 39.59
b)

FIGURA 3.2.4 X(t) comienzaen 0y

tiende a 40 cuando t crece.

del producto C. Determine la cantidad de C en el tiempo t si la razén de la reaccion es
proporcional a las cantidades de A y B que quedan y si inicialmente hay 50 gramos de
A'y 32 gramos de B. ;Qué cantidad de compuesto C hay a los 15 minutos? Interprete
la solucién cuando t — .

SOLUCION Sea X(t) la cantidad de gramos del compuesto C presentes en el tiempo
t. Es obvio que X(0) = 0gy X(10) = 30 g.

Si, por ejemplo, hay 2 gramos del producto C, hemos debido usar, digamos, a
gramos de Ay b gramos de B, asi a + b = 2 y b = 4a. Por tanto, debemos usar
a= % = 2(%) de la sustancia quimicaAy b= g = 2(%) g de B. En general, para obtener
X gramos de C debemos usar

1 4
5 XgramosdeA vy 5 X gramos de B.

Entonces las cantidades de Ay B que quedan al tiempo t son
1 4

5 - =X 32 —=X
57 Y 5

respectivamente.
Sabemos que la razén con la que se forma el compuesto C satisface que

dXx 1 4
— (50 —=X]||32 — =X|.
dt ( 5 )( 5 )
Para simplificar las operaciones algebraicas subsecuentes, factorizamos ! del primer

termino y £ del segundo y después introduciremos la constante de proporcionalidad:

?j—)t( = k(250 — X)(40 — X).

Separamos variables y por fracciones parciales podemos escribir que

1 1
— 20 _ gx + —20 _ gX = kdt.
250 — X 40 — X
Integrando se obtiene
250 — X 250 — X
In —— =210kt +¢, o = = ek (10)

40 — X 40 — X

Cuando t = 0, X = 0, se tiene que en este punto ¢, = 2. Usando X = 30 gent = 10
encontramos que 210k = 75 In 5 =0.1258. Con esta informacion se despeja X de la
Gltima ecuacion (10):

1 — e70.1258t

X(t) = 1000 (11)

5 — 4e—0.12581'

En la figura 3.2.4 se presenta el comportamiento de X como una funcién del tiempo.
Es claro de la tabla adjunta y de la ecuacion (11) que X — 40 conforme t — . Esto
significa que se forman 40 gramos del compuesto C, quedando

1 4
50_3(40):42gdeA y 32—5(40)=OgdeB. [ |
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I COMENTARIOS

La integral indefinida [ du/(a? — u?) se puede evaluar en términos de logarit-
mos tangente hiperbdlica inversa, o de la cotangente hiperbdlica inversa. Por
ejemplo, de los dos resultados

fL—ltanhlngc lul < a 12

az—u? a a ; (12)

f du 1 a+u
———=— In
a’z—u? 2a a—u

la ecuacion (12) puede ser conveniente en los problemas 15y 24 de los ejercicios
3.2, mientras que la ecuacion (13) puede ser preferible en el problema 25.

‘+c, |u| # a, (13)

EJERCICIOS 3.2

Las respuestas a los problemas con nimero impar comienzan en la pagina RES-3.

b) Construya una tabla en la que se compare la pobla-
cién real del censo con la poblacion predicha por el
modelo del inciso a). Calcule el error y el error por-
centual para cada par de datos.

Ecuacion logistica

1. La cantidad N(t) de supermercados del pais que estan
usando sistemas de revision computarizados se describe
por el problema con valores iniciales

dN TABLA 3.1
— = N(1 — 0.0005N), N(0) = 1.
dt Afio Poblacién (en millones)
a) Use el concepto de esquema de fase de la seccién 2.1 1790 3.929
para predecir cuantos supermercados se espera que 1800 5.308
adopten el nuevo procedimiento en un periodo de 1810 7.240
tiempo largo. A mano, dibuje una curva solucion del 1820 9.638
problema con valores iniciales dados. 1830 12.866
L ) 1840 17.069
b) Resuelva el problema con valores iniciales y después 1850 23192
utilice un programa de graficacion para comprobar y 1860 31.433
trazar la curva solucion del inciso a). ¢Cuantas com- 1870 38.558
pafiias se espera que adopten la nueva tecnologia 1880 50.156
cuandot = 10? 1890 62.948
2. La cantidad N(t) de personas en una comunidad bajo la 13(1)8 ;i'gjg
influencia de determinado anuncio estd gobernada por . p—
la ecuacion logistica. Imualmepte N(0) = 500 y se ob- 1930 122775
serva que N(1) = 1000. Determine N(t) si se predice que 1940 131.669
habra un limite de 50 000 personas en la comunidad 1950 150.697

que veran el anuncio.

3. Un modelo para la poblacion P(t) en un suburbio de una

gran ciudad esta descrito por el problema con valores ini- ) ]
ciales 5. a) Si se pesca un numero constante h de peces de una pes-

queria por unidad de tiempo, entonces un modelo para la

Modificaciones del modelo logistico

dP o . .

s P(10°! — 1077P), P(0) = 5000, poblacion P(t) de una pesqueria al tiempo t esta dado por
donde t se expresa en meses. ¢Cuél es el valor limite de d_P — P(a—bP) —h, P(0) = P,
la poblacion? ¢ Cuanto tardard la poblacion en alcanzar la dt

mitad de ese valor limite?
4. a) En latabla 3.1 se presentan los datos del censo de los

donde a, b, h'y P, son constantes positivas. Suponga
quea =5,b=1yh =4 Puesto que la ED es au-

Estados Unidos entre 1790 y 1950. Construya un mo-
delo de poblacidn logistico usando los datos de 1790,
1850y 1910.

ténoma, utilice el concepto de esquema de fase de la
seccidn 2.1 para dibujar curvas solucién representa-
tivas que corresponden a los casos Py > 4, 1 <P <
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4y 0 <P, < 1. Determine el comportamiento de la
poblacion a largo plazo en cada caso.

b) Resuelva el PVI del inciso a). Compruebe los resul-
tados de su esquema de fase del inciso a) utilizando
un programa de graficacion para trazar la grafica de
P(t) con una condicion inicial tomada de cada uno
de los tres intervalos dados.

c) Utilice la informacion de los incisos a) y b) para deter-
minar si la poblacion de la pesqueria desaparecera en
un tiempo finito. De ser asi, determine ese tiempo.

Investigue el modelo de pesca del problema 5 tanto cuali-
tativa como analiticamente en el caso enque a = 5, b =
I,h = %75 Determine si la poblacion desaparecera en un
tiempo finito. De ser asi, determine ese tiempo.

Repita el problema6enelcasoa=5b=1,h=7.

a) Suponga a = b = 1 en la ecuacion diferencial de
Gompertz, ecuacion (7). Puesto que la ED es aut6-
noma, utilice el concepto de esquema de fase de la sec-
cion 2.1 para dibujar curvas solucion representativas
correspondientes a los casos P, >ey 0 <P <e.

b) Suponga que a = 1, b = —1 en la ecuacion (7).
Utilice un nuevo esquema de fase para dibujar las
curvas solucién representativas correspondientes a
loscasos P, >e'y0 <P <e™

c) Encuentre una solucion explicita de la ecuacion (7)
sujetaa P(0) = P,.

Reacciones quimicas

9.

10.

Dos sustancias quimicas A y B se combinan para formar la
sustancia quimica C. La razén de reaccion es proporcional
al producto de las cantidades instantaneas de Ay B que no
se han convertido en C. Al principio hay 40 gramos de Ay
50 gramos de B, y por cada gramo de B se consumen 2 de
A. Se observa que a los cinco minutos se han formado 10
gramos de C. ;Cuéanto se forma en 20 minutos de C? ;Cudl
es la cantidad limite de C a largo plazo? ;Cuanto de las
sustancias A y B queda después de mucho tiempo?

Resuelva el problema 9 si hay al principio 100 gramos
de la sustancia quimica A. ; Cuando se formara la mitad de
la cantidad limite de C?

Modelos no lineales adicionales

11.

Tanque cilindrico con gotera Un tanque en forma de
un cilindro recto circular en posicion vertical esta sacando
agua por un agujero circular en su fondo. Como se vio en
(10) de la seccidn 1.3, cuando se desprecia la friccién y la
contraccion del agujero, la altura h del agua en el tanque

esta descrita por

dh A,

— = —— V2¢h,

at A, Y
donde A,y A, son las areas de seccion transversal del
agua y del agujero, respectivamente.

a) Resuelva la ED si la altura inicial del agua es H. A
mano, dibuje la grafica de h(t) y de su intervalo de

12.

13.

14.

definicion I en términos de los simbolos A , A, y H.
Utilice g = 32 pies/s?.

b) Suponga que el tanque tiene 10 pies de altura y un
radio de 2 pies y el agujero circular tiene un radio de
1 pulg. Si el tanque esta inicialmente Ileno, ;cuanto
tarda en vaciarse?

Tanque cilindrico con gotera (continuacién) Cuando
se considera la friccién y contraccion del agua en el agu-
jero, el modelo del problema 11 se convierte en

dh A,

at CAN V2gh,

donde 0 < ¢ < 1. ;Cuénto tarda el tanque del problema
11b en vaciarse si ¢ = 0.6? Vea el problema 13 de los
ejercicios 1.3.

Tanque conico con gotera Un tanque con forma de
cono recto con el vértice hacia abajo, esta sacando agua
por un agujero circular en su fondo.

a) Suponga que el tanque tiene 20 pies de altura y tiene
un radio de 8 pies y el agujero circular mide dos pul-
gadas de radio. En el problema 14 de los ejercicios
1.3 se le pidid mostrar que la ecuacion diferencial que
gobierna la altura h del agua que sale del tanque es

dh 5
dt 6h%?

En este modelo, se considerd la friccién y la contrac-

cion del agua en el agujero conc = 0.6 y el valor de g

se tomo de 32 pies/s?. Véase la figura 1.3.12. Si al prin-

cipio el tanque esta lleno, ¢cuanto tarda en vaciarse?

b) Suponga que el tanque tiene un &ngulo de vértice de
60° vy el agujero circular mide dos pulgadas de radio.
Determine la ecuacién diferencial que gobierna la al-
tura h del agua. Utilice c = 0.6 y g = 32 pies/s?. Si al
principio la altura del agua es de 9 pies, ¢cuénto tarda
en vaciarse el tanque?

Tanque conico invertido Suponga que se invierte el
tanque cénico del problema 13a, como se muestra en la
figura 3.2.5 y que sale agua por un agujero circular con un
radio de dos pulgadas en el centro de su base circular. ¢El
tiempo en que se vacia el tanque lleno es el mismo que
para el tanque con el vértice hacia abajo del problema 13?
Tome el coeficiente de friccion/contraccién de c = 0.6y
g = 32 pies/s?.

Aw po————m - -

FIGURA 3.2.5 Tanque conico invertido del problema 14.



15.

16.

Resistencia del aire  Una ecuacion diferencial para la ve-
locidad v de una masa m que cae sujeta a la resistencia del
aire proporcional al cuadrado de la velocidad instantanea es

nd
dt
donde k > 0 es una constante de proporcionalidad. La

direccion positiva es hacia abajo.

a) Resuelva la ecuacion sujeta a la condicion inicial
v(0) = v,

b) Utilice la solucidn del inciso a) para determinar la ve-
locidad limite, o terminal de la masa. En el problema
41 de los ejercicios 2.1 vimos cémo determinar la ve-
locidad terminal sin resolver la ED.

c) Si la distancia s, medida desde el punto donde se
suelta la masa sobre el suelo, esta relacionada con la
velocidad v por ds/dt = v(t), encuentre una expresion
explicita para s(t) si s(0) = 0.

mg — kv?,

¢ Qué tan alto? (Resistencia del aire no lineal) Consi-
dere la bala de cafién de 16 libras que se dispara vertical-
mente haciaarribaenlosproblemas 36y 37 enlosejercicios
3.1 con una velocidad inicial v, = 300 pies/s. Determine
la altura maxima que alcanza la bala si se supone que la
resistencia del aire es proporcional al cuadrado de la ve-
locidad instantanea. Suponga que la direccion positiva es
hacia arriba y tome k = 0.0003. [Sugerencia: Modifique
un poco la ED del problema 15.]

17. Esa sensacion de hundimiento a) Determine una ecua-

18.

cion diferencial para la velocidad v(t) de una masa m que
se hunde en agua que le da una resistencia proporcional
al cuadrado de la velocidad instantanea y también ejerce
una fuerza boyante hacia arriba cuya magnitud esta dada
por el principio de Arquimedes. Véase el problema 18 de
los ejercicios 1.3. Suponga que la direccién positiva es
hacia abajo.

b) Resuelva la ecuacion diferencial del inciso a).
c) Determine la velocidad limite, o terminal, de la masa
hundida.

Colector solar La ecuacion diferencial

dy  —x+ V¥ +y
dx y

describe la forma de una curva plana C que refleja los
haces de luz entrantes al mismo punto y podria ser un mo-
delo para el espejo de un telescopio reflector, una antena
de satélite o un colector solar. Vea el problema 27 de los
ejercicios 1.3. Hay varias formas de resolver esta ED.

a) Compruebe que la ecuacion diferencial es homogénea
(véase la seccion 2.5). Demuestre que la sustitucion y
= ux produce

udu

\/1+u2(1—\/1+u2) X

19.

20.
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Utilice un SAC (u otra sustitucion adecuada) para in-
tegrar el lado izquierdo de la ecuacion. Muestre que
la curva C debe ser una parabola con foco en el origen
y simétrica respecto al eje x.

b) Demuestre que la ecuacion diferencial puede también
resolverse por medio de la sustitucion u = x? + y2

Tsunami a) Unmodelo simple para la forma de un tsu-
nami o maremoto, esta dado por

dw

vl W V4 — 2W,

donde W(x) > 0 es la altura de la ola expresada como
una funcion de su posicion respecto a un punto en
altamar. Examinando, encuentre todas las soluciones
constantes de la ED.

b) Resuelva la ecuacion diferencial del inciso a). Un
SAC puede ser Util para la integracion.

c) Use un programa de graficacion para obtener las gra-
ficas de las soluciones que satisfacen la condicién ini-
cial W(0) = 2.

Evaporacion Un estanque decorativo exterior con for-

ma de tanque semiesférico se llenara con agua bombeada

hacia el tanque por una entrada en su fondo. Suponga que

el radio del tanque es R = 10 pies, que el agua se bombea a

una rapidez de 7 pies®/minuto y que al inicio el tanque esta

vacio. Véase la figura 3.2.6. Conforme se llena el tanque,
éste pierde agua por evaporacion. Suponga que la rapidez
de evaporacién es proporcional al area A de la superficie sobre

el agua y que la constante de proporcionalidad es k = 0.01.

a) La rapidez de cambio dV/dt del volumen del agua
al tiempo t es una rapidez neta. Utilice esta rapidez
neta para determinar una ecuacion diferencial para la
altura h del agua al tiempo t. El volumen de agua que
se muestra en la figuraesV = 7Rh? — %wh?’, donde R
= 10. Exprese el area de la superficie del agua A =
7rr? en términos de h.

b) Resuelva la ecuacion diferencial del inciso a). Trace
la gréfica de la solucion.

c) Si no hubiera evaporacion, ¢cuanto tardaria en lle-
narse el tanque?
d) Con evaporacion, ¢cudl es la profundidad del agua en

el tiempo que se determind en el inciso ¢)? ¢Alguna
vez se llenara el tanque? Demuestre su afirmacién.

Salida: el agua se evapora con una razon
proporcional al area A de la superficie

a)

—R—
*es,- <

Entrada: el agua se bombea con
una razén de 7 pies¥min
tanque semiesférico b) seccién transversal del tanque

FIGURA 3.2.6 Estanque decorativo del problema 20.
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Problemas de proyecto

21.

22.

Recta de regresion Lea en el manual de su SAC acerca
de gréficas de dispersion (o diagramas de dispersién) y
ajuste de rectas por minimos cuadrados. La recta que
mejor se ajusta a un conjunto de datos se llama recta de
regresion o recta de minimos cuadrados. Su tarea
es construir un modelo logistico para la poblacion de
Estados Unidos, definiendo f(P) en (2) como una ecua-
cién de una recta de regresién que se basa en los datos
de poblacién que aparecen en la tabla del problema 4.
Una manera de hacer esto es aproximar el lado izquierdo

1dp de la primera ecuacion en (2), utilizando el co-

P dt
ciente de diferencias hacia adelante en lugar de dP/dt:

1 Pt + h) — P(t)
)=——7T~
QW P(t) h
a) Haga una tabla de los valores t, P(t) y Q(t) usando t
=0, 10, 20, ...,160y h = 10. Por ejemplo, el pri-
mer rengldn de la tabla deberia contener t = 0, P(0) y
Q(0). Con P(0) = 3.929 y P(10) = 5.308,

~ 1 P(10) — P(0)
Q(0) = PO m = 0.035.

Observe que Q(160) depende de la poblacién del
censo de 1960 P(170). Busque este valor.

b) Use un SAC para obtener el diagrama de dispersién
de los datos (P(t), Q(t)) que se calcul6 en el inciso a).
También utilice un SAC para encontrar una ecuacion
de la recta de regresion y superponer su gréafica en el
diagrama de dispersion.

c) Construya un modelo logistico dP/dt = Pf(P), donde
f(P) es la ecuacion de la recta de regresion que se
encontro en el inciso b).

d) Resuelva el modelo del inciso c) usando la condicion
inicial P(0) = 3.929.

e) Utilice un SAC para obtener un diagrama de dispersion,
esta vez de los pares ordenados (t, P(t)) de su tabla del
inciso a). Utilice un SAC para superponer la grafica de
la solucién del inciso d) en el diagrama de dispersion.

f) Busque los datos del censo de Estados Unidos para
1970, 1980 y 1990. ;/Qué poblacion predice el mo-
delo logistico del inciso c) para estos afios? ¢Qué
predice el modelo para la poblacion P(t) de Estados
Unidos conforme t — o0?

Modelo de inmigracién a) En los ejemplos 3 y 4 de
la seccion 2.1 vimos que cualquier solucion P(t) de (4)
tiene el comportamiento asintético P(t) — a/b conforme
t— oo para P, > a/b y para 0 < P, < a/b; como con-
secuencia, la solucién de equilibrio P = a/b se llama un
atractor. Utilice un programa para determinar raices de
un SAC (o una calculadora graficadora) para aproximar
la solucion de equilibrio del modelo de inmigracion

drP

— P) + 0.3e7".
5~ P - P) +03e

23.

24.

b) Utilice un programa de graficacion para trazar la gra-
ficadelafuncion F(P) = P(1 — P) + 0.3eP. Explique
coémo se puede utilizar esta grafica para determinar
si el nimero que se encontr6 en el inciso a) es un
atractor.

c) Use un programa de solucion numérica para compa-
rar las curvas solucion de los PVI

dP

at P1 — P),

P(0) = P
ParaP,= 0.2y P, = 1.2 con las curvas solucion para
los PVI.

P o pu-p)+o03e”

dt P(0) = Py

paraP; = 0.2y P = 1.2. Superponga todas las curvas en
los mismos ejes de coordenadas pero, si es posible, uti-
lice un color diferente para las curvas del segundo pro-
blema con valores iniciales. En un periodo largo, ¢qué
incremento porcentual predice el modelo de inmigracion
en la poblacién comparado con el modelo logistico?

Loquesube... Enelproblema 16 seat, el tiempo que
tarda la bala de cafién en alcanzar su altura méxima y
sea t, el tiempo que tarda en caer desde la altura maxima
hasta el suelo. Compare el valor t, con el valor de t; y
compare la magnitud de la velocidad de impacto v, con
la velocidad inicial v,. Vea el problema 48 de los ejerci-
cios 3.1. Aqui puede ser til un programa para determinar
raices de un SAC. [Sugerencia: Utilice el modelo del pro-
blema 15 cuando la bala de cafidn va cayendo.]

Paracaidismo Un paracaidista estd equipado con un
cronoémetro y un altimetro. Como se muestra en la figura
3.2.7, el paracaidista abre su paracaidas 25 segundos des-

pués de saltar del avién que vuela a una altitud de 20 000

pies, y observa que su altitud es de 14 800 pies. Suponga

que la resistencia del aire es proporcional al cuadrado
de la velocidad instantanea, la velocidad inicial del pa-
racaidista al saltar del avién es ceroy g = 32 pies/s?.

a) Encuentre la distancia s(t), medida desde el avién, que
ha recorrido el paracaidista durante la caida libre en el
tiempo t. [Sugerencia: No se especifica la constante
de proporcionalidad k en el modelo del problema 15.
Use la expresion para la velocidad terminal v, que se

i
N

_os(Y)

@i |

T
N

FIGURA 3.2.7 Paracaidista del problema 24.



25.

26.

obtuvo en el inciso b) del problema 15 para eliminar k
del PVI. Luego, finalmente encuentre v,.]

b) ¢Qué distancia descendio el paracaidista y cual es su
velocidad cuando t = 15 s?

Impacto en el fondo Un helicéptero sobrevuela 500 pies
por arriba de un gran tanque abierto lleno de liquido (no
agua). Se deja caer un objeto compacto y denso que pesa
160 libras (liberado desde el reposo) desde el helicoptero en
el liquido. Suponga que la resistencia del aire es proporcional
ala velocidad instantanea v en tanto el objeto esta en el aire y
que el amortiguamiento viscoso es proporcional a v? después
de que el objeto ha entrado al liquido. Para el aire, tome k =
1.y para el liquido tome k = 0.1. Suponga que la direccion
positiva es hacia abajo. Si el tanque mide 75 pies de alto, de-
termine el tiempoy la velocidad de impacto cuando el objeto
golpea el fondo del tanque. [Sugerencia: Piense en términos
de dos PVI distintos. Si se utiliza la ecuacion (13), tenga
cuidado de eliminar el signo de valor absoluto. Se podria
comparar la velocidad cuando el objeto golpea el liquido, la
velocidad inicial para el segundo problema, con la velocidad
terminal v, del objeto cuando cae a través del liquido.]

Hombre viejo de rio... En la figura 3.2.8a suponga
que el eje y y la recta vertical x = 1 representan, respecti-
vamente, las playas oeste y este de un rio que tiene 1 milla
de ancho. El rio fluye hacia el norte con una velocidad v,
donde |v| = v_ mi/h es una constante. Un hombre entra a
la corriente en el punto (1, 0) en la costa este y nada en
una direccion y razon respecto al rio dada por el vector v,
donde la velocidad |v| = v_ mi/h es una constante. EI hom-
bre quiere alcanzar la costa oeste exactamente en (0, 0) y
asi nadar de tal forma que conserve su vector velocidad v,
siempre con direccion hacia (0, 0). Utilice la figura 3.2.8b
como una ayuda para mostrar que un modelo matematico
para la trayectoria del nadador en el rio es

dy vy — VoV + yP

dx VX
y |
nadador |
playa playa
oeste este
|
|
corriente |
A |
©0.0) L0 X
a)
y |
vrT :
o (X(®), y(1) !
A :
() |
| |
(o', 0) X(t) (1,'0) X

b)
FIGURA 3.2.8 Trayectoria del nadador del problema 26.

217.

28.

29.

30.
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[Sugerencia: La velocidad v del nadador a lo largo de la
trayectoria o curva que se muestra en la figura 3.2.8 es
la resultante v = v, + v_. Determine v_y v,_en compo-
nentes en las direcciones x y y. Si x = x(t), y = y(t) son
ecuaciones parametricas de la trayectoria del nadador, en-
tonces v = (dx/dt, dy/dt)].

a) Resuelva la ED del problema 26 sujeto ay(1) = 0. Por
conveniencia hagak = v /v..

b) Determine los valores de v,, para los que el nadador
alcanzara el punto (0, 0) examinando lim y(x) en los
casosk=1,k>1y0<k<1. x>0

Hombre viejo de rio conserva su movimiento. ..
Suponga que el hombre del problema 26 de nuevo entra
a la corriente en (1, 0) pero esta vez decide nadar de tal
forma que su vector velocidad v, esta siempre dirigido
hacia la playa oeste. Suponga que la rapidez |v| = v, mi/h
es una constante. Muestre que un modelo matematico
para la trayectoria del nadador en el rio es ahora

@y_ v

dx Vs

Larapidez de la corriente v, de un rio recto tal como el del
problema 26 usualmente no es una constante. Mas bien,
una aproximacién a la rapidez de la corriente (medida en
millas por hora) podria ser una funcion tal como v (x) =
30x(1 — x), 0 = x = 1, cuyos valores son pequefios en las
costas (en este caso, v,(0) = 0y v (1) = 0y mas grande
en la mitad de rio. Resuelva la ED del problema 28 sujeto
ay(1) = 0, donde v, = 2 mi/h y v (x) esta dado. Cuando el
nadador hace esto a través del rio, ¢qué tanto tendré que
caminar en la playa para llegar al punto (0, 0)?

Gotas de lluvia contintian cayendo ... Cuando hace
poco se abrié una botella de refresco se encontré que
decia dentro de la tapa de la botella:

La velocidad promedio de una gota de lluvia cayendo es
de 7 millas/hora.

En una blsqueda réapida por la internet se encontrd que el
meteordélogo Jeff Haby ofrecia informacién adicional de que
una gota de lluvia esférica en “promedio” tenia un radio de
0.04 pulg. y un volumen aproximado de 0.000000155 pies®.
Utilice estos datos y, si se necesita investigue mas y haga
otras suposiciones razonables para determinar si “la veloci-
dad promedio de . . . 7 millas por hora” es consistente con
los modelos de los problemas 35 y 36 de los ejercicios 3.1
y con el problema 15 de este conjunto de ejercicios. También
vea el problema 34 de los ejercicios 1.3.

El tiempo gotea El clepsidra, o reloj de agua, fue un
dispositivo que los antiguos egipcios, griegos, romanos y
chinos usaban para medir el paso del tiempo al observar el
cambio en la altura del agua a la que se le permitia salir por
un agujero pequefo en el fondo de un tanque.

a) Suponga que se ha hecho un tanque de vidrio y que
tiene la forma de un cilindro circular recto de radio 1
pie. Suponga que h(0) = 2 pies corresponde a agua
llena hasta la tapa del tanque, un agujero en el fondo
es circular con radio 3% pulg, g = 32 pies/s’y ¢ = 0.6.
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32.

33.
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Utilice la ecuacion diferencial del problema 12 para
encontrar la altura h(t) del agua.

b) Para el tanque del inciso a), ¢a qué altura desde su
fondo se deberia marcar ese lado, como se muestra en
la figura 3.2.9, que corresponde al paso de una hora?
Después determine dénde colocaria las marcas corres-
pondientes al paso de 2 h, 3 h, ..., 12 h. Explique por
qué estas marcas no estan igualmente espaciadas.

FIGURA 3.2.9 Clepsidra del problema 31.

a) Suponga que un tanque de vidrio tiene la forma de un
cono con seccién transversal circular como se muestra
en la figura 3.2.10. Como en el inciso a) del problema
31, suponga que h(0) = 2 pies corresponde a agua
llena hasta la parte superior del tanque, un agujero
circular en el fondo de radio -5 pulg, g = 32 pies/s’ y
¢ = 0.6. Utilice la ecuacion diferencial del problema
12 para encontrar la altura h(t) del agua.

b) ¢Puede este reloj de agua medir 12 intervalos de tiempo
de duracién de 1 hora? Explique usando matematicas.

FIGURA 3.2.10 Clepsidra del problema 12.

Suponga que r = f(h) define la forma de un reloj de agua
en el que las marcas del tiempo estan igualmente espacia-
das. Utilice la ecuacion diferencial del problema 12 para
encontrar f(h) y dibuje una gréfica tipica de h como una
funcién de r. Suponga que el area de seccidon transver-
sal A, del agujero es constante. [Sugerencia: En este caso
dh/dt = —a donde a > 0 es una constante.]

Problema aportado

34. Un modelo logistico para

altura 200

Dr. Michael Prophet, Dr. Doug
Shaw, profesores asociados del
Departamento de Matematicas

.. . de la Universidad de lowa del
el crecimiento del gira- | norte

sol Este problema implica
un plantio de semillas de girasol y el dibujo de la altura en
funcioén del tiempo. Podria llevar de 3 a 4 meses obtener
los datos, por lo que jcomencemos ya! Si puede cambiela
por una planta diferente, pero puede tener que ajustar la
escala de tiempo y la escala de altura adecuada.

a) Usted va a crear una grafica de la altura del girasol
(en cm) contra el tiempo (en dias). Antes de iniciar
intuya cdmo sera esta curva y ponga la grafica intuida
en la malla.

400

300

100

0 10 20 30 40 50 60 70 80 90 100
dias
b) Ahora plante su girasol. Tome la medida de la altura el
primer dia que su flor brote y [lAmelo el dia 0. Después
tome una medida al menos una vez a la semana; éste
es el momento para empezar a escribir sus datos.

c) ¢Susdatos de puntos mas cercanos parecen crecimiento
exponencial o crecimiento logistico? ;Por qué?

d) Sisus datos mas cercanos semejan crecimiento exponen-
cial, la ecuacion para la altura en términos del tiempo sera
dH/dt = kH. Si sus datos mas cercanos se asemejan a un
crecimiento logistico, la ecuacion de peso en términos de
laaltura sera dH/dt = kH (C - H). ¢ Cual es el significado
fisico de C? Utilice sus datos para calcular C.

e) Ahora experimentalmente determine k. Para cada uno
de sus valores de t, estime dH /dt usando diferencias de
dH/dt

ientes. Despué I hech K=—"—=
cocientes. Después use el hecho de que H(C — F)

para obtener la mejor estimacion de k.

f) Resuelva su ecuacion diferencial. Ahora trace la gra-
fica de su solucién junto con los datos de los puntos.
¢Lleg6 a un buen modelo? ;(Cree que k cambiara si
planta un girasol diferente el afio que entra?

Problema aportado

35. LeydeTorricelli

Ben Fitzpatrick, Ph. D Clarence
Wallen, Departamento de
Matematicas de la Universidad
Loyola Marymount

Siperfo-
ramos un agujero en un cubo
Ileno de agua, el liquido sale
con una razon gobernada por la ley de Torricelli, que esta-
blece que la razon de cambio del volumen es proporcional
a la raiz cuadrada de la altura del liquido.




3.3 MODELADO CON SISTEMAS DE ED DE PRIMER ORDEN ° 105

La ecuacion de larazon dada en la figura 3.2.11 surge

En este problema, vemos una comparacion de la ecua-

del principio de Bernoulli de hidrodindmica que establece cion diferencial de Torricelli con los datos reales.

que la cantidad P + 1pv* + pgh es una constante. Aqui P a)
es la presion, p es la densidad del fluido, v es la velocidad

y g es la aceleracion de la gravedad. Comparando la parte

superior del fluido, a la altura h, con el fluido en el agu-

jero, tenemos que

1.2 _ 1.2
Pparte superior T 3 PV parte superior T pgh = Pagujero+ 5 PVagijerst PY * 0.

Si la presion en la parte superior y en el fondo son las dos
igual a la presion atmosférica y el radio del agujero es
mucho menor que el radio del cubo, entonces Pyare superior = b)

Pagujero pranesuperior = O: por IO que pgh = %pvggujag Conduce a Ia

N dv
ley de Torricelli: v = V/2gh. Puesto que — = —AgjeroV,

dt
tenemos la ecuacién diferencial 0)
dv
E = _Awujafo V Zgh
—_—— d)
o altura del cubo
altura del agua H
h(t
ji il °
pt
ecuacion
de razon: % = ~Aagujero V20

FIGURA 3.2.17 Cubo con gotera.

Si el agua esta a una altura h, podemos encontrar el
volumen de agua en el cubo usando la férmula

V(h) = ——{(mh + Re)* — R
3m

enlaquem = (R, — R)/H. Aqui R, y R, denotan el
radio de la parte superior y del fondo del cubo, res-
pectivamente y H denota la altura del cubo. Tomando
esta formula como dada, se deriva para encontrar una
relacion entre las razones dV/dt y dh/dt.

Use la expresion deducida en el inciso a) para en-
contrar una ecuacion diferencial para h(t) (es decir,
tendria una variable independiente t, una variable de-
pendiente h y las constantes en la ecuacién).

Resuelva esta ecuacion diferencial usando separacion
de variables. Es relativamente directo determinar al
tiempo como una funcion de la altura, pero despejar la
altura como una funcion del tiempo puede ser dificil.

Haga una maceta, Ilénela con agua y vea cdmo gotea.
Para un conjunto fijo de alturas, registre el tiempo para
el que el agua alcanza la altura. Compare los resultados
con los de la solucion de la ecuacidn diferencial.

Se puede ver que una ecuacion diferencial mas exacta
es

dav

E = _(0'84)Aagujero v gh

Resuelva esta ecuacion diferencial y compare los re-
sultados del inciso d).

3.3 MODELADO CON SISTEMAS

DE ED DE PRIMER ORDEN

REPASO DE MATERIAL
e Seccién 1.3.

INTRODUCCION  Esta seccion es similar a la seccion 1.3 en que se van a analizar ciertos modelos
matematicos, pero en lugar de una sola ecuacién diferencial los modelos seran sistemas de ecuaciones
diferenciales de primer orden. Aunque algunos de los modelos se basan en temas que se analizaron
en las dos secciones anteriores, no se desarrollan métodos generales para resolver estos sistemas. Hay
razones para esto: primero, hasta el momento no se tienen las herramientas matematicas necesarias
para resolver sistemas. Segundo, algunos de los sistemas que se analizan, sobre todo los sistemas de
ED no lineales de primer orden, simplemente no se pueden resolver de forma analitica. Los capitulos
4, 7'y 8 tratan métodos de solucién para sistemas de ED lineales.

SISTEMAS LINEALES Y NO LINEALES Se ha visto que una sola ecuacién dife-
rencial puede servir como modelo matematico para una sola poblacién en un medio
ambiente. Pero si hay, por ejemplo, dos especies que interactlian, y quiza compiten,
viviendo en el mismo medio ambiente (por ejemplo, conejos y zorros), entonces un
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modelo para sus poblaciones x(t) y y(t) podria ser un sistema de dos ecuaciones dife-
renciales de primer orden como

dx

E - gl(tl X, y)

dy _ 1)
dt - gZ(tl Xv y)

Cuando g, y g, son lineales en las variables x y y, es decir, g, y g, tienen las formas

git,x,y) = ¢, x + ¢y + fi (1) y %t X y) = cx + ¢y + ),

donde los coeficientes ¢, podrian depender de t— entonces se dice que es un sistema
lineal. Un sistema de ecuaciones diferenciales que no es lineal se llama no lineal.

SERIES RADIACTIVAS En el analisis del decaimiento radiactivo en las secciones 1.3
y 3.1 se supuso que la razon de decaimiento era proporcional a la cantidad A(t) de nu-
cleos de la sustancia presentes en el tiempo t. Cuando una sustancia se desintegra por
radiactividad, usualmente no transmuta en un solo paso a una sustancia estable, sino que
la primera sustancia se transforma en otra sustancia radiactiva, que a su vez forma una
tercera sustancia, etc. Este proceso, que se conoce como serie de decaimiento radiac-
tivo continda hasta que llega a un elemento estable. Por ejemplo, la serie de decaimiento
del uranio es U-238 — Th-234 — - - - —Pb-206, donde Pb-206 es un isétopo estable del
plomo. La vida media de los distintos elementos de una serie radiactiva pueden variar
de miles de millones de afios (4.5 X 10° afios para U-238) a una fraccion de segundo.
Suponga que una serie radiactiva se describe en forma esquematica por X2y 2 Z,
donde k, = —A, < 0yk, = —A, < 0son las constantes de desintegracion para las sus-
tancias X y Y, respectivamente, y Z es un elemento estable. Suponga, también, que x(t),
y(t) y z(t) denotan las cantidades de sustancias X, Y y Z, respectivamente, que quedan al
tiempo t. La desintegracion del elemento X se describe por

dx

a = =A%
mientras que la razén a la que se desintegra el segundo elemento Y es la razon neta

% = 14X — ALY,
porque Y esta ganando atomos de la desintegracion de X y al mismo tiempo perdiendo
atomos como resultado de su propia desintegracion. Como Z es un elemento estable,
simplemente esta ganando 4tomos de la desintegracion del elemento Y:
dz

a = )\2y

En otras palabras, un modelo de la serie de decaimiento radiactivo para los tres ele-
mentos es el sistema lineal de tres ecuaciones diferenciales de primer orden

dx

a = */\IX

dy

at = AMX =AY 2
e _,

at Y.

MEZCLAS Considere los dos tanques que se ilustran en la figura 3.3.1. Suponga
que el tanque A contiene 50 galones de agua en los que hay disueltas 25 libras de sal.
Suponga que el tanque B contiene 50 galones de agua pura. A los tanques entra y sale
liquido como se indica en la figura; se supone que tanto la mezcla intercambiada entre
los dos tanques como el liquido bombeado hacia fuera del tanque B estan bien mezcla-
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agua pura mezcla
3 gal/min 1 gal/min

mezcla mezcla
4 gal/min 3 gal/min

FIGURA 3.3.1 Tanques mezclados conectados.

dos. Se desea construir un modelo matematico que describa la cantidad de libras x,(t)
y X,(t) de sal en los tanques Ay B, respectivamente, en el tiempo t.

Con un andlisis similar al de la pagina 23 en la seccidn 1.3 y del ejemplo 5 de la
seccion 3.1 vemos que la razon de cambio neta de x () para el tanque A es

razén de entrada razon de salida

de la sal de la sal
A A

dxy
dt

(3 gal/min) = (0 Ib/gal) + (1 gal/min) - (;—6 Ib/gal) — (4 gal/min) - (;—6 Ib/gal)

——=X + =X,
257 T 507
De manera similar, para el tanque B la razon de cambio neta de x,(t) es

o, % g % %
dt 50 50 50
2 2

:—X1—2—5

25 X

Asi obtenemos el sistema lineal
g _ 2 1
dt 25 50
de 2.2
dt 257t 2577

Observe que el sistema anterior va acompafiado de las condiciones iniciales x,(0) =
25, x,(0) = 0.

X, + X

©)

MODELO PRESA-DEPREDADOR Suponga que dos especies de animales interac-
tlan dentro del mismo medio ambiente o ecosistema y suponga ademas que la primera
especie se alimenta s6lo de vegetacion y la segunda se alimenta s6lo de la primera es-
pecie. En otras palabras, una especie es un depredador y la otra es una presa. Por
ejemplo, los lobos cazan caribles que se alimentan de pasto, los tiburones devoran
peces pequefios y el baho nival persigue a un roedor del artico llamado lemming. Por
razones de analisis, imaginese que los depredadores son zorros y las presas conejos.

Sea x(t) y y(t) las poblaciones de zorros y conejos, respectivamente, en el tiempo t.
Si no hubiera conejos, entonces se podria esperar que los zorros, sin un suministro
adecuado de alimento, disminuyeran en nimero de acuerdo con

dx
dt
Sin embargo cuando hay conejos en el medio, parece razonable que el nimero de

encuentros o interacciones entre estas dos especies por unidad de tiempo sea conjunta-
mente proporcional a sus poblaciones x y y, es decir, proporcional al producto xy. Asi,

—ax, a> 0. (4)
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poblacién

tiempo

FIGURA 3.3.2 Parecen ser periddicas
las poblaciones de depredadores (rojo) y
presa (azul).

cuando estan presentes los conejos hay un suministro de alimento y, en consecuencia,
los zorros se agregan al sistema en una proporcion bxy, b > 0. Sumando esta Ultima
proporcion a (4) se obtiene un modelo para la poblacién de zorros:

X
— = —ax + bxy. (5)
dt Y
Por otro lado, si no hay zorros, entonces la poblacién de conejos, con una suposicion
adicional de suministro ilimitado de alimento, creceria con una razén proporcional al
namero de conejos presentes en el tiempo t:
d
ay_
dt
Pero cuando estan presentes los zorros, un modelo para la poblacion de conejos es

la ecuacion (6) disminuida por cxy, ¢ > 0; es decir, la razon a la que los conejos son
comidos durante sus encuentros con los zorros:

d>o. (6)

dy
— =dy — cxy. 7
g Ay oy ()
Las ecuaciones (5) y (7) constituyen un sistema de ecuaciones diferenciales no lineales
d
di)t( = —ax + bxy = x(—a + by)
: ®)
d% = dy — cxy = y(d — cx),

donde a, b, ¢ y d son constantes positivas. Este famoso sistema de ecuaciones se co-
noce como modelo presa-depredador de Lotka-Volterra.

Excepto por dos soluciones constantes, x(t) = 0, y(t) = 0y x(t) = d/c, y(t) = a/b,
el sistema no lineal (8) no se puede resolver en términos de funciones elementales. Sin
embargo, es posible analizar estos sistemas en forma cuantitativa y cualitativa. Vea
el capitulo 9, “Soluciones numéricas de ecuaciones diferenciales”, y el capitulo 10
“Sistemas autbnomos planos.”

I EJEMPLO 1 Modelo presa-depredador

Suponga que

—3): = —0.16x + 0.08xy
dy

— =45y — 0.

at 5y — 0.9xy

representa un modelo presa-depredador. Debido a que se esta tratando con poblaciones, se
tiene x(t)= 0, y(t) = 0. En la figura 3.3.2, que se obtuvo con la ayuda de un programa de
solucién numeérica, se ilustran las curvas de poblacién caracteristicas de los depredadores
y presa para este modelo superpuestas en los mismos ejes de coordenadas. Las condicio-
nes iniciales que se utilizaron fueron x(0) = 4, y(0) = 4. La curva en color rojo representa
la poblacién x(t) de los depredadores (zorros) y la curva en color azul es la poblacién y(t)
de la presa (conejos). Observe que el modelo al parecer predice que ambas poblaciones
X(t) y y(t) son periddicas en el tiempo. Esto tiene sentido desde el punto de vista intuitivo
porque conforme decrece el nimero de presas, la poblacion de depredadores decrece en
algin momento como resultado de un menor suministro de alimento; pero junto con un
decrecimiento en el nimero de depredadores hay un incremento en el nimero de presas;
esto a su vez da lugar a un mayor nimero de depredadores, que en Gltima instancia origina
otro decrecimiento en el nimero de presas. ]

“Los capitulos 10 a 15 estéan en la versién ampliada de este libro, Ecuaciones diferenciales con problemas
con valores en la frontera.
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FIGURA 3.3.3 Red cuyo modelo esta
dado en (17).

3.3 MODELADO CON SISTEMAS DE ED DE PRIMER ORDEN ° 109

MODELOS DE COMPETENCIA Ahora suponga que dos especies de animales
ocupan el mismo ecosistema, no como depredador y presa sino como competidores por
los mismos recursos (como alimento y espacio vital) en el sistema. En ausencia de la
otra, suponga que la razon a la que crece cada poblacion esta dada por

dx dy 9
T A T ©
respectivamente.
Como las dos especies compiten, otra suposicion podria ser que cada una de estas
razones se reduzca simplemente por la influencia o existencia, de la otra poblacion.
Asi un modelo para las dos poblaciones esta dado por el sistema lineal

dx

i - b

dt ax y (10)
dy

=7 —-d ,

dt cy X

donde a, b, ¢ y d son constantes positivas.

Por otra parte, se podria suponer, como se hizo en (5), que cada razén de creci-
miento en (9) debe ser reducida por una razén proporcional al nimero de interacciones
entre las dos especies:

dx

— = - b

pm ax Xy

d—yfc — dx )
at y y

Examinando se encuentra que este sistema no lineal es similar al modelo depredador-
presa de Lotka-Volterra. Por Gltimo, podria ser méas real reemplazar las razones en (9),
lo que indica que la poblacion de cada especie en aislamiento crece de forma exponen-
cial, con tasas que indican que cada poblacidon crece en forma logistica (es decir, en un
tiempo largo la poblacién se acota):

dx dy

— =X — bx? — = a,y — by2 12

dt 1 1 y dt 2Y 2Y 12)
Cuando estas nuevas razones decrecen a razones proporcionales al nimero de interac-

ciones, se obtiene otro modelo no lineal

d

di)t( = aX — bx? — cxy = x(a; — bx — cyy)

dy (13)
i by? — cxy = y(@ — by — ¢,x),

donde los coeficientes son positivos. Por supuesto, el sistema lineal (10) y los sistemas
no lineales (11) y (13) se llaman modelos de competencia.

REDES Una red eléctrica que tiene mas de una malla también da lugar a ecuaciones
diferenciales simultaneas. Como se muestra en la figura 3.3.3, la corriente i (t) se di-
vide en las direcciones que se muestran en el punto B, llamado punto de ramificacion
de la red. Por la primera ley de Kirchhoff se puede escribir

i() = i)(1) + i) (14)
Ademés, también se puede aplicar la segunda ley de Kirchhoff a cada malla. Para la

malla A B,B,A,A,, suponiendo una caida de voltaje en cada parte del circuito, se obtiene

. di .
E@t) = i,R, + thz + i,R,. (15)
De modo similar, para la malla A B,C,C,B,A A, tenemos que
. di
E() = iR+ Lo (16)
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Usando (14) para eliminar i, en (15) y (16) se obtienen dos ecuaciones lineales de
primer orden para las corrientes i,(t) e i,(t):

Ll% + (R, + Ryi, + Ryji; = E(t)
. (17
di, : .

Lza Rii, + Rjiz; = E(t).

Dejamos esto como un ejercicio (vea el problema 14) el mostrar que el sistema de
ecuaciones diferenciales que describe las corrientes i () e i,(t) en la red formada por un

FIGURA 3.3.4 Red cuyo modelo son
las ecuaciones (18).

resistor, un inductor y un capacitor que se muestra en la figura 3.3.4 es

di

L—2+Ri = E(t
dt 12 ® .
di, . .
RC&‘F I, — |1:0.

EJERCICIOS 3.3

Las respuestas a los problemas con nimero impar comienzan en la pagina RES-4.

Series radiactivas

1.

Hasta el momento no se han analizado métodos mediante los
que se puedan resolver sistemas de ecuaciones diferenciales.
Sin embargo, sistemas como (2) se pueden resolver sin otro
conocimiento que el necesario para resolver una ecuacion
diferencial lineal. Encuentre una solucién de (2) sujeto a las
condiciones iniciales x(0) = x,, y(0) = 0, z(0) = 0.

. Enel problema 1, suponga que el tiempo se mide en dias,

que las constantes de desintegracion son k, = —0.138629
y k, = —0.004951, y que x, = 20. Utilice un programa de
graficacién para trazar las graficas de las soluciones x(t),
y(t) y z(t) en el mismo conjunto de ejes de coordenadas.
Utilice las gréficas para aproximar las vidas medias de
sustancias Xy Y.

Utilice las gréficas del problema 2 para aproximar los
tiempos cuando las cantidades x(t) y y(t) son las mismas,
los tiempos cuando las cantidades x(t) y z(t) son las mis-
mas y los tiempos cuando las cantidades y(t) y z(t) son
las mismas. ¢Por qué, desde el punto de vista intuitivo, el
tiempo determinado cuando las cantidades y(t) y z(t) son
las mismas, tiene sentido?

Construya un modelo matematico para una serie radiac-
tiva de cuatro elementos W, X, Y y Z, donde Z es un ele-
mento estable.

Mezclas

5.

Considere dos tanques A y B, en los que se bombea y se
saca liquido en la misma proporcién, como se describe
mediante el sistema de ecuaciones (3). ¢ Cual es el sistema
de ecuaciones diferenciales si, en lugar de agua pura, se
bombea al tanque A una solucion de salmuera que con-
tiene dos libras de sal por galén?

Utilice la informacion que se proporciona en la figura
3.3.5 para construir un modelo matematico para la can-

agua pura
4 gal/min

mezcla
1 gal/min

mezcla
2 gal/min

mezcla
4 gal/min

mezcla
5 gal/min

mezcla
6 gal/min

FIGURA 3.3.5 Tanques de mezclado del problema 6.

tidad de libras de sal x,(t), x,(t) y x,(t) al tiempo t en los
tanques A, By C, respectivamente.

. Dos tanques muy grandes A y B estan parcialmente lle-

nos con 100 galones de salmuera cada uno. Al inicio, se
disuelven 100 libras de sal en la solucién del tanque A 'y
50 libras de sal en la solucion del tanque B. El sistema es

mezcla
3 gal/min

mezcla
2 gal/min

FIGURA 3.3.6 Tanques de mezclado del problema 7.

cerrado ya que el liquido bien mezclado se bombea s6lo
entre los tanques, como se muestra en la figura 3.3.6.

a) Utilice la informacion que aparece en la figura para
construir un modelo matematico para el nimero de
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libras de sgl X,(t) y x,(t) al tiempo ten los tanques A’y
B, respectivamente.

b) Encuentre una relacion entre las variables x,(t) y x,(t)
que se cumpla en el tiempo t. Explique por qué esta
relacion tiene sentido desde el punto de vista intui-
tivo. Use esta relacion para ayudar a encontrar la can-
tidad de sal en el tanque B en t = 30 min.

8. Tres tanques grandes contienen salmuera, como se mues-
tra en la figura 3.3.7. Con la informacion de la figura
construya un modelo matematico para el nimero de libras
de sal x,(t), x,(t) y x,(t) al tiempo t en los tanques A, B'y
C, respectivamente. Sin resolver el sistema, prediga los
valores limite de x,(t), x,(t) y X,(t) conforme t — oo,

agua pura
4 gal/min

mezcla
4 gal/min

mezcla
4 gal/min

mezcla
4 gal/min

FIGURA 3.3.7 Tanques de mezclado del problema 8.
Modelos depredador—presa

9. Considere el modelo depredador-presa de Lotka-Volterra
definido por

% = —0.1x + 0.02xy
dy

— = 0.2y — 0.02

at 0.2y — 0.025xy,

donde las poblaciones x(t) (depredadores) y y(t) (presa)
se miden en miles. Suponga que x(0) = 6 y y(0) = 6.
Utilice un programa de solucién numérica para graficar
x(t) y y(t). Use las gréficas para aproximar el tiempot > 0
cuando las dos poblaciones son al principio iguales. Use
las gréaficas para aproximar el periodo de cada poblacion.

Modelos de competencia

10. Considere el modelo de competencia definido por

%( = X(2 — 0.4x — 0.3y)
dy
i y(1 — 0.1y — 0.3x),

donde las poblaciones x(t) y y(t) se miden en milesy t en
afios. Use un programa de solucién numérica para anali-
zar las poblaciones en un periodo largo para cada uno de
los casos siguientes:

a) x(0) =15, y(0)=35

b) x(0)=1 y(0)=1

c) x(0) =2, y(0)=7
d) x(0) = 45, y(0) =05

11. Considere el modelo de competencia definido por

% = X(1 — 0.1x — 0.05y)
dy
dt
donde las poblaciones x(t) y x(t) se miden en milesy ten
afios. Utilice un programa de solucion numérica para ana-
lizar las poblaciones en un periodo largo para cada uno de
los casos siguientes:
a) x(0) =1, y(0)=1
b) x(0) =4, y(0) =10
c) x(0) =9, y(0)=4
d) x(0) =55, y(@0)=35

=y(1.7 — 0.1y — 0.15x),

Redes

12. Demuestre que un sistema de ecuaciones diferenciales
que describa las corrientes i,(t) e i,(t) en la red eléctrica
que se muestra en la figura 3.3.8 es

di, di, )
L—+L—+Ri,=E
dt dt 1) ®
di di 1
—Rld—t2+ de_'f+6|3 =0

FIGURA 3.3.8 Red del problema 12.

13. Determine un sistema de ecuaciones diferenciales de pri-
mer orden que describa las corrientes i,(t) e i.(t) en la red
eléctrica que se muestra en la figura 3.3.9.

Ry Rs

FIGURA 3.3.9 Red del problema 13.

14. Demuestre que el sistema lineal que se proporciona en
(18) describe las corrientes i,(t) e i,(t) en la red que se
muestra en la figura 3.3.4. [Sugerencia: dg/dt = i, ]
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Modelos no lineales adicionales

15. Modelo SIR Una enfermedad contagiosa se propaga en
una pequefia comunidad, con una poblacion fija de n per-
sonas, por contacto entre individuos infectados y personas
que son susceptibles a la enfermedad. Suponga al princi-
pio que todos son susceptibles a la enfermedad y que nadie
sale de la comunidad mientras se propaga la epidemia. En el

CAPITULO 3 MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN

Ilenan con liquidos y se separan mediante una membrana
permeable. La figura es una representacion seccional del
exterior y el interior de una célula. Suponga también que
un nutriente necesario para el crecimiento de la célula
pasa por la membrana. Un modelo para las concentracio-
nes x(t) y y(t) del nutriente en los compartimientos A y
B, respectivamente, en el tiempo t se expresa mediante el
siguiente sistema lineal de ecuaciones diferenciales

tiempot, sean s(t), i(t) y r(t), a su vez, el nimero de personas
en la comunidad (medido en cientos) que son susceptibles a
la enfermedad pero que aln no estan infectadas, el nimero
de personas que estan infectadas con la enfermedad y el ni-

mero de personas que se han recuperado de la enfermedad.

Explique por qué el sistema de ecuaciones diferenciales
ds

a = —k1$|

di .

a = k2| + kls
dr :

a - k2|,

donde k, (llamada la razon de infeccion) y k, (llamada
la razon de eliminacion) son constantes positivas, es un
modelo matematico razonable, conocido cominmente
como modelo SIR, para la propagacion de la epidemia
en la comunidad. Asigne condiciones iniciales posibles

relacionadas con este sistema de ecuaciones.

16. a) Enel problema 15, explique por qué es suficiente ana-

lizar sélo
d_s = —k;si
dt !
di . .
& = _k2| + klg .

b) Supongaque k, = 0.2, k, = 0.7y n = 10. Elija varios
valores de i(0) = i;, 0 <'i < 10. Use un programa de
solucién numérica para determinar lo que predice el
modelo acerca de la epidemia en los dos casos s, >
k,/k, ys,=k,/k,. En el caso de una epidemia, estime

el nimero de personas que finalmente se infectan.

Problemas de proyecto

17. Concentracion de un nutriente  Suponga que los com-
partimientos A y B que se muestran en la figura 3.3.10 se

liquido a liquido a
concentracion concentracion
x(t) y(t)

\ P /

A e B
——

_—

/

membrana

FIGURA 3.3.10 Flujo de nutrientes a través de una
membrana del problema 17.

18.

19.

20.

FIGURA 3.3.11

dx K
&_VA(V_X)
dy _ « .
TRRRVARY

donde V, y V, son los volimenes de los compartimientos,
y k > 0 es un factor de permeabilidad. Sean x(0) = x,y
y(0) =y, las concentraciones iniciales del nutriente. Con
base Unicamente en las ecuaciones del sistemay la supo-
sicion x, >y, > 0, dibuje, en el mismo conjunto de coor-
denadas, posibles curvas solucién del sistema. Explique
su razonamiento. Analice el comportamiento de las solu-
ciones en un tiempo largo.

El sistema del problema 17, al igual que el sistema en
(2), se puede resolver sin un conocimiento avanzado.
Resuelva para x(t) y y(t) y compare sus graficas con sus
dibujos del problema 17. Determine los valores limite de
x(t) y y(t) conforme t — o, Explique por qué la respuesta
de la tltima pregunta tiene sentido intuitivamente.

Con base sélo en la descripcion fisica del problema de
mezcla de la pagina 107 y la figura 3.3.1, analice la natu-
raleza de las funciones x,(t) y x,(t). ;Cual es el comporta-
miento de cada funcién durante un tiempo largo? Dibuje
las graficas posibles de x,(t) y x,(t). Compruebe sus con-
jeturas mediante un programa de solucién numérica para
obtener las curvas solucién de (3) sujetas a las condicio-
nes iniciales x,(0) = 25, x,(0) = 0.

Ley de Newton del enfriamiento/calentamiento  Como
se muestra en la figura 3.3.11, una pequefia barra metalica se
coloca dentro del recipiente A y éste se coloca dentro de un
recipiente B mucho més grande. A medida que se enfria la
barra metalica, la temperatura ambiente T (t) del medio den-
tro del recipiente A cambia de acuerdo con la ley de Newton
del enfriamiento. Conforme se enfria el recipiente A, la tem-
peratura en la parte media dentro del recipiente B no cambia

recipiente B

recipiente A

barra
metalica

Ta ()

Tg = constante

Recipiente dentro de un recipiente del problema 20.



de manera importante y se puede considerar una constante
T,. Construya un modelo matematico para las temperaturas
T(t) y T,(t), donde T(t) es la temperatura de la barra me-
talica dentro del recipiente A. Como en los problemas 1y
18, este modelo se puede resolver usando los conocimientos
adquiridos. Encuentre una solucion del sistema sujeto a las
condiciones iniciales T(0) =T, T,(0) = T,.

Dr. Michael Prophet, Dr. Doug
Shaw, Profesores Asociados del
Departamento de Matematicas
de la Universidad de lowa del
Norte

Problema aportado

21. Un problema de mez-
clas Un par de tanques
estdn conectados como se
muestra en la figura 3.3.12. Al tiempo t = 0, el tanque A
contiene 500 litros de liquido, 7 de los cuales son de etanol.
Comenzando en t = 0, se agregan 3 litros por minuto de
una solucion de etanol a 20%. Ademas se bombean 2 L/min
del tanque B al tanque A. La mezcla resultante es continua-
mente mezclada y se bombean 5 L/min al tanque B. El con-
tenido del tanque B es también continuamente mezclado.
Ademas de los 2 litros que se regresan al tanque A, 3 L/min
se descargan desde el sistema. Sean que P(t) y Q(t) denoten
el nimero de litros de etanol en los tanques A 'y B al tiempo
t. Queremos encontrar P(t). Usando el principio de que

razon de cambio = razon de entrada de etanol — razén de
salida de etanal,

obtenemos el sistema de ecuaciones diferenciales de pri-

mer orden
ap _ QY _(P)\_ Q_P
o~ 202+ 2(100) 5(500) 0645 100 @9
Q_ (P _(R\_P Q
at 5(500) 5<1oo> 100 20 (20)
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solucién de etanol mezcla
3 L/min 5 L/min
A B
500 litros 100 litros
mezcla mezcla
2 L/min 3 L/min

FIGURA 3.3.12 Tanque de mezclado del problema 21.

a) Analice cualitativamente el comportamiento del sistema.
¢Qué ocurre a corto plazo? ; Qué ocurre a largo plazo?

b) Intente resolver este sistema. Cuando la ecuacion (19)
se deriva respecto al tiempo t, se obtiene

¢P_1dQ 1 dP

a2 50 dt 100 dt’ ~

Sustituyendo (20) en esta ecuacion y simplificando.

c) Muestre que cuando se determina Q de la ecuacion (19)
y se sustituye la respuesta en el inciso b), obtenemos
d?pP dP 3
10— +6— +-—P =3
dt? d 100
d) Esta dado que P(0) = 200. Muestre que P’(0) = —%.
Después resuelva la ecuacién diferencial en el inciso
C) sujeto a estas condiciones iniciales.
e) Sustituya la solucién del inciso d) en la ecuacion
(19) y resuelva para Q(t).

f) ¢Qué les pasa a P(t) y Q(t) conforme t — «?

REPASO DEL CAPITULO 3

Las respuestas a los problemas con ndmero impar
comienzan en la pagina RES-4.

Responda los problemas 1 a 4 sin consultar las respuestas del
libro. Llene los espacios en blanco y responda verdadero o falso.

1. SiP(t) = Pe**"da la poblacion en un medio ambiente al
tiempo t, entonces una ecuacion diferencial que satisface
P(t) es

2. Si larazdn de desintegracion de una sustancia radiactiva
es proporcional a la cantidad A(t) que queda en el tiempo
t, entonces la vida media de la sustancia es necesaria-
mente T = —(In 2)/k. La raz6n de decaimiento de la sus-
tancia en el tiempo t = T es un medio de la razén de
decaimientoent = 0.

3. En marzo de 1976 la poblacion mundial llegé a cuatro mil
millones. Una popular revista de noticias predijo que con
una razon de crecimiento anual promedio de 1.8%, la pobla-
cion mundial seria de 8 mil millones en 45 afios. ;Como se

compara este valor con el que se predice por el modelo enel
que se supone que la razon de crecimiento en la poblacién
es proporcional a la poblacién presente en el tiempo t?

4. A una habitacién cuyo volumen es 8000 pies® se bombea
aire que contiene 0.06% de diéxido de carbono. Se intro-
duce a la habitacion un flujo de aire de 2000 pies®/min
y se extrae el mismo flujo de aire circulado. Si hay una
concentracion inicial de 0.2% de didxido de carbono en
la habitacion, determine la cantidad posterior en la habi-
tacién al tiempo t. ¢ Cual es la concentracion a los 10 mi-
nutos? ¢Cual es la concentracién de dioxido de carbono
de estado estable o de equilibrio?

5. Resuelva la ecuacion diferencial
dy  y

dx 32—y2
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de la tractriz. VVéase el problema 26 de los ejercicios 1.3.
Suponga que el punto inicial en el eje y es (0, 10) y que la
longitud de la cuerda es x = 10 pies.

. Suponga que una célula esta suspendida en una solucion
que contiene un soluto de concentracion constante C..
Suponga ademas que la célula tiene volumen constante V
y que el area de su membrana permeable es la constante
A. Por la ley de Fick, la rapidez de cambio de su masa m
es directamente proporcional al area A y la diferencia C,
— C(t), donde C(t) es la concentracion del soluto dentro de
la célula al tiempo t. Encuentre C(t) sim =V - C(t) y C(0)
= C,. Vea lafigura 3.R.1.

concentracion

PN S

oléculas de soluto
difundiéndose a través
de la membrana de
“<~lacélula

FIGURA 3.R.T Célula del problema 6.

. Suponga que conforme se enfria un cuerpo, la temperatura del
medio circundante aumenta debido a que absorbe por com-
pleto el calor que pierde el cuerpo. Sean T(t) y Tm(t) las tem-
peraturas del cuerpo y el medio al tiempo t, respectivamente.
Si la temperatura inicial del cuerpo es T, y la temperatura ini-
cial del medio de T,, entonces se puede mostrar en este caso
que la ley de Newton del enfriamiento es dT/dt = k(T -T ),
k<0,donde T =T,+ B(T, —T), B > 0 es una constante.

a) La ED anterior es autonoma. Utilice el concepto de
esquema de fase de la seccion 2.1 para determinar el
valor limite de la temperatura T(t) conforme t — o,
¢Cual es el valor limite de T_(t) conforme t — «?

b) Compruebe sus respuestas del inciso a) resolviendo
la ecuacion diferencial.

c) Analice una interpretacion fisica de sus respuestas en
el inciso a).

. De acuerdo con la ley de Stefan de la radiacion, la tem-
peratura absoluta T de un cuerpo que se enfria en un medio
a temperatura absoluta constante T_ esta dada como

dT
k(T4 -
dt (
donde k es una constante. La ley de Stefan se puede uti-
lizar en un intervalo de temperatura mayor que la ley de
Newton del enfriamiento.

a) Resuelva la ecuacion diferencial.

b) Muestre que cuando T — T _ es pequefia comparada
con T _entonces la ley de Newton del enfriamiento se
aproximaa la ley de Stefan. [Sugerencia: Considere la
serie binomial del lado derecho de la ED.]

T,

9.

10.

11.

12.

Un circuito LR en serie tiene un inductor variable con la
inductancia definida por

1-— it
L(t) = 10"
0, t = 10.

Encuentre la corriente i(t) si la resistencia es 0.2 ohm, el vol-
taje aplicado es E(t) = 4 e i(0) = 0. Trace la grafica de i(t).

0=t<10

Un problema clasico en el calculo de variaciones es encontrar
la forma de una curva € tal que una cuenta, bajo la influencia
de la gravedad, se deslice del punto A(0, 0) al punto B(x,, y,)
en el menor tiempo. Vea la figura 3.R.2. Se puede demostrar
que una ecuacion no lineal para la forma y(x) de la trayec-
toria es y[1 + (y')?] = k, donde k es una constante. Primero
resuelva para dx en términos de y y dy; y después utilice la
sustitucion y = k sen?d para obtener una forma paramétrica
de la solucidn. La curva € resulta ser una cicloide.

A(0, 0)
X
cuenta
&
mg B(x1 1)
y

FIGURA 3.R.2 Cuenta deslizando del problema 10.

Un modelo para las poblaciones de dos especies de ani-
males que interactdan es

dx

a = kIX(a - X)
dy

at K, Xy.

Resuelva para x y y en términos de t.

En un principio, dos tanques grandes A y B contienen cada
uno 100 galones de salmuera. El liquido bien mezclado se
bombea entre los recipientes como se muestra en la figura
3.R.3. Utilice la informacién de la figura para construir un
modelo matematico para el nimero de libras de sal x,(t) y
X,(t) al tiempo t en los recipientes A'y B, respectivamente.

Cuando todas las curvas de una familia G(x, y, ¢,) = 0 in-
tersecan ortogonalmente todas las curvas de otra familia

2 Ib/gal mezcla
7 gal/min 5 gal/min
SHE—> S
A B
100 gal 100 gal
mezcla mezcla mezcla
3 gal/min 1 gal/min 4 gal/min

FIGURA 3.R.3 Recipientes de mezclado del problema 12.



H(x, y, ¢,) = 0, se dice que las familias son trayectorias
ortogonales entre si. Vea la figura 3.R.4. Si dy/dx = f(x,
y) es la ecuacion diferencial de una familia, entonces la
ecuacion diferencial para las trayectorias ortogonales de
esta familia es dy/dx = —1/f(x, y). En los problemas 13 y
14, encuentre la ecuacion diferencial de la familia suminis-
trada. Determine las trayectorias de esta familia. Utilice un
programa de graficacion para trazar las graficas de ambas
familias en el mismo conjunto de ejes coordenados.

G(x,y,c)=0
tangentes
H(x,y,c,) =0
FIGURA 3.R.4 Trayectorias ortogonales.
1
13. y=—x—-1+ce* 14, y =
y ! y X+ ¢

Problema aportado

15. Acuiferos y la ley de | csusacramento

Dr. David Zeigler profesor
asistente Departamento de
Matematicas y Estadistica

Darcy De acuerdo con el
departamento de servicios
de Sacramento en California, aproximadamente 15% del
agua para Sacramento proviene de acuiferos. A diferencia
de fuentes de agua tales como rios o lagos que yacen sobre
del suelo, un acuifero es una capa de un material poroso
bajo el suelo que contiene agua. El agua puede residir en
espacios vacios entre rocas o entre las grietas de las rocas.
Debido al material que esta arriba, el agua esta sujeta a una
presion que la impulsa como un fluido en movimiento.

La ley de Darcy es una expresion generalizada para
describir el flujo de un fluido a través de un medio poroso.
Muestra que el flujo volumétrico de un fluido a través de un
recipiente es una funcion del area de seccion transversal, de
la elevacion y de la presion del fluido. La configuracion que
consideraremos en este problema es la denominada pro-
blema para un flujo unidimensional. Considere la columna
de flujo como la que se muestra en la figura 3.R.5. Como
lo indican las flechas, el flujo del fluido es de izquierda a
derecha a través de un recipiente con seccion transversal
circular. El recipiente estd lleno con un material poroso
(por ejemplo piedras, arena o algodon) que permiten que
el fluido fluya. A la entrada y a la salida del contenedor se
tienen piezdmetros que miden la carga hidraulica, esto es, la
presion del agua por unidad de peso, al reportar la altura de
la columna de agua. La diferencia en las alturas de agua en
los piezometros se denota por Ah. Para esta configuracion
se calculo experimentalmente mediante Darcy que

Ah
Q= AK—
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donde la longitud se mide en metros (m) y el tiempo en
segundos (s):

Q = flujo volumétrico (m?/s)

A = é&rea transversal del flujo, perpendicular a la direc-
cion del flujo (m?)

K = conductividad hidraulica (m/s)

L = longitud de la trayectoria de flujo (m)

Ah = diferencia de carga hidraulica (m)

Donde la carga hidraulica en un punto dado es la suma
de la carga de presion y la elevacion, el flujo volumétrico

puede rescribirse como
p
1]
rg

= AK ,
Q L

donde

p = presion del agua (N/m?)

p = densidad del agua (kg/mq)

g = aceleracion de la gravedad (m/s?)
y = elevacion (m)

Una forma mas general de la ecuacion resulta cuando el li-
mite de Ah respecto a la direccion de flujo (x, como se mues-
tra en la figura 3.R.5) se evalia como la longitud de trayec-
toria del flujo L — 0. Realizando este calculo se obtiene

d|p
=-AK—|—+Yy]|
© dx [pg y}
donde el cambio en el signo indica el hecho de que la carga
hidraulica disminuye siempre en la direccion del flujo. El
flujo volumétrico por unidad de &rea se llama flujo q de
Darcy y se define mediante la ecuacion diferencial

_Q_ _dip
97 a7 KdX[pg+y}’ @)

donde g se mide en m/s.

a) Suponga que la densidad del fluido p y el flujo de Darcy
g son funciones de x. Despeje la presién p de la ecua-
cidn (1). Puede suponer que K y g son constantes.

b) Suponga que el flujo de Darcy es evaluado negativa-
mente, es decir, g < 0. ;Qué indica esto respecto del
cociente p/p? En concreto, (el cociente entre la pre-
sion y la densidad aumenta o disminuye respecto a x?
Suponga que la elevacion y del cilindro es fija. ;Qué
puede inferirse acerca del cociente p/p si el flujo de
Darcy es cero?

c) Suponga que la densidad del fluido p es constante.
Despeje la presién p(x) de la ecuacion (1) cuando el
flujo de Darcy es proporcional a la presion, es decir, q
= ap, donde « es una constante de proporcionalidad.
Dibuje la familia de soluciones para la presién.

d) Ahora, si suponemos que la presion p es constante
pero la densidad p es una funcion de x, entonces el
flujo de Darcy es una funcién de x. Despeje la den-
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sidad p(x) de la ecuacion (1). Despeje la densidad
p(x) de la ecuacion (1) cuando el flujo de Darcy es
proporcional a la densidad, g = Bp, donde B es una
constante de proporcionalidad.

e) Suponga que el flujo de Darcy es q(x) = sene >y la
funcion densidad es

_ 1
P = e+ 9
Use un SAC para trazar la presion p(x) sobre el inter-
valo 0 = x = 27r. Suponga que K/g = —1y que la pre-
sion en el extremo izquierdo del punto (x = 0) esta nor-
malizado a 1. Suponga que la elevacion y es constante.
Explique las implicaciones fisicas de su resultado.

- i
Ah
T
\\
/I
y A

FIGURA 3.R.5 Flujo del problema 15.

Problema aportado

16.

Dr. Michael Prophet y Dr.
Doug Shaw profesores
asociados del Departamento
de Matematicas Universidad de
lowa del Norte

Modelos de crecimiento
de poblacién Se pueden
usar campos direccionales
para obtener bastante informacion acerca de los modelos
de poblacién. En este problema puede usted construir cam-
pos direccionales a mano o utilizar un sistema algebraico de
computacion para crear algunos detalles. Al tiempot = 0
una fina ldmina de agua comienza a fluir sobre el vertedero
concreto de una presa. Al mismo tiempo, 1000 algas son
agregadas por el vertedero. Modelaremos a P(t), como el
namero de algas (en miles) presentes después de t horas.
Modelo de crecimiento exponencial:  Suponemos
que la razon de cambio es proporcional a la poblacion
presente: dP/dt = kP. En este caso en particular toma-
1

mos k = .

a) Construya un campo direccional para esta ecuacion
diferencial y dibuje la curva solucién.

b) Resuelva la ecuacion diferencial y trace la grafica de
la solucién. Compare su gréafica con el dibujo del in-
ciso a).

c) Describa las soluciones de equilibrio de esta ecua-
cién diferencial autdnoma.

d) De acuerdo con este modelo, ;qué pasa cuando t — o?

e) En nuestro modelo, P(0) = 1. Describa como un
cambio de P(0) afecta la solucion.

f) Considere la solucion que corresponde a P(0)= 0.
¢COmo afectaria a la solucién un pequefio cambio en
P(0)?

Modelo de crecimiento logistico: Como vimos
en el inciso d), el modelo de crecimiento exponencial
que se acaba de presentar no es real para tiempos muy
grandes t. ;Qué limita la poblacion de algas? Suponga
que el agua al fluir proporciona una fuente de nutrien-
tes estable y saca la basura. En este caso el mayor fac-
tor limite es el &rea del vertedero. Podemos modelarlo
como: cada interaccion alga-alga tensiona a los orga-
nismos implicados. Esto ocasiona una mortandad adi-
cional. El nimero de todas las posibles interacciones
es proporcional al cuadrado del nimero de organismos
presentes. Asi un modelo razonable seria

dP
— = kP — mP?,
dt
donde k'y m son las constantes positivas. En este caso

1

particular tomamos k = 5 y m = ;.

g) Construya un campo direccional para esta ecuacion
diferencial y dibuje la curva solucion.

h) Resuelva esta ecuacion diferencial y trace la grafica
de la solucion. Compare su grafica con la que dibujo
en el inciso g).

i) Describa las soluciones de equilibrio para esta ecua-
cion diferencial autbnoma.

j) De acuerdo con este modelo, ;qué pasa conforme
t— 0?

k) En nuestro modelo P(0) = 1. Describa cémo afecta-
ria la solucién un cambio en P(0).

I) Considere la solucion correspondiente a P(0) = 0. ;Co-
mo afectaria la solucién un pequefio cambio en P(0)?

m) Considere la solucion correspondiente a P(0) = k/m.
¢Cémo afectaria la solucién un pequefio cambio en
P(0)?

Un modelo no auténomo: Suponga que el flujo de
agua a través de un vertedero estd decreciendo conforme
pasa el tiempo por lo que también disminuye al paso del
tiempo el habitat del alga. Esto también aumenta el efecto
de hacinamiento. Un modelo razonable ahora seria
e kP — m(1 + nt)P?,
dt
Donde n se determinaria como la razon con la cual el ver-
tedero se estd secando. En nuestro ejemplo, tomamos k y

m como ya se considerarony n = % .

n) Construya un campo direccional para esta ecuacion
diferencial y dibuje la curva solucioén.

0) Describa las soluciones constantes de esta ecuacion
diferencial no auténoma.

p) De acuerdo con este modelo, ¢qué pasa conforme
t — 0? ;Qué pasa si se cambia el valor de P(0)?
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Ahora trataremos la solucion de ecuaciones diferenciales de orden dos o superior.
En las primeras siete secciones de este capitulo se analizan la teoria fundamental
y cierta clase de ecuaciones lineales. EI método de eliminacion para resolver
sistemas de ecuaciones lineales se introduce en la seccion 4.8 porque este método
simplemente desacopla un sistema en ecuaciones lineales de cada variable
dependiente. El capitulo concluye con un breve analisis de ecuaciones no lineales
de orden superior.
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CAPITULO 4 ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

4.1

TEORIA PRELIMINAR: ECUACIONES LINEALES

REPASO DE MATERIAL

e Lea nuevamente los Comentarios al final de la seccion 1.1.
e Seccion 2.3 (especialmente paginas 54 a 58).

INTRODUCCION Enel capitulo 2 vimos que se pueden resolver algunas ecuaciones diferencia-
les de primer orden si se reconocen como separables, exactas, homogéneas o quizas como ecuacio-
nes de Bernoulli. Aunque las soluciones de estas ecuaciones estuvieran en la forma de una familia
uniparamétrica, esta familia, con una excepcién, no representa la solucion de la ecuacion diferen-
cial. Sélo en el caso de las ED lineales de primer orden se pueden obtener soluciones generales
considerando ciertas condiciones iniciales. Recuerde que una solucién general es una familia de so-
luciones definida en algun intervalo | que contiene todas las soluciones de la ED que estan definidas
en |. Como el objetivo principal de este capitulo es encontrar soluciones generales de ED lineales de
orden superior, primero necesitamos examinar un poco de la teoria de ecuaciones lineales.

4.1.1 PROBLEMAS CON VALORES INICIALES
Y CON VALORES EN LA FRONTERA

PROBLEMA CON VALORES INICIALES Enlaseccion 1.2 se definié un problema
con valores iniciales para una ecuacion diferencial de n-ésimo orden. Para una ecua-
cion diferencial lineal, un problema con valores iniciales de n-ésimo orden es

dny dn 1y dy

: — + —2 4+t - + =
Resuelva an(X) o @ 1) a1 ay(x) dx ¥y = 9(x) M
Sujeta a: Y0 =Yoo Y(X) =V, YOX) = Yoo

Recuerde que para un problema como éste se busca una funcién definida en algin in-
tervalo I, que contiene a x,, que satisface la ecuacion diferencial y las n condiciones
iniciales que se especifican en x: y(X)) =Y, ¥ (X)) =Yy, ..., Y O(x,) =y, _,. Yahemos
visto que en el caso de un problema con valores iniciales de segundo orden, una curva
solucion debe pasar por el punto (x,, y,) y tener pendiente y, en este punto.

EXISTENCIA Y UNICIDAD En la seccion 1.2 se expresé un teorema que daba las
condiciones con las que se garantizaba la existencia y unicidad de una solucién de un
problema con valores iniciales de primer orden. El teorema siguiente tiene condiciones
suficientes para la existencia y unicidad de una solucion Unica del problema en (1).

TEOREMA 4.1.1 Existencia de una solucién Unica

Seana (x),a, ,(X), ..., al(x?, a,(x)y g()_() continuas en un _intervalo I,y sea
a (x) # 0 para toda x en este intervalo. Si x = X, es cualquier punto en este
intervalo, entonces una solucion y(x) del problema con valores iniciales (1)
existe en el intervalo y es Unica.

I EJEMPLO 1 Solucién tnica de un PVI

El problema con valores iniciales

3"+ 5~y +7y=0, y1) =0, y()=0, y(1)=0




soluciones de la ED

X

e ——]

FIGURA 4.1.1 Curvas solucién de un
PVF que pasan a través de dos puntos.
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tiene la solucidn trivial y = 0. Debido a que la ecuacion de tercer orden es lineal con
coeficientes constantes, se cumplen las condiciones del teorema 4.1.1. Por tantoy = 0
es la Unica solucion en cualquier intervalo que contiene a x = 1. ]

I EJEMPLO 2 Solucion Gnica de un PVI

Se debe comprobar que la funcién y = 3e? + e 2 — 3x es una solucion del problema
con valores iniciales

y" — 4y =12x, y(0) =4, y'(0) =1

Ahora la ecuacion diferencial es lineal; los coeficientes, asi como g(x) = 12x, son
continuos y a,(x) = 1 # 0 en algin intervalo | que contenga a x = 0. Concluimos del
teorema 4.1.1 que la funcion dada es la tnica solucién en I. ]

Los requisitos en el teorema 4.1.1 de que a(x), i = 0, 1, 2, ..., n sean continuas
y a (x) # 0 para toda x en | son importantes. En particular, si a (x) = 0 para algdn x
en el intervalo, entonces la solucién de un problema lineal con valores iniciales po-
dria no ser Unica o ni siquiera existir. Por ejemplo, se debe comprobar que la funcion
y = cx? + x + 3 es una solucion de problema con valores iniciales

X¥y'—2xy' +2y=6, y0)=3 y(@©0=1

en el intervalo (—eo, ) para alguna eleccion del parametro c. En otras palabras, no
hay solucion Unica del problema. Aunque se satisface la mayoria de las condiciones
del teorema 4.1.1, las dificultades obvias son que a,(x) = x*es ceroenx = 0y que las
condiciones iniciales también se imponen en x = 0.

PROBLEMA CON VALORES EN LA FRONTERA Otro tipo de problema consiste
en resolver una ecuacion diferencial lineal de orden dos 0 mayor en que la variable de-
pendiente y o sus derivadas se especifican en diferentes puntos. Un problema tal como

d?y dy
Resuelva: ay(X) a2 ay(X) ax T (X)y = 9(X)
Sujeto a: y@ = VYo, Y(b) =Wy

se llama problema con valores en la frontera (PVF). Los valores prescritos y(a) =y,
y y(b) =y, se llaman condiciones en la frontera. Una solucion del problema anterior
es una funcion que satisface la ecuacion diferencial en algun intervalo |, que contiene
aay b, cuya grafica pasa por los puntos (a, y,) y (b, y,). Véase la figura 4.1.1.

Para una ecuacion diferencial de segundo orden, otros pares de condiciones en la
frontera podrian ser

y@ =Y  y0 =y
y@ =Y YO =y
y@ =y y® =y,
donde y, y y, denotan constantes arbitrarias. Estos pares de condiciones son s6lo casos
especiales de las condiciones en la frontera generales.
ay(@) + By'(@d = n
azy(b) + B2y'(b) = ve.
En el ejemplo siguiente se muestra que aun cuando se cumplen las condiciones del

teorema4.1.1, un problema con valores en la frontera puede tener varias soluciones (como
se sugiere en la figura 4.1.1), una solucion Unica o no tener ninguna solucién.
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X ¢=1,
1+ G=3
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FIGURA 4.1.2 Algunas curvas

solucién de (3)

I EJEMPLO 3 Un PVF puede tener muchas, una o ninguna solucion

En el ejemplo 4 de la seccion 1.1 vimos que la familia de soluciones de dos parametros
de la ecuacion diferencial X" + 16x = 0 es

X = €y COS 4t + C, sen 4t. (2)

a) Suponga que ahora deseamos determinar la solucién de la ecuacion que satisface
mas condiciones en la frontera x(0) = 0, x(7r/2) = 0. Observe que la primera
condicion 0 = ¢, cos 0 + ¢, sen 0 implica que ¢, = 0, por tanto x = ¢, sen 4t. Pero
cuando t = /2, 0 = ¢, sen 27 se satisface para cualquier eleccion de c, ya que
sen 277 = 0. Por tanto el problema con valores en la frontera

w+mww,mpw,%9:o 3)
tiene un nimero infinito de soluciones. En la figura 4.1.2 se muestran las graficas
de algunos de los miembros de la familia uniparamétrica x = c, sen 4t que pasa
por los dos puntos (0, 0) y (7/2, 0).

b) Si el problema con valores en la frontera en (3) se cambia a

wumzaxwzaxgyw, @)
entonces x(0) = 0 adn requiere que ¢, = 0 en la solucion (2). Pero aplicando
x(m/8) = 0ax = c, sen 4t requiere que 0 = ¢, sen (7/2) = c, - 1. Por tanto x = 0
es una solucion de este nuevo problema con valores en la frontera. De hecho, se
puede demostrar que x = 0 es la Gnica solucién de (4).

c) Por Gltimo, si se cambia el problema a

ﬂ+www,MFw,%9=L )
se encuentra de nuevo de x(0) = 0 que ¢, = 0, pero al aplicar x(7/2) = 1 ax
¢, sen 4t conduce a la contradiccion 1 = ¢, sen 27 = ¢, - 0 = 0. Por tanto e
problema con valores en la frontera (5) no tiene solucion. ]

4.1.2 ECUACIONES HOMOGENEAS

Una ecuacién diferencial lineal de n-ésimo orden de la forma
dny dnfly
dx" dxnt
se dice que es homogénea, mientras que una ecuacion

dn dn—l
800 %+ 8010 S

+ an—l(x)

a,(x) +-~+am€¥+%®y=0 (6)

d
+oe T ay) d_i + a,(X)y = g(x), (7)

con g(x) no igual a cero, se dice que es no homogénea. Por ejemplo, 2y” + 3y’ — 5y =
0 es una ecuacion diferencial lineal homogénea de segundo orden, mientras que x%y"”
+ 6y’ + 10y = e*es una ecuacion diferencial lineal de tercer orden no homogénea. La
palabra homogénea en este contexto no se refiere a los coeficientes que son funciones
homogéneas, como en la seccién 2.5.

Después veremos que para resolver una ecuacién lineal no homogénea (7), pri-
mero se debe poder resolver la ecuacion homogénea asociada (6).

Para evitar la repeticion innecesaria en lo que resta de este libro, se haran,
como algo natural, las siguientes suposiciones importantes cuando se establezcan



Por favor
recuerde estas dos
suposiciones
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definiciones y teoremas acerca de las ecuaciones lineales (1). En algun intervalo
comun |,

* las funciones coeficientes a,(x), i = 0, 1,2, ... ,nyg(x) son continuas;
* a (x) # 0 paratoda x en el intervalo.

OPERADORES DIFERENCIALES En célculo la derivacion se denota con frecuen-
cia con la letra D mayuscula, es decir, dy/dx = Dy. El simbolo D se llama opera-
dor diferencial porque convierte una funcion derivable en otra funcién. Por ejemplo,
D(cos 4x) = —4 sen 4x 'y D(5x® — 6x?) = 15x? — 12x. Las derivadas de orden superior
se expresan en términos de D de manera natural:
2 n
% (%) = % = D(Dy) = D% v, en general % = D",

donde y representa una funcion suficientemente derivable. Las expresiones polino-
miales en las que interviene D, tales como D + 3, D? + 3D — 4y 5x°D% — 6x?D? +
4xD + 9, son también operadores diferenciales. En general, se define un operador
diferencial de n-ésimo orden u operador polinomial como

L=a(XD"+a _,(x)D"*+---+a(XxD + ayx) (8)
Como una consecuencia de dos propiedades bésicas de la derivada, D(cf(x)) = cDf(x),
c es una constante y D{f(x) + g(x)} = Df(x) + Dg(x), el operador diferencial L tiene
una propiedad de linealidad; es decir, L operando sobre una combinacion lineal de dos

funciones derivables es lo mismo que la combinacion lineal de L operando en cada una
de las funciones. Simbdlicamente esto se expresa como

L{af(x) + Bg(¥)} = aL(f(x)) + BL(9(X)), 9)
donde a y B son constantes. Como resultado de (9) se dice que el operador diferencial
de n-ésimo orden es un operador lineal.

ECUACIONES DIFERENCIALES Cualquier ecuacion diferencial lineal puede ex-
presarse en términos de la notacién D. Por ejemplo, la ecuacion diferencial y” + 5y’ +
6y = 5x — 3 se puede escribir como D?y + 5Dy + 6y = 5x—3 0 (D? + 5D + 6)y = 5x
— 3. Usando la ecuacién (8), se pueden escribir las ecuaciones diferenciales lineales
de n-énesimo orden (6) y (7) en forma compacta como

L(y) =0 y L(y) = 9(x),
respectivamente.

PRINCIPIO DE SUPERPOSICION En el siguiente teorema se ve que la suma o
superposicion de dos 0 méas soluciones de una ecuacién diferencial lineal homogénea
es también una solucion.

TEOREMA 4.1.2 Principio de superposicion; ecuaciones homogéneas

Seany,,Y,, ... ,Y,soluciones de la ecuacion homogénea de n-esimo orden (6)
en un intervalo I. Entonces la combinacién lineal

y = Ciya(X) + CYp(X) + -0 -+ CyX),
donde lasc,i=1,2, ..., kson constantes arbitrarias, también es una solu-

cion en el intervalo.

DEMOSTRACION  Se demuestra el caso k = 2. Sea L el operador diferencial que
se defini6 en (8) y sean y,(x) y y,(x) soluciones de la ecuacion homogénea L(y) = 0.
Si se define y = ¢y, (x) + c,y,(x), entonces por la linealidad de L se tiene que

L(y) = L{eyyi(X) + Cyo(X)} = ¢ L(yy) + ¢ L(y;) =¢ - 0+¢,-0=0. m
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y
fi=x
X
a)
y
fz =x|
X
b)

FIGURA 4.1.3 El conjunto que consiste
en f, y f, es linealmente independiente en

(_007 oo)'

| COROLARIOS DEL TEOREMA 4.1.2

A) Un multiplo constante y = c,y,(x) de una solucion y,(x) de una ecuacion
diferencial lineal homogénea es también una solucion.

B) Una ecuacion diferencial lineal homogénea tiene siempre la solucién tri-
vial y = 0.

I EJEMPLO 4 Superposicién; ED homogénea

Las funcionesy, = x*y 'y, = x* In x son soluciones de la ecuacion lineal homogénea
x¥y" — 2xy" + 4y = 0 en el intervalo (0, ). Por el principio de superposicién, la
combinacion lineal

y =X + X2 Inx

es también una solucion de la ecuacién en el intervalo. [ |

La funciony = e™ es una solucién de y” — 9y’ + 14y = 0. Debido a que la ecua-
cién diferencial es lineal y homogénea, el multiplo constante y = ce™ es también una
solucion. Para varios valores de c se ve que y = 9e™, y = 0, y = —\/Be’™, ... son
todas soluciones de la ecuacion.

DEPENDENCIA LINEAL E INDEPENDENCIA LINEAL Los dos conceptos son
basicos para el estudio de ecuaciones diferenciales lineales.

DEFINICION 4.1.1 Dependencia e independencia lineal

Se dice que un conjunto de funciones f,(x), f,(x), ... ,f (x) es linealmente depen-
diente en un intervalo I si existen constantes ¢, c,, . .. ,C, no todas cero, tales que

c fi(X) + ¢ fo(x) + - - - + ¢, f,(x) =0

para toda x en el intervalo. Si el conjunto de funciones no es linealmente de-
pendiente en el intervalo, se dice que es linealmente independiente.

En otras palabras, un conjunto de funciones es linealmente independiente en un inter-
valo I si las Unicas constantes para las que

lel(X) + C2 fz(x) + -+ Cn fn(X) =0

para toda x en el intervalosonc, =c,= ... =c = 0.

Es fécil entender estas definiciones para un conjunto que consiste en dos funciones
f.(x) y f,(x). Si el conjunto de funciones es linealmente dependiente en un intervalo, en-
tonces existen constantes c, y ¢, que no son ambas cero de manera tal que, para toda x en
elintervalo, ¢, f,(x) + ¢, f,(x) = 0. Por tanto, si suponemos que ¢, # 0, se deduce que f,(x)
= (—c,/c)f,(x); es decir, si un conjunto de dos funciones es linealmente dependiente,
entonces una funcion es simplemente un maltiplo constante del otro. A la inversa, si f,(x)
= ¢,f,(x) para alguna constante c,, entonces (— 1) - f,(x) + ¢, f,(x) = 0 para toda x en el
intervalo. Por tanto, el conjunto de funciones es linealmente dependiente porque al menos
una de las constantes (en particular, c, = —1) no es cero. Se concluye que un conjunto
de dos funciones f,(x) y f,(x) es linealmente independiente cuando ninguna funcion es un
multiplo constante de la otra en el intervalo. Por ejemplo, el conjunto de funciones f,(x)
= sen 2x, f(x) = sen x cos x es linealmente dependiente en (—o, ) porque f,(x) es un
mdltiplo constante de f,(x). Recuerde de la formula del seno del doble de un angulo que
sen 2x = 2 sen x cos x. Por otro lado, el conjunto de funciones f,(x) = x, f,(x) = Ix| es li-
nealmente independiente en (—oe, ). Al examinar la figura 4.1.3 usted debe convencerse

de que ninguna funcién es un multiplo constante de la otra en el intervalo.
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Del analisis anterior se tiene que el cociente f,(x)/f,(x) no es una constante en un
intervalo en el que el conjunto f (), f,(x) es linealmente independiente. Esto se usara
en la siguiente seccion.

I EJEMPLO 5 Conjunto de funciones linealmente dependiente

El conjunto de funciones f (x) = cos?, f,(x) = sen’, f,(x) = sec’x, f,(x) = tan*x es
linealmente dependiente en el intervalo (—#/2, 7/2) porque

C; COS?X + C,Sem’X + C5sec’ + ¢, tan’x = 0

dondec, =c,=1,¢c,= —1,c, = 1. Aqui se usa cos’x + sen’x = 1y 1 + tan’x = sec’x.

s =

Un conjunto de funciones f (x), f,(x), ... , f (x) es linealmente dependiente en un
intervalo si por lo menos una funcion se puede expresar como una combinacion lineal
de las otras funciones.

I EJEMPLO 6 Conjunto de funciones linealmente dependientes

El conjunto de funciones fy(x) = Vx + 5, f,(x) = Vx + 5x, f,(x) = x — 1, f,(x) = x?
es linealmente dependientes en el intervalo (0, «) porque f, puede escribirse como una

combinacion lineal de f, f, y f,. Observe que

B0 =1+, + 5« f00) + 0 - f,K)

para toda x en el intervalo (0, ). ]

SOLUCIONES DE ECUACIONES DIFERENCIALES Estamos interesados princi-
palmente en funciones linealmente independientes o con més precision, soluciones li-
nealmente independientes de una ecuacion diferencial lineal. Aunque se podria apelar
siempre en forma directa a la definicion 4.1.1, resulta que la cuestion de si el conjunto
de n soluciones y,, y,, ... ,Y, de una ecuacion diferencial lineal homogénea de n-
ésimo orden (6) es linealmente independiente se puede establecer en forma un poco
mecénica usando un determinante.

| DEFINICION 4.1.2  Wronskiano

Suponga que cada una de las funciones f,(x), f,(x), ... , f (x) tiene al menos n
— 1 derivadas. El determinante

fl f2 ° Il fn

f’ f’ . f/
W(f, f, ..., f)=| * : |
fl(n;l) fz(n.fl) o frgn 1)

donde las primas denotan derivadas, se llama el Wronskiano de las funciones.

TEOREMA 4.1.3 Criterio para soluciones linealmente independientes

Seany, Y, ... ,Y,nsoluciones de la ecuacion diferencial lineal homogénea de
n-ésimo orden (6) en el intervalo I. El conjunto de soluciones es linealmente in-
dependiente en I si y sdlo si W(y, y,, ... ,Y,) # 0 paratoda x en el intervalo.
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Se tiene del teorema 4.1.3 que cuandoy,, y,, ... , Y, son n soluciones de (6) en un in-
tervalo |, el Wronskiano W(y, y,, ... ,Y,) esigual a cero o nunca es cero en el intervalo.

Al conjunto de n soluciones linealmente independientes de una ecuacién diferen-
cial lineal homogénea de n-ésimo orden se le da un nombre especial.

DEFINICION 4.1.3 Conjunto fundamental de soluciones

Cualquier conjunto y,, y,, ... ,Y, de nsoluciones linealmente independientes
de la ecuacidn diferencial lineal homogénea de n-ésimo orden (6) en un inter-
valo I es un conjunto fundamental de soluciones en el intervalo.

La respuesta a la cuestion basica sobre la existencia de un conjunto fundamental
de soluciones para una ecuacion lineal esta en el siguiente teorema.

TEOREMA 4.1.4 Existencia de un conjunto fundamental

Existe un conjunto fundamental de soluciones para la ecuacion diferencial li-
neal homogénea de n-ésimo orden (6) en un intervalo I.

Similar al hecho de que cualquier vector en tres dimensiones se puede expresar
como una combinacion lineal de los vectores linealmente independientes i, j, k, cual-
quier solucién de una ecuacion diferencial lineal homogénea de n-ésimo orden en un
intervalo | se expresa como una combinacion lineal de n soluciones linealmente inde-
pendientes en I. En otras palabras, n soluciones linealmente independientesy,,y,, ... ,
y, son los bloques basicos para la solucion general de la ecuacion.

TEOREMA 4.1.5 Solucion general; ecuaciones homogéneas

Seay, Y, ... ,Y, unconjunto fundamental de soluciones de la ecuacion di-
ferencial lineal homogénea de n-ésimo orden (6) en el intervalo I. Entonces la
solucion general de la ecuacion en el intervalo es

Yy =CYi(¥) + CYa(X) + - - -+ GYu(X),
dondec,i=1,2, ... ,nsonconstantes arbitrarias.

El teorema 4.1.5 establece que si Y(x) es alguna solucién de (6) en el intervalo,
entonces siempre se pueden encontrar constantes C, C,, ... , C_tales que

Y(X) = Ciyi(X) + Coyo(¥) + - - - + Cyn(X).
Demostraremos el caso cuando n = 2.

DEMOSTRACION  Sea Y unasoluciény Y,Y ¥, soluciones linealmente independientes
deay” + ay + ay = 0enunintervalo I. Suponga que x = t es un punto en | para
el cual W(y,(t), y,(t)) # 0. Suponga también que Y(t) = k y Y'(t) = k,. Si ahora exa-
minamos las ecuaciones

Coyi() + Coyo(t) = ky

Cuya() + Goya(t) = ke,
se tiene que podemos determinar C,y C, de manera Unica, a condicion de que el deter-
minante de los coeficientes satisfaga

Yi(t)  yo(b)
yi) vzt '
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Pero este determinante es simplemente el Wronskiano evaluado en x = t y por supo-
sicion, W # 0. Si se define G(x) = C,y,(x) + C,y,(x), se observa que G(x) satisface
la ecuacion diferencial puesto que es una superposicién de dos soluciones conocidas;
G(x) satisface las condiciones iniciales

G(t) = Coyu(t) + Coyo(t) = ky y G'(t) = Coya(t) + Coya(t) = ko
y Y(x) satisface la misma ecuacion lineal y las mismas condiciones iniciales. Debido a

que la solucion de este problema con valores iniciales lineal es Unica (teorema 4.1.1),
se tiene Y(X) = G(x) 0 Y(x) = Cy,(x) + C,y,(x). ]

I EJEMPLO 7 Solucién general de una ED homogénea

Las funciones y, = e*y y, = e*son soluciones de la ecuacion lineal homogénea y”
—9y = 0 en el intervalo (—oo, ). Por inspeccidn las soluciones son linealmente inde-
pendientes en el eje x. Este hecho se corrobora al observar que el Wronskiano

e3x 873x
e —3Ze X
para toda x. Se concluye que y, y y, forman un conjunto fundamental de soluciones y
por tanto, y = c.e* + c,e”* es la solucion general de la ecuacion en el intervalo. ®

W(e¥ e ) = =—-6#0

I EJEMPLO 8 Unasolucion obtenida de una solucion general

La funciény = 4 senh 3x — 5e* es una solucion de la ecuacidn diferencial del ejemplo
7. (Compruebe esto.) Aplicando el teorema 4.1.5, debe ser posible obtener esta solu-
cion a partir de la solucion general y = c e + ce~*. Observe que si se eligec, = 2y
¢, = —7,entonces y = 2e* — 7e~* puede rescribirse como

e3>< _ e—3x
y=2e¥— 2" —be*=4 — ) 5e %

Esta Gltima expresion se reconoce como y = 4 senh 3x — 5e 3%, ]

I EJEMPLO 9 Solucion general de una ED homogénea

Las funciones y, = e, y, = e* y y, = e* satisfacen la ecuacion de tercer orden y”
— 6y” + 11y’ — 6y = 0. Puesto que

ex e2x e3x
W(e*, e¥ e¥) = [e¥ 282 3e¥| =2e # 0

e 4e¥ Qg%

para todo valor real de X, las funciones y,, y,y y, forman un conjunto fundamental de
soluciones en (—e, «). Se concluye que y = ¢ e* + c.e” + c.e’es lasolucion general
de la ecuacion diferencial en el intervalo. ]

4.1.3 ECUACIONES NO HOMOGENEAS

Cualquier funcion Y, libre de parametros arbitrarios, que satisface (7) se dice que es
una solucion particular o integral particular de la ecuacion. Por ejemplo, es una
tarea directa demostrar que la funcién constante y, =3esuna solucién particular de la
ecuacion no homogéneay” + 9y = 27.
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Ahorasiy,y, ... ,Y,son soluciones de (6) en un intervalo | y y, s cualquier
solucion particular de (7) en I, entonces la combinacion lineal

y=cYi(¥) + Y(X) + - - -+ oYX + Y, (10)

es también una solucién de la ecuacion no homogénea (7). Si piensa al respecto, esto tiene
sentido, porque la combinacion lineal ¢y (x) + c,y,(X) + ... + Y, (x) se transform_a en
OporeloperadorL=aD"+a D" '+ ...+ aD + a, mientras que y, se convierte
en g(x). Si se usa k = n soluciones linealmente independientes de la ecuacion de n-ésimo
orden (6), entonces la expresion en (10) se convierte en la solucién general de (7).

TEOREMA 4.1.6 Solucion general; ecuaciones no homogéneas

Seay, cualquier solucion particular de la ecuacion diferencial lineal no homo-
génea de n-ésimo orden (7) en un intervalo I, y seay,, y,, ... , Y, unconjunto
fundamental de soluciones de la ecuacién diferencial homogénea asociada (6)
en |. Entonces la solucién general de la ecuacion en el intervalo es

y=CYi(¥) + y(x) + -+ GYa®¥) + Y,

dondelasc,i=1,2, ... ,nson constantes arbitrarias.

DEMOSTRACION  Sea L el operador diferencial definido en (8) y sean Y(x) y yp(x)
soluciones particulares de la ecuacion no homogénea L(y) = g(x). Si se define u(x)
=Y(X) - yp(x), entonces por la linealidad de L se tiene

L(u) = L{Y(X) —y,(0} = L(Y()) — L(y,(¥) = 9(x) — 9(x) = 0.

Esto demuestra que u(x) es una solucidn de la ecuacion homogénea L(y) = 0. Asi
por el teorema 4.1.5, u(x) = ¢y,(X) + c,y,(x) + ... + ¢y (x),y asi

Y = Yp(¥) = Crya(X) + CYo(X) + - - -+ Cryn(X)
0 Y(X) = cyi(®X) + CYa(X) + -+ CYa(X) + Yp(X). ]

FUNCION COMPLEMENTARIA Vemos en el teorema 4.1.6 que la solucién general
de una ecuacion lineal no homogénea esta compuesta por la suma de dos funciones:

Yy = CYi(X) + CYo(X) + - F GYn(®) F Yp(X) = V(X)) + Yp(X)-

La combinacion lineal y (x) = ¢ y,(x) + ¢,y (X) + ... + c_y (X), que es la solucion ge-
e/ 171 272V nZny’

neral de (6), se llama funcion complementaria para la ecuacion (7). En otras palabras,

para resolver una ecuacion diferencial lineal no homogénea, primero se resuelve la

ecuacion homogénea asociada y luego se encuentra una solucion particular de la ecua-

cién no homogénea. La solucion general de la ecuacion no homogénea es entonces

y = funcién complementaria + cualquier solucién particular
=Y. Y,

I EJEMPLO 10 Solucién general de una ED no homogénea

Por sustitucion, se demuestra con facilidad que la funcion y, = — —1x esuna

solucion particular de la ecuacién no homogénea

y" — ey’ + 11y’ — 6y = 3x. (11)
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Para escribir la solucion general de (11), también se debe poder resolver la ecuacion
homogénea asociada

y" — ey’ + 11y’ — 6y = 0.

Pero en el ejemplo 9 vimos que la solucién general de esta Gltima ecuacion en el intervalo
(=, ) fuey = ce* + c,e* + c,e*. Por tanto la solucion general de (11) en el intervalo es
1 1

y=yc+yp=c1e><+02e2"+03e3x—1—2—§x. |

OTRO PRINCIPIO DE SUPERPOSICION EI Gltimo teorema de este analisis se
usara en la seccion 4.4 cuando se considera un método para encontrar soluciones par-
ticulares de ecuaciones no homogéneas.

TEOREMA 4.1.7 Principio de superposicion; ecuaciones
no homogéneas

Sean Yo Yo -0 Yo k soluciones particulares de la ecuacion diferencial lineal
no homogenea de n ésimo orden (7) en un intervalo | que corresponde, a su
vez, a k funciones diferentes g, 9,, ... , g,. Es decir, se supone que Yo, denota
una solucién particular de la ecuacion diferencial correspondiente

a(Y? + a, (YD + - - Ay + ay = 6, (12)
dondei=1,2, ...,k Entonces
Yo = ypl(x) + ypz(x) F © °0 aF ypk(x) (13)
es una solucion particular de

a, (Y™ + a,_ (YY" + - -+ Ay’ + a(X)y
=0:(%) + () + -+ - + gX). (14)

DEMOSTRACION  Se demuestra el caso k = 2. Sea L el operador diferencial de-
finido en (8) y sean Y, X))y Y, (x) soluciones particulares de las ecuaciones no ho-
mogéneas L(y) = g, (xl) y L(y) = g,(x), respectivamente. Si definimos Y, =Y, (x)
+y _(X), queremos demostrar que y_ es una solucion particular de L(y) = g, (x +
g, (xs Nuevamente se deduce el resultado por la linealidad del operador L.:

L(Yp) = L{Yp (0 + ¥p,(0} = L(¥p,(¥)) + L(¥p,(¥)) = Gu(X) + Q). ™

I EJEMPLO 11 Superposicion, ED no homogénea

Usted debe comprobar que

Yp, = —4x% esunasolucion particular de  y” — 3y’ + 4y = —16x% + 24x — 8,
Yp, = €% es una solucion particular de  y” — 3y’ + 4y = 2,

Yp, = X€* es una solucion particular de  y” — 3y’ + 4y = 2xe* — e~

Se tiene de (13) del teorema 4.1.7 que la superposicién de You Yor Y You

Y=Y, T Vo, T Yo, = —4C + € + xe,
es una solucién de

y' — 3y + 4y = —16X2 + 24x — 8 + 2e¥ + 2xe* — €~ ]

— N
60 AR
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NOTA Silas y, son soluciones particulares de (12) parai = 1,2, ... , k, entonces
la combinacion lineal

Yp = Ci¥p, T Co¥p, - = =+ CiYp,

donde las c, son constantes, es también una solucion particular de (14) cuando el
miembro del lado derecho de la ecuacion es la combinacion lineal

C10:(X) + C20,(X) + - - - + ¢ Gu(X)-
Antes de que empecemos a resolver realmente ecuaciones diferenciales lineales

homogéneas y no homogéneas, se necesita un poco mas de la teoria, que se presenta
en la siguiente seccion.

COMENTARIOS

Esta observacion es una continuacion del breve analisis de sistemas dinamicos
que se presento al final de la seccion 1.3.

Un sistema dinamico cuya regla o modelo matematico es una ecuacion di-
ferencial lineal de n-ésimo orden

aOy® + a, Oy + - - -+ Oy + at)y = g(t)

se dice que es un sistema lineal de n-ésimo orden. Las n funciones dependientes del
tiempo y(t), y'(t), ... , y®2(t) son las variables de estado del sistema. Recuerde
que sus valores en el tiempo t dan el estado del sistema. La funcion g tiene varios
nombres: funcion de entrada, funcion de fuerza o funcién de excitacion. Una
solucion y(t) de la ecuacion diferencial se llama salida o respuesta del sistema.
Bajo las condiciones establecidas en el teorema 4.1.1, la salida o respuesta y(t) se
determina de manera Unica por la entrada y el estado del sistema prescritos en el
tiempo t ; es decir, por las condiciones iniciales y(t,), y'(t)), ...,y 9(t).

Para que un sistema dindmico sea un sistema lineal es necesario que se cumpla
en el sistema el principio de superposicion (teorema 4.1.7); es decir, la respuesta
del sistema a una superposicion de entradas es una superposicion de salidas. Ya se
analizaron algunos de los sistemas lineales simples en la seccidn 3.1 (ecuaciones
lineales de primer orden); en la seccion 5.1 se examinan sistemas lineales en los

que los modelos mateméticos son ecuaciones diferenciales de segundo orden.

E] ERCICIOS 4.1 Las respuestas a los problemas con niimero impar comienzan en la pagina RES-4.

4.1.1 PROBLEMAS CON VALORES INICIALES
Y CON VALORES EN LA FRONTERA

En los problemas 1 a 4 la familia de funciones que se propor-
ciona es la solucién general de la ecuacion diferencial en el
intervalo que se indica. Encuentre un miembro de la familia
que sea una solucién del problema con valores iniciales.

1 y=ce+ce™ (—»o »);
y"—y=0, y(0)=0, y(0)=1
2. y=ce¥+ce™ (—» ),
y'—3y'—4y=0, y(0) =1 y'(0)=2
3. y=cx+cxinx, (0, ),
X" —xy'+y=0, y(1)=3, y@1)=-1
4. y=c, +C,C08X + C,senx, (—, »),
y"+y =0, y(m) =0, y(m)=2 y'(m)=-1

5. Dado quey = c, + ¢,x* es una familia de dos parametros

de soluciones de xy” — y" = 0 en el intervalo (—o, ),
demuestre que no se pueden encontrar las constantes c, y
¢, tales que un miembro de la familia satisface las condi-
ciones iniciales y(0) = 0, y’(0) = 1. Explique por qué esto
no viola el teorema 4.1.1.

. Encuentre dos miembros de la familia de soluciones del

problema 5 que satisfagan las condiciones iniciales y(0)
=0,y'(0) = 0.

. Como x(t) = ¢, cos wt + c, sen wt es la solucion general

de X" + w* = 0 en el intervalo (—o°, «), demuestre que
una solucion que satisface las condiciones iniciales x(0)
= X,, X'(0) = x, esta dada por

Xy
X(t) = X, Cos wt + — senwt.
w



8. Use la solucion general de X" + w? = 0 que se da en el
problema 7 para demostrar que una solucion que satisface
las condiciones iniciales x(t)) = x,, X'(t,) = X, es la solu-
cion dada en el problema 7 cambiada por una cantidad t :

X
X() = X, Cosw(t — ty) + = senaw(t — t,).
w

En los problemas 9 y 10 encuentre un intervalo centrado en x
= 0 para el cual el problema con valores iniciales dado tiene
una solucién Unica.

9. x—2y"+3y=x, y0)=0, y(©0)=1

y0) =1, y(@©0)=0

11. a) Utilice la familia del problema 1 para encontrar una
solucién de y” — y = 0 que satisfaga las condiciones
en la frontera y(0) = 0, y(I) = 1.

b) La ED del inciso a) tiene la solucidn general alterna-
tivay = c, cosh x + ¢, senh x en (—o, «). Use esta
familia para encontrar una solucién que satisfaga las
condiciones en la frontera del inciso a).

c) Demuestre que las soluciones de los incisos a) y b)
son equivalentes.

10. y” + (tan x)y = e,

12. Use la familia del problema 5 para encontrar una solucién
de xy” —y’ = 0 que satisfaga las condiciones en la fron-
teray(0) = 1,y'(1) = 6.

En los problemas 13 y 14 la familia de dos parametros dada es
una solucion de la ecuacién diferencial que se indica en el in-
tervalo (—oo, «). Determine si se puede encontrar un miembro
de la familia que satisfaga las condiciones en la frontera.

13. y =cercosx + cersenx; y' —2y +2y=0

a) y0)=1, y'(m)=0 b)y0) =1, y(@)=-1

¢) y(0) = 1, y(g) =1 d)y(0) =0, ym)=0.
14, y=cx*+cx*+3; x%" —5xy' +8y=24

a) y(-1)=0, y)=4 b) y©0) =1, y@)=2

c) y0) =3 y@)=0 d)y@d)=3, y(@ =15

4.1.2 ECUACIONES HOMOGENEAS

En los problemas 15 a 22 determine si el conjunto de funcio-
nes es linealmente independiente en el intervalo (—, ).

15. f,(x) =x, f,(x)=x% f,(x)=4x—3x

16. f,(x) =0, f,(x)=x f(x)=¢e*

17. f,(x) =5, f,(x) =cos’, f,(x) = sen*x

18. f(x) =cos2x, f,(x) =1, f(x)=cosx
19. f(x)=x, Lx)=x—-1, f,(x)=x+3
20. () =2+x f,(x)=2+[x]

4.1 TEORIA PRELIMINAR: ECUACIONES LINEALES o 129

21 () =1+x f,x)=x f£x)=x
22. f(x)=e, f,(x)=e> f,(x)=-senhx

En los problemas 23 a 30 compruebe que las funciones dadas
forman un conjunto fundamental de soluciones de la ecua-
cion diferencial en el intervalo que se indica. Forme la so-
lucién general.

23. y' =y — 12y = 0;
24. y" — 4y = 0; cosh 2x, senh 2x, (—©, »)
25. y" =2y’ +5y=0;
26. 4y" —4y' +y=0; e xe® (—o,x)

27. x2y" — 6xy’ + 12y = 0; x3, x4, (0, »)

28. x%y" +xy’ +y=0; cos(Inx), sen(In x), (0, =)
29. x3y" + 6x%y" + 4xy' — 4y = 0;
30. y@ +y" =0;

e—Sx’ e4x, (—OO, OO)

€% cos 2x, e* sen 2X, (—oe, ©)

X, X4, x721Inx, (0, )

1, X, €OS X, sen X, (—oo, ©)

4.1.3 ECUACIONES NO HOMOGENEAS

En los problemas 31 a 34 compruebe que dada la familia de so-
luciones de dos parametros, se trata de la solucion general de la
ecuacion diferencial no homogénea en el intervalo indicado.

31. y" = 7y" + 10y = 24e¥;
y = c,e* + c,e™ + 6e*, (—=, =)
32. y" +y=secx;
y =, cos X +c, sen X + X sen x + (cos x) In(cos X),
(=m/2,m/2)
33. y" — 4y’ + 4y = 2e¥ + 4x — 12;
y = ce* + c,xe” + x%&¥ + x — 2, (—%, »)
34. 2x%y" + 5xy' +y =x2 —x;
y = CX Y2 4 cx 7t 4+ ox? — 2x, (0, )
35. a) Compruebe que Yo, = 3e% Yy, = X2 + 3x son, respec-
tivamente, soluciones particulares de

y” — 6y’ + by = —9e*
y y” — 6y’ + 5y = 5x? + 3x — 16.
b) Use el inciso a) para encontrar soluciones particula-
res de
y” — 6y’ + 5y = 5x? + 3x — 16 — 9¢?¥

y y” —6y +5y=—10x? — 6x + 32 + e*.

36. a) Por inspeccién encuentre una solucion particular de
y" + 2y = 10.
b) Por inspeccion encuentre una solucion particular de
y" + 2y = —4x.
c) Encuentre una solucion particular de y” + 2y =
—4x + 10.

d) Determine una solucion particular de y” + 2y =
8x + 5.
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Problemas para analizar

37.

38.

39.

Sean=1,2,3, ....Analice como pueden utilizarse las
observaciones D"x"™' = 0 y D"x" = n! para encontrar so-
luciones generales de las ecuaciones diferenciales dadas.

8 y'=0  b)y"=0 ¢ y9=0
dy'=2 ey'=6  f)y9=24

Suponga que y, = e*yy, = e *son dos soluciones de una
ecuacion diferencial lineal homogénea. Explique por qué
y, = cosh x y 'y, = senh x son también soluciones de la
ecuacion.

a) Compruebe quey, = x*yy, = |x|* son soluciones li-
nealmente independientes de la ecuacion diferencial
x2y" — 4xy’ + 6y = 0 en el intervalo (—o°, ).

b) Demuestre que W(y,, y,) = 0 para todo ndmero real x.
¢ Este resultado viola el teorema 4.1.3? Explique.

c) Compruebe que Y, = x*y Y, = x? son tambien so-
luciones linealmente independientes de la ecuacion
diferencial del inciso a) en el intervalo (—o°, ).

d) Determine una solucion de la ecuacion diferencial
que satisfaga y(0) = 0, y'(0) = 0.

40.

41.

42.

e) Por el principio de superposicion, teorema 4.1.2,
ambas combinaciones linealesy = cy, + cy,y Y =
¢,Y, + ¢,Y, son soluciones de la ecuacion diferencial.
Analice si una, ambas o0 ninguna de las combinacio-
nes lineales es una solucién general de la ecuacion
diferencial en el intervalo (—, ).

¢El conjunto de funciones f (x) = e**? f,(x) = e*~%es
linealmente dependiente o independiente en (—o, %)?
Explique.

Suponga quey, V,, ... ,Y, sonksoluciones linealmente
independientes en (—o°, «) de una ecuacion diferencial
lineal homogénea de n-ésimo orden con coeficientes
constantes. Por el teorema 4.1.2 se tiene que y, ,, = O es
también una solucién de la ecuacion diferencial. ¢Es el
conjunto de soluciones y,, y,, ... , Y, Y,,, linealmente
dependiente o independiente en (—o0,)? Explique.

Suponga que y, Y, ... ,Y, son ksoluciones no triviales
de una ecuacion diferencial lineal homogénea de n-ésimo
orden con coeficientes constantesy que k = n + 1. ;Esel
conjunto de solucionesy,, y,, ... ,Y, linealmente depen-
diente o independiente en (—o, «)? Explique.

4.2

REDUCCION DE ORDEN

REPASO DE MATERIAL

e Seccién 4.1.

cial lineal homogénea de segundo orden

e Seccion 2.5 (utilizando una sustitucion).

a()y" + a)y’ + a(xy =0

INTRODUCCION En laseccion anterior vimos que la solucion general de una ecuacion diferen-

)

es una combinacion lineal y = ¢y, + c,y,, donde y, y y, son soluciones que constituyen un con-
junto linealmente independiente en cierto intervalo 1. Al comienzo de la siguiente seccion se analiza
un método para determinar estas soluciones cuando los coeficientes de la ED en (1) son constantes.
Este método, que es un ejercicio directo en algebra, falla en algunos casos y s6lo produce una solu-
cion simple y, de la ED. En estos casos se puede construir una segunda solucion y, de una ecuacion
homogénea (1) (aun cuando los coeficientes en (1) son variables) siempre que se conozca una solucion
no trivial y, de la ED. La idea basica que se describe en esta seccion es que la ecuacion (1) se puede
reducir a una ED lineal de primer orden por medio de una sustitucion en la que interviene la solucion
conocida y,. Una segunda solucion y, de (1) es evidente después de resolver la ED de primer orden.

REDUCCION DE ORDEN Suponga que y, denota una solucion no trivial de (1) y que
y, se define en un intervalo I. Se busca una segunda solucion y, tal quey, y y, sean un con-
junto linealmente independiente en 1. Recuerde de la seccion 4.1 que siy, y y, son lineal-
mente independientes, entonces su cociente y,/y, no es constante en |, es decir, y,(x)/ Y, (X)
= U(X) 0 y»(x) = u(x)y(x). La funcion u(x) se determina al sustituir y,(x) = u(x)y,(x) en
la ecuacidn diferencial dada. Este método se llama reduccion de orden porque debemos
resolver una ecuacion diferencial lineal de primer orden para encontrar a u.
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I EJEMPLO 1 Unasegunda solucion por reduccion de orden

Dado que y, = e*es unasolucion dey” — y = 0 en el intervalo (—2°, ), use reduccion
de orden para determinar una segunda solucion y,.

SOLUCION Siy = u(x)y,(x) = u(x)e, entonces aplicando la regla del producto se
obtiene

y' = ue* + e, y"=ue*+ 2e’u’ + e‘u”,
por tanto y" —y=¢e*(u"+ 2u") = 0.

Puestoquee* # 0, latltimaecuacionrequiere que u” + 2u’ = 0. Sise hace lasustitucion
w = u’, esta ecuacion lineal de segundo orden en u se convierte enw’ + 2w = 0, que
es una ecuacion lineal de primer orden en w. Si se usa el factor integrante €%, se puede

Lo d o .
escribir Ix [e**w] = 0. Despueés de integrar, se obtienew = ce > ou’ = ce > Al
X
integrar de nuevo se obtiene u = —1c,e2 + c,. Asi
G -
y = u(x)e* = —Ee X 4+ c,eX. (2)

Haciendo c, = 0y ¢, = —2, se obtiene la segunda solucion deseada, y, = e *. Puesto que
W(e*, e7) # 0 para toda X, las soluciones son linealmente independientes en (—o, ). |

Puesto que se ha demostrado que y, = e*y y, = e son soluciones linealmente
independientes de una ecuacion lineal de segundo orden, la expresion en (2) es en
realidad la solucion general de y” —y = 0 en (—o0, ).

CASO GENERAL  Suponga que se divide entre a,(x) para escribir la ecuacion (1) en
la forma estandar

y" + Py + Q(X)y =0, 3)

donde P(x) y Q(x) son continuas en algin intervalo 1. Supongamos ademas que y, (x)
es una solucion conocida de (3) en I 'y que y,(x) # O para toda x en el intervalo. Si se
define y = u(x)y,(x), se tiene que

y' =uyp +y’, y" =yl + 2y’ + oy’

Yy’ + Py’ + Qy = u[y,"+ Py/+ Qy;] + y,u” + (2y,'+ Pyyu’ = 0.
%(—)

cero
Esto implica que se debe tener

yu” + (2y; + PYJU =0 0 yw + (2y; + Py)yw =0, “)

donde hacemos que w = u’. Observe que la Ultima ecuacién en (4) es tanto lineal como
separable. Separando las variables e integrando, se obtiene

d !
2 g+ pdx=0
Y1
Injwy?| = —dex +c o wyi=ce P

Despejamos a w de la ultima ecuacidn, usamos w = u’ e integrando nuevamente:

e—dex
u=c¢ | —5—dx+c,

Y1
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Eligiendoc, = 1y c, = 0, se encuentra de y = u(x)y,(x) que una segunda solucion de
la ecuacion (3) es

e—.J‘P(x)dx
Y2 = Ya(X) f 0 dx. ®)

Un buen ejercicio de derivacion es comprobar que la funcion y,(x) que se define en (5)
satisface la ecuacion (3) y que y, y y, son linealmente independientes en algun inter-
valo en el que y,(x) no es cero.

I EJEMPLO 2 Unasegunda solucién por la formula (5)

La funcion y, = x* es una solucion de x?%" — 3xy" + 4y = 0. Encuentre la solucion
general de la ecuacion diferencial en el intervalo (0, «).

SOLUCION De la forma estandar de la ecuacion,

r/_§/+i =0
y XY xzy ;

e3fdx/x ) ‘
encontramos de (5) Y, = X2 J —dx el = gt = 3
X

dx
=x2f—=lenx.
X

La solucion general en el intervalo (0, ) esta dada pory = c,y, + ¢,Y,; es decir,
y =cx*+cx?Inx. ]

I COMENTARIOS

i) La deduccion y uso de la férmula (5) se ha mostrado aqui porque esta for-
mula aparece de nuevo en la siguiente seccion y en las secciones 4.7 y 6.2. La
ecuacion (5) se usa simplemente para ahorrar tiempo en obtener un resultado
deseado. Su profesor le indicara si debe memorizar la ecuacién (5) o si debe
conocer los primeros principios de la reduccion de orden.

ii) La reduccion de orden se puede usar para encontrar la solucién general de
una ecuacion no h_omogenea az(x)y’_’ +a,(Xy + ao(x)y_ = g(x) siempre que se
conozca una solucion y, de la ecuacion homogénea asociada. Vea los problemas
17 a 20 en los ejercicios 4.2.

EJERCICIOS 4.2

Las respuestas a los problemas con nimero impar comienzan en la pagina RES-4.

En los problemas 1 a 16 la funcion indicada y,(x) es una so- 7.9y" —12y' +4y =0, y, =e??
lucion de la ecuacién diferencial dada. Use la reduccion de

orden o la formula (5), como se indica, para encontrar una
segunda solucion y,(x).

1.

2
3
4.
5
6

y' -4y +4y=0; y =e*
Y'Yy +y=0; vy =xe*
. y"+ 16y =0; y, = cos4x
y"+9y =0; vy, =sen3x
.y"—y=0; y, =coshx
Ly"—25y=0; y =e*

8.6y"+y —y=0;, y =¢e?
9. x?y" —7xy' + 16y =0; y =x*
10. x?y" + 2xy’ — 6y =0; y, =x?
11 xy"+y =0; y, =Inx
12. 4xy" +y =10, y, =x*Inx
13. x?y" —xy’ + 2y =0; y, = xsen(Inx)
14, x?y" — 3xy’ + 5y = 0; 'y, = x?cos(In x)
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15, (1 —2x—x)y" + 21 +x)y —2y=0; y, =x+1
16. 1 —x)y"+2xy' =0, y, =1

En los problemas 17 al 20 la funcion que se indica y, (x) es una
solucion de la ecuacion homogénea asociada. Use el método
de reduccidn de orden para determinar una segunda solucion
y,(x) de la ecuacion homogénea y una solucion particular de la
ecuacion no homogeénea dada.

17y —4y =2, y =e&

18.y"+y =1 vy, =1
19. y" — 3y’ + 2y = 5e¥;, y =¢*
20. y"—4y' +3y=x; y, =¢

Problemas para analizar

21. a) Proporcione una demostracion convincente de que la

cion de la forma y, = €™* o de la forma y, = xe™*,
m, y m, son constantes.
c) Analice de nuevo los problemas 1 al 8. ;Puede explicar
por qué los enunciados de los incisos a) y b) anteriores no
se contradicen con las respuestas de los problemas 3 al 5?
22. Compruebe que y,(x) = x es una solucion de xy” — xy’ +
y = 0. Utilice la reduccion de orden para encontrar una
segunda solucion y,(x) en la forma de una serie infinita.
Estime un intervalo de definicion para y,(x).

Tarea para el laboratorio de computacién

23. a) Compruebe que y,(x) = e* es una solucion de
xy” — (x + 10)y’ + 10y = 0.
b) Use la ecuacidn (5) para determinar una segunda solu-

cion y,(x). Usando un SAC realice la integracion que
se requiere.

ecuacion de segundo orden ay” + by’ +cy = 0, a, b, 0)
y € constantes, tiene siempre cuando menos una solu-
cion de la forma y, = €™, m, es una constante.

b) Explique por qué la ecuacion diferencial que se pro-
porciona en el inciso a) debe tener una segunda solu-

compacta como

10 1
Vo) = X X
n=o0

Explique, usando el corolario (A) del teorema 4.1.2,
por qué la segunda solucidn puede escribirse en forma

4.3

ECUACIONES LINEALES HOMOGENEAS

CON COEFICIENTES CONSTANTES

REPASO DE MATERIAL

e Repase el problema 27 de los ejercicios 1.1y del teorema 4.1.5.
¢ Repase el algebra de solucion de ecuaciones polinomiales.

INTRODUCCION  Como un medio para motivar el analisis en esta seccion se tratan nuevamente
las ecuaciones diferenciales de primer orden mas especificamente, las ecuaciones lineales, homogé-
neas ay’ + by = 0, donde los coeficientes a # 0 y b son constantes. Este tipo de ecuacion se resuelve
ya sea por variables separables o con ayuda de un factor integrante, pero hay otro método de solucion,
uno que soélo utiliza algebra. Antes de mostrar este método alternativo, hacemos una observacion:
despejando y’ de la ecuacion ay’ + by = 0 se obtiene y’ = ky, donde k es una constante. Esta obser-
vacion revela la naturaleza de la solucién desconocida y; la Gnica funcion elemental no trivial cuya
derivada es una constante multiple de si misma es la funcion exponencial e™. Ahora el nuevo método
de solucion: si sustituimosy = e™yy’ = me™en ay’ + by = 0, se obtiene
ame™ + be™ =0 o €™ (am+ b) = 0.

Como e™ nunca es cero para valores reales de x, la Gltima ecuacion se satisface s6lo cuando m es una
solucion o raiz de la ecuacion polinomial de primer grado am + b = 0. Para este Unico valor de m, y
= e™es unasolucion de la ED. Para mostrar esto, considere la ecuacion de coeficientes constantes 2y’
+ 5y = 0. No es necesario realizar la derivacion y la sustitucion de y = e™ en la ED; s6lo se tiene que
formar la ecuacion 2m + 5 = 0y despejar m. De m = —2 se concluye que y = e~5? es una solucion
de 2y’ + 5y = 0, y su solucion general en el intervalo (—«, <) esy = c g 5"

En esta seccion veremos que el procedimiento anterior genera soluciones exponenciales para las
ED lineales homogéneas de orden superior,

2y + 3 YT A ay Ay + gy =0, @
donde los coeficientes a, i =0, 1, ... , nson constantes realesy a # 0.
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ECUACION AUXILIAR Se empieza por considerar el caso especial de la ecuacion
de segundo orden

ay” + by’ + cy = 0, 2
donde a, by ¢ son constantes. Si se intenta encontrar una solucién de la formay = e™,
entonces después de sustituir y’ = me™ yy” = m?™, la ecuacién (2) se convierte en

am®™ + bme™ + ce™ =0 o e™(am? + bm + ¢) = 0.
Como en la introduccién se argumenta que debido a que e™ # 0 para toda X, es obvio
que la tnica forma en que y = e™ puede satisfacer la ecuacion diferencial (2) es cuando
se elige m como una raiz de la ecuacion cuadrética
am? + bm + ¢ = 0. (3)
Esta Ultimaecuacion se llamaecuacion auxiliar de laecuacién diferencial (2). Como las
dosraicesde (3)son m; = (=b + Vb? — 4ac)/2ay m, = (—b — Vb? — 4ac) /2a,

habra tres formas de la solucion general de (2) que corresponden a los tres casos:

* m,ym,reales y distintas (b*> — 4ac > 0),
» m,ym,reales e iguales (b* — 4ac = 0), y
* m, y m, nimeros conjugados complejos (b* — 4ac < 0).

Analicemos cada uno de estos casos.

CASO 1: RAICES REALES Y DISTINTAS Bajo la suposicién de que la ecuacién
auxiliar (3) tiene dos raices reales desiguales m, y m,, encontramos dos soluciones,
y, = e™* y y, = eM™* Vemos que estas funciones son linealmente independientes
en (—oo, )y, por tanto, forman un conjunto fundamental. Se deduce que la solucién
general de (2) en este intervalo es

y = ce™* + c,eM, 4)

CASO II: RAICES REALES REPETIDAS Cuando m, = m,, necesariamente se ob-
tiene sélo una solucién exponencial, Y1 = €™, De la férmula cuadratica se encuentra
que m, = —b/2a puesto que la tnica forma en que se tiene que m, = m, es tener b? —
4ac = 0. Tenemos de (5) en la seccion 4.2 que una segunda solucion de la ecuacién es

eZmlx
y, = emX f Ty dx = emX J dx = xe™*, (5)
En (5) hemos usado el hecho de que —b/a = 2m,. La solucion general es entonces
y = C,e™* + ¢ xe™*, (6)
CASO IlI: RAICES COMPLEJAS CONJUGADAS  Si m, y m, son complejas, enton-

ces se puede escribirm = o +iBym, = a — i@, donde « y 8 > O son reales i> = —1.
De manera formal, no hay diferencia entre este caso y el caso | y, por tanto,

y = Cle(a+i5)x + Cze(a—iﬁ)xl

Sin embargo, en la préctica se prefiere trabajar con funciones reales en lugar de expo-
nenciales complejas. Con este fin se usa la formula de Euler:

e'? = cos 0 + isené,
donde 6 es cualquier nimero real.* Se tiene de esta férmula que

elf* = cos BXx + isenBx y e B = cos Bx — isenpx, )
“Una deduccion formal de la formula de Euler se obtiene de la serie de Maclaurin gx = i Xfr;
n=0MN:

sustituyendo x = i6, coni2 = —1,i® = — i, ... y después separando la serie en las partes real e imaginaria.

Asi se establece la plausibilidad, por lo que podemos adoptar a cos 6 + i sen # como la definicion de e®.
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FIGURA 4.3.1 Curva solucion del
PVI del ejemplo 2.

4.3 ECUACIONES LINEALES HOMOGENEAS CON COEFICIENTES CONSTANTES ° 135

donde se usaron cos(—Bx) = cos Bxy sen(—Bx) = — sen Bx. Observe que si primero
se suma y luego se restan las dos ecuaciones en (7), se obtiene, respectivamente,

eifx + g7iFX = 2 cos Bx y eifx — g7iFx = 2j sen Bx.
Puesto que y = C gl*#* + C gle~# es una solucion de (2) para alguna eleccion de las

constantes C, y C,, las eleccionesC, = C, =1y C, =1,C, = —1dan, asu vez, dos
soluciones:

y, = el@tiBx 4 gla=ipx y y, = elatipx — glaip)x
Pero Y, = eX(eP* + e FX) = 2e% cos Bx
y y, = eX(e'P* — e F¥) = 2ie™ sen Bx.

Por tanto, del corolario A) del teorema 4.1.2, los dos Ultimos resultados muestran que
ev cos Bx y e sen Bx son soluciones reales de (2). Ademas, estas soluciones forman
un conjunto fundamental en (—<c, =), Por tanto, la solucién general es

y = €8 C0S BX + C,e®senBx = e(c; cos BX + C, sen BX). 8)

I EJEMPLO T ED de segundo orden

Resuelva las siguientes ecuaciones diferenciales.

a) 2y"—5y' —3y=0 b) y" — 10y’ + 25y =0 )y +4y'+7y=0
SOLUCION Se dan las ecuaciones auxiliares, las raices y las soluciones generales
correspondientes.

a) 2m2—5m—3=(m+1(m-3)=0, m = -3 my=3

De (4),y = ce * + ce™.

b) m*-10m+25=(Mm—-5?=0, m=m,=5

De (6),y = c,e” + ¢ xe™,

) m+4m+7=0m=-2+\V3i, m=-2-\3i

De(8)cona = —2,B= V3, y = e*zx(c1 cos V'3x + ¢, sen \/§x). [ |

I EJEMPLO 2 uUn problema con valores iniciales

Resuelva 4y” + 4y’ + 17y = 0,y(0) = —1,y’(0) = 2.

SOLUCION  Usando la férmula cuadrética tenemos que las raices de la ecuacion auxiliar

4m? + 4m + 17 = 0son m; = —1 + 2i y m, = —1 — 2i. Por tanto, de la ecuacion
(8) se tiene que y = e*(c, cos 2x + ¢, sen 2x). Aplicando la condicion y(0) = —1,
se observa de e°(c, cos 0 + ¢, sen 0) = —1 que ¢, = —1. Derivando y = e *(— cos

2x + ¢, sen 2x) y despues usando y'(0) = 2, se obtiene 2c; + % =200C = % Por tanto,
la solucion del PVI es y = e */2(—cos 2x +  sen 2x). En la figura 4.3.1 vemos que la
solucidn es oscilatoria, pero y — 0 conforme x — ey |y| — c conforme x — —c. ]

DOS ECUACIONES QUE MERECEN CONOCERSE Las dos ecuaciones diferenciales
y'+ky=0y y" —Kky=0,
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donde k es real, son importantes en matematicas aplicadas. Paray” + k?y = 0, la ecua-
cion auxiliar m* + k* = 0 tienen raices imaginariasm, = kiym, = —ki. Cona =0y
B = ken (8) se ve que la solucion general de la ED es

y = ¢, c0s kx + ¢,senkx. 9)

Por otra parte, la ecuacion auxiliar m?> — k? = 0 paray” — k% = 0 tiene raices reales
distintasm, = ky m, = —k, y asi por la ecuacion (4) la solucion general de la ED es

y = ¢ + ce v (10)

Observe que si se elige ¢, =¢c, =3 y ¢ =3¢, = —; en (I0), se obtienen las
soluciones particulares y = 1 (¥ + e™) = coshkx y y = (e — ™) = senhkx.
Puesto que cosh kx y senh kx son linealmente independientes en algun intervalo del eje
X, una forma alternativa para la solucion general de y” — k% = 0 es

y = ¢, cosh kx + ¢, senhkx. (11)

Vea los problemas 41y 42 de los ejercicios 4.3.

ECUACIONES DE ORDEN SUPERIOR En general, para resolver una ecuacion di-
ferencial de n-ésimo orden (1) donde a,, i = 0, 1, ... , nson constantes reales, se debe
resolver una ecuacion polinomial de n-ésimo grado

a,m"+ a,_,m"t+ -+ am’+am-+a, =0. (12)
Si todas las raices de (12) son reales y distintas, entonces la solucién general de (1) es
y = ™ + ceM* + - - - + c g™,

Es un poco dificil resumir los analogos de los casos 11y I11 porque las raices de una ecua-
cion auxiliar de grado mayor que dos ocurren en muchas combinaciones. Por ejemplo,
una ecuacion de quinto grado podria tener cinco raices reales distintas, o tres raices reales
distintas y dos complejas, 0 una real y cuatro complejas, o cinco raices reales pero iguales,
0 cinco raices reales pero dos de ellas iguales, etc. Cuando m, es una raiz de multiplicidad
k de una ecuacion auxiliar de n-ésimo grado (es decir, k raices son igualesam, ), es posible
demostrar que las soluciones linealmente independientes son

emlx, Xemlx’ X2emlx’ o kalemlx

y la solucion general debe contener la combinacion lineal
CLeMX + CoXe™* + Cgx2e™* + - - - + g xKTle™X,

Por dltimo, se debe recordar que cuando los coeficientes son reales, las raices com-
plejas de una ecuacion auxiliar siempre se presentan en pares conjugados. Asi, por
ejemplo, una ecuacion polinomial ctbica puede tener a lo mas dos raices complejas.

I EJEMPLO 3 ED de tercer orden

Resuelvay” + 3y” — 4y = 0.

SOLUCION Debe ser evidente de la inspeccion de m® + 3m? — 4 = 0 que una raiz es
m, = 1, por tanto, m — 1 es un factor de m® + 3m? — 4. Dividiendo se encuentra que

m3 +3m? —4 = (m — 1)(m? + 4m + 4) = (m — 1)(m + 2)?,

asi las raices son m, = m, = —2. Asi, la solucion general de la ED es y =

X 2x 2x
ole + cze + C3X6 . |
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I EJEMPLO 4 ED de cuarto orden

d4y d?y
Resuelva — +2— +y =0.

dx? a2 Y
SOLUCION  La ecuacion auxiliar m* + 2m2 + 1 = (m? + 1)2 = 0 tiene raices m, =
m, = iym,=m, = —i. Asi, del caso Il la solucion es

y = Cie* + C,e ™ + Cyxe™ + Cyxe X,
Por la formula de Euler el grupo C g™ + Ce~™ se puede rescribir como

C;COS X + C,Senx

después de redefinir de nuevo las constantes. De manera similar, x(C,e™ + C,e™™) se
puede expresar como X(c, cos x + ¢, sen x). Por tanto, la solucion general es

y = C;COS X + C,SENX + C3X COS X + C,X SenxX. [

El ejemplo 4 ilustra un caso especial cuando la ecuacién auxiliar tiene raices repeti-
das complejas. En general, sim, = « + i3, B > 0 es una raiz compleja de multiplicidad
k de una ecuacion auxiliar con coeficientes reales, entonces su conjugadam, = a — i3
es también una raiz de multiplicidad k. De las 2k soluciones con valores complejos

platiBx  yalatipx  y2alatifx  yk—lglatip)x

plmiBx  yala—ip)x  y2ala—ifx  yk—lgla=ip)x

concluimos, con la ayuda de la formula de Euler, que la solucién general de la ecua-
cion diferencial correspondiente debe tener una combinacion lineal de las 2k solucio-
nes reales linealmente independientes.

eexcos BX, Xev*cos Bx, x%*cos BX, ..., x<"le®cos X,

e¥senBx, xe*senBx, x%esenpx, ..., xK"le®senpx.

En el ejemplo 4 identificamosk =2, a =0y B = 1.

Por supuesto, el aspecto mas dificil de resolver ecuaciones diferenciales de coefi-
cientes constantes es determinar las raices de ecuaciones auxiliares de grado mayor
que dos. Por ejemplo, para resolver 3y” + 5y” + 10y’ — 4y = 0, debemos resolver
3m3 + 5m2 + 10m — 4 = 0. Algo que se puede intentar es probar la ecuacion auxiliar
para raices racionales. Recuerde que si m, = p/q es una raiz racional (en su minima
expresion) de unaecuacién auxiliar a,m" + - - - + a;m + a; = 0 con coeficientes en-
teros, entonces p es un factor de a, y q es un factor de a . Para la ecuacion auxiliar ctbica
especifica, todos los factoresdea, = —4ya =3son p: £1, *2, =4y q: *1, =3
por lo que las posibles raices racionales son p/q: =1, =2, 4, i%, i%, i%.Entonces
se puede probar cada uno de estos nimeros, digamos, por division sintética. De esta
forma se descubre la raiz m; = % y la factorizacién

3md + 5m? + 10m — 4 = (m - %)(sz + 6m + 12).

De la formula cuadratica se obtienen las otras raices m, = —1 + \/3i y M3
—1 — \V/3i. Por tanto, la solucién general de 3y” + 5y” + 10y’ —4y =0 es

y = c1e¥/3 + e X(c, cos V/3x + czsen \/éx).

USO DE COMPUTADORAS Determinar las raices o aproximar las raices de ecuacio-
nes auxiliares es un problema de rutina con una calculadora apropiada o con un paquete de
coémputo. Las ecuaciones polinomiales (en una variable) de grado menor que cinco se re-
suelven por medio de férmulas algebraicas usando las instrucciones solve en Mathematica
y Maple. Para ecuaciones polinomiales de grado cinco o mayor podria ser necesario recurrir
a comandos numéricos tales como NSolve y FindRoot en Mathematica. Debido a su ca-
pacidad para resolver ecuaciones polinomiales, no es sorprendente que estos sistemas alge-
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braicos para computadora también puedan, usando sus comandos dsolve, dar soluciones
explicitas de ecuaciones diferenciales lineales homogéneas con coeficientes constantes.

En el libro clésico Differential Equations de Ralph Palmer Agnew* (que el autor
us6 cuando era estudiante), se expresa el siguiente enunciado:

No es razonable esperar que los alumnos de este curso tengan la capacidad y el
equipo de computo necesario para resolver de manera eficaz ecuaciones tales como

d%y d%y d?y dy
4317 —; + 2179 — + 1.416 — + 1.295 — + 3.169y = 0. 13
dx? dx® dx? dx y (13
Aunque es debatible si en todos estos afios ha mejorado la capacidad para realizar
calculos, es indiscutible que la tecnologia si lo ha hecho. Si se tiene acceso a un sistema
algebraico para computadora, se podria ahora considerar razonable la ecuacion (13).
Después de simplificar y efectuar algunas sustituciones en el resultado, Mathematica

genera la solucién general (aproximada)

y = ¢,e70728852X c05(0.618605x) + C,e0728852X 5en(0.618605x)

+ 480476478 c05(0.759081%) + ¢,e%475478% sen(0.759081Xx).

Por Gltimo, si se le presenta un problema con valores iniciales que consiste en,
digamos, una ecuacion de cuarto orden, entonces para ajustar la solucion general de la
ED a las cuatro condiciones iniciales, se deben resolver cuatro ecuaciones lineales con
las cuatro incognitas (c,, c,, ¢,y ¢, en la solucion general). Si se emplea un SAC para
resolver el sistema se puede ahorrar mucho tiempo. VVéanse los problemas 59 y 60 del
ejercicio 4.3 y el problema 35 en Repaso del capitulo 4.

"McGraw-Hill, Nueva York, 1960.

EJERCICIOS 4.3

Las respuestas a los problemas con nimero impar comienzan en la pagina RES-4.

En los problemas 1 a 14, obtenga la solucion general de la 20 d3x  d%x

ecuacion diferencial de segundo orden dada. T T 4x=0
1. 4y"+y =0 2.y"—36y=0 2Ly 3y 3y ty =0
22. y" —6y" + 12y’ — 8y =
3y —y —6y=0 4, y" =3y +2y=0 y o y -8 =0
23. yO +y" +y" =0
5. y"+ 8y +16y =0 6. y" —10y" + 25y =0
24, y&O —2y" +y =0
7. 12y" —5y' =2y =0 8.y +4y' —y=0 " 42
y y _
9.y"+9y=0 10. 3y" +y=0 25. 16 s+ 2457 Ty =0
11. y"—4y" + 5y =0 12. 2y" +2y' +y=0 26 d—4y—7d—2y—18y=0
13. 3y"+2y' +y=0 14. 2y" =3y’ +4y =0 dxt - dx
d® d* d3 d? d
En los problemas 15 a 28 encuentre la solucion general de la  27. d—:l 5 d_t‘] -2 d—l; - 10d—2I + d_u +5u=0
ecuacion diferencial de orden superior dada. r r r r r
d>x d“x dx d2x
15. y” —4y” — 5y’ =0 28. ZE_7@+12@+8E:O

16. y” —

17. y" = 5y"+ 3y + 9y =0

18. y" +3y" —4y' — 12y =0
diu d&

—+——-2u=0
19. dtt  dt? N

y=0

En los problemas 29 a 36 resuelva el problema con valores
iniciales

29. y"+16y =0, y(0)=2y'(0)=-2

i =0 (3) =0 (3)
— + = — | = "N—\] =
30. gz tY=0 yl3)=0y(3)=2
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2
dy ,dy

3w Yt

Sy=0, y(1)=0,y(1) =2

32. 4y"—4y' —3y=0, y0)=1y(@0)=5

3B.y"+y +2y=0, y0)=y'(0)=0

34.y"=2y' +y=0, y(0)=5y(0)=10

35. y"+12y" + 36y’ =0, y(0)=0,y'(0)=1y"0)= -7
36. y"+2y"— 5" —6y=0 y(0)=y(0)=0y"(0)=1
En los problemas 37 a 40 resuelva el problema con valores en
la frontera dado.

37. y"— 10y’ + 25y =0, y(0)=1,y(1)=0

38. y"+4y=0, y0)=0,y(7)=0

39. Y +y=0, y(0) =0, y(g) =0

40. y" =2y +2y=0, y0)=1y(m) =1

En los problemas 41 y 42 resuelva el problema dado usando
primero la forma de la solucién general dada en (10). Resuelva
de nuevo esta vez usando la formula dada en (11).

41, y" =3y =0, y0)=1y(0) =5
42, y"—y=0, y0=1y'(1)=0
En los problemas 43 a 48 cada figura representa la grafica de

una solucién particular de una de las siguientes ecuaciones
diferenciales.

a) y'—3y' —4y=0

) y'+2y'+y=0 dy"+y=0

e) y'+2y+2y=0 f)y"—3y +2y=0
Relacione una curva solucion con una de las ecuaciones dife-
renciales. Explique su razonamiento.

b) y"+4y =0

43, y

FIGURA 4.3.2 Gréfica del problema 43.

44, y

FIGURA 4.3.3 Gréfica del problema 44.

45. y

A
N :

FIGURA 4.3.4 Gréfica del problema 45.

46. y

FIGURA 4.3.5 Gréfica del problema 46.
47, y

s
NS

FIGURA 4.3.6 Gréfica del problema 47.

48. y

FIGURA 4.3.7 Gréfica del problema 48.

Problemas para analizar

49. Las raices de una ecuacion cubica auxiliar son m, = 4y

m, = m, = —5. ¢Cual es la ecuacion diferencial lineal
homogénea correspondiente? Analice: ¢su respuesta es
Gnica?

50. Dos raices de una ecuacion auxiliar ctbica con coeficien-
tes reales son my, = —3 y m, =3 + i. ;Cudl es la ecua-
cién diferencial lineal homogénea correspondiente?
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51. Determine la solucion general de y” + 6y” +y’ — 34y  diferencial dada. Si utiliza un SAC para obtener la solucion
= 0'si se sabe que y, = e~* cos x es una solucion. general, simplifique el resultado y si es necesario, escriba la

. i solucion en términos de funciones reales.
52. Para resolver y® +y = 0, es necesario encontrar las rai-

cesde m* + 1 = 0. Este es un problema trivial si se uti- 55 y” _gy" + 2y’ +y=0

liza un SAC, pero también se resuelve a mano trabajando

con nmeros complejos. Observe que m* + 1 = (m? + 1)? 56. 6.11y"” + 8.59y” + 7.93y’ + 0.778y = 0
— 2m2, ;Como ayuda esto? Resuelva la ecuacion diferen-

cial 57. 3.15y® — 5.34y" + 6.33y’ — 2.03y = 0

@ "y -
53. Compruebe que y = senh x — 2 cos(x + 7/6) es una so- 8. yH 2yt my +2y=0
lucién particular de y® — y = 0. Reconcilie esta solucién

particular con la solucién general de la ED. En los problemas 59 y 60 utilice un SAC como ayuda para

resolver la ecuacién auxiliar. Forme la solucion general de
54. Considere el problema con valores en la frontera y” + Ay la ecuacion diferencial. Después utilice un SAC como ayuda

=0,y(0) = 0, y(7/2) = 0. Analice: ;es posible determi- para resolver el sistema de ecuaciones para los coeficientes
nar valores de A tal que el problema tenga a) soluciones c,i=1,2,3,4que resulta cuando se aplican las condiciones
triviales?, b) ¢soluciones no triviales? iniciales a la solucion general.

59. 2y + 3y” — 16y” + 15y’ — 4y = 0,

y(0) = —2,y'(0) = 6,y"(0) = 3,y"(0) = 3
En los problemas 55 a 58 use una computadora ya sea como
ayuda para resolver la ecuacion auxiliar o como un mediopara ~ 60. y® —3y” +3y" -y’ =0,
obtener de forma directa la solucién general de la ecuacion y(0) =y'(0) = 0,y"(0) = y"(0) = 1

Tarea para el laboratorio de computacién

4.4| COEFICIENTES INDETERMINADOS: METODO
DE SUPERPOSICION®

REPASO DE MATERIAL
o Repaso de los teoremas 4.1.6 y 4.1.7 (seccion 4.1).

INTRODUCCION  Para resolver una ecuacion diferencial lineal no homogénea
ay® + a,_ YO+ -+ ay + agy = g(x), @)

se debe hacer dos cosas:

+ encontrar la funcion complementaria y, y
 encontrar alguna solucién particular Y, de la ecuacion no homogénea (1).

Entonces, como se explicé en la seccion 4.1, la solucion general de (1) esy =y _+ y . La funcion
complementaria y_ es la solucion general de la ED homogeénea asociada de (1), es decir,

Y™ + 8, YV + -+ ay + ay = 0.

En la seccién 4.3 vimos como resolver esta clase de ecuaciones cuando los coeficientes eran constan-
tes. Asi, el objetivo en esta seccidn es desarrollar un método para obtener soluciones particulares.

“Nota para el profesor: En esta seccion el método de coeficientes indeterminados se desarrolla desde
el punto de vista del principio de superposicion para ecuaciones no homogéneas (teorema 4.7.1). En
la seccion 4.5 se presentard un método totalmente diferente que utiliza el concepto de operadores
diferenciales anuladores. Elija el que convenga.
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METODO DE COEFICIENTES INDETERMINADOS La primera de las dos for-
mas que se consideran para obtener una solucion particular Y, de una ED lineal no
homogénea se llama método de coeficientes indeterminados. La idea fundamental
detras de este método es una conjetura acerca de la forma de y , en realidad una intui-
cién educada, motivada por las clases de funciones que forman la funcién de entrada
g(x). El método general se limita a ED lineales como (1) donde

* los coeficientes a, i = 0,1, ... , nson constantes y

* g(x) es una constante k, una funcién polinomial, una funcion exponencial e,
una funcién seno o coseno sen Bx 0 cos Bx 0 sumas finitas y productos de
estas funciones.

NOTA Estrictamente hablando, g(x) = k (constante) es una funcién polinomial.
Puesto que probablemente una funcién constante no es lo primero en que se piensa
cuando se consideran funciones polinomiales, para enfatizar continuaremos con la re-
dundancia “funciones constantes, polinomios, ... ”

Las siguientes funciones son algunos ejemplos de los tipos de entradas g(x) que
son apropiadas para esta descripcion:

g(x) = 10, g(x) = x> — 5%, g(x) = 15x — 6 + 87,

g(x) = sen X — 5x cos 2X, g(x) = xe*senx + (3x2 — 1)e 4.

Es decir, g(x) es una combinacion lineal de funciones de la clase
a_ X"+ -+ ax + ag, P(x) e**, P(x)e“*senBx Yy P(x) e** cos BX,

donde n es un entero no negativo y a y 8 son numeros reales. EI método de coeficientes
indeterminados no es aplicable a ecuaciones de la forma (1) cuando

gix) =Inx, g = % g(x) = tanx, g(x) = senx,

etcétera. Las ecuaciones diferenciales en las que la entrada g(x) es una funcion de esta
Gltima clase se consideran en la seccién 4.6.

El conjunto de funciones que consiste en constantes, polinomios, exponen-
ciales e, senos y cosenos tiene la notable propiedad de que las derivadas de sus
sumas y productos son de nuevo sumas y productos de constantes, polinomios, ex-
ponenciales e, senos y cosenos. Debido a que la combinacidn lineal de derivadas
a,y" +a,_ y" Y+ .- - +ayy) + a,y,debe seridénticaa g(x), parece razonable
suponer que y, tiene la misma forma que g(x).

En los dos ejemplos siguientes se ilustra el método bésico.

I EJEMPLO 1 Solucién general usando coeficientes indeterminados

Resuelva y” + 4y’ — 2y = 2x*> — 3x + 6. )

SOLUCION Paso 1. Se resuelve primero la ecuacion homogénea asociada y” + 4y’
— 2y = 0. De la férmula cuadrética se encuentra que las raices de la ecuacion auxiliar
m:+4m—2=0son m, = —2— V6 ym,=—2+ V6. Por tanto, la funcién
complementaria es

Y. = Clef(2+\/§)x + cze(72+\/§)x'
Paso 2. Ahora, debido a que la funcién g(x) es un polinomio cuadrético, supongamos
una solucién particular que también es de la forma de un polinomio cuadratico:
y, = Ax? + Bx + C.
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Se busca determinar coeficientes especificos A, By C para los cuales y, esuna solucion
de (2). Sustituyendo Y, Y las derivadas

Yo =2AX+B 'y y;=2A
en la ecuacion diferencial (2), se obtiene
yp + 4yp — 2y, = 2A + 8Ax + 4B — 2Ax? — 2Bx — 2C = 2x? — 3x + 6.

Como se supone que la tltima ecuacion es una identidad, los coeficientes de los expo-
nentes semejantes a x deben ser iguales:

igual

—2A|x2+[8A—2B|x+| 2A+4B—2C | =2x2—3x+6

Es decir, —2A = 2, 8A — 2B = —3, 2A + 4B — 2C =6.
Resolviendo este sistema de ecuaciones se obtienen los valores A = —1, B = —g y
C = —9. Asi, una solucidn particular es
5

Yp = —XZ—EX—Q.
Paso 3. Lasolucién general de la ecuacion dada es

—(2+V6) (—2+V6) 2 °

Y=Y+ Y, =Ce X+ c.e X—x—Ex—g. u

I EJEMPLO 2 Solucién particular usando coeficientes indeterminados

Encuentre una solucion particular dey” —y’ +y = 2 sen 3x.

SOLUCION Una primera suposicion natural para una solucion particular seria A sen
3x. Pero debido a que las derivadas sucesivas de sen 3x producen sen 3x y cos 3x, se
puede suponer una solucién particular que incluye ambos términos:

Yp = A cos 3x + B sen 3x.

Derivando Y,y sustituyendo los resultados en la ecuacion diferencial, se obtiene,
después de reagrupar,

Yo — Yp + ¥, = (—8A — 3B) cos 3x + (3A — 8B) sen 3x= 2 sen 3Xx

igual

—8A — 3B | cos3x + | 3A — 8B | sen 3x = 0 cos 3x + 2 sen 3x.

Del sistema de ecuaciones resultante,
—8A — 3B =0, 3A — 8B =2,

se obtiene A = 2y B = —22. Una soluci6n particular de la ecuacién es
6 16
= —_-C0S 3X — - sen 3X. [ |
=173 73

Como se menciond, la forma que se supone para la solucién particular y,esuna
intuicion educada; no es una intuicion a ciegas. Esta intuicidon educada debe conside-
rar no solo los tipos de funciones que forman a g(x) sino también, como se veré en el
ejemplo 4, las funciones que conforman la funcion complementariay .
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I EJEMPLO 3 Formando y, POr superposicion

Resuelva y” — 2y’ — 3y = 4x — 5 + 6xe?~. ®)

SOLUCION Paso 1. Primero, se encuentra que la solucion de la ecuacion homogeé-
neaasociaday” — 2y’ — 3y =0esy _=ce™ + ce*

Paso 2. A continuacion, la presencia de 4x — 5 en g(x) indica que la solucion parti-
cular incluye un polinomio lineal. Ademas, debido a que la derivada del producto xe*
produce 2xe** y e, se supone también que la solucion particular incluye tanto a
xe? como a e, En otras palabras, g es la suma de dos clases basicas de funciones:

g(x) = g,(x) + g,(x) = polinomio + exponenciales.

Por lo que, el principio de superposicion para ecuaciones no homogéneas (teorema
4.1.7) indica que se busca una solucion particular

Yo = Yo, T Yoy
donde y, = Ax + By y, = Cxe? + Ee?. Sustituyendo
yp = Ax + B + Cxe? + Ee**
en la ecuacion (3) y agrupando términos semejantes, se obtiene
Yp — 2y — 3y, = —3Ax — 2A — 3B — 3Cxe® + (2C — 3E)e** = 4x — 5 + 6xe?*.  (4)
De esta identidad obtenemos las cuatro expresiones
—3A =4, —2A — 3B = -5, —3C = 6, 2C -3E=0.

La dltima ecuacion en este sistema es resultado de la interpretacion de que el coefi-
ciente de € en el miembro derecho de (4) es cero. Resolviendo, se encuentra que
A=—-3B=%C, =-2yE = —1 Portanto,

4 23 4
= —-X+ — — 2xe¥* — —e*,
T T3X T 3
Paso 3. Lasolucidn general de la ecuacion es
4 23 4
=ceX+ce3x——x+——<2x+—)ezx. [ |
y 1 2 3 9 3

En vista del principio de superposicion (teorema 4.1.7) se puede aproximar tam-
bién el ejemplo 3 desde el punto de vista de resolver dos problemas méas simples. Se
debe comprobar que sustituyendo

Yo, = AX + B en y"—2y' —3y=4x—-5
y Yp, = Cxe¥ + Ee**  en y” — 2y’ — 3y = 6xe?¥
se obtiene, a su vez, y, = —3x + 2yy, = —(2x + 3)e?. Entonces, una solucién

particular de (3) es y, = Y, + Yy, -
En el siguiente ejemplo se ilustra que algunas veces la suposicion “obvia” para la
forma de y, no es una suposicion correcta.

I EJEMPLO 4 Una fallaimprevista del método

Encuentre una solucion particular de y” — 5y’ + 4y = 8e*.

SOLUCION Derivando e* no se obtienen nuevas funciones. Asi, si se procede como
se hizo en los ejemplos anteriores, se puede suponer razonablemente que una solucién
particular de la forma y, = Ae*. Pero sustituir esta expresion en la ecuacién diferencial
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da como resultado la expresion contradictoria O = 8e*, por lo que claramente se hizo
la conjetura equivocada para Y,

La dificultad aqui es evidente al examinar la funcion complementariay, = ¢ e* +
c,e™. Observe que la suposicion Ae* ya esta presente en y . Esto significa que e* es una
solucion de la ecuacion diferencial homogénea asociada y un multiplo constante Ae*
cuando se sustituye en la ecuacion diferencial necesariamente da cero.

¢Entonces cudl debe ser la forma de y_? Inspirados en el caso Il de la seccion 4.3,
vemos que si se puede encontrar una solucién particular de la forma

Yp = AXe.
Sustituyendo y, = Axe* + Ae* y y, = Axe* + 2Ae*en la ecuacion diferencial y
simplificando, se obtiene
Yp — Sy, + 4y, = —3Ae* = 8e*.

De la tltima igualdad se ve que el valor de A ahora se determina como A = —%. Por
tanto, una solucion particular de la ecuacion dada es y, = —3xex. ]

La diferencia en los procedimientos usados en los ejemplos 1 a3y en el ejemplo 4
indica que se consideran dos casos. El primer caso refleja la situacion en los ejemplos
la3.

CASO | Ninguna funcidn de la solucion particular supuesta es una solucién de la
ecuacion diferencial homogénea asociada.

En la tabla 4.1 se muestran algunos ejemplos especificos de g(x) en (1) junto con
la forma correspondiente de la solucidn particular. Por supuesto, se da por sentado que
ninguna funcién de la solucién particular supuesta y, se duplica por una funcion en la
funcion complementaria y,.

TABLA 4.1 Soluciones particulares de prueba

g(x) Formadey,
1. 1 (cualquier constante) A
2. 5x +7 Ax + B
3.3x2 -2 Ax?+Bx + C
4. —x+1 Ax®+Bx?+Cx + E
5. sen 4x A cos 4x + B sen 4x
6. cos 4x A cos 4x + B sen 4x
7. e> Ae™
8. (9x — 2)e™ (Ax + B)e>
9. x%% (Ax2 + Bx + C)e™
10. e®*sen 4x Ae®* cos 4x + Be® sen 4x
11. 5x%sen 4x (Ax? + Bx + C) cos 4x + (Ex? + Fx + G) sen 4x
12. xe® cos 4x (Ax + B)e* cos 4x + (Cx + E)e® sen 4x

I EJEMPLO 5 Formas de soluciones particulares. Caso |

Determine la forma de una solucién particular de
a) y” — 8y’ + 25y = 5x% * — Te * b) y” + 4y = x cos x
SOLUCION a) Se puede escribir g(x) = (5x3 — 7)e*. Usando el elemento 9 de la
tabla como modelo, suponemos una solucién particular de la forma
Yp = (A3 + Bx2 + Cx + E)e™

Observe que no hay duplicacion entre los términos en y_ y los términos en la funcion
complementariay_ = e*(c, cos 3x + c, sen 3x).
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b) La funcion g(x) = x cos x es similar al elemento 11 de la tabla 4.1 excepto, por
supuesto, que se usa un polinomio lineal en vez de uno cuadratico y cos X y sen x en
lugar de cos 4x y sen 4x en la forma de Y,

Yo = (Ax + B) cos x + (Cx + E) senx.

Nuevamente observe que no hay duplicacion de terminosentrey yy_ = ¢, C0s 2X + C,
2X T [ ]
sen 2x.

Si g(x) consiste en una suma de, digamos, m términos de la clase listada en la tabla,
entonces (como en el ejemplo 3) la suposicion para una solucion particular y_consiste en
la suma de las formas de prueba y, .y, , ...y, correspondientes a estos terminos:

Yo = VYo, T ¥p, Tt Y,
El enunciado anterior se puede escribir de otra forma:

Regla de forma parael caso | La forma de y,esuna combinacion lineal de las
funciones linealmente independientes que se generan mediante derivadas suce-
sivas de g(x).

I EJEMPLO 6 Formacion dey, por superposicion. Caso |

Determine la forma de una solucion particular de
y” — 9y’ + 14y = 3x?> — 5sen X + 7xebx

SOLUCION

Se supone que a 3x?2 le corresponde Yp, = Ax? + Bx + C.

Se considera que a — 5 sen 2x le corresponde Yp, = EcOs 2x + Fsen 2.

Se supone que a 7xe® le corresponde Yp, = (Gx + H)e
Entonces la presuncion para la solucién particular es

Yp = Yp, T ¥Yp, T ¥p, = AX® + Bx + C + Ecos 2x + Fsen 2 + (Gx + H)e®

En esta suposicion ningdn término duplica un término de y_ = c e* + c,e™. ]
CASO Il Una funcion en la solucién particular supuesta también es una solucién de
la ecuacion diferencial homogénea asociada.

El siguiente ejemplo es similar al ejemplo 4.

I EJEMPLO 7 Solucién particular. Caso 11

Encuentre una solucion particular dey” — 2y’ +y = e~

SOLUCION La funcién complementaria es y, = c,e* + c,xe*. Como en el ejemplo
4, la suposicién y, = Ae” falla, puesto que es evidente de y_ que e* es una solucion de
la ecuacion homogeénea asociada y” — 2y’ + y = 0. Ademas, no es posible encontrar
una solucion particular de la forma y, = Axe*, ya que el término xe* también se duplica
eny.. A continuacion se prueba

yp, = Ax%e*.

Sustituyendo en la ecuacion diferencial dada se obtiene 2Ae* = e, asi A = 1. Asiuna
solucion particular es Yo = %Xzex_ [ |
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Nuevamente suponga que g(x) consiste en m términos de la clase que se propor-
ciona en la tabla 4.1 y suponga ademas que la presuncién usual para una solucion
particular es

Yo = Vo t Yo, T T Yy

dondelas y,,i =1,2,..., mson las formas de solucion particular de prueba corres-
pondientes a estos términos. Bajo las circunstancias descritas en el caso 11, se puede
formar la siguiente regla general.

Regla de multiplicacion para el caso Il Si alguna y, contiene términos que
duplican los términos de y_, entonces esa Yy, se debe multiplicar por x", donde n es
el entero positivo mas pequefio que elimina esa duplicacion.

I EJEMPLO 8 Un problema con valores iniciales

Resuelvay” +y = 4x + 10sen x, y(w) = 0,y'(7) = 2.

SOLUCION  La solucion de la ecuacion homogénea asociada y” +y = 0 esy_= c,
cos X + ¢, sen x. Debido a que g(x) = 4x + 10 sen x es la suma de un polinomio lineal
y una funcion seno, la suposicion normal para Yo de las entradas 2 y 5 de la tabla 4.1,

serialasumade y, = Ax + By y, = Ccosx + Esenx:
Yo = Ax + B + Ccosx + Esenx. (5)

Pero hay una duplicacién obvia de los términos cos x y sen x en esta forma supuesta y
dos términos de la funcién complementaria. Esta duplicacion se elimina simplemente
multiplicando y, por x. En lugar de (5) ahora se usa

Yo = AX + B + Cxcos x + Exsenx. (6)
Derivando esta expresion y sustituyendo los resultados en la ecuacion diferencial,

se obtiene
Yo T Yp = AX + B — 2Csenx + 2E cos x = 4x + 10 senx,

y portanto A =4,B =0, — 2C = 10, y 2E = 0. Las soluciones del sistema son inme-
diatas: A =4,B =0,C = -5,y E = 0. Por tanto de la ecuacion (6) se obtiene y, =
4x — 5x cos x. La solucion general de la ecuacion es

Y =Y+ Yp = CCOSX + Csenx + 4x — 5X Cos X.

Ahora se aplican las condiciones iniciales prescritas a la solucién general de la ecua-
cion. Primero, y(m) = ¢, cos 7 + ¢, sen 7 + 47 — 5 cos = 0 produce ¢, = 97
puesto que cos = —1y sen 7 = 0. Ahora, de la derivada

!

y' = —9msenx + c,cos X + 4 + 5xsenx — 5cos x

y y'(7) = —9msena + c,c08 7+ 4 + S57rsen — 5¢05 7 = 2

encontramos ¢, = 7. La solucion del problema con valores iniciales es entonces
y = 9rcos X + 7senx + 4x — 5x cos X. m

I EJEMPLO 9 Uso de la regla de multiplicacion

Resuelvay” — 6y’ + 9y = 6x2 + 2 — 12e*.

SOLUCION  La funcion complementaria esy_ = ¢ e%* + c,xe®. Y asf, con base en los
elementos 3y 7 de la tabla 4.1, la suposicion usual para una solucion particular seria

Yo = A% + Bx + C + Ee*

—
Yp Yp,

1
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La inspeccion de estas funciones muestra que un término en y, se duplicaeny.. Si
multiplicamos Y, por x, se nota que el término xe* aln es parte de y_. Pero multipli-
cando y,, por x* se eliminan las duplicaciones. Asi la forma operativa de una solucion
particular es

yp = Ax? + Bx + C + Ex%%

Derivando esta ultima forma y sustituyendo en la ecuacion diferencial, agrupando
términos semejantes se obtiene

y, — 6y) + 9y, = 9AX? + (—12A + 9B)X + 2A — 6B + 9C + 2Ee™ = 6x2 + 2 — 12¢%.

De esta identidad se tiene que A=5,B =3 C=2y E= —6. Por tanto la solucion
general y =y, + y esy=cie™ +cxe¥ + ix? + ox + 5 — 6xe [ ]

I EJEMPLO 10 ED de tercer orden. Caso |

Resuelvay” + y” = e* cos X.

SOLUCION De la ecuacion caracteristicam® + m? = 0 encontramos que m =m,=
0y m, = —1. Asi la funcion complementaria de la ecuacionesy_=c, + ¢, x +ce™
Con g(x) = e*cos X, se ve de la entrada 10 de la tabla 4.1 que se debe suponer

Yp = Ae*cos x + Be*senx.

Debido a que no hay funciones en y, que dupliquen las funciones de la solucion com-
plementaria, procedemos de la manera usual. De

yp +Yp = (—2A + 4B)e*cos x + (—4A — 2B)e*senx = e*cos X

se obtlene —2A +4B =1y —4A — 2B = 0. De este sistema se obtiene A = E y
B = ¢, asi que una solucion particular es Yp = —15€*COS X + £e*senx. La solucion
general de la ecuacion es

1 1
Y=VYe T Y, =0+ CX+Ce*— Eexcosx + gexsenx.

I EJEMPLO 11 ED de cuarto orden. Caso Il

Determine la forma de una solucion particular de y® + y” = 1 — x% 7%

SOLUCION Comparando y,=¢, +cx+cx*+ce™ con la suposicion normal
para una solucién particular

Yo = A+ Bx?e* + Cxe ™™ + Ee ™,

N \
Yp, Yp,

vemos que las duplicaciones entre y_y y, se eliminan cuando Y, e multiplica por x3
yy, se multiplica por x. Asi la suposmon correcta para una solu0|on particular es
y*Ax“ereXJereHrExeX ]
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I COMENTARIOS

i) En los problemas 27 a 36 de los ejercicios 4.4 se pide resolver problemas
con valores iniciales y en los problemas 37 a 40 se pide resolver problemas con
valores en la frontera. Como se muestra en el ejemplo 8, asegurese de aplicar las
condiciones iniciales o condiciones en la frontera a la solucion general y = y_+
y,- Los estudiantes con frecuencia cometen el error de aplicar estas condiciones
solo a la funcion complementaria y_ porque ésta es la parte de la solucion que
contiene las constantes ¢, C,, ...,C..
ii) De la “Regla de la forma para el caso I” de la pagina 145 de esta seccion, se
ve por qué el método de coeficientes indeterminados no es muy adecuado para
ED lineales no homogéneas cuando la funcidn de entrada g(x) es algo distinta
de uno de los cuatro tipos basicos resaltados en color azul en la pagina 141. Por
ejemplo, si P(x) es un polinomio, entonces la derivacién continua de P(x)e**
sen Bx genera un conjunto independiente que contiene s6lo un nimero finito de
funciones, todas del mismo tipo, en particular, un polinomio multiplicado por e~
sen Bx o un polinomio multiplicado por e** cos Bx. Por otro lado, la derivacion
sucesiva de funciones de entrada como g(x) = In x 0 g(x) = tan—’x genera un
conjunto independiente que contiene un nimero infinito de funciones:

1-12
derivadas de Inx: —r——» - - >
X X2 X
1 —2x =2+ 6xX

derivadas de tan* x: . , -
1+x (1+x)% (1+x3)3

EJE RCICIOS 4.4 Las respuestas a los problemas con nimero impar comienzan en la pagina RES-5.

En los problemas 1 a 26 resuelva la ecuacion diferencial dada ~ 16- ¥" =9y = 2x* —4x* = x + 6
usando coeficientes indeterminados. 17. y" — 2y’ + 5y = e* cos 2x

y' 43y +2y =6 18. y" — 2y’ + 2y = e*(cos x — 3 sen x)

1
2. 4y" + 9y =15

3. y"— 10y’ + 25y = 30x + 3
4. y" +y" — 6y = 2X

19. y" + 2y' +y =senx + 3cos 2x
20. y" +2y' — 24y =16 — (x + 2)e¥
21. y" — 6y" = 3 — cos X

22. y" —2y" — 4y’ + 8y = 6xe*

1 4 ! j—

S YTy +ty=x*—2x 23.y" —3y" +3y —y=x-—4e

6. y” — 8y’ + 20y = 100x*> — 26xe" 24. y" —y" — 4y’ +4y=5—e +eX

7. y" + 3y = —48x%¥ 25. y&O +2y" +y = (x — 1)2

8. 4y" — 4y’ — 3y = cos 2X 26. yO —y" = 4x + 2xe™

9.y —y = -3 En los problemas 27 a 36 resuelva el problema con valores

iniciales dado.
10. y" +2y' =2x+5—e*
1 "y = m_L(m)

12. y" — 16y = 2e% 28. 2y" +3y —2y=14x2—4x— 11, y(0)=0,y'(0)=0
13. y” + 4y = 3 sen 2x 29. 5y" +y' = —6x, y(0)=0,y'(0) = —10
14. y" — 4y = (x2 — 3) sen 2x 30. y"+4y' +4y =3+ x)e® y0) =2y (0)=5

15. y" +y = 2xsenx 31. y"+ 4y’ + 5y =35e*, y(0)=-3,y'(0)=1



32.

33.

34.

y" —y = coshx,

d?x
o) + 0 = Fysenot,
2

d4x
Tl + w?X = FyCos vt
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y(0) = 2,y'(0) = 12

x(0) =0,x'(0) =0

x(0) =0,x'(0) =0

35. y" = 2y" +y' =2 — 24e* + 40e%,
y'(0) = 5,y"(0) = =3

36. y” + 8y =2x — 5+ 8e %,
y'(0) = —4

En los problemas 37 a 40 resuelva el problema con valores en

la frontera dado.

y(0) = 3,

y(0) = =5,y'(0) = 3,

37. y+y=x2+1, y0)=5y(1)=0

38. y' =2y +2y=2x—-2, y0O)=0,y(w)=m

39. y"+3y=6x, y(0)=0,y1)+y(@)=0

40. y" +3y=6x, y0)+y(0)=0y1)=0

En los problemas 41y 42 resuelva el problema con valores ini-
ciales dado en el que la funcién de entrada g(x) es discontinua.
[Sugerencia: Resuelva cada problema en dos intervalos y des-

pués encuentre una solucién tal que y y y’ sean continuas en
x = 1r/2 (problema 41) y en x = 7 (problema 42).]

41, y" + 4y = g(x), y(0)=1,y'(0) =2, donde
_Jsenx, 0=x=m/2
909 = {o, X > /2

42. y" —2y' + 10y = g(x), y(0) =0,y’'(0) =0, donde

) = 20, 0=x=m
g 0, x>

Problemas para analizar

43. Considere la ecuacién diferencial ay” + by’ + cy = e,
donde a, b, ¢ y k son constantes. La ecuacidn auxiliar de
la ecuacion homogénea asociada es am? + bm + ¢ = 0.

a) Sikno esunaraiz de la ecuacién auxiliar, demuestre
que se puede encontrar una solucion particular de la
formay = Ae' donde A = 1/(ak? + bk + c).

b) Sik es una raiz de la ecuacion auxiliar de multiplici-
dad uno, muestre que se puede encontrar una solucion
particular de la formay = Axe', donde A = 1/(2ak
+ b). Explique cémo se sabe que k # —b/2a.

c) Sikesunaraiz de la ecuacion auxiliar de multiplicidad
dos, demuestre que podemos encontrar una solucion
particular de la formay = Ax%*, donde A = 1/(2a).

44. Explique cdmo se puede usar el método de esta seccion
para encontrar una solucidn particular de y” + y = sen x
cos 2x. Lleve a cabo su idea.

45. Sin resolver, relacione una curva solucion de y” +y =
f(x) que se muestra en la figura con una de las siguientes

funciones:
i) f(x) =1, i) f(x) =e™,
iii) f(x) = e, iv) f(x) = sen 2x,

v) f(x) = e*senx, vi) f(x) = senx.
Analice brevemente su razonamiento.

a) y

\AAA z

FIGURA 4.4.1 Curva solucion.
b) y
/\
ON\X
FIGURA 4.4.2 Curva solucion.
c) y
X
FIGURA 4.4.3 Curva solucion.
d) y
X
FIGURA 4.4.4 Curva solucion.

Tarea para el laboratorio de computacion

En los problemas 46 y 47 determine una solucién particular
de la ecuacidn diferencial dada. Use un SAC como ayuda para
realizar las derivadas, simplificaciones y algebra.

46. y" — 4y’ + 8y = (2x2 — 3x)e?* cos 2X
+ (10x? — x — 1)e*sen 2x

47. y® 4+ 2y" +y =2 cos x — 3x sen X
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4.5

COEFICIENTES INDETERMINADOS: METODO DEL ANULADOR

REPASO DE MATERIAL
e Repaso de teoremas 4.1.6 y 4.1.7 (seccion 4.1).

INTRODUCCION En la seccion 4.1 vimos que una ecuacion diferencial de n-ésimo orden se
puede escribir como

a,D"y + a,_ D"ty + - - - + aDy + agy = g(x), (1)

donde DYy = dty/dx*, k =0, 1, ..., n. Cuando es adecuado, la ecuacién (1) también se escribe como
L(y) = g(x), donde L denota el operador diferencial o polinomial, lineal de n-ésimo orden

aD"+a, D"+ -+ aD + a, @)

La notacion de operador no solo es una abreviatura Util, sino que en un nivel muy préctico la aplicacion
de operadores diferenciales permite justificar las reglas un poco abrumadoras para determinar la forma de
solucion particular y_ presentada en la seccion anterior. En esta seccion no hay reglas especiales; la forma
dey se deduce casi de manera automatica una vez que se encuentra un operador diferencial lineal adecuado
que anula a g(x) en (1). Antes de investigar como se realiza esto, es necesario analizar dos conceptos.

FACTORIZACION DE OPERADORES Cuando los coeficientes a,i=01, ...,
n son constantes reales, un operador diferencial lineal (1) se puede factorizar siempre
el polinomio caracteristico a m" +a__ .m"*+ --- 4+ am + a, sea factorizable. En
otras palabras, si r, es una raiz de la ecuacion auxiliar

a,m' +a,_ M1+ +am+a =0,
entonces L = (D — r) P(D), donde la expresion polinomial P(D) es un operador dife-
rencial lineal de orden n — 1. Por ejemplo, si se trata a D como una cantidad algebraica,

entonces el operador D? + 5D + 6 se puede factorizar como (D + 2)(D + 3) o como
(D + 3)(D + 2). Asi si una funcion y = f(x) tiene una segunda derivada, entonces

(D> +5D + 6)y = (D + 2)(D + 3)y = (D + 3)(D + 2)y.
Esto muestra una propiedad general:
Los factores de un operador diferencial con coeficientes constantes conmutan.
Una ecuacion diferencial tal como y” + 4y’ + 4y = 0 se escribe como

(D:+4D+4)y=0 0 (D+2(D+2y=0 o (D+2)y=0,

OPERADOR ANULADOR Si L es un operador diferencial lineal con coeficientes
constantes y f es una funcion suficientemente derivable tal que

L(f(¥)) =0,

entonces se dice que L es un anulador de la funcion. Por ejemplo, D anula una fun-
cién constante y = k puesto que Dk = 0. El operador diferencial D? anula la funcion y
= x puesto que la primera y la segunda derivada de x son 1y 0, respectivamente. De
manera similar, D32 = 0, etcétera.

El operador diferencial D" anula cada una de las funciones

1, X, X3 ..., xL (3)
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Como una consecuencia inmediata de (3) y el hecho de que la derivacion se puede
hacer término a término, un polinomio

Co+ CX + CX2 4« -+ + Cp X"t (4)

se anula al encontrar un operador que aniquile la potencia mas alta de x.

Las funciones que se anulan por un operador diferencial lineal de n-ésimo orden
L son simplemente aquellas funciones que se obtienen de la solucidn general de la
ecuacion diferencial homogénea L(y) = 0.

El operador diferencial (D — «)" anula cada una de las funciones

enx’ Xe“x, XZG(vX, I Xﬂ*le(kxl (5)

Para ver esto, observe que la ecuacion auxiliar de la ecuacion homogénea (D —
a)"y = 0es (m — «)" = 0. Puesto que « es una raiz de multiplicidad n, la solucién
general es

Y = Cie%* + XX 4 - - - + ¢ X" le, (6)

I EJEMPLO 1 Operadores anuladores

Encuentre un operador diferencial que anule la funcion dada.
a) 1—5x%+8x® b) e * c) 4e? — 10xe*
SOLUCION a) De (3) se sabe que D*® = 0, asi de (4) se tiene que
D41 — 5x% + 8x3) = 0.

b) De (5),cona = —3yn = |, vemos que

(D + 3)e ¥ = 0.
c) De (5) y (6), con @ = 2yn = 2, se tiene que

(D — 2)2(4e?* — 10xe?) = 0. .

Cuando a 'y B, B > 0 son numeros reales, la férmula cuadratica revela que [m? —
2am + (a? + BH)]" = 0 tiene raices complejas @ + i3, « — i3, ambas de multiplicidad
n. Del analisis al final de la seccion 4.3, se tiene el siguiente resultado.

El operador diferencial [D? — 2aD + («? + B?)]" anula cada una de las fun-
ciones
e cos BX, Xev cos BX, X’ cosBX, ..., X"le*cos Bx, @)
eXsenBx, xe**senBx, x%**senBx, ..., Xx"le**sengBx.

I EJEMPLO 2 Operador anulador

Encuentre un operador diferencial que anule 5e* cos 2x — 9e~* sen 2X.

SOLUCION La inspeccion de las funciones e * cos 2x y e sen 2x muestra que o =
—1vy B = 2. Por tanto, de la ecuacion (7) se concluye que D? + 2D + 5 anularé cual-
quier funcion que sea combinacion lineal de estas funciones tales como 5e~* cos 2x —
9e~*sen 2x. ]
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Cuando @ = 0y n = 1, un caso especial de (7) es

cos BX
sen Bx

(D* + pB?) { (8)
Por ejemplo D? + 16 anulara cualquier combinacion lineal de sen 4x y cos 4x.

Con frecuencia estamos interesados en anular la suma de dos o mas funciones.
Como acabamos de ver en los ejemplos 1y 2, si L es un operador diferencial lineal tal
que L(y,) = 0y L(y,) = 0, entonces L anulara la combinacion lineal c,y, (x) + c,y,(X).
Esta es una consecuencia directa del teorema 4.1.2. Supongamos ahora que L, y L, son
operadores diferenciales lineales con coeficientes constantes tales que L, anula ay, (x)
yL,anulaay,(x), pero L,(y,) # 0y L,(y,) # 0. Entonces el producto de los operadores
diferenciales L,L, anula la sumac y,(x) + c,y,(x). Esto se puede demostrar facilmente,
usando la linealidad y el hecho de que L L, = L,L.:

Lilo(yr + ¥2) = Lilo(yr) + Lila(y2)
= LoLy(y) + LiLa(y2)

= Lo[Ly(yd)] + Li[La(y2)] = O.
—~— —~—

cero cero

Por ejemplo, sabemos de (3) que D? anulaa 7 — x y de (8) que D? + 16 anula a sen
4x. Por tanto el producto de operadores D?(D? + 16) anulara la combinacién lineal
7 — X + 6 sen 4x.

NOTA El operador diferencial que anula una funcion no es tnico. Vimos en el in-
ciso b) del ejemplo 1 que D + 3 anula a e*, pero también a los operadores diferen-
ciales de orden superior siempre y cuando D + 3 sea uno de los factores del operador.
Por ejemplo (D + 3)(D + 1), (D + 3)?y D¥(D + 3) todos anulan a e~3. (Compruebe
esto.) Como algo natural, cuando se busca un anulador diferencial para una funciény
= f(x), se quiere que el operador de minimo orden posible haga el trabajo.

COEFICIENTES INDETERMINADOS Lo anterior lleva al punto del analisis pre-
vio. Suponga que L(y) = g(x) es una ecuacion diferencial lineal con coeficientes cons-
tantes y que la entrada g(x) consiste en sumas y productos finitos de las funciones
listadas en (3), (5) y (7), es decir, g(x) es una combinacion lineal de funciones de la
forma

k (constante), x™, xMe®, xMe®cos Bx, y x"e**senpkx,

donde m es un entero no negativo y e y 8 son nimeros reales. Ahora se sabe que
una funcion tal como g(x) puede ser anulada por un operador diferencial L, de
menor orden, que es producto de los operadores D", (D — a)"y (D? — 2aD + «?
+ B?)". Al aplicar L, a ambos lados de la ecuacion L(y) = g(x) se obtiene L.L(y) =
L,(9(x)) = 0. Al resolver la ecuacion homogénea de orden superior L L(y) = 0, se
descubre la forma de una solucidn particular y, para la ecuacion original no homo-
génea L(y) = g(x). Entonces sustituimos esta forma supuesta en L(y) = g(x) para
encontrar una solucion particular explicita. Este procedimiento para determinar Yy
Illamado método de los coeficientes indeterminados, se ilustra a continuacion en
varios ejemplos.

Antes de proceder, recuerde que la solucion general de una ecuacion diferencial
lineal no homogénea L(y) = g(x)esy =y_+ Y, donde y es la funcion complementaria,
es decir, la solucidn general de la ecuacion homogeénea asociada L(y) = 0. La solucion
general de cada ecuacion L(y) = g(x) se define en el intervalo (—oe, ).
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I EJEMPLO 3 Solucién general usando coeficientes indeterminados

Resuelva y” + 3y’ + 2y = 4x2. (9)

SOLUCION Paso 1. Primero, resolvemos la ecuacion homogénea y” + 3y’ + 2y =
0. Entonces, de la ecuacién auxiliar m? + 3m + 2 = (m + I)(m + 2) = 0 se encuentra
m, = —1lym, = —2y asi, la funcién complementaria es

— =X —2x
y,=ce*+ce

Paso 2. Ahora, puesto que 4x? se anula con el operador diferencial D3, se ve que
D3(D? + 3D + 2)y = 4D3*? es lo mismo que

D3(D? + 3D + 2)y = 0. (10)
La ecuacidn auxiliar de la ecuacion de quinto orden en (10),
mm*+3m+2)=0 o m¥m+ 1)(m+ 2) =0,
tiene raicesm =m, =m, =0,m, = —1,ym, = —2. Asi que su solucion general debe ser
y=c, +cx+cx*+ce *+ce (11)

Los términos del cuadro sombreado en (11) constituyen la funcién complementaria
de la ecuacion original (9). Se puede argumentar que una solucién particular Yo de (9)
también debe satisfacer la ecuacién (10). Esto significa que los términos restantes en
(11) deben tener la forma bésica de Y,

Yp = A+ Bx + Cx, (12)
donde, por conveniencia, hemos remplazado ¢, ¢, y ¢, por A, By C, respectivamente.
Para que (12) sea una solucion particular de (9), es necesario encontrar coeficientes
especificos A, B'y C. Derivando la ecuacion (12), se tiene que

Yy = B + 2Cx, yp = 2C,
y sustituyendo esto en la ecuacion (9) se obtiene

yo + 3yp + 2y, = 2C + 3B + 6Cx + 2A + 2Bx + 20X = 42

Como se supone que la Gltima ecuacion es una identidad los coeficientes de potencias
semejantes de x deben ser iguales:

equal

(2C|x2+| 2B +6C [x+| 24+ 3B+ 2C | =4+ Ox+0.

Es decir 2C = 4, 2B + 6C = 0, 2A+ 3B+ 2C=0. (13)
Resolviendo las ecuaciones de (13) se obtiene A = 7,B = —6y C = 2. Por tanto Y,
=7 — 6x + 2x%

Paso 3. Lasolucion general de la ecuacionen (9)esy =y_+ y,0

Yy =CEe X+ e X+ 7 — 6X + 2X2 -
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I EJEMPLO 4 Solucién general usando coeficientes indeterminados

Resuelvay” — 3y’ = 8e® + 4 sen x. (14)

SOLUCION Paso 1. La ecuacion auxiliar para la ecuacion homogénea asociada y”
— 3y’ =0esm’—3m=m(m — 3) =0, y por tanto, y_ = ¢, + c,e*.

Paso 2. Ahora, puesto que (D — 3)e* =0y (D? + 1) sen x = 0, se aplica el operador
diferencial (D — 3)(D? + 1) a ambos lados de la ecuacién (14):
(D — 3)(D? + 1)(D? — 3D)y = 0. (15)
La ecuacion auxiliar de (15) es:
(m—=3)(m2 + 1)(m?>-=3m) =0 o m(m— 3)%(m? + 1) = 0.
Asi y = ¢, + ™+ cyxe® + ¢,cosx + cssenx.

Una vez que se excluye la combinacién lineal de términos dentro del cuadro que co-
rresponde ay, se obtiene la forma de Y,

yp = Axe* + B cos x + Csenx.
Sustituyendo y, en (14) y simplificando, se obtiene
yp — 3yp = 3Ae¥* + (—B — 3C) cos x + (3B — C) senx = 8e® + 4 senx.
Igualando los coeficientes se obtiene que 3A =8, —B —3C =0y 3B — C =4.Se

encuentraque A = § B =2,yC = —Zy por tanto,

_8 3x 6 2
yp —gxe +§COSX —gsenx.

Paso 3. Entonces la solucidn general de (14) es

8 6 2
y=cl+cze3x+§xe3x+gcosx—gsenx. [ |

I EJEMPLO 5 Solucién general usando coeficientes indeterminados

Resuelva y” + y = x cos x — COS X. (16)

SOLUCION  La funcion complementaria es y_ = c, cos X + ¢, sen x. Ahora al com-
parar cos X y x cos x con las funciones del primer renglén de (7), vemos que « = 0y
n = 1yasi (D? + 1)? es un anulador para el miembro derecho de la ecuacién en (16).
Aplicando este operador a la ecuacion diferencial se obtiene

(D? + 1)2(D?+ 1)y =0 o (D?+ 1)% = 0.

Puesto que i y —i son raices complejas de multiplicidad 3 de la Gltima ecuacién auxi-
liar, se concluye que

Yy = C,COSX + C,SeNX + c.x cOSX + C4XSeNX + Csx2COS X + CeX2Senx.

Sustituyendo
yp = Axcos x + Bxsenx + Cx?cos x + Ex?senx

en (16) y simplificando:

Yo +Yp = 4Excosx — 4 Cxsenx + (2B + 2C) cosx + (—2A + 2E) senx
= X COS X — COS X.
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Igualando los coeficientes se obtienen las ecuaciones 4E = 1, —4C = 0, 2B + 2C =
—1,y —2A + 2E = 0, de las que encontramos A =+ B= —3, C=0y E = 1. Por
tanto la solucién general de (16) es
1 1 ,
y=clcosx+czsenx+Zxcosx—§xsenx+Zx Senx. [ |

I EJEMPLO 6 Forma de una solucion particular

Determine la forma de una solucién particular para
y" —2y" +y = 10e ?*cos X. 17)

SOLUCION La funcién complementaria de la ecuacion dada es y, = C,e* + Cxex.
Ahorade (7),cona = —2,8=1yn = 1, se sabe que
(D? + 4D + 5)e #cosx = 0.
Aplicando el operador D? + 4D + 5a (17), se obtiene
(D? + 4D + 5)(D? — 2D + 1)y = 0. (18)

Puesto que las raices de la ecuacion auxiliar de (18) son —2 —i, =2 + i, 1 y 1, vemos
de

y = C& + Ccxe + cie ?*cos x + ce”senx
que una solucion particular de (17) se puede encontrar con la forma

y, = Ae"?*cos x + Be #senx. [

I EJEMPLO 7 Forma de una solucion particular

Determine la forma de una solucién particular para
y” — 4y" + 4y’ = 5x% — 6x + 4x%e?* + 3™, (19)

SOLUCION Observe que
D3(5x? — 6x) = 0, (D—-2yx%>*=0 y (D—5e*=0.
Por tanto, D3(D — 2)%(D — 5) aplicado a (19), se obtiene
DD — 2)}D — 5)(D? — 4D? + 4D)y = 0
0 D4D — 2)5%D — 5)y = 0.

Las raices de la ecuacién auxiliar para la Gltima ecuacion diferencial son 0, 0, 0, 0, 2,
2,2,2,2y5. Por tanto,

— 2 3 2 2 2a2 3a2 4a2 5
y = ¢, +c X+ X+, X+ ¢+ cxe* + ¢, xe¥ + ¢ x%e* + cxe¥ + ¢ e (20)

Debido a que la combinacion lineal ¢, + c.e* + c xe* corresponde a la funcion com-
plementaria de (19), los términos restantes en (20) dan la forma de una solucién parti-
cular de la ecuacion diferencial:

yp = Ax + Bx? + Cx* + Ex%? + Fx%?* + Gx%e?* + He>. n

RESUMEN DEL METODO Por conveniencia se resume el método de coeficientes
indeterminados como sigue.
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La ecuacion diferencial L(y) = g(x) tiene coeficientes constantes y la funcion
g(x) consiste en sumas y productos finitos de constantes, polinomios, funciones
exponenciales e, senos y cosenos.

i) Encuentre la funcion complementaria y, para la ecuacion homogénea
L(y) = 0.

ii)  Opere ambos lados de la ecuacion no homogénea L(y) = g(x) con un
operador diferencial L, que anula la funcion g(x).

iii)  Determine la solucion general de la ecuacién diferencial homogénea de
orden superior L,L(y) = 0.

iv)  Elimine de la solucion del paso iii) los términos que se duplican en
la solucion complementaria y, encontrada en el paso i). Forme una
combinacion lineal y_de los términos restantes. Esta es la forma de una
solucién particular de L(y) = g(x).

v)  Sustituyay encontrada en el paso iv) en L(y) = g(x). Iguale los
coeficientes de las distintas funciones en cada lado de la igualdad
y resuelva el sistema resultante de ecuaciones para determinar los
coeficientes desconocidos de y .

vi)  Con la solucion particular encontrada en el paso v), forme la solucién
generaly =y + Y, de la ecuacion diferencial dada.

I COMENTARIOS

El método de coeficientes indeterminados no es aplicable a ecuaciones diferen-
ciales lineales con coeficientes variables ni tampoco es aplicable a ecuaciones
lineales con coeficientes constantes cuando g(x) es una funcion tal que

g(x) = Inx, g(x) = % g(x) = tan x, g(x) = semtx,

etcétera. Las ecuaciones diferenciales en las que la entrada g(x) es una funcién
de esta ultima clase se consideran en la siguiente seccion.

EJERCICIOS 4.5 Las respuestas a los problemas con niimero impar comienzan en la pagina RES-5.

En los problemas 1 a 10 escriba la ecuacién diferencial en la 13- (D = 2)(D +5); 'y =e® + 3™

forma L(y) = g(x), donde L es un operador diferencial lineal

7 . . . 14. D? + 64; =2c0s8x —5sen8
con coeficientes constantes. Si es posible, factorice L. y S oX X

9y” — 4y = sen x 2.y’ — 5y =x2 — 2X En los problemas 15 a 26 determine el operador diferencial
Y — 4y — 12y =x — 6 4,2y~ 3y —2y=1 lineal que anula la funcion dada.

y" + 10y” + 25y’ = e* 6. y" + 4y’ = e*cos 2x 15. 1 + 6x — 2x3 16. x3(1 — 5%)
y" + 2y — 13y’ + 10y = xe *
y” + 4y” + 3y’ = x?cos x — 3x
y@ + 8y’ =4 19. cos 2x 20. 1+ senx
10. y® — 8y” + 16y = (x® — 2x)e¥

17. 1 + 7e* 18. x + 3xe

© © N wE

21. 13x + 9x* —sen4x  22. 8x — sen x + 10 cos 5x
En los problemas 11 a 14 compruebe que el operador diferen-
cial anula las funciones indicadas. 23. e7* + 2xe* — x%e 24. (2 - e’

11. D% y = 10x® — 2x 12. 2D — 1; y = 4ex? 25. 3 + e*cos 2x 26. e *senx — e¥ cos X



En los problemas 27 a 34 determine las funciones linealmente
independientes que anulan el operador diferencial dado.

217.
29.
31.
33.

DS 28. D2 + 4D
(D — 6)(2D + 3) 30. D2 — 9D — 36
D2+ 5 32. D’ — 6D + 10
D3 —10D2+ 25D  34. DD — 5)(D — 7)

En los problemas 35 a 64 resuelva la ecuacion diferencial dada
usando coeficientes indeterminados.

35.
37.
39.
40.
41.
43.
45.
46.
47.
48.
49.
50.
51.
52.
53.

54.

y" —9y =54 36. 2y" —7y" + 5y = =29
y'+y =3 38. y"+2y"+y =10
y'+ 4y +4y=2x+6

y'+3y'=4x -5
y” +y" = 8x? 42, y" =2y +y=x%+ 4x
y'—y — 12y =e™ 44, y" + 2y’ + 2y = 5e&
y"—2y' —3y=4e*—9

y" + 6y’ + 8y = 3e > + 2x

y” + 25y = 6 sen x

y"+ 4y =4cosx + 3senx — 8

y" + 6y’ + 9y = —xe*

y" + 3y’ — 10y = x(e* + 1)

y'—y=x%+5

y' 4+ 2y +y=x%e*

y" — 2y’ + by = e*sen x

1
y' +y + oA e*(sen 3x — cos 3x)

55.
57.
59.
60.
61.
62.
63.
64.
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y” + 25y = 20 sen 5x 56. y" +y =4cosx — senx
y"+y +y=xsenx  58. y"+ 4y = cos’x

y” 4+ 8y" = —6x2 + 9x + 2

y' =y +y —y=xer—e*+7

y" —3y"+ 3y —y=e*—x+16

2y" — 3y" — 3y’ + 2y = (X + e7¥)?

yoO —2y" +y"=e +1

y® — 4y" = 5x — e*

En los problemas 65 a 72 resuelva el problema con valores ini-

ciales.
65. y" — 64y =16, y(0)=1,y'(0)=0
66. y'+y =% y0)=1y(@0)=0

67.
68.

69.

70.

71.
72.

y" =58y =x-2 y(0)=0y(0)=2
y” + 5y’ — 6y = 10e*, y(0)=1,y'(0)=1

y" +y =8co0s2x — 4 senx, y(?) = -1, y’(%) =0

yw _ 2y” + y’ = Xex + 5, y(O) = 27 y,(o) = 2’
y'(o) = -1

y' =4y +8y=x% y(0)=2y(0)=4
Yy —y" = x+ e y(0) = 0,y'(0) = 0,y"(0) = 0,

y"(0) = 0

Problemas para analizar

73.

Suponga que L es un operador diferencial lineal que se
factoriza pero que tiene coeficientes variables. ; Conmutan
los factores de L? Defienda su respuesta.

46

VARIACION DE PARAMETROS

REPASO DE MATERIAL

e Lavariacién de pardmetros se introdujo por primera vez en la seccion 2.3 y se us6 de nuevo en la
seccion 4.2. Se recomienda dar un repaso a estas secciones.

INTRODUCCION El procedimiento que se utiliza para encontrar una solucion particular Y, de una
ecuacion diferencial lineal de primer orden en un intervalo es también aplicable a una ED de orden supe-
rior. Para adaptar el método de variacion de parametros a una ecuacién diferencial de segundo orden

a(x)y"” + ai(x)y" + ap(x)y = g(x),

comenzamos por escribir la ecuacion en su forma estandar
y" + Py + Qy = f(x)

dividiendo entre el coeficiente principal a,(x). La ecuacion (2) es la analoga de segundo orden de la
forma estandar de una ecuacion lineal de primer orden: dy/dx + P(x)y = f(x). En (2) se supone que
P(x), Q(x) y f(x) son continuas en algln intervalo comln |. Como ya hemos visto en la seccién 4.3, no
hay dificultad para obtener la funcion complementaria y,, la solucion general de la ecuacion homoge-
nea asociada de (2), cuando los coeficientes son constantes.

)

@
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SUPOSICIONES Correspondiendo con la suposicion y, = u, (X)y,(x) que se uso en
la seccidn 2.3 para encontrar una solucién particular Y, de dy/dx + P(x)y = f(x), para la
ecuacion lineal de segundo orden (2) se busca una solucién de la forma

Yp = Ur(X)y1(X) + Ux(X)y2(X), (3)

donde y, y y, forman un conjunto fundamental de soluciones en I de la forma homogénea
asociada de (1). Usando la regla del producto para derivar dos veces a Y, se obtiene

Yp = U1 + yiUi + Uyys + YU
Yp = Uiy7 + yiug + yiui + ugy; + Upys + ysu; + YUl + ugys.

Sustituyendo la ecuacion (3) y las derivadas anteriores en (2) y agrupando términos
se obtiene

cero cero

yp + POOYp + QMY, = us[yT + Pyi + Qua] + Wlyz + Pyz + Qyo] + iUt + ury;

+ YUz + Uzy; + PLy,ui + y,us] + yiug + ysu;

d d
= o Daui] + - [yau] + Plyug + yaus] + yiug + yaug

d
= gy Ut + yauz] + PLyaui + yala] + yiug + yaup = F(x). (4)

Como se busca determinar dos funciones desconocidas u, y u,, larazon impone que son
necesarias dos ecuaciones. Estas ecuaciones se obtienen con la suposicién adicional
de que las funciones u, y u, satisfacen y,u; + y,u; = 0. Esta suposicion en azul no se
presenta por sorpresa, sino que es resultado de los dos primeros términos de (4) puesto
que si se requiere que y,u; + y,u, = 0, entonces (4) se reduce a yju}; + yius = f(x).
Ahora tenemos nuestras dos ecuaciones deseadas, a pesar de que sean dos ecuaciones
para determinar las derivadas u’y u'’,. Por la regla de Cramer, la solucion del sistema

yiup + you; =0

yiug + ysu; = f(x)

puede expresarse en términos de determinantes:

Wi ) W yif(Y) 5
LW T TTw T T w ©)
Y1 Yo 0 v y: 0

donde W= , = Ar W, =", : 6
oy ‘f(x) N AT ©

Las funciones u, y u, se encuentran integrando los resultados de (5). EI determinante
W se reconoce como el Wronskiano de y, y y, Por la independencia lineal de'y, y y, en
I, se sabe que W(y,(x), ¥,(x)) # 0 para toda x en el intervalo.

RESUMEN DEL METODO Normalmente, no es buena idea memorizar formulas
en lugar de entender un procedimiento. Sin embargo, el procedimiento anterior es de-
masiado largo y complicado para usarse cada vez que se desee resolver una ecuacion
diferencial. En este caso resulta mas eficaz usar simplemente las formulas de (5). Asi
que para resolver a,y” + a,y’ + a jy = g(x), primero se encuentra la funcién comple-
mentariay_ = c,y, + c,y, y luego se calcula el Wronskiano W(y, (x), y,(x)). Dividiendo
entre a,, se escribe la ecuacion en la forma estandar y” + Py" + Qy = f(x) para deter-
minar f(x). Se encuentra u, y u, integrando u’, = W, /Wy u’,= W,/W, donde W, y W, se
definen como en (6). Una solucion particular es y, = Uy, + uy,. Entonces la solucidén
general de la ecuacionesy =y_+ Y,
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I EJEMPLO 1 Solucién general usando variacion de parametros

Resuelvay” — 4y' + 4y = (x + 1)e?

SOLUCION De la ecuacion auxiliar m?> — 4m + 4 = (m — 2)2 = 0 se tiene y, = C,e¥
+ c,xe*. Con las identificaciones y, = e* y y, = xe*, a continuacion se calcula el
Wronskiano:

e2x Xe2x

— adx
262 oxe2x 4 ex|  ©

W(e?*, xe?*) =

Puesto que la ecuacion diferencial dada ya esta en la forma (2) (es decir, el coeficiente
de y” es 1), identificamos f(x) = (x + I)e?. De (6), obtenemos

w=| O = = (xF DX, W, = ‘ 0 o pen
Dol + 1)e 2xe?* + e ’ 2 26 (x + 1)e ’
y asi de (5)
X + 1)xe* X + 1)e¥
i: ——( e43 = —XZ_X, é:—( e4x) :X+1.
Se tiene que u; = —5x® — 1x2 y u, = 3x2 + X Por tanto
1 3 2 |a2x 1 2 2X 32X 22X
Yo = | =3¢ = X JeP + (5 + x |xe = DxceP + “xle
1 1
y Y =Ye T, =Ce® + cxe?* + 6x3e2X + Exzezx. [ |

I EJEMPLO 2 Solucién general usando variacion de parametros

Resuelva 4y” + 36y = csc 3x.

SOLUCION  Primero se escribe la ecuacion en la forma estandar (2) dividiendo entre 4:
1
y" + 9y = 2 CSsC 3X.

Debido a que las raices de la ecuacion auxiliar m?> + 9 = 0sonm, = 3iym, = —3i, la
funcion complementariaesy_= ¢, cos 3x + ¢,sen 3x. Usando y, = cos 3x, y, = sen3x,
y f(x) = ;csc 3x , obtenemos

cos 3Xx  sen 3x
—3sen3x 3 cos 3x

W(cos 3x, sen 3x) = ‘

B 0 sen3x| 1 Wa = cos 3x 0 _ 1cos 3x
' |icsc3x 3cos3x 4 27 |-3sen3x losc3x| 4 sen3x
Integrando =W 1 uy = Do L COS3K
g WEW T T2 Y T W T 12sensx
Se obtiene u; = —35X Y U, = 5 In|sen 3x|. Asi una soluci6n particular es
= —ix cos 3x + L (sen 3x) In|sen 3x|
LY 36 |

La solucién general de la ecuacion es

1 1
y =Y+ Y, =cpcos3x + czsen3x—Exc053x +%(sen 3 Injsen3x|. (7) m
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La ecuacidn (7) representa la solucion general de la ecuacion diferencial en, diga-
mos, el intervalo (0, 7/6).

CONSTANTES DE INTEGRACION  Cuando se calculan las integrales indefinidas
de u’ y u’, no es necesario introducir algunas constantes. Esto es porque

Y =Yet+ Yy =Cy1 + CY, + (U + &)y, + (U + byy,
= (¢ +a)y; + (c; + by, + Uys + Wy,

= Ciyr + Coy, + Uupy; + Uy,

I EJEMPLO 3 Solucién general usando variacion de parametros

Resuelva y'—y ==

SOLUCION  La ecuacion auxiliar m? — 1 = 0 produce m, = — 1y m, = 1. Por tanto
y, = ce*+ ce™ AhoraW(e* e™) = -2,y

,__e/x

u; = —, . dt
_e(1/%) B 1f ¢!

u, = 5 u, = 2xotdt.

Puesto que las integrales anteriores son no elementales, nos vemos obligados a escribir

X at
f—dt je—dt,
% t

1 X eft 1 X t
yportanto 'y =y, + Yy, = Ci€" + ce * + Eex Tdt - Ee** —dt 8 m
Xo Xo

En el ejemplo 3 se puede integrar en algin intervalo [x,, X] que no contenga al
origen.

ECUACIONES DE ORDEN SUPERIOR EI método que se describi6 para ecuacio-
nes diferenciales no homogéneas de segundo orden se puede generalizar a ecuaciones
lineales de n-ésimo orden que se han escrito en forma estandar

YO + Pog (YO + - -+ Py(X)Y’ + Po(x)y = f(X). ©)

Siy, =CY, + c,y, -+ cy, eslafuncion complementaria para (9), entonces una
solucién particular es

Yo = Ui(X)y1(X) + Ua(X)y(x) + - - + Up(X)yn(X),

donde los u,, k =1,2,...,nsedeterminan por las n ecuaciones
yar + 0 Yalp e YU =0

yiup +  ysup + oo+ ypup =0

. . (10)
yl(nfl)ui + yz(nfl)u'2 4+ e+ ygnfl)u;] = f(X)
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Las primeras n — 1 ecuaciones de este sistema, al igual que y,u; + y,u;, = 0 en (4),
son suposiciones que se hacen para simplificar la ecuacion resultante después de que
y, = u (X)y,(x) + - - - + u (x)y (x) se sustituye en (9). En este caso usando la regla de
Cramer se obtiene

donde W es el Wronskiano dey,, y,, ... ,Y,y W, es el determinante que se obtiene
al remplazar la k-ésima columna del Wronskiano por la columna formada por el lado
derecho de (10), es decir, la columna que consta de (0,0, ... , f(x)). Cuandon = 2, se
obtiene la ecuacion (5). Cuando n = 3, la solucion particular Y, = Uy, T Uy, + Uy,
donde y,, y, y Y, constituyen un conjunto linealmente independiente de soluciones de
la ED homogeénea asociada y u,, u, y u, se determinan a partir de

r— _1 P £ [ ——— ll
ul Wl 2 Wi 3 Wl ( )
Y3 yi 0 vy, y1 ¥ O Yi Y2 Vs
yal, Wo=ly; 0 y3|, We=1ly; y, O, Y W=ly; vy, 3.
Y3 yi f(x) vy3 yi ys f(x) Y1 Y3 V3

Véanse los problemas 25y 26 de los ejercicios 4.6.

I COMENTARIOS

i) La variacion de parametros tiene una ventaja particular sobre el método de
coeficientes indeterminados en cuanto a que siempre produce una solucion par-
ticular Yy siempre y cuando se pueda resolver la ecuacion homogénea asociada.
Este método no se limita a una funcioén f(x) que es una combinacion de las cua-
tro clases que se listan en la pagina 141. Como se vera en la siguiente seccién,
la variacion de parametros, a diferencia de los coeficientes indeterminados, es
aplicable a ED lineales con coeficientes variables.

i) Enlos problemas siguientes, no dude en simplificar laformade y . Dependiendo
de como se encuentren las antiderivadas de u’, y u’,, es posible que no se obtenga
la misma y, que se daenla secmon de respuestas Por ejemplo, enel problema 3de
los ejerC|C|os4 6tanto Yp = 5 SENX — 3 X COS X COMOYp = + SENX — X COS X
son respuestas validas. En cualqmer caso la solucion generaly = y_+ y se sim-
plificaa y = c; cos x + ¢, senx — 3 x cos X . ;Por qué?

EJERCICIOS 4.6

Las respuestas a los problemas con nimero impar comienzan en la pagina RES-5.

En los problemas 1 a 18 resuelva cada ecuacion diferencial 11, y” + 3y’ + 2y =

por medio de variacion de parametros. 1 j e
1. y" +y=secx 2. y" +y=tanx 12. y”—2y’+y=m
3.y +y=senx 4. y" +y=sechtan 6 13. y" +3y" + 2y = sene*
5. y" +y = cosX 6. y” +y = sec’ 14. y" — 2y +y=e'arctant
7.y" =y = cosh x 8. y" —y = senh 2x 15. y"+2y  +y=etint 16, 2y" + 2y +y = 4VX
- 9x 17. 3y” — 6y’ + 6y = e*sec x
9.y —dy =~ 10. y" =9y = 18. 4y" — 4y’ +y =e2V1 - %2
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En los problemas 19 a 22 resuelva cada ecuacion diferencial
mediante variacion de pardmetros, sujeta a las condiciones
iniciales y(0) = 1, y’(0) = 0.

19. 4y" —y = xeX?

20. 2y"+y' —y=x+1

21. y"+2y' —8y=2e*—e~*

22, y" — 4y’ + 4y = (12x%2 — 6x)e*

En los problemas 23 y 24 las funciones que se indican son
soluciones linealmente independientes de la ecuacién dife-

rencial homogénea asociada en (0, o). Determine la solucion
general de la ecuacién homogénea.

23 xty" + xy' + (2 — Yy = x3¥z
y, =x*cosxy,=x"senx
24. x%y" + xy' +y = sec(In x);
y, = cos(Inx), y, = sen(In x)

En los problemas 25 y 26 resuelva la ecuacion diferencial de
tercer orden usando variacion de pardmetros.

25. y" +y' =tanx 26. y" + 4y’ = sec 2x

Problemas para analizar

En los problemas 27 y 28 analice como pueden combinarse
los métodos de coeficientes indeterminados y variacion de pa-
rdmetros para resolver la ecuacion diferencial. Lleve a cabo
sus ideas.

27. 3y" — 6y’ + 30y = 15sen x + e*tan 3x
28. y" —2y' +y=4x*—3 + x e

29. ¢Cuales son los intervalos de definicion de las soluciones
generales en los problemas 1, 7, 9 y 18? Analice por qué
el intervalo de definicion de la solucion del problema 24
no es (0, ).

CAPITULO 4 ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

30. Encuentre la solucion general de x*y” + x3y’ — 4x%y =1
dado que y, = x* es una solucion de la ecuacion homogeé-
nea asociada.

31. Suponga que yp(x) = u,(X)y,(x) + u,(X)y,(x), donde u, y
u, estan definidas por (5) es una solucion particular de
(2) en un intervalo | para el que P, Q y f son continuas.
Demuestre que y, se puede escribir como

X
Yo(X) = f G(x, Y)f(t) dt, (12)
Xo
donde x y x, estan en I,

G(x, 1) = yl(t)yz(X)W—(t)yl(X)yz(t), (13)

y W(t) = W(y, (1), y,(t)) es el Wronskiano. La funcion G(x,
t) en (13) se llama la funcion de Green para la ecuacion
diferencial (2).

32. Use (13) para construir la funcién de Green para la ecuacion
diferencial del ejemplo 3. Exprese la solucion general dada
en (8) en términos de la solucion particular (12).

33. Compruebe que (12) es una solucién del problema con
valores iniciales
dy  dy :
3¢ TP T =T, v =0, y'(x) =0
en el intervalo I. [Sugerencia: Busque la regla de Leibniz
para derivar bajo un signo de integral ]

34. Use los resultados de los problemas 31y 33 y la funcion
de Green encontrada del problema 32 para encontrar una
solucion del problema con valores iniciales

y'—y=e* y0) =0 y(©0=0

usando (12). Evalue la integral.

4.7

ECUACION DE CAUCHY-EULER

REPASO DE MATERIAL

e Repase el concepto de la ecuacion auxiliar en la seccién 4.3.

INTRODUCCION La relativa facilidad con que pudimos encontrar soluciones explicitas de
ecuaciones lineales de orden superior con coeficientes constantes en las secciones anteriores, en
general no se realiza en ecuaciones lineales con coeficientes variables. En el capitulo 6 veremos que
cuando una ED lineal tiene coeficientes variables, lo mejor que podemos esperar, usualmente, es
encontrar una solucion en forma de serie infinita. Sin embargo, el tipo de ecuacion diferencial que
consideramos en esta seccién es una excepcion a esta regla; esta es una ecuacion lineal con coefi-
cientes variables cuya solucién general siempre se puede expresar en términos de potencias de X,
senos, cosenos y funciones logaritmicas. Ademas este método de solucion es bastante similar al de
las ecuaciones con coeficientes constantes en los que se debe resolver una ecuacion auxiliar.
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ECUACION DE CAUCHY-EULER Una ecuacion diferencial lineal de la forma

dn—ly dy
n-1-__ 7 “ e _ =
+ an_1X dxnfl + + ;X dx + oy g(X),

d"y
dx"

X"

donde los coeficientesa , a,_,, ... , &, son constantes, se conoce como ecuacion de
Cauchy-Euler. La caracteristica observable de este tipo de ecuacion es que el grado
k=n,n—1, ... ,1,0de los coeficientes monomiales x* coincide con el orden k de
la derivacion dty/dxk:

mismo mismo

T [y

n n—1
ax ™ + a,_X v +

Al igual que en la seccién 4.3, iniciamos el analisis con un examen detallado de
las formas de las soluciones generales de la ecuacion homogénea de segundo orden
, d%y dy

axt— + bx—

+cy = 0.
dx? dx y

La solucién de ecuaciones de orden superior se deduce de manera analoga. También,
podemos resolver la ecuacion no homogénea ax?y” + bxy’ + cy = g(x) por variacion
de parametros, una vez que se ha determinado la funcion complementariay .

NOTA El coeficiente ax? de y” es cero en x = 0. Por lo que, para garantizar que los
resultados fundamentales del teorema 4.1.1 sean aplicables a la ecuacion de Cauchy-
Euler, centramos nuestra atencion en encontrar soluciones generales definidas en el
intervalo (0, ). Las soluciones en el intervalo (—oe, 0) se obtienen al sustituir t = —x
en la ecuacion diferencial. Véanse los problemas 37 y 38 de los ejercicios 4.7.

METODO DE SOLUCION Se prueba una solucion de la forma'y = x™, donde m es
un valor que se debe determinar. Analogo a lo que sucede cuando se sustituye ™ en una
ecuacion lineal con coeficientes constantes, cuando se sustituye x™, cada término de
una ecuacion de Cauchy-Euler se convierte en un polinomio en m veces x™, puesto que

akxk%k/ =aXmm—-1H)(m-2) ---(m—k+ )x"*=agm(m—1)(m—2)---(m—k+ 1)x™

Por ejemplo, cuando sustituimos y = x™, la ecuacion de segundo orden se transforma en

d? d
ax2—y + bx—y

e dx + cy = am(m — 1)X™ + bmx™ + cx™ = (am(m — 1) + bm + c)x™

Asiy = x™es una solucién de la ecuacion diferencial siempre que m sea una solucién
de la ecuacion auxiliar
amim—1) +bm+c=0 0 anP+ (b—am+c=0. 1

Hay tres casos distintos a considerar que dependen de si las raices de esta ecuacion
cuadratica son reales y distintas, reales e iguales o complejas. En el tltimo caso las
raices aparecen como un par conjugado.

CASO I: RAICES REALES Y DISTINTAS Sean m, y m, las raices reales de (1),
tales que m, # m.. Entonces y; = X™y y, = X™ forman un conjunto fundamental de
soluciones. Por tanto, la solucién general es

y = C;X™ 4+ C,X™, 2
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I EJEMPLO T Raices distintas

d? d
Resuelva x2—y — 2x—y

— 4y =0
dx? dx y

SOLUCION En lugar de memorizar la ecuacion (1), algunas veces es preferible su-
poner y = x™ como la solucidn para entender el origen y la diferencia entre esta nueva
forma de ecuacion auxiliar y la obtenida en la seccion 4.3. Derive dos veces,

dy d?y

—= = mx" 1, — =m(m — 1)x" 2
dx dx? ( )
y sustituyendo esto en la ecuacion diferencial
d? d
xzd—x)z/ - ZX% — 4y =x2-m(m — 1)x" 2 — 2x - mx"! — 4x"

x"m(m — 1) —2m — 4) =x"(m?> —3m —4) =0

si m* — 3m — 4 = 0. Ahora (m + 1)(m — 4) = 0 implica que m, = —1, m, = 4, asi
quey = cx '+ cx% ]

CASO I1: RAICES REALES REPETIDAS  Si las raices de (I) son repetidas (es decir,
m, = m,), entonces se obtiene s6lo una solucion particular, y = x™. Cuando las raices
de la ecuacién cuadraticaam? + (b — a)m + ¢ = 0 son iguales, el discriminante de los
coeficientes necesariamente es cero. De la formula cuadratica se deduce que las raices
debenserm, = —(b — a)/2a.
Ahora se puede construir una segunda solucion y,, con la ecuacion (5) de la sec-

cién 4.2. Primero se escribe la ecuacion de Cauchy-Euler en la forma estandar

d?%y bdy ¢

dx? * ax dx " axt’ 0

y haciendo las identificaciones P(x) = b/axy f(b/ax) dx = (b/a) In x. Asi

e—(b/a)ln X
Y, = XM dx

X2ml

Xmlij/a . X—Zmldx « g~ (b/a)inx — glnx ' _ y-bla

xmlfx"["a - x0-dagy  — om, = (b~ a)/a

dx
xmlf— = XM |n x.
X

La solucion general es entonces

y = ¢;X™ + ¢,x™In x. (3)

I EJEMPLO 2 Raices repetidas

d?y dy
Resuelva 4x2— + 8x—= + y = 0.
dx? dx y
SOLUCION Sustituyendo y = x™ se obtiene
4%y g dy 2
4x +8x—=+y=x"4m(m —1) +8m + 1) = x"(4m* +4m + 1) =0

dax2 dx
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donde 4m? + 4m + 1 = 00 (2m + 1)> = 0. Puesto que m; = —3 , la solucion general
esy=cx "+ cx*Inx. ]

Para ecuaciones de orden superior, si m, es una raiz de multiplicidad k, entonces
se puede demostrar que

XM ox™Inx, x™(Inx)? ..., xM™(Inx)x?!

son k soluciones linealmente independientes. En correspondencia, la solucion general de
la ecuacion diferencial debe contener una combinacion lineal de estas k soluciones.

CASO lIl: RAICES COMPLEJAS CONJUGADAS  Si las raices de (1) son el par conju-
gadom, = o +iB, m, = a — iB, donde o y B > 0 son reales, entonces una solucion es

y = Cx*MB + Coxe B,
Pero cuando las raices de la ecuacion auxiliar son complejas, como en el caso de las
ecuaciones con coeficientes constantes, se desea escribir la solucion sélo en términos
de funciones reales. Observemos la identidad

Xiﬁ — (eln x)iﬁ — eiﬁln x'
que, por la formula de Euler, es lo mismo que
x# = cos(B In x) + i sen(B Inx).
De forma similar, Xx~# = cos(BInx) —isen(B In x).
Si se suman y restan los dos Ultimos resultados, se obtiene
X# + x7# = 2 cos(B Inx) y X — x7# = 2isen(B In x),

respectivamente. Del hecho de que y = C x***# + C x*~* es una solucion para cual-
quier valor de las constantes, note, a su vez, paraC, = C,=1yC =1,C, = -1
que

Yo = x“(x8 + XTB) Yy, = x(xB — x )
0 y; = 2x2cos(BInx) y y, = 2ix*sen(BInx)

también son soluciones. Como W(x* cos(B In x), x¢sen(B Inx)) = Bx>*t# 0,8 >0
en el intervalo (0, =), se concluye que

y; = x*cos(BInx) 'y vy, =x*sen(BInx)

constituyen un conjunto fundamental de soluciones reales de la ecuacion diferencial.
Asi la solucidn general es

y = x¥[¢c;cos(BInXx) + ¢, sen(B In x)]. (@)

I EJEMPLO 3 Problema con valores iniciales

Resuelva 4x?y” + 17y = 0,y(1) = ~1y'(1) = —

SOLUCION El término y’ falta en la ecuacion de Cauchy-Euler; sin embargo, la sus-
titucion y = x™ produce

4x2y" + 17y = x"(4m(m — 1) + 17) = x"(4m? — 4m + 17) = 0
donde 4m? — 4m + 17 = 0. De la féormula cuadratica se encuentra que las raices son

m, =1+ 2iym, =1 — 2i. Con las identificaciones « = 1 y B = 2 se ve de (4) que la

solucién general de la ecuacion diferencial es
y = x¥2[c,cos(2 Inx) + c,sen(2 Inx)].

Aplicando las condiciones iniciales y(I) = —1, y’(1) = - la solucion anterior y
usando In 1 = 0, se obtiene, asu vez, que ¢, = —1yc, = 0. Asi la solucion del problema
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ddy
3" 7
x dx®

+ 5x2

d?y

dx?

con valores iniciales esy = —x*?cos(2 In x). En la figura 4.7.1 se presenta la grafica de
esta funcidn que se obtuvo con ayuda de un paquete de computo. Se observa que la solu-
cion particular es oscilatoria y no acotada conforme x — e, ]

En el ejemplo siguiente se ilustra la solucién de una ecuacion de Cauchy-Euler
de tercer orden.

I EJEMPLO 4 Ecuacidon de tercer orden

3 2
d Y 5x2d—y+ 7xd—y

Resuelva x3 —=
dx3 dx? dx

+ 8y =0.
SOLUCION Las tres primeras derivadas de y = x™ son

d

2,
d—y=mx”‘*1 dy i

ax e mm = DX

asi la ecuacién diferencial dada se convierte en

m(m — 1)(m — 2)x™3,

dy
+ TX—=
de

+ 8y = x*m(m — 1)(m — 2)x™ 3 + 5m(m — 1)x™ 2 + 7xmx™ ! 4 8x™
=x"(m(m — 1)(m — 2) + 5m(m — 1) + 7m + 8)

= x"(m® + 2n? + 4m + 8) = x"(m + 2)(m? + 4) = 0.

En este caso veremos que y = x™ es una solucion de la ecuacion diferencial param, =
—2,m, = 2iym, = — 2i. Por tanto, la solucion general esy = ¢ x* + ¢, cos(2 In x)
+ ¢, sen(2 Inx). [ ]

El método de coeficientes indeterminados que se describid en las secciones 4.5y 4.6
no se aplica, en general, a las ecuaciones diferenciales lineales con coeficientes varia-
bles. Por tanto en el siguiente ejemplo se emplea el método de variacién de parametros.

I EJEMPLO 5 \Variacion de parametros

Resuelva x2y” — 3xy’ + 3y = 2x%e*.

SOLUCION  Puesto que la ecuacion es no homogénea, primero se resuelve la ecuacion
homogeénea asociada. De la ecuacion auxiliar (m — I)(m — 3) = 0 se encuentray_ =
c,x + ¢,x*. Ahora, antes de usar la variacion de parametros para encontrar una solucion
particular Y, = Uy, T Uy, recuerde que las formulas u; = W,/W Y u) = W,/W,
donde W,, W,y W, son los determinantes definidos en la pagina 158, que se dedujeron
bajo la suposicidn de que la ecuacion diferencial se escribi6 en la forma estandar y” +
P(X)y" + Q(X)y = f(x). Por tanto, dividiendo entre x? la ecuacion dada,

3, 3
" Zy 4 Dy = o
Y'Y Ty = 2x

hacemos la identificacion f(x) = 2x%*. Ahoracony, = X,y, = X%y

x X 0 x3 X 0
W= =2x3, W, = = -5, W, = = 2x%¢,
1 3 Lo loxees 3x? 271 2xe
25 25
ro_— — 2 - —
encontramos up=——5 =X e Yy u= o =
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La integral de la Gltima funcion es inmediata, pero en el caso de u’, se integra por
partes dos veces. Los resultados son u, = —x?e* + 2xe* — 2e* y u, = e* Por tanto

Y, = Uy, +Uy,es
yp = (—x%e* + 2xe* — 2e)x + ex® = 2x%* — 2xe~.

Finalmente, Y =VYe + Yo = Cix + cx3 + 2x%e* — 2xe%. ]

REDUCCION A COEFICIENTES CONSTANTES  Las similitudes entre las formas
de soluciones de ecuaciones de Cauchy-Euler y soluciones de ecuaciones lineales con
coeficientes constantes no s6lo son una coincidencia. Por ejemplo, cuando las raices
de las ecuaciones auxiliares para ay” + by’ + cy = 0y ax?y” + bxy’ + cy = 0 son
distintas y reales, las soluciones generales respectivas son

y = Ccie™* + ce™*  y Yy = X™ + XM, x> 0. (5)

Usando la identidad e"* = x, x > 0, la segunda solucién dada en (5) puede expresarse
en la misma forma que la primera solucién:

y = Clem1 In x + Czem2 Inx — Clemlt + Czemzt'

donde t = In x. Este ultimo resultado ilustra el hecho de que cualquier ecuacion de
Cauchy-Euler siempre se puede escribir de nuevo como una ecuacién diferencial lineal
con coeficientes constantes sustituyendo x = e'. La idea es resolver la nueva ecuacién
diferencial en términos de la variable t, usando los métodos de las secciones anteriores y
una vez obtenida la solucion general, sustituir nuevamente t = In x. Este método, que se
ilustré en el Ultimo ejemplo, requiere el uso de la regla de la cadena de la derivacion.

I EJEMPLO 6 Cambio a coeficientes constantes

Resuelva x2y” — xy’ +y = Inx.

SOLUCION Sustituyendo x = et ot = In X, se tiene que

dy _dydt_ 1dy
dx dtdx xdt

d? 1d/d d 1
—y - (—y> + —y (——) < Regla del producto y regla de la cadena

< Regla de la cadena

dx?  xdx \dt dt\ x?

_l<ﬂl>+ﬂ<_l>_£<@_ﬂ>
x \ dt? x dt \ x? x2\dtz  dt/)’

Sustituyendo en la ecuacion diferencial dada y simplificando se obtiene

d?y _dy
a2 2 at +ty=t
Como esta Ultima ecuacion tiene coeficientes constantes, su ecuacion auxiliar es m? —
2m + 1 =0,0(m — 1)> = 0. Asi se obtiene y_ = c &' + c,te".
Usando coeficientes indeterminados se prueba una solucion particular de la forma
y, = A + Bt. Esta suposicion conduce a —2B + A + Bt = t, portanto A = 2y B = 1.
Usandoy =y_+ Y, se obtiene

y = c,et + ¢, tet + 2 + t,

asi la solucion general de la ecuacion diferencial original en el intervalo (0, «) es
y=cx+cxinx+2+Inx [ |
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EJERCICIOS 4.7

Las respuestas a los problemas con nimero impar comienzan en la pagina RES-5.

En los problemas 1 a 18 resuelva la ecuacion diferencial dada.

1. xy"—=2y=0 2. 4x%y"+y=0

3. xy"+y =0 4. xy" —3y'=0

5 x%y"+xy' +4y=0 6. x2%y" +5xy’ +3y=0

7. x%y" =3y —2y=0 8. x%y"+3xy' —4y=0

9. 26x%y" + 25xy" +y =0 10. 4x?%" +4xy' —y=0
11. x?y" +5xy’ +4y =0 12. x%y" +8xy’ + 6y =10
13. 3x¥y" +6xy' +y=0 14, x2%y" —7xy’ +4ly =0
15. x%” — 6y =0 16. X% +xy' —y=0

17. xy® + 6y” =0

18. x4y@ + 6x3y” + 9x%y" + 3xy' +y =0

En los problemas 19 a 24 resuelva la ecuacion diferencial
dada por variacion de parametros.

19. xy” — 4y’ =x*

20. 2x%y" +5xy’ +y =x?— X

21. x¥y" —xy' +y = 2x 22. x%y" — 2xy’ + 2y = x%e*

23. xy"+xy' —y=Inx 24 Xy" +xy —y=

x+1
En los problemas 25 a 30 resuelva el problema con valores
iniciales. Use una aplicacion para graficar y obtenga la gréfica
de la curva solucién.

25. x%y" +3xy’ =0, y(1)=0,y'(1)=4

26. x?2y" —5xy’ +8y =0, y(2)=32,y'(2 =0

27. x3y"+xy' +y=0, y@) =1y (1) =2

28. x?%y" —3xy' +4y =0, y(1)=5y'(1)=3

29. xy" +y =% Y1) =1y(1) =}

30. xy" —5xy' + 8y =8¢ y(3)=0y(3)=0

En los problemas 31 a 36 use la sustitucion x = et para con-
vertir la ecuacion de Cauchy-Euler a una ecuacion diferencial
con coeficientes constantes. Resuelva la ecuacion original al
resolver la nueva ecuacion usando los procedimientos de las
secciones 4.3 a 4.5.

31. x%y" +9xy’ —20y =0
32. x%y" —9xy’ + 25y =0
33. x%y” + 10xy’ + 8y = x?

34. x%y" — 4xy’ + 6y = In x?

35. x%y" — 3xy’ + 13y = 4 + 3X

36. x%y” — 3x%y" + 6xy’ — 6y =3 + Inx®

En los problemas 37 y 38 resuelva el problema con valores
iniciales dado en el intervalo (—x, 0).

37. 4xy" +y=0, y(-1) =2y (-1) =4

38. xy" —4xy' +6y=0, y(-2)=8,y(-2)=0

Problemas para analizar

39. ¢Como podria utilizar el método de esta seccion para re-
solver

X+ 2% + (x+ 2y +y=0?

Lleve a cabo sus ideas. Exprese un intervalo en el cual
esté definida la solucion.

40. ¢Es posible encontrar unaecuacion diferencial de Cauchy-
Euler de orden minimo con coeficientes reales si se sabe
que 2y 1 — ison raices de su ecuacién auxiliar? Lleve a
cabo sus ideas.

41. Las condiciones iniciales y(0) =y,, y'(0) =y, se aplican
a cada una de las siguientes ecuaciones diferenciales:

x%y" =0,
x2y" — 2xy’ + 2y = 0,
x2y" — 4xy’ + 6y = 0.

¢Para qué valores de y, y y, cada problema con valores
iniciales tiene una solucion?

42. ¢Cuales son las intersecciones con el eje x de la curva
solucion que se muestra en la figura 4.7.1? ;Cuantas in-

tersecciones con el eje x hay en 0 < x < 2?

Tarea para el laboratorio de computacién

En los problemas 43 al 46 resuelva la ecuacion diferencial
dada usando un SAC para encontrar las raices (aproximadas)
de la ecuacion auxiliar.

43. 2x%y" — 10.98x?%" + 8.5xy’ + 1.3y =0

44, x3y" + 4x%y" +5xy' — 9y =0

45. x4y + 6x%" + 3x%y" — 3xy’ +4y =0

46. x*y® — 6x%” + 33x%y” — 105xy’ + 169y = 0

47. Resuelva x3y"” — x2%y" — 2xy’ + 6y = x2 por variacién
de pardmetros. Use un SAC como ayuda para calcular las
raices de la ecuacion auxiliar y los determinantes dados
en (10) de la seccion 4.6.
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4.8

SOLUCION DE SISTEMAS DE ED LINEALES POR ELIMINACION

REPASO DE MATERIAL

e Puesto que el método de eliminacién sistemética desacopla un sistema en distintas EDO
lineales en cada variable dependiente, esta seccion le brinda la oportunidad de practicar lo que
aprendid en las secciones 4.3, 4.4 (0 4.5) y 4.6.

INTRODUCCION  Las ecuaciones diferenciales ordinarias simultaneas tienen que ver con dos o
mas ecuaciones que contienen derivadas de dos o mas variables dependientes (las funciones des-
conocidas) respecto a una sola variable independiente. EI método de eliminacion sistematica para
resolver sistemas de ecuaciones diferenciales con coeficientes constantes se basa en el principio al-
gebraico de eliminacion de variables. Veremos que la operacion anéloga de multiplicar una ecuacion
algebraica por una constante es operar en una EDO con cierta combinacion de derivadas.

ELIMINACION SISTEMATICA La eliminacion de una incognita en un sistema de
ecuaciones diferenciales lineales se facilita al rescribir cada ecuacion del sistema en no-
tacion de operador diferencial. Recuerde de la seccion 4.1 que una sola ecuacion lineal

ay® + 2,y 4 -+ Ay’ + agy = g(b),
dondelasa,i=0,1, ..., nson constantes, puede escribirse como
(@,D" + a,_,DOV + - - - + a,D + a5)y = g(t).

Si el operador diferencial de n-ésimo orden a,D" + a,_,D"V + - - - + a,D + a,
se factoriza en operadores diferenciales de menor orden, entonces los factores conmu-
tan. Ahora, por ejemplo, para rescribir el sistema
X"+ 2x" +y" = x + 3y + sent
X'+y' =—-4x+ 2y +e'

en términos del operador D, primero se escriben los términos con variables dependien-
tes en un miembro y se agrupan las mismas variables.

X"+ 2x" — x +y” — 3y = sent ) (D? + 2D — 1)x + (D? — 3)y = sent
X' —dx+y —2y=¢et es lo mismo que D—-4x+(D-2y=et
SOLUCION DE UN SISTEMA Una solucién de un sistema de ecuaciones dife-

renciales es un conjunto de funciones suficientemente derivables x = ¢,(t), y = ¢,(t),
z = ¢,(t), etcétera, que satisface cada ecuacion del sistema en algin intervalo comun I.

METODO DE SOLUCION Considere el sistema simple de ecuaciones lineales de
primer orden

dx

at =Y

0, equivalentemente Dx =3y =0 1)
ﬂ = 2x 2x — Dy = 0.
dt

Operando con D la primera ecuacion de (1) en tanto que la segunda se multiplica por — 3
y después se suma para eliminar y del sistema, se obtiene D*x — 6x = 0. Puesto que las
raices de la ecuacion auxiliar de la dltima ED son m; = V6 ym, = —\/6, se obtiene

_ -6 V6
X(t) = c,e” Vet + c,eVet, @)
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Multiplicando la primera ecuacion en (1) por 2 mientras que se opera la segunda
con D y después restando, se obtiene la ecuacion diferencial para 'y, D% — 6y = 0.
Inmediatamente se tiene que

y(t) = cie~ Vet + c,eVer, (3)

Ahora (2) y (3) no satisfacen el sistema (1) para toda eleccion de ¢, c,, c, y C,
porque el sistema en si pone una restriccion al nimero de parametros en una solucion
que se puede elegir en forma arbitraria. Para ver esto, observe que sustituyendo x(t) y
y(t) en la primera ecuacion del sistema original (1), después de simplificar, se obtiene

(—=V6c, — 3cy)e Vet + (VBce, — 3c,)eVst = 0.
Puesto que la Gltima expresion es cero para todos los valores de t, debemos tener

—V/6c, — 3c; = 0y V6ec, — 3c, = 0. Estas dos ecuaciones nos permiten escribir
¢, como un multiplo de ¢, y ¢, como un maltiplo de c,;:

V6 V6
= -3 4 y G=73C (4)
Por tanto se concluye que una solucion del sistema debe ser
V6 V6
X(t) = ce” Vo + ceVB y(t) = 3 ce” Vot + Tcze\/é‘.

Se recomienda sustituir (2) y (3) en la segunda ecuacién de (1) y comprobar que
se cumple la misma relacién (4) entre las constantes.

I EJEMPLO 1 Solucién por eliminacion

Resuelva Dx+ (D+2y=0
D — 3)x — 2y=0. (5)
SOLUCION Operando con D — 3 la primera ecuacion y la segunda con D y luego
restandolas se elimina x del sistema. Se deduce que la ecuacidn diferencial paray es
[D-3)D+2)+2Dly=0 o (D?+D—-6)y=0.

Puesto que la ecuacion caracteristica de esta Gltima ecuacion diferencial es m? + m —
6 = (m — 2)(m + 3) = 0, se obtiene la solucion

y(t) = c,e? + c,e 3t (6)
Eliminando y de modo similar, se obtiene (D* + D — 6)x = 0, a partir de lo cual se
encuentra que

x(t) = cye?t + c,e st )

Como se observo en la descripcién anterior, una solucion de (5) no contiene cuatro cons-
tantes independientes. Sustituyendo (6) y (7) en la primera ecuacién de (5) se obtiene

(4c, + 2c5)e?t + (—c, — 3¢ )e 3t = 0.

De 4‘_’1 + 2c, = 0y —c, — 3c, = Oseobtienec, = —2c, y ¢, = —% C,. Por tanto una
solucion del sistema es

1
x(t) = —2c,e? — écze*“, y(t) = c,e?' + ce 3t ]

Ya que sdlo se podria despejar facilmente a c, y c, en términos de c, y c,, la solu-
cién del ejemplo 1 se escribe en la forma alternativa

1
x(t) = cze?t + ¢, y(t) = -5 cze?t — 3c,e 3t
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En ocasiones da resultado mantener los ojos abiertos cuando se resuelven siste-
mas. Si en el primer ejemplo se hubiera resuelto para x, entonces se podria encontrar
y, junto con la relacién entre las constantes, usando la Gltima ecuacion del sistema
(5). Usted debe comprobar que la sustitucion de x(t) en y = %(Dx — 3x) produce
y = —3cze?' — 3c,e% Observe también en la descripcion inicial que la relacion que
se proporciona en (4) y la solucién y(t) de (1) se podria haber obtenido al usar x(t) en
(2) y la primera ecuacion de (1) en la forma

y=3:Dx=—1 V6ee Vet + : V6e,eVet

I EJEMPLO 2  Solucién por eliminacion

Resuelva X' —4x+y" =1 ®)
X'+ x+y =0

SOLUCION Primero se escribe el sistema en notacion de operador diferencial:
D—-4x +D¥y =1t )
(D +1)x + Dy =0.
Entonces, eliminando a x, obtenemos
[(D + 1)D?> — (D — 4)D]y = (D + 1)t — (D — 4)0
0 (D® + 4D)y = t? + 2t.
Puesto que las raices de la ecuacion auxiliar m(m? + 4) = 0sonm, =0, m, = 2iym,

= —2i, lafuncién complementariaesy_ = c, + c, cos 2t + c, sen 2t. Para determinar
la solucion particular y,, Se usan coeficientes indeterminados suponiendo que Y, = At

+ Bt2 + Ct. Por tanto y;, = 3At? + 2Bt + C,y; = 6At + 2B, y;'= 6A,

yi+ 4y, = 12A2 + 8Bt + 6A + 4C = £ + 2t.
LaGltimaigualdad indicaque 12A = 1,8B = 2y 6A + 4C = 0; portanto A = % B = %
yC = —. Asi
y=Y.+y,=¢C +ccosZt+csen2t+it3+1t2—lt. (10)
o : 2 4 8
Eliminando y del sistema (9), se obtiene

[D-4)-DD+Dlx=t2 o (D*>+4)x=—1.
Debe ser obvio que x_ = ¢, cos 2t + ¢, sen 2t y que se pueden aplicar coeficientes in-
determinados para obtener una solucién particular de la forma X, = At2 + Bt + C.En
este caso usando derivadas y algebra usuales se obtiene x, = —i? + ¢ yasi

1 1
x=xc+xp=c40052t+055en2t—zt2+§. (11)

Ahora se expresan ¢, y ¢, en términos de c, y c, sustituyendo (10) y (11) en cual-
quier ecuacion de (8). Utilizando la segunda ecuacion, se encuentra, después de com-
binar términos,

(cs — 2¢, — 2¢,) sen 2t+ (2¢cs + ¢, + 2¢3) cos 2t = 0,

asi ¢, — _204 - 2c, =1O y 2¢c, + ¢, + 2c, :1 0. Despejando C,Y Cg en términos de c, y
c, se obtl_ene ¢, = —5(4c, + 2¢,) y ¢, = £ (2¢c, — 4c,). Por Gltimo, se encuentra que
una solucioén de (8) es

1 1 1, 1
x(t) = —§(4c2 + 2¢3) cos 2t + §(2c2 — 4c;) sen 2t— th + o

1 1 1
t) = ¢, + C,C08 2t + Casen2t+ — 3 + =2 — = t. ]
y(t) 1 2 3 12 2 8
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libras de sal

0 20 40 60 80 100
Tiempo

FIGURA 4.8.1 Libras de sal en los
tanques Ay B.
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I EJEMPLO 3 Volver atratar un problema de mezclas

En (3) de la seccion 3.3 vimos que el sistema de ecuaciones diferenciales lineales de
primer orden

a2, 1y
dt 25"t 5077
dx, 2 2

dt 257 257

es un modelo para la cantidad de libras de sal x, () y x,(t) en mezclas de salmuera en los
tanques A y B, respectivamente, que se muestran en la figura 3.3.1. En ese momento
no podiamos resolver el sistema. Pero ahora, en términos de operadores diferenciales,
el sistema anterior se puede escribir como

2 1
D+ =)y — =y, =
( 25>X1 50 %= 0

_2 X +<D+£>x =0
25 25)7% 7
Operandocon D + % la primera ecuacién y multiplicando la segunda ecuacién por ?lo se
suman y simplifican, y se obtiene (625D + 100D + 3)x, = 0. De la ecuacion auxiliar
625m? + 100m + 3 = (25m + 1)(25m + 3) =0

se observa inmediatamente que x, (t) = c,e "* + c,e~*"*. Ahora se puede obtener x.(t)

usando la primera ED del sistema en la forma x, = 50(D + %)x;. De esta manera se
encuentra que la solucién del sistema es

Xl(t) — Cleft/25 + 02673t/25’ Xz(t) — cheftIZS _ 202e73t/25_
En el andlisis original de la pagina 107 se supuso que las condiciones iniciales eran
x,(0) = 25y x,(0) = 0. Aplicando estas condiciones a la solucion se obtiene ¢, + ¢,
= 25y 2c, — 2c, = 0. Resolviendo simultaneamente estas ecuaciones se obtiene
C,=¢C, = 275 Por Gltimo, una solucién del problema con valores iniciales es

2 2
Xl(t) _ ?5 et/25 | ?5 e—3t/25, Xz(t) — 2Ge /25 _ 95a—3t/25
En la figura 4.8.1 se muestran las graficas de ambas ecuaciones. Consistentes con el hecho
que se bombea agua pura al tanque A en la figura vemos que x,(t) — 0y x,(t) — 0 con-
forme t — oo, ]

EJERCICIOS 4.8

Las respuestas a los problemas con nimero impar comienzan en la pagina RES-6-

En los problemas 1 a 20 resuelva el sistema de ecuaciones 5. (D*+5)x - 2y =0
diferenciales dado por eliminacién sistemaética. —2x+ (D2 +2)y=0
1.%=2x—y 2.%=4x+7y 6.(D+1§§1§B;2522_1
%=x %:x—Zy 7.(211—2(:4y+et S.i—th(Jr%:—Sx
3.%=—y+t 4.%—4y= 3—2’:4x—et ‘;_)t(+%:_x+4y
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10. D2x — Dy =t
(D+3)x+(D+3y=2
11. (D?2—-1x— y =0

(D—-1x+Dy=0
12. 2D>*-D—-1)x— (2D + 1y =1

(D - 1Dx + Dy = -1
dx dy
. 2— —bx+—==¢
13 2dt 5x at e
dx dy
- + = = t
a Yta e
dx dy
. — + = = ¢t
ST ¢
—ﬂ+%+x+ =0
dez  dt Y=

15. D-x+(D?>+1y=1
D2-1Dx+ (D+1y=2
16. D> —2(D?+ D)y =sent

X + Dy=0
17. Dx =y 18. Dx + z=¢
Dy =1z D—-1x+Dy+Dz=0
Dz = x X+ 2y +Dz=¢
dx dx
L= .—=—x+
19 pm 6y 20 at X+z
y y
== — = -y +
at X+z at y+z
2 _ i+ & _ s
aa Y dt y

En los problemas 21 y 22 resuelva el problema con valores
iniciales.

dx dx

L — = — —_ ., = —1
21 at 5x —y 22 ot y

d—y=4x—y Q=—3x+2y

dt
x(1)=0,y1) =1 x(0) =0,y(0) =0

Modelos matematicos

23. Movimiento de un proyectil Un proyectil disparado de
una pistola tiene un peso w = mgy una velocidad v tangente
a su trayectoria de movimiento. Ignorando la resistencia
del aire y las fuerzas que actuan sobre el proyectil excepto
su peso, determine un sistema de ecuaciones diferenciales
que describa su trayectoria de movimiento. VVéase la figura
4.8.2. Resuelva el sistema. [Sugerencia: Use la segunda ley
de Newton del movimiento en las direcciones xy y.]

y

X

FIGURA 4.8.2 Trayectoria del proyectil del problema 23.

24. Movimiento del proyectil con resistencia del aire De-
termine un sistema de ecuaciones diferenciales que describa
la trayectoria de movimiento en el problema 23 si la resis-
tencia del aire es una fuerza retardadora k (de magnitud k)
que actlia tangente a la trayectoria del proyectil pero opuesta
a sumovimiento. Véase la figura 4.8.3. Resuelva el sistema.
[Sugerencia: k es un maltiplo de velocidad, digamos, cv.]

FIGURA 4.8.3  Fuerzas en el problema 24.

Problemas para analizar
25. Examine y analice el siguiente sistema:

Dx — 2Dy =+t?
O+ Dx—2(D + 1y =1.

Tarea para el laboratorio de computacion

26. Examine de nuevo la figura 4.8.1 del ejemplo 3. Luego
utilice una aplicacién para determinar raices para saber
cuando el tanque B contiene mas sal que el tanque A.

27. a) Lea nuevamente el problema 8 de los ejercicios 3.3.
En ese problema se pidié demostrar que el sistema de
ecuaciones diferenciales

dt  50°°
dt 50°% 75°°
dt 7572 2572

es un modelo para las cantidades de sal en los tanques
de mezclado conectados A, B 'y C que se muestran en
la figura 3.3.7. Resuelva el sistema sujeto a x,(0) =
15, x,(t) = 10, x,(t) = 5.

b) Use un SAC para graficar x(t), x,(t) y x,(t) en el
mismo plano coordenado (como en la figura 4.8.1)
en el intervalo [0, 200].

c) Debido a que se bombea agua pura hacia el tanque A,
es 16gico que en algin momento la sal salga de los
tres tanques. Utilice una aplicacion de un SAC para
encontrar raices para determinar el tiempo cuando la
cantidad de sal en cada recipiente sea menor o igual
que 0.5 libras. (Cuéando son las cantidades de sal
X, (1), X,(t) y x,(t) simultaneamente menores o iguales
que 0.5 libras?
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4.9

ECUACIONES DIFERENCIALES NO LINEALES

REPASO DE MATERIAL

e Secciones 2.2y 2.5.

e Seccion 4.2.

e También se recomienda un repaso de series de Taylor.

INTRODUCCION A continuacion se examinan las dificultades en torno a las ED no lineales de
orden superior y los pocos métodos que producen soluciones analiticas. Dos de los métodos de solucion
que se consideran en esta seccion emplean un cambio de variable para reducir una ED de segundo orden
a una de primer orden. En ese sentido los métodos son anadlogos al material de la seccion 4.2.

ALGUNAS DIFERENCIAS Entre las ecuaciones diferenciales lineales y no lineales hay
varias diferencias importantes. En la seccién 4.1 vimos que las ecuaciones lineales
homogéneas de orden dos o superior tienen la propiedad de que una combinacion lineal
de soluciones también es una solucién (teorema 4.1.2). Las ecuaciones no lineales no
tienen esta propiedad de superposicion. Vea los problemas 1 y 18 de los ejercicios 4.9.
Podemos encontrar soluciones generales de ED lineales de primer orden y ecuaciones
de orden superior con coeficientes constantes. Aun cuando se pueda resolver una ecua-
cion diferencial no lineal de primer orden en la forma de una familia uniparamétrica,
esta familia no representa, como regla, una solucion general. Es decir, las ED no linea-
les de primer orden pueden tener soluciones singulares, en tanto que las ecuaciones
lineales no. Pero la principal diferencia entre las ecuaciones lineales y no lineales de
orden dos o superior radica en el &rea de la solubilidad. Dada una ecuacion lineal, hay
una probabilidad de encontrar alguna forma de solucion que se pueda analizar, una
solucion explicita o quizé una solucion en la forma de una serie infinita (vea el capitulo
6). Por otro lado, las ecuaciones diferenciales no lineales de orden superior desafian vir-
tualmente la solucién con métodos analiticos. Aunque esto podria sonar desalentador,
aun hay cosas que se pueden hacer. Como se sefial6 al final de la seccién 1.3, siempre
es posible analizar de modo cualitativo y numérico una ED no lineal.

Desde el principio se aclard que las ecuaciones diferenciales no lineales de orden
superior son importantes, digamos ¢;quiza mas que las lineales?, porque a medida que
se ajusta un modelo matematico, por ejemplo, un sistema fisico, se incrementa por
igual la probabilidad de que este modelo de mayor definicion sea no lineal.

Empezamos por mostrar un método analitico que en ocasiones permite determi-
nar soluciones explicitas o implicitas de clases especiales de ecuaciones diferenciales
de segundo orden no lineales.

REDUCCION DE ORDEN Las ecuaciones diferenciales no lineales de segundo
orden F(x, y’, y") = 0, donde falta la variable dependiente y, y F(y, y’, y") = 0, donde
falta la variable independiente X, a veces se resuelven usando métodos de primer orden.
Cada ecuacion se reduce a una de primer orden por medio de la sustitucién u = y'.

En el ejemplo siguiente se ilustra la técnica de sustitucion para una ecuacion de
la forma F(x, y’, y") = 0. Si u = y’, entonces la ecuacion diferencial se convierte en
F(x, u, u") = 0. Si podemos resolver esta Ultima ecuacidn para u, podemos encontrar
a 'y por integracion. Observe que como se esta resolviendo una ecuacion de segundo
orden, su solucion contendra dos constantes arbitrarias.

I EJEMPLO 1 Faltalavariable dependiente y

Resuelvay” = 2x(y')%
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SOLUCION  Si hacemos u = y’, entonces du/dx = y”. Después de sustituir, la se-
gunda ecuacion diferencial se reduce a una ecuacion de primer orden con variables
separables; la variable independiente es x y la variable dependiente es u:

du _

du
2 _——=
dx 2Xu 0 7 2x dx

Juzdu= fZde

=X+ ¢

|

C\
A
!

La constante de integracion se escribe como Cf por conveniencia. La razén debe ser
obvia en los pocos pasos siguientes. Debido a que u=* = 1/y’, se tiene que

dy 1
dx X+
asi ——fL 0 ——ltan‘liJr ]
y y X2 + ¢} y (o c C

A continuacion se muestra como resolver una ecuacion que tiene la forma F(y, y’,
y") = 0. Una vez mas se hace u = y’, pero debido a que falta la variable independiente
X, esta sustitucion se usa para convertir la ecuacién diferencial en una en la que la va-
riable independiente es y y la variable dependiente es u. Entonces utilizamos la regla
de la cadena para calcular la segunda derivada de y:

w_dudy _ du
dx dydx dy’

"

En este caso la ecuacidn de primer orden que debemos resolver es

du
F —]=0.
(y’u’udy) 0

I EJEMPLO 2 Falta lavariable independiente x

Resuelva yy” = (y')%

SOLUCION Con ayuda de u = y’, la regla de la cadena que se acaba de mostrar y de
la separacion de variables, la ecuacion diferencial se convierte en

duy @_d_y
y<udy>—u 0 0y

Entonces, integrando la Ultima ecuacion se obtiene Inju| = In|y| + c,, que, a su vez,
dau = c,y, donde la constante =€ se identifica como c,. Ahora se vuelve a sustituir
u = dy/dx, se separan de nuevo las variables, se integra y se etiquetan las constantes
por segunda vez:

dy

7=c2fdx o Inyl=cx+c o y=ce” ]

USO DE SERIES DE TAYLOR En algunos casos una solucion de un problema con
valores iniciales no lineales, en el que las condiciones iniciales se especifican en x , se
puede aproximar mediante una serie de Taylor centrada en x,.
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I EJEMPLO 3 Series de Taylor de un PVI

Supongamos que existe una solucién del problema con valores iniciales

y'=x+y-¥, y0=-1 y(©0=1 @)
Si ademas se supone que la solucion y(x) del problema es analitica en 0, entonces y(x)
tiene un desarrollo en serie de Taylor centrado en 0:

YO YO, ¥yO, ¥, YO,

Y9 =y + 7 7 x 3 4 51 @)
Observe que se conocen los valores del primero y segundo términos en la serie (2)
puesto que esos valores son las condiciones iniciales especificadas y(0) = — 1,y’(0) =

1. Ademas, la ecuacion diferencial por si misma define el valor de la segunda derivada
en0:y"(0) =0 + y(0) —y(0)2=0 + (—1) — (—1)> = —2. Entonces se pueden encon-
trar expresiones para las derivadas superiores y”, y®, ... calculando las derivadas
sucesivas de la ecuacion diferencial:

d
ym(X) :&(X—{—y_yZ) — 1+y/ _Zyy; (3)
(4) _ d ’ N o " N2
y(X)—&(l-f-y—Zyy)—y—Zyy_z(y) @)
d
Y = (v = 20" = 2Ay)) =y - 29" — by ©)

etcétera. Ahora usando y(0) = —1yy’(0) = 1, se encuentra de (3) que y”(0) = 4. De
los valores y(0) = —1, y'(0) = 1y y"(0) = —2 se encuentra y®(0) = —8 de (4). Con
la informacion adicional de que y”(0) = 4, entonces se ve de (5) que y®(0) = 24.
Por tanto de (2) los primeros seis términos de una solucién en serie del problema con
valores iniciales (1) son
_ e le la e
y(X) 1+ X x+3x 3x“+5x+ . [ |
USO DE UN PROGRAMA DE SOLUCION NUMERICA  Los métodos numéricos,
como el de Euler o el de Runge-Kutta, se desarrollaron sélo para ecuaciones diferen-
ciales de primer orden y luego se ampliaron a sistemas de ecuaciones de primer orden.
Para analizar en forma numérica un problema con valores iniciales de n-ésimo orden, se
expresa la EDO de n-ésimo orden como un sistema de n ecuaciones de primer orden. En
resumen, aqui se muestra cdmo se hace esto para un problema con valores iniciales de
segundo orden: primero, se resuelve paray”, es decir, se escribe la ED en la forma nor-
mal y” = f(x, y, y") y después se hace que y’ = u. Por ejemplo, si sustituimosy’ = uen
d?y

a2 - T&YY) Y) = Yo Y'(%) = U, (6)

entoqces y" =u"yy'(x,) = u(x,), por lo que el problema con valores iniciales (6) se
convierte en

Resuelva: y =u
u = f(xy, u)

Sujeto a: V(X)) = Yo, U(Xg) = Up.

Sin embargo, se debe observar que un programa de solucién numérica podria no re-
querir* que se proporcione el sistema.

“Algunos programas de solucion numérica sélo requieren que una ecuacion diferencial de segundo orden
sea expresada en la forma normal y” = f(x, y, y'). La traduccion de la Gnica ecuacion en un sistema de dos
ecuaciones se construye en el programa de computadora, ya que la primera ecuacion del sistema siempre
esy’ = uy lasegunda ecuacion esu’ = f(x, y, u).
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I EJEMPLO 4 Analisis grafico del ejemplo 3

Siguiendo el procedimiento anterior, se encuentra que el problema con valores inicia-
les de segundo orden del ejemplo 3 es equivalente a

dy _
dx_u
%—XJ{_ _\2
dx y—-y

con condiciones iniciales y(0) = —1, u(0) = 1. Con ayuda de un programa de solucién nu-
mérica, se obtiene la curva solucidn en azul en la figura 4.9.1. Por comparacion, la gréfica
del polinomio de Taylor de quinto grado Tg(x) = —1 + x — X2 + 2x3 — Ix* + £x° se
muestra en rojo. Aunque no se conoce el intervalo de convergencia de la serie de Taylor
obtenida en el ejemplo 3, la proximidad de las dos curvas en una vecindad del origen indica
que la serie de potencias podria converger en el intervalo (—1, 1). [ |

CUESTIONES CUALITATIVAS La grafica en azul de la figura 4.9.1 origina al-
gunas preguntas de naturaleza cualitativa: ¢la solucién del problema con valores ini-
ciales original es oscilatoria conforme x — %? La grafica generada con un programa
de solucion numérica en el intervalo mas grande, que se muestra en la figura 4.9.2
pareceria sugerir que la respuesta es si. Pero este simple ejemplo o incluso un grupo
de ejemplos, no responde la pregunta basica en cuanto a si todas las soluciones de la
ecuacion diferencial y” = x + y — y? son de naturaleza oscilatoria. También, ;qué
esta sucediendo con la curva solucién de la figura 4.9.2 conforme x esta cerca de —1?
¢Cudl es el comportamiento de las soluciones de la ecuacién diferencial conforme x
— ? ;Estan acotadas las soluciones conforme x — <? Preguntas como éstas no son
faciles de responder, en general, para ecuaciones diferenciales de segundo orden no
lineales. Pero ciertas clases de ecuaciones de segundo orden se prestan a un analisis
cualitativo sistematico y éstas, al igual que las ecuaciones de primer orden que se
obtuvieron en la seccion 2.1, son de la clase que no tiene dependencia explicita en la
variable independiente. Las EDO de segundo orden de la forma

d?y
Fiy.y,y) =0 0 5 =tyy)

X
ecuaciones libres de la variable independiente x, se llaman auténomas. La ecuacion
diferencial del ejemplo 2 es autbnoma y debido a la presencia del término x en su
miembro derecho, la ecuacion del ejemplo 3 es autdnoma. Para un tratamiento pro-
fundo del tema de estabilidad de ecuaciones diferenciales auténomas de segundo
orden y sistemas auténomos de ecuaciones diferenciales, refiérase al capitulo 10 de
Ecuaciones diferenciales con problemas con valores en la frontera.

EJERCICIOS 4.9

Las respuestas a los problemas con nimero impar comienzan en la pagina RES-6.

En los problemas 1y 2 compruebe que y, y y, son soluciones S.xy"+(y)*=0 6. (y+ 1y"=(y)?
de la ecuacion diferencial dada pero que y = c)y, + cy, en 7.y +2y(y')2=0 8. yy" =y

general, no es una solucion.

1 (y")>=y% vy, =¢e4y,=Cosx
1
2oy =S() =1y, =%

En los problemas 3 a 8 resuelva la ecuacion diferencial usando

la sustitucion u = y’.

9. Considere el problema con valores iniciales
y"+yy =0, y(0)=1y'(0)= -1
a) Use la ED y un programa de solucién numérica para
trazar la curva solucién.
b) Encuentre una solucién explicita del PVI. Use un pro-
grama de graficacion para trazar la solucion.
c) Determine un intervalo de definicion para la solucion

3. yr/ 4 (y')z +1=0 4. y” =1+ (y,)2 del inciso b)
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10. Encuentre dos soluciones del problema con valores iniciales

() + ()Y =1 y(g) = % y(g) = VTé

Use un programa de solucién numérica para trazar la gra-
fica de las curvas solucion.

En los problemas 11 y 12 demuestre que la sustitucion u =y’
conduce a una ecuacion de Bernoulli. Resuelva esta ecuacion
(véase la seccion 2.5).

11 xy" =y + (y')®

En los problemas 13 a 16 proceda como en el ejemplo 3 y
obtenga los primeros seis términos no cero de una solucion en
serie de Taylor, centrada en 0, del problema con valores ini-
ciales. Use un programa de solucién numérica para comparar
la curva solucion con la grafica del polinomio de Taylor.

13. y"=x+vy? y0)=1y(@0) =1

4. y"+y2=1, y0)=2y'(0)=3

15 y"=x2+y2 -2y, y(0)=1y(0)=1
16. y"=¢¥, y(0)=0,y'(0)=-1

17. En calculo, la curvatura de una linea que se define por
medio de una funciony = f(x) es

_ y
TR )T

Encuentre y = f(x) para la cual k = 1. [Sugerencia: Por
simplicidad, desprecie las constantes de integracion.]

12. xy" =y" + x(y’)?

4

Problemas para analizar

18. En el problema 1 vimos que cos x y e* eran soluciones de
la ecuacion no lineal (y")? — y? = 0. Compruebe que sen
X'y e también son soluciones. Sin intentar resolver la
ecuacion diferencial, analice como se pueden encontrar
estas soluciones usando su conocimiento acerca de las
ecuaciones lineales. Sin intentar comprobar, analice por
qué las combinaciones lineales y = c.e* + c,e™* + ¢, cos
X+ c,senxyy = c,e”* + c, sen x no son, en general, so-
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luciones, pero las dos combinaciones lineales especiales
y=ce*+ce*yy=c,cosXx+c,senxdeben satisfa-
cer la ecuacion diferencial.

19. Analice como se puede aplicar el método de reduccion de
orden considerado en esta seccion a la ecuacion diferen-
cial de tercer orden y” = V1 + (y")?. Lleve a cabo sus
ideas y resuelva la ecuacion.

20. Explique cdmo encontrar una familia alternativa de solu-
ciones de dos parametros para la ecuacion diferencial no
linealy” = 2x(y’)?enel ejemplo 1. [Sugerencia: Suponga
que —c? se usa como constante de integracion en lugar de
+c3]

Modelos matematicos

21. Movimiento de un campo de fuerza Un modelo mate-
matico para la posicion x(t) de un cuerpo con movimiento
rectilineo en el eje x en un campo de fuerza inverso del
cuadrado de x es

d?x k2

dt? X2
Suponga que ent = 0 el cuerpo comienza a partir del reposo
en la posicion x = x, x, > 0. Muestre que la velocidad del
cuerpo en el tiempo t esta dada por v> = 2k(1/x — 1/x,).
Use la Gltima expresion y un SAC para realizar la integracion
para expresar al tiempo t en términos de x.

22. Un modelo matematico para la posicién x(t) de un objeto
en movimiento es

2x
— + senx = 0.

dt?
Use un programa de solucion numérica para investigar en
forma grafica las soluciones de la ecuacion sujeta a x(0) = 0,
X'(0) = x,, X, = 0. Analice el movimiento del objeto parat =
0y para diferentes elecciones de x, . Investigue la ecuacion

d_2x + & + senx =0

a2 dt
en la misma forma. Proponga una interpretacion fisica
posible del término dx/dt.

REPASO DEL CAPITULO 4

Las respuestas a los problemas con ndimero impar
comienzan en la pagina RES-6.

Conteste los problemas 1 al 4 sin consultar el final del libro.
Complete el espacio en blanco o conteste falso o verdadero.

1. La Unica solucién del problema con valores iniciales
y" + x2y = 0,y(0) = 0,y’'(0) = 0es

2. Para el método de coeficientes indeterminados, la forma
supuesta de la solucion particulary paray” —y =1 + e
es

3. Un mdltiplo constante de una solucién de una ecuacién
diferencial lineal es también una solucidn.

4. Si el conjunto que consiste en dos funciones f, y f, es li-
nealmente independiente en un intervalo I, entonces el
Wronskiano W(f,, f,) # 0 para toda x en I.

5. Dé un intervalo en el que el conjunto de dos funciones
f(x) = x?y f,(x) = x|x| es linealmente independiente.



Después indique un intervalo en el que el conjunto for-
mado por f, y f, es linealmente dependiente.

Sin la ayuda del Wronskiano, determine si el conjunto de
funciones es linealmente independiente o dependiente en
el intervalo indicado.

a) f,(x) = Inx, f,(x) = Inx?, (0, =)
b) f,(x) = X" f,(x) =x",n=1,2,...,(—%, )
) f,() =x,1,(x) =x+ 1, (%, )

d) f,(x) = cos(x + 757) f,(x) = senx, (—o°, )

e) f,(x) =0,f,(x) =x,(-5,5)
f) £.00) = 2, f,(x) = 2x, (=%, »)
9) f,x) =x41,x) =1—x%f,(x) =2+ x? (—», %)
h) f,(x) = xe***, f,(x) = (4x — 5)e*,
f3(X) = X€%, (_OC! OO)
Suponga que m, = 3, m, = =5y m_ = 1 son raices de
multiplicidad uno, dos y tres, respectivamente, de una

ecuacion auxiliar. Escriba la solucion general de la ED
lineal homogénea correspondiente si es

a) una ecuacion con coeficientes constantes,
b) una ecuacion de Cauchy-Euler.

Considere la ecuacidn diferencial ay” + by’ + cy = g(x),
donde a, b y ¢ son constantes. Elija las funciones de en-
trada g(x) para las que es aplicable el método de coefi-
cientes indeterminados y las funciones de entrada para las
que es aplicable el método de variacion de parametros.

a) g(x) =e*Inx b) g(x) = x®cos x

) 900 =" d) g(x) = 2x-2e"
p— 2 _ ex
e) g(x) = sen’x f) g(x) = onx

En los problemas del 9 a 24 use los procedimientos desarrolla-
dos en este capitulo para encontrar la solucién general de cada
ecuacion diferencial.

9.
10.
11.
12.
13.
14.
15.
16.
17.

y' =2y —=2y=0

2y +2y +3y=0

y” + 10y” + 25y' =0

2y" + 9y" + 12y’ + 5y =0

3y” + 10y” + 15y + 4y =0
2y4 + 3y" +2y" + 6y’ —4y =0
y" — 3y’ + 5y =4x3 — 2x

y' =2y +y = x%

y” —5y" + 6y’ =8 + 2senx

18.

19.

20.

21.
22.
23.
24.
25.

26.

27.

28.
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ym _ y// — 6
y" —2y" + 2y = e*tan x

o 2¢
e+ e

y' =y
6x%y” + 5xy’ —y =10

2x3%y" + 19x%y” + 39xy’ + 9y = 0

x2y" — 4xy' + 6y = 2x* + x?
x2y" —xy' +y=x8
Escriba la forma de la solucion general y =y_+ Y, de la

ecuacion diferencial en los dos casos w # a 'y w = a. NoO
determine los coeficienteseny .

a) y" + w? = sen ax b) y" — w?y = e~
a) Dado que y = sen x es una solucion de
y@ 4+ 2y” + 11y" + 2y’ + 10y = 0,

encuentre la solucion general de la ED sin la ayuda de
una calculadora o computadora.

b) Encuentre una ecuacion diferencial lineal de segundo
orden con coeficientes constantes para la cual y, = 1
y 'y, = e7*son soluciones de la ecuacion homogénea
asociada y Yp = %xz — x es una solucién particular
de la ecuacion homogénea.

a) Escriba completamente la solucién general de la ED
de cuarto orden y® — 2y” +y =0 en términos de
funciones hiperbdlicas.

b) Escriba la forma de una solucion particular de
y® — 2y" 4+ y = senh x.

Considere la ecuacion diferencial
X2y — (X2 + 2x)y" + (x + 2)y = x*

Compruebe que y, = x es una solucion de la ecuacion
homogénea asociada. Después demuestre que el método
de reduccion de orden analizado en la seccion 4.2 con-
duce a una segunda solucion y, de la ecuacion homogé-
nea asi como a una solucién particular y de la ecuacion
no homogénea. Forme la solucion general de la ED en el
intervalo (0, o).

En los problemas 29 a 34 resuelva la ecuacion diferencial su-
jeta a las condiciones indicadas.

29.

30.
31.

32.

y' =2y +2y =0, y(g) =0,y(m = -1
y'+2y+y=0 y(=1)=0y(0)=0
y'—y=x+senx, y()=2y(0)=3

1
y" +y=sec, y(0)=1y(0) = 3
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33. yy"'=4x, y()=5y(Q1)=2 En los problemas 37 a 40 use la eliminacién sistematica para

resolver cada sistema.
34. 2y"=3y? y0)=1y(0)=1
dx dy
35. a) Useun SAC como ayuda para encontrar las raices de la 3r. dt + dt 2x +2y +1
ecuacion auxiliar para

dx dy
—+2—== y+3
12y® + 64y" + 59y” — 23y’ — 12y = 0. e dt
Dé la solucion general de la ecuacion. 38. 2_1( =2+ y+ t—2
b) Resuelva la ED del inciso a) sujeta a las condiciones
iniciales y(0) = —1, y'(0) = 2,y"(0) = 5, y"(0) = 0. dy = 3x + 4y — 4t
Use un SAC como ayuda para resolver el sistema re- dt

sultante de cuatro ecuaciones con cuatro incognitas.
39. (D — 2)x -y = —¢
36. Encuentre un miembro de la familia de soluciones de -3+ (D —4)y=—T¢
Xy” +y" + Vx = 0 cuya gréfica es tangente al eje x en
x = 1. Use una aplicacion para graficar y obtengalacurva ~ 40- (D + 2)x + (D + 1)y = sen 2t
solucion. 5% + (D + 3)y = cos 2t



MODELADO CON ECUACIONES

DIFERENCIALES DE ORDEN SUPERIOR

5.1 Modelos lineales: Problemas con valores iniciales
5.1.1 Sistemas resorte/masa: Movimiento libre no amortiguado
5.1.2 Sistemas resorte/masa: Movimiento libre amortiguado
5.1.3 Sistemas resorte/masa: Movimiento forzado
5.1.4 Circuito en serie analogo

5.2 Modelos lineales: Problemas con valores en la frontera

5.3 Modelos no lineales

REPASO DEL CAPITULO 5

Ya hemos visto que una sola ecuacion puede servir como modelo matematico para
varios sistemas fisicos. Por esta razén s6lo examinamos una aplicacion, el
movimiento de una masa sujeta a un resorte, que se trata en la seccion 5.1. Excepto
por la terminologia y las interpretaciones fisicas de los cuatro términos de la ecua-
cion lineal ay” + by’ + cy = g(t), las matematicas de, digamos, un circuito eléc-
trico en serie son idénticas a las de un sistema vibratorio masa/resorte. Las formas
de esta ED de segundo orden se presentan en el analisis de problemas en diversas
areas de la ciencia e ingenieria. En la seccion 5.1 se tratan exclusivamente
problemas con valores iniciales, mientras que en la seccién 5.2 examinamos aplica-
ciones descritas por problema con valores en la frontera. También en la seccién 5.2
vemos como algunos problemas con valores en la frontera conducen a los impor-
tantes conceptos con eigenvalores y funciones propias (eigenfunciones). La seccién
5.3 inicia con un analisis acerca de las diferencias entre los resortes lineales y no
lineales; entonces se muestra como el péndulo simple y un cable suspendido condu-
cen a modelos matematicos no lineales.

181
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5.1

MODELOS LINEALES: PROBLEMAS CON VALORES INICIALES

REPASO DE MATERIAL

e Secciones4.1,43y4.4
e Problemas 29 a 36 de los ejercicios 4.3
e Problemas 27 a 36 de los ejercicios 4.4

INTRODUCCION  En esta seccion, se van a considerar varios sistemas dinamicos lineales en los
que cada modelo matemaético es una ecuacion diferencial de segundo orden con coeficientes constan-
tes junto con condiciones iniciales especificadas en un tiempo que tomaremos como t = 0:

d?y  dy ,
a—5 +b=>+cy=9(), ¥0) =y, Y0 =y
dt dt
Recuerde que la funcién g es la entrada, funcion de conduccién o funcion forzada del sistema.
Una solucion y(t) de la ecuacién diferencial en un intervalo | que contiene a t = 0 que satisface las
condiciones iniciales se llama salida o respuesta del sistema.

5.1.1 SISTEMAS RESORTE/MASA:
MOVIMIENTO LIBRE NO AMORTIGUADO

LEY DE HOOKE Suponga que un resorte se suspende verticalmente de un soporte

no estirado

dad de elongacién sy es expresada en forma simple como F = ks, donde k es una constan-
te de proporcionalidad llamada constante de resorte. El resorte se caracteriza en esen-
S cia por el nimero k. Por ejemplo, si una masa que pesa 10 libras hace que un resorte se
alargue % pie, entonces 10 = k (%) implica que k = 20 Ib/pie. Entonces necesariamente

posicion de X . . . A 2
equilibrio | unamasa que pesa, digamos, 8 libras alarga el mismo resorte s6lo Z pie.
mg—ks=0
movimiento
2) 0 SEGUNDA LEY DE NEWTON  Después de que se une una masa m a un resorte, ésta
alarga el resorte una cantidad s y logra una posicion de equilibrio en la cual su peso W se
FIGURA 5.1.1 Sistema masa/resorte.  €equilibra mediante la fuerza restauradora ks. Recuerde que el peso se define mediante

FIGURA 5.1.2 Ladireccién hacia
abajo de la posicion de equilibrio es

positiva.

W = mg, donde la masa se mide en slugs, kilogramos o gramos 'y g = 32 pies/s?, 9.8 m/s?,
0 bien 980 cm/s?, respectivamente. Como se indica en la figura 5.1.1b, la condicion de
equilibrio esmg = ks o mg — ks = 0. Si la masa se desplaza por una cantidad x de su po-
sicion de equilibrio, la fuerza restauradora del resorte es entonces k(x + s). Suponiendo
que no hay fuerzas restauradoras que actan sobre el sistema y suponiendo que la masa
vibra libre de otras fuerzas externas —movimiento libre— se puede igualar la segunda

ley de Newton con la fuerza neta o resultante de la fuerza restauradora y el peso.

d2x

mF:—k(s+x)+mg=—kx+mg—ks=—kx.

cero

rigido y luego se le fija una masa m a su extremo libre. Por supuesto, la cantidad de alar-
{ gamiento o elongacion del resorte depende de la masa; masas con pesos diferentes
[ alargan el resorte en cantidades diferentes. Por la ley de Hooke, el resorte mismo ejerce
J l I+s unafuerza restauradora F opuesta a la direccion de elongacion y proporcional a la canti-
S

El signo negativo en (1) indica que la fuerza restauradora del resorte actia opuesta a la
direccion de movimiento. Ademas, se adopta la convencion de que los desplazamien-
tos medidos abajo de la posicion de equilibrio son positivos. Véase la figura 5.1.2.
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ED DE UN MOVIMIENTO LIBRE NO AMORTIGUADO Dividiendo (1) entre la

masa m, se obtiene la ecuacion diferencial de segundo orden d?x/dt? 4+ (k/m)x = 0, o
2

dex

donde w? = k/m. Se dice que la ecuacion (2) describe el movimiento arménico simple
0 movimiento libre no amortiguado. Dos condiciones iniciales obvias relacionadas
con (2) son x(0) = x, y x'(0) = x,, el desplazamiento inicial y la velocidad inicial de la
masa, respectivamente. Por ejemplo, si x, > 0, x, < 0, la masa parte de un punto abajo
de la posicion de equilibrio con una velocidad impartida hacia arriba. Cuando x'(0) =
0, se dice que la masa se libera a partir del reposo. Por ejemplo, si x, < 0, x, = 0, lamasa
se libera desde el reposo de un punto |x | unidades arriba de la posicion de equilibrio.

ECUACION DE MOVIMIENTO Para resolver la ecuacion (2), se observa que la
solucion de su ecuacion auxiliar m*> + »? = 0 son los nimeros complejos m, = w,
m, = —w,. Asi de (8) de la seccion 4.3 se encuentra la solucion general de (2) es

x(t) = ¢, c0s wt + ¢, senwt. ©)

El periodo del movimiento descrito por la ecuacion (3) es T = 27 /w. El nimero T
representa el tiempo (medido en segundos) que tarda la masa en ejecutar un ciclo
de movimiento. Un ciclo es una oscilacién completa de la masa, es decir, la masa m
que se mueve, por ejemplo, al punto minimo abajo de la posicion de equilibrio hasta
el punto mas alto arriba de la misma y luego de regreso al punto minimo. Desde un
punto de vista grafico, T = 27 /w segundos es la longitud del intervalo de tiempo entre
dos maximos sucesivos (0 minimos) de x(t). Recuerde que un maximo de x(t) es el des-
plazamiento positivo correspondiente a la masa que alcanza su distancia méxima de-
bajo de la posicion de equilibrio, mientras que un minimo de x(t) es el desplazamiento
negativo correspondiente a la masa que logra su altura maxima arriba de la posicion de
equilibrio. Se hace referencia a cualquier caso como un desplazamiento extremo de la
masa. La frecuencia de movimientoesf = 1/T = w/27 y es el nimero de ciclos com-
pletado cada segundo. Por ejemplo, si x(t) = 2 cos 37rt — 4 sen 3rt, entonces el periodo
es T = 27/37 = 2/3 sy la frecuencia es f = 3/2 ciclos/s. Desde un punto de vista
esquematico la gréafica de x(t) se repite cada 3 de segundo, es decir, x(t + 2) = x(t),

y 3 2 ciclos de la gréfica se completan cada segundo (0, equivalentemente, tres ciclos de
la graflca se completan cada dos segundos). EI nimero @ = Vk/m (medido en radianes
por segundo) se llama frecuencia circular del sistema. Dependiendo de qué libro lea,
tanto f = w/27 como w se conocen como frecuencia natural del sistema. Por Gltimo,
cuando se emplean las condiciones iniciales para determinar las constantes c, y c, en (3),
se dice que la solucién particular resultante o respuesta es la ecuacién de movimiento.

I EJEMPLO T Movimiento libre no amortiguado

Una masa que pesa 2 libras alarga 6 pulgadas un resorte. En t = 0 se libera la masa
desde un punto que esta 8 pulgadas abajo de la posicion de equilibrio con una veloci-
dad ascendente de g pie/s. Determine la ecuacién de movimiento.

SOLUCION Debido a que se esta usando el sistema de unidades de ingenieria, las
med|C|ones dadas en términos de pulgadas se deben convertir en pies: 6 pulg = 1 pie;
8 pulg = 5 pie. Ademas, se deben convertir las unldades de peso dadas en Ilbras a
unidades de masa. De m = W/g tenemos que m = 5 = = slug. También, de la ley de
Hooke, 2 = k (3) implica que la constante de resorte es k = 4 Ib/pie. Por lo que, de la
ecuacion (1) se obtiene

1 d?x d?x
—— =4 0 — +64x=0.
16 dt? X ae T
El desplazamiento inicial y la velocidad inicial son x(0) = % x'(0) = —g, donde el

signo negativo en la Gltima condicion es una consecuencia del hecho de que a la masa
se le da una velocidad inicial en la direccion negativa o hacia arriba.
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A /O_L2+ C22

C1

Y O

C2

FIGURA 5.1.3 Unarelacion entre
¢, >0,c,> 0y elangulo de fase ¢.

Ahora «? = 64 0 w = 8, por lo que la solucién general de la ecuacion diferencial es

x(t) = ¢, cos 8t + c,sen 8t. (4)
Aplicando las condiciones iniciales a x(t) y x'(t) se obtiene ¢, = % y c,= —%. Por
tanto, la ecuacion de movimiento es
2 1
x(t) = 3 cos 8t — 6sen 8t. 5) m

FORMA ALTERNATIVA DE X(t) Cuandoc, # 0yc, # 0, laamplitud A de las vi-
braciones libres no es evidente a partir de la inspeccién de la ecuacion (3). Por ejemplo,
aungue la masa del ejemplo 1 se desplaza inicialmente g pie mas alla de la posicion de
equilibrio, la amplitud de las vibraciones es un nimero mayor que % Por tanto, suele
ser conveniente convertir una solucion de la forma (3) en una forma mas simple

x(t) = Asen(wt + @), (6)
donde A = \V/c? + 2 y ¢ es un angulo de fase definido por

Gy
sen¢g = A .
tan ¢ = . 7)
cos § = 2 ©
A

Para comprobar esto se desarrolla la ecuacion (6) usando la formula de suma para la
funcién seno:

Asenwt cos ¢ + A cos wtsend = (A sen)cos wt + (A cos ¢p)senwt.  (8)

Se deduce de la figura 5.1.3 que si ¢ esté definida por

Cy Cy C2 C
sengp = ——— = —, COS p = ———— = —,
VeZ+c A VeZ+c A

entonces la ecuacion (8) se convierte en

c c
Achos wt + Aﬁsenwt = ¢, oS wt + C, senwt = x(t).

I EJEMPLO 2 Forma alternativa de solucion (5)

Envistade ladescripcionanterior, se puede escribir lasolucion (5) en laformaalternativa
x(t) = A sen(8t + ¢). El calculo de la amplitud es directo, A = \/ (%)2 + (—%)2 =
\/g ~ 0.69 pies, pero se debe tener cuidado al calcular el &ngulo de fase ¢ definido
por (7). Con ¢, = % yc, = —% se encuentra tan ¢ = —4'y, con una calculadora se ob-

tiene tan~(—4) = —1.326 rad. Este no es el angulo de fase, puesto que tan~'(—4) se
localiza en el cuarto cuadrante y por tanto contradice el hecho de que sen ¢ > 0y
cos ¢ < 0 porque ¢, > 0y c, < 0. Por tanto, se debe considerar que ¢ es un angulo
del segundo cuadrante ¢ = 7 + (—1.326) = 1.816 rad. Asi la ecuacion (5) es igual a

V17
X(f) = =5~ sen(8t + 1.816). ©)
El periodo de esta funciénes T = 277/8 = 7 /4 s. [ |

En la figura 5.1.4a se ilustra la masa del ejemplo 2 que recorre aproximadamente
dos ciclos completos de movimiento. Leyendo de izquierda a derecha, las primeras
cinco posiciones (marcadas con puntos negros) corresponden a la posicidn inicial de

la masa debajo de la posicion de equilibrio (x = %) la masa que pasa por la posicion



5.1 MODELOS LINEALES: PROBLEMAS CON VALORES INICIALES ° 185

1

. 4 \
X negativa // \
X=0 ———— Ll —— —— -
\ /
. \ / L)
X positiva Xx=0 \\ /
=2 V17
l X= 5 X= 6
a)
[ X
2
q (O’ E) _ ]
X positiva amplitud
P R
6
x=0 :
X negativa
l | r |
[ 2 gl
periodo
b)

FIGURA 5.1.4 Movimiento arménico simple.

de equilibrio por primera vez en direccion ascendente (x = 0), la masa en su despla-
zamiento extremo arriba de la posicion de equilibrio (x = —\/17/6), la masa en la
posicién de equilibrio para la segunda vez que se dirige hacia arriba (x = 0) y la masa
en su desplazamiento extremo abajo de la posicion de equilibrio (x = V/17/6). Los
puntos negros sobre la grafica de (9), que se presenta en la figura 5.1.4b también con-
cuerdan con las cinco posiciones antes mencionadas. Sin embargo, observe que en la
figura 5.1.4b la direccion positiva en el plano tx es la direccion ascendente usual y por
tanto, es opuesta a la direccion positiva que se indica en la figura 5.1.4a. Por lo que
la gréfica sdlida azul que representa el movimiento de la masa en la figura 5.1.4b es la
reflexion por el eje t de la curva punteada azul de la figura 5.1.4a.

La forma (6) es muy Util porque es facil encontrar valores de tiempo para los cuales
lagréaficade x(t) cruzael eje t positivo (larectax = 0). Se observa que sen(wt + ¢) = 0
cuando wt + ¢ = nr, donde n es un entero no negativo.

SISTEMAS CON CONSTANTES DE RESORTE VARIABLES En el modelo apenas
analizado se supuso una situacion ideal, una en la que las caracteristicas fisicas del resorte
no cambian con el tiempo. No obstante, en la situacion no ideal, parece razonable esperar
que cuando un sistema resorte/masa estd en movimiento durante un largo tiempo, el re-
sorte se debilita; en otras palabras, varia la “constante de resorte”, de manera mas especi-
fica, decae con el tiempo. En un modelo para el resorte cada vez mas viejo la constante
de resorte k en (1) se reemplaza con la funcién decreciente K(t) = ke™, k > 0, @ > 0.
La ecuacion diferencial lineal mx” + ke=* x = 0 no se puede resolver con los métodos
considerados en el capitulo 4. Sin embargo, es posible obtener dos soluciones linealmente
independientes con los métodos del capitulo 6. VVéase el problema 15 en los ejercicios 5.1,
el ejemplo 4 de la seccién 6.3y los problemas 33 y 39 de los ejercicios 6.3.
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b)

FIGURA 5.1.5 Dispositivos de
amortiguamiento.

| N—

FIGURA 5.1.6 Movimiento de un
sistema sobreamortiguado.

Cuando un sistema resorte/masa se somete a un ambiente en el cual la temperatura
disminuye con rapidez, podria tener sentido reemplazar la constante k con K(t) = kt, k > 0,
una funcidn que se incrementa con el tiempo. EI modelo resultante, mx” + ktx = 0, es una
forma de la ecuacion diferencial de Airy. Al igual que la ecuacion para un resorte viejo, la
ecuacion de Airy se resuelve con los métodos del capitulo 6. VVéase el problema 16 de los ejer-
cicios 5.1, el ejemplo 4 de la seccion 6.1y los problemas 34, 35 y 40 de los ejercicios 6.3.

5.1.2 SISTEMAS RESORTE/MASA:
MOVIMIENTO LIBRE AMORTIGUADO

El concepto de movimiento armoénico libre es un poco irreal, puesto que el movimiento
que describe la ecuacién (1) supone que no hay fuerzas retardadoras actuando sobre
la masa en movimiento. A menos que la masa se suspenda en un vacio perfecto, habra
por lo menos una fuerza de resistencia debida al medio circundante. Como se muestra
en la figura 5.1.5, la masa podria estar suspendida en un medio viscoso o unida a un
dispositivo amortiguador.

ED DE UN MOVIMIENTO LIBRE AMORTIGUADO En el estudio de la meca-
nica, las fuerzas de amortiguamiento que actGan sobre un cuerpo se consideran propor-
cionales a una potencia de la velocidad instantanea. En particular, en el analisis pos-
terior se supone que esta fuerza esta dada por un multiplo constante de dx/dt. Cuando
ninguna otra fuerza actda en el sistema, se tiene de la segunda ley de Newton que

d2x dx
Mo~ T Py

(10)
donde B es una constante de amortiguamiento positiva y el signo negativo es una
consecuencia del hecho de que la fuerza de amortiguamiento act(ia en una direccion
opuesta al movimiento.

Dividiendo la ecuacién (10) entre la masa m, se encuentra que la ecuacion diferen-
cial del movimiento libre amortiguado es d?x /dt? + (8/m)dx/dt + (k/m)x = 00

d?x dx
+ — + wX = 11
e 2A at wX =0, (11)
donde 2\ = E, w? = 5 (12)
m m

El simbolo 2A se usa sélo por conveniencia algebraica, porque la ecuacion auxiliar es
m? + 2Am + «? = 0y las raices correspondientes son entonces

my=—A+ VA - o m,=—A— VA - o

Ahora se pueden distinguir tres casos posibles dependiendo del signo algebraico de
A2 — o?. Puesto que cada solucion contiene el factor de amortiguamiento e, A > 0, los
desplazamientos de la masa se vuelven despreciables conforme el tiempo t aumenta.

CASO I: A2 — w? > 0 En esta situacion el sistema esta sobreamortiguado porque
el coeficiente de amortiguamiento B es grande comparado con la constante del resorte
k. La solucion correspondiente de (11) es x(t) = c,e™" + c,e™!' o

x(t) = e*“(cle\/“z*wz‘ + Cze’\”‘z””zt)- (13)

Esta ecuacion representa un movimiento uniforme y no oscilatorio. En la figura 5.1.6
se muestran dos gréaficas posibles de x(t).
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FIGURA 5.1.7 Movimiento de un
sistema criticamente amortiguado.

X no amortiguado
\ subamortiguado

\ A/
VARV,

FIGURA 5.1.8 Movimiento de un
sistema subamortiguado.

t

a)
t x(1)
1 0.601
1.5 0.370
2 0.225
2.5 0.137
3 0.083
b)

FIGURA 5.1.9 Sistema
sobreamortiguado.
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CASO II: A2 — w? = 0 Este sistema esta criticamente amortiguado porque cual-
quier ligera disminucion en la fuerza de amortiguamiento daria como resultado un
movimiento oscilatorio. La solucion general de (11) es x(t) = c,e™! + c,te™' o

x(t) = e M(c, + c,t). (14)

En la figura 5.1.7 se presentan algunas gréaficas tipicas de movimiento. Observe que el
movimiento es bastante similar al de un sistema sobreamortiguado. También es evi-
dente de (14) que la masa puede pasar por la posicion de equilibrio a lo mas una vez.

CASO IlI: A2 — w?> < 0 En este caso el sistema estd subamortiguado puesto que
el coeficiente de amortiguamiento es pequefio comparado con la constante del resorte.
Las raices m, y m, ahora son complejas:

m1=—/\+ \/wz_)\zi, m2=—)\— wz—)\zi.
Asi que la ecuacion general de la ecuacion (11) es
x(t) = e*“(c1 €os Vw? — A%t + ¢, sen Vw? — )\Zt) . (15)

Como se indica en la figura 5.1.8, el movimiento descrito por la ecuacion (15) es oscila-
torio; pero debido al coeficiente e, las amplitudes de vibracién — 0 cuando t — e,

I EJEMPLO 3 Movimiento sobreamortiguado

Se comprueba facilmente que la solucion del problema con valores iniciales

dx dx
— 4+ 5— + = = ! =
e 5 at 4x =0, x(0)=1, x'(0)=1
— § -t _ g —4t
es x(t) = 3 e 3 e ™. (16)

El problema se puede interpretar como representativo del movimiento sobreamorti-
guado de una masa sobre un resorte. La masa se libera al inicio de una posicion una
unidad abajo de la posicién de equilibrio con velocidad descendente de 1 pie/s.

Para graficar x(t), se encuentra el valor de t para el cual la funcién tiene un ex-
tremo, es decir, el valor de tiempo para el cual la primera derivada (velocidad) es cero.
Derivando la ecuacion (16) se obtiene x'(t) = —3e~' + 3¢~ asi x'(t) = 0 implica
que e¥ = g ot= %In% = 0.157. Se tiene de la prueba de la primera derivada, asi
como de la intuicion fisica, que x(0.157) = 1.069 pies es en realidad un maximo. En
otras palabras, la masa logra un desplazamiento extremo de 1.069 pies abajo de la
posicion de equilibrio.

Se debe comprobar también si la grafica cruza el eje t, es decir, si la masa pasa
por la posicién de equilibrio. En este caso tal cosa no puede suceder, porque la ecua-
cion x(t) = 0,0 e = % tiene una solucion irrelevante desde el punto de vista fisico
t=1InZ=-0.305.

En la figura 5.1.9 se presenta la grafica de x(t), junto con algunos otros datos
pertinentes. ]

I EJEMPLO 4 Movimiento criticamente amortiguado

Una masa que pesa 8 libras alarga 2 pies un resorte. Suponiendo que una fuerza amor-
tiguada que es igual a dos veces la velocidad instantanea actlia sobre el sistema, de-
termine la ecuacién de movimiento si la masa inicial se libera desde la posicion de
equilibrio con una velocidad ascendente de 3 pies/s.
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méxima arriba de la
posicion de equilibrio

FIGURA 5.1.10 Sistema criticamente
amortiguado.

SOLUCION De la ley de Hooke se ve que 8 = k(2) dak = 4 Ib/pie y que W = mg da
m = 2 = % slug. La ecuacion diferencial de movimiento es entonces

1d2x dx d?x dx

S = —4x - 2— — + 8-+ 16x = 0.

442 dt % d dt 10
La ecuacion auxiliar para (17) esm® + 8m + 16 = (m + 4)> = 0,asique m, = m, =
—4. Por tanto el sistema esta criticamente amortiguado y

x(t) = c,e™ + cte 4, (18)

Aplicando las condiciones iniciales x(0) = 0y x’(0) = —3, se encuentra, a su vez, que
¢, = 0yc, = —3. Por tanto la ecuacion de movimiento es

x(t) = —3te %, (19)

Para graficar x(t), se procede como en el ejemplo 3. De x'(t) = —3e (1 — 4t)
vemos que x'(t) = 0 cuando t = % . El desplazamiento extremo correspondiente es
x(2) = —3(2)e"* = ~0.276 pies. Como se muestra en la figura 5.1.10, este valor
se interpreta para indicar que la masa alcanza una altura maxima de 0.276 pies arriba

de la posicion de equilibrio. ]

I EJEMPLO 5 Movimiento subamortiguado

Una masa que pesa 16 libras se une a un resorte de 5 pies de largo. En equilibrio el resorte
mide 8.2 pies. Si al inicio la masa se libera desde el reposo en un punto 2 pies arriba de la
posicidn de equilibrio, encuentre los desplazamientos x(t) si se sabe ademas que el medio
circundante ofrece una resistencia numéricamente igual a la velocidad instantanea.

SOLUCION La elongacion del resorte después que se une la masa es 8.2 — 5 = 3.2
pies, asi que se deduce de la ley de Hooke que 16 = k(3.2) o k = 5 Ib/pie. Ademas,

m = 2 = slug, por lo que la ecuacion diferencial esta dada por

1d2x dx d2x ax

—— = —bx — — — +2— + 10x = 0.

2 dt? at ° de " “a (20)
Procediendo, encontramos que las raices de m* + 2m + 10 =0sonm, = —1 + 3iy
m, = —1 — 3i, lo que significa que el sistema esta subamortiguado y

x(t) = e~Y(c, cos 3t + c,sen 3t). (21)
Por Gltimo, las condiciones iniciales x(0) = —2 y x'(0) = 0 producen ¢, = —2'y
C, = —% , por lo que la ecuacidn de movimiento es
N 2
x(t) = e t{ —2cos 3t — gsen 3t). (22) m

FORMA ALTERNATIVA DE x(tf) De una manera idéntica al procedimiento usado
en la pagina 184, se puede escribir cualquier solucion

x(t) = e‘“(cl cos Vw? — A2t + ¢, sen Vw? — AZt)
en la forma alternativa
x(t) = Ae’“sen(\/w2 — At + (/)), (23)

donde A = V¢ + c3 y el angulo de fase ¢ se determina de las ecuaciones

send =2 cosh=2  tang= 2
A A’ c,



FIGURA 5.1.11
oscilatorio del apoyo.

Movimiento vertical
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El coeficiente Ae~** en ocasiones se llama amplitud amortiguada de vibraciones.

Debido a que (23) no es una funcion periddica, el nimero 27 /V? — A% se llama
cuasi periodo y Vw? — A? /27 es la cuasi frecuencia. El cuasi periodo es el in-
tervalo de tiempo entre dos maximos sucesivos de x(t). Se debe comprobar, para la

ecuacion de movimiento del ejemplo 5, que A = 2V10/3 y ¢ = 4.391. Por tanto,

una forma equivalente de (22) es

2Vv10
3

X(t) = e tsen(3t + 4.391).

5.1.3 SISTEMAS RESORTE/MASA: MOVIMIENTO
FORZADO

ED DE MOVIMIENTO FORZADO CON AMORTIGUAMIENTO Suponga
que ahora se toma en consideracion una fuerza externa f(t) que actGa sobre una masa
vibrante en un resorte. Por ejemplo, f(t) podria representar una fuerza motriz que causa
un movimiento vertical oscilatorio del soporte del resorte. Véase la figura 5.1.11. La
inclusion de f(t) en la formulacion de la segunda ley de Newton da la ecuacion diferen-
cial de movimiento forzado o dirigido:

d?x dx
— = —kx — B— + f(t).
Mg = —kx— B + 10 (24)
Dividiendo la ecuacién (24) entre m, se obtiene
d?x dx
— + 20— + o™X =
qz T g T ex = FO, (25)

donde F(t) = f(t)/m y, como en la seccion anterior, 2\ = B/m, w? = k/m. Para re-
solver la dltima ecuacion homogénea, se puede usar ya sea el método de coeficientes
indeterminados o variacién de pardmetros.

I EJEMPLO 6 Interpretacion de un problema con valores iniciales

Interprete y resuelva el problema con valores iniciales

1d% dx 1
T2 120 4 9x = 4 == x(0)=0. 26
e pm x = 5cos 4t, x(0) > x'(0) =0 (26)

SOLUCION  Se puede interpretar el problema para representar un sistema vibratorio
que consiste en una masa (m = % slug o kilogramo) unida a un resorte (k = 2 Ib/pie
0 N/m). La masa se libera inicialmente desde el reposo % unidad (pie o metro) abajo
de la posicion de equilibrio. EI movimiento es amortiguado (8 = 1.2) y esta siendo
impulsado por una fuerza periddica externa (T = /2 s) comenzando en t = 0. De
manera intuitiva, se podria esperar que incluso con amortiguamiento el sistema perma-
neciera en movimiento hasta que se “desactive” la funcion forzada, en cuyo caso dis-
minuirian las amplitudes. Sin embargo, como se plantea en el problema, f(t) = 5 cos
4t permanecera “activada” por siempre.
Primero se multiplica la ecuacién diferencial en (26) por 5y se resuelve

dx? dx
— +6—+10x=0
dt? dt
por los métodos usuales. Debido a que m, = —3 + i, m, = —3 — i, se deduce que

X (t) = e"¥(c, cos t + ¢, sen t). Con el método de coeficientes indeterminados, se
supone una solucion particular de la forma xp(t) = A cos 4t + B sen 4t. Derivando xp(t)
y sustituyendo en la ED, se obtiene

Xp + 6xp + 10X, = (—6A + 24B) cos 4t + (—24A — 6B) sen 4t= 25 cos 4t.
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El sistema de ecuaciones resultante

—6A + 24B = 25, —24A — 6B =0
se cumpleen A = —1%52 yB = % Se tiene que
25 50
t) = e 3(c, cost + c,sent) — —— cos 4t + — sen 4t.
x(t) = e (e, 2 sent) — = (27)
Cuando se hace t = 0 en la ecuacién anterior, se obtiene ¢, = . Derivando la expre-
sién y haciendo t = 0, se encuentra también que C, = —%. Por tanto, la ecuacién de
movimiento es
38 86 25 50
x(t) = e ¥ —rcost — ——sent | — ——cos 4t + — sen 4t. 28) m
® (51 51 ) 102 51 (28)

TERMINOS TRANSITORIO Y DE ESTADO ESTABLE Cuando F es una funcion
periodica, como F(t) = F sen yto F(t) = F, cos yt, la solucion general de (25) para A
> 0 es la suma de una funcion no periodica x (t) y una funcion periddica xp(t). Ademas
x (t) se desvanece conforme se incrementa el tiempo, es decir, lim_... x.(t) = 0. Asi,
para valores grandes de tiempo, los desplazamientos de la masa se aproximan mediante
la solucion particular xp(t). Se dice que la funcion complementaria x (t) es un término
transitorio o solucion transitoria y la funcion xp(t), la parte de la solucion que per-
manece después de un intervalo de tiempo, se llama término de estado estable o solu-
cién de estado estable. Por tanto, observe que el efecto de las condiciones iniciales en
un sistema resorte/masa impulsado por F es transitorio. En la solucion particular (28),
e~ (% cost — %sent) es un término transitorio y X,(t) = —4;cos 4t + 2sen 4t es
un término de estado estable. Las graficas de estos dos términos y la solucion (28) se
presentan en las figuras 5.12a y 5.12h, respectivamente.

I EJEMPLO 7 Soluciones de estado transitorio y de estado estable

La solucion del problema con valores iniciales

d2x dx
— + 2— + 2x = 4 cost + 2sent,
dt? dt

donde x, es constante, esta dada por

x(0) =0, x'(0) = xq,

x(t) = (x, — 2) e"tsent + 2 sent.
transitorio estado estable

Las curvas solucion para valores seleccionados de la velocidad inicial x, aparecen en
la figura 5.1.13. Las graficas muestran que la influencia del término transitorio es des-
preciable para un valor aproximado de t > 37 /2. ]

ED DE MOVIMIENTO FORZADO SIN AMORTIGUAMIENTO Cuando se
ejerce una fuerza periddica sin fuerza de amortiguamiento, no hay término transitorio
en la solucién de un problema. También se ve que una fuerza periddica con una fre-
cuencia cercana o igual que la frecuencia de las vibraciones libres amortiguadas causa
un problema grave en un sistema mecénico oscilatorio.

I EJEMPLO 8 Movimiento no amortiguado forzado

Resuelva el problema con valor inicial

2

X 2y —
pra + wX = Fgsenqyt,

donde F es una constante y y # w.

(29)

x(0) =0, x'(0) =0
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FIGURA 5.1.14 Resonancia pura.
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SOLUCION La funcién complementaria es X.(t) = ¢, cos wt + c, sen wt. Para obtener
una solucion particular se supone xp(t) = A cos yt + B sen vt, por lo que

Xp + X, = A(w® — y?) cos yt + B(w? — ¥?) senyt = Fysenyt.

Igualando los coeficientes se obtiene de inmediato A = 0y B = F /(w? — ¥?). Por tanto,
Fo
Xy(t) = ——— senyt.
o(t) w? — 2 Y

Aplicando las condiciones iniciales a la solucién general

Fo

X(t) = ¢, cos wt + ¢, senwt + ———— senyt
w" =y

se obtienec, = 0y c, = —yF,/w(w? — ¥?). Por tanto, la solucion es

F
O

(—7ysenwt + wsenyt), v#E (30) m
RESONANCIA PURA Aunque la ecuacién (30) no se define para y = w, es inte-
resante observar que su valor limite conforme y — w se obtiene al aplicar la regla de
L'Hopital. Este proceso limite es analogo a “sintonizar” la frecuencia de la fuerza
impulsora (y/2) con la frecuencia de vibraciones libres (w/27). De una manera in-
tuitiva, se espera que en un espacio de tiempo se deban poder incrementar en forma
sustancial las amplitudes de vibracion. Para y = w se define la solucién como

d
—ysenwt + wsenyt —(—ysenot + wseny)

x(t) = limF = Fylim
y—o w(w® — ¥?) e i((1)3 — wy?)
dy
—senwt + wt cos yt
= Fp lim—— 2 2R Y (31)
Yoo —2wy

—senwt + wt cos wt
= F, >
—2w

F F
= 2 senwt — —2tcos wt.

2w 2w
Como se sospechaba, conforme t — oo los desplazamientos se vuelven largos; de
hecho, [x(t )|— o cuando t, = nm/w, n = 1, 2, ... . El fenémeno recién descrito se

conoce como resonancia pura. La grafica de la figura 5.1.14 muestra el movimiento
caracteristico en este caso.

En conclusién, se debe observar que no hay necesidad real de usar un proceso
limite en (30) para obtener la solucion para y = . Alternativamente, la ecuacién (31)
se deduce resolviendo el problema con valores iniciales

d?x
dt?
en forma directa por métodos convencionales.

Si realmente una funcién, como la ecuacién (31) describiera los desplazamientos de
un sistema resorte/masa, el sistema necesariamente fallaria. Las oscilaciones grandes
de la masa forzaran en algiin momento el resorte més alla de su limite elastico. Se podria
argumentar también que el modelo resonante presentado en la figura 5.1.14 es por com-
pleto irreal, porque no se toman en cuenta los efectos retardadores de las fuerzas de amor-
tiguamiento que siempre estan presentes. Aunque es verdad que la resonancia pura no
puede ocurrir cuando se toma en consideracion la cantidad pequefia de amortiguamien-
to, las amplitudes de vibracion grandes e igualmente destructivas pueden ocurrir (aunque
acotadas conforme t — ). VVéase el problema 43 de los ejercicios 5.1.

+ w’Xx = Fysenwt, x(0) =0, x(0)=0
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FIGURA 5.1.15 Circuito LRC en
serie.

5.1.4 CIRCUITO EN SERIE ANALOGO

CIRCUITOS LRCEN SERIE  Como se mencion en la introduccion de este capitulo, mu-
chos sistemas fisicos diferentes se describen mediante una ecuacién diferencial de segundo
orden similar a la ecuacién diferencial de movimiento forzado con amortiguamiento:

d?x dx

m— + B— + kx = f(t). 32

2 B, ¥ (32)
Si i(t) denota la corriente en el circuito eléctrico en serie LRC que se muestra en la
figura 5.1.15, entonces las caidas de voltaje en el inductor, resistor y capacitor son
como se muestra en la figura 1.3.3. Por la segunda ley de Kirchhoff, la suma de estos
voltajes es igual al voltaje E(t) aplicado al circuito; es decir,

di 1
L—+Ri+=q=E(t)- 33
T S4=E® (33)
Pero la carga q(t) en el capacitor se relaciona con la corriente i(t) con i = dq/dt, asi la
ecuacion (33) se convierte en la ecuacion diferencial lineal de segundo orden

d?q dg 1
Lge t Ry * 9= E® (34)
La nomenclatura usada en el analisis de circuitos es similar a la que se emplea
para describir sistemas resorte/masa.
Si E(t) = 0, se dice que las vibraciones eléctricas del circuito estan libres. Debido a
que la ecuacion auxiliar para (34) es Lm? + Rm + 1/C = 0, habra tres formas de solucién
con R # 0, dependiendo del valor del discriminante R? — 4L /C. Se dice que el circuito es

sobreamortiguado si R? —4L/C>0.
criticamente amortiguadosi  R? — 4L/C = 0,
y subamortiguado si RZ—4L/C <.

En cada uno de estos tres casos, la solucion general de (34) contiene el factor e R/2,
asi q(t) — 0 conforme t — <. En el caso subamortiguado cuando q(0) = q,, la carga
en el capacitor oscila a medida que ésta disminuye; en otras palabras, el capacitor se
carga y se descarga conforme t — oo, Cuando E(t) = 0y R = 0, se dice que el circuito
no esta amortiguado y las vibraciones eléctricas no tienden a cero conforme t crece sin
limite; la respuesta del circuito es arménica simple.

I EJEMPLO 9 Circuito en serie subamortiguado

Encuentre la carga q(t) en el capacitor en un circuito LRC cuando L = 0.25 henry (h),
R = 10 ohms (£2), C = 0.001 farad (f), E(t) = 0, q(0) = g, coulombs (C) e i(0) = 0.

SOLUCION Puesto que 1/C = 1000, la ecuacion (34) se convierte en

1

Zq” + 109" + 10000 =0 o Q"+ 40q" + 4000q = 0.
Resolviendo esta ecuacion homogénea de la manera usual, se encuentra que el circuito
es subamortiguado y q(t) = e **(c, cos 60t + c, sen 60t). Aplicando las condiciones

inici - _1
iniciales, se encuentrac, =g,y ¢, = 1q,. Por tanto

1
q(t) = qoe‘2°t<cos 60t + ésen 60t>.
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Usando (23), podemos escribir la solucidn anterior como

qt) = c%ﬁe*m‘sen(em + 1.249). n

Cuando se aplica un voltaje E(t) al circuito, se dice que las vibraciones eléctricas
son forzadas. En el caso cuando R # 0, la funcion complementaria g (t) de (34) se
Ilama solucion transitoria. Si E(t) es periddica o una constante, entonces la solucion
particular qp(t) de (34) es una solucion de estado estable.

I EJEMPLO 10 Corriente de estado estable

Encuentre la solucién de estado estable g (t) y la corriente de estado estable en un
circuito LRC en serie cuando el voltaje aplicado es E(t) = E_ sen yt.

SOLUCION La solucion de estado estable qp(t) es una solucion particular de la ecua-
cion diferencial

d?q dg 1
L—— +R— +=q=E;senyt.
a2 dt T 47T RSy

Con el método de coeficientes indeterminados, se supone una solucion particular de la
forma qp(t) = Asen yt + B cos yt. Sustituyendo esta expresion en la ecuacion diferen-
cial e igualando coeficientes, se obtiene

1
(-2
A ° Cy sl E,R
2L 1 2L 1
—y|L2y2 = — + + R? —y| L%y = — + + R?
y( 7T c ey ) y( 7T C T ey )

Es conveniente expresar A'y B en términos de algunos nuevos simbolos.

. 1 2L 1
Si = -, entonces 22 =12y — — + )
X =Ly Cy Y C C2y?
. 2L
Si Z="VX2+ Ry entonces 22 =1%y2 — — + + RZ
C Czyz

Por tanto A = E X/(—yZ?)y B = E,R/(—yZ?), asi que la carga de estado estable es
EoX E,R
t) = — — senyt — — cos yt.
ap(t) 522 YT D7 008y
Ahora la corriente de estado estable esta dada por i,(t) = qy(t):

E, /R X
i(t) = ?0 (Z senyt — - cos yt). (35) m

Las cantidades X = Ly — 1/Cyy Z = VX2 + R? definidas en el ejemplo 11 se
Ilaman reactancia e impedancia del circuito, respectivamente. Tanto la reactancia
como la impedancia se miden en ohms.
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EJERCICIOS 5.1

Las respuestas a los problemas con nimero impar comienzan en la pagina RES-7.

5.1

.1 SISTEMAS RESORTE/MASA:

MOVIMIENTO LIBRE NO AMORTIGUADO

1.

Una masa que pesa 4 libras se une a un resorte cuya cons-
tante es 16 Ib/pie. ;Cudl es el periodo del movimiento
armonico simple?

. Una masa de 20 kilogramos se une a un resorte. Si la fre-

cuencia del movimiento arménico simple es 2/ ciclos/s,
¢cudl es la constante de resorte k? ;Cudl es la frecuencia
del movimiento arménico simple si la masa original se
reemplaza con una masa de 80 kilogramos?

Una masa que pesa 24 libras, unida al extremo de un re-
sorte, lo alarga 4 pulgadas. Al inicio, la masa se libera
desde el reposo en un punto 3 pulgadas arriba de la posi-
cidn de equilibrio. Encuentre la ecuacién de movimiento.

Determine la ecuacién de movimiento si la masa del pro-
blema 3 se libera al inicio desde la posicion de equilibrio
con una velocidad descendente de 2 pies/s.

Una masa que pesa 20 libras alarga 6 pulgadas un resorte.

La masa se libera al inicio desde el reposo en un punto

6 pulgadas abajo de la posicion de equilibrio.

a) Encuentre la posicion de la masa en los tiempos t =
7 /12, 7w/8, w/6, w/4y 97w /32 s.

b) ¢Cual es la velocidad de la masa cuando t = 377 /16 s?
¢En qué direccidn se dirige la masa en este instante?

c) ¢Enquétiempos la masa pasa por la posicién de equi-
librio?

. Una fuerza de 400 newtons alarga 2 metros un resorte.

Una masa de 50 kilogramos se une al extremo del resorte
y se libera inicialmente desde la posicion de equilibrio
con una velocidad ascendente de 10 m/s. Encuentre la
ecuacion de movimiento.

. Otro resorte cuya constante es 20 N/m se suspende del

mismo soporte, pero paralelo al sistema resorte/masa
del problema 6. Al segundo resorte se le coloca una
masa de 20 kilogramos y ambas masas se liberan al ini-
cio desde la posicion de equilibrio con una velocidad
ascendente de 10 m/s.

a) ¢Cual masa presenta la mayor amplitud de movi-
miento?

b) ¢Cual masa se mueve mas rapido ent = /4 s? (En
7/28?

c) ¢En qué instantes las dos masas estan en la misma
posicién? ;Ddnde estan las masas en estos instantes?
¢En qué direcciones se estan moviendo las masas?

Una masa que pesa 32 libras alarga 2 pies un resorte.
Determine la amplitud y el periodo de movimiento si la
masa se libera inicialmente desde un punto situado 1 pie

10.

11.

12.

arriba de la posicion de equilibrio con una velocidad as-
cendente de 2 pies/s. ¢ Cuantos ciclos enteros habra com-
pletado la masa al final de 47w segundos?

Una masa que pesa 8 libras se une a un resorte. Cuando se
pone en movimiento, el sistema resorte/masa exhibe mo-
vimiento armoénico simple. Determine la ecuacion de
movimiento si la constante de resorte es 1 Ib/pie y la masa
se libera inicialmente desde un punto 6 pulgadas abajo de
la posicion de equilibrio, con una velocidad descendente
de 2 pie/s. Exprese la ecuacion de movimiento en la

2
forma dada en (6).

Una masa que pesa 10 libras alarga un resorte £ pie. Esta
masa se retira y se coloca una de 1.6 slugs, que se libera
desde un punto situado a % pie arriba de la posicién de
equilibrio, con una velocidad descendente de 2 pie/s. Ex-
prese la ecuacion de movimiento en la forma dada en (6).
¢En qué tiempos la masa logra un desplazamiento debajo
de la posicion de equilibrio numéricamente igual a ; de
la amplitud?

Una masa que pesa 64 libras alarga 0.32 pies un resorte.
Al inicio la masa se libera desde un punto que estéa 8 pul-
gadas arriba de la posicion de equilibrio con una veloci-
dad descendente de 5 pies/s.

a) Encuentre la ecuacion de movimiento.
b) ¢Cuales son la amplitud y el periodo del movimiento?

c) ¢Cuantos ciclos completos habra realizado la masa al
final de 37 segundos?

d) ¢En qué momento la masa pasa por la posicion de
equilibrio con direccion hacia abajo por segunda vez?

e) ¢En qué instantes la masa alcanza sus desplazamientos
extremos en cualquier lado de la posicion de equilibrio?

f) ¢Cual es la posicion de lamasaent = 3s?
g) ¢Cuél es la velocidad instantaneaent = 3 s?
h) ¢Cudl es laaceleraciébnent = 3s?

i) ¢Cudl es la velocidad instantdnea en los instantes
cuando la masa pasa por la posicién de equilibrio?

j) ¢En qué instantes la masa esta 5 pulgadas abajo de la
posicion de equilibrio?

k) ¢En qué instantes la masa estd 5 pulgadas abajo de la
posicién de equilibrio apuntando en direccién hacia
arriba?

Una masa de 1 slug se suspende de un resorte cuya cons-
tante es de 9 Ib/pie. Inicialmente la masa se libera desde
un punto que esta 1 pie arriba de la posicion de equilibrio
con una velocidad ascendente de /3 pies/s. Determine
los instantes en los que la masa se dirige hacia abajo a una
velocidad de 3 pies/s.



13.

14.

15.

16.
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Bajo algunas circunstancias, cuando dos resortes para-
lelos, con constantes k; y k,, soportan una sola masa, la
constante de resorte efectiva del sistema se expresa
como k = 4k k,/(k, + k,). Una masa que pesa 20 libras
estira 6 pulgadas un resorte y 2 pulgadas otro resorte. Los
resortes se unen a un soporte rigido comin y luego a una
placa metalica. Como se muestra en la figura 5.1.16, la
masa se une al centro de la placa en la configuracion de
resorte doble. Determine la constante de resorte efectiva
de este sistema. Encuentre la ecuacion de movimiento si
la masa se libera inicialmente desde la posicion de equili-
brio con una velocidad descendente de 2 pies/s.

FIGURA 5.1.16 Sistema de resorte doble del
problema 13.

Una cierta masa alarga un resorte % pie y otro resorte %
pie. Los dos resortes se unen a un soporte rigido comdn
en la manera descrita en el problema 13 y en la figura
5.1.16. Se quita la primera masa y se coloca una que pesa
8 libras en la configuracion de resorte doble y se pone en
movimiento el sistema. Si el periodo de movimiento es
/15 segundos, determine cuanto pesa la primera masa.

Un modelo de un sistema de resorte/masa es 4x” + e~
= 0. Por inspeccién de la ecuacion diferencial solamente,
describa el comportamiento del sistema durante un pe-
riodo largo.

El modelo de un sistema de resorte/masa es 4x” + tx = 0.
Por inspeccion de la ecuacion diferencial solamente, des-
criba el comportamiento del sistema durante un periodo
largo.

5.1.2 SISTEMAS RESORTE/MASA:

MOVIMIENTO LIBRE AMORTIGUADO

En los problemas 17 a 20, la figura representa la grafica de una
ecuacion de movimiento para un sistema resorte/masa amorti-
guado. Use la grafica para determinar:

a) si el desplazamiento inicial esta arriba o abajo de la posi-

cion de equilibrio y

b) si la masa se libera inicialmente desde el reposo, con di-

reccion descendente o ascendente.

17. X

t
\
\
Y

FIGURA 5.1.17 Gréfica del problema 17.

18. X

,—1
/

FIGURA 5.1.18 Gréfica del problema 18.

o=

\

\/ t

FIGURA 5.1.19 Gréfica del problema 19.

20. X

FIGURA 5.1.20 Gréfica del problema 20.

21. Una masa que pesa 4 libras se une a un resorte cuya cons-
tante es 2 Ib/pie. EI medio ofrece una fuerza de amor-
tiguamiento que es numéricamente igual a la velocidad
instantanea. La masa se libera desde un punto situado
1 pie arriba de la posicion de equilibrio con una veloci-
dad descendente de 8 pies/s. Determine el tiempo en el
que la masa pasa por la posicion de equilibrio. Encuentre
el tiempo en el que la masa alcanza su desplazamiento
extremo desde la posicién de equilibrio. ¢;Cual es la posi-
cioén de la masa en este instante?
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22.

23.

24.

25.

26.

27.
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Un resorte de 4 pies mide 8 pies de largo después de col-
garle una masa que pesa 8 libras. EI medio por el que se
mueve la masa ofrece una fuerza de amortiguamiento igual
a /2 veces la velocidad instantanea. Encuentre la ecua-
cion de movimiento si la masa se libera inicialmente desde
la posicién de equilibrio con una velocidad descendente
de 5 pies/s. Calcule el tiempo en que la masa alcanza su
desplazamiento extremo desde la posicion de equilibrio.
¢Cual es la posicion de la masa en ese instante?

Una masa de 1 kilogramo se fija a un resorte cuya cons-
tante es 16 N/m y luego el sistema completo se sumerge
en un liquido que imparte una fuerza amortiguadora igual
a 10 veces la velocidad instantanea. Determine las ecua-
ciones de movimiento si:

a) al inicio la masa se libera desde un punto situado
1 metro abajo de la posicion de equilibrio, y luego

b) la masa se libera inicialmente desde un punto 1 metro
abajo de la posicion de equilibrio con una velocidad
ascendente de 12 m/s.

En los incisos a) y b) del problema 23, determine si la
masa pasa por la posicion de equilibrio. En cada caso,
calcule el tiempo en que la masa alcanza su desplaza-
miento extremo desde la posicion de equilibrio. ;Cual es
la posicidn de la masa en este instante?

Una fuerza de 2 libras alarga 1 pie un resorte. Una masa
que pesa 3.2 libras se une al resorte y luego se sumerge el
sistema en un medio que ofrece una fuerza de amortigua-
miento igual a 0.4 veces la velocidad instantanea.

a) Encuentre la ecuacion de movimiento si inicialmente
se libera la masa desde el reposo en un punto situado
a 1 pie por encima de la posicion de equilibrio.

b) Exprese la ecuacion de movimiento en la forma dada
en (23).

c) Encuentre la primera vez en que la masa pasa a través
de la posicidon de equilibrio en direccién hacia arriba.

Después de que una masa de 10 libras se sujeta a un re-
sorte de 5 pies, éste llega a medir 7 pies. Se retira la masa
y se sustituye con una de 8 libras. Luego se coloca al
sistema en un medio que ofrece una fuerza de amortigua-
miento igual a la velocidad instantanea.

a) Encuentre la ecuacion de movimiento si la masa se li-
bera inicialmente desde el reposo de un punto situado
1 pie arriba de la posicion de equilibrio.

b) Exprese la ecuacion de movimiento en la forma dada
en (23).

c) Calcule los tiempos en los que la masa pasa por la
posicion de equilibrio con direccion hacia abajo.

d) Trace la gréfica de la ecuacion de movimiento.

Una masa que pesa 10 libras produce un alargamiento de
2 pies en un resorte. La masa se une a un dispositivo amor-
tiguador que ofrece una fuerza de amortiguamiento igual
a B (B > 0) veces la velocidad instantanea. Determine

28.

los valores de la constante de amortiguamiento B por lo
que el movimiento posterior sea a) sobreamortiguado,
b) criticamente amortiguado y ¢) subamortiguado.

Una masa que pesa 24 libras alarga 4 pies un resorte. El
movimiento posterior toma lugar en un medio que ofrece
una fuerza de amortiguamiento igual a 8 (8 > 0) veces la
velocidad instantinea. Si al inicio la masa se libera desde
la posicion de equilibrio con una velocidad ascendente
de 2 pies/s, muestre que cuando 8 > 3V/2 laecuacion de
movimiento es

-3

B 2
X(t) = ﬁe 2pt/3 senhg \/B2 — 18t.

5.1.3 SISTEMAS RESORTE/MASA:

MOVIMIENTO FORZADO

29.

30.

3L

32.

33.

34.

Una masa que pesa 16 libras alarga % pie un resorte. La
masa se libera inicialmente desde el reposo desde un punto
2 pies abajo de la posicidn de equilibrio y el movimiento
posterior ocurre en un medio que ofrece una fuerza de
amortiguamiento igual a ; de la velocidad instantanea.
Encuentre la ecuaciéon de movimiento si se aplica a la
masa una fuerza externa igual a f(t) = 10 cos 3t.

Una masa de 1 slug esta unida a un resorte cuya cons-
tante es 5 Ib/pie. Al inicio la masa se libera 1 pie abajo de
la posicion de equilibrio con una velocidad descendente
de 5 pies/s y el movimiento posterior toma lugar en un
medio que ofrece una fuerza de amortiguamiento igual a
dos veces la velocidad instantanea.

a) Encuentre la ecuacion de movimiento si una fuerza
externa igual a f(t) = 12 cos 2t + 3 sen 2t actla
sobre la masa.

b) Trace la grafica de las soluciones transitorias y de es-
tado estable en los mismos ejes de coordenadas.

c) Trace la gréfica de la ecuacion de movimiento.

Una masa de 1 slug, cuando se une a un resorte, causa en
éste un alargamiento de 2 pies y luego llega al punto de
reposo en la posicion de equilibrio. Empezando ent = 0,
una fuerza externa igual a f(t) = 8 sen 4t se aplica al sis-
tema. Encuentre la ecuacién de movimiento si el medio
circundante ofrece una fuerza de amortiguamiento igual a
8 veces la velocidad instantanea.

En el problema 31 determine la ecuacion de movimiento
si la fuerza externa es f(t) = e'sen 4t. Analice el despla-
zamiento parat — oo,

Cuando una masa de 2 kilogramos se une a un resorte cuya
constante es 32 N/m, éste llega al reposo en la posicion de
equilibrio. Comenzando en t = 0, una fuerza igual a f(t) =
68e~% cos 4t se aplica al sistema. Determine la ecuacion de
movimiento en ausencia de amortiguamiento.

En el problema 33, escriba la ecuacién de movimiento en
la forma x(t) = Asen(wt + ¢) + Be ?sen(4t + 0). ;Cual
es la amplitud de las vibraciones después de un tiempo
muy largo?



35.

36.

5.1

Una masa m estd unida al extremo de un resorte cuya
constante es k. Después de que la masa alcanza el equili-
brio, su soporte empieza a oscilar verticalmente respecto
a una recta horizontal L de acuerdo con una férmula h(t).
El valor de h representa la distancia en pies medida desde
L. Véase la figura 5.1.21.

a) Determine la ecuacién diferencial de movimiento si
el sistema entero se mueve en un medio que ofrece
una fuerza de amortiguamiento igual a B(dx/dt).

b) Resuelva la ecuacidn diferencial del inciso a) si el re-
sorte se alarga 4 pies con una masa que pesa 16 libras
y B =2,h(t) =5cost, x(0) =x'(0) =0.

soporte

) } h(t)

k3

FIGURA 5.1.21 Soporte oscilante del problema 35.

Una masa de 100 gramos se fija a un resorte cuya cons-
tante es 1600 dinas/cm. Después de que la masa alcanza el
equilibrio, su apoyo oscila de acuerdo con la formula h(t) =
sen 8t, donde h representa el desplazamiento desde su posi-
cion original. Véanse el problema 35y la figura 5.1.21.

a) En ausencia de amortiguamiento, determine la ecua-
cién de movimiento si la masa parte del reposo desde
la posicion de equilibrio.

b) ¢En qué instantes la masa pasa por la posicion de
equilibrio?

c) ¢En qué tiempos la masa alcanza sus desplazamien-
tos extremos?

d) ¢Cuales son los desplazamientos maximo y minimo?

e) Trace la grafica de la ecuacion de movimiento.

En los problemas 37 y 38, resuelva el problema con valores

iniciales.
d?x
37. prel + 4x =—5sen 2t + 3 cos 2t,
x(0)= -1, x(0)=1
d?x
38. FTa + 9 =5sen3t, x(0) =2, x'(0)=0
39. a) Muestre que la solucion del problema con valores ini-
ciales
dx :
Wnt w’X = Fycos yt, x(0) =0, x(0)=0

F
es x(t) = r"yz (cos yt — cos wt).
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41.
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F
b) EvalGe lim ——>—;(cos yt — cos wt).
Y- - — —y

Compare el resultado obtenido en el inciso b) del pro-
blema 39 con la solucién obtenida usando la variacion de
parametros cuando la fuerza externa es F; cos wt.

a) Muestre que x(t) dada en el inciso a) del problema 39
se puede escribir en la forma

—oF, 1 1
x(t) = mseni (y — o)t senE (v + o)t

b) Sisedefinee = % (y — w), muestre que cuando & es
pequefia una solucién aproximada es

F
X(t) = goy senet senyt.

Cuando ¢ es pequefia, la frecuencia /24 de la fuerza apli-
cada es cercana a la frecuencia w/27 de vibraciones libres.
Cuando esto ocurre, el movimiento es como se indica en la
figura 5.1.22. Las oscilaciones de esta clase se llaman pulsa-
ciones y se deben al hecho de que la frecuencia de sen et es
bastante pequefia en comparacion con la frecuencia de sen
yt. Las curvas punteadas o envoltura de la gréafica de x(t), se
obtienen de las gréficas de =(F,/2ey) sen et. Use un pro-
grama de graficacion para trazar graficas con varios valores
de F,, &, y 'y para comprobar la grafica de la figura 5.1.22.

FIGURA 5.1.22 Fendmeno de pulsaciones del problema 41.

Tarea para el laboratorio de computacién

42,

43.

¢Puede haber pulsaciones cuando se agrega una fuerza
de amortiguamiento al modelo del inciso a) del problema
39? Defienda su posicién con las gréficas obtenidas ya
sea de la solucidn explicita del problema

d? d
O 2%k = Focosyt, %0 =0, X(0) =0

o de curvas solucién obtenidas usando un programa de
solucion numérica.

a) Muestre que la solucion general de
d2x

ax
W + 2/\& + w? = Fysenyt
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es

X(t) = Ae Msen(Vw? — A% + ¢)
+ Fo

V(w? — y?? + 4A%y?

donde A = Vc,? + c,? y los angulos de fase ¢ y 6
estan, respectivamente, definidos por sen ¢ = ¢ /A,

cos ¢ =C,/Ay

sen(yt + 0),

—2\y
\/((!)2 — ,y2)2 + 4)\2,),2
w2 _ ,yZ
\/(w2 — ,yz)z ¥ 4/\2}'2'
b) La solucion del inciso a) tiene la forma x(t) = x (t) +
xp(t). La inspeccion muestra que x (t) es transitoria y

por tanto para valores grandes de tiempo, la solucion
se aproxima mediante xp(t) = g(y) sen(yt + 6), donde

Fo
V(? — y?)? + )22
Aunque la amplitud g(y) de xp(t) estd acotada con-
forme t — o, demuestre que las oscilaciones maxi-
mas ocurriran en el valor y, = Vw? — 2)2.;Cual es

el valor maximo de g? El nimero Vw? — 2X2/27 se

dice que es la frecuencia de resonancia del sistema.
¢) CuandoF,=2,m=1yk = 4,(gseconvierte en

2

V(4 — )% + By?
Construya una tabla de valores de vy, y g(y,) que
corresponden a los coeficientes de amortiguamien-
top=2p8=1, B_:%,/ﬁ:%,yﬁz%. Usando
un programa de graficacion para trazar obtenga las
graficas de g que corresponden a estos coeficientes de
amortiguamiento. Use los mismos ejes de coordenadas.
Esta familia de gréficas se llama curva de resonancia
0 curva de respuesta de frecuencia del sistema. ¢A
qué valor se aproxima vy, conforme 8 — 0? /Qué su-
cede con la curva de resonancia conforme 8 — 0?

senf =

cos 0 =

ag(v) =

a(v) =

Considere un sistema resorte/masa no amortiguado des-
crito por el problema con valores iniciales
dx
dt?

a) Paran = 2, explique por qué hay una sola frecuencia
v,/ 27 en la que el sistema esta en resonancia pura.

b) Paran = 3, analice por qué hay dos frecuencias y, /2w
Yy v,/2m en las que el sistema esta en resonancia pura.

¢) Supongaque w =1y F = 1. Use un programa de so-
luciéon numérica para obtener la gréfica de la solucion
del problema con valores iniciales paran =2y y =
v, en el inciso a). Obtenga la grafica de la solucion del
problema con valores iniciales para n = 3 que corres-
ponde, asuvez,ay =y, Yy = v,enelinciso b).

+ w?x = Fysen"yt, x(0) =0, x'(0) =0.

5.1.4 CIRCUITO EN SERIE ANALOGO

45.

46.

Encuentre la carga en el capacitor de un circuito en serie
LRCent=0.01scuandoL = 0.05h,R=2Q,C =
0.01f, E() =0V,q(0) =5Cei)=0A. Determine la
primera vez en que la carga del capacitor es igual a cero.

Calcule la carga del capacitor en un circuito LRC en serie
cuando L =%h,R =200, C = ;5 f, E(t) = 0V, q(0)
=4Cei(0) = 0A. ¢Alguna vez la carga en el capacitor
es igual a cero?

En los problemas 47 y 48 encuentre la carga en el capacitor
y la corriente en el circuito LRC. Determine la carga maxima
en el capacitor.

47.

48.

49,

50.

51.

52.

53.

54.

55.

56.

57.

58.

L=35hR=100Q, C =1f E() =300V, q(0)=0C,
i0)=0A

L=1h, R =100 Q,
q(0) =0C,i(0) =2A

Encuentre la carga y la corriente de estado estable en un
circuito LRC en serie cuandoL =1h,R=2, C = 0.25
fyE({t) =50costV.

Demuestre que la amplitud de la corriente de estado esta-
ble en el circuito LRC en serie del ejemplo 10 esta dada
por E /Z, donde Z es la impedancia del circuito.

C=00004f E@) =30V,

Use el problema 50 para demostrar que la corriente de es-
tado estable en un circuito LRC en serie cuando L = 1 h,
R =200, C = 0.001f,yE(t) = 100 sen 60t V, esta dada
por ip(t) = 4.160 sen(60t — 0.588).

Encuentre la corriente de estado estable en un circuito
LRC cuando L = 3h, R=200Q, C=0.001fy E(t) =
100 sen 60t + 200 cos 40t V.

Encuentre la carga en el capacitor de un circuito
LRC en serie cuando L =3h, R=10Q, C=0.01f,
E() =150V, q(0) =1Cei(0) = 0A. (Cudl es la carga
en el capacitor después de un largo tiempo?

Demuestre que si L, R, C'y E, son constantes, entonces la
amplitud de la corriente de estado estable del ejemplo 10
es un maximo cuando y = 1/V/LC . (Cual es la ampli-
tud méxima?

Demuestre que si L, R, E;y y son constantes, entonces la
amplitud de la corriente de estado estable en el ejemplo
10 es un maximo cuando la capacitanciaes C = 1/Ly2

Calcule la carga en el capacitor y la corriente en un cir-
cuito LC cuando L = 0.1 h, C = 0.1 f, E(t) = 100 sen yt
V,q0)=0Cei(0) =0A.

Calcule la carga del capacitor y la corriente en un circuito
LC cuando E(t) = E,cos yt V, q(0) = q,Cei(0) =i, A.

En el problema 57, determine la corriente cuando el cir-
cuito esta en resonancia.
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5.2

MODELOS LINEALES: PROBLEMAS CON VALORES EN LA FRONTERA

REPASO DE MATERIAL

e Problemas 37 a 40 de los ejercicios 4.3
e Problemas 37 a 40 de los ejercicios 4.4

INTRODUCCION  La seccion anterior se dedico a sistemas en los que un modelo matematico de
segundo orden va acompafiado de condiciones iniciales. Es decir, condiciones suplementarias que se
especifican en la funcién desconocida y su primera derivada es un solo punto. Pero con frecuencia la
descripcion matematica de un sistema fisico requiere resolver una ecuacién diferencial lineal homo-
génea sujeta a condiciones en la frontera, es decir, condiciones especificas de la funcién desconocida
0 en una de sus derivadas o incluso una combinacién lineal de la funcién desconocida y una de sus
derivadas en dos (0 méas) puntos diferentes.

a)

curva de deflexion

FIGURA 5.2.1
homogénea.

b)

Deflexidén de una viga

DEFLEXION DE UNA VIGA Muchas estructuras se construyen usando trabes o
vigas y estas vigas se flexionan o deforman bajo su propio peso o por la influencia de
alguna fuerza externa. Como veremos a continuacion, esta deflexion y(x) esta gober-
nada por una ecuacion diferencial lineal de cuarto orden relativamente simple.

Para empezar, supongamos que una viga de longitud L es homogénea y tiene
secciones transversales uniformes a lo largo de su longitud. En ausencia de carga en
la viga (incluyendo su peso), una curva que une los centroides de todas sus secciones
transversales es una recta conocida como eje de simetria. VVéase la figura 5.2.1a. Si se
aplica una carga a la viga en un plano vertical que contiene al eje de simetria, la viga,
como se muestra en la figura 5.2.1b, experimenta una distorsion y la curva que conecta
los centroides de las secciones transversales se llama curva de deflexion o curva
elastica. La curva de deflexion se aproxima a la forma de una viga. Ahora suponga que
el eje x coincide con el eje de simetria y que la deflexion y(x), medida desde este eje,
es positiva si es hacia abajo. En la teoria de elasticidad se muestra que el momento de
flexion M(x) en un punto x a lo largo de la viga se relaciona con la carga por unidad
de longitud w(x) mediante la ecuacion

¢
dx?

Ademas, el momento de flexién M(x) es proporcional a la curvatura k de la curva elastica

= wW(x). @)

M(X) = Elk, )

donde E e | son constantes; E es el médulo de Young de elasticidad del material de la
viga e | es el momento de inercia de una seccion transversal de la viga (respecto a un eje
conocido como el eje neutro). El producto EI se llama rigidez flexional de la viga.
Ahora, del calculo, la curvatura esta dada por k = y”/[1 + (y')?]*2. Cuando la

deflexion y(x) es pequefia, la pendiente y’ = 0, y por tanto [1 + (y')?]*? = 1. Si se
permite que k = y”, la ecuacion (2) se convierte en M = EIl y”. La segunda derivada
de esta ultima expresion es

dm d? d4y

— =El—y =E—. 3

o e’ dx’ ®
Si se utiliza el resultado en (1) para reemplazar d?M/dx? en (3), se ve que la deflexion
y(x) satisface la ecuacion diferencial de cuarto orden

d%y

Bl 2= W(X)- 4
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x=0 x=L

a) empotrada en ambos extremos

x=0 Xx=L

b) viga en voladizo: empotrada en
el extremo izquierdo, libre en el
extremo derecho

A— A

x=0 Xx=L

¢) apoyada simplemente en ambos
extremos

FIGURA 5.2.2  Vigas con varias
condiciones de extremo.

TABLA 5.1

Extremos de laviga Condiciones frontera

empotrados y=0 y =0
libres y'=0, y'=0
apoyados simplemente

0 abisagrados y=0, y"=0

CAPITULO 5 MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

Las condiciones de frontera asociadas con la ecuacion (4) dependen de cdmo estén
apoyados los extremos de la viga. Una viga en voladizo esta empotrada o fija en un
extremo y libre en el otro. Un trampolin, un brazo extendido, un ala de avién y un balcon
son ejemplos comunes de tales vigas, pero incluso arboles, astas de banderas, rascacielos
y monumentos, actlan como vigas en voladizo, debido a que estan empotrados en un
extremo y sujetos a la fuerza de flexidn del viento. Para una viga en voladizo la deflexion
y(x) debe satisfacer las siguientes dos condiciones en el extremo fijo x = 0:

« y(0) = 0 porque no hay flexiény
» y’(0) = 0 porque la curva de deflexion es tangente al eje x (en otras palabras,
la pendiente de la curva de deflexion es cero en este punto).

En x = L las condiciones de extremo libre son

e y"(L) = 0 porque el momento de flexién es ceroy
e y"(L) = 0 porque la fuerza de corte es cero.

La funcion F(x) = dM/dx = EI d®%/dx® se llama fuerza de corte. Si un extremo de la viga
esta apoyado simplemente o abisagrado (a lo que también se conoce como apoyo con
perno o fulcro) entonces se debe tenery = 0y y” = 0 en ese extremo. En la tabla 5.1 se
resumen las condiciones en la frontera que se relacionan con (4). Véase la figura 5.2.2.

I EJEMPLO T Unavigaempotrada

Una viga de longitud L estd empotrada en ambos extremos. Encuentre la deflexion
de la viga si una carga constante w, esta uniformemente distribuida a lo largo de su
longitud, es decir, w(x) = w,;, 0 <x <L.

SOLUCION De (4) vemos que la deflexion y(x) satisface

d4y
El — = w,.
¢ 0
Debido a que la viga estd empotrada tanto en su extremo izquierdo (x = 0) como en su
extremo derecho (x = L), no hay deflexion vertical y la recta de deflexion es horizontal
en estos puntos. Asi, las condiciones en la frontera son

yO =0, y@©0=0 ylL)=0  y(L) =0

Se puede resolver la ecuacion diferencial no homogeénea de la manera usual (determi-
nar y_ observando que m = 0 es raiz de multiplicidad cuatro de la ecuacion auxiliar m*
= 0y luego encontrar una solucion particular y_por coeficientes indeterminados) o
simplemente se integra la ecuacion d*y /dx* = w,/El sucesivamente cuatro veces. De
cualquier modo, se encuentra la solucion general de la ecuaciony =y_+ y, que es

W,
X) = C; + CX + CX2 + Cx@ + —= x4,
y(X) 1T G 3 4 SAE|

Ahora las condiciones y(0) = 0y y’(0) = 0 dan, asu vez,c, = 0y ¢, = 0, mientras que
Wo
24El

las condiciones restantes y(L) = 0yy’(L) = Oaplicadasa y(X) = c3x® + ¢, +
producen las ecuaciones simultaneas

Wo

4_
24El L'=0

cL%2 + ¢,L% +

W,
2c,L + 3c,L2 + —=L3 = 0.
G “=" T BRI
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FIGURA 5.2.3 Curva de deflexion
para el ejemplo 1.

Observe que
aqui se emplean
funciones
hiperbdlicas.
Vuelva a leer “Dos
ecuaciones que

merecen conocerse”

de la pagina 135.
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Resolviendo este sistema se obtiene ¢, = w, L?/24El y ¢, = —w,L/12EI. Asi que la
deflexion es

Wol? . wol . owy o,
= — +
YO = 24m X ~ 2el X T e
0 y(x) = ZZVIOEI x?(x — L)?. Eligiendo w, = 24El, y L = 1, obtenemos la curva de
deflexion de la figura 5.2.3. ]

EIGENVALORES Y FUNCIONES PROPIAS Muchos problemas de aplicacion re-
quieren que se resuelva un problema con valores en la frontera en dos puntos (PVF)
en los que interviene una ecuacion diferencial lineal que contiene un parametro A. Se
buscan los valores de A para los que el problema con valores en la frontera tiene solu-
ciones no triviales, es decir, no nulas.

I EJEMPLO 2 Soluciones no triviales de un PVF

Resuelva el problema con valores en la frontera
y"+ Ay =0, y@0) =0, yL)=0.

SOLUCION Consideraremos tres casos: A = 0, A <0y A > 0.

CASO I: ParaA = 0lasoluciondey” = 0esy = ¢ x + c,. Las condiciones y(0) =0y
y(L) = O aplicadas a esta solucion implican, asu vez, ¢, = 0y ¢, = 0. Por tanto, para A =
0 la tnica solucion del problema con valores en la frontera es la solucién trivial y = 0.

CASO II:  Para A < 0 es conveniente escribir A = —a?, donde « denota un nimero
positivo. Con esta notacion las raices de la ecuacion auxiliar m* — o> = 0sonm, = ay
m, = — a. Puesto que el intervalo en el que se esta trabajando es finito, se elige escribir
la solucion general de y” — @’y = 0 comoy = ¢, cosh ax + ¢, senh ax. Ahora y(0) es

y(0) = c;cosh0 + ¢c,senh0=1¢; -1 + ¢, -0 = ¢4,

y por tanto, y(0) = O significaque c, = 0. Asi'y = ¢, senh ax. La segunda condicion y(L)
= 0 requiere que ¢, senh oL = 0. Para a # 0, senh aL # 0; en consecuencia, se esta
forzado a elegir ¢, = 0. De nuevo la solucion del PVF es la solucion trivial y = 0.

CASO IlI:  Para A > 0 se escribe A = «?, donde « es un nimero positivo. Debido a
que la ecuacion auxiliar m* + «? = 0 tiene raices complejas m = iay m, = —iq, la
solucion general de y” + oy = 0 esy = ¢, cos ax + ¢, sen ax. Como antes, y(0) = 0
produce ¢, = 0y por tanto y = ¢, sen ax. Ahora la tltima condicion y(L) = 0, o

c,senal = 0,

se satisface al elegir ¢, = 0. Pero esto significa que y = 0. Si se requiere ¢, # 0, enton-
ces sen aL = 0 se satisface siempre que aL sea un multiplo entero de 7.

nw nm\?
aL=nm 0 a=— 0 /\n=aﬁ=<T>, n=123....
Por tanto, para cualquier nimero real c, distinto de cero, y = ¢, sen(nx /L) es una solu-
cion del problema para cada n. Debido a que la ecuacion diferencial es homogénea, cual-
quier multiplo constante de una solucion también es una solucion, asi que si se desea se
podria simplemente tomar ¢, = 1. En otras palabras, para cada nimero de la sucesion
m? 4772 972

M= T AT
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4 X:_L&

a) b)

FIGURA 5.2.4 Pandeo de una
columna elastica bajo una fuerza
compresiva.

a) b) c)

FIGURA 5.2.5 Curvas de deflexion
que corresponden a las fuerzas
compresivas P, P,, P,.

la funcion correspondiente en la sucesion
T 2 3
Y1 =senE X, Yo =senTx, Y3 :senT Xt
es una solucion no trivial del problema original. ]

Los numeros A = n?z?/L% n=1,2,3,...para los cuales el problema con va-
lores en la frontera del ejemplo 2 tiene soluciones no triviales que se conocen como
eigenvalores (valores propios). Las soluciones no triviales que dependen de estos va-
loresde A, y, = ¢, sen(nmx /L) o simplementey = sen(nrx /L), se llaman funciones
propias (eigenfunciones).

PANDEO DE UNA COLUMNA VERTICAL DELGADA En el siglo xvm,
Leonhard Euler fue uno de los primeros matematicos en estudiar un problema con
eigenvalores y analizar como se pandea una columna elastica delgada bajo una fuerza
axial compresiva.

Considere una columna vertical larga y delgada de seccion transversal uniforme y
longitud L. Sea y(x) la deflexion de la columna cuando se aplica en la parte superior una
fuerza compresiva vertical constante, una carga P, como se muestra en la figura 5.2.4. Al
comparar los momentos de flexion en algun punto a lo largo de la columna, se obtiene

d? d?
Ela;%:=«—Py 0 Ela;% + Py =0, 5)
donde E es el médulo de Young para la elasticidad e | es el momento de inercia de una
seccion transversal respecto a una recta vertical por su centroide.

I EJEMPLO 3 Lacargade Euler

Encuentre la deflexion de una columna homogénea vertical y delgada de longitud L su-
jeta a una carga axial constante P si la columna se fija con bisagras en ambos extremos.

SOLUCION El problema con valores en la frontera por resolver es

d?y
El e + Py =0, y0)=0, ylL)=0.
Primero observe que y = 0 es una solucion muy buena de este problema. Esta solucion
tiene una simple interpretacién intuitiva: Si la carga P no es suficientemente grande,
no hay deflexion. Entonces la pregunta es ésta: ¢para qué valores de P se dobla la co-
lumna? En términos matematicos: ¢para qué valores de P el problema con valores en
la frontera tiene soluciones no triviales?
Al escribir A = P/EI, vemos que

y"+Aay=0, y0 =0, ylL)=0

es identico al problema del ejemplo 2. Del caso 11 de esa descripcion se ve que las de-
flexiones son y (x) = ¢, sen(nzx/L) que corresponden a los eigenvalores A =P
JEl =n?72/L2, n=1,2,3,... Desde el punto de vista fisico, esto significa que la co-
lumna experimenta flexion s6lo cuando la fuerza compresiva es uno de los valores
P, =n?m?El/L>n=1,23,... Estasfuerzas diferentes se llaman cargas criticas. La
deflexion correspondiente a la carga critica mas pequefia P, = 7?El /L?, llamada carga
de Euler, esy,(x) = ¢, sen(wx /L) y se conoce como primer modo de pandeo. ]

Las curvas de deflexion del ejemplo 3 que correspondenan =1, n=2yn
= 3 se muestran en la figura 5.2.5. Observe que si la columna original tiene alguna
clase de restriccion fisica en x = L/2, entonces la carga critica mas pequefia sera
P, = 4m?El/L? y la curva de deflexion sera como se muestra en la figura 5.2.5b. Si
se ponen restricciones a la columnaen x = L/3y en x = 2L/3, entonces la columna
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no se pandea hasta que se aplica la carga critica P, = 9772El /L?y la curva de deflexion
sera como se muestra en la figura 5.2.5c. Véase el problema 23 de los ejercicios 5.2.

CUERDA ROTANDO La ecuacion diferencial lineal de segundo orden
y"+ay=0 (6)

se presenta una y otra vez como un modelo matematico. En la seccion 5.1 vimos que
la ecuacion (6) en las formas d2x /dt? + (k/m)x = 0y d?q/dt? + (1/LC)q = 0 son mo-
delos para el movimiento arménico simple de un sistema resorte/masa y la respuesta
armonica simple de un circuito en serie, respectivamente. Es evidente cuando el modelo
para la deflexion de una columna delgada en (5) se escribe como d?y /dx? + (P/El)y = 0
que es lo mismo que (6). Se encuentra la ecuacion basica (6) una vez mas en esta seccion:
como un modelo que define la curva de deflexion o la forma y(x) que adopta una cuerda
rotatoria. La situacion fisica es similar a cuando dos personas sostienen una cuerda para
saltar y la hacen girar de una manera sincronizada. Véase la figura 5.2.6a 'y 5.2.6b.

Suponga que una cuerda de longitud L con densidad lineal constante p (masa por
unidad de longitud) se estira a lo largo del eje x y se fijaenx = 0y x = L. Suponga que
la cuerda se hace girar respecto al eje a una velocidad angular constante w. Considere
una porcién de la cuerda en el intervalo [x, x + AXx], donde Ax es pequefia. Si la mag-
nitud T de la tensién T que actla tangencial a la cuerda, es constante a lo largo de
ésta, entonces la ecuacion diferencial deseada se obtiene al igualar dos formulaciones
distintas de la fuerza neta que actla en la cuerda en el intervalo [x, x + Ax]. Primero,
vemos en la figura 5.2.6¢ se ve que la fuerza vertical neta es

F = Tsen6, — T send;. (7)

) Cuando los angulos 6, y 6, (medidos en radianes) son pequefios, se tiene sen 6, ~ tan

FIGURA 5.2.6 Cuerda rotatoria 'y 6,y sen 6, ~ tan 6,. Ademas, puesto que tan 6, y tan 6, son, a su vez, pendientes de
fuerzas que actuan sobre ella. las rectas que contienen los vectores T, y T, también se puede escribir

tanh, = y'(x + Ax) y tan6, = y'(x).
Por tanto, la ecuacion (7) se convierte en
F=T[y'(x+ Ax) — y'(¥)]- (8)
Segundo, se puede obtener una forma diferente de esta misma fuerza neta usando
la segunda ley de Newton, F = ma. Aqui la masa del resorte en el intervalo es
m = p AX; la aceleracion centripeta de un cuerpo que gira con velocidad angular o en
un circulo de radio r es a = rw?. Con Ax pequefia se tomar = y. Asi la fuerza vertical
neta es también aproximadamente igual a
F= —(pAX)yw?, 9)

donde el signo menos viene del hecho de que la aceleracion apunta en la direccion
opuesta a la direccién y positiva. Ahora, al igualar (8) y (9), se tiene

lcociente de diferencias

Tl ocr A -yl = —(pagye? 0 TSI Ly — o g

Para Ax cercana a cero el cociente de diferencias en (10) es aproximadamente la se-
gunda derivada d?y/dx?. Por Gltimo, se llega al modelo
d?y
TR + pwzy = 0. (11)
Puesto que la cuerda esta anclada en sus extremos en x = 0y X = L, esperamos que
la solucion y(x) de la ecuacién (11) satisfaga también las condiciones frontera y(0) =

Oyy(L) =0.
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COMENTARIOS

i) Los eigenvalores no siempre son faciles de encontrar, como sucedid en el
ejemplo 2; es posible que se tengan que aproximar las raices de ecuaciones
como tan X = —x 0 cos x cosh x = 1. Véanse los problemas 34 a 38 en los
gjercicios 5.2.

ii) Las condiciones de frontera aplicadas a una solucion general de una ecua-
cion diferencial dan lugar a un sistema algebraico homogéneo de ecuaciones
lineales en las que las incognitas son los coeficientes ¢, de la solucion general.
Un sistema algebraico homogéneo de ecuaciones lineales es siempre consis-
tente porque por lo menos tiene una solucion trivial. Pero un sistema homogé-
neo de n ecuaciones lineales con n incdgnitas tiene una solucidn no trivial si y
solo si el determinante de los coeficientes es igual a cero. Podria ser necesario

usar este Ultimo hecho en los problemas 19 y 20 de los ejercicios 5.2.

EJERCICIOS 5.2 Las respuestas a los problemas con nimero impar comienzan en la pagina RES-8.

Deflexion de una viga

En los problemas 1 a 5 resuelva la ecuacién (4) sujeta a las
condiciones de frontera adecuadas. La viga es de longitud L y
W, €s una constante.

1. a)
b)
2. a)

b)

b)

c)

La viga estd empotrada en su extremo izquierdo y
libre en su extremo derecho y w(x) = w,, 0 <x < L.

Use un programa de graficacion para trazar la curva
de deflexion cuando w, = 24Ely L = 1.

La viga estd apoyada simplemente en ambos extre-
mos, y wW(x) = w,, 0 <x <L.

Use un programa de graficacion para trazar la curva
de deflexion cuando w, = 24Ely L = 1.

La viga estd empotrada en su extremo izquierdo y
apoyada simplemente en su extremo derecho, y w(x)
=w, 0<x<L.

Use un programa de graficacion para trazar la curva
de deflexion cuando w, = 48Ely L = 1.

La viga estd empotrada en su extremo izquierdo y
apoyada simplemente en su extremo derecho, y w(x)
= w, sen(mx/L), 0 < x <L.

Utilice un programa de graficacion para trazar la
curva de deflexion cuandow, = 2 7°Ely L = 1.

Usando un programa de graficacion para encontrar
raices (o de una calculadora gréfica) aproxime el
punto en la gréafica del inciso b) en el que ocurre la
maxima deflexion. ¢Cual es la maxima deflexion?

La viga esta simplemente soportada en ambos extre-
mos y w(x) = wx, 0 <x <L.

Utilice un programa de graficacion para trazar la
curva de deflexion cuando w, = 36Ely L = 1.

Usando un programa de graficacion para encontrar
raices (o de una calculadora gréfica) aproxime el

punto en la gréafica del inciso b) en el que ocurre la
méaxima deflexion. ¢Cual es la maxima deflexion?

6. a) Calcule la deflexion maxima de la viga en voladizo
del problema 1.

b) ¢Cdmo se compara con el valor del inciso a) con la
deflexion méxima de una viga que tiene la mitad de
largo?

c) Encuentre la deflexion maxima de la viga apoyada
del problema 2.

d) ¢Cdémo se compara la deflexion méaxima de la viga
con apoyos simples del inciso c) con el valor de la de-
flexién maxima de la viga empotrada del ejemplo 1?

7. Unaviga en voladizo de longitud L estd empotrada en su
extremo derechoy se aplica unafuerzade P libras en su ex-
tremo izquierdo libre. Cuando el origen se toma como
su extremo libre, como se ilustra en la figura 5.2.7, se
puede demostrar que la deflexion y(x) de la viga satisface
la ecuacion diferencial

Ely” = Py — W(X))—z(.

Encuentre la deflexion de la viga en voladizo si w(x) =
Wex, 0 <x<Lyy(0)=0,y'(L) =0

y

WoX

0 X X

FIGURA 5.2.7 Deflexion de la viga en voladizo del problema 7.
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8. Cuando se aplica una fuerza compresiva en lugar de una
fuerza de tension en el extremo libre de la viga del pro-
blema 7, la ecuacion diferencial de la deflexion es

X
Ely" = —Py — W(X)E.

Resuelva esta ecuacion si w(x) = wx, 0 < x <L, y y(0)
=0,y'(L) =0.
Eigenvalores y funciones propias

En los problemas 9 a 18 determine los eigenvalores y las fun-
ciones propias del problema con valores en la frontera dado.

9. y"+Ay=0, y0)=0, y(m)=0
10. y"+ Ay =0, y(0)=0, y(m/4) =0
11. y"+Ay=0, y'(0) =0, ylL)=0
12. y"+ Ay =0, y(0) =0, y'(7/2)=0
13. y"+Ay=0, y(0)=0, y'(m)=0
14. y"+ Ay =0, y(—m) =0, y(m)=0

15.y"+2y +(A+1)y=0, y0 =0 y5) =0
16. y"+(A+21y=0, y©0) =0, y(1)=0

17. x2y" +xy' +Ay =0, y@1)=0, y(™)=0
18. x3y" +xy'+Ay=0, y'(eH)=0 y@@)=0

En los problemas 19 y 20 determine los eigenvalores y las
funciones propias del problema con valores en la frontera
dado. Considere solo el caso A = o, a > 0.

19. y® — Ay =0, y(0) =0, y"(0)=0, y(1)=0,
y"(1) =0

20. y9 —Ay =0, y'(0)=0, y"(0)=0, y(m) =0,
y'(m) =0

Pandeo de una columna delgada

21. Considere la figura 5.2.5. ¢{Donde se deben colocar en la
columna las restricciones fisicas si se quiere que la carga
critica sea P,? Dibuje la curva de deflexion correspon-
diente a esta carga.

22. Las cargas criticas de columnas delgadas dependen de las
condiciones de extremo de la columna. El valor de la carga
de Euler P, en el ejemplo 3 se obtuvo bajo la suposicion de
que la columna estaba abisagrada por ambos extremos. Su-
ponga que una columna vertical homogénea delgada esta em-
potrada en su base (x = 0) y libre en su parte superior (x = L)
y que se aplica una carga axial constante P en su extremo
libre. Esta carga causa una deflexion pequefia 6 como se
muestra en la figura 5.2.8 0 no causa tal deflexion. En cual-
quier caso la ecuacion diferencial para la deflexion y(x) es

d2
El ﬁ; + Py = Ps.

P
X=L T
S

x=0

y

FIGURA 5.2.8 Deflexion de la columna vertical del
problema 22.

a) ¢Cual es la deflexion predicha cuando § = 0?

b) Cuando & # 0, demuestre que la carga de Euler para
esta columna es un cuarto de la carga de Euler para la
columna que esta abisagrada del ejemplo 3.

23. Como se mencion6 en el problema 22, la ecuacion dife-
rencial (5) que gobierna la deflexion y(x) de una columna
elastica delgada sujeta a una fuerza axial compresiva cons-
tante P es valida sdlo cuando los extremos de la columna
estan abisagrados. En general, la ecuacion diferencial que
gobierna la deflexion de la columna estéa dada por

2 2 2
d—(EId—y> + POI—y =0.
dx2\  dx? dx?

Suponga que la columna es uniforme (El es una constante)

y que los extremos de la columna estan abisagrados. Mues-

tre que la solucion de esta ecuacion diferencial de cuarto

orden sujeta a las condiciones limite y(0) = 0, y"(0) = 0,

y(L) = 0,y"(L) = 0 es equivalente al andlisis del ejemplo 3.

24. Suponga que una columna elastica delgada y uniforme
estd abisagrada en el extremo x = 0 y empotrada en el
extremo x = L.

a) Use la ecuacion diferencial de cuarto orden del pro-
blema 23 para encontrar los valores propios A , las
cargas criticas P, la carga de Euler P, y las deflexio-
nesy (x).

b) Use un programa de graficacion para trazar la grafica
del primer modo de pandeo.

Cuerda rotando

25. Considere el problema con valores en la frontera presen-
tado en la construccion del modelo matematico para la
forma de una cuerda rotatoria:

d?y 5
T@ + pw?y =0, y0) =0, ylL)=0.

Para Ty p constantes, defina las velocidades criticas de la
rotacion angular «_ como los valores de w para los cuales
el problema con valores en la frontera tiene soluciones
no triviales. Determine las rapideces criticas w, y las de-
flexiones correspondientes y (x).
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26. Cuando la magnitud de la tension T no es constante, en-
tonces un modelo para la curva de deflexion o forma y(x)
que toma una cuerda rotatoria esta dado por

L BN 2 —
dx[T(X)dx} + pw?y = 0.

Supongaque 1 < x < ey que T(x) = X

a) Siy(l) =0,y() =0y pw? > 0.25, demuestre que
las velocidades criticas de rotacion angular son
w, =3 V2w + 1)/p vy las deflexiones corres-
pondientes son

y.(x) =cxsen(nminx), n=1,23,....

b) Utilice un programa de graficacion para trazar las
curvas de deflexion en el intervalo [1, €] paran = 1,
2,3. Elijac, = 1.

Diferentes problemas con valores en la frontera

27. Temperatura en una esfera Considere dos esferas
concéntricasderadior =ayr = b, a <b. Véase la figura
5.2.9. La temperatura u(r) en la region entre las esferas se
determina del problema con valores en la frontera

d2u du

_+ —_ =
rdr2 2dr 0

donde u, y u, son constantes. Resuelva para u(r).

u@) = u, u(b) = uy,

FIGURA 5.2.9 Esferas concéntricas del problema 27.

28. Temperatura en un anillo La temperatura u(r) en el
anillo circular mostrado en la figura 5.2.10 se determina a
partir del problema con valores en la frontera

d2u du
e + ar - 0, u(@) = uy, u(b) =uy,
e
u=ug
u=ug

FIGURA 5.2.10 Anillo circular del problema 28.
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donde u, y u, son constantes. Demuestre que

_ UgIn(r/b) — uyIn(r/a)
B In(a/b) '

u(r)

Problemas para analizar

29. Movimientoarmonicosimple Elmodelomx” + kx =0
para el movimiento arménico simple, que se analiz6 en
la seccion 5.1, se puede relacionar con el ejemplo 2 de
esta seccion.

Considere un sistema resorte/masa libre no amorti-
guado para el cual la constante de resorte es, digamos, k
= 10 Ib/pie. Determine las masas m_que se pueden unir al
resorte para que cuando se libere cada masa en la posicion
de equilibrio en t = 0 con una velocidad v, diferente de
cero, pase por la posicion de equilibrio ent = 1 segundo.
¢Cuantas veces pasa cada masa m_por la posicion de
equilibrio en el intervalo de tiempo 0 <t < 1?

30. Movimiento amortiguado Suponga que el modelo para
el sistema resorte/masa del problema 29 se reemplaza por
mx” + 2x'+ kx = 0. En otras palabras el sistema es libre
pero esta sujeto a amortiguamiento numéricamente igual a
dos veces la velocidad instantdnea. Con las mismas condi-
ciones iniciales y la constante de resorte del problema 29,
investigue si es posible encontrar una masa m que pase por
la posicion de equilibrio en t = 1 segundo.

En los problemas 31 y 32, determine si es posible encontrar
valoresy, yy, (problema31) y valores de L > 0 (problema 32)
tal que el problema con valores iniciales tenga a) exactamente
una solucién no trivial, b) mas de una solucion, c) ninguna
solucién, d) la solucidn trivial.

3L y"+16y =0, y0) =y, y(@/2)=y,
32. y"+16y=0, y(0)=1yL)=1

33. Considere el problema con valores en la frontera

y'+ Ay =0, y(=m) =y(m), y'(=m) =y (m).

a) Al tipo de condiciones en la frontera especificadas se
le llaman condiciones frontera periddicas. Dé una
interpretacion geomeétrica de estas condiciones.

b) Determine los eigenvalores y las funciones propias
del problema.

c) Usando un programa de graficacion para trazar algu-
nas de las funciones propias. Compruebe su interpre-
tacion geométrica de las condiciones frontera dadas
en el inciso a).

34. Muestre que los eigenvalores y las funciones propias del
problema con valores en la frontera
y"+ Ay =0, y0) =0 y@)+y@)=0

son A, = aj yy = sena X, respectivamente, donde e,
n=1,2,3,..s0n las raices positivas consecutivas de la
ecuaciontan a = — «.
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Tarea para el laboratorio de computacién En los problemas 37 y 38, determine los eigenvalores y las

35. Use un SAC para trazar las graficas que lo convenzan
de que la ecuacion tan @« = —a del problema 34 tiene
un nimero infinito de raices. Explique por qué se pueden

36.

funciones propias del problema con valores en la frontera.
Use un SAC para aproximar los primeros cuatro valores pro-
PIoS A, A, A, Y A,

despreciar las raices negativas de la ecuacion. Explique "4 v =0 0) =0 1) — Lv'(1) = 0
por qué A = 0 no es un eigenvalor aun cuando « = 0 es 37y y YO Y@ —2y @
una solucion obvia de la ecuacion tan « = —a. 38. y®—Ay=0, y0)=0, y(0)=0, y1) =0, y1)=0

Usando un programa para determinar raices de un SAC

[Sugerencia: considere sélo A = a*, « > 0.]

aproxime los primeros cuatro valores propios A, A,, A,y
A, para el PVF del problema 34.

5.3

MODELOS NO LINEALES

REPASO DE MATERIAL
e Seccién 4.9

INTRODUCCION En esta seccion se examinan algunos modelos matematicos no lineales de
orden superior. Algunos de estos modelos se pueden resolver usando el método de sustitucion (lo
que conduce a la reduccion de orden de la ED) presentado en la pagina 174. En algunos casos donde
no se puede resolver el modelo, se muestra como se reemplaza la ED no lineal por una ED lineal
mediante un proceso conocido como linealizacion.

RESORTES NO LINEALES EIl modelo matematico en (1) de la seccidn 5.1 tiene la
forma

mE+F(x):O, (D)

donde F(x) = kx. Debido a que x denota el desplazamiento de la masa desde su posicion
de equilibrio, F(x) = kx es la ley de Hooke, es decir, la fuerza ejercida por el resorte
que tiende a restaurar la masa a la posicion de equilibrio. Un resorte que actda bajo una
fuerza restauradora lineal F(x) = kx se llama resorte lineal. Pero los resortes pocas
veces son lineales. Dependiendo de como esté construido y del material utilizado, un
resorte puede variar desde “flexible” o suave, hasta “rigido” o duro, por lo que su fuerza
restauradora puede variar respecto a la ley lineal. En el caso de movimiento libre, si se
supone que un resorte en buen estado tiene algunas caracteristicas no lineales, entonces
podria ser razonable suponer que la fuerza restauradora de un resorte, es decir, F(x) en
la ecuacion (1), es proporcional al cubo del desplazamiento x de la masa mas alla de su
posicién de equilibrio o que F(x) es una combinacion lineal de potencias del desplaza-
miento como el que se determina mediante la funcion no lineal F(x) = kx + kx%. Un
resorte cuyo modelo matematico incorpora una fuerza restauradora no lineal, como

dx 2
m-—S+kéd=0 o m—5+kx+ kx=0, )

dt dt
se llama resorte no lineal. Ademas, se examinan modelos matematicos en los que el
amortiguamiento impartido al movimiento era proporcional a la velocidad instantanea
dx/dt y la fuerza restauradora de un resorte esta dada por la funcion lineal F(x) = kx.
Pero estas fueron suposiciones muy simples; en situaciones mas reales, el amortigua-
miento podria ser proporcional a alguna potencia de la velocidad instantanea dx/dt. La
ecuacion diferencial no lineal

i
dt?

dx

dt

dx
—+ kx=0 3
p 3)




208

F4 resorte

resorte lineal
duro

resorte suave

FIGURA 5.3.1 Resortes duros y suaves.

L L/

b) resorte suave

FIGURA 5.3.2 Curvas de solucion

numérica.
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es un modelo de un sistema libre resorte/masa en el que la fuerza de amortiguamien-
to es proporcional al cuadrado de la velocidad. Asi que es posible imaginar otras clases
de modelos: amortiguamiento lineal y fuerza restauradora no lineal, amortiguamiento
no lineal y fuerza restauradora no lineal, etcétera. El punto es que las caracteristicas no
lineales de un sistema fisico dan lugar a un modelo matematico que es no lineal.

Observe en (2) que tanto F(x) = kx® como F(x) = kx + k x* son funciones impares
de x. Para ver por qué una funcién polinomial que contiene solo potencias impares de
X proporciona un modelo razonable para la fuerza restauradora, se expresa a F como
una serie de potencias centrada en la posicion de equilibrio x = 0:

FO)=cy+ Cx+Cx+ X+ - - -

Cuando los desplazamientos x son pequefios, los valores de x_son insignificantes para
n suficientemente grande. Si se trunca la serie de potencias, por ejemplo, en el cuarto
término, entonces F(x) = ¢, + ¢ x + ¢,x* + ¢,x° Parala fuerzaenx > 0,

F(X) = Cy + CX + &X° + 3%,
y para que la fuerzaen —x <0,
F(=X) = Cp — CiX + CX2 — ¢

tenga la misma magnitud pero actle en direccion contraria, se debe tener F(—x) =
—F(x). Debido a que esto significa que F es una funcion impar, se debe tenerc, =0y c,
= 0y por tanto, F(x) = ¢,x + ¢,x%. Si se hubieran usado solo los primeros dos términos
de la serie, el mismo argumento produce la funcion lineal F(x) = c x. Se dice que una
fuerza restauradora con potencias mixtas, como F(x) = ¢,x + ¢, x*y las vibraciones
correspondientes, son asimeétricas. En el analisis siguiente se escribe c, = ky ¢, = k..

RESORTES DUROS Y SUAVES Analicemos con més detalle la ecuacién (1) para
el caso en que la fuerza restauradora esta dada por F(x) = kx + kx3, k > 0. Se dice
que el resorte es duro si k, > 0y suave si k, < 0. Las graficas de tres tipos de fuer-
zas restauradoras se muestran en la figura 5.3.1. En el ejemplo siguiente se ilustran
estos dos casos especiales de la ecuacion diferencial m d?x/dt? + kx + k x* = 0,
m >0, k> 0.

I EJEMPLO T Comparacion de resortes duros y suaves

Las ecuaciones diferenciales

2
¥+x+x3=o @)
2
y %(ntx—x?’:o 5)

son casos especiales de la segunda ecuacion en (2) y son modelos de un resorte duro y
uno suave, respectivamente. En la figura 5.3.2a se muestran dos soluciones de (4) y en
la figura 5.3.2b dos soluciones de (5) obtenidas de un programa de solucién numérica.
Las curvas mostradas en rojo son soluciones que satisfacen las condiciones iniciales
x(0) = 2, x’(0) = —3; las dos curvas en rojo son soluciones que satisfacen x(0) = 2,
x"(0) = 0. Desde luego estas curvas solucién indican que el movimiento de una masa
en el resorte duro es oscilatorio, mientras que el movimiento de una masa en el resorte
flexible al parecer es no oscilatorio. Pero se debe tener cuidado respecto a sacar con-
clusiones con base en un par de curvas de solucién numérica. Un cuadro mas complejo
de la naturaleza de las soluciones de ambas ecuaciones, se obtiene del andlisis cualita-
tivo descrito en el capitulo 10. ]



FIGURA 5.3.3 Péndulo simple.

FIGURA 5.3.4 Péndulo oscilante en
b); péndulo giratorio en c).
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PENDULO NO LINEAL Cualquier objeto que oscila de un lado a otro se Ilama
péndulo fisico. EI péndulo simple es un caso especial del péndulo fisico y consiste
en una varilla de longitud | a la que se fija una masa m en un extremo. Al describir
el movimiento de un péndulo simple en un plano vertical, se hacen las suposiciones
de simplificacion de que la masa de la varilla es despreciable y que ninguna fuerza
externa de amortiguamiento o motriz acttia sobre el sistema. EIl &ngulo de desplaza-
miento 6 del péndulo, medido desde la vertical, como se ilustra en la figura 5.3.3, se
considera positivo cuando se mide a la derecha de OP y negativo a la izquierda de OP.
Ahora recuerde que el arco s de un circulo de radio | se relaciona con el angulo central
0 por la férmula s = 16. Por tanto, la aceleracidn angular es

dt? dt?’
De la segunda ley de Newton tenemos que
d2e
F=ma=ml—.
dt?

De la figura 5.3.3 se ve que la magnitud de la componente tangencial de la fuerza
debida al peso W es mg sen 6. En cuanto a direccion esta fuerza es —mg sen 6 porque
apunta a la izquierda para 6 > 0y a la derecha para 6 < 0. Se igualan las dos versiones
distintas de la fuerza tangencial para obtener ml d26/dt? = —mg sen 6, 0

d?e g

— +>sen6 =0,
LINEALIZACION  Como resultado de la presencia de sen 6, el modelo en (6) es no
lineal. En un intento por entender el comportamiento de las soluciones de ecuaciones
diferenciales no lineales de orden superior, en ocasiones se trata de simplificar el pro-
blema sustituyendo términos no lineales por ciertas aproximaciones. Por ejemplo, la
serie de Maclaurin para sen 6, esta dada por

0%  6°
seno = 0—a+a—---

asi que si se usa la aproximacién sen 6 = 6 — 6°/6, la ecuacion (6) se convierte en
d20/dt? + (g/1)6 — (g/61)6° = 0. Observe que esta Gltima ecuacion es la misma que
la segunda ecuacion lineal en (2) conm = 1,k = g/l y k, = —g/6l. Sin embargo, si se
supone que los desplazamientos 6 son suficientemente pequefios para justificar el uso
de la sustitucion sen 6 = 6, entonces la ecuacion (6) se convierte en

— +26=0, 7)

Vea el problema 22 en los ejercicios 5.3. Si se hace w? = g/I, se reconoce a (7) como la
ecuacion diferencial (2) de la seccion 5.1 que es un modelo para las vibraciones libres
no amortiguadas de un sistema lineal resorte/masa. En otras palabras, (7) es de nuevo
la ecuacion lineal basica y” + Ay = 0 analizada en la pagina 201 de la seccién 5.2.
Como consecuencia se dice que la ecuacion (7) es una linealizacién de la ecuacion (6).
Debido a que la solucion general de (7) es 6(t) = ¢, cos wt + C, sen wt, esta linealiza-
cién indica que para condiciones iniciales correspondientes a oscilaciones pequefias el
movimiento del péndulo descrito por (6) es periddico.

I EJEMPLO 2 Dos problemas con valores iniciales

Las graficas de la figura 5.3.4a se obtuvieron con ayuda de un programa de solucién nu-
mérica y representan curvas solucién de la ecuacion (6) cuando w? = 1. La curva azul
. ., . .. .. 1 1

ilustra la solucion de (6) que satisface las condiciones iniciales 6(0) = 5, 8'(0) = 3,

mientras que la curva roja es la solucion de (6) que satisface 6(0) = 2, 6(0) = 2. La
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curva azul representa una solucién periddica, el péndulo que oscila en vaivén como
se muestra en la figura 5.3.4b con una amplitud aparente A =< 1. La curva roja mues-
tra que 6 crece sin limite cuando aumenta el tiempo, el péndulo comenzando desde
el mismo desplazamiento inicial recibe una velocidad inicial de magnitud suficien-
temente grande para enviarlo hasta arriba; en otras palabras, el péndulo gira respecto
a su pivote como se ilustra en la figura 5.3.4c. En ausencia de amortiguamiento, el
movimiento en cada caso continda de forma indefinida. ]

CABLES TELEFONICOS La ecuacion diferencial de primer orden dy/dx = W/T,
es la ecuacion (17) de la seccion 1.3. Esta ecuacion diferencial, establecida con la
ayuda de la figura 1.3.7 en la pagina 25, sirve como modelo matematico para la forma
de un cable flexible suspendido entre dos soportes verticales cuando el cable lleva
una carga vertical. En la seccion 2.2 se resuelve esta ED simple bajo la suposicion
de que la carga vertical que soportan los cables de un puente suspendido era el peso de
la carpeta asféltica distribuida de modo uniforme a lo largo del eje x. Con W = px, p
el peso por unidad de longitud de la carpeta asfaltica, la forma de cada cable entre los
apoyos verticales resulto ser parabolica. Ahora se esta en condiciones de determinar
la forma de un cable flexible uniforme que cuelga sélo bajo su propio peso, como un
cable suspendido entre dos postes telefonicos. Ahora la carga vertical es el cable y por
tanto, si p es la densidad lineal del alambre (medido, por ejemplo, en libras por pie) y s
es la longitud del segmento P.P, en la figura 1.3.7, entonces W = ps. Por tanto,

dy _ ps
dx T,
Puesto que la longitud de arco entre los puntos P, y P, esta dada por

(Y
S—L 1+<&> ax, 9)

del teorema fundamental del calculo se tiene que la derivada de (9) es

ds dy\?

ax 1+ <d—> . (10)
Derivando la ecuacion (8) respecto a x y usando la ecuacion (10) se obtiene la ecuacion
de segundo orden

®)

dy _ pds d?y _p dy)\?
acy_pds o dy_p dy )", 11
dx?  T,dx dx> T, bt <dx> 4y

En el ejemplo siguiente se resuelve la ecuacion (11) y se muestra que la curva del
cable suspendido es una catenaria. Antes de proceder, observe que la ecuacion diferen-
cial no lineal de segundo orden (11) es una de las ecuaciones que tienen la forma F(x,
y’,y") = 0 analizadas en la seccion 4.9. Recuerde que hay posibilidades de resolver una
ecuacion de este tipo al reducir el orden de la ecuacion usando la sustitucién u = y'.

I EJEMPLO 3 Un problema con valores iniciales

De la posicion del eje y en la figura 1.3.7 es evidente que las condiciones iniciales
relacionadas con la segunda ecuacion diferencial en (11) son y(0) = ay y'(0) = 0.

. . ., . du
Si se sustituye u = y’, entonces la ecuacion en (11) se convierte en i P V1 + ul.

x T,
Separando las variables se encuentra que

du p f . P
———— == dx seobtiene senhlu=-=x+ c,.
J Vit T, T, !



FIGURA 5.3.5 Ladistancia al cohete
es grande comparada con R.
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Ahora, y'(0) = 0 es equivalente a u(0) = 0. Puesto que senh™* 0 = 0, ¢, = 0y por
tanto, u = senh (px/T,). Por dltimo, integrando ambos lados de
dy

p T p
— =senh—x, obtenemos = —cosh —Xx + C,.
dX Tl y P Tl 2

Cony(0) = a, cosh 0 = 1, se deduce de la Gltima ecuacion que ¢, = a — T, /p. Por tanto

vemos que la forma del cable que cuelga esta dada por y = (T,/p) cosh(px/T,) +
a— T./p. ]

Si en el ejemplo 3 hemos sabido escoger desde el principio a = T, /p, entonces
la solucion del problema habria sido simplemente el coseno hiperbdlico y = (T,/p)
cosh (px/T)).

MOVIMIENTO DE UN COHETE En laseccion 1.3 se vio que la ecuacién diferencial
de un cuerpo de masa m en caida libre cerca de la superficie de la Tierra esta dada por
d_zs = — implement d_zs = —
mdtz_ mg, 0 simplemente proi g,

donde s representa la distancia desde la superficie de la Tierra hasta el objeto y se
considera que la direccidn positiva es hacia arriba. Dicho de otra forma, la suposicion
bésica en este caso es que la distancia s al objeto es pequefia cuando se compara con
el radio R de la Tierra; en otras palabras, la distancia y desde el centro de la Tierra al
objeto es aproximadamente la misma que R. Si, por otro lado, la distancia y al objeto,
por ejemplo un cohete o una sonda espacial, es grande comparada con R, entonces se
combina la segunda ley de Newton del movimiento y su ley de gravitacion universal
para obtener una ecuacion diferencial en la variable y.

Suponga que se lanza verticalmente hacia arriba un cohete desde el suelo como se
ilustra en la figura 5.3.5. Si la direccion positiva es hacia arriba y se desprecia la resis-
tencia del aire, entonces la ecuacion diferencial de movimiento después de consumir
el combustible es

2 2
Y Mmoo gy M @
dt y dt? y?

donde k es una constante de proporcionalidad, y es la distancia desde el centro de la
Tierra al cohete, M es la masa de la Tierra y m es la masa del cohete. Para determinar
la constante k, se usa el hecho de que cuando y = R, kMm/R? = mg o k = gR?/M. Asi
que la dltima ecuacién en (12) se convierte en

d? R?

dTZ - 9o (13)

y2
Véase el problema 14 en los ejercicios 5.3.

MASA VARIABLE Observe en la explicacion anterior que se describe el movimiento
del cohete después de que ha quemado todo su combustible, cuando supuestamente su
masa m es constante. Por supuesto, durante su ascenso la masa total del cohete propul-
sado varia a medida que se consume el combustible. La segunda ley del movimiento,
como la adelant6 Newton en un principio, establece que cuando un cuerpo de masa m
se mueve por un campo de fuerza con velocidad v, la rapidez de cambio respecto al
tiempo de la cantidad de movimiento mv del cuerpo es igual a la fuerza aplicada o neta
F que actiia sobre el cuerpo:

d
F= (). (14)

Si m es constante, entonces la ecuacion (14) produce la forma mas familiar F = m dv/dt
= ma, donde a es la aceleracion. En el siguiente ejemplo se usa la forma de la segunda
ley de Newton dada en la ecuacion (14), en la que la masa m del cuerpo es variable.
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51b
fuerza

hacia

FIGURA 5.3.6 Cadena jalada hacia
arriba por una fuerza constante.

I EJEMPLO 4 Cadena jalada hacia arriba por una fuerza constante

Una cadena uniforme de 10 pies de largo se enrolla sin tension sobre el piso. Un ex-
tremo de la cadena se jala verticalmente hacia arriba usando una fuerza constante de
5 libras. La cadena pesa 1 libra por pie. Determine la altura del extremo sobre el nivel
de suelo al tiempo t. Véase la figura 5.3.6.

SOLUCION  Supongamos que x = x(t) denota la altura del extremo de la cadena en el
aire al tiempo t, v = dx/dt y que la direccion positiva es hacia arriba. Para la porcion de
la cadena que esta en el aire en el tiempo t se tienen las siguientes cantidades variables:

peso: W = (x pie) - (1 Ib/pie) = x,
masa: m = W/g = x/32,
fuerzaneta:. F =5-W =5 —x.

Asi de la ecuacion (14) se tiene
regla del producto

dx dv dx
E(ﬁV)—S—X 0 XE +VE = 160 — 32x. (15)
Debido a que v = dx/dt, la Gltima ecuacion se convierte en
d?x  (dx)?
—+ =) + =
X a2 (dt) 32x = 160, (16)

La segunda ecuacion diferencial no lineal de segundo orden (16) tiene la forma F(x, x’,
X") = 0, que es la segunda de las dos formas consideradas en la seccién 4.9 que posi-
blemente se pueden resolver por reduccién de orden. Para resolver la ecuacion (16), se

vuelve a (15) y se usa v = X’ junto con la regla de la cadena. De dv = dvdx _ | dv

=V —
la segunda ecuacidn en (15) se puede escribir como dt  dxdt dx
d
XV d—‘)’( +V2 = 160 — 32x. (17

Al inspeccionar la ecuacion (17) podria parecer de dificil solucién, puesto que no se
puede caracterizar como alguna de las ecuaciones de primer orden resueltas en el capi-
tulo 2. Sin embargo, si se reescribe la ecuacion (17) en la forma diferencial M(x, v)dx
+ N(x, v)dv = 0, se observa que, aunque la ecuacion

(V® + 32x — 160)dx + xvdv =0 (18)

no es exacta, se puede transformar en una ecuacion exacta al multiplicarla por un
factor integrante. De (My — N)/N = 1/x se ve de (13) de la seccion 2.4 que un factor

integrante es e/dx/x = ginx = x_Cuando la ecuacion (18) se multiplica por u(X) = X, la
ecuacion resultante es exacta (compruebe). Identificando of /9x = xv? + 32x2 — 160
x, of /ov = x?v y procediendo después como en la seccion 2.4, se obtiene

lx2v2 + ¥x3 — 80x2 = ¢;. (19)
2 3

Puesto que se supuso que al principio toda la cadena esta sobre el piso, se tiene x(0)
= 0. Esta altima condicion aplicada a la ecuacion (19) produce ¢, = 0. Resolviendo
la ecuacion algebraica $x%v2 + 2x3 — 80x? = 0 parav = dx/dt > 0, se obtiene otra
ecuacion diferencial de primer orden,

dx 64
=== /160 — —x.
at 3"
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x La Ultima ecuacion se puede resolver por separacion de variables. Se debe comprobar que

P NWDOOOoO N

1 L/
0 0.5 1 15 2 25

FIGURA 5.3.7 Gréfica de (21) para
x(t) = 0.

Esta vez la condicion inicial x(0)
al cuadrado ambos lados de (20) y despejando x, llegamos al resultado deseado,

3 64 \Y2
o —t+c,. 20
3 (160 3 x> t+c (20)

= 0indicaque c, = —3V/10/8. Por Ultimo, elevando

(21)

-t

15( 4@)2
15 )

(t)———z 1

La gréafica de la ecuacion 21 que se presenta en la figura 5.3.7 no se debe, con bases
fisicas, aceptar tal cual. VVéase el problema 15 de los ejercicios 5.3. ]

EJERCICIOS 5.3

Las respuestas a los problemas con nimero impar comienzan en la pagina RES-8.

Al profesor Ademés de los problemas 24 y 25, todos o
parte de los problemas 1 a 6, 8 a 13, 15, 20 y 21 podrian servir
como tareas del laboratorio de computacién.

Resortes no lineales

En los problemas 1 al 4, la ecuacion diferencial dada es mo-
delo de un sistema resorte/masa no amortiguado en el que la
fuerza restauradora F(x) en (1) es no lineal. Para cada ecua-
cion utilice un programa de solucién numérica para trazar las
curvas solucion que satisfacen las condiciones iniciales del
problema. Si al parecer las soluciones son periddicas, use la
curva solucién para estimar el periodo T de las oscilaciones.

d2
1L 5 +x3=
a2 x° =0,
x(0) = 1,X(0) = 1; x(0) =3, x(0) = —
2
2. ?j;(+4x—16x3 0,
x(0) = 1,x'(0) =1, x(0) = —-2,X(0) =2
d2x
3. S+ 22X — X =
e 2X — X 0,
x(0) = 1,X(0) = 1, x(0) =2 x(0) = —
d2x .
4. F + xe?01x = 0,
x(0) = 1,X(0) =1, x(0) =3,x(0)=—

5. En el problema 3, suponga que la masa se libera desde la
posicion inicial x(0) = 1 con una velocidad inicial x’(0)
= X,. Use un programa de solucion numérica para estimar
el valor mas pequefio de [x,| en el que el movimiento de la
masa es no periédico.

6. En el problema 3, suponga que la masa se libera desde una
posicion inicial x(0) = x, con velocidad inicial x"(0) = 1.
Usando un programa de solucion numérica estime un inter-
valo a = x; = b para el cual el movimiento sea oscilatorio.

7. Determine una linealizacién de la ecuacién diferencial
del problema 4.

8. Considere el modelo de un sistema resorte/masa no lineal
sin amortiguamiento dado por x” + 8x — 6x° + x* = 0.
Use un programa de solucién numérica para analizar la
naturaleza de las oscilaciones del sistema que correspon-
den a las condiciones iniciales:

x(0) = 1,X'(0) = 1; x(0) = =2,x'(0) = 3
x(0) = V2,x'(0) = 1; x(0) =2,x(0) =3
x(0) =2,x(0) =0, x(0)=-V2,x(0)=—

En los problemas 9 y 10 la ecuacion diferencial dada es un
modelo de un sistema resorte/masa no lineal amortiguado. Pre-
diga el comportamiento de cada sistema cuando t — . Para
cada ecuacion use un programa de solucion numérica para ob-
tener las curvas solucion que satisfacen las condiciones inicia-
les del problema dadas.

d?x  dx
9. SX L X te=

dtz = dt x+x=0,

x(0) = =3,x'(0) = 4, x(0) =0,x(0) = —
10 @+d—)(+x—x3—0

Codtz dt ’

x(0) =0,x(0) =% x(0)=-1,x(0) =1

11. El modelo mx” + kx + kx® = F cos wt de un sistema no
amortiguado resorte/masa forzado en forma periddica se
llama ecuacion diferencial de Duffing. Considere el pro-
blema con valores iniciales X" + x + k x* = 5 cos t, x(0) =
1, x'(0) = 0. Use un programa de solucmn numeérica para in-
vestigar el comportamiento del sistema para valores de k, > 0
que van de k, = 0.01 ak, = 100. Exprese sus conclusiones.

12. a) Encuentre los valores de k; < 0 para los cuales el
sistema del problema 11 es oscilatorio.

b) Considere el problema con valores iniciales
X"+ x+kx*=cosdt, x(0)=0, x'(0)=0.

Encuentre valores para k; < 0 para los cuales el sis-
tema es oscilatorio.
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Péndulo no lineal

13.

Considere el modelo del péndulo no lineal amortiguado
libre dado por
2
%—tf + 2)\%—? + w?senf = 0.

Use un programa de solucion numérica para inves-
tigar si el movimiento en los dos casos A2 — w?2>0y
A2 — w? < 0 corresponde, respectivamente, a los casos
sobreamortiguado y subamortiguado analizados en la
seccion 5.1 para sistemas resorte/masa. Elija las condi-
ciones iniciales apropiadas y los valores de A y w.

Movimiento de un cohete

14.

a) Use la sustitucion v = dy/dt para despejar de la ecua-
cion (13) a v en términos de y. Suponiendo que la
velocidad del cohete cuando se agota el combustible
esv =V, yy = R en ese instante, demuestre que el
valor aproximado de la constante ¢ de integracién es
c = —gR + ;v

b) Use la solucion para v del inciso a) con el fin de de-
mostrar que la velocidad de escape de un cohete esta
dada por v, = V2gR. [Sugerencia: Tome y — %y
suponga que v > 0 para todo tiempo t.]

c) Elresultado del inciso b) se cumple para cualquier cuerpo
del sistema solar. Use los valores g = 32 pies/s?’y R =
4000 millas para demostrar que la velocidad de escape de
la Tierra es (aproximadamente) v, = 25 000 mi/h.

d) Determine lavelocidad de escape en la Luna i la acelera-
cion debida a la gravedad es 0.165g y R = 1080 millas.

Masa variable

15.

16.

a) En el ejemplo 4, ;qué longitud de la cadena se es-
peraria, por intuicion, que pudiera levantar la fuerza
constante de 5 libras?

b) ¢Cudl es la velocidad inicial de la cadena?

c) ¢Por qué el intervalo de tiempo que corresponde a
X(t) = 0 ilustrado en la figura 5.3.7, no es el inter-
valo | de definicion de la solucién (21)? Determine
el intervalo I. ;Qué longitud de la cadena se levanta
en realidad? Explique cualquier diferencia entre esta
respuesta y la prediccion del inciso a).

d) ¢Por qué esperaria que x(t) fuese una solucidn perio-
dica?

Una cadena uniforme de longitud L, medida en pies, se man-
tiene verticalmente por lo que el extremo inferior apenas
toca el piso. La cadena pesa 2 Ib/pie. El extremo superior
que esta sujeto se libera desde el reposoent = 0y la cadena
cae recta. Si x(t) denota la longitud de la cadena en el piso al
tiempo t, se desprecia la resistencia del aire y se determina
que la direccién positiva es hacia abajo, entonces

d2x dx\?
(L_XW_<E> —Lg.

a) Resuelva v en términos de x. Determine x en térmi-
nos de t. Exprese v en términos de t.

b) Determine cuanto tarda en caer toda la cadena al suelo.

c) ¢Qué velocidad predice el modelo del inciso a) para el
extremo superior de la cadena cuando toca el suelo?

Diferentes modelos matematicos
17. Curvade persecucion  En un ejercicio naval, un barco S,

18.

es perseguido por un submarino S, como se muestra en la
figura 5.3.8. El barco S, parte del punto (0, 0)ent = 0y se
mueve a lo largo de un curso en linea recta (el eje y) a una
rapidez constante v,. El submarino S, mantiene al barco S,
en contacto visual, indicado por la linea punteada L en la
figura mientras que viaja con una rapidez constante v, a lo
largo de la curva C. Suponga que el barco S, comienzaen el
punto (a, 0),a>0,ent =0y que L es tangente a C.
a) Determine un modelo mateméatico que describe la
curva C.
b) Encuentre una solucion explicita de la ecuacion dife-
rencial. Por conveniencia definar = v /v,.

c¢) Determine si las trayectorias de S, y S, alguna vez se in-
terceptarian al considerar los casosr > 1,r <1lyr = 1.

[Sugerencia: :—t = ﬂﬁ donde s es la longitud de
X

ds dx
arco medida a lo largo de C.]

FIGURA 5.3.8 Curva de persecucion del problema 17.

Curva de persecucion En otro ejercicio naval, un des-
tructor S, persigue a un submarino S,. Suponga que S, en
(9,0) enel eje x detectaaS, en (0, 0) y que al mismo tiempo
S, detecta a S,. El capitan del destructor S, supone que el
submarino emprendera una accién evasiva inmediata y es-
pecula que su nuevo curso probable es la recta indicada en
la figura 5.3.9. Cuando S, esta en (3, 0), cambia de su curso
en linea recta hacia el origen a una curva de persecucion
C. Suponga que la velocidad del destructor es, en todo mo-
mento, una constante de 30 millas/h y que la rapidez del
submarino es constante de 15 millas/h.
a) Explique por qué el capitan espera hasta que S, llegue
a (3, 0) antes de ordenar un cambio de curso a C.
b) Usando coordenadas polares, encuentre una ecuacion
r = f(0) para la curva C.
c) Sea que T denote el tiempo, medido desde la detec-
cion inicial, en que el destructor intercepta al subma-
rino. Determine un limite superior para T.
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FIGURA 5.3.9 Curva de persecucioén del problema 18.

Problemas para analizar

19. Analice por qué el término de amortiguamiento de la
ecuacion (3) se escribe como

dx| dx (dx)2

Ba at enlugarde B pry

20. a) Experimente con una calculadora para encontrar un in-
tervalo 0 = 6 = 6,, donde 6 se mide en radianes, para
el cual se considera que sen 6 = 6 es una estimacion
bastante buena. Luego, use un programa de grafica-
cion para trazar las gréficasdey = xyy = senxen el
mismo eje de coordenadas para 0 = x =< /2. ¢ Las gra-
ficas confirman sus observaciones con la calculadora?

b) Utilice un programa de solucion numérica para trazar
las curvas solucion de los problemas de valor inicial.

d26 ,
pr +sen6 =10, 60) =46, 60 =0
d2

y d_tf + 6 =0, 0(0) =6, 6'(0)=0

para varios valores de 6 en el intervalo 0 <= 6 < 6, de-
terminado en el inciso a). Luego, trace la gréafica cur-
vas de solucion de los problemas con valores iniciales
para varios valores de 6, para los cuales 6, > 6,.

21. a) Considere el péndulo no lineal cuyas oscilaciones se
definen por la ecuacion (6). Use un programa de solu-
cién numérica como ayuda para determinar si un pén-
dulo de longitud | oscilara més rapido en la Tierra o
en la Luna. Use las mismas condiciones iniciales, pero
elijalas de tal modo que el péndulo oscile en vaivén.

b) ¢Para qué lugar del inciso a) el péndulo tiene mayor
amplitud?

c) ¢Las conclusiones de los incisos a) y b) son las mis-
mas cuando se emplea el modelo lineal (7)?

Tarea para el laboratorio de computacion
22. Considere el problema con valores iniciales

d?6 T 1
— +sen® =0, 6(0)=-— 60)=—-2
dt? © 12 © 3
para un péndulo no lineal. Puesto que no se puede resol-
ver la ecuacion diferencial, no es posible encontrar una

23.
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solucion explicita de este problema. Pero suponga que se
desea determinar la primer t, > 0 para la cual el péndulo
de la figura 5.3.3, comenzando desde su posicion inicial
a la derecha, alcanza la posicioén OP, es decir, la primera
raiz positiva de 0(t) = 0. En este problema y el siguiente,
se examinan varias formas de como proceder.

a) Aproxime t resolviendo el problema lineal
d29/dt? + 6 = 0,0(0) = w/12, 6'(0) = —%

b) Use el método ilustrado en el ejemplo 3 de la seccion
4.9 para encontrar los primeros cuatro términos no
nulos de una solucion en serie de Taylor 6(t) centrada
en 0 para el problema con valores iniciales no lineal.
Dé los valores exactos de los coeficientes.

c) Use los dos primeros términos de la serie de Taylor
del inciso b) para aproximar t,.

d) Emplee los tres primeros términos de la serie de
Taylor del inciso b) para aproximar t,.

e) Ultilice unaaplicacién de un SAC (o una calculadora gra-
fica) para encontrar raices y los primeros cuatro términos
de la serie de Taylor del inciso b) para aproximar t,.

f) En esta parte del problema se proporcionan las ins-
trucciones de Mathematica que permiten aproximar
la raiz t,. El procedimiento se modifica con facilidad
por lo que se puede aproximar cualquier raiz de 6(t) =
0. (Si no tiene Mathematica, adapte el procedimiento
mediante la sintaxis correspondiente para el SAC que
tiene.) Reproduzca con precision y luego, a su vez, eje-
cute cada linea de la secuencia dada de instrucciones.

sol = NDSolve[{y"[t] + Sin[y[t]] == 0,
y[0] == Pi/12,y'[0] == —1/3},
y, {t, 0, 5}] //Flatten

Solucién = y[t]/.sol

Clear[y]

y[t_]: = Evaluate[Solucion]

y[t]

grl = Plot[y[t], {t, 0, 5}]

root = FindRoot[y[t] == 0, {t, 1}]

g) Modifique de manera apropiada la sintaxis del inciso f) y
determine las siguientes dos raices positivas de 6(t) = 0.

Considere un péndulo que se libera desde el reposo con un
desplazamiento inicial de 6, radianes. Resolviendo el modelo
lineal (7) sujeto a las condiciones iniciales 6(0) = 6, 6'(0) =
0se obtiene 6(t) = 6, cos \V/g/lt. El periodo de oscilaciones
que se predice con este modelo, se determina mediante la co-
nocida formula T = 27 /Vg/l = 27 V1/g. Lo interesante
de esta formula para T es que no depende de la magnitud del
desplazamiento inicial 6. En otras palabras, el modelo lineal
predice que el tiempo que tardaria el péndulo en oscilar desde
un desplazamiento inicial de, digamos, 6, = 7 /2 (= 90°) a
—ar /2 y de regreso otra vez, seria exactamente el mismo que
tardaria en completar el ciclo de, digamos, 6, = 7 /360 (=
0.5°) a —7 /360. Esto es ilégico desde el punto de vista in-
tuitivo ya que el periodo real debe depender de 6.
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Si se supone que g = 32 pies/s?y | = 32 pies, enton-
ces el periodo de oscilacion del modelo lineal es T = 27
s. Compare este ultimo nimero con el periodo predicho
mediante el modelo no lineal cuando 6, = /4. Usando
un programa de solucion numérica que sea capaz de gene-
rar datos concretos y reales, aproxime la solucion de

2
‘jij +seng =0, 6(0) = 727 0'(0) = 0

enelintervaloa 0 =t = 2. Como en el problema 22, si t,
denota la primera vez que el péndulo alcanza la posicion
OP en la figura 5.3.3, entonces el periodo del péndulo no
lineal es 4t,. Aqui esta otra forma de resolver la ecuacion
0(t) = 0. Experimente con tamarfios de paso y haga avan-
zar el tiempo, comenzando ent = 0y terminando en t =
2. De sus datos concretos, observe el tiempo t, cuando
6(t) cambia, por primera vez de positiva a negativa. Use
el valor t, para determinar el valor verdadero del periodo
del péndulo no lineal. Calcule el error relativo porcentual
en el periodo estimado por T = 277.

Problema aportado

24.

Warren S. Wright

Profesor del Departamento
de Matematicas, Universidad
Loyola Marymount

El péndulo balistico His-
téricamente para mantener el
control de calidad sobre las
municiones (balas) producidas por una linea de montaje, el
fabricante usaria un péndulo balistico para determinar la
velocidad de laboca de un arma, es decir, lavelocidad de una
bala cuando deja el barril. El péndulo balistico (inventado en
1742) es simplemente un péndulo plano que consiste en una
varilla de masa despreciable que esta unida a un blogque de
madera de masam,. El sistemase pone en movimiento por el
impacto de una bala que se estd moviendo horizontalmente
con una velocidad desconocida v,; al momento del impacto,
que se toma como t = 0, la masa combinada es m, + m,,
donde m, es la masa de la bala incrustada en la madera. En
(7) vimos que en el caso de pequefas oscilaciones, el des-
plazamiento angular 6(t) del péndulo plano que se mues-
traen la figura 5.3.3 esta dado por la ED lineal 8” + (g/1)6
= 0, donde 6 > 0 corresponde al movimiento a la dere-
cha de la vertical. La velocidad v, se puede encontrar mi-
diendo laalturah de lamasam  + m, enelangulo de despla-
zamiento maximo 6 . que se muestra en la figura 5.3.10.

max

Intuitivamente, la velocidad horizontal V de la masa
combinada (madera méas bala) después del impacto es
solo una fraccion de la velocidad v, de la bala, es decir,

my
V= (—=2—),
m, + m,

Ahora, recuerde que una distancia s que viaja por una parti-
cula que se mueve a lo largo de una trayectoria circular esta
relacionada con el radio 'y el &ngulo central 6 por la formula
s = 10. Derivando la ultima férmula respecto al tiempo t, se
tiene que la velocidad angular w de la masa y su velocidad
lineal v esté relacionada por v = lw. Por tanto, la veloci-
dad angular w, en el tiempo t para el que la bala impacta el
bloque de madera esta relacionada con V por V = lw, 0

my, Vb
Wy =\ |-
m, + my/ |
a) Resuelva el problema con valores iniciales

2
9,9 0 00 =0

dt2 I 9’(0) = .

b) Use el resultado del inciso a) para demostrar que
m, + m
Vp = < Wm b)memax-
b

¢) Use la figura 5.3.10 para expresar cos 6 . en ter-
minos de | y de h. Después utilice los primeros dos
términos de la serie de Maclaurin para cos 6 para ex-
presar 6_. en términos de | y de h. Por ultimo, de-
muestre que v, esta dado (aproximadamente) por

+
o = (M) g

b

d) Use el resultado del inciso c) para encontrar v, cuando
m,=5g,m, =1kgyh==6cm.

.
N
A
P
| ’Oméx\\\
N
T
h
Mh——>| m —
b Vb w |7y 4

FIGURA 5.3.70 Péndulo balistico.

REPASO DEL CAPITULO 5

Las respuestas a los problemas con nimero impar
comienzan en la pagina RES-8.

Conteste los problemas 1 al 8 sin consultar el texto. Complete
el espacio en blanco o conteste verdadero o falso.

1.

Si una masa que pesa 10 libras alarga 2.5 pies un resorte,
una masa que pesa 32 libras loalarga _—_ pies.

. El periodo del movimiento armdnico simple de una masa

que pesa 8 libras, unida a un resorte cuya constante es
6.25 Ib/pie es de segundos.

. La ecuacion diferencial de un sistema resorte/masa es x”

+ 16x = 0. Si la masa se libera inicialmente desde un



punto que estd 1 metro arriba de la posicion de equilibrio
con una velocidad hacia abajo de 3 m/s, laamplitud de las
vibraciones es de metros.

La resonancia pura no tiene lugar en presencia de una
fuerza de amortiguamiento.

En presencia de una fuerza de amortiguamiento, los des-
plazamientos de una masa en un resorte siempre tienden
a cero cuando t — o,

Una masa en un resorte cuyo movimiento esta critica-
mente amortiguado tiene posibilidades de pasar por la
posicidn de equilibrio dos veces.

En amortiguamiento critico cualquier aumento de amorti-
guamiento dara como resultado un sistema
Si el movimiento armonico simple se describe mediante

X = (\/2/2)sen(2t + ¢), cuando las condiciones inicia-
lessonx(0) = —3 yx'(0) = 1.

En los problemas 9 y 10 los eigenvalores y las funciones pro-
pias del problema con valores en la fronteray” + Ay = 0, y’(0)
=0,y(m)=0sonA =n,n=0,12 ..,yy = Co0snx
respectivamente. Llene los espacios en blanco.

9.

10.

11.

12.

13.

Una solucion del PVF cuando A = 8 esy =
porque

Una solucion del PVF cuando A = 36esy =
porque

Un sistema resorte/masa libre no amortiguado oscila con
un periodo de 3 segundos. Cuando se eliminan 8 libras
del resorte, el sistema tiene un periodo de 2 segundos.
¢ Cudl era el peso de la masa original en el resorte?

Una masa que pesa 12 libras alarga 2 pies un resorte. Al
inicio la masa se libera desde un punto 1 pie abajo de la posi-
cion de equilibrio con una velocidad ascendente de 4 pies/s.

a) Determine la ecuacion de movimiento.

b) ¢Cudles son la amplitud, periodo y frecuencia del
movimiento arménico simple?

c) ¢En qué instantes la masa vuelve al punto situado a 1
pie abajo de la posicién de equilibrio?

d) ¢En qué instantes la masa pasa por la posicion de
equilibrio en direccién hacia arriba? ¢En direccion
hacia abajo?

e) ¢Cual es lavelocidad de lamasaent = 37/16 s?

f) ¢En qué instantes la velocidad es cero?

Una fuerza de 2 libras estira 1 pie un resorte. Con un ex-
tremo fijo, se une al otro extremo una masa que pesa 8 libras.
El sistema yace sobre una mesa que imparte una fuerza de
friccion numeéricamente igual a 3 veces la velocidad instan-
tanea. Al inicio, la masa se desplaza 4 pulgadas arriba de la
posicion de equilibrio y se libera desde el reposo. Encuentre
la ecuacion de movimiento si el movimiento tiene lugar a lo
largo de la recta horizontal que se toma como el eje x.

14.

15.

16.

17.

18.

19.

20.
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Una masa que pesa 32 libras alarga 6 pulgadas un resorte. La
masa se mueve en un medio que ofrece una fuerza de amor-
tiguamiento que es numéricamente igual a B veces la velo-
cidad instantanea. Determine los valores de 8 > 0 para los
que el sistema resorte/masa exhibe movimiento oscilatorio.

Un resorte con constante k = 2 se suspende en un liquido
que ofrece una fuerza de amortiguamiento numéricamente
igual a 4 veces la velocidad instantanea. Si una masa m se
suspende del resorte, determine los valores de m para que
el movimiento libre posterior sea no oscilatorio.

El movimiento vertical de una masa sujeta a un resorte se
describe mediante el PVI X" + X’ + x = 0, x(0) = 4,
X'(0) = 2. Determine el desplazamiento vertical maximo
de la masa.

Una masa que pesa 4 libras estira 18 pulgadas un re-
sorte. Se aplica al sistema una fuerza periddica igual a
f(t) = cos yt + sen yt comenzando en t = 0. En ausencia
de una fuerza de amortiguamiento, ¢para qué valor de y
el sistema esta en un estado de resonancia pura?

Encuentre una solucion particular para x” + 2AX" + w?X
= A, donde A es una fuerza constante.

Una masa que pesa 4 libras se suspende de un resorte cuya
constante es 3 Ib/pie. Todo el sistema se sumerge en un
liquido que ofrece una fuerza de amortiguamiento numé-
ricamente igual a la velocidad instantanea. Comenzando
ent = 0, se aplica al sistema una fuerza externa igual f(t)
= e~'. Determine la ecuacién de movimiento si la masa se
libera al inicio desde el reposo en un punto que esta 2 pies
abajo de la posicion de equilibrio.

a) Dos resortes se unen en serie como se muestra en la
figura 5.R.1. Si se desprecia la masa de cada resorte,
muestre que la constante de resorte efectiva k del sis-
tema se define mediante 1/k = 1/k, + 1/k,.

b) Una masa que pesa W libras produce un alargamiento
de % pie en un resorte y uno de % pie en otro resorte. Se
unen los dos resortes y después se fija la masa al resor-
te doble como se ilustra en la figura 5.R.1. Suponga que
el movimiento es libre y que no hay fuerza de amor-
tiguamiento presente. Determine la ecuacién de movi-
miento si la masa se libera al inicio en un punto situado
1 pie abajo de la posicion de equilibrio con una veloci-
dad de descenso de % piefs.

c) Demuestre que la velocidad maxima de la masa es

V3g + 1.

FIGURA 5.R.1T Resortes unidos del problema 20.
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21.

22.

23.

24,

° CAPITULO 5 MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

Un circuito en serie contiene una inductancia de L = 1
h, una capacitancia de C = 10~* f y una fuerza electro-
motriz de E(t) = 100 sen 50t V. Al inicio, lacargaqy la
corriente i son cero.

a) Determine la carga q(t).
b) Determine la corriente i(t).

c) Calcule los tiempos para los que la carga en el capa-
citor es cero.

a) Demuestre que la corriente i(t) en un circuito en serie
d?i di .
i ionL — + R — + =i = E'(t
LRCsatisface laecuacion L - i ®,

donde E’(t) denota la derivada de E(t).

b) Se pueden especificar dos condiciones iniciales i(0) e
i'(0) para la ED del inciso a). Si i(0) =i,y q(0) = q,,
(cuél esi’(0)?

Considere el problema con valores en la frontera
y"+ay =0, y(0) =y@2n), y'(0)=y2m).

Demuestre que excepto para el caso A = 0, hay dos fun-
ciones propias independientes que corresponden a cada
valor propio.

Una cuenta esta restringida a deslizarse a lo largo de una

varilla sin friccion de longitud L. La varilla gira en un

plano vertical con velocidad angular constante w respecto

a un pivote P fijo en el punto medio de la varilla, pero el

disefio del pivote permite que la cuenta se mueva a lo

largo de toda la varilla. Sea r(t) la posicion de la cuenta
respecto a este sistema de coordenadas giratorio segun se
ilustra en la figura 5.R.2. Con el fin de aplicar la segunda
ley de Newton del movimiento a este marco de referencia
rotatorio, es necesario usar el hecho de que la fuerza neta
que actlia en la cuenta es la suma de las fuerzas reales (en
este caso, la fuerza debida a la gravedad) y las fuerzas
inerciales (coriolis, transversal y centrifuga). Las mate-
maéticas del caso son un poco complicadas, asi que sélo

se da la ecuacion diferencial resultante para r:

d?r )
M—— = Mwr — Mg senwt.
dt?

a) Resuelva la ED anterior sujeta a las condiciones ini-
ciales r(0) = r, r'(0) = v,.

b) Determine las condiciones iniciales para las cuales la
cuenta exhibe movimiento armonico simple. ¢Cual es
la longitud minima L de la varilla para la cual puede ésta
acomodar el movimiento arménico simple de la cuenta?

c) Para las condiciones iniciales distintas de las obtenidas en
el inciso b), la cuenta en algin momento debe salir de la
varilla. Explique usando la solucién r(t) del inciso a).

d) Suponga que w = 1 rad/s. Use una aplicacién grafi-
cadora para trazar la solucion r(t) para las condicio-
nes iniciales r(0) = 0, r'(0) = v,, donde v, es 0, 10,
15,16, 16.1y 17.

25.

26.

e) Suponga que la longitud de la varilla es L = 40 pies.
Para cada par de condiciones iniciales del inciso d),
use una aplicacion para encontrar raices para calcular
el tiempo total que la cuenta permanece en la varilla.

FIGURA 5.R.2  Varilla rotando del problema 24.

Suponga que una masa m que permanece sobre una super-
ficie plana, secay sin friccidn esta unida al extremo libre de
un resorte cuya constante es k. En la figura 5.R.3a la masa
se muestra en la posicién de equilibrio x = 0, es decir, el
resorte no esta ni estirado ni comprimido. Como se ilustra
en la figura 5.R.3b, el desplazamiento x(t) de la masa a la
derecha de la posicion de equilibrio es positivo y negativo a
la izquierda. Obtenga una ecuacion diferencial para el mo-
vimiento (deslizante) horizontal libre de la masa. Describa
la diferencia entre la obtencién de esta ED y el analisis que
da lugar a la ecuacion (1) de la seccién 5.1.

apoyo
rigido

m

superficie sin friccion:;
|

x=0
a) equilibrio !

o] o

x(t) <0
b) movimiento

x(t) >0—

FIGURA 5.R.3 Sistema deslizante resorte/masa del
problema 25.

¢Cual es la ecuacion diferencial de movimiento en el
problema 25 si la friccién cinética (pero ninguna otra
fuerza de amortiguamiento) actta en la masa deslizante?
[Sugerencia: Suponga que la magnitud de la fuerza de
friccion cinetica es f, = umg, donde mg es el peso de la
masa y la constante u > 0 es el coeficiente de friccion
cinética. Luego considere dos casos, X’ > 0y x’ < 0.
Interprete estos casos desde un punto de vista fisico.]
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6.1 Soluciones respecto a puntos ordinarios
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6.2 Soluciones en torno a puntos singulares
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6.3.1 Ecuacion de Bessel
6.3.2 Ecuacion de Legendre

REPASO DEL CAPITULO 6

Hasta ahora se han resuelto principalmente ecuaciones diferenciales de orden

dos o superior cuando la ecuacion tiene coeficientes constantes. La Gnica
excepcidn fue la ecuacion de Cauchy-Euler que se estudio en la seccién 4.7. En
aplicaciones, las ecuaciones lineales de orden superior con coeficientes variables
son tan importantes o quiz mas que las ecuaciones diferenciales con coeficientes
constantes. Como se indicé en la seccion 4.7, aun una ecuacion simple lineal

de segundo orden con coeficientes variables tales como y” + xy = 0 no tiene
soluciones que sean funciones elementales. Pero podemos encontrar dos soluciones
linealmente independientes de y” + xy = 0; veremos en las secciones 6.1y 6.3 que
las soluciones de esta ecuacion estan definidas por series infinitas.

En este capitulo estudiaremos dos metodos de series infinitas para encontrar
soluciones de ED lineales homogéneas de segundo orden a,(x)y” + a,(x)y’ +
a,(x)y = 0 donde los coeficientes variables a,(x), a,(x) y a,(x) son, la mayoria de las
veces, simples polinomios.
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220 e CAPITULO 6 SOLUCIONES EN SERIES DE ECUACIONES LINEALES
6.1 SOLUCIONES RESPECTO A PUNTOS ORDINARIOS
REPASO DE MATERIAL
e Series de potencias (véase cualquier libro de célculo)
INTRODUCCION  En laseccién 4.3 vimos que resolver una ED lineal homogénea con coeficientes
constantes era en esencia un problema de algebra. Encontrando las raices de la ecuacion auxiliar es po-
sible escribir una solucion general de la ED como una combinacidn lineal de funciones elementales X,
Xk, xke®* cos Bx y xe** sen Bx, donde k es un entero no negativo. Pero como se indicd en la introduc-
cién de la seccion 4.7, la mayoria de las ED lineales de orden superior con coeficientes variables no
se resuelven en términos de funciones elementales. Una estrategia usual para ecuaciones de esta clase
es suponer una solucion en la forma de series infinitas y proceder de manera similar al método de
coeficientes indeterminados (seccion 4.4). En esta seccion se consideran ED lineales de segundo
orden con coeficientes variables que tienen soluciones de la forma de series de potencias.
Comenzamos con un repaso breve de algunos hechos importantes acerca de las series de poten-
cias. Para un mejor tratamiento del tema consulte un libro de célculo.
6.1.1 REPASO DE SERIES DE POTENCIAS
Recuerde de su curso de calculo que una serie de potencias en x — a es una serie infi-
nita de la forma
DX —a)" =y Cy(Xx —a) FCy(x —a)?+ -
n=0
Se dice que esta serie es una serie de potencias centrada en a. Por ejemplo, la serie
de potencias =y_, (x + 1)" esta centrada en a = —1. En esta seccion tratamos princi-
palmente con las series de potencias en X, en otras palabras, series de potencias como
Sr_ 277X = x 4+ 2x% 4+ 4x% 4+ - - - gue estan centradas en a = 0. La siguiente lista
resume algunos hechos importantes acerca de las series de potencias.
» Convergencia Unaserie de potencias =7_, c,(x — a)" es convergente en un
valor especificado de x si su sucesion de sumas parciales {S, (x)} converge, es
decir, si el Iim Sy(x) = lim 3N_, c,(x — a)" existe. Si el limite no existe
enx, entoncN:e_s) se dice que ’\Ile;)soérie es divergente.
e Intervalo de convergencia Toda serie de potencias tiene un intervalo de
convergencia. El intervalo de convergencia es el conjunto de todos los nimeros
reales x para los que converge la serie.
» Radiode convergencia Toda serie de potencias tiene un radio de convergencia
R. Si R > 0, entonces la serie de potencias >*_,c,(x — a)" converge para |x
- a| < Ry diverge para |x — a| > R. Si la serie converge s6lo en su centro
a, entonces R = 0. Si la serie converge para toda x, entonces se escribe R =
oo, Recuerde que la desigualdad de valor absoluto |x — a| < R es equivalente a
la desigualdad simultanea a — R < x < a + R. Una serie de potencias podria
: converger o no en los puntos extremos a — Ry a + R de este intervalo.

di _convergeneia : » Convergencia absoluta Dentro de su intervalo de convergencia, una serie
ivergencia  absoluta  divergencia i . ,

| . ! ” de potencias converge absolutamente. En otras palabras, si x es un numero en

a-R a a+R el intervalo de convergencia y no es un extremo del intervalo, entonces la serie

1{Ia serie podriaj
converger o divergir
en los puntos extremos

FIGURA 6.1.1 Convergencia absoluta
dentro del intervalo de convergencia y
divergencia fuera de este intervalo.

de valores absolutos =7_|c,(x — a)"| converge. Véase la figura 6.1.1.
e Prueba de la razon La convergencia de una serie de potencias suele determi-
narse mediante el criterio de la razon. Suponga que ¢, # 0 para toda n'y que

Cora(x — a@)"**
Co(x — a)"

cn+l
Cn

=|x—a = L.

lim
n—o

n—o
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Si L < 1, la serie converge absolutamente; si L > 1, la serie diverge, y si
L = 1, el criterio no es concluyente. Por ejemplo, para la serie de potencias
r_1(x — 3)"/2™n el criterio de la razén da

(X _ 3)n+1
2" (n + 1) n 1
lim|————=| = |x—3| lim ——— ==|x — 3|;
Jim =3 | 7! | Jim 20+ 2% 8
2"n

la serie converge absolutamente para 5 |X — 3| < lo|x — 3| <20

1 <x <5, Esta ltima desigualdad define el intervalo abierto de convergencia.
La serie diverge para |X — 3| > 2, es decir, parax > 50 x < 1. En el extremo
izquierdo x = 1 del intervalo abierto de convergencia, la serie de constantes

>, ((—1)%n) es convergente por la prueba de series alternantes. En el extremo
derecho x = 5, la serie =,2; (1/n) es la serie arménica divergente. El intervalo
de convergencia de la serie es [1, 5) y el radio de convergenciaes R = 2.

Una serie de potencias define una funcion  Una serie de potencias define una
funcion f(x) = Z;_ c,(x — a)" cuyo dominio es el intervalo de convergencia
de la serie. Si el radio de convergencia es R > 0, entonces f es continua,
derivable e integrable en el intervalo (a — R, a + R). Ademas, f'(x) y J(x)dx
se encuentran derivando e integrando término a término. La convergencia

en un extremo se podria perder por derivacién o ganar por integracion. Si

y = 2”_, ¢, X" es una serie de potencias en x, entonces las primeras dos
derivadasson y’ = >7_onx""tyy” = 3*_,n(n — 1)x"~2 Observe que el
primer término en la primera derivada y los dos primeros términos de la segunda
derivada son cero. Se omiten estos términos cero 'y se escribe

y' = 2ty Y= Xcn(n - DX @
n=1 n=2
Estos resultados son importantes y se usan en breve.

Propiedad de identidad Si 25_y¢,(x —a)" = 0,R > 0, para los
nimeros x en el intervalo de convergencia, entonces ¢, = 0 para toda n.
Analitica en un punto Una funcidn f es analitica en un punto a si se puede
representar mediante una serie de potencias en x — a con un radio positivo o
infinito de convergencia. En calculo se ve que las funciones como €*, cos X,
sen x, In(1 — x), etcétera, se pueden representar mediante series de Taylor.
Recuerde, por ejemplo que

x3 X X2 x* X8

X
e=1+—+_—~-+- senx=x—_—~+——- COSX=1—-——4+———+... (2

1!

2!

31 8l 21 41 6!

para | x| < co. Estas series de Taylor centradas en 0, llamadas series de
Maclaurin, muestran que e, sen X y cos x son analiticas en x = 0.
Aritmética de series de potencias Las series de potencias se combinan
mediante operaciones de suma, multiplicacion y division. Los procedimientos
para las series de potencias son similares a los que se usan para sumar,
multiplicar y dividir dos polinomios, es decir, se suman los coeficientes de
potencias iguales de x, se usa la ley distributiva y se relinen términos semejantes
y se realiza la division larga. Por ejemplo, usando las series de (2), tenemos que

X2 X3 x4 X3 X5 X7
gsenx =(1+x+—-+—-—+—+---J]Ix——+ +o..

2 6 24 6 120 5040

1 1 1 1 1 1 1
Dx+ @+ |-+ e+ -+ e X+
(@ (D)x ( 6 2>X ( 6 6>X (120 12 24>X
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Puesto que las series de potencias para e*y sen x convergen para |x| < «, la
serie de productos converge en el mismo intervalo. Los problemas relaciona-
dos con multiplicacién o division de series de potencias se resuelven mejor
usando un SAC.

CORRIMIENTO DEL INDICE DE LA SUMA Para el resto de esta seccion, asf
como este capitulo, es importante que se acostumbre a simplificar la suma de dos
0 mas series de potencias, cada una expresada en notacion de suma (sigma), en una
expresién con una sola >, Como se muestra en el ejemplo siguiente, la combina-
cién de dos 0 mas sumas en una sola suele requerir que se vuelva a indizar la serie,
es decir, que se realice un cambio en el indice de la suma.

I EJEMPLO T Suma de dos series de potencias

Escriba =7_, n(n — 1), x"2 + =7_, ¢, x"*1 como una sola serie de potencias cuyo
término general implica a x*.

SOLUCION Para sumar las dos series es necesario que ambos indices de las sumas
comiencen con el mismo ndmero y las potencias de x en cada caso estén “en fase”; es
decir, si una serie comienza con un multiplo de, por ejemplo, x a la primera potencia,
entonces se quiere que la otra serie comience con la misma potencia. Observe que en
el problema la primera serie empieza con x°, mientras que la segunda comienza con x*.
Si se escribe el primer término de la primera serie fuera de la notacion de suma,

serie comienza serie comienza
con X con x
paran = 3 paran =0

© © © © l
> — e x"2 4+ X e x =2 1c,x% + X, n(n — 1), x"2 + Y, ¢, x" L,
n=2 n=0 n=3 n=0

vemos que ambas series del lado derecho empiezan con la misma potencia de X, en
particular xt. Ahora, para obtener el mismo indice de la suma, se toman como guia
los exponentes de x; se establece k = n — 2 en la primera serie y al mismo tiempo
k = n + 1 en la segunda serie. El lado derecho se convierte en

igual
2C, + X, (k + 2)(k + 1)Cuoxk + ) XK. 3)
k= k=
% igual %

Recuerde que el indice de la suma es una variable “muda”; el hecho de que k = n —
lenuncasoyk = n + 1en el otro no debe causar confusion si se considera que lo
importante es el valor del indice de suma. En ambos casos k toma los mismos valores
sucesivos k = 1, 2, 3, ... cuando n toma los valoresn = 2, 3,4, ...parak=n—1yn =
0,1,2,..parak = n + 1. Ahora es posible sumar las series de (3) término a término:

2N(N=1)cxX" 2+ X e XMt = 2¢, + D [(K+ 2)(k + 1) + o q]X. (4) m
n=2 n=0 k=1

Si no esta convencido del resultado en (4), entonces escriba algunos términos de
ambos lados de la igualdad.
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6.1.2 SOLUCIONES EN SERIES DE POTENCIAS

UNA DEFINICION Suponga que la ecuacidn diferencial lineal de segundo orden
2(XY" + ()Y + a(X)y = 0 (5)
se escribe en forma estandar
y" + P(X)y + Q(x)y =0 (6)
dividiendo entre el coeficiente principal a,(x). Se tiene la definicion siguiente.

| DEFINICION 6.1.1 Puntos ordinarios y singulares

Se dice que un punto x, es un punto ordinario de la ecuacion diferencial (5) si
tanto P(x) como Q(x) en la forma estandar (6) son analiticas en x . Se dice que
un punto gque no es punto ordinario es un punto singular de la ecuacion.

Cada valor finito de x es un punto ordinario de la ecuacién diferencial y” + (€")y’ +
(sen X)y = 0. En particular, x = 0 es un punto ordinario porque, como ya se vio en (2),
tanto ex como sen x son analiticas en este punto. La negacién en el segundo enunciado
de la definicion 6.1.1 establece que si por lo menos una de las funciones P(x) y Q(x) en
(6) no es analitica en x,, entonces X, es un punto singular. Observe que x = 0 es un punto
singular de la ecuacion diferencial y” + (e9)y’ + (In x)y = 0 porque Q(x) = In x es dis-
continua en x = 0y, por tanto, no se puede representar con una serie de potencias en x.

COEFICIENTES POLINOMIALES Se pone atencion sobre todo al caso cuando (5)
tiene coeficientes polinomiales. Un polinomio es analitico en cualquier valor X y una
funcion racional es analitica excepto en los puntos donde su denominador es cero. Por
tanto si a,(x), a,(x) y a,(x) son polinomios sin factores comunes, entonces ambas fun-
ciones racionales P(x) = a,(x)/a,(x) y Q(x) = a,(x)/a,(x) son analiticas excepto donde
a,(x) = 0. Entonces, se tiene que

X = X, s un punto ordinario de (5) si a,(x,) # 0 mientras que X = X, &s un punto
singular de (5) si a,(x,) = 0.

Por ejemplo, los Unicos puntos singulares de la ecuacion (x2 — l)y” + 2xy’ + 6y = 0
son soluciones de X2 — 1 = 0 o x = = |. Todos los otros valores finitos* de x son pun-
tos ordinarios. La inspeccion de la ecuacion de Cauchy-Euler ax?y” + bxy’ +cy =0
muestra que tiene un punto singular en x = 0. Los puntos singulares no necesitan ser
nameros reales. La ecuacion (x2 + )y + xy’ — y = 0 tiene puntos singulares en las
soluciones x2 + 1 = 0, en particular, X = = i. Los otros valores de x, reales o comple-
jos, son puntos ordinarios.

Establecemos el siguiente teorema acerca de la existencia de soluciones en series
de potencias sin demostracion.

TEOREMA 6.1.1 Existencia de soluciones en series de potencias

Si x = x, es un punto ordinario de la ecuacion diferencial (5), siempre es po-
sible encontrar dos soluciones linealmente independientes en la forma de una
serie de potencias centrada en X, es decir, y = 3*_ c,(x — %,)". Una solu-
cion en serie converge por lo menos en un intervalo definido por |x — x0| <R,
donde R es la distancia desde x, al punto singular mas cercano.

“Para nuestros propdsitos, los puntos ordinarios y puntos singulares siempre seran puntos finitos. Es
posible que una EDO tenga un punto singular en el infinito.
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Se dice que una solucion de la forma y = 2v_; ¢, (X — %) s una solucion res-
pecto a un punto ordinario x,. La distancia R en el teorema 6.1.1 es el valor minimo
o limite inferior del radio de convergencia de las soluciones en serie de la ecuacién
diferencial respecto a x.

En el ejemplo siguiente, se usa el hecho de que en el plano complejo, la distancia
entre dos numeros complejos a + bi y ¢ + di es exactamente la distancia entre los
puntos (a, b) y (c, d).

I EJEMPLO 2 Limite inferior para el radio de convergencia

Los numeros complejos 1 * 2i son puntos singulares de la ecuacion diferencial (x? —
2x + 5)y" + xy’ —y = 0. Yaque x = 0 es un punto ordinario de la ecuacion, el teorema
6.1.1 garantiza que es posible encontrar dos soluciones en serie de potencias centradas
en 0, es decir, soluciones que se parecen a y = 2r_, c,x". Sin realmente encontrar
estas soluciones, se sabe que cada serie debe converger al menos para |x| < /5 por-
que R = V5 es la distancia en el plano complejo desde 0 (el punto (0, 0)) a cualquiera
de los nimeros 1 + 2i (el punto (1, 2)) 0 1 — 2i (el punto (1, —2)). Sin embargo, una de
estas dos soluciones es valida en un intervalo mucho mayor que —v/5 < x < V5;
de hecho, esta solucion es valida en (—oe, ) porque se puede demostrar que una de las
dos soluciones en serie de potencias respecto a 0 se reduce a un polinomio. Por tanto
también se dice que /5 es el limite inferior para el radio de convergencia de solucio-
nes en serie de la ecuacion diferencial respecto a 0.

Si se buscan soluciones de la ED dada respecto a un punto ordinario diferente, por
ejemplo, x = —1, entonces cada serie y = X7_, c,(x + 1)" converge al menos para
|x| < 2V/2 porque ladistanciade —1al+2ioal —2iesR=V8=2V2 =m

NOTA En los ejemplos que siguen, asi como en los ejercicios 6.1, por razones de
simplicidad, encontraremos soluciones en serie de potencias s6lo respecto al punto or-
dinario x = 0. Si es necesario encontrar una solucion en serie de potencias de una ED
lineal respecto a un punto ordinario x; # 0, simplemente se hace el cambio de variable
t = x — X, en laecuacion (esto traduce x = x, en t = 0), para encontrar las soluciones de
la nueva ecuacion de la forma y = X5;_ c,t"y después volver a sustituir t = x — X,

DETERMINACION DE UNA SOLUCION EN SERIES DE POTENCIAS  La determi-
nacion real de una solucion en serie de potencias de una ED lineal homogeénea de segundo
orden es bastante similar a lo que se hizo en la seccién 4.4 para encontrar soluciones par-
ticulares de ED no homogeéneas con el método de coeficientes indeterminados. De hecho,
el método de serie de potencias para resolver una ED lineal con coeficientes variables
con frecuencia se describe como “método de coeficientes indeterminados de series”. En
resumen, la idea es la siguiente: sustituimos y = X;_, ¢,X" en la ecuacion diferencial,
se combina la serie como se hizo en el ejemplo 1y luego se igualan los coeficientes del
miembro derecho de la ecuacion para determinar los coeficientes ¢ . Pero como el miem-
bro derecho es cero, el Ultimo paso requiere, por la propiedad de identidad en la lista de
propiedades anterior, que todos los coeficientes de x se deban igualar a cero. Esto no
significa que los coeficientes son cero; esto no tendria sentido después de todo; el teorema
6.1.1 garantiza que se pueden encontrar dos soluciones. En el ejemplo 3 se ilustra como la
sola suposicion de y = =7_o ¢,X" = ¢y + ¢ X + C,x2 + - - - conduce a dos conjuntos
de coeficientes, por lo que se tienen dos series de potencias distintas y, (x) y y,(x), ambas
desarrolladas respecto al punto ordinario x = 0. La solucion general de la ecuacion dife-
rencial esy = C)y,(x) + C,y,(x); de hecho, se puede demostrar que C, = ¢,y C, = c,.

I EJEMPLO 3 Soluciones en series de potencias

Resuelvay” + xy = 0.

SOLUCION Puesto que no hay puntos singulares finitos el teorema 6.1.1 garantiza
dos soluciones en serie de potencias centradas en 0, convergentes para |x| < o,
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Sustituyendo y = >r_, ¢,x" y lasegundaderivada y” = Z7_, n(n — 1)c,x"~2 (véase
(1)) en la ecuacion diferencial, se obtiene

y" 4+ xy = 2cnn(n — 1)Xx"2 + x =ocnx" = 2cn(n — X" 2+ XX (7

n= n n=2 n=0

En el ejemplo 1 ya se sumaron las dos Ultimas series en el miembro derecho de la
igualdad en (7) corriendo el indice de la suma. Del resultado dado en (4),

y' A+ xy =2¢, + X[k + 1)K+ 2)Cp + Cq]X = 0. (8)
k=1

En este punto se invoca la propiedad de identidad. Puesto que (8) es idénticamente cero,
es necesario que el coeficiente de cada potencia de x se iguale a cero, es decir, 2¢, = 0
(es el coeficiente de x°) y

(k + 1)('( + 2)Ck+2 + C1 = O, k = 1, 2, 3, PR (9)

Ahora 2c, = 0 obviamente dice que ¢, = 0. Pero la expresion en (9), llamada relacion
de recurrencia, determina la c, de tal manera que se puede elegir que cierto subcon-
junto del conjunto de coeficientes sea diferente de cero. Puesto que (k + 1)(k + 2)
# 0 para los valores de k, se puede resolver (9) parac, , , entérminosdec, .

_ Ck—1 _
e R k=1,23,... (10)

Esta relacion genera coeficientes consecutivos de la solucion supuesta, una vez que k
toma los enteros sucesivos indicados en (10):

k=1, (:3=—2C_—°3

k=2, c4=—3(‘:14

k=3 5= —4°_25 —0 < oo cero
k=4 CG__SC-SGZZ-S?S-GCO

k=5, C7__60-47:3-4%6-701

k = 6, Cg = _70-58 =0 < Cy €5 Cero
k=1, C9__gc.69:2.3.5:.L6.8.900

k=8, c“’__9?71023-4-6-17-9-1001

k=9, cy= —10‘:'811 =0 < oyescero

etcétera. Ahora sustituyendo los coeficientes obtenidos en la suposicion original

y = CO + Clx + C2X2 + C3X3 + C4X4 + C5X5 + C6X6 + C7X7 + CSX8 + ngg + Cloxlo + Cllxll + - - %y
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obtenemos
Co .5 C Co
=C+cx+0-— —— X+ 0+
Y=t ot 0 o X T 0 T s s
9 x40 % o = X040+

+— - X —
3:4-6-7 2:3:5:6:8-9 3:4-6-7-9-10

Después de agrupar los términos que contienen ¢ y los que contienen c,, se obtiene
y = ¢,Y,(x) + c,y,(x), donde

yi(¥) =1 — 1x3+ L X8 — 1 x9+---=1+§ (0 X3k
: 2.3 72.35:6. 2:3:5-6-8-9 2.3 (3k— 1)(3K
1 1 1 : (— 1)k
-y _ 4 + 7 _ 104 ... = x+ 3k+1
VA =X X Y 3 6. 7¢ T3.4.6-7-9-10F X+ 2 T @@k D)

Debido a que el uso recursivo de (10) dejaac,y a ¢, completamente indeterminadas,
se pueden elegir en forma arbitraria. Como ya se mencion6 antes de este ejemplo, la com-
binacion lineal y = cy,(x) + c,y,(x) representa en realidad la solucion general de la ecua-
cion diferencial. Aunque se sabe del teorema 6.1.1 que cada solucion en serie converge
para |x| < o, este hecho también se puede comprobar con el criterio de la razon. [ ]

La ecuacion diferencial del ejemplo 3 se Ilama ecuacion de Airy y se encuentra
en el estudio de la difraccion de la luz, la difraccion de ondas de radio alrededor de
la superficie de la Tierra, la aerodindmica y la deflexion de una columna vertical del-
gada uniforme que se curva bajo su propio peso. Otras formas comunes de la ecuacion
de Airysony” — xy = 0y y” + a’y = 0. Véase el problema 41 de los ejercicios 6.3
para una aplicacion de la Gltima ecuacion.

I EJEMPLO 4 Solucion con series de potencias

Resuelva (x2 + 1)y” + xy’ —y = 0.

SOLUCION Como se vio en la pagina 223, la ecuacion diferencial dada tiene puntos
singulares en x = = iy, por tanto, una solucién en serie de potencias centrada en 0 que
converge al menos para |x| < 1, donde 1 es la distancia en el plano complejo desde O a i
0 —i. Lasuposicion y = 3”_, ¢, x" Y sus primeras dos derivadas (véase (1)) conducen a

(X2 4+ 1) 2 n(n — 1)cx""2 + x 3, next— — D gxn
n=2 n=1 n=0

=>nn — 1)cx" + X n(n — 1)cx"2 + 2 nex — ) epxn
n=2 n=2 n=1 n=0
= 20,X0 — Cox® + BCX + CiX — CX + 2, n(n — 1)c X
n=2

k=n

+ > n(n — 1)cx""2 + X nex" — X, X"
n=4 n=2 n=2

R S — A
k=n—-2 k=n k=n

k=2

=2C, — Co + 6Cox + X, [(k + 1)(k — 1)c + (k + 2)(k + 1)Cy,o]xk = 0.
k=2
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De esta identidad se concluye que 2¢,-c, =0, 6¢c, =0,y
k+ 1)k — e+ (k+ 2)(k + 1)ce, = 0.

1
Por tanto, C, = ECO
C3:0
1—-k
Chs2 = ——= Cy, k=2234,...
k+2 k+2k
Sustituyendo k = 2, 3, 4, ... en la Gltima formula se obtiene
__1 _ 1 _ 1
C= 70T Ty 0T Ty ®
05=—gc3=0 < C3 es cero
Cg=—=C = 3 c—ﬁc
® 6% 2-4-6° 28317
4
C7=—?C5=O < C5 €s Cero
o _ .5, __ 35 _ 1-3:5
s g ° 2-4-6-8"° 2441 °
6
Cq —§C7 =0, <« ¢, es cero
e T.__ 357 1-3:5-7
10 10° 2-4-6-8-10"° 251 O

etcétera. Por tanto,

y - Co + C]_X + C2X2 + C3X3 + C4X4 + CSX5 + CGX6 + C7X7 + C8X8 + ngg + Cloxlo + -

1 1 1-3, 1-3-5, 1-3-5-7
- Co[l X T T X T T X Em T ] O
= CoY1(X) + C1Y2(X).

Las soluciones son el polinomio y,(x) = x y la serie de potencias

3:5---(2n-3)
2"n!

1 & 1-
¥i0) =1+ 2% + > (=t X, x[<1. =
n=2

I EJEMPLO 5 Relacion de recurrencia de tres términos

Si se busca una solucién en serie de potencias y = 27—, ¢,X" para la ecuacion diferencial
y"— (1 + x)y = 0,
se obtiene C, = 2C, Y la relacion de recurrencia de tres términos

Ce + Ciq

R e
%2 0 Dk + 2)

Se deduce a partir de estos dos resultados que los coeficientes ¢ , para n = 3, se ex-
presan en términos de c, y c,. Para simplificar, se puede elegir primero ¢, # 0, ¢, = 0;
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esto conduce a coeficientes para una solucion expresada por completo en términos de
¢,- A continuacion, si elegimos ¢, = 0, ¢, # 0, entonces los coeficientes para la otra
solucién se expresan en términos de ¢,. Usando ¢, = 3¢, en ambos casos, la relacion
de recurrencia parak = 1, 2, 3, ... se obtiene

co#0,¢c,=0 =00 #0

_1 B

G =G G =5C

_GtGh_ S _ % CS:ClJFCo:&:C_l
2:3 2-3 6 2:3 2-3 6

c=2fa__ & _% c-tfa_ & _ G

3.4 2.3-4 24 3.4 3.4 12
C;+ G cG |1 1 Co C;+ G C, C,

C5:—:__+_ - —= C5: = = —
4-5 4-5|6 2| 30 4.5 4-5-6 120

etcetera. Por dltimo, vemos que la solucion general de la ecuacion es y = ¢ y,(x) +

c,y,(x), donde

1 1 1 1
Yy =14+ 4+ =3+ =x+ =X+

2 6 24 30

1 1 1
=X+ + =X =+
y Y09 = x + 2x + X

120

Cada serie converge para todos los valores finitos de x.

COEFICIENTES NO POLINOMIALES En el siguiente ejemplo se muestra como
encontrar una solucion en serie de potencias respecto a un punto ordinario x, = 0 de
una ecuacion diferencial cuando sus coeficientes no son polinomios. En este ejemplo
vemos una aplicacion de la multiplicacion de dos series de potencias.

I EJEMPLO 6 ED con coeficientes no polinomiales

Resuelvay” + (cos x)y = 0.

SOLUCION Vemos que x = 0 es un punto ordinario de la ecuacién porque, como ya
hemos visto, cos x es analitica en ese punto. Usando la serie de Maclaurin para cos x dada
en (2), junto con la suposicion usual y = 2;_ ¢, X" y los resultados de (1), se encuentra

2¢, + ¢ = 0, 6c; + ¢, =0,

1
12c4+cz—§co=0,

z ~ X oxt X z
y' 4+ (CosX)y=>nn— X" 2+ (1 — =+ = — =+ -] X X
n=2 204 6l “~
X2 x4
= 2C; + 6Cyx + 12¢,%* + 20C5X3 + - - - + 1—5+E+---(co+clx+czx2+ch3+---)
1 1
=2¢, + ¢y + (6¢3 + ¢)x + 12(:4+cz—§c0 X2+ 2005+%—§c1 X+ =0.
Se tiene que

1
2005+%—§c1=0,
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FIGURA 6.1.2 Curvas de solucion
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etcétera. Esto da ¢ =_—%c0, C3 = —2C1, C4 = 15C, Cs = 55Cy, - - . . Agrupando
términos se llega a la solucion general y = ¢ y,(x) + c,y,(x), donde
1 1 1 1
X)=1—-x+ -xt— - X)=X—=x3+—x— .-
y1(X) > 12 Yy Y(¥ 6 30
Debido a que la ecuacidn diferencial no tiene puntos singulares finitos, ambas series
de potencias convergen para |x| < c. [

CURVAS SOLUCION La grafica aproximada de una solucion en serie de potencias
y(X) = 2%_,c,x" se puede obtener de varias maneras. Siempre se puede recurrir a
trazar la gréfica de los términos en la sucesion de sumas parciales de la serie; en otras
palabras, las graficas de los polinomios §(x) = =N_, ¢,x". Para valores grandes de N,
S,(x) debe darnos una indicacion del comportamiento de y(x) cerca del punto ordinario
x = 0. También se puede obtener una curva solucion aproximada o numérica usando
un programa, como se hizo en la seccion 4.9. Por ejemplo, si se examinan cuidado-
samente las soluciones en serie de la ecuacion de Airy del ejemplo 3, se debe ver que
y,(X) y y,(X) son, a su vez, las soluciones de los problemas de valores iniciales

y"+xy=0, y(0) =1 y(0) =0,
y"+xy=0, y0) =0, y(0) =1

(11)

Las condiciones iniciales especificadas “seleccionan” las soluciones y,(x) y y,(x) de
y = C,Y,(X) + c,y,(x), puesto que debe ser evidente de la suposicion basica de series
y = 2i_oc,x" quey(0) =c,yy'(0) = c,. Ahora, si el programa de solucion numérica
requiere un sistema de ecuaciones, la sustituciony’ = ueny” + xy = 0 produce y” =
u’ = — Xxyy, por consiguiente, un sistema de dos ecuaciones de primer orden equiva-
lente a la ecuacion de Airy es

y =u

’

u = —xy.

(12)

Las condiciones iniciales para el sistema en (12) son los dos conjuntos de condiciones
iniciales en (11) reescritas como y(0) = 1, u(0) = 0y y(0) = 0, u(0) = 1. Las gréficas
de y,(X) y y,(x) que se muestran en la figura 6.1.2 se obtuvieron con la ayuda de un pro-
grama de solucién numeérica. El hecho de que las curvas solucién numéricas parezcan
oscilatorias es consistente con el hecho de que la ecuacion de Airy se presentd en la
seccién 5.1 (pagina 186) en la forma mx” + ktx = 0 como el modelo de un resorte cuya
“constante de resorte” K(t) = kt se incrementa con el tiempo.

I COMENTARIOS

i) En los problemas que siguen no espere poder escribir una solucion en términos
de la notacién de suma en cada caso. Aun cuando se puedan generar tantos térmi-
nos como se desee en una solucion en serie y = 25—, C,X" ya sea usando una rela-
cion de recurrencia o como en el ejemplo 6, por multiplicacion, podria no ser posible
deducir ningun término general para los coeficientes c,. Podriamos tener que confor-
marnos, como se hizo en los ejemplos 5 y 6, con los primeros términos de la serie.

if) Un punto x, es un punto ordinario de una ED lineal no homogénea de se-
gundo orden y” + P(x)y" + Q(x)y = f(x) si P(x), Q(x) y f(x) son analiticas en x,.
Ademas, el teorema 6.1.1 se amplia a esta clase de ED; en otras palabras, po-
demos encontrar soluciones en serie de potencias y = 3_, c,(x — X;)" de ED
lineales no homogeéneas de la misma manera que en los ejemplos 3 a 6. VVéase el
problema 36 de los ejercicios 6.1.
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EJERCICIOS 6.7 Lasrespuestas a los problemas seleccionados con nimero impar comienzan en la pagina RES-8.

6.1.1 REPASO DE SERIES DE POTENCIAS

En los problemas 1 a 4, determine el radio de convergencia y
el intervalo de convergencia para las series de potencias.

L3 2 E (100)n( + 7y
3. i (_13k(x —5)k 4 i ki(x — 1)k
k=1 10 k=0

En los problemas 5 y 6 la funcidn dada es analitica en x = 0.
Encuentre los primeros cuatro términos de una serie de po-
tencias en x. Efectlie la multiplicacion a mano o use un SAC,
como se indica.

5. senx cos X 6. e *cos x

En los problemas 7 y 8, la funcién dada es analitica en x = 0.
Encuentre los primeros cuatro términos de una serie de po-
tencias en x. Efectle a mano la division larga o use un SAC,
como se indica. Dé un intervalo abierto de convergencia.
1 1-x

8

" cos X "2+ X

En los problemas 9 y 10, reescriba la serie de potencias de
modo que en su término general tenga x*.

nc,x" 2 10. Y (2n — 1)c,x"3

1 n=3

M8

9.

n
En los problemas 11 y 12, reescriba la expresién dada como
una sola serie de potencias en cuyo término general tenga x.
11. D 2nc,x" 1+ 6 x"*L

n=1 n=0

12. Y n(n — 1)e,x" +2 X n(n — 1)c,x""2 + 3D, nc,x"
n=2 n=2 n=1

En los problemas 13 y 14, compruebe por sustitucion directa

que la serie de potencias dada es una solucién particular de la

ecuacion diferencial dada.

( )n+l
13. y= 2 =X, X+ 1y"+y =0
n=1

6.1.2 SOLUCIONES EN SERIES DE POTENCIAS

En los problemas 15 y 16, sin realmente resolver la ecuacion
diferencial dada, encuentre un limite inferior para el radio de
convergencia de las soluciones en serie de potencias respecto
al punto ordinario x = 0. Respecto al punto ordinario x = 1.

15. (x2—=25)y" +2xy' +y=0
16. (x2—2x+ 10)y" +xy' —4y =0

En los problemas 17 a 28, encuentre dos series de potencias de
la ecuacion diferencial dada respecto al punto ordinario x = 0.

17. y"—xy =0

19. y"—2xy' +y=0

21, y"+x?y' +xy=0

23. x—=1y"+y =0

25,y —(x+1y —-y=0
26. (x*+1)y"—6y=0
27. (X2 +2)y" +3xy’ —y=0
28. x2—=1)y"+xy'—y=0

En los problemas 29 a 32, use el método de series de potencias
para resolver el problema con valores iniciales.

18. y" +xy =0

20. y"—xy' +2y=0

22, y"+2xy' +2y =0

24, X +2)y"+xy'—y=0

29. x—=1)y"—xy' +y=0, y0)=-2,y'(0)=6

30. x+1y"=(@—-xy +y=0, y(0)=2y'(0)=~-
31. y"—2xy" +8y =0, y{0)=3,y(0)=0

32. x2+1)y"+2xy'=0, y(0)=0,y(0)=1

En los problemas 33 y 34, use el procedimiento del ejemplo 6
para encontrar dos soluciones en serie de potencias de la ecua-
cion diferencial respecto al punto ordinario x = 0.

33. y"+ (senx)y =0 4.y +ey —y=0

Problemas para analizar

35. Sin resolver en su totalidad la ecuacion diferencial (cos
X)y" +y’ + 5y = 0, encuentre un limite inferior para el
radio de convergencia de las soluciones en serie de poten-
cias respecto a x = 0. Respectoax = 1.

36. ¢Como se puede usar el método descrito en esta seccion
para encontrar una solucion en serie de potencias de la
ecuacion no homogénea y” — xy = 1 respecto al punto
ordinario x = 0? ;De y” — 4xy’ — 4y = e*? Lleve a cabo
sus ideas al resolver ambas ED.

37. ¢Esx = 0un punto ordinario o singular de la ecuacion di-
ferencial xy” + (sen x)y = 0? Defienda su respuesta con
matematicas convincentes.

38. Para propositos de este problema ignore las gréaficas pre-
sentadas en la figura 6.1.2. Si la ED de Airy se escribe como
y" = — Xy, ¢qué se puede decir respecto a la forma de una
curva soluciénsix > 0yy > 0?¢Six>0yy < 0?

Tarea para el laboratorio de computacién

39. a) Determine dos soluciones en serie de potencias para
y" +xy’ +y =0y exprese las soluciones y,(x) y y,(x)
en términos de la notacién de suma.



b)

<)

d)
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Use un SAC para graficar las sumas parciales S (x) 40. a) Encuentre un término diferente de cero para cada una
paray.(x). Use N = 2, 3, 5, 6, 8, 10. Repita con las e las soluciones y,(x) y y,(x) del ejemplo 6.

[(x). Use N = 2, 3, 5, 6, 8, 10. Repi I del luci L ,(X) del ejemplo 6
sumas parciales S, (x) para y,(x). b) Determine una solucion en serie y(x) del problema de
Compare las gréficas obtenidas en el inciso b) con valor inicial y” + (cos x)y = 0, y(0) = 1,y’'(0) = 1.
la curva obtenida por medio de un programa de c) Use un SAC para trazar las gréficas de las sumas par-
solucion numérica. Use las condiciones iniciales ciales S, (x) para la solucion y(x) del inciso b). Use

4 ’ N .
¥,(0) = 1,y,(0) =0yy,(0) = 0,y;(0) = 1. N=2345,67.
Reexamine la solucion y,(x) del inciso a). Exprese d) Compare las graficas obtenidas en el inciso c) con
la ecuacion (5) de la seccion 4.2 para encontrar una numérica para el problema con valores iniciales del
segunda solucion de la ecuacion. Compruebe que inciso b).

esta segunda solucion es la misma que la solucion en
serie de potencias y,(X).

6.2 SOLUCIONES EN TORNO A PUNTOS SINGULARES

REPASO DE MATERIAL
e Seccion 4.2 (especialmente (5) de esa seccion)

INTRODUCCION Las dos ecuaciones diferenciales
y" +xy =20 y Xy"+y=20

son similares s6lo en que son ejemplos de ED lineales simples de segundo orden con coeficientes
variables. Eso es todo lo que tienen en comin. Debido a que x = 0 es un punto ordinario de y” +
xy = 0, vimos en la seccién anterior que no hubo problema en encontrar dos soluciones en serie de
potencias distintas centradas en ese punto. En contraste, debido a que x = 0 es un punto singular
de xy” + y = 0, encontrar dos soluciones en series infinitas —observe que no se dijo series de po-
tencias—, de la ecuacion diferencial respecto a ese punto se vuelve una tarea mas dificil.

El método de solucion analizado en esta seccién, no siempre produce dos soluciones en series
infinitas. Cuando solo se encuentra una solucién, se puede usar la formula dada en (5) de la seccién
4.2 para encontrar una segunda solucion.

UNA DEFINICION  Un punto singular X, de una ecuacion diferencial lineal
B(XY" + a()y’ + a(x)y =0 1)

se clasifica mas bien como regular o irregular. La clasificacion de nuevo depende de
las funciones P y Q en la forma estandar

y" + Py + Q(y = 0. )

DEFINICION 6.2.1 Puntos singulares regulares e irregulares

Se dice que un punto singular x; es un punto singular regular de la ecuacion
diferencial (l) si las funciones p(x) = (x — x,) P(x) y q(x) = (x — x,)?Q(x) son
analiticas en x,. Un punto singular que no es regular es un punto singular
irregular de la ecuacion.

El segundo enunciado en la definicion 6.2.1 indica que si una 0 ambas funciones
p(x) = (x — x))P(x) y q(x) = (x — x,)>Q(x) no son analiticas en x , entonces x, es un
punto singular irregular.
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COEFICIENTES POLINOMIALES Como en la seccion 6.1, estamos principalmente
interesados en ecuaciones lineales (1) donde los coeficientes a,(x), a,(x) y a,(x) son po-
linomios sin factores comunes. Ya se ha visto que si a,(x;)) = 0, entonces x = X, es un
punto singular de (1), ya que al menos una de las funciones racionales P(x) = a,(x)/a,(x)
y Q(X) = a,(x)/a,(x) en la forma estandar (2) no es analitica en ese punto. Pero como
a,(x) es un polinomio y x; es una de sus raices, se deduce del teorema del factor del
algebra que x — x, es un factor de a,(x). Esto significa que después de que a,(x)/a,(x)
y a,(x)/a,(x) se reducen a términos minimos, el factor x — x, debe permanecer, para
alguna potencia entera positiva, en uno o en ambos denominadores. Ahora suponga que
X = X, s un punto singular de (1) pero ambas funciones definidas por los productos
pP(x) = (x — x))P(X) y a(x) = (x — x,)*Q(x) son analiticas en x,. LIegamos a la conclu-
sion de que multiplicar P(x) por x — X, y Q(x) por (x — x,)* tiene el efecto (por elimina-
cion) de que x — x; ya no aparezca en ninguno de los denominadores. Ahora se puede
determinar si x, es regular con una comprobacion visual rapida de los denominadores:

Si x — x, aparece a lo mas a la primera potencia en el denominador de P(x) y a lo
mas a la segunda potencia en el denominador de Q(x), entonces x = x es un punto
singular regular.

Ademas, observe que si x = X, es un punto singular regular y se multiplica la ecuacion
(2) por (x — x,)?, entonces la ED original se puede escribir en la forma

(X = %%Y" + (X = X)p(X)y" + a(¥)y =0, ©))

donde p y g son analiticas en x = Xx.

I EJEMPLO 1 Clasificacion de puntos singulares

Se debe aclarar que x = 2 y x = — 2 son puntos singulares de

(X2 —4)2%y" +3(x—2)y +5y=0.

Después de dividir la ecuacion entre (x?2 — 4)? = (x — 2)(x + 2)? y de reducir los co-
eficientes a los términos minimos, se encuentra que

3 5

PO =G anr 22 ¥ M=o+

Ahora se prueba P(x) y Q(x) en cada punto singular.

Para que x = 2 sea un punto singular regular, el factor x — 2 puede aparecer elevado
a la primera potencia en el denominador de P(x) y a lo mas a la segunda potencia en el de-
nominador de Q(x). Una comprobacion de los denominadores de P(x) y Q(x) muestra que
ambas condiciones se satisfacen, por lo que X = 2 es un punto singular regular. En forma
alternativa, llegamos a la misma conclusion al notar que ambas funciones racionales

pP(X) = (x = 2)P(x) = y a0 =(x-2?2Q( =

3 5
(x + 2)? (X + 2)?
son analiticas en x = 2.

Ahora, puesto que el factor x — (—2) = x + 2 aparece a la segunda potencia en
el denominador de P(x), se concluye de inmediato que x = —2 es un punto singular

irregular de la ecuacion. Esto también se deduce del hecho de que

3

px) = (x + 2)P(X) = (- 2x+2

es no analiticaen x = —2. [ |
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En el ejemplo 1, observe que como x = 2 es un punto singular regular, la ecuacion
original se puede escribir como
p(x) analitica  q(x) analitica
len X=2 len X=2
2 "+ > =0
Vo222 T a2y =0

(X —2)%"+ (x —

Como otro ejemplo, se puede ver que x = 0 es punto singular irregular de x%”
—2xy’ + 8y = 0 por inspeccién de los denominadores de P(x) = —2/x?y Q(x) =
8/x%. Por otro lado, x = 0 es un punto singular regular de xy” — 2xy’ + 8y = 0, puesto
que x — 0y (x — 0)2incluso no aparecen en los denominadores respectivos de P(x) =
—2y Q(x) = 8/x. Para un punto singular x = x, cualquier potencia no negativa de
X — X, menor que uno (en particular, cero) y cualquier potencia no negativa menor que
dos (en particular, cero y uno) en los denominadores de P(x) y Q(x), respectivamente,
indican que x, es un punto singular irregular. Un punto singular puede ser un nimero
complejo. Se debe comprobar que x = 3iy que x = — 3i son dos puntos singulares
regulares de (x2 + 9)y" —3xy’ + (I — x)y = 0.

Cualquier ecuacion de Cauchy-Euler de segundo orden ax?y” + bxy’ + cy = 0,
donde a, b y ¢ son constantes reales, tiene un punto singular regular en x = 0. Se
debe comprobar que dos soluciones de la ecuacién de Cauchy-Euler x2y” — 3xy’ +
4y = 0 en el intervalo (0,) sony, = x>y y, = x* In x. Si se intenta encontrar una
solucidn en serie de potencias respecto al punto singular regular x = 0 (en particular,
y = 2Z5-0 CX"), se tendria éxito en obtener solo la solucion polinomial y, = x El
hecho de que no se obtuviera la segunda solucién no es sorprendente porque In x (y en
consecuencia y, = x* In x) no es analitica en x = 0, es decir, y, no tiene un desarrollo
en serie de Taylor centrado en x = 0.

METODO DE FROBENIUS Para resolver una ecuacion diferencial (1) respecto a
un punto singular regular, se emplea el siguiente teorema debido a Frobenius.

TEOREMA 6.2.1 Teorema de Frobenius

Si x = x, es un punto singular regular de la ecuacion diferencial (1), entonces
existe al menos una solucion de la forma

y=(x— x@écn(x — %)= gocn(x )™, 4

donde el ndmero r es una constante por determinar. La serie converge por lo
menos en algun intervalo 0 < x-x, <R.

Observe las palabras al menos en el primer enunciado del teorema 6.2.1. Esto significa
que en contraste con el teorema 6.1.1 el teorema 6.2.1 no garantiza que sea posible en-
contrar dos soluciones en serie del tipo indicado en (4). EI método de Frobenius, para
encontrar soluciones en serie respecto a un punto singular regular x,, es similar al metodo
de coeficientes indeterminados de series de la seccion anterior en la que se sustituye
y =27_0Cy(X — Xo)"™*" en laecuacion diferencial dada y se determinan los coeficientes
desconocidos ¢, con una relacion de recurrencia. Sin embargo, se tiene una tarea mas en
este procedimiento: antes de determinar los coeficientes, se debe encontrar el exponente
desconocido r. Si se encuentra que r s un nimero que no es un entero negativo, enton-
ces la solucion correspondiente y =25_¢ C,(X — %)™ no es una serie de potencias.

Como se hizo en el andlisis de soluciones respecto a puntos ordinarios siempre
supondremos, por razones de simplicidad al resolver ecuaciones diferenciales, que el
punto singular regular es x = 0.
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I EJEMPLO 2 Dos soluciones en series

Debido a que x = 0 es un punto singular regular de la ecuacion diferencial
xy"+y —y=0, (5)
tratamos de encontrar una solucién de la forma y = Z5_, ¢, x"*". Ahora

y =2 @O+nex"t y y

n=0

por lo que

"= (n+r)Mn+r— e xr?
n=0

By +y —y =35 (N4 DN+ 1 — DX+ (n+ X3 g
n=0 n=0

=}
Ibs

n=1

n=0

(n+r)(Bn+ 3r — 2)c,x™ L= ¢ x™"

n=0

=xr(3r — 2)cx 1+ X (n+1@n+3r —2c,x" 1> cnx"}
L n=0

[ —;

k=n-1 k=n

=xr3Br —2cx L+ [(k+r+ 13K+ 3r + 1)cpqg — ck]xk} =0,

L k=0
lo que implica que r(dr—2)c,=0
y (k+r+2)Bk+ 3r+ g, — ¢ =0, k=0,12...
Ya que no se ha ganado nada al hacer ¢, = 0, entonces debemos tener
r3r—2)=0 (6)

Cx
C = 1
KT (k+r 4+ 13K+ 3r + 1)

Cuando se sustituye en (7), los dos valores de r que satisfacen la ecuacién cuadratica
6), r, = % y r, = 0, se obtienen dos relaciones de recurrencia diferentes:

_2 - %
=% ST giBks

y k=012,... (7)

k=01,2,... (8)

Ck

270 ST a1

k=0,1,2,.... ©)

De (8) encontramos

C
02:8-12:2!500-8

C
%:11?3:3!5-03-11
o O G

T 14-4 45.8-11-14

o Co
" n5-8-11--(3n + 2)

De (9) encontramos

01:%

€= 2?14:2!1%1
G = 3(327 - 3!1(-:04-7
o O Co

T 4-10 41-4-7-10

o = Co
" nl-4-7---3n-2)
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Aqui se encuentra algo que no ocurri6 cuando se obtuvieron soluciones respecto a un
punto ordinario; se tiene lo que parecen ser dos conjuntos de coeficientes diferentes,
pero cada conjunto contiene el mismo maltiplo c . Si se omite este término, las solu-
ciones en serie son

. L n

) = X“[“El n5-8-11- - - (3n + 2)X} (10)
. L n

ya) = XO[HEI Ni1-4-7--- (30— 2)X]' (11)

Con el criterio de la razon se puede demostrar que (10) y (11) convergen para todos los
valores de x; es decir, |x| < . También debe ser evidente de la forma de estas solu-
ciones que ninguna serie es un maltiplo constante de la otra y, por tanto y,(x) y y,(X)
son linealmente independientes en todo el eje x. Asi, por el principio de superposicion,
y = C,y,(x) + C,y,(x) es otra solucion de (5). En cualquier intervalo que no contenga
al origen, tal como (0,%0), esta combinacion lineal representa la solucién general de la
ecuacion diferencial. [ |

ECUACION INDICIAL La ecuacion (6) se llama ecuacidn indicial del problema y

los valores r; = % y r, = 0 se llaman raices indiciales, o exponentes, de la singularidad
x = 0. En general, después de sustituir y = >>_, ¢,Xx*" en la ecuacion diferencial dada
y simplificando, la ecuacién indicial es una ecuacion cuadrética en r que resulta de igua-
lar a cero el coeficiente total de la potencia minima de x. Se encuentran los dos valores
de r y se sustituyen en una relacion de recurrencia como (7). El teorema 6.2.1 garantiza
que al menos se puede encontrar una solucidn de la supuesta forma en serie.

Es posible obtener la ecuacion indicial antes de sustituir y = >_, ¢, x"*" en la ecua-
cion diferencial. Si x = 0 es un punto singular regular de (1), entonces por la definicion
6.2.1 ambas funciones p(x) = xP(x) y q(x) = x*Q(x), donde Py Q se definen por la forma
estandar (2), son analiticas en x = 0; es decir, los desarrollos en serie de potencias

P(X) = XP(X) =ag+ ax +ax+ -+ Yy g =xQ(X) = by + bx+ b2+ - (12)

son validas en intervalos que tienen un radio de convergencia positivo. Multiplicando
(2) por x?, se obtiene la forma dada en (3):

xy" + X[xP(x)]y" + [¥*Q(x)]y = 0. (13)

Después de sustituir y = =%, ¢, X"™" y las dos series en las ecuaciones (12) y (13) y
realizando la multiplicacion de la serie, se encuentra que la ecuacion indicial general
es

r(r—1) + ayr + by =0, (14)

donde a,y b, son como se define en (12). VVéanse los problemas 13y 14 de los ejerci-
cios 6.2.

I EJEMPLO 3 Dos soluciones en series

Resuelva 2xy” + (1 + x)y’ +y = 0.

SOLUCION  Sustituyendo y = 3¢ ¢, x™*" se obtiene
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XY+ (L+XY +y=22 N+ 1N+ —1ex™ 4+ Y (n+ r)cxml
n=0

n=0

+ 2 (N4 1)CX™T + ) g™

n=0 n=0

=> (N+r)2n+2r — e, x™ L+ > (n+r + 1), XM
n=0

n=0

x

Xr@2r — eex 4+ D (n+r)@n+2r — Dex" 1+ X (n+r + 1)cnx”]

n=1 n=0

Y 2\
k=n—-1 k=n

x

X

r2r — 1)cext + i [((k+r+D2k+2r +1)c, +k+r+ 1)ck]xk],
k=0

lo que implica que rer—1)=0 (15)
y k+r+D@2k+2r+ Doy, +(k+r+1)c, =0, (16)

k=0,1,2,...De(15) vemos que las raices indiciales son r, = % yr,=0.
Para r; = % se puede dividir entre k + g en (16) para obtener
Ck

Ck+1:m, k=0,12..., (17)

mientras que para r, = 0, (16) se convierte en

% —
Cir1 = S TEEL k=012.... (18)
De (17) encontramos De (18) encontramos
_ % -
a1 “a=7
_ "6 _ G _ "G _ G
@2 2" 2.2 “="3 "1-3
03:_(32: —G _ "% __ ~C
2-3 22.3 5 1-3-5
-G __ & "% __ %
“T 4T 24 “="7 "1.3.5.7
— n _1n
Cn:( 1)co_ G - (=D"c _
2"n! 1-3:5-7---(2n—-1)

P T 1 - .
Por lo que para la raiz indicial '+ = 5 se obtiene la solucion

vi(X) = xﬂz[l + i ﬂxn] = i ﬂlxnﬂjz,

a1 2™l no 2"n!

donde de nuevo se omitio c,. Esta serie converge para x = 0; como se ha dado, la serie
no esta definida para valores negativos de x debido a la presencia de x*/2. Parar, = 0,
una segunda solucion es
S (Gl
X) =1+ X", X| < oo,
y2() 2’11-3-5-7---(2n—1) x| <o
En el intervalo (0,%) la solucion general esy = Cy,(x) + C,y,(X). ]
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I EJEMPLO 4 Soélo una solucion en serie

Resuelva xy” +y = 0.

SOLUCION De xP(x) = 0, x2Q(x) = x y el hecho de que 0y x son sus propias series
de potencias centradas en 0, se concluye que a, = 0y b, = 0, por tanto, de la ecuacion
(14) la ecuacion indicial es r (r — 1) = 0. Se debe comprobar que las dos relaciones de
recurrencia correspondientes a las raices indiciales r, = 1y r, = 0 producen exacta-
mente el mismo conjunto de coeficientes. En otras palabras, en este caso el método de
Frobenius produce s6lo una solucidn en serie

o D" i, 1o, 1

1
=> =X—=x24+ =x3—-——x+ - [
Y1) nzo Ni(n + 1)! X 2X 12X 144X

TRES CASOS Por razones de analisis, de nuevo se supone que x = 0 es un punto sin-
gular regular de la ecuacion (1) y que las raices indiciales r, y r, de la singularidad son
reales. Cuando usamos el método de Frobenius, se distinguen tres casos que correspon-
den a la naturaleza de las raices indiciales r, y r,. En los dos primeros casos el simbolo r,
denota la mas grande de dos raices distintas, es decir, r, > r,. Enel dltimo casor, = r,,.

CASO I:  Sir, yr,sondistintas y la diferencia r, —r, no es un entero positivo, enton-
ces existen dos soluciones linealmente independientes de la ecuacion (1) de la forma
Y1) =2 X G # 0, yo(X) = X by X", by # 0.
n=0 n=0

Este es el caso que se ilustra en los ejemplos 2 y 3.
A continuacion suponemos que la diferencia de las raices es N, donde N es un
entero positivo. En este caso la segunda solucién podria contener un logaritmo.

CASO II:  Sir yr,sondistintas y la diferencia r, —r, es un entero positivo, entonces
existen dos soluciones de la ecuacion (1) linealmente independientes de la forma

i) =D GX G # 0, (19)
n=0
V() = Cy,00 Inx + 3 bx* by # 0, (20)
n=0

donde C es una constante que podria ser cero.

Finalmente, en el Gltimo caso, el caso cuando r, = r,, una segunda solucion
siempre tiene un logaritmo. La situacién es similar a la solucion de la ecuacién de
Cauchy-Euler cuando las raices de la ecuacion auxiliar son iguales.

CASO lll:  Sir, yr,son iguales, entonces existen dos soluciones linealmente inde-
pendientes de la ecuacion (1) de la forma
V) = X, o # 0, (21)
n=0
Y2(¥) = ya(x) Inx + 3 byx™ 1, (22)
n=1

DETERMINACION DE UNA SEGUNDA SOLUCION  Cuando la diferenciar, -,
es un entero positivo (caso 1), se podria 0 no encontrar dos soluciones de la forma
y =>r_,c,x"". Esto es algo que no se sabe con anticipacion, pero se determina des-
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pués de haber encontrado las raices indiciales y haber examinado con cuidado la relacion
de recurrencia que definen los coeficientes c . Se podria tener la fortuna de encontrar dos
soluciones que impliquen sélo potencias de X, es decir, y1(X) = =3¢ ¢, X" (ecuacion
(19)) y ¥o(X) = Zp_g b,x"*"2 (ecuacion (20) con C = 0). VVéase el problema 31 de los
ejercicios 6.2. Por otro lado, en el ejemplo 4 se ve que la diferencia de las raices indiciales
es un entero positivo (r, —r, = 1) y el método de Frobenius falla en obtener una segunda
solucion en serie. En esta situacion, la ecuacion (20), con C # 0, indica que la segun-
da solucion se parece. Por Gltimo, cuando la diferencia r, - r, es un cero (caso I1I), el mé-
todo de Frobenius no da una solucion en serie; la segunda solucién (22) siempre contiene
un logaritmo y se puede demostrar que es equivalente a (20) con C = 1. Una forma de
obtener la segunda solucion con el término logaritmico es usar el hecho de que

—IP x)dx

Yo(X) = Yi(X) f V()

también es una solucion de y” + P(x)y" + Q(x)y = 0, siempre y cuando y,(x) sea una
solucion conocida. En el ejemplo siguiente, se ilustra cémo usar la ecuacion (23).

(23)

I EJEMPLO 5 Volver a analizar el ejemplo 4 usando un SAC

Encuentre la solucion general de xy” +y = 0.

SOLUCION De la conocida solucién dada del ejemplo 4,

1 1 1
X)=X—-X+ =3 ——x+ -
¥l 26T 1N T 1
se puede construir una segunda solucion y,(x) usando la formula (23). Quienes tengan
tiempo, energia y paciencia pueden realizar el aburrido trabajo de elevar al cuadrado una
serie, la division larga y la integracion del cociente a mano. Pero todas estas operacio-
nes se realizan con relativa facilidad con la ayuda un SAC. Se obtienen los resultados:

—Jde dx
Yo(X) = y1(X) 5 dx = yy(X)
X 2
[y()] X2+1X_ix4+...
12 144
dx
= yl(x)f
X2 — —X4 - 1 S+ - .- < después de elevar al cuadrado
72
(x)j } 1+£9x+ dx después de la division |
=V x 17 espués de la division larga
= y1(X) —}+Inx+lx+£x2+ después de int
=Y 12 144 espués de integrar
1 7 19
= + i S G e Gl I
y1(¥) Inx yl(X)|: X 12X 144X },
1 1 o
0 Ya(X) = y1(X) Inx + [—1 — EX + EXZ + - ] <« después de multiplicar
En el intervalo (0,) la solucion general esy = C y,(x) + C,y,(x), ]

Observe que la forma final de y, en el ejemplo 5 corresponde a (20) con C = 1; la
serie entre paréntesis corresponde a la suma en (20) conr, = 0.
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I COMENTARIOS

i) Las tres formas distintas de una ecuacion diferencial lineal de segundo orden
en (1), (2) y (3) se usaron para analizar varios conceptos teéricos. Pero a nivel
practico, cuando se tiene que resolver una ecuacion diferencial con el método
de Frobenius, se recomienda trabajar con la forma de la ED dada en (1).

ii) Cuando la diferencia de las raices indiciales r, — r, es un entero positivo
(r, >r,), a veces da resultado iterar la relacion de recurrencia usando primero
la raiz r, mas pequefia. Véanse los problemas 31y 32 en los ejercicios 6.2.

iii) Debido a que una raiz indicial r es una solucidn de una ecuacion cuadratica,
ésta podria ser compleja. Sin embargo, este caso no se analiza.

iv) Si x = 0 es punto singular irregular, entonces es posible que no se encuentre
ninguna solucion de la ED de la forma y =>%_ ¢, x"".

EJE RCICIOS 6.2 Lasrespuestas a los problemas seleccionados con niimero impar comienzan en la pagina RES-9.

En los problemas 1 a 10, determine los puntos singulares de
la ecuacion diferencial dada. Clasifique cada punto singular
como regular o irregular.

1 X%y +4x%y' +3y=0

2. X(x +3))y"—y=0

3. (X2—=9' +(x+3)y +2y=0
1

4. y" — }y’ +

X (x — 1)3y =0
5 (x®+4x)y" —2xy' +6y =0
6. xX2(x —5)%y" +4xy’ + (x2—25)y =0
7. X2+ x—6)y' +x+3)y +x—2y=0
8. x(x2+1%"+y=0
9. X3(x2 = 25)(x — 2)%y" + 3X(x — 2)y' + 7(x +5)y =0

10. (x* —2x2+ 3X)Y" +x(x —3)y' — (x+1)y=0

En los problemas 11 y 12 escriba la ecuacion diferencial dada
en la forma (3) para cada punto singular regular de la ecua-
cién. Identifique las funciones p(x) y q(x).

11 (x2—=1y"+5x+ 1)y +(x*—=x)y=0
12, xy" + (x + 3)y + 7x%y =0

En los problemas 13y 14, x = 0 es un punto singular regular
de la ecuacion diferencial dada. Use la forma general de la
ecuacion indicial en (14) para encontrar las raices indiciales
de la singularidad. Sin resolver, indique el nimero de solu-

ciones en serie que se esperaria encontrar usando el método
de Frobenius.

13 x2y" + (3x +xdy — 1y =0

14. xy"+y +10y=0

En los problemas 15 a 24, x = 0 es un punto singular regular de
la ecuacion diferencial. Muestre que las raices indiciales de la
singularidad no difieren por un entero. Use el método de Frobe-

nius para obtener dos soluciones en serie linealmente indepen-
dientes respecto a x = 0. Forme la solucion general en (0, ).

15. 2xy" —y' +2y=0

16. 2xy”" +5y" + xy =0

17. 4xy" + 3y’ +y=0

18. 2x%" —xy' + (x*+ 1)y =10
19. 3xy"+2—-x)y —y=0
(x—gy=0

21. 2xy" — (3 +2x)y' +y=0

20. x%y" —

22. Xy" +xy + (x2 - g)y =0
23. x%y" + 9%y’ +2y =0
24. 2x%y" +3xy' + 2x— 1)y =0

En los problemas 25 a 30, x = 0 es un punto singular regular
de la ecuacion diferencial dada. Demuestre que las raices indi-
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ciales de la singularidad difieren por un entero. Use el método
de Frobenius para obtener al menos una solucidn en serie res-
pecto a x = 0. Use la ecuacidn (23) donde sea necesario y un
SAC, como se indica, para encontrar una segunda solucidn.
Forme la solucidn general en (0,%).

25.
26.
217.
29.

Xy" +2y" —xy=20
xy" +xy + -3y =0
Xy"—xy'+y=0 28. y”+)—3;y’—2y=0

Xy + @ —-x)y —y=0 30. xy"+y +y=0

En los problemas 31y 32, x = 0 es un punto singular regular
de la ecuacion diferencial dada. Demuestre que las raices indi-
ciales de la singularidad difieren por un entero. Use la relacion
de recurrencia encontrada por el método de Frobenius primero

con

la raiz mas grande r,. ¢(Cuantas soluciones encontrg? A

continuacioén use la relacion de recurrencia con la raiz mas
pequefia r,. ¢ Cuantas soluciones encontrg?

3L
32.
33.

Xy"+ (x—6)y —3y=0
X(x —1y"+3y' —2y=0

a) La ecuacion diferencial x*” + Ay = 0 tiene un punto
singular irregular en x = 0. Demuestre que la sustitu-
cién t = I/x produce la ED

d%y , 2dy

dt2+ta+)\y:0,

que ahora tiene un punto singular regular en t = 0.
b) Use el método de esta seccidn para encontrar dos so-

luciones en serie de la segunda ecuacion del inciso a)
respecto a un punto singular regular t = 0.

c) Exprese cada solucion en serie de la ecuacion original
en términos de funciones elementales.

Modelo matematico

34.

Pandeo de una columna conica En el ejemplo 3 de
la seccion 5.2, vimos que cuando una fuerza compresiva
vertical constante o carga P se aplica a una columna del-
gada de seccidn transversal uniforme, la deflexion y(x)
fue una solucién del problema con valores en la frontera
d?y
El —+Py=0, y(0) =0, y(lL)=0.
dx?
La suposicién aqui es que la columna esta abisagrada en
ambos extremos. La columna se pandea s6lo cuando la
fuerza compresiva es una carga critica P .

(24)

a) En este problema se supone que la columna es de
longitud L, esta abisagrada en ambos extremos, tiene
secciones transversales circulares y es conica como se
muestra en la figura 6.2.1a. Si la columna, un cono

truncado, tiene un afilamiento lineal y = cx, como se
muestra en la seccion transversal de la figura 6.2.1b,
el momento de inercia de una seccion transversal res-
pecto a un eje perpendicular al plano xy es | = %wr“,
donde r = y y y = cx. Por tanto, escribimos I(x) =
I,(x/b)*, donde 1, = I(b) = ;m(ch)* Sustituyendo
I(x) en la ecuacion diferencial en (24), vemos que la
deflexidn en este caso se determina del PVF
Ay _ _

e tAy=0 y@=0 yb=0
donde A = Pb*/El,. Use los resultados del pro-
blema 33 para encontrar las cargas criticas P, para la
columna cénica. Use una identidad apropiada para
expresar los modos de pandeo y (x) como una sola
funcion.

b) Use un SAC para trazar la grafica del primer modo de
pandeo y,(x) correspondiente a la carga de Euler P,
cuandob =1lya = 1.

a) b)

FIGURA 6.2.1 Columna cénica del problema 34.

Problemas para analizar

35.

36.

37.

Analice cdmo definiria un punto singular regular para la
ecuacion diferencial lineal de primer orden

(y” + a(y” + a(y + a(x)y = 0.
Cada una de las ecuaciones diferenciales

XBy"+y=0 y Xy"+ Bx— 1)y +y=0
tiene un punto singular irregular en x = 0. Determine si
el método de Frobenius produce una solucion en serie de
cada ecuacidn diferencial respecto a x = 0. Analice y ex-
plique sus hallazgos.

Se ha visto que x = 0 es un punto singular regular de
cualquier ecuacién de Cauchy-Euler ax?y” + bxy’ + cy =
0. ¢(Estan relacionadas la ecuacion indicial (14) para
una ecuacion de Cauchy-Euler y su ecuacién auxiliar?
Analice.
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6.3 FUNCIONES ESPECIALES

REPASO DE MATERIAL
e Secciones 6.1y 6.2

INTRODUCCION Las dos ecuaciones diferenciales
Xy" +xy' + (% —v2)y=0 1)

(1—x)y" —2xy' +nn+ 1)y=0 )

se presentan en estudios avanzados de matematicas aplicadas, fisica e ingenieria. Se llaman ecuacion
de Bessel de orden vy ecuacion de Legendre de orden n, respectivamente. Cuando resolvemos la
ecuacion (1) se supone que v = 0, mientras que en (2) solo consideraremos el caso cuando n es un
entero no negativo.

6.3.1 ECUACION DE BESSEL

LAS SOLUCION Debido a que x = 0 es un punto singular regular de la ecuacion
de Bessel, se sabe que existe al menos una solucion de la forma y = 37_, ¢, x"*".
Sustituyendo la Gltima expresion en (1), se obtiene

X"+ xy + (0 — vy = D (n+ )+ — DX+ D cy(n+ DX+ D X2 — p2 Yo X
n=0 n=0 n=0 n=0
=crP2—r+r— X +x D c[n+Mn+r—1) +M+r)— X"+ X D c,x"+?2

n=1 n=0

= o(r2 — X" + X' X ¢ [(n + )2 — v x" + X' D, ¢, X2 ®)
n=1 n=0

De (3) se ve que la ecuacion indicial es r2 — v2 = 0, de modo que las raices indiciales
sonr, =vyr,= —v. Cuando r, = v, laecuacion (3) se convierte en

X' X c,n(n + 20)X" + X D, ¢ x"+2
n=1 n=0

<

x| (1 + 2v)ex + 2, cn(n + 20)X" + D, ¢ x1+2
n=2

n=0

%(_)
k=n-2 k=n

<

1+ 2v)ex + X [(K+ 2)(k + 2 + 20)C,, + GJxk2| = 0.
k=0

=X

Por tanto, por el argumento usual podemos escribir (1 + 2v)c, =0y

K+ 2)(K+ 2+ 20)Cup+ C =0

-
0 = k=0,12... 4

2= Ky )k + 2+ 20) 012 @
La eleccion ¢, = 0 en (4) implica que ¢;=c5=c; =--- =0, por lo que para
k=0,2,4,... seencuentra, después de establecerk + 2 =2n,n=1,2,3, ..., que

C2n72

Cn = = 2°n(n + v)’ (5)
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Por lo que C, = —%m
o — C _ Co
* 2.2+ 1) 22-1-21+ »)Q2+ v)
o = _ Cy _ Co
6 22-3(3 + 1) 26.1-2-31+ )2+ 1B+ v
Con (“1)¢ n=123.... ©6)

T 2MIl+ )2+ (nt )

En la practica se acostumbra elegir a ¢, como
_ 1
2T + v)

donde I'(1 + v) es la funcién gamma. Véase el apéndice I. Puesto que esta Gltima fun-
cién posee la propiedad conveniente I'(1 + «) = aI'(«), se puede reducir el producto
indicado en el denominador de (6) a un término. Por ejemplo,

ri+v+1)=Q+ @+ v
ri+v+2)=Q+vlr@+v)=02+ )@+ »)I'A + v).

Co

Por tanto, se puede escribir (6) como

_ G _ (-"
22vtvplL+ )2+ v) - (n+ IQ+v) 22T + v + n)

Con

paran=0,1,2,...

FUNCIONES DE BESSEL DE PRIMERA CLASE  Si se usan los coeficientes ¢, ape-
nas obtenidos y r = v, una solucién en serie de la ecuacion (1) es y = X7, C, X",
Esta solucion usualmente se denota por J (x):

JU(X) N i (7l)n (X)z”"

o NI+ v+ n) 2

()
Si v = 0, la serie converge al menos en el intervalo [0, «©). También, para el segundo
exponente r, = —v se obtiene exactamente de la misma manera,
o (_1)n X 2n—v
L,0=2 —————|
n=0 n'r(l v+ n) 2 (8)

Las funciones J (x) y J_ (x) se llaman funciones de Bessel de primera clase de orden
vy —v, respectivamente. Dependiendo del valor de v, (8) puede contener potencias
negativas de x y, por tanto, converger en (0, «).*

Ahora se debe tener cuidado al escribir la solucidn general de (1). Cuando v = 0,
es evidente que (7) y (8) son las mismas. Siv >0yr, —r,=v — (—v) =2vnoesun
entero positivo, se tiene del caso | de la seccion 6.2 que J (x) y J_ (x) son soluciones
linealmente independientes de (1) en (0, «) y, por tanto, la solucién general del inter-
valoesy = c,J (x) + ¢,J_ (x). Pero se sabe que del caso Il de la seccion 6.2 que cuando
r, — r, = 2v es un entero positivo, podria existir una segunda solucion en serie de
(1). En este segundo caso se distinguen dos posibilidades. Cuando v = m = entero
positivo, J__ (x) definida por (8) y J_(x) no son soluciones linealmente independientes.
Se puede demostrar que J__es un mdltiplo constante de J_ (véase la propiedad i) en la
pagina 245). Ademas, r, — r, = 2v puede ser un entero positivo cuando v es la mitad de

“Cuando reemplazamos x por ||, las series dadas en (7) y en (8) convergen para 0 < |x| < .
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un entero positivo impar. En este ultimo caso se puede demostrar que J (x) y J_ (x) son
linealmente independientes. En otras palabras, la solucion general de (1) en (0, ) es

y = ¢ J,(X) + ¢c,d (%), v # entero. 9)
En la figura 6.3.1 se presentan las graficas dey = J (X) y y = J,(X).

I EJEMPLO 1 Ecuaciones de Bessel de orden 3

Al identificar »2 4 y v = 3, se puede ver de la ecuacion (9) que la solucién general
de la ecuacion x2y” + xy’ + (x2 —3)y=0en(0,®)esy=cJ (x) +cJ (x). =
FUNCIONES DE BESSEL DE SEGUNDA CLASE Si v # entero, la funcién defi-
nida por la combinacion lineal

V() = cos vard,(x) — J_,(X) (10)

sen v

y lafuncion J (x) son soluciones linealmente independientes de (1), por lo que otra forma
de lasolucion general de (1) esy = ¢,J (x) + ¢,Y (x) siempre que v # entero. Conforme
v — m con m entero (10) tiene la forma indeterminada 0/0. Sin embargo, se puede de-
mostrar por la regla de L"Hopital que el lim,_,,, Y, (x) existe. Ademas, la funcion

Vo) = lim ¥,00

yJ_(x) sonsoluciones linealmente independientes de x?y” + xy’ + (x* — m?)y = 0. Por tanto,
para cualquier valor de v la solucién general de (1) en (0, o) se puede escribir como

y = ¢ J,(X) + C,Y,(X). (11)

Y, (x) se llama funcion de Bessel de segunda clase de orden v. La figura 6.3.2 muestra
las graficas de Y (x) y Y,(X).

I EJEMPLO 2 Ecuacion de Bessel de orden 3

Identificando v = 9y v = 3 vemos de la ecuacidn (11) que la solucion general de la
ecuacion x?y" + xy’ + (x* — 9)y =0en (0, ) esy = ¢, J,(x) + c,Y,(x). ]

ED RESOLUBLES EN TERMINOS DE FUNCIONES DE BESSEL  Algunas veces
es posible convertir una ecuacion diferencial en la ecuacion (1) por medio de un cam-
bio de variable. Podemos entonces expresar la solucion de la ecuacién original en
términos de funciones de Bessel. Por ejemplo, si se establece que t = ax, @ > 0, en

X2y" + xy' + (a?x? — 1)y =0, (12)
entonces por la regla de la cadena,
dy dydt dy d?y d[dy)dt ,d%y
dx dtax Yt Y de dt(dx)dx g

Por lo que (12) se convierte en

, d%y t) dy ,d?y dy
- — + + (2 — p)y = 0 — 4+ t—=+ (2 -3y =0.
<a> o dt? ( > dt E—ry=0 ¢ dt? tdt E =9y =0

La dltima ecuacion es la ecuacion de Bessel de orden v cuya soluciénesy = ¢ J (t) +
¢,Y,(t).Volviendo a sustituir t = ax en la Gltima expresion, se encuentra que la solu-
cién general de (12) es

y - Cl\J‘,(OZX) + CzY,,(aX). (13)
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La ecuacion (12), que se llama ecuacion paramétrica de Bessel de orden » y su solu-
cioén general (13) son muy importantes en el estudio de ciertos problemas con valores
en la frontera relacionados con ecuaciones diferenciales parciales que se expresan en
coordenadas cilindricas.

Otra ecuacién semejante a (1) es la ecuacion modificada de Bessel de orden v,

X2y" + xy' — (x2 + v?)y = 0. (14)
Esta ED se puede resolver en la forma que se acaba de ilustrar para (12). Esta vez si
hacemos que t = ix, donde i = —1, entonces (14) se convierte en

d? ,  dy
22—+t + (- v)y=0

ae Tta T
Debido a que las soluciones de la ultima ED son J (t) y Y (1), las soluciones de valores
complejos de la ecuacion (14) son J (ix) y Y (ix). Una solucion de valores reales, que
se llama funcion modificada de Bessel de primera clase de orden v, esta definida en
terminos de J (ix):

1L,(X) = i77J,(ix). (15)

Véase el problema 21 en los ejercicios 6.3. Analogamente a (10), la funcién modifi-
cada de Bessel de segunda clase de orden v # entero, se define como

_ml,(x) - LX)
K09 = 2 senvm (16)

y para v = n entero,
K,(X) = lm K, (X).
Debido a que I 'y K son linealmente independientes en el intervalo (0, «) para cual-
quier valor de v, la solucion general de (14) es

y = ci1,(x) + c,K, (x). a7

Pero otra ecuacion, importante debido a que muchas ED se ajustan a su forma
mediante elecciones apropiadas de los parametros, es

1-2a

X

aZ _ pZCZ

y,, n yr + <b2C2X202 + X2>y =0, p= 0. (18)

Aunque no se dan los detalles, la solucién general de (18),
y = X{Cl\]p(bxc) + csz(bxc)w, (19)
se puede encontrar haciendo un cambio de las variables independiente y depen-

alc
diente: z = bx¢, y(x) = <é> w(z). Si p no es un entero, entonces Y, en (19) se pue-

de reemplazar por J

I EJEMPLO 3 Usando (18)

Encuentre la solucién general xy” + 3y’ + 9y = 0en (0, «).
SOLUCION Escribiendo la ED como
S T
yrry Ty )
podemos hacer las siguientes identificaciones con (18):

1—-2a=3, b?c? = 9, 2c—2=-1 Y a?—p*?=0.

Las ecuaciones primera y tercera implican que a = -1y c = % Con estos va-
lores las ecuaciones segunda y cuarta se satisfacen haciendo b = 6 y p = 2.
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De (19) se encuentra que la solucion general de la ED en el intervalo (0, «) es
y = x"c J,(6xY2) + c,Y,(6xY?)]. [ |

I EJEMPLO 4 Volver a revisar el problema del resorte envejecido

Recuerde que en la seccion 5.1 vimos que mx” + ke ™x = 0, a« > 0 €S un mo-
delo matematico para el movimiento amortiguado libre de una masa en un re-
sorte envejecido. Ahora se estd en posicion de encontrar la solucién general
de la ecuacién. Se deja como problema demostrar que el cambio de variables

2 |k o . Lo
s = — , /|—e Y2 transforma la ecuacion diferencial del resorte envejecido en
a\'m
d2x dx
s2—— +s—+x=0.
ds? ds

La dltima ecuacidn se reconoce como (1) con v = 0 y donde los simbolos x y s juegan
los papeles de y y x, respectivamente. La solucion general de la nueva ecuacion es
x = ¢, J,(s) + ¢c,Y,(s). Si se sustituye nuevamente s, entonces se ve que la solucion
general de mx” + ke *x = 0 es

2 [k 2 |k
x(t) = c1J0<; \/%e‘”m) + CZY0<E \/%e““”).

Véanse los problemas 33y 39 de los ejercicios 6.3. ]

El otro modelo analizado en la seccién 5.1 de un resorte cuyas caracteristicas
cambian con el tiempo fue mx” + kitx = 0. Si se divide entre m, vemos que la ecuacion

X" + atx = 0 eslaecuaciénde Airyy” + a?xy = 0. Véase el ejemplo3enlaseccién6.1.

La solucién general de la ecuacion diferencial de Airy también se puede escribir en
términos de funciones de Bessel. VVéanse los problemas 34, 35y 40 de los ejercicios 6.3.

PROPIEDADES Se listan a continuacion algunas de las propiedades mas Utiles de
las funciones de Bessel de ordenm, m =0, 1, 2, . . .:

) Jn() = (=1)"In(), i) Jn(=x) = (=1)"In (),

0, m>0
iii) J,(0) {17 m=0,
Observe que la propiedad ii) indica que J_(x) es una funcion par si m es un entero par
y una funcion impar si m es un entero impar. Las graficas de Y (x) y Y,(x) en la figura
6.3.2 muestran la propiedad iv), en particular, Y_(x) no esta acotada en el origen. Este
Gltimo hecho no es obvio a partir de la ecuacion (10). Las soluciones de la ecuacion
de Bessel de orden 0 se obtienen por medio de las soluciones y,(x) en (21) y y,(X) en
(22) de la seccién 6.2. Se puede demostrar que la ecuacion (21) de la seccion 6.2 es
y,(x) = J,(x), mientras que la ecuacion (22) de esa seccion es

& (—1)k< 1 1)<x)2k
= - +-+- -+ =)
Yo(X) = Jo(x)In x kgl )2 1 5 e
Entonces, la funcion de Bessel de segunda clase de orden 0, Y (x) se define como la

iv) lim Y, (x) = —c.
x—0"

combinacion lineal Y, (x) = 2 (y — In2)y;(x) + Eyz(x) para x > 0. Es decir,
a ar
2 x| 2& (—1)k< 1 1)<x>2k
=— + In=|—— +=4---+={=]
Yo(®) WJO(X)[” In 2] 22 2\ T2 k/\2

donde y = 0.57721566 ... es la constante de Euler. Debido a la presencia del término
logaritmico, es evidente que Y (x) es discontinua en x = 0.
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VALORES NUMERICOS En la tabla 6.1 se presentan las primeras cinco raices no
negativas de J(x), J,(x), Y,(x) y Y,(x). En la tabla 6.2 se presentan algunos otros valo-
res de la funcidn de estas cuatro funciones.

TABLA 6.1 Raices no negativas de J;, J,, Y, y Y. TABLA 6.2 Valores numéricosde J;, J,, Y, y V,.
J,(X) J,(%) Y, (%) Y, (%) X J,(x) J,(%) Y, (x) Y, (%)
2.4048 0.0000 0.8936 21971 0 1.0000 0.0000 — —

5.5201 3.8317 3.9577 5.4297 1 0.7652 0.4401 0.0883 —0.7812
8.6537 7.0156 7.0861 8.5960 2 0.2239 0.5767 0.5104 —0.1070
11.7915 10.1735 10.2223 11.7492 3 —0.2601 0.3391 0.3769 0.3247
14.9309 13.3237 13.3611 14.8974 4 —0.3971 —0.0660 —0.0169 0.3979
5 —0.1776 —0.3276 —0.3085 0.1479
6 0.1506 —0.2767 —0.2882 —0.1750
7 0.3001 —0.0047 —0.0259 —0.3027
8 0.1717 0.2346 0.2235 —0.1581
9 —0.0903 0.2453 0.2499 0.1043
10 —0.2459 0.0435 0.0557 0.2490
11 —0.1712 —0.1768 —0.1688 0.1637
12 0.0477 —0.2234 —0.2252 —0.0571
13 0.2069 —0.0703 —0.0782 —0.2101
14 0.1711 0.1334 0.1272 —0.1666
15 —0.0142 0.2051 0.2055 0.0211

RELACION DE RECURRENCIA DIFERENCIAL Las formulas de recurrencia que
relacionan las funciones de Bessel de diferentes drdenes son importantes en la teoria
y en las aplicaciones. En el ejemplo siguiente se deduce una relacion de recurrencia
diferencial.

I EJEMPLO 5 Deduccion usando la definicion de serie

Deduzca la formula xJ,(X) = »J,(X) — XJ,:1(X).

SOLUCION De la ecuacion (7) se tiene que

X309 = 3 .

Snr(l+v+n)

(=" (X)2n+vl

= WM XL ET I Fa T |2

= (=1)2n + v) (x)2n+v

>
k=n-1

@ (—1) X \ kb1
el

SRR+ v+k) (2

=vJ,(X) — X >

= V‘]V(X) - XJv+l(X)' u

El resultado del ejemplo 5 se puede escribir en una forma alternativa. Dividiendo
xJI(X) — v, (X) = —xJ,.,(x) entre x, se obtiene

309 = 23,09 = ~3,0109-
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Esta Gltima expresion se reconoce como una ecuacion diferencial lineal de primer
orden en J (x). Multiplicando ambos lados de la igualdad por el factor integrante X,
se obtiene

d —v — _ v~V
ax X = =X, (). (20)

Se puede demostrar de manera similar que
d
0] = %3, (). (21)

Véase el problema 27 en los ejercicios 6.3. Las relaciones de recurrencia diferencia-
les (20) y (21) también son validas para la funcion de Bessel de segunda clase Y (x).
Observe que cuando v = 0 se deduce de (20) que

Jo() = —d(x) Yy Yo(¥) = —Yi(X). (22)
En el problema 39 de los ejercicios 6.3 se presenta una aplicacion de estos resultados.

FUNCIONES DE BESSEL ESFERICAS Cuando el orden v es la mitad de un en-
tero impar, es decir, i%, ig, i%, ..., las funciones de Bessel de primera clase J (x)
se pueden expresar en términos de las funciones elementales sen x, cos x y poten-
cias de x. Este tipo de funciones de Bessel se llaman funciones esféricas de Bessel.

1

Consideraremos el caso cuando v = 5. De (7),

B - i 5 2n+1/2
Jya(X) = zo n!F(l +14 n) <2> :

En vista de la propiedad I'(1 + «) = a['(«) y del hecho de que F(%) = V7 los
valores de 1“(1 + % +n)paran=0,n=1n=2yn = 3 son, respectivamente,

o) - v+ - i) - v

22
M) =rl ) =3l = V= Ve gy Ve
M) =11+ = 1) = 5 V7 = g V7 = 373 V7
En general, I‘<1 + % + n) = % V.
Porloque  Jy»(X) =§O ﬁr@)znwz = \/g( éo %XZ““.
T VT

Puesto que la serie infinita en la Gltima linea es la serie de Maclaurin para sen x, se ha
demostrado que

2
Jip(X) = \/WX Senx. (23)

Se deja como ejercicio demostrar que

J_1(X) =, /% COoS X. (24)

Véanse los problemas 31 y 32 de los ejercicios 6.3.
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6.3.2 ECUACION DE LEGENDRE

SOLUCION  Puesto gue x = 0 es un punto ordinario de la ecuacién de Legendre (2),
sustituyendo la serie y = Sy_ ¢, xX, corriendo los indices de la suma y combinando
la serie se obtiene

(1 —x0)y" —2xy’ + n(n+ 1)y = [n(n + 1)cy + 2¢,] + [(n — 1)(n + 2)c, + 6cyx
£ 310+ 20+ DG+ (01— + ] + gl = 0
i=

lo que implica que nin+ 1)c, + 2c, =0
(n—2)(n+ 2)c, + 6c5=0
G+ + DGt (=) +j+1)g=0

o G- — n(nZJ!r 1)
(n—=LH(n+ 2
= — Tcl
Si se deja que j tome los valores 2, 3, 4, . . ., larelacion de recurrencia (25) produce
G = — (n —j)-(r;Jr 3)02 _(n— 2)n(n4;r D(n + 3)CO
_ (=3 +4 (h=3)n - 1)(n+ 2)(n+4
%= 5.4 - 5| @
= — (n— g).(r;vL 5) c = — (n—4An - 2)n(n6?r D(n+ 3)(n+ 5)Co
(n—=5)(n + 6) (n—=5)(n —3)(n — (n+ 2)(n + 4)(n + 6)
“T T 7 %7 7 o

etcétera. Entonces para al menos |x| < 1, se obtienen dos soluciones en serie de poten-
cias linealmente independientes:

yi(X) = Co[l - ”(”; Do, = 2)n(n4-!i- Nn+3 ,
_ (=4 - Z)n(ne: Dn+30+5) 5 ]
- —3)(n - (26)
Ya(x) = cl[x _(n 1;(!n +2) o, (=30 1;§n 20+
(=90 =3I =D+ 2N+ HN+6) , ]
7! .

Observe que si n es un entero par, la primera serie termina, mientras que y,(x) es
una serie infinita. Por ejemplo, si n = 4, entonces
4-5 2:4-5-7 35
X) =G| 1 — X2+ X =co|1— 102 + —x*|.
Y1(%) Co[ 2 2 } Co[ 3 }
De manera similar, cuando n es un entero impar, la serie para y,(x) termina con X"; es

decir, cuando n es un entero no negativo, obtenemos una solucién polinomial de grado
n de la ecuacion de Legendre.
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Debido a que se sabe que un multiplo constante de una solucion de la ecuacién de
Legendre también es una solucion, se acostumbra elegir valores especificos para ¢,y
¢,, dependiendo de si n es un entero positivo par o impar, respectivamente. Paran = 0
elegimosc, =1,y paran = 2,4,6, ...

1-3---(n—-1)

— _1n/2—

C=(-1) T

mientras que paran = 1seeligec, = 1yparan=3,5,7,...
1.3...n

¢, = (—1)n-D2

2:4---(n—1)
Por ejemplo, cuando n = 4, se tiene

1- 1
yi(X) = (—1)4’273[1 — 10x? + 3—35x4] = §(35X4 — 30x2 + 3).

POLINOMIOS DE LEGENDRE Estas soluciones polinomiales especificas de
n-ésimo grado se Ilaman polinomios de Legendre y se denotan mediante P _(x). De
las series para y,(x) y y,(X) y de las opciones anteriores de ¢,y c, se encuentra que los
primeros polinomios de Legendre son

Po(x) = 1, P,(X) = X,

P,(X) = %(?)x2 - 1), Py(X) = %(SXS — 3X), 27)

1 1
P,(X) = §(35X4 — 30x% + 3), Ps(X) = é(63x5 — 70x@ + 15x).

Recue_rde que Po(x),_Pl(x), P,(x), P,(x), ... son, a su vez, soluciones particulares de las
ecuaciones diferenciales

n=0 (1-x)y”—2xy =0,

n=1 (1-x)y" —2xy +2y=0,
=2 (1—xy" —2xy + 6y =0,

n=3 (1-x)y" —2xy + 12y =0,

(28)

En la figura 6.3.3 se presentan las graficas en el intervalo [—1,1], de los seis poli-
nomios de Legendre en (27).

PROPIEDADES Se recomienda que compruebe las siguientes propiedades usando
los polinomios de Legendre en (27).

1) Po(=X¥) = (=1)"Py(¥)
i) P(1) =1 i) P(-1) = (-1"
iv) P,(0) =0, n impar, v) P,(0) =0, npar

La propiedad i) indica, como es evidente en la figura 6.3.3, que P _(x) es una funcion
par o impar concordantemente con la condicion de si n es par o impar.

RELACION DE RECURRENCIA Las relaciones de recurrencia que vinculan poli-
nomios de Legendre de diferentes grados también son importantes en algunos aspectos
de sus aplicaciones. Se establece, sin comprobacién, la relacidn de recurrencia de tres
términos

(k + DPa(¥) — (2k + DxP(x) + kP1(X) = 0, (29)
que es valida parak = 1, 2, 3, .... En (27) se listan los primeros seis polinomios de
Legendre. Si decimos que se desea encontrar P (x), se puede usar la ecuacion (29) con

k = 5. Esta relacion expresa P (x) en terminos de los conocidos P,(x) y P,(x). Véase el
problema 45 de los ejercicios 6.3.
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Otra formula, que aunque no es una relacion de recurrencia, puede generar
los polinomios de Legendre por derivacion, es la formula de Rodrigues que, para
estos polinomios es
1 d"
2"n! dx"
Véase el problema 48 de los ejercicios 6.3.

Pa(¥) = (—1D" n=012.... (30)

I COMENTARIOS

i) Aungue se ha supuesto que el parametro n en la ecuacion diferencial de
Legendre (1 — x?)y” — 2xy’ + n(n + 1)y = 0, representa un entero no negativo,
en una forma mas general n puede representar cualquier nimero real. Cualquier
solucion de la ecuacion de Legendre se llama funcién de Legendre. Si n no es
un entero no negativo, entonces ambas funciones de Legendre y, (x) y y,(x) dadas
en (26) son series infinitas convergentes en el intervalo abierto (—1, 1) y diver-
gentes (sin limite) en x = = . Si n es un entero no negativo, entonces, como
se ha visto, una de las funciones de Legendre en (26) es un polinomio y la
otra es una serie infinita convergente para —1 < x < 1. Se debe tener presente
que la ecuacion de Legendre tiene soluciones que estan acotadas en el intervalo
cerrado [—1, 1] solo en el caso cuando n = 0, 1, 2, . . . Mas concretamente,
las Gnicas funciones de Legendre que estan acotadas en el intervalo cerrado
[—1, 1] son los polinomios de Legendre P (x) o multiplos constantes de estos
polinomios. VVéase el problema 47 de los ejercicios 6.3 y el problema 24 en el
Repaso del capitulo 6.

ii) En los Comentarios al final de la seccion 2.3 se menciond la rama de la mate-
matica llamada funciones especiales. Quiza una mejor denominacion para esta
area de las matematicas aplicadas podria ser funciones nombradas, puesto que
muchas de las funciones estudiadas Ilevan nombres propios: funciones de Bessel,
funciones de Legendre, funciones de Airy, polinomios de Chebyshev, funcion
hipergeométrica de Gauss, polinomios de Hermite, polinomios de Jacobi, po-
linomios de Laguerre, funciones de Mathieu, funciones de Weber, etcétera.
Historicamente, las funciones especiales fueron subproducto de la necesidad;
alguien necesitaba una solucién de una ecuacién diferencial muy especializada
que surgio6 de un intento por resolver un problema fisico.

EJERCICIOS 6.3 Lasrespuestas a los problemas seleccionados con nimero impar comienzan en la pagina RES-10.

6.3.1 ECUACION DE BESSEL En los problemas 7 a 10, use la ecuacién (12) para encontrar la
solucién general de la ecuacion diferencial dada en (0, «).

En los problemas 1 a 6 use la ecuacion (1) para encontrar la so-

lucion general de la ecuacion diferencial en el intervalo (0, ). 7. X%y + Xy +(9%* — 4)y =0

8. X" +xy +(36x2—3)y=0
X2y/r + Xyr + (XZ _ %>y =0 y y ( 4)y
9. »y" +xy + (25X —3)y=10

10. x2y" +xy’ + (2x2 —64)y =0

XY XY (X2 —-1)y=0

En los problemas 11 y 12 use el cambio de variable indicado
para determinar la solucion general de la ecuacion diferencial

) Xy// + yr + Xy = 0 en (O, OO)
d 4 11 x?%y" +2xy" + a®x?y = 0; y=x"Y2v(x)
b1+ (= 12.5¢y" + ad¢ 12 + Jy = 0 y= Vv(9

1

2

3. 4x%y" 4+ 4xy' + (4x* — 25)y =0
4. 16x%y" + 16xy’ + (16x2 = 1)y =0
5



En los problemas 13 a 20 use la ecuacion (18) para encontrar
la solucidn general de la ecuacion diferencial en (0, «).

13. xy" +2y' +4y=0 14. xy"+3y' +xy=0

15. xy" =y " +xy=0 16. xy" —=5y' +xy=0

17. xy" + (X2 = 2)y =0

18. 4x%y" + (16x>+ 1)y =0

19. xy" +3y" +x3y =0

20. 9x%y”" 4+ 9xy’ + (x8 — 36)y =0

21. Use la serie en (7) para comprobar que | (x) = i—J (ix) es
una funcion real.

22. Suponga que b en la ecuacion (18) puede ser un nimero
imaginario puro, es decir, b = Bi, 8 >0, i = —1. Use
esta suposicion para expresar la solucién general de la
ecuacion diferencial en términos de las funciones modifi-
cadas de Bessel | y K .

a) y'—xy=0 b) xy" +y —7x®%y =0
En los problemas 23 a 26, use primero la ecuacion (18) para
expresar la solucién general de la ecuacion diferencial en térmi-

nos de funciones de Bessel. Luego use (23) y (24) para expresar
la solucion general en términos de funciones elementales.

23. y"+y=0

24, x2y" +4xy’ + (x> +2)y =0

25. 16x%y" + 32xy’ + (x* —12)y =0

26. 4x?y" — 4Axy’ + (16x2+3)y =0

27. a) Proceda como en el ejemplo 5 para demostrar que

xJ'(X) = —vJ (X) + xJ_,(X).

[Sugerencia: Escriba 2n + v = 2(n + v) — v.]
b) Utilice el resultado del inciso a) para deducir (21).

28. Utilice la férmula del ejemplo 5 junto con el inciso a) del
problema 27 para deducir la relacion de recurrencia.

2vd (X) = xJ ., (X) +xJ,_,(X).

En los problemas 29 y 30 use la ecuacion (20) o (21) para
obtener el resultado dado.

29. f rlo(Ndr = x4, () 30. Jy(x) = J_,(x) = =J,(x)
0

31. Proceda como en la pagina 247 para deducir la forma ele-
mental de J__ . (X) dada en (24).

~1/2
32. a) Use la relacién de recurrencia del problema 28 junto
con (23) y (24) para expresar J, ,(X), J_, ,(X) ¥ J5,(X)
en términos de sen X, cos X y potencias de X.

b) Use un programa de graficacion para trazar J ,(x),
I3, 35,2, J_5,(0) Y I ,(X).

33.

34.

35.

36.

37.
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. . 2 |k
Use el cambio de variables s = — \Eea“z para de-
o

mostrar que la ecuacion diferencial del resorte envejecido
mx” + ke~ = 0, « > 0, se convierte en

d2x dx
SZ@+SE+SZX=0.

Demuestre que y = xl’zw(gaxf"z) es una solucion de la

ecuacion diferencial de Airy y” + a’xy = 0, x > 0, siem-

pre que w sea una solucion de la ecuacion de Bessel de

orden 1, es decir, w” + tw’ + (t2 - %)w =0, t>0.

[Sugerencia: Después de derivar, sustituir y simplificar,

entonces se hace t = Zax®/2,

a) Use el resultado del problema 34 para expresar la
solucion general de la ecuacion diferencial de Airy
para x > 0 en términos de funciones de Bessel.

b) Compruebe los resultados del inciso a) usando la
ecuacion (18).

Use la tabla 6.1 para encontrar los primeros tres valores
propios positivos y las funciones propias correspondien-
tes del problema de valores en la frontera.

Xy" +y + Axy =0,
y(x), y'(X) acotada conforme x — 0%, y(2) = 0.

[Sugerencia: Identificando A = «?, la ED es la ecuacion
de Bessel paramétrica de orden cero.]

a) Use la ecuacion (18) para demostrar que la solucion
general de la ecuacion diferencial xy” + Ay = O enel
intervalo (0,%) es

y = ¢, Vx3,(2Vax) + ¢, VY, (2Vax).

b) Compruebe por sustitucién directa que y =VxJ;
(2V/x) es una solucion particular de la ED en el caso
A=1

Tarea para el laboratorio de computacién

38.

39.

Use un SAC para trazar las gréaficas de las funciones mo-
dificadas de Bessel 1 (x), 1,(x), 1,(x) y K (x), K, (x), K,(x).
Compare estas gréaficas con las que se muestran en las fi-
guras 6.3.1y 6.3.2. ; Qué diferencia principal es evidente
entre las funciones de Bessel y las funciones modificadas
de Bessel?

a) Use la solucion general dada en el ejemplo 4 para
resolver el PVI

4" + e %x =0, x(0)=1, x(0)= -3

Tambiénuse Jj(x) = —J;(X) Y Y4(x) = —Y,(x) junto

con la tabla 6.1 o un SAC para evaluar los coeficientes.
b) Use un SAC para trazar la gréfica de la solucién ob-

tenida en el inciso a) en el intervalo 0 =< t < o,



252

40.

41.

42.
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a) Use la solucion general obtenida en el problema 35
para resolver el PVI

4x" +tx =0, x(0.1) =1, x'(0.1) = —3.
Use un SAC para evaluar los coeficientes.

b) Use un SAC para trazar la gréafica de la solucion ob-
tenida en el inciso a) en el intervalo 0 = t =< 200.

Columna doblada bajo su propio peso Una columna
delgada uniforme de longitud L, colocada verticalmente
con un extremo insertado en el suelo, se curva desde la
vertical bajo la influencia de su propio peso cuando su
longitud o altura excede un cierto valor critico. Se puede
demostrar que la deflexion angular 6(x) de la columna
desde la vertical en un punto P(x) es una solucién del
problema con valores en la frontera:

2

d20
— + - X)0 =
El 7+ dg(L = x)0 =0,

donde E es el médulo de Young, I es el momento de iner-
cia de seccion transversal, § es la densidad lineal cons-
tante y x es la distancia a lo largo de la columna medida
desde su base. VVéase la figura 6.3.4. La columna se dobla
s6lo para aquellos valores de L para los que el problema
con valores en la frontera tiene una solucién no trivial.

a) Establezca de nuevo el problema con valores en la
frontera haciendo el cambio de variablest = L — Xx.
Luego utilice los resultados del problema anterior en
este conjunto de ejercicios para expresar la solucion
general de la ecuacion diferencial en términos de
funciones de Bessel.

b) Use la solucion general encontrada en el inciso a) para
encontrar una solucion del PVF y una ecuacion que de-
fina la longitud critica L, es decir, el valor mas pequefio
de L para la que se comience a doblar la columna.

c) Con ayuda de un SAC, encuentre la longitud L de
una varilla de acero sélida de radio r = 0.05 pulg, 6g
= 0.28 Alb/pulg, E = 2.6 X 107 Ib/pulg?, A = 712
el = %711‘4.

0(0) =0, 6'(L) =0,

t
|
|
|
¢ P
|
|
|
|
|
|
|

suelo

FIGURA 6.3.4 Viga del problema 41.

Pandeo de una columna vertical delgada En el
ejemplo 3 de la seccién 5.2 vimos que cuando se aplica
una fuerza compresiva vertical constante o carga P a

43.

una columna delgada de seccion transversal uniforme y
abisagrada en ambos extremos, la deflexion y(x) es una
solucién del PVF:
d?y
El FG +Py=0, y0)=0, y(L)=0.

a) Si el factor de rigidez a la flexion El es proporcional
a x, entonces EI(x) = kx, donde k es una constante de
proporcionalidad. Si EI(L) = kL = M es el factor de
rigidez maxima entonces k = M/L y, por tanto, EI(x)
= Mx/L. Use la informacién del problema 37 para
encontrar una solucion de

x d2
MH%+W=Qy©=QyM=O

si se sabe que V/xY,(2VAx) no es cero en x = 0.

b) Use la tabla 6.1 para encontrar la carga de Euler P,
para la columna.

c) Use un SAC para graficar el primer modo de pandeo
y,(x) correspondiente a la carga de Euler P,. Por sim-
plicidad supongaquec, =1y L = 1.

Péndulo de longitud variable Para el péndulo simple
descrito en la pagina 209 de la seccion 5.3, suponga que la
varilla que sostiene la masa m en un extremo se sustituye
por un alambre flexible o cuerda y que el alambre pasa por
una polea en el punto de apoyo O en la figura 5.3.3. De
esta manera, mientras estd en movimiento en el plano
vertical la masa m puede subir o bajar. En otras palabras,
la longitud I(t) del péndulo varia con el tiempo. Bajo las
mismas suposiciones que conducen a la ecuacion (6) en la
seccion 5.3, se puede demostrar* que la ecuacion diferen-
cial para el angulo de desplazamiento 6 ahora es

16" + 21’6’ + gsend = 0.
a) Silaumenta aunarazon constante vy sil(0) = I, de-
muestre que una linealizacion de la ED anterior es
(I + vt)6” + 2ve’ + gb = 0. (31)

b) Realice el cambio de variables x = (I, + vt)/v y de-
muestre que la ecuacién (31) se convierte en

d%0  2d0 . g
dx?  xdx vx
c) Use el inciso b) y la ecuacién (18) para expresar la

solucion general de la ecuacion (31) en términos de
funciones de Bessel.

d) Use la solucion general del inciso ¢) para resolver
el problema con valores iniciales que consiste en
la ecuacion (31) y las condiciones iniciales 6(0)
= 0, 0'(0) = 0. [Sugerencias: para simplificar
los célculos, use un cambio de variable adicional

6=0.

u =§\/g(|0 + vt) = 2\/gx1’2.

Vv

"Véase Mathematical Methods in Physical Sciences, Mary Boas, John Wiley

& Sons, Inc., 1966. También vea el articulo de Borelli, Coleman and Hobson
en Mathematicas Magazine, vol. 58, nim. 2, marzo de 1985.
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Ademas, recuerde que la ecuacion (20) vale para
J,(u) y Y, (u). Por ltimo, la identidad

3. () — (W)Y (U) = —% sera muy Gtil].

e) Use un SAC para trazar la gréfica de la solucion
6(t) del PVI del inciso d) cuando I, = 1 pie, 6, =
L radiany v = & pie/s. Experimente con la gréfica
usando diferentes intervalos de tiempo, como [0, 10],
[0, 30], etcétera.

f) ¢Qué indican las gréficas acerca del angulo de des-
plazamiento 6(t) cuando la longitud | del alambre se
incrementa con el tiempo?

ECUACION DE LEGENDRE

44,

45,

46.

a) Use las soluciones explicitas y,(x) y y,(x) de la ecua-
cién de Legendre dada en (26) y la eleccion apro-
piada de c; y c, para encontrar los polinomios de
Legendre P (x) y P,(x).

b) Escriba las ecuaciones diferenciales para las cuales
P.(x) y P,(x) son soluciones particulares.

Use la relacion de recurrencia (29) y P (x) = 1, P (x) = X,
para generar los siguientes seis polinomios de Legendre.

Demuestre que la ecuacion diferencial

%y dy
d —
sen® —— + cos 6 + n(n + 1)(senB)y = 0

47.
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puede convertirse en la ecuacion de Legendre por medio
de la sustitucion x = cos 6.

Encuentre los primeros tres valores positivos de A para
los cuales el problema

(1 —x3y” —2xy' + Ay =0,
y(0) =0, y(x),y'(x) estd acotada en [—1,1]

tiene soluciones no triviales.

Tarea para el laboratorio de computacién

48.

49,

50.

En la realizacion de este problema, ignore la lista de
polinomios de Legendre que se presenta en la pagina
249 y las graficas de la figura 6.3.3. Use la férmula de
Rodrigues (30) para generar los polinomios de Legendre
P,(x), P,(X), ..., P,(x). Use un SAC para realizar las de-
rivadas y las simplificaciones.

Use un SAC para trazar las graficas de P (x), P,(X), . . .,
P.(x) enel intervalo [-1, 1].

Use un programa de calculo de raices para determinar las
raices de P (x), P,(x), . . ., P,(x). Si los polinomios de
Legendre son funciones incorporadas en su SAC, encuen-
tre los polinomios de Legendre de grado superior. Haga
una suposicion acerca de la localizacion de las raices de
algin polinomio de Legendre P (x) y luego investigue si
es verdad.

REPASO DEL CAPITULO 6

Las respuestas a los problemas seleccionados con nimero impar
comienzan en la pagina RES-10.

En los problemas 1y 2 conteste falso o verdadero sin consul-
tar de nuevo el texto.

La solucion general de x2y” + xy" + (x2 — 1)y =0 es
y =cJ,(x) +c,J_,(x).
Debido a que x = 0 es un punto singular irregular de

x3y" — xy’ +y = 0, la ED no tiene solucién que sea ana-
liticaen x = 0.

¢En cual de los siguientes intervalos se garantiza que
convergen para toda x ambas soluciones en serie de po-
tencias dey” + In(x + 1)y’ + y = 0 centradas en el punto
ordinario x = 0?

b) (=1, )
d) [-1,1]

a) (=%, %)
11
¢) [3;
x = 0 es un punto ordinario de cierta ecuacion diferen-
cial lineal. Después que se sustituye la solucién supuesta

y = 257_oC,X" en la ED, se obtiene el siguiente sistema
algebraico cuando los coeficientes de x°, x!, x? y x® se
igualan a cero:

2Cc, +2¢, t ¢, =0
6c; +4c, + ¢, =0
12¢, + 6c3 + ¢, — 3¢, =0
20cs + 8¢, + c3 — 2¢, = 0.

Teniendo en mente que ¢, y ¢, son constantes arbitrarias,
escriba los primeros cinco términos de dos series de po-
tencias que son solucion de la ecuacién diferencial.

. Suponga que se sabe que la serie de potencias

Sv_o C(x — 4)*converge en —2y diverge en 13. Analice
si la serie converge en —7, 0, 7, 10 y 11. Las respuestas
posibles son si, no, podria.
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6. Use la serie de Maclaurin para sen x y cos x junto con la
division larga para encontrar los primeros tres términos
diferentes de cero de una serie de potencias en x para la

- senx
funcion f(x) = —.
COS X
En los problemas 7 y 8 construya una ecuacion diferencial
lineal de segundo orden que tenga las propiedades dadas.

7. Un punto singular regular en x = 1y un punto singular
irregular en x = 0.

8. Puntos singulares regularesenx = lyenx = — 3.
En los problemas 9 a 14 use un método de series infinitas

apropiado respecto a x = 0 para encontrar dos soluciones de
la ecuacion diferencial dada.

9. 2xy"+y +y=0
11, x—1)y"+3y=0
13 xy" = (x+2)y +2y=0

10. y"—xy'—y=0
12. y" = x¥%" +xy=0
14. (cosx)y” +y=20

En los problemas 15 y 16, resuelva el problema con valores
iniciales dado.

15. y"+xy'+2y=0, y(0)=3,y(0)=-2
16. (x+2)y"+3y=0, y(0)=0,y(0) =1

17. Sin realmente resolver la ecuacién diferencial (1 — 2 sen
X)y" + xy = 0, encuentre un limite inferior para el radio
de convergencia de las soluciones en serie de potencias
respecto al punto ordinario x = 0.

18. Aunque x = 0 es un punto ordinario de la ecuacion dife-
rencial, explique por qué no es una buena idea tratar de
encontrar una solucion del PVI

y"+xy'+y=0, y@)=-6, y(1)=3

delaformay = 3r_, c,x". Por medio de series de poten-
cias, determine una mejor forma de resolver el problema.

En los problemas 19y 20, investigue si x = 0 es un punto ordina-
rio, singular o singular irregular de la ecuacién diferencial dada.
[Sugerencia: Recuerde la serie de Maclaurin para cos x y €*.]

19. xy” + (1 — cosx)y’ + x2y =0
20. (e*—=1—-x)y"+xy=0

21. Observe que x = 0 es un punto ordinario de la ecuacion
diferencial y” + x2y" + 2xy =5 — 2x + 10x%. Use la
suposicion y = X7_, ¢,x" para encontrar la solucion ge-
neraly =y + y, que consiste en tres series de potencias
centradas en x = 0.

22. La ecuacion diferencial de primer orden dy/dx = x? + y?
no se puede resolver en términos de funciones elementa-
les. Sin embargo, una solucion se puede expresar en tér-
minos de funciones de Bessel.

L, ldu
a) Demuestre que la sustitucion y = ~ i conduce
- udx
a la ecuacion u” + x?u = 0.

CAPITULO 6 SOLUCIONES EN SERIES DE ECUACIONES LINEALES

b) Use la ecuacion (18) de la seccidn 6.3 para encontrar
la solucidn general de u” + x?u = 0.

c) Use las ecuaciones (20) y (21) de la seccion 6.3 en las
formas

500 = 73,09 = 3,109

Y300 =~ 3,09 + 3,0

como ayuda para demostrar que una familia unipara-
métrica de soluciones de dy/dx = x? + y? esta dada por

_ X33/4(%X2) — 0373/4(%X2)
CJ1/4(%X2) + J_m(%x?)'

23. a) Use las ecuaciones (23) y (24) de la seccion 6.3 para

demostrar que

|2
Yi0(X) = — Rcosx.

b) Use laecuacion (15) de la seccion 6.3 para demostrar
que

/2 |2
li,(x) = Esenhx y X)) = ;coshx.

c) Use el inciso b) para demostrar que

[
Kio(X) = gefx-

De las ecuaciones (27) y (28) de la seccion 6.3 se sabe
que cuando n = 0, laecuacion diferencial de Legendre
(1 — x®)y" — 2xy’ = 0 tiene la solucién polinomial
y = P,(x) = 1. Use la ecuacion (5) de la seccion 4.2
para demostrar que una segunda funcion de Legendre
que satisface laED en el intervalo — 1 < x < 1les

_1|n<1+x>
Y=o M=)

b) También sabemos de las ecuaciones (27) y (28) de la
seccidn 6.3 que cuando n = 1 la ecuacion diferencial
de Legendre (1 — x?)y” — 2xy’ + 2y = O tiene la
solucion polinomial y = P (x) = x. Use la ecuacion
(5) de la seccidn 4.2 para demostrar que una segunda
funcion de Legendre que satisface la ED en el inter-
valo —1 <x<1les

X 1+ X
=—| - 1.
y 2n<l—x>

c) Use un programa de graficacion para trazar las funciones
de Legendre logaritmicas dadas en los incisos a) y b).

24. a)

25. a) Use series binomiales para mostrar formalmente que

(1 — 2xt + 2)"Y2 = Y P (x)t".
n=0
b) Use el resultado obtenido en el inciso a) para demos-
trar que P (1) = 1y P (=1) = (—1)". Véanse las
propiedades ii) y iii) de la pagina 249.
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7.6 Sistemas de ecuaciones diferenciales lineales
REPASO DEL CAPITULO 7

En los modelos matematicos lineales para sistemas fisicos tales como un sistema
resorte/masa o un circuito eléctrico en serie, el miembro del lado derecho o entrada,
de las ecuaciones diferenciales

d?x d?q dg 1

m—+[3%+kx=f(t) 0 L= 4 R= F

—a=E
dt? dt? dt Cq ©

es una funcion de conduccién y representa ya sea una fuerza externa f(t) o un voltaje
aplicado E(t). En la seccion 5.1 consideramos problemas en los que las funciones

fy E eran continuas. Sin embargo, las funciones de conduccion discontinuas son
comunes. Por ejemplo, el voltaje aplicado a un circuito podria ser continuo en tramos
y periddico tal como la funcién “diente de sierra” que se muestra arriba. En este
caso, resolver la ecuacion diferencial del circuito es dificil usando las técnicas del
capitulo 4. La transformada de Laplace que se estudia en este capitulo es una valiosa
herramienta que simplifica la solucién de problemas como éste.

255



256

CAPITULO 7 LA TRANSFORMADA DE LAPLACE

7.1

DEFINICION DE LA TRANSFORMADA DE LAPLACE

REPASO DE MATERIAL

e Integrales impropias con limites de integracion infinitos.
e Descomposicion en fracciones parciales.

INTRODUCCION  En célculo elemental aprendi6 que la derivacion y la integracion son trans-
formadas; esto significa, a grandes rasgos, que estas operaciones transforman una funcién en otra.
Por ejemplo, la funcién f(x) = x? se transforma, a su vez, en una funcién lineal y en una familia de
funciones polinomiales cubicas con las operaciones de derivacion e integracion:

d 1
— =2 2dx = = x3
dxX X y dex 3x + c.

Ademas, estas dos transformadas tienen la propiedad de linealidad tal que la transformada de una com-
binacidn lineal de funciones es una combinacion lineal de las transformadas. Para « y B constantes

d
ax LT + B = af'(x) + BY(x)

y J[af(x) + Bg(X)]dx = aff(x) dx + ,ng(x) dx

siempre que cada derivada e integral exista. En esta seccion se examina un tipo especial de trans-
formada integral Ilamada transformada de Laplace. Ademas de tener la propiedad de linealidad,
la transformada de Laplace tiene muchas otras propiedades interesantes que la hacen muy util para
resolver problemas lineales con valores iniciales.

TRANSFORMADA INTEGRAL Si f(x, y) es una funcion de dos variables, entonces
una integral definida de f respecto a una de las variables conduce a una funcién de la
otra variable. Por ejemplo, si se conserva y constante, se ve que 32xy?dx = 3y?. De
igual modo, una integral definida como [2 K(s, t) f(t) dt transforma una funcion f de
la variable t en una funcion F de la variable s. Tenemos en particular interés en una
transformada integral, donde el intervalo de integracion es el intervalo no acotado [0,
). Si f(t) se define para t = 0, entonces la integral impropia [§ K(s, t) f(t) dt se define

como un limite:
b

JwK(s, 1) f(t) dt = Iimj K(s, t) f(t) dt.
0 b—= Jo

o))

Si existe el limite en (1), entonces se dice que la integral existe o es convergente; si
no existe el limite, la integral no existe y es divergente. En general, el limite en (1)

existira solo para ciertos valores de la variable s.

UNA DEFINICION  La funcién K(s, t) en (1) se llama kernel o ncleo de la trans-
formada. La eleccién de K(s, t) = e~ como el nucleo nos proporciona una transfor-

mada integral especialmente importante.

DEFINICION 7.1.1 Transformada de Laplace

Sea f una funcion definida para t = 0. Entonces se dice que la integral

PLF)} = L “esti(t) dit

es la transformada de Laplace de f, siempre que la integral converja.

O]
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Cuando la integral de la definicion (2) converge, el resultado es una funcion de s. En
el analisis general se usa una letra mindscula para denotar la funcién que se transforma y
la letra mayuscula correspondiente para denotar su transformada de Laplace, por ejemplo,

O =F@),  H®} =G@6),  Hy®}r = Y(s).

I EJEMPLO 1 Aplicando la definicion 7.1.1

Evalle £{1}.

SOLUCION De (2),

b

{1} = f eY(1)dt = bIim f e stdt
0 —> 00

0

. —estp Lo—eh 1 1

= lim = lim——— =-

bow S b—co S S
siempre que s > 0. En otras palabras, cuando s > 0, el exponente —sb es negativo y
e **— 0 conforme b — . La integral diverge para s < 0. [ ]

El uso del signo de limite se vuelve un poco tedioso, por lo que se adopta la no-
tacion |5 como abreviatura para escribir lim,_,.. ( ) 3. Por ejemplo,
_efst % 1

= —st = =
P{1} Joe Mdt=——| =3 s>0

En el limite superior, se sobreentiende lo que significa e t— 0 conforme t — oo para s > 0.

I EJEMPLO 2 Aplicando la definicion 7.1.1

Evalle #{t}.

SOLUCION De la definicion 7.1.1 se tiene F{t} = [7 e sttdt. Alintegrar por partes
y usando Iim te~st = 0, s >0, junto con el resultado del ejemplo 1, se obtiene
t—x

* 1 (" 1 1(1\ 1
+ —f estdt = = {1} = —<—> ==
0 S Jo S S\S

2
S ]

_te*St

= —

I EJEMPLO 3 Aplicando la definicion 7.1.1

Evalle #{e %}

SOLUCION De la definicion 7.1.1 se tiene

g{e—m} — J' efstefSt dt = f ef(s+3)tdt
0 0
—p(+3)t
s+ 3

1
s+ 3

©

0

s> —3.

El resultado se deduce del hecho de que lim __ e ¢*¥=0 para s+3>0 o
s> —3. ]
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I EJEMPLO 4 Aplicando la definicién 7.1.1

Evalle #{sen 2t}.

SOLUCION De la definicion 7.1.1 e integrando por partes se tiene que
c 2

—e~stsen 2t
073

S

F{sen 2t}= fo e~stsen 2t dt = L e stcos 2t dt

2 oo
= gf e~stcos 2t dt, s>0
0

‘Ii[r) e tcos2t=0,s>0 Transformada de Laplace de sen 2t
Z[eSt cos2t|® 2 [ ]
=35\l ,— = stsen 2t dt
S S 0735 /o estse d
2 4
=g gif{sen 2t}.

En este punto se tiene una ecuacion con £{sen 2t} en ambos lados de la igualdad. Si
se despeja esa cantidad el resultado es

F{sen 2t} = s> 0. |

s+ 4

% ES UNA TRANSFORMACION LINEAL Para una combinacion lineal de funcio-
nes podemaos escribir

f e S af(t) + Bg(t)] dt = af et (t) dt + Bf e~ stg(t) dt
0 0 0
siempre que ambas integrales converjan para s > c. Por lo que se tiene que

L{af(t) + g} = aL{f (W)} + BL{g(V)} = aF(s) + BG(s). (©)
Como resultado de la propiedad dada en (3), se dice que £ es una transformacién
lineal. Por ejemplo, de los ejemplos 1y 2
5

LU+ 5 = P} A =+ 5

+

w |

y de los ejemplos 3y 4
4 20
s+3 s2+4
Se establece la generalizacion de algunos ejemplos anteriores por medio del si-
guiente teorema. A partir de este momento se deja de expresar cualquier restriccion en
s; se sobreentiende que s esta lo suficientemente restringida para garantizar la conver-
gencia de la adecuada transformada de Laplace.

P{4e 3 — 10 sen 2t} = 4%{e 3} — 10%{sen 2t} =

TEOREMA 7.1.1 Transformada de algunas funciones bésicas

a) £} -3

n! _ e 1
prEsy n=123,... c) {e}_:

b) #{t} =

f) senhki}= 5= 9) Heoshkt} = 55




fi(t)

Y

t

Il
T
at, t t3b

FIGURA 7.1.1 Funcién continua por
tramos.

f(t) Me® (c > 0)

(1)

FIGURA 7.1.2 fesde orden
exponencial c.

f) o2, ot

_

c t

FIGURA 7.1.4 ¢” noesde orden
exponencial.
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CONDICIONES SUFICIENTES PARA LA EXISTENCIA DE Z{f(t)} La integral
que define la transformada de Laplace no tiene que converger. Por ejemplo, no existe
PL{1/t3ni L{e"}. Las condiciones suficientes que garantizan la existencia de £{f (t)}
son que f sea continua por tramos en [0,%0) y que f sea de orden exponencial para t >
T. Recuerde que la funcién es continua por tramos en [0,) si, en cualquier intervalo
0 = a=t=bh, hay un nimero finito de puntost,k =1,2,...,n(t_, <t)enlos que
f tiene discontinuidades finitas y es continua en cada intervalo abierto (t,_, t). Vea la
figura 7.1.1. El concepto de orden exponencial se define de la siguiente manera.

DEFINICION 7.1.2  Orden exponencial

Se dice que f es de orden exponencial c si existen constantesc, M >0y T >
0 tales que | f(t)| < Me® paratodat>T.

Si f es una funcion creciente, entonces la condicion | f(t)| < Me®, t > T, simple-
mente establece que la grafica de f en el intervalo (T, ) no crece més rapido que la
grafica de la funcién exponencial Me®, donde c es una constante positiva. Vea la figura
7.1.2. Las funciones f(t) = t, f(t) = ey f(t) = 2 cos t son de orden exponencial ¢ =
1 parat > 0 puesto que se tiene, respectivamente,

[t e, |e7t| =¢e, y |2 cost| = 2et.

Una comparacion de las gréficas en el intervalo (0, «) se muestra en la figura 7.1.3.

(1) £(t) fO

t 2 cost

/ / et / /\

t t \/ t
a) b) )
FIGURA 7.1.3 Tres funciones de orden exponencial ¢ = 1.

Una funcién como f(t) = e no es de orden exponencial puesto que, como se
muestra en la figura 7.1.4, su grafica crece mas rapido que cualquier potencia lineal
positiva de e parat > ¢ > 0.

Un exponente entero positivo de t siempre es de orden exponencial puesto que,
parac > 0,

n
[t"] = Mect 0

pe =M para t>T

es equivalente a demostrar que el Iim,_, .. t"/e°t es finito paran = 1, 2, 3, . . . El resul-
tado se deduce con n aplicaciones de la regla de L"Hépital.

TEOREMA 7.1.2  Condiciones suficientes para la existencia

Si f es una funcion continua por tramos en [0,) y de orden exponencial c,
entonces F{f(t)} existe paras > c.
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DEMOSTRACION  Por la propiedad aditiva del intervalo de integrales definidas po-
demos escribir

2Lt} = fOTe‘S‘f(t) dt + fwe‘“f(t) dt =1y + I,

.
Laintegral I, existe ya que se puede escribir como la suma de integrales en los intervalos

en los que e~s'f(t) es continua. Ahora puesto que f es de orden exponencial, existen cons-
tantes ¢, M > 0, T > 0 tales que | f(t)| < Me* parat > T. Entonces podemos escribir

® ® % e—(s—c)T

Ll= ] letf@)dt=M | eStetdt=M [ e Cdt =M

T T T S —
para s> c.Puestoque /¥ Me~C~9tdt converge, laintegral [F|e st f(t)| dt converge por
la prueba de comparacion para integrales impropias. Esto, a su vez, significa que I, existe
paras > c.Laexistenciadel, el,implicaqueexiste #Z{f(t)} = [g e Stf(t) dt paras>c.
[ |

I EJEMPLO 5 Transformada de una funcién continua por tramos

0, 0=t<3

Evalte £{f(t)} donde f(t) = {2 t=3

SOLUCION La funcidn que se muestra en la figura 7.1.5, es continua por tramos y de
orden exponencial parat > 0. Puesto que f se define en dos tramos, £{f(t)} se expresa

y como la suma de dos integrales:
2** ?— o0 3 0
3 LI} = f e stf(t) dt = f e st(0) dt + f e~st(2) dt
T | 0 0 3
L L i | 2e_St “
; q =0+ 5 |s
26_35
FIGURA 7.1.5 Funcién continua por = , s> 0.
tramos. S n

Se concluye esta seccidn con un poco mas de teoria relacionada con los tipos de
funciones de s con las que en general se estara trabajando. El siguiente teorema indica
que no toda funcién arbitraria de s es una transformada de Laplace de una funcion
continua por tramos de orden exponencial.

TEOREMA 7.1.3 Comportamiento de F(s) conforme s — o

Si f es continua por partes en (0, o) y de orden exponencial y F(s) = Z{f(t)},
entonces el lim F(s) = 0.

S—>©

DEMOSTRACION Puesto que f es de orden exponencial, existen constantes v, M,
>0y T> 0 tales que |f(t)] < M.e”" para t > T. También, puesto que f es continua
por tramos en el intervalo 0 < t < T, esta necesariamente acotada en el intervalo; es
decir, [f(t)] < M, = Mg Si M denota el maximo del conjunto {M,, M,} y c denota el
méaximo de {0, v}, entonces

IF©)| sfmeswf(mdts Mf
0 0

para s > c. Conforme s — o, se tiene |F(s)] — 0y por tanto F(s) = #{f(t)} — 0.
[ |

e setdt = M f e (-9tdt = M
0 S—¢C
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I COMENTARIOS

i) En este capitulo nos dedicaremos principalmente a funciones que son continuas
por tramos y de orden exponencial. Sin embargo, se observa que estas dos condi-
ciones son suficientes pero no necesarias para la existencia de la transformada de
Laplace. La funcion f(t) = t "2 no es continua por tramos en el intervalo [0, %),
pero existe su transformada de Laplace. Vea el problema 42 en los ejercicios 7.1.

i) Como consecuencia del teorema 7.1.3 se puede decir que las funciones de
s como F.(s) = 1y F,(s) = s/(s + 1) no son las transformadas de Laplace
de funciones continuas por tramos de orden exponencial, puesto que F(s) + 0
y Fa(s) +> 0 conforme s — o°. Pero no se debe concluir de esto que F,(s) y F,(s)
no son transformadas de Laplace. Hay otras clases de funciones.

EJE RCICIOS 7.1 Lasrespuestasa los problemas seleccionados con ndmero impar comienzan en la pagina RES-10.

En los problemas | a 18 use la definicién 7.1 para encontrar 10. f(t)
2O g
-1, 0=t<1 e
1. f(t)—{ 3 (=1 g p t
2 1) = {4, 0=t<2 FIGURA 7.1.9  Grafica para el problema 10.
o, t=2
11. f(t) = e’ 12, f(t) = e 2°°
t, 0=st<1
fiy=1." . = te4t . — t2p-2t
3. f(®) {1, (=1 13. f(t) = te 14. f(t) = t?%
— p-t — at
2+l 0=t<1 15. f(t) = etsent 16. f(t) = etcost
4. 10 = 0, t=1 17. f(t) = tcost 18. f(t) =tsent
5. f(t) = {sent, O=t<m En los problemas 19 a 36 use el teorema 7.1.1 para encontrar
0 t=m 24O
0, O=st<m/2
f(t) = . = Ot4 ) — 5
6. f(t) {cost, t= 72 19. f(t) = 2t 20. f(t) =t
. 21. f(t) =4t - 10 22. ft)=7t+3
. f(t
® //(2, 2 23. f()=t>+6t—3 24, f(t) = —4t>+ 16t + 9
T 25. f(t) = (t+ 1) 26. f(t) = (2t — 1)
| 1 t 27. f(t) =1 + e* 28. f(t)=t2—e%+5
29. f(t) = (1 + e?)? 30. f(t) = (et —e)?
FIGURA 7.1.6 Gréfica para el problema 7. = e%) ©=("~e?
31. f(t) = 4t> — 5sen 3t 32. f(t) = cos 5t + sen 2t
8. f(t) 2
' 33. f(t) = senh kt 34, f(t) = cosh kt
1
35. f(t) = etsenht 36. f(t) =etcosht
| ) t
1 En los problemas 37 a 40 encuentre £{f(t)} usando primero
FIGURA 7.1.7 Gréfica para el problema 8. una identidad trigonomeétrica.
9. f(t) 37. f(t) = sen 2t cos 2t 38. f(t) = cos?t
1 T
39. f(t) = sen(4t + 5) 40. f(t) = 10 cos(t - E)
[ ‘ t
L 41. Una definicién de la funcion gamma esta dada por la in-
FIGURA 7.1.8 Gréfica para el problema 9. tegral impropia I'(a) = [3 t*"te~tdt, @ > 0.
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a) Demuestre que I'(a + 1) = al'(a).
I« + 1)

Sa+l

b) Demuestre que #{t°} = , a> -1

42. Use el hecho de que 1“(%) = /7 y el problema 41 para
encontrar la transformada de Laplace de

a) f)=t2 b f)=t2 c) f()=t"

Problemas para analizar

43. Construya una funcidn F(t) que sea de orden exponen-
cial pero donde f(t) = F’(t) no sea de orden exponencial.
Construya una funcion f que no sea de orden exponen-
cial, pero cuya transformada de Laplace exista.

44. Suponga que Z{fi()} = Fi(s) para s>c; y que
P{f,(1)} = Fa(s) paras > c,. ;Cuando
M) + HOF = Fis) + Fy(s)?

45. La figura 7.1.4 indica, pero no demuestra, que la funcién
f(t) = e no es de orden exponencial. ;Cémo demuestra

46.

47.

48.

la observacién de que t2 > In M + ct, para M > 0y t sufi-
cientemente grande, que e* > Me®! para cualquier c?

Utilice el inciso c) del teorema 7.1.1 para demostrar que

. s—a-+ib
(@tibty — -~ "
F{e } c—ay + b’ donde a y b son reales
e i2 = —1. Demuestre cdmo se puede usar la formula de
Euler (pagina 134) para deducir los resultados
s—a
F{e?tcos bt} = m
F{etsen bt} = #
(s — a)* + b?

¢Bajo qué condiciones es una funcidn lineal f(x) = mx +
b, m # 0, una transformada lineal?

La demostracion del inciso b) del teorema 7.1.1 requiere
el uso de la induccién matematica. Demuestre que si se
supone que F{t"'} = (n — 1)!/s" es cierta, entonces
se deduce que #{t"} = n!/s"*1,

7.2 TRANSFORMADAS INVERSAS Y TRANSFORMADAS

DE DERIVADAS

REPASO DE MATERIAL

ciones diferenciales ordinarias sencillas.

e Descomposicion en fracciones parciales

INTRODUCCION  En esta seccion se dan algunos pasos hacia un estudio de cémo se puede usar
la transformada de Laplace para resolver ciertos tipos de ecuaciones para una funcién desconocida.
Se empieza el analisis con el concepto de transformada de Laplace inversa 0, mas exactamente, la
inversa de una transformada de Laplace F(s). Después de algunos antecedentes preliminares im-
portantes sobre la transformada de Laplace de derivadas f'(t), f”(t), . . ., se ilustra cémo entran en
juego la transformada de Laplace y la transformada de Laplace inversa para resolver ciertas ecua-

7.2.1 TRANSFORMADAS INVERSAS

EL PROBLEMA INVERSO Si F(s) representa la transformada de Laplace de una
funcion f(t), es decir, Z{f(t)} = F(s), se dice entonces que f(t) es la transformada
de Laplace inversa de F(s) y se escribe f(t) = ¥ {F(s)} Enel caso de los ejem-

plos 1, 2 y 3 de la seccion 7.1 tenemos, respectivamente

Transformada Transformada inversa
F{1} = % 1= 21{%}

Pt} = é = 21{8—12}

e} = S i 3 e = gl{s i 3}
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Pronto veremos que en la aplicacién de la transformada de Laplace a ecuaciones no se
puede determinar de manera directa una funcion desconocida f (t); mas bien, se puede
despejar la transformada de Laplace F(s) o f(t); pero a partir de ese conocimiento, se
determina f calculando f(t) = ¥ {F(s)}. La idea es simplemente esta: suponga que
—25+ 6
Fr4
L{f (t)} = F(s). En el ejemplo 2 se muestra como resolver este Gltimo problema.

Para futuras referencias el analogo del teorema 7.1.1 para la transformada inversa
se presenta como nuestro siguiente teorema.

F(s) = es una transformada de Laplace; encuentre una funcion f(t) tal que

TEOREMA 7.2.1 Algunas transformadas inversas

a) 1= 31{1}
s
] 1
b) t”:$_l{ L}, n=123... O eat:gl{ }
s s—a
k s
_ -1 - 1) S
d) senkt =% {52 " kz} e) coskt=2 {Sz n kz}
f) senh kt = fl{rkkz} g) coshkt = ‘55_1{52 i kz}

Al evaluar las transformadas inversas, suele suceder que una funcién de s que
estamos considerando no concuerda exactamente con la forma de una transformada
de Laplace F(s) que se presenta en la tabla. Es posible que sea necesario “arreglar” la
funcién de s multiplicando y dividiendo entre una constante apropiada.

I EJEMPLO 1 Aplicando el teorema 7.2.1

1 1
{ -1) — -1
Evalle a) ¥ {55} by & {52 " 7}.

SOLUCION a) Para hacer coincidir la forma dada en el inciso b) del teorema 7.2.1,
se identifican + 1 = 50n = 4y luego se multiplica y divide entre 4!:

1 1 41 1
s il QU LD A QR
. {55} T {35} 24"

b) Para que coincida con la forma dada en el inciso d) del teorema 7.2.1, identificamos k?
= 7y, por tanto, k = /7. Se arregla la expresién multiplicando y dividiendo entre V7 :

1 1 V7 1
21{52 + 7} - Wiﬁl{sz + 7} =g et -

£ -1 ES UNA TRANSFORMADA LINEAL La transformada de Laplace inversa es
también una transformada lineal para las constantes a y 8

L YaF(s) + BGE)} = aZ H{F(S)} + BL HG()}, @)

donde F y G son las transformadas de algunas funciones fy g. Como en la ecuacién
(2) de la seccion 7.1, la ecuacién 1 se extiende a cualquier combinacion lineal finita de
transformadas de Laplace.
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I EJEMPLO 2 Division término a término y linealidad

—25+ 6
SOLUCION Primero se reescribe la funcion dada de s como dos expresiones divi-
diendo cada uno de los términos del numerador entre el denominador y después se usa
la ecuacion (1):

Evalle ¥ ‘1{

linealidad y arreglo de
las constantes

division de cada uno de los términos
entre el denominador !

—25+ 6 —2s 6 S 6 2
Wy T O e P L 5 et O pd &
= {s2+4} < {SZ+4+52+4} 22 {32+4}+2‘$ {32+4} ©

= —2C0s 2t + 3sen 2t. <« incisose)y d) del
teorema 7.2.1 conk = 2

[ |
FRACCIONES PARCIALES Las fracciones parciales juegan un papel importante en la
determinacion de transformadas de Laplace inversas. La descomposicion de una expresion
racional en las fracciones componentes se puede hacer rapidamente usando una sola ins-
truccion en la mayoria de los sistemas algebraicos de computadora. De hecho, algunos SAC
tienen paquetes implementados de transformada de Laplace y transformada de Laplace
inversa. Pero para quienes no cuentan con este tipo de software, en esta seccion y en las
subsecuentes revisaremos un poco de algebra basica en los casos importantes donde el de-
nominador de una transformada de Laplace F(s) contiene factores lineales distintos, factores
lineales repetidos y polinomios cuadréticos sin factores reales. Aunque examinaremos cada
uno de estos casos conforme se desarrolla este capitulo, podria ser buena idea que consulta-
ra un libro de célculo o uno de precélculo para una revisién més completa de esta teoria.
En el siguiente ejemplo se muestra la descomposicion en fracciones parciales en el
caso en que el denominador de F(s) se puede descomponer en diferentes factores lineales.

I EJEMPLO 3 Fracciones parciales: diferentes factores lineales

24+ 6s +
Evalle 31{ S b5+ 9 }

(s—1)(s—2)(s + 4
SOLUCION Existen constantes reales A, B'y C, por lo que
s2+6s+9 A N B N C
-1 —-2)(s+4) s—1 s—2 s+4
CASE—2)(s+4) +Bs—1)(s+4)+C(s—1)(s—2)
(s—1(s—2)(s + 4) '
Puesto que los denominadores son idénticos, los numeradores son idénticos:
2+65s+9=AG—-2)(s+4)+Bs—L+4H+Cs—-Ds—-2). @O

Comparando los coeficientes de las potencias de s en ambos lados de la igualdad, sabe-
mos que (3) es equivalente a un sistema de tres ecuaciones con tres incognitas A, By C.
Sin embargo, hay un atajo para determinar estas incognitas. Si se haces = 1,s =2ys
= —4 en (3) se obtiene, respectivamente,

16 =A(-1®), 25=B1)(6) y 1=C(-5(-6),

yasi, A= —% B=2yC=L.Porloque la descomposicion en fracciones par-
ciales es

2
$+6s+9 165 256  1/30

- = ’ (4)
(s—1(s—2)(s+ 4 s—1 s—2 s+4
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y, por tanto, de la linealidad de £~y del inciso c) del teorema 7.2.1,
s>+ 6s+ 9 16 1 25 1 1 1
Pt ==Y N—t+ - H——t+ =%
{(s =1 —2)(s + 4)} 5 {s - 1} 6 {s - 2} 30 {s + 4}

— _]'5_6et+%e2t+3_]6e—4t. (5) u

7.2.2 TRANSFORMADAS DE DERIVADAS

TRANSFORMADA DE UNA DERIVADA Como se indicé en la introduccion de este
capitulo, el objetivo inmediato es usar la transformada de Laplace para resolver ecuaciones
diferenciales. Para tal fin, es necesario evaluar cantidades como #{dy/dt}y #{d?y/dt?}.
Por ejemplo, si f" es continua para t = 0, entonces integrando por partes se obtiene

'O} = J:e‘“f’(t) dt = e st f(t) : +s Lme‘“f(t) dt

= —f(0) + sP{f (1)}
0 PLEO} = sFE) — (0). (6)

Aqui hemos supuesto que e—=f(t) — 0 conforme t — <. De manera similar, con la
ayuda de la ecuacion (6),

PLEO) = JO Testir() dt = e /()

—f'(0) + sL{f'(t)}
s[sF(s) — f(0)] — f'(0) < de(6)

+ sf e Stf(t) dt
0 0

0 L")} = s2F(s) — sf(0) — '(0). @)
De igual manera se puede demostrar que
F{E" (1)} = s°F(s) — s?f(0) — sf'(0) — £7(0). (8)

La naturaleza recursiva de la transformada de Laplace de las derivadas de una funcion
f es evidente de los resultados en (6), (7) y (8). El siguiente teorema da la transformada
de Laplace de la n-ésima derivada de f. Se omite la demostracion.

TEOREMA 7.2.2 Transformada de una derivada

Sif,f', ..., f0=1 son continuas en [0, %) y son de orden exponencial y si
f((t) es continua por tramos en [0, %), entonces
FLTOM} = s"F(s) — s"(0) — s"2f'(0) — - - - — F(7(0),

donde F(s) = £{f(t)}

SOLUCION DE EDO LINEALES Es evidente del resultado general dado en el teo-
rema 7.2.2 que #{d"y/dt"} depende de Y(s) = F{y(t)} y las n — 1 derivadas de y(t)
evaluadas en t = 0. Esta propiedad hace que la transformada de Laplace sea adecuada
para resolver problemas lineales con valores iniciales en los que la ecuacion diferen-
cial tiene coeficientes constantes. Este tipo de ecuacion diferencial es simplemente una
combinacion lineal de términosy, y', y”, ..., y™:
n n—1
an% + an—lth)ll + o+ agy = g(),

y(0) = Yo, Y'(0) = y1, ..., Y I(0) = y,_1,
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dondelasa,i=0,1,...,nyy,V,...,Y, ,sonconstantes. Por la propiedad de linea-
lidad la transformada de Laplace de esta combinacion lineal es una combinacion lineal
de transformadas de Laplace:

dny dnfly
CEA el Bl R T ey S ap Z{y} = £{o()r- 9)
Del teorema 7.2.2, la ecuacion (9) se convierte en
2,[s"Y(s) — "y(0) — - - - — yOI(0)]
SV — S (0) — o — YO RO)] + o aY(s) = 69, D)

donde Z{y(®)} = Y(s)y L{g(t)} = G(s). En otras palabras, la transformada de
Laplace de una ecuacion diferencial lineal con coeficientes constantes se convierte en
una ecuacion algebraica en Y(s). Si se resuelve la ecuacién transformada general (10)
para el simbolo Y(s), primero se obtiene P(s)Y(s) = Q(s) + G(s) y después se escribe

90, 60

YO =59 TR

(11)
donde P(s) =as"+a, _,s" "'+ ...+ a;,Q(s)esun polinomio en s de grado menor o
igual an — 1 que consiste en varios productos de los coeficientesa, i =1,...,nylas
condiciones iniciales prescritasy,, y,, . .., y,_, ¥ G(s) es la transformada de Laplace de
g(t).* Normalmente se escriben los dos términos de la ecuacion (11) sobre el minimo
comun denominador y después se descompone la expresion en dos o mas fracciones
parciales. Por ultimo, la solucidn y(t) del problema con valores iniciales original es y(t)
= ¥ Y(s)}, donde la transformada inversa se hace término a término.
El procedimiento se resume en el siguiente diagrama.

Encuentre la y(t) La ED transformada

desconocida que [ Aplique la transformada—| se convierte en una
satisface laED y las de Laplace £ ecuacion algebraica
condiciones iniciales en Y(s)

A

Resuelva la ecuacion
~<—— Aplique la transformada — transformada para
inversa de Laplace £ ~* Y(s)

Solucion y(t)
del PVI original

En el ejemplo siguiente se ilustra el método anterior para resolver ED, asi como
la descomposicion en fracciones parciales para el caso en que el denominador de Y(s)
contenga un polinomio cuadratico sin factores reales.

I EJEMPLO 4 Solucion de un PVI de primer orden

Use la transformada de Laplace para resolver el problema con valores iniciales

d

d_)t/ + 3y =13sen2t, y(0) = 6.
SOLUCION Primero se toma la transformada de cada miembro de la ecuacion dife-
rencial. q

x{d—i} + 394y} = 13.%{sen 21}.

(12)

“El polinomio P(s) es igual al polinomio auxiliar de n-ésimo grado en la ecuacion (12) de la seccion 4.3
donde el simbolo m usual se sustituye por s.
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De (6), £{dy/dt} =sY(s) —y(0) =sY(s) — 6, y del inciso d) del teorema 7.1.1,
P{sen A} = 2/(s? + 4), por lo que la ecuacion (12) es igual que

26 26
-6+ == + =6+ .
sY(s) — 6 + 3Y(s) 7+4 0 (s+3)Y(s)=6 714
Resolviendo la tltima ecuacion para Y(s), obtenemos

6 N 26 652+ 50
s+3 (5+3)(?+4) (s+32+4)
Puesto que el polinomio cuadrético s? + 4 no se factoriza usando ndmeros reales, se supone
que el numerador en la descomposicion de fracciones parciales es un polinomio lineal en s:

6s2+50 A L Bs+C
(s+3)(s*+4) s+3 £+4°
Poniendo el lado derecho de la igualdad sobre un comin denominador e igualando los
numeradores, se obtiene 6s?> + 50 = A(s? + 4) + (Bs + C)(s + 3). Haciendos = —3
se obtiene inmediatamente que A = 8. Puesto que el denominador no tiene mas raices
reales, se igualan los coeficientes de s?y s: 6 = A + By 0 = 3B + C. Sien la primera
ecuacion se usa el valor de A se encuentra que B = —2, y con este valor aplicado a la
segunda ecuacion, se obtiene C = 6. Por lo que,

6s? + 50 8 -2+ 6
Y(s) = 3 = +— :
(s+3)(s*+4) s+3 s+ 4
AUn no se termina porque la Gltima expresion racional se tiene que escribir como dos

fracciones. Esto se hizo con la divisién término a término entre el denominador del
ejemplo 2. De (2) de ese ejemplo,

1 S 2
— -1 _ -1 + -1
y(t) = 8% {s n 3} 2% {Sz n 4} 37 {Sz n 4}.

Se deduce de los incisos c), d) y ) del teorema 7.2.1, que la solucién del problema con
valores iniciales es y(t) = 8e % — 2 cos 2t + 3 sen 2. [ |

Y(s) = (13)

I EJEMPLO 5 Solucién de un PVI de segundo orden

Resuelvay” — 3y’ + 2y =e™ y(0) =1, y'(0)=5.

SOLUCION Procediendo como en el ejemplo 4, se transforma la ED. Se toma la suma
de las transformadas de cada término, se usan las ecuaciones (6) y (7), las condiciones
iniciales dadas, el inciso c) del teorema 7.2.1 y entonces se resuelve para Y(s):

d?y dy

X{W} - 32{5} + 2.4y} = ${e Y

s7Y(5) — sy(0) —y'(0) — 3[sY(s) — y(O)] + 2Y(s) = ~——,

1
2-3s+2)Y(s)=s5s+2+—
(s* — 3s )Y(S) = s s+ 4

s+ 2 N 1 _ s+ 6s + 9
235 +2 (2—35+2)(G+4) (s—1)(s—2)(s + 4)

(14)

Los detalles de la descomposicidn en fracciones parciales de Y(s) ya se presentaron en
el ejemplo 3. En vista de los resultados en (3) y (4), se tiene la solucién del problema
con valores iniciales

16 25 1

= -1 = — gt 4 T2t 4 — a4t
y(@®) = L7HY(S)} et et ae [
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En los ejemplos 4 y 5, se ilustra el procedimiento basico de como usar la transfor-
mada de Laplace para resolver un problema lineal con valores iniciales, pero podria
parecer que estos ejemplos demuestran un método que no es mucho mejor que el apli-
cado a los problemas descritos en las secciones 2.3 y 4.3 a 4.6. No saque conclusiones
negativas de sélo dos ejemplos. Si, hay una gran cantidad de algebra inherente al uso
de la transformada de Laplace, pero observe que no se tiene que usar la variacion de
pardmetros o preocuparse acerca de los casos y el algebra en el método de coeficien-
tes indeterminados. Ademas, puesto que el método incorpora las condiciones iniciales
prescritas directamente en la solucion, no se requiere la operacion separada de aplicar
las condiciones iniciales a la solucion generaly = cy, + ¢y, + - - - +cy + Y, de la
ED para determinar constantes especificas en una solucion particular del PVI.

La transformada de Laplace tiene muchas propiedades operacionales. En las sec-
ciones que siguen se examinan algunas de estas propiedades y se ve como permiten
resolver problemas de mayor complejidad.

I COMENTARIOS

i) La transformada de Laplace inversa de una funcién F(s) podria no ser Unica;
en otras palabras, es posible que { f,(t)} = Z{ f,(1)} y sinembargo f, # f,. Para
nuestros propositos, esto no es algo que nos deba preocupar. Si f, y f, son conti-
nuas por tramos en [0, «) y de orden exponencial, entonces f, y f, son esencial-
mente iguales. VVéase el problema 44 en los ejercicios 7.2. Sin embargo, si f, y f,
son continuas en [0, =) y £{ fy(t)} = £{ f,(t)}, entonces f, = f, en el intervalo.

ii) Este comentario es para quienes tengan la necesidad de hacer a mano des-
composiciones en fracciones parciales. Hay otra forma de determinar los coefi-
cientes en una descomposicion de fracciones parciales en el caso especial cuando
L{ (1)} = F() es una funcion racional de s y el denominador de F es un pro-
ducto de distintos factores lineales. Esto se ilustra al analizar de nuevo el ejemplo
3. Suponga que se multiplican ambos lados de la supuesta descomposicion

&+ 6s+ 9 __A . B C
s—D—2(s+4) s—1 s—2 s+4

(15)

digamos, por s — 1, se simplifica y entonces se hace s = 1. Puesto que los coefi-
cientes de B 'y C en el lado derecho de la igualdad son cero, se obtiene

£+ 65+ 9
—_— =A o A= —E.
(s— 2)(s+ 4) |s=1 5
Escrita de otra forma,
£+ 6s+9 __E_A
[(s—Dj(s— 2)(s + 4) |s=1 5 ’

donde se ha sombreado o cubierto, el factor que se elimina cuando el lado iz-
quierdo se multiplica por s — 1. Ahora, para obtener B y C, simplemente se
evalla el lado izquierdo de (15) mientras se cubre, a su vez, s — 2y s + 4:

s>+ 6s + 9 _2_5_B
(s—1(s—2fs+4)ls=2 6

s>+ 6s+9 —l—C

Y -De-2Gt k- 30
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La descomposicion deseada (15) se da en (4). Esta técnica especial para determi-
nar coeficientes se conoce desde luego como método de cubrimiento.

iii) En este comentario continuamos con la introduccion a la terminologia de sis-
temas dinamicos. Como resultado de las ecuaciones (9) y (10) la transformada de
Laplace se adapta bien a sistemas dinamicos lineales. El polinomio P(s) = a s" +
a_,s"'+---+a en(11)esel coeficiente total de Y(s) en (10) y es simplemente el
lado izquierdo de la ED en donde las derivadas d*y/dt* se sustituyen por potencias s,
k=0,1,...,n. Escomin llamar al reciproco de P(s), en particular W(s) = 1/P(s),
funcion de transferencia del sistema y escribir la ecuacion (11) como

Y(s) = W(S)Q(S) + W(S)G(s). (16)

De esta manera se han separado, en un sentido aditivo, los efectos de la respuesta
debidos a las condiciones iniciales (es decir, W(s)Q(s)) de los causados por la
funcion de entrada g (es decir, W(s)G(s)). Vea (13) y (14). Por tanto la respuesta
y(t) del sistema es una superposicion de dos respuestas:

y(©) = L7H{WEQ()} + L H{W(HG(9} = Yo(t) + Ya(b)..

Si la entrada es g(t) = 0, entonces la solucion del problema es y,(t) = £~ Y W(s)
Q(9)} . Esta solucion se llama respuesta de entrada cero del sistema. Por otro
lado, la funcion y,(t) = £ Y W(s)G(s)} es la salida debida a la entrada g(t).
Entonces, si la condicion inicial del sistema es el estado cero (todas las condiciones
iniciales son cero), entonces Q(s) = 0y por tanto, la Gnica solucion del problema con
valores iniciales es y, (t). La Gltima solucion se llama respuesta de estado cero del
sistema. Tanto y,(t) como y,(t) son soluciones particulares: y,(t) es una solucion
del PVI que consiste en la ecuacion homogénea relacionada con las condiciones
iniciales dadas y v, (t) es una solucion del PVI que consiste en la ecuacion no ho-
mogeénea con condiciones iniciales cero. En el ejemplo 5 se ve de (14) que la fun-
cion de transferencia es W(s) = 1/(s*> — 3s + 2), la respuesta de entrada cero es

N s+ 2 } - .
Yolt) = & {—(S -2 36 + 4¢e,
y la respuesta de estado cero es
1 1 1 1
— p-1 S T2t LT a4t
nh = & {(s—l)(s—Z)(s+4)} 5¢ 6% T30

Compruebe que la suma de y,(t) y y,(t) es la solucion de y(t) en el ejemplo 5y
que yo(0) = 1, y4(0) = 5, mientras que y;(0) = 0O, y;(0) = 0.

EJ ERCICIQOS 7.2 Lasrespuestas a los problemas seleccionados con nimero impar comienzan en la pagina RES-10.

7.2.1 TRANSFORMADAS INVERSAS 1 1 1 ] 4 6 1
7. RS - = 8. Fh-—+—=<-—
_ ¢ s s-2 s & s+8
En los problemas 1 a 30 use el algebra apropiada y el teorema
7.2.1 para encontrar la transformada inversa de Laplace dada. 9 -1 1 10. ¥-1 1
' 4s+ 1 ' 5s — 2
1. 59—1{;} 2. 55—1{814} 11 g1 5 12 g1 10s
' s? + 49 ' s? + 16
1 48 2 1\ 4 1
RS | P +1
S s ¢ S P S P
(s + 13 (s + 272 J2s—-6 s+1
5. L 6. 1 . ! . !
ff{ " £ 3 15. & 219 16. ¥ 12
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oot |

19. &~ 1{52-+ - 3} 20. ;21{53—;—31:—56}
w 1{('5 06 02)}

m.xl{ S_:+Vrﬁ

S 1{(5—2)(5—3)(5—6)}

S 1{5(3 T 2)}

s ot 26 9 ]
oz {(52 T 9D 1)} 2 81{54{9}

1 6s + 3
B — -1
2. 4 {(sz @+ 4)} 0. # {—54 T T 4}

7.2.2 TRANSFORMADAS DE DERIVADAS

En los problemas 31 a 40, use la transformada de Laplace para
resolver el problema con valores iniciales.

dy
31 Xy = =
i 1, y(0)=0
w
32. +y =
m y=0, y(0) =
33y +6y=e* y0) =2

34,y —y=2cosb5t, y0)=0
35. y"+5y' +4y=0, y0 =1 y'(0)=0
36. y' —4y' =6e*—3et, y0)=1, y(0)=-1

37. y' +y = V2sen\V2t,

39. 2y" +3y" =3y —2y=e", y0)=0, y'(0) =0,

y'(0) =1
40. y" +2y" —y' —2y=sen3t, y(0)=0, y'(0)=0,
y'(0)=1

Las formas inversas de los resultados del problema 46 en los
ejercicios 7.1 son

s—a
N ———— = e?cos bt
{G—W+W}
b
“N————— = e senbt.
{@—#+V}
En los problemas 41y 42 use la transformada de Laplace y estas
inversas para resolver el problema con valores iniciales dado.

41,y +y=e3cos2t, y0)=0
42. y" =2y’ +5y=0, y0) =1, y'(0) =3

Problemas para analizar

43. a) Conun ligero cambio de notacion la transformada en
(6) es igual a
{0} = sZ{f(O} - 1(0).
Con f(t) = te*, analice como se puede usar este re-
sultado junto con c) del teorema 7.1.1 para evaluar
P{te?t}.

b) Proceda como en el inciso a), pero esta vez examine
como usar (7) con f(t) = t sen kt junto con d) y e) del
teorema 7.1.1 para evaluar #{t sen kt}.

44. Construya dos funciones f, y f, que tengan la misma trans-
formada de Laplace. No considere ideas profundas.

45, Lea de nuevo el Comentario iii) de la pagina 269.
Encuentre la respuesta de entrada cero y la respuesta de
estado cero para el PVI del problema 36.

46. Suponga que f(t) es una funcion para la que f'(t) es conti-
nua por tramos y de orden exponencial c. Use los resulta-
dos de esta seccion y la seccion 7.1 para justificar

f(0) = SIL”JC sF(s),

y(0) =10, y'(0) =0 donde F(s) = Z{f(t)}. Compruebe este resultado con
38.y"+9% =¢, y0)=0 y'(@0)=0 f(t) = cos kt.
7.3 PROPIEDADES OPERACIONALES I

REPASO DE MATERIAL

e Completar el cuadrado.

definicidn bésica y a la integracion.

e Continte practicando la descomposicion en fracciones parciales.

INTRODUCCION No es conveniente usar la definicion 7.1 cada vez que se desea encontrar la
transformada de Laplace de una funcion f(t). Por ejemplo, la integracion por partes requerida para
evaluar £ {e't? sen 3t} es formidable en pocas palabras. En esta seccién y la que sigue se presentan
varias propiedades operacionales de la transformada de Laplace que ahorran trabajo y permiten cons-
truir una lista mas extensa de transformadas (vea la tabla del apéndice I11) sin tener que recurrir a la
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7.3.1 TRASLACION EN EL EJE s

UNA TRASLACION Evaluar transformadas tales como #{€%t%} y #{e % cos 4t}
es directo siempre que se conozca (y asi es) F{t%} y F{cos4t} . En general, si se co-
noce la transformada de Laplace de una funcion f, Z{ f(t)} = F(s), es posible calcular
la transformada de Laplace de un maltiplo exponencial de f, es decir, Z{e*f(t}, sin
ningun esfuerzo adicional que no sea trasladar o desplazar, la transformada F(s) a
F(s — a). Este resultado se conoce como primer teorema de traslacion o primer
teorema de desplazamiento.

TEOREMA 7.3.1 Primer teorema de traslacion

Si P{f(t)} = F(s) y aes cualquier nimero real, entonces

P} = F(s — a).

PRUEBA La demostracion es inmediata, ya que por la definicion 7.1.1

%

P (1)} = J; T et (t) dt = f e CNf () dt = F(s — a). m

0

Si se considera s una variable real, entonces la grafica de F(s — a) es la grafica de
F(s) desplazada en el eje s por la cantidad |a|. Si a > 0, la grafica de F(s) se desplaza
a unidades a la derecha, mientras que si a < 0, la grafica se desplaza |a| unidades a la
izquierda. Véase la figura 7.3.1.

Para enfatizar, a veces es Util usar el simbolismo

At} = ATOHsosa,

donde s — s — asignifica que en la transformada de Laplace F(s) de f(t) siempre que
aparezca el simbolo s se reemplaza por s — a.

I EJEMPLO 1 Usando el primer teorema de traslacion

Evalle a) #{e%t% b) #{e ?cos4t}.

SOLUCION  Los siguientes resultados se deducen de los teoremas 7.1.1y 7.3.1.

3! 6
t = = — = —
a) g{est3}, g{ t3}|S~>S—5 S4 & 555 (S _ 5)4
S s+ 2
) e Taosal = Aol 0 T g Ty sre T (5 2P 4 16

FORMA INVERSA DEL TEOREMA 7.3.1 Para calcular la inversa de F(s — a),
se debe reconocer F(s), para encontrar f(t) obteniendo la transformada de Laplace
inversa de F(s) y después multiplicar f(t) por la funcién exponencial €. Este procedi-
miento se resume con simbolos de la siguiente manera:

L HF(s— @)} = L HF(9) |ss ot = (1), )
donde f(t) = £ YF(s)}.

En la primera parte del ejemplo siguiente se ilustra la descomposicion en fracciones
parciales en el caso cuando el denominador de Y(s) contiene factores lineales repetidos.
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I EJEMPLO 2 Fracciones parciales: factores lineales repetidos

Evalle a) gl{ﬂ} b) P l{M}

(s — 3)? s>+ 4s + 6

SOLUCION a) Un factor lineal repetido es un término (s — a)", donde a es un nd-
mero real y n es un entero positivo = 2. Recuerde que si (s — a)" aparece en el denomi-
nador de una expresion racional, entonces se supone que la descomposicidn contiene n
fracciones parciales con numeradores y denominadores constantess — a, (s — @)%, . . .,
(s — a)". Por tanto, cona = 3y n = 2 se escribe

2s+5 A N B
(s—3)?% s—3 (s—3)7
Colocando los dos términos del lado derecho con un denominador comun, se obtiene

el numerador 2s + 5 = A(s — 3) + By esta identidad produce A = 2y B = 11. Por
tanto,

545 _ 2 1 ,
-3¢ s-3 (s—3) )

NEE ! 1
y . {(5_3)2}_255 {s—s}“w {(5—3)2}' @)

Ahora 1/(s — 3)? es F(s) = 1/s? desplazada tres unidades a la derecha. Ya que
$~H1/s?} = t, se tiene de (1) que
= e,
s—s—3

—1 1 — -1 l
. {(5_3)2}_3 {sz

2s +5
Por altimo, (3) es 31{(5 — 3)2} = 2e% + 11e%t. (4)

b) Paraempezar, observe que el polinomio cuadratico s? + 4s + 6 no tiene raices reales y

por tanto no tiene factores lineales reales. En esta situacion completamos el cuadrado:
s/2+5/3  s/2+5/3 .
s?+4s5+6 (s+22+2 ®)

El objetivo aqui es reconocer la expresion del lado derecho como alguna transformada
de Laplace F(s) en lacual se hareemplazado s por s + 2. Lo que se trata de hacer es simi-
lar a trabajar hacia atras del inciso b) del ejemplo 1. EI denominador en (5) yaesta en la
forma correcta, es decir, s? + 2 con s + 2 en lugar de s. Sin embargo, se debe arreglar el
numerador manipulando las constantes: 1s + 3 = (s + 2) + 2 — 2 = X(s + 2) + 3.

Ahora mediante la division entre el denominador de cada término, la linealidad de

&1, los incisos €) y d) del teorema 7.2.1 y por Gltimo (1),

s/2+5/3 3(s+2)+5 1 s+2 2 1

= = +_
s+22+2 (s+22+2 2(5+22+2 3(+2*+2
L[s/2+58/3) L[ s+2 ) o2 f 1
${52+4s+6 255 (s+22+2 3$ (s+232+2
1] s 2 | V2
_23 {52+25_>s+z}+3\f2$ {32+2Hs+2} ©)

1 2
= Ee*Z‘ cos V2t + %e*” senV2t. (7) m
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I EJEMPLO 3 Un problema con valores iniciales

Resuelvay” — 6y’ + 9y = t%¥, y(0) =2, y'(0) = 17.

SOLUCION Antes de transformar la ED, observe que su lado derecho es similar a la
funcion del inciso a) del ejemplo 1. Después de usar la linealidad, el teorema 7.3.1y
las condiciones iniciales, se simplifica y luego se resuelve para Y(s) = %{ f(t)}

Ay} - 6Hy} + 9Ly} = F{t*e’}

SY(9) — sy(0) — y'(0) — 6[sY(s) — y(0)] + 9Y(s) = s _23)3
2
(8> —6s+ 9Y(s) =2s+ 5+ 5= 37
2
(s—93)2%Y(5) =25+ 5+ -3

_25+5+ 2
(s—3?% (s—-93°

El primer término del lado derecho ya se ha descompuesto en fracciones parciales en
(2) del inciso a) del ejemplo (2).

Y(9)

2 1 2
=3 e T 5o 3

- 1 - 1 2 4
Porloque y(t) = 27 l{s - 3} s 1{(s - 3)2} tat 1{(s — 3)5}' ©

De la forma inversa (1) del teorema 7.3.1, los dos Gltimos términos de (8) son

1 41
P15 = te* FH—= = tle™.
{82 s—>53} y {55 s—>53}
Por lo que (8) es y(t) = 2 + 11te® + Lt%e™. ]

I EJEMPLO 4 Un problema con valores iniciales

Resuelvay” + 4y’ + 6y =1+e™, y(0) =0, y'(0)=0.

SOLUCION LY} + AHY} + 6 = AL + e}
LY(s) — sy(0) — y'(0) + 4[sY(s) — y(0)] + 6Y(s) = é + sTll
2s+1
(8 + 4s+ 6)Y(S) = P
2s+1

Y(s) =
© S(s + 1)(s* + 4s + 6)
Puesto que el término cuadratico en el denominador no se factoriza en factores lineales
reales, se encuentra que la descomposicidn en fracciones parciales para Y(s) es
1/6 1/3 s/2+5/3
v -1, Y3 §2+ 58
s s+1 &+4s+6
Ademas, en la preparacion para tomar la transformada inversa, ya se manejé el Gltimo
término en la forma necesaria del inciso b) del ejemplo 2. Por lo que en vista de los
resultados en (6) y (7), se tiene la solucién
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1 1y 1 [ 1 1 s+ 2 2 V2
o =57 1{5} 37 1{5 + 1} 27 1{(s + 22 + 2} “3v7 1{(s + 22 + 2}

FIGURA 7.3.2 Grafica de la funcion
escalon unitario.

Ly

FIGURA 7.3.3 La funcion es
f(t) = (2t — 3) Ut — 1).

f(t)
24+—
|
A1 |
| i | | |
T ; ; U U t
-1+ [—

FIGURA 7.3.4 La funcion es
f(t) =2 — 31t — 2) + Ut — 3).

1 1 1 2
=>4+ Zet— Ze2cos V2t — ie‘z‘sen V2t
6 3 2 3 .

7.3.2 TRASLACION EN EL EJE t

FUNCION ESCALON UNITARIO En ingenieria es comln encontrar funciones que
estan ya sea “desactivadas” o “activadas”. Por ejemplo, una fuerza externa que actda en
un sistema mecanico, o un voltaje aplicado a un circuito, se puede desactivar después de
cierto tiempo. Es conveniente entonces definir una funcion especial que es el nimero 0
(desactivada) hasta un cierto tiempo t = a 'y entonces el nimero 1 (activada) después de
ese tiempo. La funcion se llama funcién escalon unitario o funcidn de Heaviside.

|DEFINICI()N 7.3.1 Funcion escalon unitario

La funcion escalon unitario %/(t — a) se define como

0, 0=t<a
1, t=a.

Ut — a) = {

Observe que se define %(t — a) sdlo en el eje t no negativo, puesto que esto es
todo lo que interesa en el estudio de la transformada de Laplace. En un sentido méas am-
plio, U(t — a) = O parat < a. En la figura 7.3.2, se muestra la grafica de 4(t — a).

Cuando una funcion f definida para t = 0 se multiplica por 2(t — @), la funcion
escaldn unitario “desactiva” una parte de la gréfica de esa funcion. Por ejemplo, con-
sidere la funcién f(t) = 2t — 3. Para “desactivar” la parte de la grafica de fpara0 <t
< 1, simplemente formamos el producto (2t — 3) (t — 1). Véase la figura 7.3.3. En
general, la grafica de f(t) (t — a) es O (desactivada) para0 <t < ay es la parte de
la grafica de f(activada) parat = a.

La funcion escalén unitario también se puede usar para escribir funciones defi-
nidas por tramos en una forma compacta. Por ejemplo, si consideramos 0 <t < 2,
2 <t<3,yt=3ylos valores correspondientes de %(t — 2) y U(t — 3), debe ser
evidente que la funcién definida por tramos que se muestra en la figura 7.3.4 es igual
que f(t) =2 — 3U(t — 2) + At — 3). También, una funcién general definida por
tramos del tipo

gt), 0=t<a
f(t) =
© {h(t), t=a ©)
es la misma que:
f(t) = g(t) — g(t) Ut — a) + h(t) Ut — a). (10)
Analogamente, una funcién del tipo

0, 0=t<a
fit) =99(t), a=t<b (12)

0, t=bh
puede ser escrita como
f(t) = g@®[Ut — a) — Ut — b)]. (12)



(1)

FIGURA 7.3.5 Lafunciones
f(t) = 20t — 20tU(t — 5)

VN

a) f(1).t=0

N\

|
Il
a t

(1)

f(®)

b) f(t—a)u( — a)

FIGURA 7.3.6 Desplazamiento en el
ejet.

L{f (t — a) Ut — a)} = ﬁestf (t—a) Ut—a)dt+ f
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I EJEMPLO 5 Una funcién definida por tramos

20t, 0=t<5
0, t=5

Exprese f(t) = { en términos de funciones escalon unitario. Trace

la gréfica.

SOLUCION En lafigura 7.3.5 se muestra la grafica de f. Ahora, de (9) y (10) cona =
5, g(t) = 20ty h(t) = 0, se obtiene f(t) = 20t — 20t 9t — 5). ]

Considere una funcién general y = f(t) definida para t = 0. La funcién definida
por tramos
0, 0=t<a
ft—aut-a {f(t - a), t=a
juega un papel importante en la explicacion que sigue. Como se muestra en la figura
7.3.6, paraa > 0 la graficade la funcion y = f(t — a) U(t — a) coincide con la gré-
ficadey = f(t — a) parat = a (que es la grafica completa de y = f(t), t = 0 desplazada
a unidades a la derecha en el eje t), pero es idénticamente cero para 0 < t < a.
Vimos en el teorema 7.3.1 que un multiplo exponencial de f(t) da como resul-
tado una traslacion de la transformada F(s) en el eje s. Como una consecuencia del
siguiente teorema, se ve que siempre que F(s) se multiplica por una funcién expo-
nencial e®, a > 0, la transformada inversa del producto e * F(s) es la funcion f
desplazada a lo largo del eje t en la manera que se muestra en la figura 7.3.6b. Este
resultado, presentado a continuacién en su version de transformada directa, se llama
segundo teorema de traslacién o segundo teorema de desplazamiento.

(13)

TEOREMA 7.3.2 Segundo teorema de traslacion

Si F(s) = #{f(t)}y a> 0, entonces
PLf(t — a) Ut — a)} = e F(s).

DEMOSTRACION  Por la propiedad de intervalo aditivo de integrales,

J e st (t — a) AUt — a) dt
0
se puede escribir como dos integrales:

%

e~ (t—a) Ut — a)dt =f e~ (t — a) dt.

a

©

a

- -
cero para uno para
0=t<a t=a

Ahora si hacemos v = t — a, dv = dt en la Ultima integral, entonces

DL — a) Ut — a)} = L “emsiraf(y) dy = e JO “e (V) dv = e L ()

Con frecuencia se desea encontrar la transformada de Laplace de s6lo una funcién
escalon unitario. Esto puede ser de la definicién 7.1.1 o teorema 7.3.2. Si se identifica
f(t) = Lenel teorema 7.3.2, entonces f(t — a) = 1, F(s) = #{1} = 1/sy por tanto,

—as

PLUE — a)) = es . (14)

Por ejemplo, si se usa la ecuacion (14), la transformada de Laplace de la funcién de la
figura 7.3.4 es

PLEOF = 2241} — 3L{Ut — 2)} + F{Ut — 3)}

1 e—ZS ef3s
=2--3—+—.
S S S
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FORMA INVERSA DEL TEOREMA 7.3.2 Si f(t) = £ {F(s)}, la forma inversa
del teorema 7.3.2 a > 0, es

PLe SF(s)} = f(t — a) Ut — a). (15)

I EJEMPLO 6 Usode laformula (15)

1 S
Y -1 —2s -1 —sl2
Evalte a) ¥ {S_4e } b) ¥ {SZ+9e }

SOLUCION a) De acuerdo con las identidades a = 2, F(s) = 1/(s — 4) y
F-YF(s)} = e*, se tiene de (15)

ff‘l{s i 4e‘23} = =2 gt — 2).

b) Cona = 7/2, F(s) = s/(s* + 9) y ¥ {F(s)} = cos 3t, de la ecuacion (15) se ob-

tiene
1) S —msi2 | — < _ 77) < _ ”>
${SZ+9e cos 3|t Z%t 5 )

La altima expresion se puede simplificar un poco con la férmula adicional para el

coseno. Compruebe que el resultado es igual a —sen 3t 91[<t - :) ]
FORMA ALTERNATIVA DEL TEOREMA 7.3.2 Con frecuencia nos enfrentamos
con el problema de encontrar la transformada de Laplace de un producto de una funcion g
y una funcidn escalon unitario 2/(t — a) donde la funcion g no tiene la forma precisa de
desplazamiento f(t — a) del teorema 7.3.2. Para encontrar la transformada de Laplace
de g(t)a(t — a), es posible arreglar g(t) en la forma requerida f(t — a) usando algebra.
Por ejemplo, si se quiere usar el teorema 7.3.2 para determinar la transformada de Laplace
de t2q(t — 2), se tendria que forzar g(t) = t2 a la forma f(t — 2). Se debe trabajar alge-
braicamente y comprobar que t2 = (t — 2)? + 4(t — 2) + 4 es una identidad. Por tanto,

FLPUt — 2y = Lt — 22Ut — 2) + 4(t — 2) Ut — 2) + AUt — 2)},

donde ahora cada término del lado derecho se puede evaluar con el teorema 7.3.2. Pero
como estas operaciones son tardadas y con frecuencia no obvias, es mas simple dise-
fiar una forma alternativa del teorema 7.3.2. Usando la definicion 7.1.1, la definicion
de U(t — a), y la sustitucion u = t — a, se obtiene

©

FLot) Ut — a)} = Jwe“g(t) dt = f e s+ g(u + a) du.
a 0

Es decir, oMUt — a)} = e *AHg(t + a)}. (16)

I EJEMPLO 7 Segundo teorema de traslacion: forma alternativa

Evalle #{cost Ut — m)}.

SOLUCION Cong(t) = costya = r, entonces g(t + ) = cos (t + ) = —cos t por
la férmula de adiccidn para la funcion coseno. Por tanto, por la ecuacion (16),

F{cost Ut — m)} = —e ™ F{cost} = — e s ]

s
2+ 1
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I EJEMPLO 8 Un problema con valores iniciales

) f(t) = 0, O=st<mw
Resuelvay’ +y = f(t), y(0) = 5, donde 3 cost, t=

SOLUCION La funcion f se puede escribir como f(t) = 3 cos t U(t — ), y entonces por
linealidad, por los resultados del ejemplo 7 y por las fracciones parciales usuales, se tiene

PLYY + F{y} = 3F{cos t AUt — m)}

_ + - —7s
sY(s) — y(0) + Y(s) 352 n le
+ — _ — s
(s+ 1Y(s) =5 7 1e
5 3 1 . 1 s
— — —| — -7 4 — S + —mS
YO =517 2[ s+1° Te+1t Ter1® ] an

Ahora procediendo como se hizo en el ejemplo 6, se tiene de (15) con a = 7 que los
inversos de los términos dentro del paréntesis son

1 1

y :5-1{52 i le‘”s} = cos(t — ) Ut — ).

Por lo que el inverso de (17) es

y
3 3 3

j Y y(t) =5et+ Ee*(‘*’f)ﬁu(t = m) = jsen(t — m) Ut — m) — Jcos(t — m) Ut — )

3 3

2 /\ =5e '+ E[e_(t_”) + sent + cost] Ut — =) <« identidades trigonométricas

1

t Set O=t<mw
-1 \/ \ = 3 3 3 (18)
-2\ S5e '+ —e "™ + —sent + —cost, t=m
7 21 3r 2 2 2

FIGURA 7.3.7 Gréfica de la funcion Usando un programa de graficacion hemos obtenido la gréfica de (18) que se muestra
en (18). en lafigura 7.3.7. [ |

VIGAS En la seccién 5.2 vimos que la deflexion estatica y(x) de una viga uniforme
de longitud L con carga w(x) por unidad de longitud se determina a partir de la ecua-
cion diferencial lineal de cuarto orden
dty
El dXA - W(X), (19)
donde E es el mddulo de Young de elasticidad e | es un momento de inercia de una
seccidn transversal de la viga. La transformada de Laplace es particularmente Util para
resolver la ecuacion (19) cuando w(x) se define por tramos. Sin embargo, para usar la
w() transformada de Laplace se debe suponer de manera tacita que y(x) y w(x) estan defini-
dasen (0, ) ynoen (0, L). Observe, también, que el siguiente ejemplo es un problema
con valores en la frontera mas que un problema con valores iniciales.

pared l Y I EJEMPLO 9 Un problema con valores en la frontera

L Una viga de longitud L se empotra en ambos extremos, como se muestra en la figura
ly 7.3.8. Determine la deflexion de la viga cuando la carga esta dada por

FIGURA 7.3.8 Viga empotrada con W0<1 - gx> 0<x<L/2
carga variable. w(x) = L
0, L/2 <x<L.
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SOLUCION Recuerde que debido a que la viga esta empotrada en ambos extremos,
las condiciones de frontera son y(0) = 0,y’(0) = 0, y(L) = 0, y'(L) = 0. Ahora usando
(10) se puede expresar w(x) en términos de la funcién escalon unitario:

o=l 2) -wfs-2)os-
el (o]

Transformando la ecuacion (19) respecto a la variable x, se obtiene

_ _ ’ _ " V4 2W0 L/2 1 1 —LS/Z
EI(s'Y(s) — Y(0) ~ $y'(0) — 9y"(0) = y"(0)) = 7 [ s 2 g®
_ " — gy = % % _ 1 1 —Ls/2
0 s'Y(s) — sy'(0) — y"(0) = EIL[ 2t2¢ )
Si hacemos ¢, = y"(0) y ¢, = y" (0), entonces
C  2W(L/2 1 1 o Lsi2
e = § s4+EIL[§ s

y en consecuencia

¢ 2 e 3 2w[L2 o f4 5115 |
=S5l Syl B elg) - S ole) s 2o

G, G, W [5L . ( L)5 ( L>
==X+ =+ — | =X -+ [(x-= — =11
25 T 6OEIL[2X4 X)W
Aplicando las condiciones y(L) = 0y y’(L) = 0 al Gltimo resultado, se obtiene un

sistema de ecuaciones para c, y C,:

LU L ol
15 " %26 T 19208

L2 85wl
L+c—+ —0
275 " 9608l

Resolviendo se encuentra que ¢, = 23w,L2/(960El) y ¢, = —9w, L/(40El). Por lo que
la deflexion esta dada por

23wpl? , 3wl . . w, [5L ( L>5 ( L>
= — + X=X+ (x—-= - =
192081 X~ soE1 X TeomiL| 2X X T \X T3 Mx T3 =

EJERCICIOS 7.3 Lasrespuestas a los problemas seleccionados con nmero impar comienzan en la pagina RES-11.

y()

7.3.1 TRASLACION EN EL EJE s 1 1
e v

11. $ 3 4
En los problemas 1 a 20 encuentre F(s) o f(t), como se indica. (s+2) (=1

1 e 2. #{te B { - 63 + 10} . {sz +2s+ 5}
3. Pte 2y 4, P{t%e "y 25+ 5

5. {1 + )3 6. et — 1)) - {sz Tast 5} 162 {52 es+ 34}
7. P{esen 3} 8. P{e ?cos 4t} v g 1{ } . 1{ }

9. X{(1 — €& + 3e %) cos5t} (s+ 1)? (s— 272

10. x{@(g — 4t + 10 sen%)} 19. % 1{ 82(5; i) } 20, - l{gi 24}



En los problemas 21 a 30, use la transformada de Laplace para
resolver el problema con valores iniciales.

21y +4y =e* y(0) =2

22,y —y=1+te, y(0)=0

23. y"+2y'+y=0, y(0)=1y(@0) =1

24. y" —4y' + 4y =t3%2 y(0)=0,y'(0)=0
25.y" =6y +9y =t y(0)=0,y(0) =1

26. y" —4y' +4y =13 y0)=1y(0)=0
27. y" —6y' +13y =0, y(0)=0,y'(0)=-3
28. 2y" + 20y’ + 51y =0, y(0)=2y'(0)=0
29. y" —y' =etcost, y(0)=0,y'(0)=0

30. y"—2y' +5y=1+1t, y(0)=0,y(0)=4

En los problemas 31 y 32, use la transformada de Laplace
y el procedimiento descrito en el ejemplo 9 para resolver el
problema con valores en la frontera dado.

3. y"+2y+y=0, y(0)=2y(1) =2
32.y"+8y'+20y =0, y(0)=0,y'(7)=0

33. Un peso de 4 Ib estira un resorte 2 pies. El peso se libera a
partir del reposo 18 pulgadas arriba de la posicion de equili-
brio y el movimiento resultante tiene lugar en un medio que
ofrece una fuerza de amortiguamiento numéricamente igual
a % veces la velocidad instantanea. Use la transformada de
Laplace para encontrar la ecuacion de movimiento X(t).

34. Recuerde que la ecuacion diferencial para la carga instan-
tanea q(t) en el capacitor en un circuito RCL en serie esta

dada por 42 ’
q q, 1
— +R—+=-qg= .
. dt? R gt "¢ E®

(20)
Véase la seccidon 5.1. Use la transformada de Laplace para
encontrar q(t) cuando L = 1 h, R = 20 ), C = 0.005 f,
E(t) = 150 V,t >0, q(0) = 0 e i(0) = 0. ;Cuadl es la co-
rriente i(t)?

35. Considere una bateria de voltaje constante E; que carga el
capacitor que se muestra en la figura 7.3.9. Divida la ecua-
cion (20) entre L y defina 2A = R/L'y w?* = 1/LC. Use la
transformada de Laplace para demostrar que la solucién q(t)
deq” + 2Aq" + w’q = E /L sujetaaq(0) = 0,i(0) = Oes

(

EOC[l —eM (cosh VA2 — 0t

A
+ ————=senh VA? — 0’ } A > w,
A /)\2 _ w2 )
q(t) = { EcC[L — e (1 + AD)],

Eoc[l —eM (cos Vw? — 2%t

A = w,

A :| /\<(1).
+ ———=senVo?® — %) |
\ Va? — A2 w )
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FIGURA 7.3.9 Circuito en serie del problema 35.
36. Use la transformada de Laplace para encontrar la carga g(t)

en un circuito RC en serie cuando q(0) = 0y E(t) = Eg™,
k > 0. Considere dos casos: k # 1/RCy k = 1/RC.

7.3.2 TRASLACION EN EL EJE t

En los problemas 37 a 48 encuentre F(s) o f(t), como se indica.

37. F{(t — 1)Ut — 1)} 38. #{e*t AUt — 2)}
30. F{t Ut — 2)} 40. P{@3t + DUt — 1)}
41. P{cos 2t Ut — )} 42. f{sent %(t - g)}
43 g—l{ezs} 44 g—l{—(l - ezs)z}

' 53 ' s+ 2

e 7S Se—ﬂ'S/Z
-1 -1
45. & {SZ . 1} 16. & {SZ . 4}

. s . 6725
47. & {s(s n 1)} 48. & {—sz(s — 1)}

En los problemas 49 a 54, compare la gréfica dada con una de
las funciones de los incisos a) a f). La gréafica de f(t) se pre-
senta en la figura 7.3.10.

a) f(t) — f(t) Ut — a)

b) f(t — b) Ut — b)

c) f(t) Ut — a)

d) f(t) — f(t) Ut — b)

e) f(t) Ut — a) — f(t) Ut — b)

f) f(t —a)ut —a) — ft — a) Ut — b)

f(®)

a b

FIGURA 7.3.10 Gréfica para los problemas 49 a 54.

49. fO

FIGURA 7.3.11 Gréfica para el problema 49.
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50. f®

FIGURA 7.3.12 Gréfica para el problema 50.

51. f(t)

N/

|
b t

!
1
| a

FIGURA 7.3.13 Gréfica para el problema 51.

52. f(t)

|
I
| a b t

FIGURA 7.3.14 Gréfica para el problema 52.

53. f®

|
|
| a b t

FIGURA 7.3.15 Gréfica para el problema 53.

54, f(®)

|
|
| a bt

FIGURA 7.3.16 Gréfica para el problema 54.
En los problemas 55 a 62, escriba cada funcion en términos

de funciones escaldn unitario. Encuentre la transformada de
Laplace de la funcion dada.

2, 0=t<3
55. f(t)z{_2 =3
1, 0=st<4
56. f(t) =410, 4=t<5
1, t=5
0, 0=t<1
57. f(t)={t2 (=1

0, 0=t<3mw/2
f(t) =
58. 10 {sent, t=37/2
t, 0=t<?2
f) =4~
59. f(t) {0, (=2
sent, 0==t<2mwm
f(t) =
60. (0 {0, t =27
61. f(®)
1 -
o
‘ a b t

pulso rectangular

FIGURA 7.3.17 Gréfica para el problema 61.

62. f© |
3T ﬁ
|
|
2T —
| | |
|
1T \;\ } \
N
1 2 3 4 ¢t

funcion escalera

FIGURA 7.3.18 Gréfica para el problema 62.

En los problemas 63 a 70, use la transformada de Laplace para
resolver el problema con valores iniciales.

0, 0=t<1

63,y +y="f(), y(0)=0,dondef(t)= {5 1

64. y' +y=1(t), y(0)=0,donde
1, 0=t<1
o= {—1, t=1
65. y' + 2y = f(t), y(0) =0, donde
t, 0=t<1
o= {0, t=1
66. y” + 4y = f(t), y(0) = 0,y'(0) = —1, donde
1, 0=t<1
= {0, t=1

67. y"+ 4y =sentU(t — 2m),
68. y" =5y + 6y = AUt — 1),
69. Yy +y=f(),

y(0)=1,y(0) =0
y(0) =0,y'(0) =1
y(0) = 0,y'(0) = 1, donde

0, 0=st<m

ft)=1{1, mw=t<2m
0, t=2nw

70. Yy 4+ 4y +3y=1—Ut—2) — Ut — 4) + Ut — 6),
y(0)=0,y'(0)=0



71.

72.

Suponga que un peso de 32 libras estira un resorte 2 pies.
Si el peso se libera a partir del reposo en la posicion de
equilibrio, determine la ecuacion de movimiento x(t) si
una fuerza f (t) = 20t actGa en el sistemapara0 <t <5y
luego se retira (véase el ejemplo 5). Desprecie cualquier
fuerza de amortiguamiento. Use un programa de grafica-
cidn para trazar x(t) en el intervalo [0, 10].

Resuelva el problema 71 si la fuerza aplicada f(t) = sen t
actlia en el sistema para 0 <t < 277 y después se retira.

En los problemas 73 y 74 use la transformada de Laplace para
encontrar la carga q(t) en el capacitor en un circuito RC en
serie sujeto a las condiciones indicadas.

73.

74.

75.

gq(0) = 0,R = 25, C = 0.08 f, E(t) dada en la figura
7.3.19.

E()

5 =+

I
|
|
I
|
1
3

t

FIGURA 7.3.19 E(t) en el problema 73.

q(0) = g, R =10 O, C = 0.1 f, E(t) dada en la figura
7.3.20.

E(t)

30€

30

15 t
FIGURA 7.3.20 E(t) en el problema 74.

a) Use la transformada de Laplace para encontrar la co-
rriente i(t) en un circuito LR en serie de una sola malla
cuandoi(0) =0,L=1h,R =10 Qy E(t) es como se
ilustra en 1a figura 7.3.21.

b) Use un programa de computadora para graficar y di-
buje i(t) en el intervalo 0 <t < 6. Use la grafica para
estimari . ei .. losvalores maximoy minimo de la
corriente.

E(t)
1 sent, 0 <t< 3n/2

‘ ‘ :
J{ 2 Nz/z t
-1

FIGURA 7.3.21 E(t) en el problema 75.

76.

77.

78.

79.

80.
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a) Use la transformada de Laplace para determinar la
carga q(t) en el capacitor en un circuito RC en serie
cuando q(0) = 0, R =50 Q, C = 0.01 fy E(t) es
como se muestra en la figura 7.3.22.

b) Suponga que E; = 100 V. Use un programa de compu-
tadora para graficar y dibuje q(t) para0 <t < 6. Use la
grafica para estimar ¢, el valor maximo de 1a carga.

E(t)

EO T

FIGURA 7.3.22 E(t) en el problema 76.

Una viga en voladizo estd empotrada en su extremo iz-
quierdo y libre en su extremo derecho. Use 1a transfor-
mada de Laplace para determinar la deflexion y(x) cuando
la carga esta dada por

o jwe, 0<x<L/2
Wi = {o, L/2=x<L
Resuelva el problema 77 cuando la carga esta dada por
0, 0<x<L/3

Wy, L/3<x<2L/3
0, 2L/3 <x < L.

w(x) =

Encuentre la deflexion y (x) de una viga en voladizo empo-
trada en su extremo izquierdo y libre en su extremo dere-
cho cuando la carga total es como se da en el ejemplo 9.

Una viga esta empotrada en su extremo izquierdo y apo-
yada simplemente en el extremo derecho. Encuentre la
deflexion y (x) cuando la carga es como la que se da en el
problema 77.

Modelo matematico

81.

Pastel dentro de un horno Lea de nuevo el ejemplo 4 en
la seccion 3.1 acerca del enfriamiento de un pastel que se
saca de un horno.

a) Disefie un modelo matematico para la temperatura de
un pastel mientras esta dentro del horno con base en
las siguientes suposiciones: en t = 0 la mezcla de pas-
tel esta a temperatura ambiente de 70°; el horno no se
precalienta por lo que en t = 0, cuando la mezcla de
pastel se coloca dentro del horno, la temperatura den-
tro del horno también es 70°; la temperatura del horno
aumenta linealmente hasta t = 4 minutos, cuando se
alcanza la temperatura deseada de 300°; la temperatura
del horno se mantiene constante en 300° parat = 4.

b) Use la transformada de Laplace para resolver el pro-
blema con valores iniciales del inciso a).
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Problemas para analizar

82. Analice como se podria arreglar cada una de las siguien-
tes funciones, de tal forma que el teorema 7.3.2 se pu-
diera usar directamente para encontrar la transformada de
Laplace dada. Compruebe sus respuestas con la ecuacién
(16) de esta seccion.

a)
c)
83. a)

P+ DUt — 1} b) F{etut — 5)}
Pleost Ut — D} d) L — 30U — 2)}

Suponga que el teorema 7.3.1 se cumple cuando el
simbolo a se reemplaza por ki, donde k es un nimero

real e i? = —1. Demuestre que £{te*/’} se puede
usar para deducir

52 _ kZ
F{tcos kt} = m
2ks
g{t sen kt} = m

b) Ahora use la transformada de Laplace para resolver
el problema con valores iniciales X" + w?x = €0S wt,
x(0) =0,x" (0) = 0.

7.4 PROPIEDADES OPERACIONALES Il

REPASO DE MATERIAL

e Definicion 7.1.1
e Teoremas 7.3.1y 7.3.2

INTRODUCCION  En esta seccion se desarrollan varias propiedades operacionales mas de la transfor-
mada de Laplace. En especial, veremos como encontrar la transformada de una funcion f(t) que se multi-
plica por un monomio t", la transformada de un tipo especial de integral y la transformada de una funcién
periodica. Las dos Ultimas propiedades de transformada permiten resolver ecuaciones que no se han en-
contrado hasta este punto: ecuaciones integrales de Volterra, ecuaciones integrodiferenciales y ecuaciones
diferenciales ordinarias en las que la funcién de entrada es una funcion periddica definida por tramos.

7.4.1 DERIVADAS DE UNA TRANSFORMADA

MULTIPLICACION DE UNA FUNCION POR t" La transformada de Laplace del
producto de una funcioén f(t) con t se puede encontrar derivando la transformada de
Laplace de f(t). Para motivar este resultado, se supone que F(s) = £{f(t)} existe y
que es posible intercambiar el orden de la derivada y de la integral. Entonces

d d OC—st — wi —st __Oo—st - _ .
EF(s)=ELe f(t)dt—LaS[e f(t)] dt = Le tf(t) dt = —P{tf @O}

es decir,

SO} = — - SO

Se puede usar el ultimo resultado para encontrar la transformada de Laplace de t*f (t):

d d d d?
FLeEf)} = L{t-tf ()} = —Eéf{tf(t)} == <— s ££{f(t)}) = 4 2L}

ds\ ds

Los dos casos anteriores sugieren el resultado general para £{t" f(t)}.

TEOREMA 7.4.1

Derivadas de transformadas

Si F(s) = L{f()}yn=1,23,...,entonces

dn
LETOY = (-1 - FO).
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I EJEMPLO T Uso del teorema7.4.1

Evalle #{t senkt}.

SOLUCION Con f(t) = sen kt, F(s) = k/(s2 + k¥ y n = 1, el teorema 7.4.1 da

F{tsenkt} = — %fg{sen kt} = — i(

k ) 2ks
ds

S+ k) (s + K

Si se quiere evaluar £{t?senkt} y #{t*senkt}, todo lo que se necesita hacer, a
su vez, es tomar el negativo de la derivada respecto a s del resultado del ejemplo 1y
después tomar el negativo de la derivada respecto a s de #{t?>senkt}.

NOTA Para encontrar transformadas de funciones t"e®, se puede usar el teorema
7.3.1 0 el teorema 7.4.1. Por ejemplo,

1 1
. 3 — = — = —
Teorema 7.3.1: ${te } «ip{t}s—w—?, 52 sss-3 (S _ 3)2'

d d 1 1
Teorema7.4.1; ${te’} = — Eﬁf{e“} = T gss_3 (s—3)?%= G-

I EJEMPLO 2 Un problema con valores iniciales

Resuelva x” + 16x = cos 4t, x(0) =0, x'(0) = 1.

SOLUCION El problema con valores iniciales podria describir el movimiento forzado,

no amortiguado y en resonancia de una masa en un resorte. La masa comienza con una

velocidad inicial de 1 pie/s en direccidn hacia abajo desde la posicion de equilibrio.
Transformando la ecuacion diferencial, se obtiene

S 1 S

2+ 16)X(s) =1+ —— X(s) = + .
( )X(E) g+16 ° X =216 @+ 100

Ahora bien, en el ejemplo 1 se vio que

2ks
gl{m} = tsenkt 1)

y por tanto, identificando k = 4 en (1) y en el inciso d) del teorema 7.2.1, se obtiene

1 4 1 8s
_ T o1 L1
X0 =57 {sz n 16} e {(52 n 16)2}

—lsen4t+ltsen4t |
4 8

7.4.2 TRANSFORMADAS DE INTEGRALES

CONVOLUCION  Si las funciones f y g son continuas por tramos en [0, %), enton-
ces un producto especial, denotado por f * g, se define mediante la integral

t
fxg —ff(r) gt — ndr (2)
0
y se llama convolucion de fy g. La convolucion de f * g es una funcion de t. Por ejemplo,

t 1
etxsent = f eTsen (t — 7)dr = E(—sent— cost + et), (3)
0
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t:ttoo

N

7:0tot t

FIGURA 7.4.1 Cambio del orden de
integracion de primero t a primero 7.

Se deja como ejercicio demostrar que

ftf(T) git — ndr= ftf(t - 7ng(ndr;
0 0

es decir, f = g = g f. Esto significa que la convolucion de dos funciones es conmutativa.

No es cierto que la integral de un producto de funciones sea el producto de las in-
tegrales. Sin embargo, es cierto que la transformada de Laplace del producto especial
(2), es el producto de la transformada de Laplace de fy g. Esto significa que es posible
determinar la transformada de Laplace de la convolucion de dos funciones sin evaluar
en realidad la integral como se hizo en (3). El resultado que sigue se conoce como
teorema de convolucidn.

TEOREMA 7.4.2 Teorema de convolucion

Si f(t) y g (t) son funciones continuas por tramos en [0, ) y de orden expo-
nencial, entonces

Lt gk = Z{EOF L{9(0} = F(5)G(9).

DEMOSTRACION SeaF(s) = #{f(t)} = f e f(ndr
0

y G(s) = Z{a(V} = f “eshg(p) dB.

Procediendo formalmente, tenemos

F(s)G(s) = <Lm e~s7f(7) d7><fcesﬁg(,8) dB)

- f ’ f “e st DH(ng(B) drdp
0 Jo

= fowf(T) drfe‘s(”ﬁ)g(ﬁ) dg.
Conservando 7 fija, hacemost = 7 + B, dt = dB, por lo que
F(s)G(s) = f:f(f) dTJxeStg(t — 7) dt.
En el plano tr se realiza la integracion en la regiéTn sombreada de la figura 7.4.1. Puesto

que fy g son continuas por tramos en [0,%) y de orden exponencial, es posible inter-
cambiar el orden de integracion:

F()G(s) = festdtfof(f)g(t— Ddr = J:Ce“{fof(T)g(t— T)df}dt: Pffxg). =

I EJEMPLO 3 Transformada de una convolucion

t
Evalle X{J ersent — 7) dq-}.
0

SOLUCION Con f(t) = ety g(t) = sen t, el teorema de convolucién establece que la
transformada de Laplace de la convolucion de fy g es el producto de sus transformadas
de Laplace:

1 1
1 +1 (s—1(*+1)

éf{ﬁefsen(t ) dT} = P{e} - ${sent} = 5 !
o _
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INVERSA DEL TEOREMA 7.4.2 EI teorema de convolucion en ocasiones es Util
para encontrar la transformada de Laplace inversa del producto de dos transformadas
de Laplace. Del teorema 7.4.2, se tiene

P HFEGE} = f+ 0. (@)
Muchos de los resultados de la tabla de transformadas de Laplace en el apéndice 111, se
pueden obtener usando la ecuacion (4). En el ejemplo siguiente, se obtiene el elemento
25 de la tabla:

2k3

SF{senkt — kt cos kt} = m

©)

I EJEMPLO 4 Transformada inversa como una convolucién

, B 1
Evalle ¥ 1{m}

. 1
SOLUCION Sea F(s) = G(s) = 1K por lo que

1 k 1
f(t) = g(t) = Efl{m} = Esen kt.

En este caso la ecuacion (4) da

21{;} _1 Jtsen krsenk(t — 7)dr. (6)
0

(52 + k2)2 k2
Con la ayuda de la identidad trigonométrica
1
sen AcosB = E[cos(A — B) — cos(A + B)]

y las sustituciones A = k7 y B = k(t — 7) se puede realizar la integracién en (6):

1 1 |t
Nt = k(2r —t) — k
A {(sz n kz)z} % J; [cos k(27 — t) — cos kt] d7
111 t
= ﬁ[ﬂ senk(2r — t) — 7cos kt}0

_senkt — kt cos kt
2k3 '
Multiplicando ambos lados por 2k?, se obtiene la forma inversa de (5). ]

TRANSFORMADA DE UNA INTEGRAL Cuandog(t) =1y #{g(t)} = G(s) = 1/s,
el teorema de convolucién implica que la transformada de Laplace de la integral de f es

%”t f(T)dT} _FO) )
0 S

f t f(r)dr = Efl{FiS)} 8)

0

La forma inversa de (7),

se puede usar en lugar de las fracciones parciales cuando s" es un factor del denomina-
dory f(t) = £ 1{F(s)} es facil de integrar. Por ejemplo, se sabe para f(t) = sen t que
F(s) = 1/(s* + 1) y por tanto usando la ecuacion (8)

1 t
gl{m} = j sentdr =1 — cost
0

1 t
g—l{m} = f (1 —cost)dr=1t— sent
0
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FIGURA 7.4.2 Circuito RCL en serie.

1 ! 1
$1{—} = f (r—sent)dr = Etz —1+cost
0

s3(s? + 1)

etcétera.

ECUACION INTEGRAL DE VOLTERRA  EI teorema de convolucion y el resultado
en (7) son utiles para resolver otros tipos de ecuaciones en las que una funcién des-
conocida aparece bajo un signo de integral. En el ejemplo siguiente se resuelve una
ecuacion integral de Volterra para f(t),

t

f(t) = g(t) + f f(n)h(t — 7)dr. 9)

0

Las funciones g(t) y h(t) son conocidas. Observe que la integral en (9) tiene la forma
de convolucién (2) con el simbolo h jugando el papel de g.

I EJEMPLO 5 Unaecuacion integral

t
Resuelva f(t) = 3t> — et — f f(r)et""dr para f(t).
0

SOLUCION En laintegral se identifica h(t — 7) = e~ por lo que h(t) = €. Se toma la
transformada de Laplace de cada término; en particular, por el teorema 7.4.2 la trans-
formada de Laplace es el producto de #{f(t)} = F(s)y #{e'} = 1/(s — 1).

Después de resolver la Gltima ecuacion para F(s) y realizar la descomposicion en frac-
ciones parciales, se encuentra

2
s+ 1

6 6 1
F)=—=——+=—
(s) s st s

La transformada inversa entonces da

21 3l 1 1
fa)=3z“{¥}—-5F{§}+-gﬁﬂ;}—2gh{s+1}

=32 -3+ 1—2et, ]

CIRCUITOS EN SERIE En una sola malla o circuito en serie, la segunda ley de
Kirchhoff establece que la suma de las caidas de voltaje en un inductor, resistor y ca-
pacitor es igual al voltaje aplicado E(t). Ahora se sabe que las caidas de voltaje en un
inductor, resistor y capacitor son, respectivamente,

di 1t
L—, Ri(t = | i(n)dr,
ROy 2 f (7) dr
donde i(t) es la corriente y L, R y C son constantes. Se deduce que la corriente en un
circuito, como el que se muestra en la figura 7.4.2, esta gobernada por la ecuacién
integrodiferencial

di . 1 [t
Lm+m®+CLKﬂM—E®. (10)
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FIGURA 7.4.3 Grafica de corriente
i(t) del ejemplo 6.
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I EJEMPLO 6 Unaecuacion integrodiferencial

Determine la corriente i(t) en un circuito RCL de un sola malla cuando L = 0.1 h,R =
20,C=0.11,i(0) = 0y el voltaje aplicado es

E(t) = 120t — 120t U(t — 1)..
SOLUCION Con los datos dados, la ecuacion (10) se convierte en

i t
0.1% +2i + 10fi(7) dr = 120t — 120t U(t — 1).
0
Ahora usando (7), z{fg i(7) dT} = 1(s)/s, donde 1(s) = Z{i(t)}. Por lo que la trans-
formada de Laplace de la ecuacién integrodiferencial es

1(s) 1 1

1
0.1sl(s) + 2I(s) + 10? =120 [— — e s — Ses]. < por (16) de la seccion 7.3

g ¢

Multiplicando esta ecuacion por 10s, usando s? + 20s + 100 = (s + 10)?y después al
despejar I(s), se obtiene

1 1 1
I(s) = 1200 - es— e 3|
© [s(s +10)>  s(s + 10)? (s + 10)2 ]
Usando fracciones parciales,

1100 1/100  1/10  1/100
I(s) = 1200 - - - s
© [ s s+10 (s+102 s
Yo . Yy 1,
s+ 10 (s + 10)? (s + 10)?

De la forma inversa del segundo teorema de traslacion (15) de la seccion 7.3, final-
mente se obtiene

i(t) = 12[1 — Ut — 1)] — 12[e ® — e 0=Vt — 1)]
— 120te 1% — 1080(t — 1)e =Dt — 1).
Escrita como una funcion definida por tramos, la corriente es
0 = {12 - _12e*1°‘ - _120t_e*1°T, ) L o=t<1
—12e 1% + 12 10C-D — 120te ™ — 1080(t — 1)e -1, t=1.

Con esta Ultima expresion y un SAC, se traza la grafica i(t) en cada uno de los dos interva-
los y después se combinan las graficas. Observe en la figura 7.4.3 que aun cuando la fun-
cion de entrada E(t) es discontinua, la salida o respuesta i(t) es una funcién continua. |

7.4.3 TRANSFORMADA DE UNA FUNCION
PERIODICA

FUNCION PERIODICA  Si una funcion periddica tiene periodo T, T > 0, entonces
f(t + T) = f(t). El siguiente teorema muestra que la transformada de Laplace de una
funcion periddica se obtiene integrando sobre un periodo.

TEOREMA 7.4.3 Transformada de una funcién periédica

Si f(t) es continua por tramos en [0, «), de orden exponencial y periédica con
periodo T, entonces
A

) 1
L)} = l—iﬂ Jo e % f(t) dt.
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E(t)

1]

Y -

[ — [
\ \

\ \

3 4

FIGURA 7.4.4 Onda cuadrada.

t

1
1+ X

DEMOSTRACION  Escriba la transformada de Laplace de f como dos integrales:

)

PLHQY = L Te-stf(t) dt + f et (1) dt.

T

Cuando se hace t = u + T, la Gltima integral se convierte en

f e S f(t) dt = f e S Nf(u + T)du = e‘STf e~Uf(u) du = e STE{f(t)}.
0

T 0
Por tanto, PLEO} = fe“f(t) dt + e sTE{f(t)}
0

Resolviendo la ecuacion de la dltima linea para #{ f(t)} se demuestra el teorema. MW

I EJEMPLO 7 Aplicacion de un voltaje periddico

Encuentre la transformada de Laplace de la funcion periddica que se muestra en la
figura 7.4.4.

SOLUCION La funcion E(t) se llama de onda cuadrada y tiene periodo T = 2. En el
intervalo 0 < t < 2, E(t) se puede definir por

1, 0=t<1
E(t) =
® {0, 1=t<?2

y fuera del intervalo por f(t + 2) = f(t). Ahora del teorema 7.4.3

1 2 1 1 2
g{E(t)}zl_—eZSfoe“E(t) dt=1"-= foe“'ldt+£es‘-0dt

1 1—e7®
= m S —l-e?®=>1+e°@1 —e?)
_ 1 11) m
Cs(lted)

I EJEMPLO 8 Aplicacion de un voltaje periddico

La ecuacion diferencial para la corriente i(t) en un circuito RL en serie de una sola
malla es

di .
L -+ Ri = EQ). (12)

Determine la corriente i(t) cuando i(0) = 0y E(t) es la funcién de onda cuadrada que
se muestra en la figura 7.4.4.

SOLUCION Si se usa el resultado de (11) del ejemplo anterior, la transformada de
Laplace de la ED es

Lsi(s) + RI(s) = 1 0 I(s) = 1/L 1

s(1 + e™) TSs+R/L) 14e (13

Para encontrar la transformada de Laplace inversa de la Gltima funcidn, primero se
hace uso de la serie geométrica. Con la identificacion x = e, s > 0, la serie geomé-
trica

. 1
=1—x+x2—x3+---seconwerteen1Jr =l—-eS+e®—e®+ ...,

es
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1 LR LR
ss+R/L) s s+R/L

De

se puede reescribir la ecuacion (13) como

1/(1 1
Is) =<|=— l—es+e®—e*+ ...
© R(s s+R/L>( )
1 (1 es e ™ g ) l< 1 1 - e g3 )
==|l-=-—+ - + o)== - e s + - + o)
R\s s s s R\s +R/L s+ R/L s+R/L s+R/L
Aplicando la forma del segundo teorema de traslacion a cada término de ambas series,
se obtiene
. 1
|(t)=§(1—Oa(t—l)+0a(t—2)—0a(t—3)+ D)
_ %(e—Rt/L — e RE-DIL Ut — 1) + e RE-2)L Ut — 2) — e RE-3)/L Ut — 3) + - - )
0, de forma equivalente
1 1
i) ==(1 —e R + = (—1)"(1—e REIL) gt — n).
R anl
Para interpretar la solucion, se supone por razones de ejemplificacionque R = 1, L =
1y 0 =<t<4 Eneste caso
_ iM)=1-e'—QL—-e"HUt-1)+ QL -e Ut —-2) — (1 —e N - 3);
1
1 i en otras palabras,
1 1—e™, 0=t<1
0.5 . —et+ gD 1=t<2
L 7’ 0 = 1-et+e @D —e 2 2=1t<3
2 3 4 —et+e ) —e 2 4 o773 3 <t<4

FIGURA 7.4.5 Gréaficade lacorriente  La gréfica de i(t) en el intervalo 0 < t < 4, que se muestra en la figura 7.4.5, se obtuvo
i(t) en ejemplo 8. con la ayuda de un SAC. u

EJERCICIOS 7.4 Las respuestas a los problemas seleccionados con nmero impar comienzan en la pagina RES-11.

7.4.1 DERIVADAS DE UNA TRANSFORMADA 11. y" + 9y =cos3t, y(0)=2, y'(0)=5

En los problemas 1 a 8 use el teorema 7.4.1 para evaluar cada
una de las transformadas de Laplace.

1.
3.
5.
7.

12. y"+y=sent, y(0) =1, y'(0)=-1
13. y" + 16y = f(t), y(0) =0, y'(0)=1,donde

F{te 10} 2. Hte} f(ty = {805 a, 0= E : :
At cos 2t} 4. H{tsenh 3t}

F{tsenh t} 6. F{ttcost} 14, y"+y="f(t), y(0)=1, y'(0)=0,donde
F{te?'sen 61} 8. P{te 3cos 3t} f(t) = {:(;n N 0= I : Z 5

En los problemas 9 a 14, use la transformada de Laplace para o
resolver el problema con valores iniciales dado. Use la tabla de ~ En los problemas 15 y 16, use un programa de graficacion
transformadas de Laplace del apéndice I11 cuando sea necesario. ~ Para trazar la grafica de la solucion indicada.

9.y +y=tsent, y(0)=0 15. y(t) del problema 13 en el intervalo 0 < t < 27

10. y' —y=te'sent, y(0) =0 16. y(t) del problema 14 en el intervalo 0 < t < 3
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En algunos casos, la transformada de Laplace se puede usar
para resolver ecuaciones diferenciales lineales con coefi-
cientes monomiales variables. En los problemas 17 y 18, use
el teorema 7.4.1 para reducir la ecuacion diferencial dada a
una ED lineal de primer orden en la funcion transformada.
Resuelva la ED de primer orden para Y(s) = £{y(t)} y des-
pués encuentre y(t) = £ Y (s)}.

17. ty" —y' =2t%, y(0)=0
18. 2y" +ty' — 2y =10, y(0)=y'(0)=0

7.4.2 TRANSFORMADAS DE INTEGRALES

En los problemas 19 a 30, use el teorema 7.4.2 para evaluar
cada una de las transformadas de Laplace. No evalUe la inte-
gral antes de transformar.

19. {1+ t%} 20.
21. P{et=e'cost} 22.

t
23. ff{f erT} 24.
0
t
25. ${f e77cos TdT} 26.
0
t t
27. ${f Te”dq-} 28. f{f sentcos (t — ’T)dT}
0 0
t t
29. ;’f{tjsenfdr} 30. ${IJ TerT}
0 0

En los problemas 31 a 34, use (8) para evaluar cada transfor-
mada inversa.

N ) 1
3. & {S - 1)} 32. ¥ 1{—52(5 — 1)}

- 1 B 1
e s Fr

35. Latabla del apéndice 111 no contiene un elemento para

8k3s
—1
. {(sz T k2)3}'

a) Use (4) junto con los resultados de (5) para evaluar
esta transformada inversa. Utilice un SAC como
ayuda para evaluar la integral de convolucidn.

b) Vuelva a analizar su respuesta del inciso a). ¢Podria
haber obtenido el resultado en una forma diferente?

P2 te'}
P{e*«sent}

t

${f cos TdT}
0
t

ff{f TSeanT}
0

36. Emplee la transformada de Laplace y los resultados del pro-
blema 35 para resolver el problema con valores iniciales

y(0) =0, y'(0) =0.
Use un programa de graficacion para trazar la solucion.

y" +y =sent+ tsent,

En los problemas 37 a 46, use la transformada de Laplace para
resolver la ecuacion integral o la ecuacion integrodiferencial.

37. f(t) + jt(t - nf(ndr=t
0

t

38. f(t) = 2t — 4f sentf(t — 7)dr
0
t
39. f(t) = te' + f f(t— 7 dr
0
t
40. f(t) + 2[ f(r)cos (t — 7)d7 = 4e™' + sent
0
t
41. f(t) + j f(ndr=1
0
t
42, f(t) =cost + f e "f(t — ndr
0
8 t
43. f) =1+t _§f (r— ) (n) dr
0
t
44, t — 2f(t) = f e"—e)f(t—7dr
0

45, y'(t) =1 —sent— fy(r) dr, y(@0 =0
0

dy t

46. =2 + By(t) + 9f y(7dr=1, y(0) =0
dt 0

En los problemas 47 y 48, resuelva la ecuacion (10) sujeta a
i(0) = 0conL, R, Cy E(t) como se dan para cada problema.
Use un programa de graficacion para trazar la solucion en el
intervalo 0 <t < 3.

47. L=0.1h,R=30Q,C=005f,
E(t) = 100[2(t — 1) — U(t — 2)]

48. L =0.005h,R=10Q,C =0.02f,
E(t) = 100[t — (t — 1)U(t — 1)]

7.4.3 TRANSFORMADA DE UNA FUNCION
PERIODICA

En los problemas 49 a 54 use el teorema 7.4.3 para determi-
nar la transformada de Laplace de cada una de las funciones
periodicas.

49, f(®)
1 F—

3a| 4a t

a| 2a
1,, SR

funcidn serpenteante

FIGURA 7.4.6 Gréfica para el problema 49.



50. f(®)

[ 4444|

funcion de onda cuadrada

FIGURA 7.4.7 Gréfica para el problema 50.

f(t)V//// |

2b 3b 4b

funcnon diente de sierra
FIGURA 7.4.8 Gréfica para el problema 51.
52. f()

funcion triangular
FIGURA 7.4.9 Gréfica para el problema 52.

53. f(O)
1

T 2r 3¢ 4r t

rectificacion de onda completa de sen't

FIGURA 7.4.10 Gréfica para el problema 53.

54. f(t)
% A
‘ T 2 3m  4rm

rectificacion de media onda de sent

FIGURA 7.4.11

En los problemas 55 y 56 resuelva la ecuacion (12) sujeta a
i(0) = 0 con E(t) como se indica. Use un programa de gra-
ficacion para trazar la solucion en el intervalo 0 <t < 4 enel
casocuandoL =1yR =1

Gréfica para el problema 54.

55. E(t) es la funcién serpenteante del problema 49 con am-
plitudlya=1.

56. E(t) es la funcién diente de sierra del problema 51 con
amplitud1yb = 1.

En los problemas 57 y 58 resuelva el modelo para un sistema
forzado resorte/masa con amortiguamiento

dzx N
dt2 B

donde la funcién forzada f es como se especifica. Utilice un pro-
grama de graficacion para trazar x(t) en los valores indicados de t.

+ kx = f(t), x(0) =0, x(0)=0,

7.4 PROPIEDADES OPERACIONALES Il U 291

57. m= % B =1, k=5, f eslafuncién serpenteante del
problema 49 con amplitud 10,y a = 7, 0 <t < 277.

58. m=1,B8=2,k=1,feslafuncién de onda cuadrada del
problema 50 con amplitud 5, ya = 7,0 <t < 4.

Problemas para analizar

59. Examine como se puede usar el teorema 7.4.1 para en-

contrar
s —3
£ Hln .
s+1

60. En laseccion 6.3 vimos que ty” +y’ + ty = 0 es la ecua-
cién de Bessel de orden v = 0. En vista de (22) de esta
seccion y de la tabla 6.1, una solucion del problema con
valores inicialesty” +y’ +ty = 0,y(0) = 1,y'(0) = 0, es
y = J,(1). Use este resultado y el procedimiento descrito
en las instrucciones de los problemas 17 y 18 para demos-
trar que

1
LLO)} = —F/——.
[Sugerencia: Podria ser necesario usar el problema 46 de
los ejercicios 7.2].

61. a) Se sabe que la ecuacion diferencial de Laguerre
ty"+ (@ -ty +ny=0

tiene soluciones polinomiales cuando n es un entero
no negativo. Estas soluciones naturalmente se lla-
man polinomios de Laguerre y se denotan por L. (t).
Determiney = L (t), paran =0, 1, 2, 3, 4 si se sabe
que L (0) = 1.

b) Demuestre que

et d" _
f{jﬁt } = Y(s),

donde Y(s) = #{y} yy = L,(t) es una solucion poli-
nomial de la ED del inciso a). Concluya que
t dn
L,(t) = Idtnte‘, n=2012....

Esta dltima relacion para generar los polinomios de
Laguerre es el andlogo de la formula de Rodrigues
para los polinomios de Legendre. Véase (30) en la
seccion 6.3.

Tarea para el laboratorio de computacién

62. Eneste problemase indican las instrucciones de Mathema-
tica que permiten obtener la transformada de Laplace sim-
bolica de unaecuacion diferencial y la solucidn del problema
de valores iniciales al encontrar la transformada inversa. En
Mathematica la transformada de Laplace de una funcion
y(t) se obtiene usando LaplaceTransform [y[t], t, s]. Enel
renglén dos de la sintaxis se reemplaza LaplaceTransform
[y[t], t, s] por el simbolo Y. (Si no tiene Mathematica, en-
tonces adapte el procedimiento dado encontrando la sin-
taxis correspondiente para el SAC que tenga a la mano.)
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Considere el problema con valores iniciales

y" + 6y +9y=tsent, y0)=2 y'0)=-1
Cargue el paquete de transformada de Laplace. Repro-
duzca con precision y después, a su vez, ejecute cada ren-
glon de la siguiente secuencia de instrucciones. Copie los
resultados a mano o imprimalo.

diffequat = y”[t] + 6y'[t] + 9y[t] == t Sin[t]
transformdeq = LaplaceTransform [diffequat, t, s] /.
{y[0] = >2,y'[0] = > -1,
LaplaceTransform [y[t], t,s] — > Y}
soln = Solve[transformdeq, Y]//Flatten
Y = Y/.soln
InverseLaplaceTransform[Y, s, t]

63.

64.

Modifique de forma apropiada el procedimiento del pro-
blema 62 para encontrar una solucién de

y” + 3y' — 4y =0,
y(0) =0, y'(0) =0, y"(0) =1

La carga q(t) en un capacitor en un circuito CL en serie
esta dada por

d?q
qg ta=1-4%t~ m + 6t - 3m)

q©) =0, g'(0) =0.

Modifique de forma apropiada el procedimiento del problema
62 para determinar q(t). Trace la gréfica de su solucion.

7.5

LA FUNCION DELTA DE DIRAC

FIGURA 7.5.1

INTRODUCCION  En el Gltimo parrafo de la pagina 261, se indicé que como una consecuencia
inmediata del teorema 7.1.3, F(s) = 1 no puede ser la transformada de Laplace de una funcion f que
es continua por tramos en [0,%) y de orden exponencial. En el anélisis siguiente se introduce una
funcién que es muy diferente de las que ha estudiado en cursos anteriores. Mas tarde veremos que
de hecho existe una funcidn o mas precisamente, una funcién generalizada, cuya transformada de
Laplace es F(s) = 1.

IMPULSO UNITARIO Los sistemas mecanicos suelen ser afectados por una fuerza ex-
terna (o fuerza electromotriz en un circuito eléctrico) de gran magnitud que actla sélo por
un periodo muy corto. Por ejemplo, podria caer un rayo en el ala vibrante de un avion, un
martillo de bola podria golpear con precision una masa en un resorte, una bola (de beisbol,
golf, tenis) podria ser enviada por el aire al ser golpeada de modo violento con un bate,
palo de golf o raqueta. Vea la figura 7.5.1. La grafica de la funcion definida por partes

0, 0=t<t;—a
1

Sa(t_to): E, to_aSt<t0+a (l)
0, t=t, + a,

a>0,t.>0,quesemuestraenlafigura7.5.2a, podriaservircomomodelo paratal fuerza.
Para un valor pequefio de a, & (t — t ) es en esencia una funcion constante de gran mag-
nitud que esta “activada” solo durante un periodo muy corto, alrededor de t . El compor-
tamientode & (t —t ) conformea— Oseilustraenlafigura7.5.2b. Lafunciond (t —t)se
[lama impulso unitario porque tiene la propiedad de integracion f;’; St — tp)dt = 1.
Un palo de golf aplica

una fuerza de gran magnitud en la bola

durante un periodo muy corto.

LA FUNCION DELTA DE DIRAC En la préactica es conveniente trabajar con otro tipo
de impulso unitario, una “funcion” que aproxima a g (t — t,) y se define por el limite

S(t = o) = lim&,(t — o). O]



y
1/2aJ{ h—2——

| | I—

| t,-a

a) gréfica de §,(t — 1))

t
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La Gltima expresion, que no es una funcidn en absoluto, se puede caracterizar por las
dos propiedades

ot—t)=1" 70 ii)ra(t—t)dt—l
0 0, t#t, 0 0 '
El impulso unitario §(t — t,) se llama funcion delta de Dirac.
Es posible obtener la transformada de Laplace de la funcion delta de Dirac por la

suposicion formal de que 2{8(t — t,)} = lim,_, L{6.(t — t))}-

b) comportamiento de §,
conforme a — 0

FIGURA 7.5.2

Impulso unitario.

TEOREMA 7.5.1 Transformada de la funcion delta de Dirac

Parat, >0, LLo(t — t5)} = e~ %%, 3)

DEMOSTRACION Para empezar se puede escribir d,(t — t,) en términos de la funcion
escal6n unitario en virtud de (11) y (12) de la seccién 7.3:

Bult = 1) = - [t — (& — @) — Ut — (o + )]

Por linealidad y (14) de la seccion 7.3 la transformada de Laplace de esta Gltima ex-
presion es

1 efs(tofa) e*S(IOJra) gsa _ p—sa
L{oa(t — 1)} = 5[ PE— ] = e‘%(—ZSa ) 4

Puesto que (4) tiene la forma indeterminada 0/0 conforme a — 0 se aplica la regla de
L'Hopital:

esa — e*Sa
S~ )} = lim P, — )} = e lim(EZ—) e m

Ahora cuando t, = 0, se puede concluir de (3) que

L)} = 1.
El dltimo resultado enfatiza el hecho de que 6(t) no es el tipo usual de funcién que
se ha estado considerando, puesto que se espera del teorema 7.1.3 que £{f(t)} —0
conforme s — o,

I EJEMPLO 1 Dos problemas con valores iniciales

Resuelvay” +y = 48(t — 27) sujeta a

a) y0) =1, y'(0=0 b)y©0=0 y(0)=0.

Dos problemas con valores iniciales podrian servir como modelos para describir el
movimiento de una masa en un resorte que se mueve en un medio en el cual el amor-
tiguamiento es despreciable. En t = 27r la masa recibe un golpe preciso. En a) la masa
se libera a partir del reposo una unidad abajo de la posicién de equilibrio. En b) la
masa esta en reposo en la posicion de equilibrio.

SOLUCION a) De (3) la transformada de Laplace de la ecuacion diferencial es

2Y(S) — s+ Y(s) = de2 0 Y=o 42
s2+1 241

Con la forma inversa del segundo teorema de traslacion, se encuentra

y(t) = cost + 4sen(t — 2m) Ut — 27).

Puesto que sen(t — 27r) = sen t, la solucion anterior se puede escribir como

cost O=t<2w
t) = ’ ()
y® {cost + 4 sent, t=2mw.
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y
l,

| T
-1+ 2 N7 4z 1

FIGURA 7.5.3 Lamasaes golpeada en
t= 2.

FIGURA 7.5.4 NingGn movimiento
hasta que la masa es golpeadaen t = 2.

En la figura 7.5.3 se ve de la gréfica de (5) que la masa presenta movimiento armonico
simple hasta que es golpeada en t = 2. La influencia del impulso unitario es incre-
mentar la amplitud de vibracién a V17 parat > 27.

b) En este caso la transformada de la ecuacién es simplemente

4ef2‘n's
241

Y(s)

y asi y(t) = 4sen(t — 27) Ut — 27)
o, 0=t<2w
4 sent, t= 2 ©)

La grafica de (6) de la figura 7.5.4 muestra, como se esperaria de las condiciones ini-
ciales, que la masa no exhibe movimiento hasta que es golpeadaent = 2. ]

I COMENTARIOS

i) Si o(t - t) fuera una funcion en el sentido usual, entonces la propiedad i) en
la pagina 293 implicaria /5 6(t — to) dt = 0 envezde [§ 8(t — t;) dt = 1. De-
bido a que la funcion delta de Dirac no se “comporta” como una funcién ordinaria,
aun cuando sus usuarios produjeron resultados correctos, al inicio los matematicos
la recibieron con gran desprecio. Sin embargo, en 1940 la controversial funcién
de Dirac fue puesta en un fundamento riguroso por el matematico francés Laurent
Schwartz en su libro La Théorie de distribution y esto, a su vez, condujo una rama
completamente nueva de la matematica conocida como la teoria de las distribu-
ciones o funciones generalizadas. En esta teoria (2) no es una definicién acep-
tada de 5(t -t ), ni se habla de una funcion cuyos valores son < 0 0. Aunque se deja
en paz este tema, basta decir que la funcion delta de Dirac se caracteriza mejor por
su efecto en otras funciones. Si f es una funcién continua, entonces

J “H(t) a(t — ) dt = 1(ty) @
0

se puede tomar como la definicion de 6(t - t). Este resultado se conoce como
propiedad de cribado, puesto que §(t - t,) tiene el efecto de separar el valor
f(t,) del conjunto de valores de f en [0,%). Note que la propiedad ii) (con f(t) =
1) y (3) (con f(t) = e*") son consistentes con (7).

ii) Los Comentarios en la seccion 7.2 indicaron que la funcion de transferencia
de una ecuacion diferencial lineal general de n-ésimo orden con coeficientes
constantes es W(s) = 1/(P(s), donde P(s) =as"+ a "'+ ...+ a, Lafun-
cion de transferencia es la transformada de Laplace de la funcion w(t), conocida
como funcion peso de un sistema lineal. Pero w(t) también se puede caracterizar
en términos del andlisis en cuestion. Por simplicidad se considera un sistema
lineal de segundo orden en el que la entrada es un impulso unitarioent = 0:

ay" +ay’ + ay = 46(t), y@©0) =0, y'()=0.

Aplicando la transformada de Laplace y usando #{8(t)} = 1 se muestra que la
transformada de la respuesta y en este caso es la funcién de transferencia
1

1
Y = —-— = — = W 1 =] -1
(s) a,s® + as +a, P(s) E iy = {

1

— = W(t).
P(s>} 2
De esto se puede ver, en general, que la funcion peso y = w(t) de un sistema lineal
de n-ésimo orden es la respuesta de estado cero del sistema a un impulso unitario.
Por esta razon w(t) también se llama respuesta de impulso del sistema.
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EJE RCICIOS 7.5 Lasrespuestas a los problemas seleccionados con nimero impar comienzan en la pagina RES-12.

En los problemas 1 a 12, use la transformada de Laplace para
resolver el problema con valores iniciales.

a M W NP

© ©®© N o

10.
11.

12.

13.

y =3y =34(t—-2),
y +y=296(t—-1),
y'+y=268(t—2m), y(0)=0y(0)=1

y" + 16y = 8(t — 27), y(0)=0,y'(0)=0

y'+y= 8(t - %77) + 8(t - %77-)

y(0) =0,y(0) =0

y'+y=06(t—2m7)+6(t—4m), y0)=1y(0)=0
y"+2y'=6(t—1), y(0)=0y(0)=1

y' =2y =1+6(t—2), y0)=0,y(0)=1

y" +4y" + 5y =6(t — 27), y(0)=0,y'(0)=0
y"+2y +y=46(@—1), y0)=0y(0)=0

y" +4y" + 13y = 6(t — 7) + 6(t — 3m),
y(0)=1y'(0)=0

y' =7y + 6y =e' + 5(t — 2) + 5(t — 4),
y(0)=10,y'(0)=0

Una viga uniforme de longitud L soporta una carga concen-
tradaw,en X = %L. La viga esta empotrada en su extremo

y(0) =0
y(0) =2

14.

izquierdo y libre en su extremo derecho. Use la transfor-
mada de Laplace para determinar la deflexion y(x) de
dty
El 5 = Wod (x —

donde y(0) = 0, y’(0) = 0, y"(L) = 0, y y" (L) = 0.

Resuelva la ecuacion diferencial del problema 13 sujeta a
y(0) =0,y’(0) =0, y(L) = 0,y’(L) = 0. Eneste caso la viga
esta empotrada en ambos extremos. Véase la figura 7.5.5.

L),

N[

Wo

—— p— |

L

FIGURA 7.5.5 Vigaen el problema 14.

Problemas para analizar

15.

Alguien afirma que las soluciones de dos PVI
y” +2y" + 10y = 0, y(0) =0, y(0) =1
y" + 2y" + 10y = 8(1), y(0) =0, y(@©0) =0

son exactamente lo mismo. ¢(Esta de acuerdo o no?
Justifique su respuesta.

7.6

SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES

REPASO DE MATERIAL

¢ Solucidn de sistemas de dos ecuaciones con dos incognitas.

INTRODUCCION  Cuando se especifican las condiciones iniciales, la transformada de Laplace
de cada ecuacion en un sistema de ecuaciones diferenciales lineales con coeficientes constantes
reduce el sistema de ED a un conjunto de ecuaciones algebraicas simultaneas en las funciones trans-
formadas. Se resuelve el sistema de ecuaciones algebraicas para cada una de las funciones transfor-
madas y luego se determinan las transformadas de Laplace inversas en la manera usual.

RESORTES ACOPLADOS Dos masas m, y m, estan conectadas a dos resortes A'y
B de masa despreciable con constantes de resorte k; y k, respectivamente. A su vez,
los dos resortes estan unidos como se muestra en la figura 7.6.1. Sean x (t) y x,(t) los
desplazamientos verticales de las masas desde sus posiciones de equilibrio. Cuando
el sistema estd en movimiento, el resorte B esta sujeto a elongacién y compresion;
por lo que su elongacion neta es x, — x,. Por tanto, se deduce de la ley de Hooke que

los resortes A 'y B ejercen fuerzas

—k X, y K,(x, — X,) respectivamente, en m,. Si nin-

guna fuerza externa se aplica al sistema y si ninguna fuerza de amortiguamiento esta
presente, entonces la fuerza neta en m, es —k x, + Kk,(x, — x,). Por la segunda ley de
Newton se puede escribir

M3

d?x
P = —kgxy + ko(%o — Xy).
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De igual manera, la fuerza neta ejercida en la masa m, se debe solo a la elongacion
neta de B; es decir, — k,(x, — x,). Por tanto, se tiene

d?x,

m,—— a2 —ko (X = Xy).

En otras palabras, el movimiento del sistema acoplado se representa por el sistema
de ecuaciones diferenciales simultaneas de segundo orden

mx] = —kixg + k(X — Xy) 0

mMyX5 = =Ko (X — Xq).

En el ejemplo siguiente se resuelve (1) bajo las suposiciones de que k, = 6, k, = 4
m, = 1, m, = 1y que las masas comienzan desde sus posiciones de equilibrio con
velocidades unitarias opuestas.

a) equilibrio b) movimiento c¢) fuerzas

FIGURA 7.6.1 Sistema resorte/masa I EJEMPLO 1 Resortes acoplados

acoplado.
Resuelva X7 + 10 — 4%, =0 )
—4x + X5+ 4%, =0
sujetaa x,(0) = 0, x3(0) = 1, %,(0) = 0, x3(0) = —
SOLUCION La transformada de Laplace de cada ecuacion es
$2X4(s) — sx1(0) — x1(0) + 10X, (s) — 4X,(s) = 0
—4X,(s) + $2X,(S) — $X,(0) — X5(0) + 4X,(s) = 0,
donde X,(s) = L{x (1)} Y X,(s) = L{x,(1)}. El sistema anterior es igual a
(s? + 10) Xy(s) — 4X,(5) = 1 3)
. 4"‘ —4X,(s) + (2 + 4) Xp(s) = —
0.2 Resolviendo (3) para X (s) y usando fracciones parciales en el resultado, se obtiene
! s? 1/5 6/5
Xi(8) =75 2 T T 2 '
-0.2 (s + 2)(s* + 12) f+2 s°+12
04 y por tanto
2.5 5 7.5 1012.5 15
. 1 [ V2 6 _ _.[ Vi2
) grifica de x(1) vs. ¢ x(® = T 5V2 - 1{32 + 2} "5V . 1{52 + 12}
X2
2 3
= —isen\/it + isen 2V/3t.
10 5
/\/\ Sustituyendo la expresion para X (s) en la primera ecuacion de (3), se obtiene
0.2 s+ 6 2/5 3/5
X8) = —75 2 2 2
—0.4 (s? + 2)(s +12) 242 £412
5 10 12.5 15 2 V2 3 V12
y X(t) = — N2 - I h3
5V2 $2+2] 5V12 2+ 12

b) grafica de x,(¢) vs. ¢

FIGURA 7.6.2 Desplazamientos de las
dos masas.

—gsen V2t — %gsen 2V/3t.



FIGURA 7.6.3 Red eléctrica.
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Por dltimo, la solucion del sistema (2) es

xi(t) = —% sen V2t + \/?é sen 2\/3t
Vs va (4)
X,(t) = —?2 senV2t — 1—03 sen 2V/3t.

Las graficas de x, y x, de la figura 7.6.2 revelan el complicado movimiento oscilatorio
de cada masa. ]

REDES En (18) de la seccion 3.3 vimos que las corrientes i(t) e i,(t) de la red que se
muestra en la figura 7.6.3 con un inductor, un resistor y un capacitor, estaban goberna-
das por el sistema de ecuaciones diferenciales de primer orden

di, .
L— + Ri, = E(t
dt Iy ® :
i, ()
Rcaﬂz—ul:o.

Resolvemos este sistema con la transformada de Laplace en el siguiente ejemplo.

I EJEMPLO 2 Unared eléctrica

Resuelva el sistema en (5) bajo las condiciones E(tf) = 60V,L=1h,R=500Q,C =
10~*fy al inicio las corrientes i, € i, son cero.

SOLUCION Debemos resolver
di,
— + 50i, = 60
dt 2

50(10‘4)% +i,—i;=0
sujetaa i (0) = 0,1,(0) = 0.

Aplicando la transformada de Laplace a cada ecuacion del sistema y simplifi-
cando, se obtiene

sly(s) + 501,(s) = 6—50
—2001,(s) + (s + 200)I,(s) = 0,

donde 1:(s) = Z{ii(t)}e 1x(s) = Z{ix(t)}. Resolviendo el sistema para I, e I, y des-
componiendo los resultados en fracciones parciales, se obtiene

(g = S0s T 12000 _6/5 65 60
s(s + 100)? s s+ 100 (s + 100)®
g 1200 - _6/5 &5 120
s(s + 100)? s s+ 100 (s + 100)®

Tomando la transformada inversa de Laplace, encontramos que las corrientes son

6 6
i.(t) = - — _e—lOOt _ 60te—100t
0=7 ¢

[op]

. 6
i) == — c —100t — 120te 100, ]

(¢, ]



298 ° CAPITULO 7 LA TRANSFORMADA DE LAPLACE

FIGURA 7.6.4 Péndulo doble.

(my + my)lf6;

Observe que tanto i (t) como i,(t) del ejemplo 2 tienden hacia el valor E/R = g
conforme t — c. Ademas, puesto que la corriente a traves del capacitor es i,(t) = i (t)
— i,(t) = 60te ', se observa que i,(t) — 0 conforme t — .

PENDULO DOBLE Considere el sistema de péndulo doble que consiste en un pén-
dulo unido a otro como se muestra en la figura 7.6.4. Se supone que el sistema oscila
en un plano vertical bajo la influencia de la gravedad, que la masa de cada varilla es
despreciable y que ninguna fuerza de amortiguamiento actla sobre el sistema. En la
figura 7.6.4 también se muestra que el angulo de desplazamiento 6, se mide (en radia-
nes) desde una linea vertical que se extiende hacia abajo desde el pivote del sistema
y que 6, se mide desde una linea vertical que se extiende desde el centro de masa m,.
La direccion positiva es a la derecha; la direccion negativa es a la izquierda. Como
se esperaria del andlisis que condujo a la ecuacion (6) de la seccion 5.3, el sistema de
ecuaciones diferenciales que describe el movimiento es no lineal:

+ m,1;1,65 cos (6, — 6,) + myl1,(65)? sen (0, — 6,) + (m; + my)l,gsend; = 0 ©)

m,l20; + m,l 1,0/ cos (6, — 6,) — myl;1,(6])% sen (6, — 6,) + myl,gsend, = 0.

Pero si se supone que los desplazamientos 6.(t) y 60,(t) son pequefios, entonces las
aproximaciones cos(6, — 6,) =~ 1, sen(6, — 6,) = 0, sen 6, =~ 6, sen 6, ~ 6, nos permi-
ten reemplazar el sistema (6) por la linealizacién

(my + m)IF67 + mylil,6, + (m; + my)l,gh; = 0

U]

m2|§92” + m2|1|201” + m2|2g92 - O

I EJEMPLO 3 Doble péndulo

Se deja como ejercicio completar los detalles de usar la transformada de Laplace para
resolver el sistema (7) cuando m; =3, my =1, 13 =1, = 16, 6,(0) = 1, 0,(0) =
—1, 0;(0) = 0y 65(0) = 0. Debe encontrar que

0.(t) —lcosiH—gcosZt
! 4773 4

0,(t L 2 t 3 2t ©
= -C0s—=t — - cos 2t.

=305 2

En la figura 7.6.5 se muestran con la ayuda de un SAC las posiciones de las dos masas

ent = 0y en tiempos posteriores. VVéase el problema 21 en los ejercicios 7.6.

a) =0

b) t=14 ¢) t=25 d) =85

FIGURA 7.6.5 Posiciones de masas del péndulo doble en diferentes tiempos. |
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EJE RCICIOS 7.6 Lasrespuestas a los problemas seleccionados con nimero impar comienzan en la pagina RES-12.

En los problemas 1 a 12, use la transformada de Laplace para

resolver el sistema dado de ecuaciones diferenciales.

1.

11.

12.

dx dx
— =X+ 2. = =2y + ¢
a - Y g yte
dy dy .
a 2X a 8x —t
x(0)=0, y@0)=1 x(0)=1, y@0)=1
dx dx dy
Zox-2 4. X i+ =1
dt y dt 3 dt
dy dx dy
—_— = 5X - _ = _— = = @t
dt y at X + at y =¢
x(0)=-1, y(0) =2 x(0) =0, y(0)=0
dx dy
_ + —_ =
2 G dt 2X 1
dx dy
—_— + A — —
dt dt -3y =2
x(0) =0, y(0)=0
dx dy _
at + X at + y=0
ax dy B
m + it +2y=0
x(0) =0, y@0)=1
d2x d?  dx dy
— X -y = 8. —+ 4+ 2=
dt? =y dez  dt dt 0
d?y d?y dy dx
— 4+ y—Xx= — 4+ = —4— =
ae YT ae Tat Yo O
x(0) =0, x'(0)= -2, x(0) =1, x'(0) =0,
y©0) =0, y@©0)=1 y(0) =-1, y'(0)=5
d |, dy dx ddy
—_— _— = 10 _— —+ _ =
pra pTe t at 4x e 6 sent
d2x  d?%y dx d3y
— == — 4+ 2x-2-—2=
a2 dt? T de 0
x(0) =8, x'(0) =0, x(0) =0, y(0)=0,
y©0) =0, y(© =0 y'(0)=0, y"(0)=0
d?x dy
ae "3 T¥=0
dax
- + — —t
e 3y = te
x(0) =0, x(0)=2, y(0)=0
%=4x—2y+20u(t—1)
dt
dy
- — — + —
at 3X y Ul — 1)

x(0) =0, y(0) =1}

13.

14.

15.

16.

Resuelva el sistema (1) cuando k, =3, k, =2, m =1,
m, =1yx,(0) =0, x;(0) = 1, x2(0) = 1, x3(0) = 0.
Construya el sistema de ecuaciones diferenciales que
describe el movimiento vertical en linea recta de los
resortes acoplados que se muestran en la figura 7.6.6.
Use la transformada de Laplace para resolver el sistema
cuandok, = 1,k,=1,k,=1,m =1m,=1yx(0) =0,
x1(0) = —1,x2(0) = 0, x5(0) = 1.

FIGURA 7.6.6 Resortes acoplados del problema 14.

a) Demuestre que el sistema de ecuaciones diferenciales
para las corrientes i,(t) e i,(t) en la red eléctrica que se
muestra en la figura 7.6.7 es

Ll% + Ri, + Ris = E(t)

y
Lzﬁ + Ri, + Ri; = E(t).

b) Resuelva el sistema del inciso @) siR =5, L, = 0.01
h,L,=0.0125h, E =100V, i,(0) = 0e i, (0) = 0.

c¢) Determine la corriente i (t).

FIGURA 7.6.7 Red del problema 15.

00000
Q0000

a) Enel problema 12 de los ejercicios 3.3 se pide demos-
trar que las corrientes i,(t) e i (t) de la red eléctrica que
se muestra en la figura 7.6.8 satisface

di,  di; .
—=+L=+ =
Lf+ L+ Rii = E()
di dis 1.
R dlt2 R dlt3 k=0
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Resuelva el sistemasiR, = 10Q,R,=50,L =1h,
C=0.2f.

120, 0=t<2
E(t) =
0-{5" °7i2

i,(0)=0,ei,(0) =0.
b) Determine la corriente i (t).

FIGURA 7.6.8 Red del problema 16.

17. Resuelva el sistema dado en (17) de la seccién 3.3 cuando
R,=6Q,R,=5Q,L,=1hL,=1h E{t)=50sent
V,i,(0) =0ei, 0) =0.

18. Resuelva (5) cuandoE=60V,L =3h,R=500,C =
101,i,(0) =0ei, (0) =0.

19. Resuelva (5) cuandoE =60V,L=2h,R=50(,C =
101,i,(0) =0ei, 0) =0.

20. a) Demuestre que el sistema de ecuaciones diferenciales
para la carga en el capacitor q(t) y la corriente i,(t) en
la red eléctrica que se muestra en la figura 7.6.9 es

dg 1 o
R, dtJquJrR1|3—E(t)

di 1
Ld—t3+R2I3 quo

b) Determine la cargaen el capacitor cuando L = 1 h, R,
=10,R,=10,C=1f.

E® = {gbet

o<t<1
t=1,

1,00 =0yq(0) = 0.

FIGURA 7.6.9 Red del problema 20.

-

Tarea para el laboratorio de computacién

21. a) Use la transformada de Laplace y la informacion
dada en el ejemplo 3 para obtener la solucion (8) del

sistema que se presenta en (7).

b) Use un programa de graficacion para trazar 6,(t) y
6,(t) en el plano t6. ¢(Cual masa tiene desplazamien-
tos extremos de mayor magnitud? Use las graficas
para estimar la primera vez que cada masa pasa por
su posicion de equilibrio. Analice si el movimiento
del péndulo es periddico.

c) Trace_la grafica de Ql(t) y 6,(t) en el plano (9102 como
ecuaciones paramétricas. La curva que definen estas
ecuaciones paramétricas se llama curva de Lissajous.

d) En la figura 7.6.5a se presentan las posiciones de las
masas en t = 0. Observe que se ha usado 1 radian
~ 57.3°. Use una calculadora o una tabla de aplicacion
de un SAC para construir una tabla de valores de los
angulos 6,y 0, parat = 1,2, ..., 10s. Despues dibuje
las posiciones de las dos masas en esos tiempos.

e) Use un SAC para encontrar la primera vez que 6,(t) =
6.(t) y calcule el correspondiente valor angular. Dibuje
las posiciones de las dos masas en esos tiempos.

f) Utilice un SAC paradibujar las rectas apropiadas para
simular las varillas de los péndulos, como se muestra
en la figura 7.6.5. Use la utilidad de animacion de
su SAC para hacer un “video” del movimiento del
péndulo doble desde t = 0 hasta t = 10 usando un
incremento de 0.1. [Sugerencia: Exprese las coorde-
nadas (x,(t), y,(1) y (x,(1), y,(t)) de las masas m, y m,
respectivamente, en términos de 6,(t) y 6,(t).]

REPASO DEL CAPITULO 7

Las respuestas a los problemas seleccionados con nimero impar
comienzan en la pagina RES-12

En los problemas 1y 2 utilice la definicion de la transformada
de Laplace para encontrar #{ f(t)} .

t 0=t<1
1. ft)=4_
® {Z—t, t=1
0, 0=t<?2
2. f) =41, 2=t<4
0, t=4

En los problemas 3 a 24 complete los espacios en blanco o
conteste verdadero o falso.

3. Sifnoes continua por tramos en [0, ), entonces F{ f (t)}
no existira.

4. Lafuncion f(t) = (€)' no es de orden exponencial.

5. F(s) = s?/(s* + 4) no es la transformada de Laplace de
una funcién que es continua por tramos y de orden expo-
nencial.



7.

9.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20. &~

21.
22.
23.

24.

En los problemas 25 a 28, use la funcion escaldn unitario para
determinar una ecuacién para cada gréafica en términos de la
funcion y = f(t), cuya grafica se presenta en la figura 7.R.1.

25.

Si Z{f()} = F(s) y £{g(t)} = G(s), entonces
FHF(E)GE)} = (1))
Fle™=__ 8 Pe "} =
Hsen 2t} = 10. #{e 3sen 2t} =
Ftsen2ty =
Hsen 2t Ut — )} =

(20
) Fjp—

F#{e >} existe para s > .

Si P{f(t)} = F(s), entonces F{te® f(t)} =

Si Z{f(t)y = F(s) y k > 0, entonces
PLeatf(t — KUt — K} =
Hlpe f(Ddry=__
PLe[q f() d7} =

mientras que

y
y=1(t)

|t t

FIGURA 7.R.T Gréfica para los problemas 25 a 28.

FIGURA 7.R.2 Gréfica para el problema 25.

REPASO DEL CAPITULO 7

26. y

| to t

FIGURA 7.R.3 Gréfica para el problema 26.

0

27. y

|t t

FIGURA 7.R.4 Gréfica para el problema 27.

28. y

FIGURA 7.R.5 Gréfica para el problema 28.

301

En los problemas 29 a 32 exprese f en términos de funciones

escalon unitario. Encuentre £{f(t)}y £{e'f(t)}.

20. f(t)

FIGURA 7.R.6 Gréfica para el problema 29.

30. f(t)
! '\

_1JF n\-/Zn ?;n t

FIGURA 7.R.7 Gréfica para el problema 30.

31. f(®)
T (3.3
2,

1,,

123 ¢
FIGURA 7.R.8 Gréfica para el problema 31.
32. f(®
1

12t

FIGURA 7.R.9 Gréfica para el problema 32.
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En los problemas 33 a 38, use la transformada de Laplace para
resolver la ecuacion dada.

33.
34.
35.
36.

37.

y"—2y'+y=e\ y(0)=0y(0)=5

y" —8y" + 20y =te!, y(0)=0,y'(0)=0

y"+6y +5y=t—tU{t—-2), y0)=1y(0)=0
y’ — by = f(t), donde

2 =t<1
f(t):{t, 0=t

=1
0 (=1 y(0)

y'(t) = cost + ft y(7) cos(t — 7)dr, y(0) =1
0

38. ftf(f)f(t — 7 dr = 6t3
0

En los problemas 39 y 40, use la transformada de Laplace para
resolver cada sistema.

39.

41.

42.

43.

44,

X' +y=t 40. X" +y"'= ¢*
4x+y' =0 2x' +y" = —e?
x(0)=1, y@0)=2 x(0) =0, y() =0,

x'(0)=0, y'(0)=0
La corriente i(t) en un circuito RC en serie se puede deter-

minar de la ecuacion integral

R + éLti(T) dr = E(t),

donde E(t) es el voltaje aplicado. Determine i(t) cuando R
=100Q,C=05fyE() = 2(t> + 1).

Un circuito en serie contiene un inductor, un resistor y un
capacitor para el cual L = 2 sh,R=10Q0yC =0.01f,
respectivamente. El voItaJe

10, 0=t<5
E(t):{o t=5

se aplica al circuito. Determine la carga instantanea q(t)
en el capacitor parat > 0siq(0) =0y q'(0) = 0.

Una viga en voladizo uniforme de longitud L esta em-
potrada en su extremo izquierdo (x = 0) y libre en su
extremo derecho. Encuentre la deflexion y(x) si la carga
por unidad de longitud se determina por

W(x)=%[é—x+(x—%>%<x—%>].

Cuando una viga uniforme se apoya mediante una base
elastica, la ecuacion diferencial para su deflexion y(x) es

d%y
dxt
donde k es el médulo de la base y — ky es la fuerza res-

tauradora de la base que actla en direccién opuesta a la
de la carga w(x). Vea la figura 7.R.10. Por conveniencia

El + ky = w(X),

algebraica suponga que la ecuacion diferencial se escribe
como
dty 4, _ W)
ae T YT
donde a = (k/4El)**. Suponga que L = wy a = 1.
Encuentre la deflexion y(x) de una viga que esta apoyada
en una base elastica cuando
a) laviga estd apoyada simplemente en ambos extremos
Yy una carga constante w, se distribuye uniformemente
a lo largo de su longitud,
b) la viga estd empotrada en ambos extremos y w(x) es
una carga concentrada w, aplicada en x = /2.

[Sugerencia: En ambas partes de este problema, use los
elementos 35y 36 de la tabla de transformadas de Laplace
del apéndice I11].

w(x)
bl
N

base elasti
y

FIGURA 7.R.10 Vigasobre la base elastica del problema 44.

WI‘—

ne

=

Ica

45. a) Suponga que dos péndulos idénticos estan acoplados

por medio de un resorte con k constante. Véase la fi-
gura 7.R.11. Bajo las mismas suposiciones hechas en el
analisis anterior al ejemplo 3 de la seccién 7.6, se puede
demostrar que cuando los angulos de desplazamiento
6,(t) y 0,(t) son pequerios, el sistema de ecuaciones di-
ferenciales lineales que describen el movimiento es

k
07 + D6 =~ (6, - 6)

|

g k

|_92 = 5(91 — 0,).
Utilice la transformada de Laplace para resolver el
sistema cuando 6,(0) =60, 6,/(0) = 0, 6,(0) = ¢,
0_2’(0)_= 0, donde 6,y ¢, son constantes. Por conve-
niencia, sea w? = g/I, K = k/m.

b) Use lasolucion del inciso a) para analizar el movimiento
de los péndulos acoplados en el caso especial cuando

05 +

las condiciones iniciales son 6,(0) = 6,, 6/(0) = 0,
0,(0) = 0, 2(O) 0. Cuando las condiciones iniciales
son 0,(0) = 6,,6,(0) = 0,6,(0) = —6,,6,(0) =

FIGURA 7.R.11 Péndulos acoplados del problema 45.
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8.1 Teoria preliminar: Sistemas lineales
8.2 Sistemas lineales homogéneos
8.2.1 Eigenvalores reales distintos
8.2.2 Eigenvalores repetidos
8.2.3 Eigenvalores complejos
8.3 Sistemas lineales no homogéneos
8.3.1 Coeficientes indeterminados
8.3.2 Variacién de parametros
8.4 Matriz exponencial
REPASO DEL CAPITULO 8
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/

G

En las secciones 3.3, 4.8 y 7.6 tratamos con sistemas de ecuaciones diferenciales y
pudimos resolver algunos de estos sistemas mediante eliminacion sistematica o con
transformada de Laplace. En este capitulo nos vamos a dedicar sélo a sistemas de
ecuaciones lineales diferenciales de primer orden. Aunque la mayor parte de los
sistemas que se consideran se podrian resolver usando eliminacion o transformada
de Laplace, vamos a desarrollar una teoria general para estos tipos de sistemas y en
el caso de sistemas con coeficientes constantes, un método de solucién que utiliza
algunos conceptos basicos del algebra de matrices. Veremos que esta teoria general
y el procedimiento de solucidon son similares a los de las ecuaciones de calculo
diferencial de orden superior lineales consideradas en el capitulo 4. Este material es
fundamental para analizar ecuaciones no lineales de primer orden.
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8.1 TEORIA PRELIMINAR: SISTEMAS LINEALES

REPASO DE MATERIAL

e En este capitulo se usara la notacion matricial y sus propiedades se usaran con mucha frecuencia
a lo largo del mismo. Es indispensable que repase el apéndice Il o un texto de algebra lineal si no
esta familiarizado con estos conceptos.

INTRODUCCION  Recuerde que en la seccion 4.8 se ilustrd cémo resolver sistemas de n ecuacio-
nes diferenciales lineales con n incégnitas de la forma

Puu(D)X + Pp(D)X, + + + = + Py(D)x, = by(t)
Pu(D)x + P.zz(D)Xz + 0+ Pyp(D)X, = lf’z(t) N
Pu(D)X; + P(D)X, + -+ + Pr(D)x, = by(0)

donde las P, eran polinomios de diferentes grados en el operador diferencial D. Este capitulo se dedica al es-
tudio de sistemas de ED de primer orden que son casos especiales de sistemas que tienen la forma normal

dx

d_tl = 0t X% - - %)

dx

d_t2 = gZ(tixl!XZI A ,Xn) (2)
oy

E = gn(t1X11X2! o ,Xn)

Un sistema tal como (2) de n ecuaciones diferenciales de primer orden se llama sistema de primer orden.

SISTEMAS LINEALES Cuando cada una de las funciones g, g,, ..., g, en (2) es

lineal en las variables dependientes X, X,, . . ., X, se obtiene la forma normal de un
sistema de ecuaciones lineales de primer orden.
dx,
o = (% + apt)X, + -+ )%, + fit)
dx,
o = an(t)x + antxe + -+ 4 ap(t)x, + fi(t) 3)
dx,

- 0%+ 8p(x - A% + (D).

Nos referimos a un sistema de la forma dada en (3) simplemente como un sistema
lineal. Se supone que los coeficientes a, asi como las funciones f, son continuas en un
intervalo comun I. Cuando f(t) = 0,i = 1,2,..., n, se dice que el sistema lineal (3)
es homogéneo; de otro modo es no homogéneo.

FORMA MATRICIAL DE UN SISTEMA LINEAL Si X, A(t), y F(t) denotan ma-
trices respectivas
% (t) an(t) ap) - &) fi()
X(t) an(t) ant) - - - &) fo(1)
X = y A(t) = , F(t) = ,

%(t) au(t) ap(® - - an() fa(®)
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entonces el sistema de ecuaciones diferenciales lineales de primer orden (3) se puede
escribir como

Xy a() ap) - - )| (% fy(t)
d | % () apt) - - ayp)||* fo(t)
al 7| NI
X au() ap® - an®f % fa()
o simplemente X' =AX +F. (4)

Si el sistema es homogéneo, su forma matricial es entonces
X' = AX, ()

I EJEMPLO 1 Sistema escrito en notacion matricial

. X . . .
a) SixX = < ) entonces la forma matricial del sistema homogéneo
y

dx

— +

dt 3+ 4y <3 4)
es X' = X.

Y _ g v >

dt y

X
b) Si X = (y , entonces la forma matricial del sistema homogéneo
z

dx

a=6x+ y+z+ t

q 6 1 1 t
d—)t/=8x+7y—z+10t es X' =[8 7 —1|x+|10t|.

dz 2 9 -1 6t
a=2x+9y—z+ 6t -

DEFINICION 8.1.1 Vector solucion

Un vector solucién en un intervalo | es cualquier matriz columna

X (t)
Xo(t)

X =
()
cuyos elementos son funciones derivables que satisfacen el sistema (4) en el
intervalo.

Un vector solucion de (4) es, por supuesto, equivalente a n ecuaciones escalares X, =
b,(0), %, = ¢>2(_t), Ce X = ¢>_n(t) y se pued,e |_nterpretar desde el punto de V|§ta geométrico
cOmo un conjunto de ecuaciones paramétricas de una curva en el espacio. En el caso
importantg n= 2, Ias,ecuaciones X, = d)l_(t), X, = ¢,(t) representan una curva en el plano
X,X,. Es practica comdn llamar trayectoria a una curva en el plano y llamar plano fase al
plano x x,. Regresaremos a estos conceptos y se ilustraran en la siguiente seccion.
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I EJEMPLO 2 Comprobacion de soluciones

Compruebe que en el intervalo (—o, «)

1 e 3 3¢kt
o )

son soluciones de X' = (é §>X (6)
) —2e2 18
SOLUCION De Xj; = < 2e2t> y X, = <30e6t> vemos que
1 3\ e2 g2 —3e 2 —2e2 ,
AX, = <5 3><—e2t> B <5e2t - 3e2t> - ( 2e2‘> =%
1 3)\/3¢e" 36’ + 15e6t> (18e6t>
AX, = = = = X;. n
Y ? <5 3><5e6‘> <15e6t + 15¢ 30€ ?

Gran parte de la teoria de sistemas de n ecuaciones diferenciales de primer orden
es similar a la de las ecuaciones diferenciales de n—ésimo orden.

PROBLEMA CON VALORES INICIALES Seat, que denota un punto en un inter-

valoly
Xa(to) Y1
%(to) Y2
X(to) = : y Xo = l
Xn(to) Yn
donde lasy, i = 1,2,..., nson las constantes dadas. Entonces el problema

Resolver: X' = A(t)X + F(1)
Sujetoa: X(ty) = X,
es un problema con valores iniciales en el intervalo.

U]

TEOREMA 8.1.1 Existencia de una solucién Unica

Sean los elementos de las matrices A(t) y F(t) funciones continuas en un inter-
valo comdn | que contiene al punto t. Entonces existe una solucion Unica del
problema con valores iniciales (7) en el intervalo.

SISTEMAS HOMOGENEOS  En las siguientes definiciones y teoremas se conside-
ran solo sistemas homogeneos. Sin afirmarlo, siempre se supondra que las a, y las f,
son funciones continuas de t en algun intervalo comadn I.

PRINCIPIO DE SUPERPOSICION El siguiente resultado es un principio de super-
posicién para soluciones de sistemas lineales.

TEOREMA 8.1.2 Principio de superposicion

Sea X,, X,, ..., X, un conjunto de vectores solucion del sistema homogéneo
(5) en un intervalo I. Entonces la combinacion lineal

X =X, + X, + - - + Xy,

dondelasc,i=1,2,..., kson constantes arbitrarias, es también una solucion
en el intervalo.
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Se deduce del teorema 8.1.2 que un multiplo constante de cualquier vector solu-
cion de un sistema homogeéneo de ecuaciones diferenciales lineales de primer orden es
también una solucidn.

I EJEMPLO 3 Usando el principio de superposicion

Deberia practicar comprobando que los dos vectores

cost 0
X, =|—3cost+zsent| y X,=|¢€
—cost —sent 0
son soluciones del sistema
10 1
X=( 11 0[X. (8)
-2 0 -1

Por el principio de superposicion la combinacion lineal

cost 0
X =X, + X, = ¢ —3cost + 3sent| + c,| €
—cost — sent 0
es otra solucion del sistema. [ |

DEPENDENCIA LINEAL E INDEPENDENCIA LINEAL Estamos interesados
principalmente en soluciones linealmente independientes del sistema homogéneo (5).

| DEFINICION 8.1.2 Dependencia/independencia lineal

Sea X, X, ..., X, un conjunto de vectores solucion del sistema homogéneo
(5) en un intervalo |. Se dice que el conjunto es linealmente dependiente en el

intervalo si existen constantes ¢, c,, ..., C, no todas cero, tales que

01X1+CZX2+"'+Cka=0

para toda t en el intervalo. Si el conjunto de vectores no es linealmente depen-
diente en el intervalo, se dice que es linealmente independiente.

El caso cuando k = 2 debe ser claro; dos vectores solucion X, y X, son linealmente
dependientes si uno es un maltiplo constante del otro y a la inversa. Para k > 2 un
conjunto de vectores solucidn es linealmente dependiente si se puede expresar por lo
menos un vector solucion como una combinacion lineal de los otros vectores.

WRONSKIANO En la consideracidn anterior de la teoria de una sola ecuacion dife-
rencial ordinaria se puede introducir el concepto del determinante Wronskiano como
prueba para la independencia lineal. Se expresa el siguiente teorema sin prueba.

TEOREMA 8.1.3 Criterio para las soluciones linealmente independientes

X11 X12 Xin
Xo1 X2 Xon
Sean X = . ] XZ = . Il sy Xn:

Xn1 Xn2 Xnn
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n vectores solucion del sistema homogéneo (5) en un intervalo |. Entonces el

conjunto de vectores solucion es linealmente independiente en | si y s6lo si

el Wronskiano
X1 X2 -0 Xqp

WXy, Xy, o X)) = | 2 #0 ©)

X1 X2 -« Xin

para toda t en el intervalo.

Se puede demostrar que si X, X, ..., X_son vectores solucion de (5), entonces

paratodaten|yasea W(X, X,,..., X)#00WX, X, ..., X)=0.Por tanto, si
se puede demostrar que W # 0 para alguna t; en |, entonces W # 0 para toda t y, por
tanto, las soluciones son linealmente independientes en el intervalo.

Observe que, a diferencia de la definicion de Wronskiano en la seccion 4, aqui la
definicion del determinante (9) no implica derivacion.

I EJEMPLO 4 Soluciones linealmente independientes

1 3
1>e2t y X, = <5>e6t son soluciones del

sistema (6). Es evidente que Xy X, son linealmente independientes en el intervalo
(—o0, ) puesto que ningdn vector es un multiplo constante del otro. Ademas, se tiene

En el ejemplo 2 vimos que X; = (_

efzt 3e6t

P 8e"+0

W(Xy, X3) = ‘_

para todos los valores reales de t. ]

DEFINICION 8.1.3 Conjunto fundamental de soluciones

Cualquier conjunto X, X,, ..., X de n vectores solucion linealmente inde-
pendientes del sistema homogéneo (5) en un intervalo | se dice que es un con-
junto fundamental de soluciones en el intervalo.

TEOREMA 8.1.4 Existencia de un conjunto fundamental

Existe un conjunto fundamental de soluciones para el sistema homogéneo (5)
en un intervalo I.

Los dos teoremas siguientes son equivalentes a los teoremas 4.1.5 y 4.1.6 para
sistemas lineales.

| TEOREMA 8.1.5 Solucién general, sistemas homogéneos

Sea X, X,, ..., X_un conjunto fundamental de soluciones del sistema ho-
mogéneo (5) en un intervalo |. Entonces la solucidn general del sistema en el
intervalo es

X201X1+C2X2+"'+Cnxn,

dondelasc,i=1,2,...,nson constantes arbitrarias.
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I EJEMPLO 5 Solucion general del sistema (6)

1 3
Del ejemplo 2 sabemos que X; = (_1)e‘2t y X, = <5>th son soluciones lineal-

mente independientes de (6) en (—2°, ). Por tanto X, y X, son un conjunto fundamental
de soluciones en el intervalo. La solucidn general del sistema en el intervalo entonces es

X =X, + X, = cl<_i>e2t + q(ﬁ)e‘“. (10) m

I EJEMPLO 6 Solucion general del sistema (8)

Los vectores

cost 0 sent
X, =|—3cost+3sent|, X,=|[1]|¢, X;=|—3sent— jcost
—cost — sent 0 —sent + cost

son soluciones del sistema (8) en el ejemplo 3 (vea el problema 16 en los ejercicios
8.1). Ahora,

cost 0 sent
W(Xy, Xz, Xs) = |—3cost + 3sent € —gsent — icost| = € # 0
—cost —sent 0  —sent + cost

para todos los valores reales de t. Se concluye que X, X, y X, forman un conjunto
fundamental de soluciones en (—, ). Por lo que la solucién general del sistema en el

intervalo es la combinacion lineal X = ¢ X, + ¢,X, + ¢,X,; es decir,
cost 0 sent
X = ¢ —icost + Isent| + c,[ 1 |& + c;| —3sent — icost|. n
—cost — sent 0 —sent + cos't

SISTEMAS NO HOMOGENEOS  Para sistemas no homogéneos una solucién par-
ticular X, en el intervalo | es cualquier vector libre de parametros arbitrarios, cuyos
elementos son funciones que satisfacen el sistema (4).

TEOREMA 8.1.6 Solucion general: sistemas no homogéneos

Sea X una solucion dada del sistema no homogéneo (4) en un intervalo | y
sea

XC:C1X1+CQX2+ AR +Can
que denota la solucién general en el mismo intervalo del sistema homogéneo

asociado (5). Entonces la solucién general del sistema no homogéneo en el
intervalo es

X =X, + X,

La solucion general X_del sistema homogéneo relacionado (5) se llama
funcion complementaria del sistema no homogéneo (4).
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I EJEMPLO 7 Solucién general: sistema no homogéneo

3t —4
-5t +6

1 3 12t — 11
x':<5 3>x+< 4 ) (11)

en el intervalo (—o, «). (Compruebe esto.) La funcién complementaria de (11) en el

El vector X, = ( ) es una solucion particular del sistema no homogéneo

mismo intervalo o la solucion general de X' = <; g)X , como vimos en (10) del

1 3
ejemplo 5 que X¢ = Cl<_1> e+ c2<5>e6t_ Por tanto, por el teorema 8.1.6

1 3 3t —4
X=Xc+ X, = cl<_1)e2t + 02<5>e‘5t + (—5t N 6)

es la solucion general de (11) en (—oo, =), ]

EJE RCICIOS 8.1 Lasrespuestasa los problemas seleccionados con nimero impar comienzan en la pagina RES-13.

En los problemas | a 6 escriba el sistema lineal en forma ma- 7 5 —9 0 8

tricial. 8. X'=[4 1 1|X+|2]|et—|0]e?
dx dx 0 -2 3 1 3

. =3 — =4 -7

1 at 3x — by 2 at X y . - . ;
dy dy d (X B X
pria a - X 0. Y| =| 3 —4 1lly|*+[2]et—|-1]t

-2 5 6/\z 2 1

dx dx

3. —=-3KX+4y—-92 4 —=X—-Y
) ) 0 50 = 0 U0 (o e
Wy NP Cdtly) T\ \y/ s 2+ 1
dt dt
dz dz
Gt 10x + 4y + 3z aGi- Xtz En los problemas 11 a 16, compruebe que el vector X es una

solucion del sistema dado.

dx

S.E—x—y+z+t—1 dx
dy 11. a = 3X — 4y
—=2X+ty—z-3t
d Pt Ap— _ . — —5t
d—f=x+y+z+t2—t+2 dt wo X <2>e

6 d—X=—3x+4y+e‘tsen2t 12 d—X——2 + 5
dy ’
_— = B d 5 t
g = DXt 9zt deteost & osay X=< cos )e‘
4 dt 3cost — sent
—=y+t6z—¢e"
G ytez-e

. . . / -1 711 L P
En los problemas 7 a 10, reescriba el sistema dado sin el uso 13. X' = 1 1 X, X = 5 e
de matrices.

4 2 1
PREHAE NEFRCAT
-1 3 -1 14. X _1OX,X 3é+ _4té
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1 2 1 1 , (2 1 -5\ (1
15. X' = 6 -1 0|x; X=| 6 22'x_<1 —1>X+<2>’ Xp_<3>
-1 -2 -1 —-13 5 1 1 1 1
10 1 sent 2 X':<3 4>X_<7)é; Xp:(l)é+<—1>té
16. X'=[ 1 1 0|X; X =|—3sent— 3cost
-2 0 -1 —sent + cost 1 2 3 -1 sen 3t
24, X' =(—-4 2 0|X + 4lsend; X, = 0
En los problemas 17 a 20, los vectores dados son soluciones 6 1 0 3 cos 3t

de un sistema X’ = AX. Determine si los vectores forman un
conjunto fundamental en (—o, =),

1 1
17. X, = <1>e—2t, X, = (_1>e—6t

25. Demuestre que la solucion general de

0 6 0
X'"=[1 0 1|X
1 2 8
L Xy = €, X,= e+ tef 110
18 % (—1> ’ <6> <—8>
1 1 1 en el intervalo (—oo, ) es
19. Xy =|-2|+t|2], X,=|-2],
4 2 4 6 -3 2
3 2 X=c|—-1let+c,| 1]e?+cll|et
Xs=|—6|+t|4 - ! !
12 4
26. Demuestre que la solucion general de
1 1 2
20. Xl = 6 y X2: -2 ei4t, X3: 3 e3t -1 -1 1 4 -1
- - - X' = X+ )2+ +
13 1 2 (—1 1) (1) (—6>t ( 5)

En los problemas 21 a 24 compruebe que el vector X, es una

o - . en el intervalo (—<°, ) es
solucion particular del sistema dado.

1 1
X = V2t -Vt
21. %{ =X+4y+2t—7 C1<—1 - ﬁ)e Cz<—1 + \@)e
o (e ) (o) (3 ()
— = 3x + 2y — 4t — 18; = + + + + .
G- Ty a8 Xo={ e (] o/t 2 o

8.2 SISTEMAS LINEALES HOMOGENEOS

REPASO DE MATERIAL
e Seccion I1.3 del apéndice Il

INTRODUCCION  Vimos en el ejemplo 5 de la seccion 8.1 que la solucion general del sistema

13
: X' = X
homogéneo (5 3> es

1 3
X = C]_Xl + szz = C]_(_l)e_Zt + Cz<5>e6t

Ya que los vectores solucion X, y X, tienen la forma

_ kl it .
Xi—<k2>e“, i=1,2,
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donde k;, k,, A, y A, son constantes, nos inquieta preguntar si siempre es posible hallar una solucion
de la forma

Ky
ko
X=|-|et=Ket 1)
K
para la solucion del sistema lineal homogéneo general de primer orden
X' = AX, )

donde A es una matriz n X n de constantes.

EIGENVALORES Y EIGENVECTORES Si (1) es un vector solucion del sistema
homogéneo lineal (2), entonces X' = Kae, por lo que el sistema se convierte en
KaeM = AKe*. Después de dividir entre ey reacomodando, obtenemos AK = AK o
AK — AK = 0. Ya que K = IK, la Gltima ecuacion es igual a

(A - ADK =0. (3)
La ecuacién matricial (3) es equivalente a las ecuaciones algebraicas simultaneas
(a1 — A)kg + apk, + -+ ayk, =0
Ak + (B —A)ky + - + Ak, =0
anky + aky + 1+ + (@ — Ak, = 0.

Por lo que para encontrar soluciones X de (2), necesitamos primero encontrar una
solucién no trivial del sistema anterior; en otras palabras, debemos encontrar un vector
no trivial K que satisfaga a (3). Pero para que (3) tenga soluciones que no sean la so-
lucion obviak =k, = - - - = k = 0, se debe tener
det(A — Al) = 0.

Esta ecuacion polinomial en A se llama ecuacion caracteristica de la matriz A. Sus
soluciones son los eigenvalores de A. Una solucion K # 0 de (3) correspondiente a
un eigenvalor A se llama eigenvector de A. Entonces una solucion del sistema homo-
géneo (2) es X = KeM,

En el siguiente analisis se examinan tres casos: eigenvalores reales y distintos (es
decir, los eigenvalores no son iguales), eigenvalores repetidos y, por ultimo, eigenva-
lores complejos.

8.2.1 EIGENVALORES REALES DISTINTOS

Cuando la matriz A n X n tiene n eigenvalores reales y distintos A, A,, ..., A_en-
tonces siempre se puede encontrar un conjunto de n eigenvectores linealmente inde-
pendientes K, K, ..., Ky

Xl = Kle)\lt, X2 = Kze)\zt, ey Xn = I‘(ne)‘”t

es un conjunto fundamental de soluciones de (2) en el intervalo (—oe, «).

TEOREMA 8.2.1 Solucioén general: Sistemas homogéneos

Sean A, A, ..., A, neigenvalores reales y distintos de la matriz de coeficientes
A del sistema homogéneo (2) y sean K, K, ..., K_los eigenvectores correspon-
dientes. Entonces la solucion general de (2) en el intervalo (—eo, ) esta dada por

X = KMt + gKyetet + - - -+ ¢ K et
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¢) trayectoria definida por
x=e '+ 3e" y=—e'+ 2e"
en el plano fase

FIGURA 8.2.1 Una solucién particular
de (5) produce tres curvas diferentes en
tres planos diferentes.
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I EJEMPLO 1 Eigenvalores distintos

dx

Resuelva P 2x + 3y
dy_ 2x + ¥
dt Y-

SOLUCION Primero determine los eigenvalores y eigenvectores de la matriz de
coeficientes.
De la ecuacion caracteristica

2—A 3
2 1-2
vemos que los eigenvaloresson A, = —1y A, = 4.
Ahora para A, = —1, (3) es equivalente a
3k, + 3k, =0
2k, + 2k, = 0.

det(A — Al) =

’=)\2—3x\—4=()\+1)()\—4)=0

Por lo que k, = — k,. Cuando k, = —1, el eigenvector correspondiente es

-2

Para A, = 4 tenemos —2k; + 3k, = 0
2k1 - 3k2 = 0

por lo que k; = %kz; por tanto con k, = 2 el eigenvector correspondiente es

- (3)

Puesto que la matriz de coeficientes A es una matriz 2 X 2 y como hemos encontrado
dos soluciones linealmente independientes de (4),

Xl = (_i)et Yy X2 = (2)8‘“,

Se concluye que la solucion general del sistema es

1
X = Clxl + C2X2 = C]_(_:L)e_t + C2<2>e4t (5) [ |

DIAGRAMA DE FASE Debe considerar que escribir una solucién de un sistema de
ecuaciones en términos de matrices es simplemente una alternativa al método que se
empled en la seccion 4.8, es decir, enumerar cada una de las funciones y la relacion
entre las constantes. Si sumamos los vectores en el lado derecho de (5) y después igua-
lamos las entradas con las entradas correspondientes en el vector en el lado izquierdo,
se obtiene la expresion familiar

X = ce ' + 3c,et, y = —c,et + 2c,eM.

Como se indic6 en la seccion 8.1, se pueden interpretar estas ecuaciones como ecuacio-
nes paramétricas de curvas en el plano xy o plano fase. Cada curva, que corresponde
a elecciones especificas de c, y c,, se llama trayectoria. Para la eleccion de constantes
¢, = ¢,= 1en lasolucion (5) vemos en la figura 8.2.1, la grafica de x(t) en el plano
tx, la gréfica de y(t) en el plano ty y la trayectoria que consiste en los puntos (x(t), y(t))
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7

.

7

X3

Xy

FIGURA 8.2.2 Un diagrama de fase

del sistema (4).

en el plano fase. Al conjunto de trayectorias representativas en el plano fase, como se
muestra en la figura 8.2.2 se le llama diagrama fase para un sistema lineal dado. Lo
que parecen dos rectas rojas en la figura 8.2.2 son en realidad cuatro semirrectas defi-
nidas paramétricamente en el primero, segundo, tercero y cuarto cuadrantes con las so-
luciones X,, —X,, =X,y X,, respectivamente. Por ejemplo, las ecuaciones cartesianas
y = %x, x> 0yy= —x x>0, delas semirrectas en el primer y cuarto cuadrantes se
obtuvieron eliminando el parametro t en las soluciones x = 3e*,y = 2ety x = e,y =
—e!, respectivamente. Ademas, cada eigenvector se puede visualizar como un vector
bidimensional que se encuentra a lo largo de una de estas semirrectas. El eigenvector
K, = (2) se encuentra junto con y = %x en el primer cuadrante y K; = (_1)
se encuentra junto con y = —x en el cuarto cuadrante. Cada vector comienza en el
origen; K, termina en el punto (2, 3) y K, terminaen (1, —1).

El origen no es s6lo una solucion constante x = 0, y = 0 de todo sistema lineal
homogéneo 2 X 2, X" = AX, sino también es un punto importante en el estudio cua-
litativo de dichos sistemas. Si pensamos en términos fisicos, las puntas de flecha de
cada trayectoria en el tiempo t se mueven conforme aumenta el tiempo. Si imaginamos
que el tiempo va de — a o, entonces examinando la solucion x = ce™ + 3c,e",
y = —ce'+ 2ce" c # 0, c, # 0 muestra que una trayectoria o particula en mo-
vimiento “comienza” asintdtica a una de las semirrectas definidas por X, 0 —X (ya
que €* es despreciable para t — —) y “termina” asint6tica a una de las semirrectas
definidas por X,y — X, (ya que " es despreciable para t — ).

Observe que la figura 8.2.2 representa un diagrama de fase que es caracteristico
de todos los sistemas lineales homogéneos 2 X 2 X’ = AX con eigenvalores reales de
signos opuestos. Véase el problema 17 de los ejercicios 8.2. Ademas, los diagramas
de fase en los dos casos cuando los eigenvalores reales y distintos tienen el mismo
signo son caracteristicos de esos sistemas 2 X 2; la Gnica diferencia es que las puntas
de flecha indican que una particula se aleja del origen en cualquier trayectoria cuando
A, Y A, son positivas y se mueve hacia el origen en cualquier trayectoria cuando A, y
A, son negativas. Por lo que al origen se le llama repulsor en el caso A, >0, A, >0
y atractor en el caso A, < 0, A, < 0. Vease el problema 18 en los ejercicios 8.2. El
origen en la figura 8.2.2 no es repulsor ni atractor. La investigacion del caso restante
cuando A = 0 es un eigenvalor de un sistema lineal homogéneo de 2 X 2 se deja como
ejercicio. Véase el problema 49 de los ejercicios 8.2.

I EJEMPLO 2 Eigenvalores distintos

Resuelva
dx_ —4x+ y+ z
dt y
dy
) A + 5y — 6
R A ©®)
dz
— = -3z
at y— oz

SOLUCION Usando los cofactores del tercer rengldn, se encuentra

—4-2 1 1
det A—Al)=| 1 5-1 -1 |=-A+3)A+4A-5)=0,
0 1 -3-2

y asi los eigenvalores son A, = =3, A, = —4y A, = 5.
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Para A, = —3,con la eliminacién de Gauss-Jordan, se obtiene

-11 110 operaciones 10 -1/0
(A+310)=| 1 8 —1|ocnerngons g 1 00
01 oo 00 00

Por tanto k. = k, y k, = 0. La eleccion k, = 1 da un eigenvector y el vector solucion
correspondiente

1
Kl = O y Xl = 0 e_3t. (7)
1

De igual manera, para A, = —4
01 1|0 operaciones 1 0 -10|0
(A+410)={1 9 —1|o|cnerengonesig 1 1]0
01 1/0 00 010

implica que k; = 10k, y k, = —k,. Al elegir k, = 1, se obtiene un segundo eigenvector
y el vector solucion

10 10
K2 = _1 y X2 = _1 e74t. (8)
1 1

Por Gltimo, cuando A, =5, las matrices aumentadas

-9 1 110 operaciones 1 0 —-1|0
(A+510)=| 1 0 —1jo]|enterenonsio 1 —glo

1 -8I0 0 0 ©0l0
1 1
producen K;=18], X;=|8]¢e 9
1 1

La solucion general de (6) es una combinacion lineal de los vectores solucidon en

(7). @)y (9):

1 10 1
X=c|0]e®+c| —1]e* + c,| 8| [ |
1 1 1

USO DE COMPUTADORAS Los paquetes de software como MATLAB,
Mathematica, Maple y DERIVE, ahorran tiempo en la determinacion de eigenvalores
y eigenvectores de una matriz A.

8.2.2 EIGENVALORES REPETIDOS

Por supuesto, no todos los n eigenvalores A, A,, ..., A de una matriz A de n X n
deben ser distintos, es decir, algunos de los eigenvalores podrian ser repetidos. Por
ejemplo, la ecuacion caracteristica de la matriz de coeficientes en el sistema

,_(3 —18
X —<2 _9>x (10)
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se demuestra facilmente que es (A + 3)> = 0, y por tanto, A, = A, = —3 es una raiz de

multiplicidad dos. Para este valor se encuentra el Gnico eigenvector

3
K, = (1> porloque X, = (i)e3t (11)

es una solucion de (10). Pero como es obvio que tenemos interés en formar la solucion
general del sistema, se necesita continuar con la pregunta de encontrar una segunda
solucion.

En general, si mes un entero positivo y (A — A )™ es un factor de la ecuacion
caracteristica, mientras que (A — A,)™* no es un factor, entonces se dice que A, es un
eigenvalor de multiplicidad m. En los tres ejemplos que se dan a continuacion se
ilustran los casos siguientes:

i)  Paraalgunas matrices A de n X n seria posible encontrar meigenvectores
linealmente independientes K , K, ..., K _, correspondientes a un
eigenvalor A, de multiplicidad m = n. En este caso la solucion general del
sistema contiene la combinacion lineal

c K. eM + oK et + - - + o K M

if)  Sisolo hay un eigenvector propio que corresponde al eingenvalor A, de
multiplicidad m, entonces siempre se pueden encontrar msoluciones
linealmente independientes de la forma

Xy = KyeMt
X, = Koteht + Kyett
: m-1 m-2
Xm= Kmlm emt 4 szme’\1t + 0+ K e,

donde las K”. son vectores columna.

EIGENVALORES DE MULTIPLICIDAD DOS Se comienza por considerar eigenva-
lores de multiplicidad dos. En el primer ejemplo se ilustra una matriz para la que podemos
encontrar dos eigenvectores distintos que corresponden a un doble eigenvalor.

I EJEMPLO 3 Eigenvalores repetidos

1 -2 2
Resuelva X' = | =2 1 —2|X.
2 -2 1

SOLUCION Desarrollando el determinante en la ecuacion caracteristica
1-x -2 2
det(A—-Al)=] -2 1-A2 -2 |=0
2 -2 1-2
se obtiene —(A + 1)*(A —5) =0.Seveque A, = A, = —1y A, =5.
Para A, = —1,con la eliminacién de Gauss-Jordan se obtiene de inmediato
2 =2 210 operaciones 1 -1 0|0
(A+10)=|-2 2 —2fo|cuerendons)g 1 1/0].
2 -2 2|0 0 0 0l0
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El primer renglon de la Gltima matriz indica que k, -k, + k, = 00k =k, - k.. Las
eleccionesk, = 1, k, =0y k, = 1, k, = 1 producen, asuvez, k = 1yk = 0.Porlo
que dos eigenvectores correspondientes a A, = —1 son

1 0
K]_: 1 Yy KZZ 1.
0 1

Puesto que ningun eigenvector es un multiplo constante del otro, se han encontrado
dos soluciones linealmente independientes,

1 0
X, =1let y Xy=[1]e?,
0 1

que corresponden al mismo eigenvalor. Por Gltimo, para A, =5 la reduccion

-4 -2 2|0 operaciones 10 —-1/0
(A+510)=|-2 —4 —2|0|enterengons g 1 1|0
2 =2 —410 0 0 o0lo

implica que k, = Kk, y k, = — k,. Al seleccionar k, = 1, se obtiene k, = 1, k, = —1; por
lo que el tercer eigenvector es

Concluimos que la solucidn general del sistema es

1 0 1
X=clllet+c|l|et +c|—1|et [
0 1 1

La matriz de coeficientes A del ejemplo 3 es un tipo especial de matriz conocida
como matriz simétrica. Se dice que una matriz A de n X n es simétrica si su trans-
puesta AT (donde se intercambian renglones y columnas) es igual que A, es decir, si AT
= A. Se puede demostrar que si la matriz A del sistema X’ = AX es simétrica y tiene
elementos reales, entonces siempre es posible encontrar n eigenvectores linealmente
independientes K, K,,, ..., K,y lasolucion general de ese sistema es como se mues-
traen el teorema 8.2.1. Como se muestra en el ejemplo 3, este resultado se cumple aun
cuando estén repetidos algunos de los eigenvalores.

SEGUNDA SOLUCION Suponga que A, es un valor propio de multiplicidad dos y
que sélo hay un eigenvector asociado con este valor. Se puede encontrar una segunda
solucion de la forma

X, = KteMt + Pelt 12)
ky Py
ko P2

donde K=]. y P=1.1
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y

P
=

FIGURA 8.2.3 Diagrama de fase del
sistema (l0).

Para ver esto sustituya (12) en el sistema X' = AX'y simplifique:
(AK — M K)teMt + (AP — AP — K)eMt = 0.

Puesto que la Gltima ecuacién es valida para todos los valores de t, debemos tener
A-MDK=0 (13)
y (A — MNP =K. (14)

La ecuacién (13) simplemente establece que K debe ser un vector caracteristico de A
asociado con A,. Al resolver (13), se encuentra una solucion X; = Ke*'. Para encon-
trar la segunda solucion X,, solo se necesita resolver el sistema adicional (14) para
obtener el vector P.

I EJEMPLO 4 Eigenvalores repetidos

Encuentre la solucion general del sistema dado en (10).

. ., 3
SOLUCION De (11) se sabe que A, = —3 'y que una solucion es X; = <1>e3‘.

Identificando K = <3> y P= <p1 . encontramos de (14) que ahora debemos re-
solver 1 P2

6p, — 18p, = 3
A+30P=K o Pr = 25,
2p, — 6p, = 1.
Puesto que resulta obvio que este sistema es equivalente a una ecuacion, se tiene un
numer? infinito de eleccione_s de P.Y P, Por_ejemplo, al elegir p, = 1 se encuentra que
P, = 5. Sin embargo, por simplicidad elegimos p, =  por lo que p, = 0. Entonces
1 3 1
P = (8) Asi de (12) se encuentra que X, = <1>te3‘ + <6> e 3. Lasolucioén gene-

ral de (10)es X = ¢ X, + ¢, X,, 0

27 2!

e s

Al asignar diversos valores a ¢, y c, en la solucion del ejemplo 4, se pueden
trazar las trayectorias del sistema en (10). En la figura 8.2.3 se presenta un diagrama
fase de (10). Las soluciones X, y —X, determinan dos semirrectas y = %x, x>0
yy= %x, X < 0 respectivamente, mostradas en rojo en la figura. Debido a que el
Unico eigenvalor es negativo y e — 0 conforme t — o en cada trayectoria, se
tiene (x(t), y(t)) — (0, 0) conforme t — o, Esta es la razon por la que las puntas
de las flechas de la figura 8.2.3 indican que una particula en cualquier trayectoria
se mueve hacia el origen conforme aumenta el tiempo y la razon de que en este
caso el origen sea un atractor. Ademas, una particula en movimiento o trayectoria
x = 3c,e + ¢,(3te ¥ + 2e7¥), y = ce ¥ + e ¥, ¢, # 0 tiende a (0, 0) tangen-
cialmente a una de las semirrectas conforme t — oo. En contraste, cuando el eigenvalor
repetido es positivo, la situacion se invierte y el origen es un repulsor. Véase el pro-
blema 21 de los ejercicios 8.2. Similar a la figura 8.2.2, la figura 8.2.3 es caracteristica
de todos los sistemas lineales homogéneos X' = AX, 2 X 2 que tienen dos eigenvalo-
res negativos repetidos. VVéase el problema 32 en los ejercicios 8.2.

EIGENVALOR DE MULTIPLICIDAD TRES Cuando la matriz de coeficientes A
tiene solo un eigenvector asociado con un eigenvalor A, de multiplicidad tres, podemos
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encontrar una segunda solucion de la forma (12) y una tercera solucién de la forma

2
X5 = K %eﬂﬂ + PteM! + QeM, (15)
Ky P1 (of]
ks P2 02
donde K=|.], P=|.| y o=|. |
Kn Pn ol

Al sustituir (15) en el sistema X’ = AX, se encuentra que los vectores columna K, P
y Q deben satisfacer

(A— DK =0 (16)
(A — NP =K (17)
y (A—=A)Q=P. (18)

Por supuesto, las soluciones (16) y (17) se pueden usar para formar las soluciones X, y X..

I EJEMPLO 5 Eigenvalores repetidos

2 1 6
Resuelva X' =0 2 5]|X.
0 0 2

SOLUCION  Laecuacion caracteristica (A — 2)° = 0 demuestra que A, = 2esuneigenva-
lor de multiplicidad tres. Al resolver (A — 21)K = 0, se encuentra el Gnico eigenvector

1

A continuacion se resuelven primero el sistema (A — 21)P = Ky después el sistema
(A — 21)Q = Py se encuentra que

0 0
P={1] y Q=[-¢}
0 :

Usando (12) y (15), vemos que la solucion general del sistema es

1 1 0 1\ e 0 0
X=cl0|le®+c)||Oftex+|1]|e®|+ c, o§e2t+ 1)t + | -L|e?| m
0 0 0 0 0 :

I COMENTARIOS

Cuando un eigenvalor A, tiene multiplicidad m, se pueden determinar m eigen-
vectores linealmente independientes o el nimero de eigenvectores correspon-
dientes es menor que m. Por tanto, los dos casos listados en la pagina 316 no
son todas las posibilidades bajo las que puede ocurrir un eigenvalor repetido.
Puede suceder, por ejemplo, que una matriz de 5 X 5 tenga un eigenvalor de
multiplicidad cinco y existan tres eigenvectores correspondientes linealmente
independientes. VVéanse los problemas 31 y 50 de los ejercicios 8.2.
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8.2.3 EIGENVALORES COMPLEJOS

SiA,=a+ BiyA,=a—Bi,B>0,i>= —1soneigenvalores complejos de la matriz
de coeficientes A, entonces se puede esperar de hecho que sus eigenvectores corres-
pondientes también tengan entradas complejas.*

Por ejemplo, la ecuacion caracteristica del sistema

d
d—)t(=6x—y
dy (19)
2 —bx+4
a - Y
6 — -1
es det(A—)\I)=‘ 5)‘ 4_/\‘:)\2—10A+29=0.

De la formula cuadratica se encuentra A, =5 + 2i, A, = 5 — 2i.
Ahora para A, = 5 + 2i se debe resolver

(1 - 2i)k — k=0

Puesto que k, = (1 — 2i)k,"la eleccion k, = 1 da el siguiente eigenvector y el vector
solucion correspondiente:

1 1 .
= = 5+2i)t
K (1 — 2i>’ ! (1 — 2i>e( '

De manera similar, para A, = 5 — 2i encontramos

1 1 .
= = 5-2i)t
Ka (1 + 2i>’ X2 <1 + 2i>e( '

Podemos comprobar por medio del Wronskiano que estos vectores solucion son li-
nealmente independientes y por tanto la solucion general de (19) es

1 : 1 .
X = Cl<1 - 2i>e(5+2|)t + Cz<1 . 2i>e(52|)t_ (20)

Observe que las entradas en K, correspondientes a A, son los conjugados de las
entradas en K correspondientes a A,. El conjugado de A, es, por supuesto, A,. Esto se

escribe como A, = Xl y Ky, = Kl. Hemos ilustrado el siguiente resultado general.

TEOREMA 8.2.2 Soluciones correspondientes a un eigenvalor complejo

Sea A una matriz de coeficientes que tiene entradas reales del sistema homogé-
neo (2) y sea K, un eigenvector correspondiente al eigenvalor complejo A, =
a + Bi, a'y Breales. Entonces

K 1e/\ it y Rléﬁ

son soluciones de (2).

“Cuando la ecuacion caracteristica tiene coeficientes reales, los eigenvalores complejos siempre aparecen
en pares conjugados.
"Note que la segunda ecuacion es simplemente (1 + 2i) veces la primera.
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FIGURA 8.2.4 Un diagrama de fase
del sistema (19).
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Es deseable y relativamente fécil reescribir una solucién tal como (20) en términos
de funciones reales. Con este fin primero usamos la férmula de Euler para escribir

b2t = P = eM(cos 2t + isen )
b2t = ePlg2 = (cos 2t — isen 2t).
Entonces, multiplicando los nimeros complejos, agrupando términos y reemplazando
¢, + ¢, por C y(c, — c)iporC, (20) se convierte en
X = CX; + CX,, (21)

donde Xy = [<1>0052t - ( O)sen Z] et
1 -2

— 0 l t

y X, = [(_2>c032t + <1>sen Z]e5.

Ahora es importante entender que los vectores X, y X, en (21) constituyen un conjunto
linealmente independiente de soluciones reales del sistema original. Estamos justi-
ficados para despreciar la relacion entre C,, C,y c,, ¢, y podemos considerar C,y C,
como totalmente arbitrarias y reales. En otras palabras, la combinacion lineal (21) es
una solucién general alternativa de (19). Ademas, con la forma real dada en (21) pode-
mos obtener un diagrama de fase del sistema dado en (19). A partir de (21) podemos
encontrar que X(t) y y(t) son

x = C,e%cos 2t + C,elsen 2t

y = (C; — 2C,)e™cos 2t + (2C; + Cy)edsen 2.
Al graficar las trayectorias (x(t), y(t)) para diferentes valores de C, y C,, se obtiene el
diagrama de fase de (19) que se muestra en la figura 8.2.4. Ya que la parte real de A,
es 5> 0, et — o conforme t — oo, Es por esto que las puntas de flecha de la figura
8.2.4 apuntan alejandose del origen; una particula en cualquier trayectoria se mueve en
espiral alejandose del origen conforme t — cc. El origen es un repulsor.

El proceso con el que se obtuvieron las soluciones reales en (21) se puede ge-
neralizar. Sea K un eigenvector caracteristico de la matriz de coeficientes A (con
elementos reales) que corresponden al eigenvalor complejo A, = « + iB3. Entonces los
vectores solucion del teorema 8.2.2 se pueden escribir como

K, eMt = K,edeft = K e*(cos Bt + i senpt)

K.elt = K,ete At = K, e(cos Bt — i senp).
Por el principio de superposicion, teorema 8.1.2, los siguientes vectores también son
soluciones:

1 — -1 _ i _
Xl = E(Klel\lt + Klel\lt) = E(Kl + I(]_)ea‘t COSBt - 5(_K1 + ‘(:L)eat %nﬁt
i — _ 1 _
Xo = 5(~Kie" + Kyeht) = o(=Ky + Kyetcos Bt + S(Ky + Kye senpt.

Tanto %(z + Z) = acomo %i (—z + 2) = b sonnlmeros realespara cualquier nimero
complejo z = a + ib. Por tanto, los elementos de los vectores columna %(K1 + Kpy
3i(—K; + K) son niimeros reales. Definir

1 — i —
BIZE(K1+ K) y Bzzz(_Kl"‘ Ko, (22)

conduce al siguiente teorema.
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TEOREMA 8.2.3 Soluciones reales que corresponden a un eigenvalor
complejo

Sea A, = a + i3 un eigenvalor complejo de la matriz de coeficientes A en el
sistema homogéneo (2) y sean B, y B, los vectores columna definidos en (22).

Entonces
X, = [B;cos Bt — B,sengt]et
X, = [B,cos Bt + B, senpt]e (23)

son soluciones linealmente independientes de (2) en (—, ).

Las matrices B, y B, en (22) con frecuencia se denotan por
B.=Re(K) y B;=ImKy (24)

ya que estos vectores son, respectivamente, las partes real e imaginaria del eigenvec-
tor K.. Por ejemplo, (21) se deduce de (23) con

)

8.~ Retky = 1)y Ba=imcy=( 3)

I EJEMPLO 6 Eigenvalores complejos

Resuelva el problema con valores iniciales

2 8 2
X' = X, X(0) = . 25
(2 9x xo=( @)
SOLUCION Primero se obtienen los eigenvalores a partir de
2—-A 8
det(A — Al) = =A+4=0
a-m=fIt 0

los eigenvalores son A, = 2iy A, = A, = —2i. Para A, el sistema
(2—2)k + 8k, = 0
—k +(=2—-2)k, =0
dak = —(2 + 2i)k,. Eligiendo k, = —1, se obtiene

. 1 1 0 '

2 2
BlzRe(Kl):< ) y Bzzlm(K1)=< )
-1 0
Puesto que « = 0, se tiene a partir de (23) que la solucién general del sistema es

[z (o] <[ (s

. <20032t —Zsenz> N (20032t +23en2>
! —cos 2t —sen 2t '

X

(26)
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FIGURA 8.2.5 Un diagrama de fase
del sistema (25).
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Algunas graficas de las curvas o trayectorias definidas por la solucion (26) del sis-
tema se ilustran en el diagrama de fase de la figura 8.2.5. Ahora la condicion inicial

2
X(0) = (_1>, de forma equivalente x(0) = 2 y y(0) = —1 produce el sistema

algebraico 2¢c, + 2c, = 2, — ¢, = —1, cuyasolucidnes ¢, = 1, ¢, = 0. Asi la solucion

2cos2t —2sen2t

para el problema es X = ( ) La trayectoria especifica definida

—Ccos 2t
paramétricamente por la solucién particular x = 2 cos 2t — 2 sen 2t,y = —cos 2tes la
curva en rojo de la figura 8.2.5. Observe que esta curva pasa por (2,—1). ]

I COMENTARIOS

En esta seccion hemos examinado solamente sistemas homogéneos de ecuacio-
nes lineales de primer orden en forma normal X’ = AX. Pero con frecuencia el
modelo matematico de un sistema dinamico fisico es un sistema homogéneo de
segundo orden cuya forma normal es X” = AX. Por ejemplo, el modelo para los
resortes acoplados en (1) de la seccidn 7.6.

MyXT = =KX + k(X — %)
; (27)
MpX5 = —ky(X — Xq),

se puede escribir como MX" = KX,
donde

M = (ml 0 >’ K = <_k1 -k kz)’ y X-= <X1(t)>_
0 m ko —k; Xo(t)
Puesto que M es no singular, se puede resolver X” como X" = AX, donde A =
M~*K. Por lo que (27) es equivalente a

ko k k
m m my,
X" = X.
ﬁ _ﬁ (28)
m, m,

Los métodos de esta seccion se pueden usar para resolver este sistema en dos
formas:

o Primero, el sistema original (27) se puede transformar en un sistema de
primer orden por medio de sustituciones. Si se hace x| = X3 Y Xa = X4,
entonces X3 = Xi y X} = x% por tanto (27) es equivalente a un sistema de
cuatro ED lineales de primer orden.

X1 = X
) 0 0 1 0
X2:X4 0 0 1
k k k
Xé=—<—1+—2>x1+—2x2 o x=|_f_k k4, ,lx (9
m m m m m m
k k k k
Xﬁz_le__zxz = 00
m, m, m, m,

Al encontrar los eigenvalores y los eigenvectores de la matriz de coeficientes
Aen (29), vemos que la solucién de este sistema de primer orden proporciona
el estado completo del sistema fisico, las posiciones de las masas respecto a
las posiciones de equilibrio (x; y X,) asi como también las velocidades de las
masas (X, y x,) en el tiempo t. VVéase el problema 48a en los ejercicios 8.2.
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e Segundo, debido a que (27) describe el movimiento libre no amortiguado,
se puede argumentar que las soluciones de valores reales del sistema de se-
gundo orden (28) tendran la forma

X=Vcosot y X =V senot, (30)
donde V es una matriz columna de constantes. Sustituyendo cualquiera de
las funciones de (30) en X” = AX se obtiene (A + w?l)V = 0. (Comprobar.)
Identificando con (3) de esta seccion se concluye que A = — w? representa
un eigenvalor y V un eigenvector correspondiente de A. Se puede demostrar
que los eigenvalores A, = —w?,i = 1, 2 de A son negativos y por tanto
w; = V—A\; es un ndmero real y representa una frecuencia de vibracion
(circular) (véase (4) de la seccion 7.6). Con superposicion de soluciones, la
solucion general de (28) es entonces

X = ¢V c0s wit + CV senwqt + ¢V, c0s wot + ¢,V Senwst
= (c,C0S wit + CSenw;t)V; + (C53C0S wot + ¢, Senw,t)V,y, 1)

donde V, y V, son, a su vez, eigenvectores reales de A correspondientes a

A YA

1 2
El resultado dado en (31) se generaliza. Si —w?, —w3, ..., —®a son
eigenvalores negativos y distintos y V,, V,, ..., V_ son los eigenvectores

correspondientes reales de la matriz n X n de coeficientes A, entonces el
sistema homogéneo de segundo orden X” = AX tiene la solucion general

n
X =Y (acoswt + b senw;t)V;, (32)
i=1

donde a y b, representan constantes arbitrarias. Vease el problema 48b en
los ejercicios 8.2.

EJE RCICIOS 8.2 Lasrespuestasa los problemas seleccionados con nimero impar comienzan en la pagina RES-13.

8.2.1 EIGENVALORES REALES DISTINTOS -1 1 0
] » ] X'=| 12 11X
En los problemas | a 12 determine la solucién general del sis- 03 -1
tema dado.
dx dx 101
101
W gy 3y Y+ 3y
dt dt -1 -1 0
dx dx 5 11. X' = 2 -2 3|X
. — = —4x+ L—=—=X+
ST Ty ba T Y i3
d 5 d 3
d—y=——x+2y d—y=—x—2y -1 4 2
t 2 t 4 12.x'=| 4 -1 -2|x
5. X' = <10 i’)x 6. X' = <_6 2>x o 0 6
8 -1 31 En los problemas 13 y 14, resuelva el problema con valores
dx iniciales.
7.a—x+y—z 8a—2x—7y o % 0 (3
d d 13. X' = 1 1 X, X(0) = 5
Y_ gy Y _ 5y + 10y + 4z 2
gt gt 114 1
d_Z:y_z d_Z:5y+zz 14. X' =[0 2 0o|X, X(©0) =3
t t 111 0



Tarea para el laboratorio de computacion

En los problemas 15 y 16, use un SAC o software de algebra
lineal como ayuda para determinar la solucion general del sis-
tema dado.

09 21 32
15. X' =107 65 42X
11 17 34
1 O 2 -18 0
0 51 O -1 3
16. X' = 1 2 -3 0 O0fX
0 1 =31 4 0

-28 0 0 15 1

17. a) Utilice software para obtener el diagrama de fase del
sistema en el problema 5. Si es posible, incluya puntas
de flecha como en la figura 8.2.2. También incluya
cuatro semirrectas en el diagrama de fase.

b) Obtenga las ecuaciones cartesianas de cada una de las
cuatro semirrectas del inciso a).

c) Dibuje los eigenvectores en el diagrama de fase del
sistema.

18. Encuentre los diagramas de fase para los sistemas de los pro-
blemas 2 y 4. Para cada sistema determine las trayectorias de
semirrecta e incluya estas rectas en el diagrama de fase.

8.2.2 EIGENVALORES REPETIDOS

8.2 SISTEMAS LINEALES HOMOGENEOS ° 325

En los problemas 29 y 30, resuelva el problema de valores ini-

ciales
. 2 4 (-1
2. X _(_1 G)X, X(O)_( 6)
0 01
30. X'=(0 1 0|X, X(0)=
1 00

31. Demuestre que la matriz de 5 X

1
2
5
5
2100
0
0
2

O O O o

O O oOonN
o

N B O O O

00

tiene un eigenvalor A, de multiplicidad 5. Demuestre que
se pueden determinar tres eigenvectores linealmente in-
dependientes correspondientes a A, .

Tarea para el laboratorio de computacién

32. Determine los diagramas de fase para los sistemas de los
problemas 20 y 21. Para cada sistema determine cual-
quier trayectoria de semirrecta e incluya estas lineas en el
diagrama de fase.

8.2.3 EIGENVALORES COMPLE)JOS

En los problemas 19 a 28 encuentre la solucidn general del sis-
tema.

En los problemas 33 a 44, determine la solucion general del
sistema dado.

dx dx
2oy 2 _ex+
19. at X-—y 20. ot 6Xx + 5y
dy dy
— = Ox — — = —bx +
at 9x — 3y at 5x + 4y
, (-1 3 , (12 -9
21, X' = (_3 5>X 22. X' = < 4 O>X
dx dx
—=3X—-y - — =3X+ 2y +
23. at X—-y—z 24. at X+ 2y + 4z
dy dy
—=X+y- — = +
at X+ty—z at 2X + 2z
dz dz
—=X—-y+ — = + 2y +
at X—y+z at A + 2y + 3z
5 -4 0 1 00
25. X' =11 0 2|X 26. X' =10 3 1|X
0 2 5 0 -1 1
10 0 4 1 0
27. X' =2 2 —-1|X 28. X' =(0 4 1]|X
0 1 0 0 0 4

dx dx
—_— = —_ pe—— +
33. at 6Xx —y 34. at X+y
dy dy _ .
at 5x + 2y at 2X—y
dx dx
—_—= pe—— _|._
35. at bXx +y 36. at 4x + By
dy dy
_— = — R J— +
pm 2x + 3y at 2X + oy
, (4 -5 , 1 -8
37. X' = <5 _4>X 38. X' = <1 _3>X
dx dx
— = — = +vy+
39. at z 40. at 2Xx+y + 2z
dy y
— = — — = +
at z at 3X + 6z
dz dz
- = _— = _4 —
at Y at X3
1 -1 2 4 0 1
41. X' =|—-1 1 0|X 42. X' = 0 6 0|X
-1 01 -4 0 4
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2 5 1 2 4 4 lineales de segundo orden. Suponga soluciones de la
43 X' =|-5 —6 4|X 44 X' =|-1 -2 o0]x forma X = V sen wt y X = V cos wt. Encuentre los
0 0 2 1 0 -2 eigenvalores y eigenvectores de una matriz de 2 X 2.

Como en el inciso a), obtenga (4) de la seccion 7.6.

En los problemas 45 y 46, resuelva el problema con valores Problemas para analizar

iniciales.
49. Resuelva cada uno de los siguientes sistemas.
1 -12 -14 4 1 1 1 1
" _ a) X' = X b) X' = X

45, X' =1 2 =3[X, X() = 6 ) <1 1) ) <_1 _1>

1 -2 -7 Encuentre un diagrama de fase de cada sistema. ;Cual

6 —1 ) es la importancia geométrica de la recta y = —x en cada
46. X' = (5 4>X, X(0) = ( 8) diagrama?

50. Considere la matriz de 5 X 5 dada en el problema 31.
Resuelva el sistema X’ = AX sin la ayuda de métodos
matriciales, pero escriba la solucion general usando nota-

47. Determine los diagramas de fase para los sistemas de los cion matricial. Use la solucin general como base para un
problemas 36, 37y 38. analisis de como se puede resolver el sistema usando mé-

todos matriciales de esta seccion. Lleve a cabo sus ideas.

Tarea para el laboratorio de computacion

48. a) Resuelva (2) de la seccion 7.6 usando el primer método
descrito en los Comentarios (pagina 323), es decir, ex-  51. Obtenga una ecuacion cartesiana de la curva definida pa-

prese (2) de la seccion 7.6 como un sistema de cuatro ramétricamente por la solucién del sistema lineal en el
ecuaciones lineales de primer orden. Use un SAC o ejemplo 6. Identifique la curva que pasa por (2, —1) en la
software de algebra lineal como ayuda para determinar figura 8.2.5. [Sugerencia: Calcule X2, y? y xy.]
los eigenvalores y los eigenvectores de unamatrizde 4 52 Examine sus diagramas de fase del problema 47. ¢En
X 4. Luego aplique las condiciones iniciales a su solu- qué condiciones el diagrama de fase de un sistema lineal
cion general para obtener (4) de la seccion 7.6. homogéneo de 2 X 2 con eigenvalores complejos esta
b) Resuelva (2) de la seccion 7.6 usando el segundo mé- compuesto de una familia de curvas cerradas? ¢De una
todo descrito en los Comentarios, es decir, exprese (2) familia de espirales? ¢En qué condiciones el origen (0, 0)
de la seccién 7.6 como un sistema de dos ecuaciones es un repulsor? ¢ Un atractor?

8.3 SISTEMAS LINEALES NO HOMOGENEOS

REPASO DE MATERIAL

e Seccion 4.4 (Coeficientes indeterminados)
e Seccion 4.6 (Variacion de parametros)

INTRODUCCION  En la seccién 8.1 vimos que la solucion general de un sistema lineal no homo-
géneo X' = AX + F(t) enunintervalo | es X = X_+ X, donde X =c X, +¢c,X,+---+cX esla
funcion complementaria o solucidn general del sistema lineal homogéneo asociado X' = AX'y X,
es cualquier solucién particular del sistema no homogeéneo. En la seccién 8.2 vimos cdmo obtener
X_ cuando la matriz de coeficientes A era una matriz de constantes n X n. En esta seccion considera-
remos dos métodos para obtener X,

Los métodos de coeficientes indeterminados y variacion de pardmetros empleados en el ca-
pitulo 4 para determinar soluciones particulares de EDO lineales no homogéneas, se pueden adaptar
a la solucion de sistemas lineales no homogéneos X’ = AX + F(t). De los dos métodos, variacion
de pardmetros es la técnica mas poderosa. Sin embargo, hay casos en que el método de coeficientes
indeterminados provee un medio rapido para encontrar una solucion particular.

8.3.1 COEFICIENTES INDETERMINADOS

LAS SUPOSICIONES Como en la seccion 4.4, el método de coeficientes indetermi-
nados consiste en hacer una suposicién bien informada acerca de la forma de un vector
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solucién particular X, la suposicion es originada por los tipos de funciones que constitu-
yen los elementos de la matriz columna F(t). No es de sorprender que la versién matricial
de los coeficientes indeterminados sea aplicable a X' = AX + F(t) s6lo cuando los ele-
mentos de A son constantes y los elementos de F(t) son constantes, polinomios, funcio-
nes exponenciales, senos y cosenos o sumas y productos finitos de estas funciones.

I EJEMPLO 1 Coeficientes indeterminados

. -1 2 -8
Resuelva el sistema X' = (_1 1>X + < 3) en (—o, ).

SOLUCION  Primero resolvemos el sistema homogéneo asociado

-1 2
X' = X.
(-1 l)
La ecuacion caracteristica de la matriz de coeficientes A.
-1- 2
det (A — Al) = =AM +1=0,
( ) -1 1- /\‘
produce los eigenvalores complejos A, =iy A, = A = —i.Conlos procedimientos

de la seccion 8.2, se encuentra que

cost + sent cost — sent
Xe =10 + G .
cost —sent

Ahora, puesto que F(t) es un vector constante, se supone un vector solucion particular

a . L L . .
bl . Sustituyendo esta Ultima suposicién en el sistema original e
1

igualando las entradas se tiene que
O = _al + 2b1 - 8
0=-a + b +3

constante Xp =

Al resolver este sistema algebraico se obtiene a, = 14y b, = 11y asi, una solucion
. 14 - . . .
particular X, = <11> . La solucidn general del sistema original de ED en el intervalo

(—o, ») es entonces X = X_+ X,0
N (cost + sent> N (cost - sent) N (14) .
"\ cost %\ _sent 11)°

I EJEMPLO 2 Coeficientes indeterminados

. 6 1 6t
"= + - .
Resuelva el sistema X <4 3>X (—10'[ n 4> en (—o, »)

SOLUCION Se determina que los eigenvalores y los eigenvectores del sistema

. , , 6 1 1 (1
homogeéneo asociado X' = (4 3>X SoNA, =2,A,=7,K, = <_4>, y Ky = (1>

Por tanto la funcion complementaria es

X, = c1<_i)e2t + q(i)e“.
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6 0
Ahora bien, debido a que F(t) se puede escribir como F(t) = (_10>t + <4> se

tratara de encontrar una solucion particular del sistema que tenga la misma forma:
a, ay
X, = t+ .
o (e ()
Sustituyendo esta Ultima suposicion en el sistema dado se obtiene
()= G NG G (gl €
b2 4 3 b2 bl _10 4

De la dltima identidad se obtienen cuatro ecuaciones algebraicas con cuatro incognitas

632+ b2+ 6:0 6a1+ bl_az :O
Resolviendo de forma simultanea las primeras dos ecuaciones se obtiene a, = —2'y

b, = 6. Después, se sustituyen estos valores en las dos Ultimas ecuaciones y se despeja
para a, y b,. Los resultados son a; = —‘7‘, b, = § Por tanto, se tiene que un vector
solucidn particular es

©
I
S
|
DN
=
~—
+
e
~B s

la solucion general del sistema en (—, ) es X = X_+ X, 0

4
— 7
X = cl<_i>é‘ + cz<i)e7t + ( §>t ol [ |

7

I EJEMPLO 3 Formade X,

Determine la forma de un vector solucidn particular X, para el sistema

dx

— =5x+3y—2t+1
a - Xty

dy
—=-Xxty+e'-5+7
aa -~ <Y

SOLUCION Ya que F(t) se puede escribir en términos matriciales como

o= (Do (e 3

una suposicion natural para una solucién particular seria

e
= + + (). ]
%y <b3>e b,)' " \b,



8.3 SISTEMAS LINEALES NO HOMOGENEOS ° 329

I COMENTARIOS

El método de coeficientes indeterminados para sistemas lineales no es tan
directo como parecerian indicar los Gltimos tres ejemplos. En la seccidn
4.4 la forma de una solucion particular y, se predijo con base en el cono-
cimiento previo de la funcién complementaria y. Lo mismo se cumple para
la formacion de X, Pero hay otras dificultades: las reglas que gobiernan la
forma de y, en la seccion 4.4 no conducen a la formacion de X_. Por ejem-
plo, si F(t) es un vector constante como en el ejemplo 1 y A = 0 es un eigen-
valor de multiplicidad uno, entonces X_ contiene un vector constante. Bajo
la regla de multiplicacion de la pagina 146 se trataria cominmente de una
Il

b >t. Esta no es la suposicion apropiada
1

solucion particular de la forma X, = (

. ' a a .
para sistemas lineales, la cual debe ser X, = (b2>t 4= <b1>' De igual manera, en
2 1

el ejemplo 3, si se reemplaza et en F(t) por €t (A = 2 es un eigenvalor), enton-
ces la forma correcta del vector solucion particular es

[ a3 a q
Xp = (m)teﬁ * (m)ea N (b)t ! (m)’

En vez de ahondar en estas dificultades, se vuelve al método de variacion de
parametros.

8.3.2 VARIACION DE PARAMETROS

UNA MATRIZ FUNDAMENTAL Si X, X, ..., X esun conjunto fundamental de
soluciones del sistema homogéneo X' = AX en el intervalo I, entonces su solucion
general en el intervalo es la combinacion lineal X = ¢ X, + ¢, X, +---+¢cX 0

X11 X12 X1n CiXyp + CoXpp ++ + + F CXyqg
Xo1 Xo2 Xon CiXor 1 CoXop + - -+ + CXop

X=¢| - [+ - |+... +c,| - |= . .
Xn1 Xn2 Xnn CiXm T CXp + - ° * + CXmn

La ultima matriz en (1) se reconoce como el producto de una matriz n X ncon una matriz
n X 1. En otras palabras, la solucién general (1) se puede escribir como el producto

X = ®(t)C, @)

donde C es un vector columna de n X 1 constantes arbitrarias ¢, c,, . . ., ¢,y lamatriz

n X n, cuyas columnas consisten en los elementos de los vectores solucion del sistema
X" = AX,

Xi1 X2 " X

Xor X " Xop
o) =] - -,

Xoo X2 "7 Xin

se llama matriz fundamental del sistema en el intervalo.
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En el analisis siguiente se requiere usar dos propiedades de una matriz fundamental:

* Una matriz fundamental ®(t) es no singular.
* Si ®(t) es una matriz fundamental del sistema X’ = AX, entonces

'(t) = AD(). 3)

Un nuevo examen de (9) del teorema 8.1.3 muestra que det ¢(t) es igual al Wrons-
kiano W(X,, X,, ..., X ). Por tanto, la independencia lineal de las columnas de @(t)
en el intervalo | garantiza que det ®(t) # 0 para toda t en el intervalo. Puesto que
®(t) es no singular, el inverso multiplicativo ®@-1(t) existe para todo t en el intervalo.
El resultado dado en (3) se deduce de inmediato del hecho de que cada columna de
(1) es un vector solucion de X' = AX.

VARIACION DE PARAMETROS Anélogamente al procedimiento de la seccién
4.6, nos preguntamos si es posible reemplazar la matriz de constantes C en (2) por una
matriz columna de funciones

uy (t)
U(t)

u@) = - | por lo que X, = ®(t)U(Y) 4)
Un(t)
es una solucion particular del sistema no homogéneo
X' = AX + F(t). (5)
Por la regla del producto la derivada de la Gltima expresién en (4) es
X} = ®OU' () + ' (1)U (6)

Observe que el orden de los productos en (6) es muy importante. Puesto que U(t) es una
matriz columna, los productos U’ (t)®(t) y U(t)®’(t) no estan definidos. Sustituyendo
(4)y (6) en (5), se obtiene

DU’ (t) + P'(HU(L) = AD(H)U(L) + F(1). (7)
Ahora si usa (3) para reemplazar ®’'(t), (7) se convierte en

DUt + ADBU() = ADDBU() + F(t)
0 DOU'(t) = F(). ®)
Multiplicando ambos lados de la ecuacién (8) por ®~1(t), se obtiene

U'(t) = @ Y(t)F() portanto U(t) = f(l)‘l(t)F(t) dt.

Puesto que X = d(t)U(t), se concluye que una solucion particular de (5) es

X, = (t) f O L(t)F(t) dt. )

Para calcular la integral indefinida de la matriz columna ®@~(t)F(t) en (9), se integra
cada entrada. Asi, la solucion general del sistema (5) es X = X_+ Xpo

X = ®()C + D(t) f D L(H)F(t) dt. (10)
Observe que no es necesario usar una constante de integracion en la evaluacion de

[®Y(t)F(t) dt por las mismas razones expresadas en la explicacion de variacion
de pardmetros en la seccion 4.6.
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I EJEMPLO 4 Variacion de parametros

Resuelva el sistema

-3 1 3t
X' = X + 11
5 k() a
en (—o, ).
SOLUCION  Primero resolvemos el sistema homogéneo asociado
-3 1
X' = X. 12
(5 ) 12
la ecuacion caracteristica de la matriz de coeficientes es
-3 - A 1
det(A — Al) = =(A+2)(A+5) =0,
( )‘2 _4_A’< )+ 5)

por lo que los eigenvalores son A, = —2y A, = —5. Con el método usual se encuentra

. . . 1
que los eigenvectores correspondientes a A, y A, son, respectivamente, K; = ( 1) y

1
K, = (_2>. Entonces, los vectores solucién del sistema (11) son

1 - e—zt 1 B e—5t
-0 o (B ()

Las entradas en X a partir de la primera columna de ®(t) y las entradas en X, a partir
de la segunda columna de ®(t). Por tanto

2 2t 12t
36‘2 362
1est  _1.5t)
395 Bé5

,21 1e21
< g -St” gt ( )dt
e 2te? +
e st L)t
€ —2e et — e4t
o2 e — 12 4+ lg
e e ot tesr _ %etst _ %em
St—Z + et
( t— 21 +1 _t>
Por tanto a partir de (10) la solucion de (11) en el intervalo es

_ _ 6y 27 o 1t
X - (e 2 e 5‘><c1> N <5t Z+ile )
T \g2t 9Bt 3y 21 1t
e 2e & st =5 t32€

g2 e bt
() = <e21 _2e5t> y @)=

A partir de (9) obtenemos

X, = ®() | ® f “LR)F(t) dt =

I
(¢
=
VS
[y
~
@D
N
+
/
~—
(0]
9
+
—
glw vllo
~ —
—
|
RS
amm gy
Sk olx
S~————
+
—
NI N
S~———
(0]
|
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PROBLEMA CON VALORES INICIALES La solucion general de (5) en el inter-
valo se puede escribir en una forma alternativa

X = ®(t)C + P(t) f t(I)‘l(s)F(s) ds, (13)
fo

donde ty t, son puntos en el intervalo. Esta tltima forma es Util para resolver (5) sujeta

a una condicion inicial X(t) =

X,, porque los limites de integracion se eligen de tal

forma que la solucion particular sea cero ent = t . Sustituyendo t = t; en (13) se obtiene
X, = ®(t,)C a partir de la que se obtiene C = d~1(t;)X,. Sustituyendo este Ultimo
resultado en (13) se obtiene la siguiente solucién del problema con valores iniciales:

X = dMD (L)X, + B(1) f thrl(s)F(s) ds. (14)

EJERCICIOS 8.3 Lasrespuestasalos problemas seleccionados con niimero impar comienzan en la pagina RES-14.

8.3.1 COEFICIENTES INDETERMINADOS

En los problemas 1 a 8 utilice el método de los coeficientes

indeterminados para resolver el sistema dado.

1. dt—2x+3y—7

d
dy
=-x-2y+5
a Y
dx
2. —=5x+9y+2
at X
dy
Z=-x+11y+6
ac T
2
3 x'=<1 3>x+< 2t>
31 t+5
1 —4 4t + 9¢ft
4. I = +
Y R
4 1 3)
5. - —+
= (s o ()
6. X’=< 5) < sent)
1 —2cost
1 11 1
7. X" =10 2 3|X+|—-1]e"
0 0 5 2
0 0 5 5
8. X"=|0 5 0|X +|-10
5 0 0 40

9. Resuelva X’ = <_; _2>x + (2) sujeta a

X(0) = <_g>.

10.

a) El sistema de ecuaciones diferenciales para las co-
rrientes i.(t) e i,(t) en la red eléctrica que se muestra
en la figura 8.3.1 es

d <i2> _ <—R1/L1 ~R/L, ><i2> . (E/L1>
dt i3 _RI/LZ _(Rl + RZ)/LZ i3 E/LZ
Use el método de los coeficientes indeterminados para

resolver el sistemasiR =2Q, R, =3Q,L, =1h,
L,=1h,E=60V,i,0) =0,¢ei,0) =0.

b) Determine la corriente i, (t).

FIGURA 8.3.1 Red del problema 10.

8.3.2 VARIACION DE PARAMETROS

En los problemas 11 a 30 utilice variacion de parametros para
resolver el sistema dado.

11.

13.

dx
=3x—3y+

at =3x—-3y+4

dy

at =2x—2y—-1

dx

_:2 —

at - XY

dy

- = i +

at 3X — 2y + 4t



2 -1 sen 2t
X = X + !
14 (4 2) <2 cos 2t>ez
0 2 1
X = +
5. X (_1 3)x (_1)é
16 X’-(OZ)X+<2>
"7 \-1 3 g3t
1 8 12
X = +
17, X (1 _1)x (lz)t
1 8 et
X = X +
e R oy
3 2 2et
X = +
o2 el
o x (2 2!
St \—2 -1 1
0 1 sect
X = +
21 X (1 O)X ( ¢ )
1 -1 3
X = +
22. X (1 1>X <3>et
1 1 cost
X = X +
zox = (e (S
24, X' = (2 2>x + <1>e !
' 8 6 3/ t
0 1 0
X = X +
2 ( 1 0) <sec t tan t)
2 Xf—( 0 1>x+< 1)
' 10 cott
1 2
27. X' = ( : )x + (CS >e‘
3 1 sec
28. X' = (1 2>x + <ta t)
S - |
1 1 0
29. X' =11 1 0|X + (—:'2t
0 0 3 tedt
3 -1 -1 0
30. X' =11 1 —1|X+|t
1 -1 1 2¢

En los problemas 31y 32, use (14) para resolver el problema
con valores iniciales.

, (3 -1 4 (1
sox = (2w (15 xo= ()

2 x - ! :1)x+@i) xw=(2)
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33. El sistema de ecuaciones diferenciales para las corrientes
i,(t) e i (t) en la red eléctrica que se muestra en la figura

8.3.2 es
al)=0 ) ()

(R + R)/L,
R,/L,

Utilice variacién de parametros para resolver el sis-
R=3Q, L =1h,
0,ei,(0) =0.

tema si R =8,
E(t) = 100sent V,i (0) =

L,=1h,

FIGURA 8.3.2 Red del problema 33.

Problemas para analizar

34. Siy, yy,son soluciones linealmente independientes de las
ED homogéneas asociadas para y’ + P(X)y' + Q(X)y =
f(x), demuestre en el caso de una ED lineal no homogénea
de segundo orden que (9) se reduce a la forma de varia-
cién de pardmetros analizada en la seccién 4.6.

Tarea para el laboratorio de computacién

35. Resolver un sistema lineal no homogéneo X' = AX +
F(t) usando variacién de parametros cuando A es una ma-
triz 3 X 3 (0 mas grande) es casi una tarea imposible de
hacer a mano. Considere el sistema

2 -2 2 1 te!
-1 3 0 3 e

' = + .
% 0 0 4 -2 x et
0 02 -1 1

a) Use un SAC o software de algebra lineal para encon-
trar los eigenvalores y los eigenvectores de la matriz
de coeficientes.

b) Forme una matriz fundamental ®(t) y utilice la
computadora para encontrar ®@(t).

c) Use la computadora para realizar los calculos de:
OYYF(E), [PHYF(@E)dt, D) /PH)F() dt,
D()C, y ®(t)C + (@ Y(t)F(t) dt, donde C es una
matriz columna de constantes ¢, C,, C,y C,.

d) Reescriba el resultado de la computadora para la so-
lucion general del sistema en la forma X = X_+ X,
donde X = ¢ X, + ¢ X, + ¢ X, + ¢ X,
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8.4

MATRIZ EXPONENCIAL

REPASO DE MATERIAL
e Apéndice I1.1 (definiciones 11.10 y 11.11)

INTRODUCCION  Las matrices se pueden usar de una manera completamente distinta para resol-
ver un sistema de ecuaciones diferenciales lineales de primer orden. Recuerde que la ecuacion dife-
rencial lineal simple de primer orden X’ = ax, donde a es constante, tiene la solucidn general x = ce?,
donde c es constante. Parece natural preguntar si se puede definir una funcién exponencial matricial
e donde A es una matriz de constantes por lo que una solucién del sistema X’ = AX es e*.

SISTEMAS HOMOGENEOS  Ahora veremos que es posible definir una matriz ex-
ponencial e tal que

X = eMC (1)

es una solucién del sistema homogéneo X' = AX. Aqui A es una matriz n X n de
constantes y C es una matriz columna n X 1 de constantes arbitrarias. Observe en (1)
que la matriz C se multiplica por la derecha a e porque queremos que € sea una
matriz n X n. Mientras que el desarrollo completo del significado y teoria de la matriz
exponencial requeriria un conocimiento completo de algebra de matrices, una forma
de definir e* se basa en la representacion en serie de potencias de la funcién exponen-
cial escalar e:

ea‘=1+at+a2E+---+ ktk . i t— (2)

2! kI - Kk

La serie en (2) converge para toda t. Si se usa esta serie, con la identidad | en vez de
1y la constante a se reemplaza por una matriz A n X n de constantes, se obtiene una
definicion para la matriz n X n, e,

| DEFINICION 8.4.1 Matriz exponencial

Para cualquier matriz A n X n,
tZ tk 0 tk
M= +At+A -+ AR = Y AR 3
2! k! EO k! @)

Se puede demostrar que la serie dada en (3) converge a una matriz n X npara todo
valor de t. También, A2 = AA, A% = A(A)?, etcétera.

DERIVADA DE e”! La derivada de la matriz exponencial es similar a la propiedad

de derivacion de la exponencial escalar at et = ae™. Para justificar

e aet @

derivamos (3) término por término:
k

t? t 1
_t |+ At+ A2—+ - -+ AK— 4+ ... | = A+ A%+ — A +
eA dt|: ! 2! k! ] ! 2! t

t2
=A[|+At+A2§+---]=Ae“t.
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Debido a (4), ahora se puede probar que (1) es una solucion de X' = AX para todo
vector n X 1 C de constantes:

X' = dﬂteAtc — ACAC = AENC) = AX.

eAES UNA MATRIZ FUNDAMENTAL  Si se denota la matriz exponencial € con
el simbolo W(t), entonces (4) es equivalente a la ecuacidn diferencial matricial ¥'(t) =
A W(t) (véase (3) de la seccion 8.3). Ademas, se deduce de inmediato de la definicion
8.4.1 que W(0) = e’ = I, y por tanto det ¥(0) # 0. Se tiene que estas propiedades son
suficientes para concluir que W(t) es una matriz fundamental del sistema X' = AX.

SISTEMAS NO HOMOGENEOS  Se vio en (4) de la seccion 2.4 que la solucion
general de la ecuacion diferencial lineal Gnica de primer orden X’ = ax + f(t), donde a
€S una constante, se puede expresar Como

t
x=xc+xp=ceal+eatJ:e‘an(s)ds.

Para un sistema no homogéneo de ecuaciones diferenciales lineales de primer orden,
se puede demostrar que la solucién general de X’ = AX + F(t), donde A es una matriz
n X n de constantes, es

t
X =X, + X, = eAC + e f e ASF(s) ds. ®)
ty
Puesto que la matriz exponencial e* es una matriz fundamental, siempre es no singular
y e = (&™) En la practica, e *° se puede obtener de e al reemplazar t por -s.

CALCULO DE e** Ladefinicion de e dada en (3) siempre se puede usar para calcular
e, Sin embargo, la utilidad practica de (3) esta limitada por el hecho de que los ele-
mentos de €* son series de potencias en t. Con un deseo natural de trabajar con cosas
simples y familiares, se trata de reconocer si estas series definen una funcién de forma
cerrada. VVéanse los problemas 1 a 4 de los ejercicios 8.4. Por fortuna, hay muchas for-
mas alternativas de calcular e la siguiente explicacion muestra como se puede usar
la transformada de Laplace.

USO DE LA TRANSFORMADA DE LAPLACE Vimos en (5) que X = e* es una
solucion de X’ = AX. De hecho, puesto que e*° = |, X = e* es una solucion de pro-
blema con valores iniciales

X' =AX, X(0) = I. (6)
Si x(s) = L{X(t)} = £{eM}, entonces la transformada de Laplace de (6) es
sx(s) — X(0) = Ax(s) o (sl — A)x(s) = 1.

Multiplicando la tltima ecuacion por (sl — A)~*se tiene que x(s) = (sl — A) 1 = (sl
— A)~L En otras palabras, #{e"} = (sl — A)to

et = P (sl — A)1}. @

I EJEMPLO 1 Matriz exponencial

1 -1
Use la transformada de Laplace para calcular e para A = ( 5 _ 2).
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SOLUCION Primero calcule la matriz sl — A 'y determine su inversa:

s—1 1
| — A=
S (—2 s+2)'
s+ 2 -1
s—1 1 \%* s(s+1) s(s+1)
sl — AL = = )
( ) ( -2 s+2) 2 s—1

(s+1) ss+1)

Entonces, descomponiendo las entradas de la tltima matriz en fracciones parciales:

2 1 1.1
s s+1 s s+1
sl —A)t= . 8
( ) 2 2 1 2 ®)
s s+1 s s+1

Se deduce de (7) que la transformada de Laplace inversa de (8) proporciona el resul-

tado deseado,

eAl:<2—e‘t -

-1+et )
2 — 2t '

-1+ 2et

USO DE COMPUTADORAS Para quienes por el momento estan dispuestos a
intercambiar la comprension por la velocidad de solucién, et se puede calcular con la
ayuda de software. Véanse los problemas 27 y 28 de los ejercicios 8.4.

E] ERCICIOS 8.4 Lasrespuestasalos problemas seleccionados con niimero impar comienzan en la pagina RES-14.

En los problemas | y 2 use (3) para calcular e* y e A,

10 01
1. A= 2. A=
A (0 2) A (1 0)

En los problemas 3y 4 use (3) para calcular e,

1 1 1 0 00
3. A= 1 1 1 4 A=(|3 00
-2 -2 =2 510

En los problemas 5 a 8 use (1) para encontrar la solucion ge-
neral del sistema dado.

1 0 0 1
5. I = 6. X' = X
X <o 2>X (1 o>
1 1 1 0 0O
7. X' = 1 1 11X 8. X'=(3 0 0]|X
-2 -2 =2 5 1 0

En los problemas 9 a 12 use (5) para encontrar la solucién
general del sistema dado.

o.x =g gpx+ ()

S (10 t
10.x_<0 2>x+<e4t>
0 1 1

11. I =
X (1 0>X+<l>

12 X%t = (0 l)x N (cosh t)
10 senht
13. Resuelva el sistema en el problema 7 sujeto a la condi-
cion inicial
1
X(0) =|—-4|.
6
14. Resuelva el sistema del problema 9 sujeto a la condicion

inicial
x0- %)

En los problemas 15 a 18, use el método del ejemplo 1 para
calcular e para la matriz de coeficientes. Use (1) para encon-
trar la solucion general del sistema dado.

15. x’ :< 4 3>x 16. x’:<4 _Z)X
4 -4 11
5 -9 0o 1
17. x' = 18. X' =
X (1 _1>x X (_2 _2>x



Sea P una matriz cuyas columnas son eigenvectores K,
K, ..., K que corresponden a eigenvalores A, A,, ..., A,
de una matriz A de n X n. Entonces se puede demostrar que A
= PDP1, donde D se define por

A, O -+ 0
0 A, == O

D=| - . 9)
0 0 - A,

En los problemas 19 y 20, compruebe el resultado anterior

para la matriz dada.
2 1 2 1
19. A = 20. A =
A (-3 6) A <1 2)

21. Supongaque A = PDP™%, donde D se define como en (9).
Use (3) para demostrar que e = PePP1,

22. Use (3) para demostrar que

e/\lt O PR o

0 e)\zl PR 0
o .

0 0 --- e

donde D se define como en (9).

En los problemas 23 y 24 use los resultados de los problemas
19 a 22 para resolver el sistema dado.

2 1 2 1
23. I = 24, -
x=( 2 Hx x=(2 2

Problemas para analizar

25. Vuelva a leer el andlisis que lleva al resultado dado en
(7). ¢La matriz sl — A siempre tiene inversa? Explique.

REPASO DEL CAPITULO 8 ° 337

26. Se dice que una matriz A es nilpotente cuando exis-
te algin entero m tal que A™ = 0. Compruebe que

-1 11
A=|-1 0 1][esnilpotente. Analice porqué es rela-

-1 11
tivamente facil calcular e cuando A es nilpotente. Calcule
ey luego utilice (1) para resolver el sistema X' = AX.

Tarea para el laboratorio de computacion

27. a) Utilice (1) para obtener la solucién general de
X' = (: §>x Use un SAC para encontrar e

Luego emplee la computadora para determinar eigen-
valores y eigenvectores de la matriz de coeficientes

4 2 -
A = 3 y forme la solucion general de acuer-

do con la seccion 8.2. Por ultimo, reconcilie las dos
formas de la solucién general del sistema.

b) Use (1) para determinar la solucién general de

X = ( 2 i)x Use un SAC, para determinar
e™. En el caso de un resultado complejo, utilice el
software para hacer la simplificacion; por ejemplo, en
Mathematica, si m = MatrixExp[A t] tiene elemen-
tos complejos, entonces intente con la instruccién
Simplify[ComplexExpand[m]].

28. Use (1) para encontrar la solucién general de

-4 06 0
, | 0o -5 0 -4
X_—l 01 0

0 30 2

Use MATLAB o un SAC para encontrar e,

REPASO DEL CAPITULO 8

Las respuestas a |os problemas sel eccionados con nimero impar
comienzan en la pagina RES-15.

En los problemas 1y 2 complete los espacios en blanco.

4
1. El vector X = k<5> es una solucién de
1 4 8
X' = X —
e ()
-1 —ot S 7t -z
2. El vector X = ¢, 1 et +g¢ 3 e es solucion del

110 2
s xxo=()

parak =

problema con valores iniciales X' = <

parac, = yc,=

4 6 6
3. Considere el sistema lineal X’ = 1 3 2 |X.
-1 -4 -3
Sin intentar resolver el sistema, determine cada uno de los
vectores
0 1 3 6
Ki=11], K,=| 1] K;= 1], K,=| 2
1 -1 -1 -5

es un eigenvector de la matriz de coeficientes. ¢Cudl es la
solucidn del sistema correspondiente a este eigenvector?



338 ° CAPITULO 8 SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN

4. Considere un sistema lineal X’ = AX de dos ecua-
ciones diferenciales, donde A es una matriz de coefi-
cientes reales. (Cual es la solucion general del sis-
tema si se sabe que A, = 1 + 2i es un eigenvalor y

1 . :
K, = <|> es un eigenvector correspondiente?

En los problemas 5 a 14 resuelva el sistema lineal dado.

dx dx
5, — =2x+ 6. — = —
at X+y gt 4x + 2y
dy _ dy _
at X at 2x — 4y
1 2 -2 5
7. X' = X 8. X' =
<—2 1> % <—2 4>X
1 -1 1 0 2 1
9. X' =10 1 3|X 10. X' =(1 1 -2|X
4 3 1 2 2 -1
2 8 2
11. X' = +
x =5 ox (i)
1 2
12. X' :< . >X < 0 >
-5 1 étant
-1 1 1
13. X' = X +
<—2 1> (cott)

, (31 -2\ ,,
14.x—<_1 1>x+< 1>e2

15. a) Considere el sistema lineal X’ = AX de tres ecuacio-

nes diferenciales de primer orden, donde la matriz de
coeficientes es

5 3 3
A=| 3 5 3
-5 -5 -8

y A = 2 es un eigenvalor conocido de multiplicidad
dos. Encuentre dos soluciones diferentes del sistema
correspondiente a este eigenvalor sin usar una for-
mula especial (como (12) de la seccion 8.2)

b) Use el procedimiento del inciso a) para resolver

111
X'=[1 1 1|X
111

16. Compruebe que X = (Cl>et es una solucién del sistema
)

lineal

10
X' = X
(0 1)

para constantes arbitrarias c, y c,. A mano, trace un dia-
grama de fase del sistema.



SOLUCIONES NUMERICAS DE

ECUACIONES DIFERENCIALES

ORDINARIAS

9.1 Métodos de Euler y andlisis de errores

9.2 Meétodos de Runge-Kutta

9.3 Meétodos multipasos

9.4 Ecuaciones y sistemas de orden superior

9.5 Problemas con valores en la frontera de segundo orden
REPASO DEL CAPITULO 9

Aun cuando se pueda demostrar que la solucion de una ecuacion diferencial exista,
no siempre es posible expresarla en forma explicita o implicita. En muchos casos
tenemos que conformarnos con una aproximacion de la solucion. Si la solucion
existe, se representa por un conjunto de puntos en el plano cartesiano. En este
capitulo continuamos investigando la idea basica de la seccion 2.6, es decir,
utilizar la ecuacion diferencial para construir un algoritmo para aproximar las
coordenadas y de los puntos de la curva solucién real. Nuestro interés en este
capitulo son principalmente los PVI dy/dx = f(x, y), y(x,) = Y,- En la seccion 4.9
vimos que los procedimientos numéricos desarrollados para las ED de primer
orden se generalizan de una manera natural para sistemas de ecuaciones de
primer orden y por tanto se pueden aproximar soluciones de una ecuacién de orden
superior remodelandola como un sistema de ED de primer orden. El capitulo 9
concluye con un método para aproximar soluciones de problemas con valores en la
frontera lineales de segundo orden.

339
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CAPITULO 9 SOLUCIONES NUMERICAS DE ECUACIONES DIFERENCIALES ORDINARIAS

9.1 METODOS DE EULER Y ANALISIS DE ERRORES
REPASO DE MATERIAL
e Seccion 2.6
INTRODUCCION Encel capitulo 2 se examin6 uno de los métodos numéricos mas simples para
aproximar soluciones de problemas con valores iniciales de primer orden y" = f(x, y), y(x,) =Y,
Recuerde que la estructura del método de Euler fue la formula
Yos1 = Yn T DX, ¥n), 1)
donde f es la funcion obtenida de la ecuacion diferencial y* = f(x, y). El uso recursivo de (1) para
n=0,1,2,...produce las ordenadasy,y,, Y, Y, ... de puntos en “rectas tangentes” sucesivas res-
pecto a la curva solucion en x,, X,, X,, . . . 0 X = X, + nh, donde h es una constante y es el tamafio de
pasoentre X y X ,,.Losvaloresy,,vy,, Y, ...aproximan los valores de una solucion y(x) del PVI en
X;, X,, X5, . . . Pero sin importar la ventaja que la ecuacion (1) tenga en su simplicidad, se pierde en la
severidad de sus aproximaciones.
UNA COMPARACION Encel problema 4 de los ejercicios 2.6 se pidi6 usar el mé-
todo de Euler para obtener el valor aproximado de y(1.5) para la solucién del problema
con valores iniciales y’ = 2xy, y(1) = 1. Se debe haber obtenido la solucién analitica
y = e’ !y resultados similares a los que se presentan en las tablas 9.1y 9.2.
TABLA 9.1 Método de Euler con h = 0.1 TABLA 9.2 Método de Euler con h = 0.05
Valor Valor % de error Valor Valor % de error
X, Y, real absoluto relativo X, Y, real absoluto relativo
1.00 1.0000 1.0000 0.0000 0.00 1.00 1.0000 1.0000 0.0000 0.00
1.10 1.2000 1.2337 0.0337 2.73 1.05 1.1000 1.1079 0.0079 0.72
1.20 1.4640 1.5527 0.0887 5.71 1.10 1.2155 1.2337 0.0182 1.47
1.30 1.8154 1.9937 0.1784 8.95 1.15 1.3492 1.3806 0.0314 2.27
1.40 2.2874 2.6117 0.3244 12.42 1.20 1.5044 1.5527 0.0483 311
150 2.9278 3.4903 0.5625 16.12 1.25 1.6849 1.7551 0.0702 4.00
1.30 1.8955 1.9937 0.0982 4.93
1.35 2.1419 2.2762 0.1343 5.90
1.40 2.4311 2.6117 0.1806 6.92
1.45 2.7714 3.0117 0.2403 7.98
150 3.1733 3.4903 0.3171 9.08

En este caso, con un tamafio de paso h = 0.1, un error relativo de 16% en el
calculo de la aproximacion a y(1.5) es totalmente inaceptable. A expensas de duplicar
el nimero de célculos, se obtiene cierta mejoria en la precision al reducir a la mitad el
tamafio de paso, es decir h = 0.05.

ERRORES EN LOS METODOS NUMERICOS Al elegir y usar un método numé-
rico para la solucion de un problema con valores iniciales, se debe estar consciente de
las distintas fuentes de error. Para ciertas clases de calculos, la acumulacion de errores
podria reducir la precisién de una aproximacién al punto de hacer indtil el calculo.
Por otra parte, dependiendo del uso dado a una solucién numérica, una precision ex-
trema podria no compensar el trabajo y la complicacién adicionales.

Una fuente de error que siempre esta presente en los calculos es el error de re-
dondeo. Este error es resultado del hecho de que cualquier calculadora o computadora
puede representar nimeros usando s6lo un ndmero finito de digitos. Suponga, por
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ejemplo, que se tiene una calculadora que usa aritmética base 10 y redondea a cuatro
digitos, de modo que % se representa en la calculadora como 0.3333 y % se representa
como 0.1111. Si con esta calculadora se calcula (x2 - %)/(x — %) para x = 0.3334,
se obtiene
(0.3334)2 — 0.1111 _ 0.1112 — 0.1111
0.3334 — 0.3333  0.3334 — 0.3333
Sin embargo, con ayuda de un poco de algebra, vemos que
T )
T +t32
3

=X
1 ’
X —3 3

por lo que cuando X = 0.3334, (x2 — £)/(x — 1) = 0.3334 + 0.3333 = 0.6667. Este
ejemplo muestra que los efectos del redondeo pueden ser bastante considerables a
menos que se tenga cierto cuidado. Una manera de reducir el efecto del redondeo es
reducir el nimero de célculos. Otra técnica en una computadora es usar aritmética de
doble precision para comprobar los resultados. En general, el error de redondeo es
impredecible y dificil de analizar y se desprecia en el analisis siguiente, por lo que solo
nos dedicaremos a investigar el error introducido al usar una férmula o algoritmo para
aproximar los valores de la solucién.

ERRORES DE TRUNCAMIENTO PARA EL METODO DE EULER En la sucesion
devaloresy,,y,, Y, . . . generados de (1), usualmente el valor de y, no concuerda con la
solucion real en x,, en particular, y(x,), porque el algoritmo s6lo da una aproximacion de
linea recta a la solucion. VVéase la figura 2.6.2. El error se llama error de truncamiento
local, error de formula o error de discretizacion. Este ocurre en cada paso, es decir,
si se supone que y, es precisa, entoncesy_ . , tendra error de truncamiento local.

Para deducir una formula para el error de truncamiento local del método de Euler,
se usa la formula de Taylor con residuo. Si una funcidn y(x) tiene k + 1 derivadas que
son continuas en un intervalo abierto que contiene a a y a x, entonces

X=a gy KAy X
n Y@ T YO
donde c es algin punto entre ay x. Al establecerk = 1,a=x yx=x ., =x +h,
se obtiene

yx) =y@ +y@

2

h h
Y(Xni1) = Y(X) + Y (%) T y"(c) 2

" h2
0 Y(Xn+1) = Yo + (X, yn) + y"(C) 5 .
%/—/ )
Yn+1
El método de Euler (1) es la tltima formula sin el Gltimo término; por tanto, el error
de truncamiento local eny, . es

h2
y'(©) 5 donde  Xn <€ <X

Usualmente se conoce el valor de ¢ (existe desde el punto de vista tedrico) y por tanto
no se puede calcular el error exacto, pero un limite superior en el valor absoluto del
error es Mh?/2!, donde M = max |y"(X)|.

X< X< Xpt1

Al analizar los errores que surgen del uso de métodos numéricos, es Util usar la nota-
cion O(hm). Para definir este concepto, se denota con e(h) el error en un calculo numérico
dependiendo de h. Entonces se dice que e(h) es de orden h", denotado con O(h"), si existe
una constante C y un entero positivo n tal que |e(h) | = Ch" para h suficientemente pequefia.
Por lo que el error de truncamiento local para el método de Euler es O(h?). Se observa que,
en general, si e(h) en un método numérico es del orden h"y h se reduce a la mitad, el nuevo
error es mas o menos C(h/2)" = Ch"/2"; es decir, el error se redujo por un factor de 1/2".
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I EJEMPLO 1 Limite para errores de truncamiento local

Determine un limite superior para los errores de truncamiento local del método de

Euler aplicado ay’ = 2xy, y(1) = 1.

SOLUCION De la solucién y = e*~! obtenemos y” = (2 + 4x%)e*~%, por lo que el

error de truncamiento es

h2 2x ) h2
"(€) 5 = (2 + 4c?)e D
y'© 75 =( e

donde c esta entre x y x + h. En particular, para h = 0.1 se puede obtener un limite
superior en el error de truncamiento local paray, al reemplazar ¢ por 1.1:

[2 + (4)(1-1)2]e((1-1)2—1)(0-71)2

De la tabla 9.1 se observa que el error después del primer paso es 0.0337, menor que

el valor dado por el limite.

De igual forma, se puede obtener un limite para el error de truncamiento local de
cualquiera de los cinco pasos que se muestran en la tabla 9.1 al reemplazar ¢ por 1.5
(este valor de ¢ da el valor méas grande de y”(c) de cualquiera de los pasos y puede ser
demasiado generoso para los primeros pasos). Al hacer esto se obtiene

[2 + (4)(1.5)%] e((1A5)2,1)(0.Tl)2

como un limite o cota superior para el error de truncamiento local en cada paso.

Observe que si h se reduce a 0.05 en el ejemplo 1, entonces el limite de error es
0.0480, casi un cuarto del valor que se muestra en (2). Esto es de esperarse porque el
error de truncamiento local para el método de Euler es O(h?).

En el analisis anterior se supone que el valor de y, fue exacto en el calculo de y
pero no lo es porque contiene errores de truncamiento local de los pasos anteriores. El
error total en'y ., es una acumulacion de errores en cada uno de los pasos previos.
Este error total se Ilama error de truncamiento global. Un anélisis completo del error
de truncamiento global queda fuera del alcance de este libro, pero se puede mostrar
que el error de truncamiento global para el método de Euler es O(h).

Se espera que para el método de Euler, si el tamafio de paso es la mitad, el error serd
mas 0 menos la mitad. Esto se confirma en las tablas 9.1 y 9.2 donde el error absoluto en
x =150conh = 0.1es0.5625y con h = 0.05 es 0.3171, aproximadamente la mitad.

En general, se puede demostrar que si un método para la solucién numérica de
una ecuacion diferencial tiene error de truncamiento local O(h« * 1), entonces el error

de truncamiento global es O(h®).

En lo que resta de esta seccidn y en las siguientes, se estudian métodos mucho mas

precisos que el método de Euler.

METODO DE EULER MEJORADO EI método numérico definido por la férmula

= 0.0422.

= 0.1920

f(xm yn) + f(Xn+1s y;1k+1)

=y, +
ynfl yn h 2

donde Vo1 = Yo + hE(Xq, ¥o),

se conoce comunmente como el método de Euler mejorado. Para calculary  , para
n=20,1, 2, ...de(3), se debe, en cada paso, usar primero el método de Euler (4)
para obtener una estimacion inicial y¥,,. Por ejemplo, con n = 0, usando (4) se ob-
tiene yy =y, + hf(Xo, Yo), Y después, conociendo este valor, se usa (3) para obtener

f (X0, Yo) + f(x0, Y7
2

Y1 =Yoo+ h

), donde x, = x, + h. Estas ecuaciones se representan
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La pendiente de la

recta roja punteada es el promedio

dem,ym,.

TABLA 9.3 Método de Euler mejorado con h = 0.1
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con facilidad. En la figura 9.1.1 se observa que m, = f(x, y,) y m; = f(x,, yT) son
pendientes de las rectas trazadas con la linea continua que pasan por los puntos (x,,
Y,) Y (X1, ¥T), respectivamente. Tomando un promedio de estas pendientes, es decir,

(%o, + f(Xq, Y& . . A
Moron™= (o, Yo) + T0xy, ¥ ), se obtiene la pendiente de las rectas paralelas inclinadas.

Con el primer pas%, mas que avanzar a lo largo de la recta que pasa por (x,, y,) con pen-
diente f(x,, y,) al punto con coordenada y y¥ obtenida por el método de Euler, se avanza
a lo largo de la recta punteada de color rojo que pasa por (x,, y,) con pendiente m
hasta llegar a x,. Al examinar la figura parece posible que y, sea una mejora de y7".

En general, el método de Euler mejorado es un ejemplo de un método de predic-
cion-correccion. El valor de y#, , dado por (4) predice un valor de y(x ), mientras que
el valordey . . definido por la férmula (3) corrige esta estimacion.

prom

n+1

I EJEMPLO 2 Método de Euler mejorado

Use el método de Euler mejorado para obtener el valor aproximado de y(1.5) para la
solucién del problema con valores iniciales y’ = 2xy, y(1) = 1. Compare los resultados
parah = 0.1y h = 0.05.

SOLUCION Con X, =1y,=1f(x,y)=2xy,n=0yh=0.1, primero se calcula
(4):
V¥ =1y, + (0.1)(2%Y0) = 1 + (0.1)2(1)(1) = 1.2.

Se usa este ultimo valoren (3) juntoconx, =1+ h=1+01= 1.1

2(1)(1) + 2(1.1)(1.2)

2XoYo + 2% YT — 1932
5 232.

=y, + (0.
Y1 =Yo + (0.1) 2

=1+ (0.1)

En las tablas 9.3 y 9.4, se presentan los valores comparativos de los célculos para h =
0.1y h = 0.05, respectivamente.

TABLA 9.4 Método de Euler mejorado con h = 0.05

Valor Valor % de error Valor Valor % de error
X, Y, real absoluto relativo X, Y, real absoluto relativo
1.00 1.0000 1.0000 0.0000 0.00 1.00 1.0000 1.0000 0.0000 0.00
1.10 1.2320 1.2337 0.0017 0.14 1.05 1.1077 1.1079 0.0002 0.02
1.20 1.5479 1.5527 0.0048 0.31 1.10 1.2332 1.2337 0.0004 0.04
1.30 1.9832 1.9937 0.0106 0.53 1.15 1.3798 1.3806 0.0008 0.06
1.40 2.5908 2.6117 0.0209 0.80 1.20 1.5514 1.5527 0.0013 0.08
1.50 3.4509 3.4904 0.0394 1.13 1.25 1.7531 1.7551 0.0020 0.11
1.30 1.9909 1.9937 0.0029 0.14
1.35 2.2721 2.2762 0.0041 0.18
1.40 2.6060 2.6117 0.0057 0.22
1.45 3.0038 3.0117 0.0079 0.26
1.50 3.4795 3.4904 0.0108 0.31

Aqui es importante hacer una advertencia. No se pueden calcular primero todos
los valores de y7; y después sustituir sus valores en la férmula (3). En otras palabras,
no se pueden usar los datos de la tabla 9.1 para ayudar a construir los valores de la
tabla 9.3. ¢Por qué no?

ERRORES DE TRUNCAMIENTO PARA EL METODO DE EULER MEJORADO
El error de truncamiento local para el método de Euler mejorado es O(h®). La deduc-
cién de este resultado es similar a la deduccién del error de truncamiento local para el
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método de Euler. Puesto que el error de truncamiento para el método de Euler mejorado
es O(h%), el error de truncamiento global es O(h?). Esto se puede ver en el ejemplo 2;
cuando el tamafio de paso se reduce a la mitad de h = 0.1 a h = 0.05, el error abso-
luto en x = 1.50 se reduce de 0.0394 a 0.0108, una reduccion de aproximadamente

EJERCICIOS 9.1

Las respuestas a los problemas seleccionados con nimero impar comienzan en la pagina RES-15.

En los problemas | a 10, use el método de Euler mejorado
para obtener una aproximacion de cuatro decimales del valor
indicado. Primero use h = 0.1y después h = 0.05.

© ®© N o g~ w D P

N
= o

12.

13.

y'=2x—-3y+1,y(1) =5 y(l.5)
y' =4x—2y,y(0) = 2; y(0.5)

y' =1+y%y(0) =0; y(0.5)

y' =x*+y%y(0) =1; y(0.5)
y'=e7y(0)=0; y(0.5)

y' =x+Yy%y(0) =0; y(0.5)

y' = (x—y)%y(0)=05; y(0.5)
y' —xy+\fyy(0)—l y(0.5)
y' = xy? —-,y(l)—l y(1.5)

y =y -—y4y(0) =05 y(0.5)

. Considere el problema con valores inicialesy’ = (x +y —

1)2, y(0) = 2. Use el método de Euler mejorado con h =
0.1 y h = 0.05 para obtener los valores aproximados de
la solucién en x = 0.5. En cada paso compare el valor
aproximado con el valor real de la solucidn analitica.

Aunque podria no ser evidente de la ecuacién diferencial,
su solucion podria tener “un mal comportamiento™ cerca
de un punto x en el que se desea aproximar y(x). Los pro-
cedimientos numéricos podrian dar resultados bastante
distintos cerca de este punto. Sea y(x) la solucién del pro-
blema con valores inicialesy’ = x2 + y3 y(1) = 1.

a) Use un programa de solucién numérica para trazar la

solucidn en el intervalo [1, 1.4].

b) Con el tamafio de paso h = 0.1, compare los resul-
tados obtenidos con el método de Euler con los del
método de Euler mejorado en la aproximacién de
y(1.4).

Considere el problema con valores iniciales y' = 2y,

y(0) = 1. La solucidn analitica esy = e*.

a) Aproxime y(0.1) con un paso y el método de Euler.

b) Determine un limite para el error de truncamiento
local eny,.

c) Compare el error eny, con su limite de error.

d) Aproxime y(0.1) con dos pasos y el método de
Euler.

14.

15.

16.

17.

18.

19.

20.

e) Compruebe que el error de truncamiento global para
el método de Euler es O(h) al comparar los errores de
los incisos a) y d).

Repita el problema 13 con el método de Euler mejorado.
Su error de truncamiento global es O(h?).

Repita el problema 13 con el problema con valores inicia-

lesy’ = x — 2y, y(0) = 1. La solucidn analitica es
y=1ix—1+2e

Repita el problema 15 usando el método de Euler mejo-

rado. Su error de truncamiento global es O(h?).

Considere el problema con valores iniciales y’ = 2x — 3y
+ 1, y(I) = 5. La solucion analitica es

y(X) =5 + 2x + e 3D,

a) Encuentre una férmula en la que intervengan c y h
para el error de truncamiento local en el n-ésimo paso
si se usa el método de Euler.

b) Encuentre un limite para el error de truncamiento local
en cada paso si se usa h = 0.1 para aproximar y(1.5).

c) Aproxime y(1.5) conh = 0.1y h = 0.05 con el método
de Euler. Véase el problema 1 de los ejercicios 2.6.

d) Calcule los errores del inciso c¢) y compruebe que el
error de truncamiento global del método de Euler es
O(h).

Repita el problema 17 usando el método de Euler mejorado
que tiene un error de truncamiento global O(h?). Véase el
problema 1. Podria ser necesario conservar mas de cuatro
decimales para ver el efecto de reducir el orden del error.

Repita el problema 17 para el problema con valores iniciales
y" = e, y(0) = 0. La solucion analitica es y(x) = In(x + 1).
Aproxime y(0.5). Véase el problema 5 en los ejercicios 2.6.

Repita el problema 19 con el método de Euler mejorado,
que tiene un error de truncamiento global O(h?). Véase el
problema 5. Podria ser necesario conservar mas de cuatro
decimales para ver el efecto de reducir el orden de error.

Problemas para analizar

21.

Conteste la pregunta “;Por qué no?” que sigue a los tres
enunciados después del ejemplo 2 de la pagina 343.
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9.2

METODOS DE RUNGE-KUTTA

REPASO DE MATERIAL
e Seccion 2.8 (véase pagina 78).

INTRODUCCION  Probablemente uno de los procedimientos numéricos mas populares, asi como
mas preciso, usado para obtener soluciones aproximadas para un problema con valores inicialesy’ =
f(x, y), y(x,) =y, es el método de Runge-Kutta de cuarto orden. Como el nombre lo indica, existen
métodos de Runge-Kutta de diferentes érdenes.

METODOS DE RUNGE-KUTTA  En esencia, los métodos de Runge-Kutta son ge-
neralizaciones de la formula bésica de Euler (1) de la seccién 9.1 en que la funcién
pendiente f se reemplaza por un promedio ponderado de pendientes en el intervalo x
=x=x_,, Esdecir,

promedio ponderado

A
Ynr1 = Yo + D (Wiky + Wk + -+ 4+ wikp). (1)
Aqui los pesos w, i =1, 2, ..., m, son constantes que generalmente satisfacen w, +
w,+---+w =1ycadak,i=12 ..., m, eslafuncion fevaluada en un punto

seleccionado (x, y) parael que x. =x =x_, . Veremos que las k; se definen recursiva-
mente. EI nimero m se llama el orden del método. Observe que al tomarm = 1, w, =
1yk, =f(x,y) se obtiene la conocida formula de Eulery . =y + hf(x,y).Por
esta razon, se dice que el método de Euler es un método de Runge-Kutta de primer
orden.

El promedio en (1) no se forma a la fuerza, pero los parametros se eligen de modo
que (1) concuerda con un polinomio de Taylor de grado m. Como se vio en la seccion
anterior, si una funcion y(x) tiene k + 1 derivadas que son continuas en un intervalo
abierto que contiene a a 'y a x, entonces se puede escribir
( )2 ( a)k+l

y(k+1)(c) KT D1 ,

yx) =y@ +y (a) L y'@ ——F—

donde c es algiin nimero entre a 'y x. Si se reemplazaa porx y xporx .. =X + h,
> ) ) n n+1 n

entonces la férmula anterior se convierte en

k+1

T

h2
Y(Xns1) = Y, + h) = y(x,) + hy'(x,) + o1 y"(x,) + y&(c),

donde c es ahora algin nimero entre X,y X, ,. Cuando y(x) es una solucion de y’ =
f(x,y) enelcasok = 1y el residuo 5 hzy (c) es pequefio, vemos que un polinomio de
Taylory(x, ,,) = y(x) + hy’(x ) de grado uno concuerda con la formula de aproxima-
cion del método de Euler

Yo+1 = Yo T hyn = Yo + hf(X,, yn).

METODO DE RUNGE-KUTTA DE SEGUNDO ORDEN Para ilustrar més (1),
ahora se considera un procedimiento de Runge-Kutta de segundo orden. Este con-
siste en encontrar constantes o parametros w,, w,, a y 8 tal que la formula

Vi1 = Yo + h(Wiky + wyky), )
donde ky = f(Xq, Yn)

k, = f(x, + ah,y, + Bhk,),
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concuerda con un polinomio de Taylor de grado dos. Para nuestros objetivos es sufi-
ciente decir que esto se puede hacer siempre que las constantes satisfagan

1

1
w; +w, = 1, W2a=§ y W2B=§. 3)

Este es un sistema algebraico de tres ecuaciones con cuatro incognitas y tiene un nd-

mero infinito de soluciones:

1
W1:1_W2, o = _— y B:m (4)

2W,

donde w, # 0. Por ejemplo, la eleccion w, = % produce w; =

tanto (2) se convierte en

h
Ynt1 = Yo T E (kl + k2)1

1

2,
3 a=1yB =1y por

donde Ky = (V) Yy ko = f(x, + h,y, + hky).

Puestoquex +h=x ., yy, +hk =y +hf(x, vy )sereconoce al resultado anterior
como el método mejorado de Euler que se resume en (3) y (4) de la seccion 9.1.
En vista de que w, # 0 se puede elegir de modo arbitrario en (4), hay muchos posibles
métodos de Runge-Kutta de segundo orden. Véase el problema 2 en los ejercicios 9.2.
Se omite cualquier explicacion de los métodos de tercer orden para llegar al punto

principal de analisis en esta seccion.

METODO DE RUNGE-KUTTA DE CUARTO ORDEN Un procedimiento de
Runge-Kutta de cuarto orden consiste en determinar parametros de modo que la

formula

Yor1 = Yo T h(wiky + wok; + waks + wyky), 5)

donde ky = f(Xn, Yn)
k, = f(X, + azh, y, + B1hky)
ks = f(X, + aph, ¥, + B0k + Bshk;)

ky = f(X, + agh, y, + Bshk; + Bshk, + Bshks),

concuerda con un polinomio de Taylor de grado cuatro. Esto da como resultado un
sistema de 11 ecuaciones con 13 incognitas. El conjunto de valores usado con mas

frecuencia para los parametros produce el siguiente resultado:

h
Ynt1 = Yo T é(kl + 2k, + 2k; + ky),

ky = f(Xo, Yn)

ko = f(%, + 3h, y, + 3hk,)
ks = f (%, + 20, y, + thky)
K, = f (%, + h,y, + hka).

(6)

Mientras que las otras férmulas de cuarto orden se deducen con facilidad, el algoritmo
resumido en (6) que es muy usado y reconocido como una invaluable herramienta de
calculo, se denomina el método de Runge-Kutta de cuarto orden o método clasico
de Runge-Kutta. De aqui en adelante, se debe considerar a (6), cuando se use la abre-

viatura método RK4.

Se le aconsgja que tenga cuidado con las formulas en (6); observe que k, depende

de k

1 73

k, depende de k, y k, depende de k,. También, k, y k, implican aproximaciones a

la pendiente en el punto medio X, + % h en el intervalo definido porx, = x=x__ .
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I EJEMPLO 1 Método RK4

Use el método RK4 con h = 0.1 para obtener una aproximacion a y(1.5) para la solu-
cibndey’ = 2xy, y(1) = 1.

SOLUCION Para ejemplificar permitanos calcular el caso cuando n = 0. De (6) se
encuentra que

ky = f(Xo, Yo) = 2XoYo = 2
kp = fx + 2(0.0), yo + £(0.2)2)
=2(x + 20.0)(yo + (02)) = 2.31
ks = fx + 2(0.1), yp + 1(0.1)2.31)
=2(x, + 1(0.1))(yo + (0.231)) = 2.34255
K, = f(xo + (0.1), yo + (0.1)2.34255)
=2(x, + 0.1)(y, + 0.234255) = 2.715361

Valor ~ Valor % de error
X, Y, real absoluto relativo y por tanto
1.00 1.0000 1.0000 0.0000 0.00 0.1
110 1.2337 12337 00000 0.00 V1= Yo + (ki + 2k + 2ks + ki)
1.20 15527 1.5527 0.0000 0.00
130 1.9937 19937 0.0000 0.00 0.1
140 26116 26117 00001 000 =1+ 5 (2 + 2(2.31) + 2(2.34255) + 2.715361) = 1.23367435.
150 34902 34904 00001 0.00 Los célculos que restan se resumen en la tabla 9.5, cuyas entradas se redondean a
cuatro decimales. ]
Al examinar la tabla 9.5 se encuentra por qué el método de Runge-Kutta de cuarto
orden es popular. Si todo lo que se desea es una precision de cuatro decimales, es inne-
cesario usar un tamafio de paso mas pequefio. En la tabla 9.6 se comparan los resultados
de aplicar los métodos de Euler, de Euler mejorado y de Runge-Kutta de cuarto orden al
problema con valores iniciales y’ = 2xy, y(l) = 1. (Véanse las tablas 9.1y 9.3.)
TABLA9.6 y' =2xy,y(1)=1
Comparacion de métodos numéricos con h = 0.1 Comparacion de métodos numéricos con h = 0.05
Euler Valor Euler Valor
X, Euler mejorado RK4 real X, Euler mejorado RK4 real
1.00 1.0000 1.0000 1.0000 1.0000 1.00 1.0000 1.0000 1.0000 1.0000
1.10 1.2000 1.2320 1.2337 1.2337 1.05 1.1000 1.1077 1.1079 1.1079
1.20 1.4640 1.5479 1.5527 1.5527 1.10 1.2155 1.2332 1.2337 1.2337
1.30 1.8154 1.9832 1.9937 1.9937 1.15 1.3492 1.3798 1.3806 1.3806
1.40 2.2874 2.5908 2.6116 2.6117 1.20 1.5044 1.5514 1.5527 1.5527
1.50 2.9278 3.4509 3.4902 3.4904 1.25 1.6849 1.7531 1.7551 1.7551
1.30 1.8955 1.9909 1.9937 1.9937
1.35 2.1419 2.2721 2.2762 2.2762
1.40 2.4311 2.6060 2.6117 2.6117
1.45 2.7714 3.0038 3.0117 3.0117
150 3.1733 3.4795 3.4903 3.4904

ERRORES DE TRUNCAMIENTO PARA EL METODO RK4 En la seccion 9.1
vimos que los errores de truncamiento globales para el método de Euler y el método de
Euler mejorado son, respectivamente, O(h) y O(h?). Debido a que la primera ecuacion
en (6) concuerda con un polinomio de Taylor de cuarto grado, el error de truncamiento
global para este método es y®(c) h®/5! 0 O(h®), y asi el error de truncamiento global es
O(h*). Ahora es evidente por qué el método de Euler, el método de Euler mejorado y
(6) son métodos de primero, segundo y cuarto orden, respectivamente.
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I EJEMPLO 2 Limite para errores de truncamiento locales

Determine un limite para los errores de truncamiento local del método RK4 aplicado
ay =2xy,y(l) = 1.

SOLUCION Al calcular la quinta derivada de la solucién conocida y(x) = e*~!se
obtiene
h® h®

y(5)(c)§ = (120c + 160c® + 32¢5)e ! o )
Por lo que con c = 1.5, (7) se obtiene un limite de 0.00028 en el error de truncamiento
local para cada uno de los cinco pasos cuando h = 0.1. Observe que en la tabla 9.5 el

error en y, es mucho menor que este limite.
En la tabla 9.7 se presentan las aproximaciones a la solucién del problema con
TABLA 9.7 Método RK4 valores iniciales en x = 1.5 que se obtienen del método RK4. Al calcular el valor de la
h  Aproximacion Error solucion analitica en x = 1.5, se puede encontrar el error en estas aproximaciones.
Debido a que el método es tan preciso, se deben usar muchos decimales en la solucidn
0.1 349021064 132321089 X10™*  numérica para ver el efecto de reducir a la mitad el tamafio de paso. Observe que
0.05 349033382 9.13776090 X 107 cuando h se reduce a la mitad, de h = 0.1 ah = 0.05, el error se divide entre un factor
de aproximadamente 24 = 16, como se esperaba. ]

METODOS DE ADAPTACION  Se ha visto que la precision de un método numérico
para aproximar soluciones de ecuaciones diferenciales mejora al reducir el tamafio de paso
h. Por supuesto, esta mayor precision tiene usualmente un costo, en particular, incremento
en el tiempo de célculo y mayor posibilidad de error de redondeo. En general, en el intervalo
de aproximacion podria haber subintervalos donde un tamafio de paso relativamente grande
es suficiente y otros subintervalos donde se requiere un tamafio de paso mas pequefio para
mantener el error de truncamiento dentro del limite deseado. Los métodos numéricos en
los que se usa un tamafio de paso variable se llaman métodos de adaptacion. Una de las
rutinas méas populares de adaptacion es el método de Runge-Kutta-Fehlberg. Debido a
que Fehlberg empled dos métodos de Runge-Kutta de 6rdenes distintos, uno de cuarto y
otro de quinto, este algoritmo suele denotarse como método RKF45.*

“El método de Runga-Kutta de orden cuarto usado en RKF45 no es el mismo que se presenta en (6).

E] ERCICIOS 9.2 Lasrespuestas a los problemas seleccionados con nimero impar comienzan en la pagina RES-15.

6. vy =x2+y%y0) =1, y(.5)
7.y =e7,y0)=0; y(0.5)
8
9

1. Use el método RK4 con h = 0.1 para aproximar y(0.5),
donde y(x) es la solucién del problema de valores ini-
ciales y’ = (x +y — 1)2, y(0) = 2. Compare este valor
aproximado con el valor real obtenido en el problema 11
de los ejercicios 9.1.

-y =x+Yy4y(0) =0; y(0.5)

) S en (4. Use el método de Runge-K -y ==Yy =05 y(0.5)

. Supongaque w, = 3 en (4). Use el método de Runge-Kutta , o

de segundo orden resultante para aproximar y(0.5), donde 10y =xy + Vy,y(0) = 1; y(0.5)
y(x) es la solucion del problema con valores inicialesenel 11, y' = xy? — X, y(1) =1; y(5)
problema 1. Compare este valor aproximado con el valor X

obtenido en el problema 11 en los ejercicios 9.1. 12.y" =y —y4y(0) = 05; y(0.5)
En los problemas 3 a 12, use el método RK4 con h = 0.1 para ob- 13. Si la resistencia del aire es proporcional al cuadrado de la
tener una aproximacion de cuatro decimales del valor indicado. velocidad instantanea, entonces la velocidad v de una masa
m que se deja caer desde cierta altura se determina de

3.y =2x—-3y+1y@d)=5; y(b5) dv
4.y =4x—-2y,y(0) =2 y(05) Mt
5y =1+y%y(0)=0; y(0.5) Seav(0) = 0, k = 0.125, m = 5slugs y g = 32 pies/s?.

=mg — kv?, k> 0.



14.

a) Use el método RK4 con h = 1 para aproximar la ve-
locidad v(5).

b) Utilice un programa de solucion numérica para trazar
la grafica solucion del PV1 en el intervalo [0, 6].

c) Utilice la separacion de variables para resolver el PVI
y luego determine el valor real v(5).
Un modelo matematico para el area A (en cm?) que ocupa
una colonia de bacterias (B. dendroides) esta dada por
dA

o~ A2.128 - 0.04328) >

Suponga que el area inicial es 0.24 cm?,

a) Use el método RK4 con h = 0.5 para completar la
siguiente tabla:

t (dias) 1 2 3 4 5

A (observado) 2.78 1353 36.30 47.50 49.40

A (aproximado)

15.

16.

17.

b) Use un programa de solucién numérica para trazar la
gréafica de solucion del problema con valores iniciales.
Calcule los valores A(1), A(2), A(3), A(4) y A(5) de
la grafica.

c) Use la separacion de variables para resolver el pro-
blema con valores iniciales y calcular los valores rea-
les A(I), A(2), A3), A(4) y A5).

Considere el problema con valores iniciales y’ = x? + y?,

y(1) = 1. Véase el problema 12 de los ejercicios 9.1.

a) Compare los resultados obtenidos de usar el método
RK4 en el intervalo [1, 1.4] con tamafios de paso h =
0.1y h=0.05.

b) Utilice un programa de solucion numérica para trazar
la grafica solucion del problema con valores iniciales
en el intervalo [1, 1.4].

Considere el problema con valores iniciales y' = 2y,
y(0) = 1. La solucion analitica es y(x) = e*.
a) Aproxime y(0.1) con un paso y el método RK4.

b) Determine un limite para el error de truncamiento
localeny,.

c¢) Compare el error en y, con el limite de error.
d) Aproxime y(0.1) con dos pasos y el método RK4.

e) Compruebe que el error global de truncamiento para
el método RK4 es O(h*) comparando los errores en
los incisos a) y d).

Repita el problema 16 con el problema con valores inicia-
lesy’ = —2y + x, y(0) = 1. La solucion analitica es

1 1 5,
y(x) =3x —; +;e7%%

*Véase V. A. Kostitzin, Mathematical Biology (Londond: Harrap, 1939).

18.

19.

9.2 METODOS DE RUNGE-KUTTA ° 349

Considere el problema con valores inicialesy’ = 2x — 3y
+ 1, y(l) = 5. La solucion analitica es

_1 2 38 —3(x—
y(x) =5+ 5x + 5 e 3D,

a) Encuentre una formula en la que intervengan c y h
para el error de truncamiento local en el n-ésimo paso
si se emplea el método RK4.

b) Calcule un limite para el error de truncamiento local en
cada paso si se emplea h = 0.1 para aproximar y(1.5).

c) Aproxime y(1.5) con el método RK4 conh =0.1yh
= 0.05. Véase el problema 3. Sera necesario conside-
rar mas de seis cifras para ver el efecto de reducir el
tamafio de paso.

Repita el problema 18 para el problema con valores ini-
cialesy’ = e, y(0) = 0. La solucion analitica es y(x) =
In(x + 1). Aproxime y(0.5). Véase el problema 7.

Problemas para analizar

20.

Se utiliza una cuenta del nimero de evaluaciones de la
funcion usada para resolver el problema con valores ini-
cialesy’ = f(x, y), y(x,) =y, como medida de la compleji-
dad de un método numérico. Determine el nimero de eva-
luaciones de f requeridas para cada paso de los métodos de
Euler, de Euler mejorado y RK4. Considerando algunos
ejemplos, compare la precision de estos métodos cuando
se usa con complejidades computacionales comparables.

Tarea para el laboratorio de computacién

21.

El método RK4 para resolver un problema con valores ini-
ciales en un intervalo [a, b] da como resultado un conjunto
finito de puntos que se supone aproximan puntos en la grafica
de la solucién exacta. Para ampliar este conjunto de puntos
discretos a una solucion aproximada definida en los puntos
en el intervalo [a, b], se puede usar una funcién de interpo-
lacién. Esta es una funcién incluida en la mayor parte de los
sistemas de algebra computarizados, que concuerda de modo
exacto con los datos y asume una transicion uniforme entre
puntos. Estas funciones de interpolacién pueden ser polino-
mios 0 conjuntos de polinomios que se unen suavemente.
En Mathematica el comando y = Interpolation[data] se
usa para obtener una funcién de interpolacion por los puntos
data = {{X, Y.} {X, Y.}, ..., {X,, ¥, }}. La funcion de
interpolacién y[x] se puede tratar ahora como cualquier otra
funcion integrada en el sistema algebraico computarizado.

a) Encuentre la solucion analitica del problema con va-
lores iniciales y’ = —y + 10 sen 3x; y(0) = O en el
intervalo [0, 2]. Trace la gréfica de esta solucion y
determine sus raices positivas.

b) Use el método RK4 con h = 0.1 para aproximar una
solucién del problema con valores iniciales del inciso
a). Obtenga una funcién de interpolacion y trace la
gréfica. Encuentre las raices positivas de la funcién
de interpolacion del intervalo [0, 2].
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Problema aportado

22.

Layachi Hadji
Profesor Asociado del
Departamento de Matematicas de

Un enfoque energetlco a la Universidad de Alabama.

los sistemas resorte/masa
Considere un sistema que
consiste en una masa M conectada a un resorte de cons-
tante elastica k. Despreciamos todos los efectos debidos a
la friccion, suponemos que una fuerza constante F actua
sobre la masa. Si el resorte se estira una cantidad x(t), en-
tonces la energia eléstica del resorte es E,, = 3x°. Esta
energia elastica se puede convertir a energia cinética
Euin = sM(dx/dt)2 La energia potencial es E,, = Fx. El
principio de la conservacion de la energia implica que E_ .
+E,, t E,,, = constante, en particular,

1 (dx)\* 1
“M{— ) + k¥ + Fx =
2 (dt) PR =G
donde C es una constante que denota la energia total en el
sistema. Véase la figura 9.2.2.

a) Considere el caso de movimiento libre, es decir, haga
F = 0. Muestre que el movimiento del sistema re-
sorte/masa, para el cual la posicion inicial de la masa
es x = 0 estéa descrito por el siguiente problema con
valores iniciales (PVI) de primer orden:

dx'\?
2y2 — —
(dt) + 0>®=C, x(0) =0,

donde w = Vk/M.

b) Si se toma la constante del inciso a) igual a C = 1,
demuestre que si se considera la raiz cuadrada posi-
tiva, el PVI se reduce a

Y —Vi-f Yo -0 ®

dondey = wx.

<)

d)

e)

9)

h)

Resuelva el PVI del inciso b) usando cualquier mé-
todo de Euler o el método RK4. Use los valores nu-
méricos M = 3 kg para lamasay k = 48 N/m para la
constante del resorte.

Observe que no importa qué tan pequefio haga su ta-
manio de paso h, la solucién empieza en el punto (0, 0) y
aumenta casi linealmente a la solucion constante (x, 1).
Demuestre que la solucion numérica esta descrita por

0 = {sen t, si0=t=m/8,
y 1,  sit>m/8.

¢Esta solucién describe en forma real el movimiento
de la masa?

La ecuacién diferencial (8) es separable. Separe las
variables e integre para obtener una solucién anali-
tica. ¢La solucion analitica describe en forma real el
movimiento del resorte?

Esta es otra forma de modelar el problema numéri-
camente. Derivando ambos lados de (8) respecto a t,
demuestre que se obtiene el PVI de segundo orden
con coeficientes constantes

d?y ) ,

W+wy=0, y(0) =0, y'(0) =1.
Resuelva el PVI en el inciso f) numéricamente usando
el método RK4 y compare con la solucién analitica.

Repita el andlisis anterior para el caso de movimiento
forzado. Tome F = 10 N.

FIGURA 9.2.2 Sistema resorte/masa.

9.3

METODOS MULTIPASOS

REPASO DE MATERIAL
e Secciones 9.1y 9.2.

uno de estos métodos.

INTRODUCCION  Los métodos de Euler, de Euler mejorado y de Runge-Kutta son ejemplos de
métodos de un sélo paso o de inicio. En estos métodos cada valor sucesivo y,
base en la informacion acerca del valor precedente inmediato y . Por otro lado, los métodos multipa-
s0s 0 continuos usan los valores de los diferentes pasos calculados para obtener el valor de 'y
un gran namero de férmulas de métodos multipasos para aproximar soluciones de ED, pero como no
se tiene la intencién de estudiar el extenso campo de procedimientos numéricos, s6lo consideraremos

, se calcula solo con

Hay

n+1°
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METODO DE ADAMS-BASHFORTH-MOULTON  El método multipasos que se
analiza en esta seccion se Ilama método de Adams-Bashforth-Moulton de cuarto
orden. Al igual que el método de Euler mejorado es un método de prediccion-correc-
cién, es decir, se emplea una férmula para predecir un valor y* ., ;, que a su vez se usa
para obtener un valor corregido y ... La prediccion en este método es la formula de
Adams-Bashforth

* h ’ ’ ’ ’
Yor1 = Yn t ﬁ (55yn — 59y} + 37yp, — Yy, 3): (1)

Yn = f(X0, ¥n)
Yo-1 = F(Xo—1, Yn-1)
Yo-2 = F(Xa—2: Yn-2)

Yoz = f(Xn-3: Yn-3)
para n = 3. Después se sustituye el valor de y*., en la correccién de
Adams-Moulton

h
Va1 = Yo T 5201 T 19Yn = Syas + ¥oo) @)
Yorr = (a1, Yin)-

Observe que la formula (1) requiere conocer los valores de y,, y,, ¥, Y Y, para obtener
y,. Por supuesto, el valor de y, es la condicion inicial dada. El error de truncamiento
local del método de Adams-Bashforth-Moulton es O(h°), los valores dey,, y, y y, se
calculan generalmente con un método con la misma propiedad de error, tal como el
método de Runge-Kutta de cuarto orden.

I EJEMPLO 1T Método de Adams-Bashforth-Moulton

Use el método de Adams-Bashforth-Moulton con h = 0.2 para obtener una aproxi-
macion a y(0.8) para la solucion de

y=x+y—-1 y0) =1
SOLUCION  Con un tamafio de paso de h = 0.2, y(0.8) se aproxima por y,. En princi-
pio se emplea el método RK4 con x, = 0,y, = 1y h = 0.2 para obtener
y, = 1.02140000, y, = 1.09181796, ys = 1.22210646.

Ahora con las identificaciones x, = 0, x, = 0.2, X
— 1, encontramos

Yo =f(X, ¥0) =(0) + (1) —1=0

v, = f(xy, y1) = (0.2) + (1.02140000) — 1 = 0.22140000
yh = f(X, y5) = (0.4) + (1.09181796) — 1 = 0.49181796
yi = f(Xs, y5) = (0.6) + (1.22210646) — 1 = 0.82210646.

04,x,=06yf(x,y)=x+y

, =

Con los valores anteriores entonces la prediccion (1) es

0.2
Y =Yy; + 2 (55y5 — 59y5; + 37y; — 9yg) =1.42535975.
Para usar la correccion (2), primero se necesita

yi =f(x,, y%) = 0.8 + 1.42535975 — 1 = 1.22535975.
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Por Gltimo, usando (2) se obtiene
0.2
Yy =VY3+ e 9y, + 19y; — 5y, + y;) = 1.42552788. [ |

Se debe comprobar que el valor real de y(0.8) en el ejemplo 1 es y(0.8) =
1.42554093. Véase el problema 1 en los ejercicios 9.3.

ESTABILIDAD DE LOS METODOS NUMERICOS  Una consideracion importante
al usar métodos numéricos para aproximar la solucién de un problema con valores
iniciales es la estabilidad del método. En términos simples, un método numérico es
estable si cambios pequefios en la condicién inicial dan como resultado sélo cambios
pequefios en la solucién calculada. Se dice que un método numérico es inestable si no
es estable. La razdn por la cual las consideraciones de estabilidad son importantes es
que en cada paso después del primero de una técnica numérica esencialmente se em-
pieza otra vez con un nuevo problema con valores iniciales, donde la condicion inicial
es el valor solucién aproximado calculado en el paso anterior. Debido a la presencia
del error de redondeo, es casi seguro que este valor varie al menos un poco respecto al
valor verdadero de la solucién. Ademas del error de redondeo, otra fuente comun de
error ocurre en la condicidn inicial; en aplicaciones fisicas los datos con frecuencia se
obtienen con mediciones imprecisas.

Un posible método para detectar inestabilidad en la solucién numérica de un pro-
blema con valores iniciales especifico es comparar las soluciones aproximadas ob-
tenidas cuando se emplean tamafios de paso reducidos. Si el método es inestable, el
error puede aumentar en realidad con tamafios de paso mas pequefios. Otra forma de
comprobar la inestabilidad, es observar lo que sucede con las soluciones cuando se
perturba un poco la condicion inicial (por ejemplo, cambiar y(0) = 1 a y(0) = 0.999).

Para un estudio mas detallado y preciso de la estabilidad, consulte un libro de
analisis numérico. En general, los métodos examinados en este capitulo tienen buenas
caracteristicas de estabilidad.

VENTAJAS Y DESVENTAJAS DE LOS METODOS MULTIPASOS  Intervienen
muchas consideraciones en la eleccién de un método para resolver de forma numérica
una ecuacion diferencial. Los métodos de un s6lo paso, en particular el RK4, se eligen
debido a su precision y al hecho de que son faciles de programar. Sin embargo, una
desventaja importante es que el lado derecho de la ecuacion diferencial se debe evaluar
muchas veces en cada paso. Por ejemplo, el método RK4 requiere cuatro evaluaciones
de funcion para cada paso. Por otro lado, si se han calculado y almacenado las eva-
luaciones de funcién del paso anterior, un método multipasos requiere s6lo una nueva
evaluacioén de funcién para cada paso. Esto puede originar grandes ahorros de tiempo
y reducir costos.

Como ejemplo, resolver en forma numéricay” = f(x, y), y(x,) =y, usando n pasos
con el método de Runge-Kutta de cuarto orden requiere 4n evaluaciones de la funcion.
El método multipasos de Adams-Bashforth requiere 16 evaluaciones de la funcién
para el iniciador de cuarto orden de Runge-Kutta y n — 4 para los n pasos de Adams-
Bashforth, lo que da un total de n + 12 evaluaciones de la funcion para este método.
En general, el método multipasos de Adams-Bashforth requiere poco mas de un cuarto
del nimero de evaluaciones de funcion necesarias para el método RK4. Si se complica
la evaluacion de f(x, y), el método multipasos sera mas eficaz.

Otro asunto relacionado con los métodos multipasos es cuantas veces se debe re-
petir en cada paso la formula de correccion de Adams-Moulton. Cada vez que se usa la
correccion, se hace otra evaluacion de la funcién y por tanto se incrementa la precision
a expensas de perder una ventaja del método multipasos. En la préactica, la correccién se
calcula una vez y si se cambia el valor de y, , , por una cantidad grande, se reinicia todo
el problema con un tamafio de paso mas pequefio. Esta es con frecuencia la base de los
métodos de tamafio de paso variable, cuyo analisis esta fuera del alcance de este libro.
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EJERCICIOS 9.3 Lasrespuestas a los problemas seleccionados con niimero impar comienzan en la pagina RES-16.

1. Determine la solucién analitica del problema con valores ini- En los problemas 5 a 8, use el método de Adams-Bashforth-
ciales del problema 1. Compare los valores reales de y(0.2), Moulton para aproximar y(1.0), donde y(x) es la solucién del
y(0.4), y(0.6) y y(0.8) con las aproximacionesy,, ¥,, Y, Y ¥,. problema con valores iniciales dado. Primero use h = 0.2 y

2. Escriba un programa de computadora para ejecutar el mé- después use h = 0.1. Use el método RK4 para calculary,, ,
todo de Adams-Bashforth-Moulton. YYs

En los problemas 3 y 4 use el método Adams-Bashforth-Moul- 5. y=1+y% y0)=0

ton para aproximar y(0.8), donde y(x) es la solucion del problema ,
con valores iniciales dado. Use h = 0.2 y el método RK4 para 6.y =y+cosx, y(0)=1

calculary,,y,yy,. 7.y =(x-vy)? y0) =0
3y =2x-3y+1 y0)=1
4.y =4x—2y, y0)=2

8.y =xy+Vy y0)=1

9.4 ECUACIONES Y SISTEMAS DE ORDEN SUPERIOR

REPASO DE MATERIAL
e Seccion 1.1 (forma normal de una ED de segundo orden)
e Seccion 4.9 (ED de segundo orden escrita como un sistema de ED de primer orden)

INTRODUCCION  Hasta ahora, nos hemos concentrado en técnicas numéricas que se pueden usar para
aproximar la solucion de un problema con valores iniciales de primer orden y’ = f(x, y), y(X,) =Y,
Para aproximar la solucion de un problema con valores iniciales de segundo orden, se debe expresar una ED
de segundo orden como un sistema de dos ED de primer orden. Para hacer esto, se empieza por escribir la
ED de segundo orden en forma normal al despejar y” en términos de x, y y y'.

PVI DE SEGUNDO ORDEN Un problema con valores iniciales de segundo orden

y'=fxy.¥), yX) =Yo, Y (Xo) = Uo 1)

se puede expresar como un problema con valores iniciales para un sistema de ecuacio-
nes diferenciales de primer orden. Siy’ = u, la ecuacion diferencial en (1) se convierte
en el sistema
y ' =u
, )
u' = f(x,y, u.

Puesto que y'(x,) = u(x,), las condiciones iniciales correspondientes para (2) son
y(X,) = Y, U(x,) = u,. El sistema (2) se puede resolver de forma numérica mediante la
simple aplicacion de un método numérico a cada ecuacion diferencial de primer orden
en el sistema. Por ejemplo, el método de Euler aplicado al sistema (2) seria

Yne1 = Yo T hun (3)
unA:L = un + hf(xn: yn: un)!

mientras que el método de Runge-Kutta de cuarto orden o método RK4, seria

h
Ynt1 = Yn T é(ml + 2m, + 2m; + m,)
4

h
Upr1 = Uy +6(k1 + 2k, + 2k; + k)
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N <

Método de Euler

Método RK4

|

|

I a
13(0.2)
l

|

a) Método de Euler (roja) y
método RK4 (azul)

y
e

J/

5 10 15

b) Método RK4

FIGURA 9.4.1 Curvas solucion
numérica generadas con diferentes
métodos.

20

X

donde m; = u, ki = f(Xa, Yns Un)
m, = u, + thk, kp = f(x, + Lh, y, + 2hmy, u, + Thk,)
My = u, + hk, ks = f(x, + Lh, y, + 2hm,, u, + 1hk,)
m, = U, + hkg k, = f(x, + h,y, + hms, u, + hky).
En general, se puede expresar cada ecuacion diferencial de n-ésimo orden y™ =
f(x,y,y',...,y" D) como un sistema de n ecuaciones diferenciales de primer orden
usando las sustitucionesy = u,, y' = U, y" = U, ..., y" Y =u"

I EJEMPLO 1 Método de Euler

Use el método de Euler para obtener el valor aproximado de y(0.2), donde y(x) es la
solucién del problema con valores iniciales

y' +xy +y=0 y(0) =1 y(©0 =2 )

SOLUCION  En términos de la sustitucion y’ = u, la ecuacion es equivalente para el
sistema

y' =u
u = —xu-—y.

Por lo que de (3) se obtiene
Yor1 = Yo + hu,
Upp1 = Uy + h[—=XU, — Yol
Usando el tamafio de paso h = 0.1yy, = 1, u, = 2, encontramos
yi=VYo + (0.)u, =1+ (0.1)2 = 1.2
Up = Ug + (0.1) [—XUp — Yol =2 + (0.1)[-(0)?2) — 1] = 1.9
Y, =y, + (0.1)u; = 1.2 + (0.1)(1.9) = 1.39
Uy, = Uy + (0.0)[~XU; — y;] = 1.9 + (0.1)[(0.1)(1.9) — 1.2] = 1.761.
En otras palabras, y(0.2) = 1.39y y'(0.2) = 1.761. ]

Con ayuda de la aplicacion para graficar de un programa de solucion numérica, en la
figura 9.4.1a se compara la curva solucién de (5) generada con el método de Euler (h =
0.1) en el intervalo [0, 3] con la curva solucién generada con el método RK4 (h = 0.1).
De la figura 9.4.1b parece que la solucion y(x) de (4) tiene la propiedad que y(x) — 0
conforme X — o,

Si se desea, se puede usar el método de la seccion 6.1 para obtener dos soluciones
en serie de potencias de la ecuacion diferencial en (5). Pero a menos que este método
revele que la ED tiene una solucién elemental, alin se puede aproximar y(0.2) con una
suma parcial. Examinando nuevamente las soluciones en serie infinitas de la ecuacion
diferencial de Airy y” + xy = 0, vistas en la pagina 226, no muestran el compor-
tamiento oscilatorio que las soluciones y,(x) y y,(x) presentan en las graficas de la fi-
gura 6.1.2. Esas gréficas se obtuvieron con un programa de solucién numérica usando
el método RK4 con tamafio de paso de h = 0.1.

SISTEMAS REDUCIDOS A SISTEMAS DE PRIMER ORDEN  Usando un procedi-
miento similar al que se acaba de describir para ecuaciones de segundo orden, se reduce un
sistema de ecuaciones diferenciales de orden superior a un sistema de ecuaciones de primer
orden, determinando primero la derivada de orden superior de cada variable dependiente y
después haciendo las sustituciones apropiadas para las derivadas de orden menor.
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I EJEMPLO 2 Unsistema reescrito como un sistema de primer orden

Escriba X" — X' 4+ 5x + 2y” = ¢t
—2x +y" + 2y = 3t?

como un sistema de ecuaciones diferenciales de primer orden.

SOLUCION  Escriba el sistema como
X"+ 2y" =e' — 5x + x’
y" =32 + 2x — 2y
y después elimine y” multiplicando la segunda ecuacion por 2 y restando. Esto da
X" = —9x + 4y + x’ + e' — 6t%

Puesto que la segunda ecuacidn del sistema ya expresa la derivada de y de orden su-
perior en términos de las demas funciones, ahora se tiene la posibilidad de introducir
nuevas variables. Si se hace X’ = uyy’ = v, las expresiones para X" y y” respectiva-
mente, se convierten en

U =x"=—-9x+ 4y + u + e — 6t?
vV =y"=2x — 2y + 3t

El sistema original se puede escribir en la forma

X' =u

y =v

u = —-9x + 4y +u + et — 6t

v =2x — 2y + 3t n

No siempre es posible realizar las reducciones que se muestran en el ejemplo 2.

SOLUCION NUMERICA DE UN SISTEMA La solucién de un sistema de la forma

ax,

— =1 (tLX, %, . ..,
at 1(6 X, % Xn)
dx,

— =X, %, . ..,
at 2t X1, %o Xn)
d

d—)f[” =f (X, %, . . . X))

se puede aproximar con una version del método de Euler, de Runge-Kutta o de Adams-
Bashforth-Moulton adaptada al sistema. Por ejemplo, el método RK4 aplicado al sis-
tema

X" =f(t,x,y)
y' =9t xy) (6)
X(to) = Xo, y(to) = Yo,
se parece a:

h
Xne1 = X, +g(m1 +2m, + 2mg + m,)

h 7
Yner = Yo T é(kl + 2k, + 2k; + ky), ()
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TABLA9.8 h=02

donde
m, = f(tm Xns yn) ki, = g(tnv Xns yn)
my = f(t, + 1h,x, + Lhmy,y, + 2hk) k=gt + 30, x, + Lhmy,y, + Lhk,)
mg = f(t, + h, x, + Lhmy, y, + L hky) ks = g(t, + 1h, X, + hmy, y, + Lhky) ®)
m, = f(t, + h,x, + hmg, y, + hky) k, = g(t, + h,x, + hmg,y, + hks).

I EJEMPLO 3 Método RK4

Considere el problema con valores iniciales

X' =2x + 4y

!

y' = —x + 6y
x(0) = -1, y(0) = 6.

Use el método RK4 para aproximar x(0.6) y y(0.6). Compare los resultados para
h=02yh=0.1

SOLUCION  Se muestran los célculos de X, Y'Yy, con tamafio de paso h = 0.2. Con las
identificaciones f(t, x, y) = 2x + 4y, g(t, X, y) = —x + 6y, t, =0,x, = —1yy, = 6,
se ve de (8) que

My = f(to, X0, Vo) = F(0, =1, 6) = 2(—1) + 4(6) = 22
kl = g(t01 X0, yO) = g(O, _lv 6) = _1(_1) + 6(6) =37

t

n

X

n

0.00
0.20
0.40
0.60

—1.0000
9.2453
46.0327
158.9430

" my = f(ty + 3h, %, + Shmy, yo + thky) = £(0.1,12,9.7) = 41.2
6.0000 kp = g(ty + 20, %, + Shmy, yo + thky) = g(0.1,1.2,9.7) = 57
19.0683
55.1203 ms = f(t, + 3h, %, + 3hm,, yo + hk,) = £(0.1, 3.12, 11.7) = 53.04
150.8192

TABLA9.9 h=01

ks = g(to + 2h, X, + Shm,, yo + thky) = g(0.1,3.12, 11.7) = 67.08
m, = f(t, + h, X, + hm, yo + hks) = (0.2, 9.608, 19.416) = 96.88
K, = g(ty + h, X, + hma, yo + hks) = g(0.2, 9.608, 19.416) = 106.888.

Por tanto de (7) se obtiene

t

n

X

n

yn

0.00
0.10
0.20
0.30
0.40
0.50
0.60

—1.0000
2.3840
9.3379

22.5541
46.5103
88.5729
160.7563

X; = Xg + %(ml +2m, + 2m; + m,)
6.0000 6
10.8883 0.2
19.1332 =—1+ —(22 + 2(41.2) + 2(53.04) + 96.88) = 9.2453
32.8539 6
55.4420 02
93.3006 yi =Y + ?(k1 + 2k, + 2kg + ky)
152.0025

0.2
=6+~ (37 + 2(57) + 2(67.08) + 106.888) = 19.0683,
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donde, como es usual, los valores calculados de x, y y, estan redondeados a cuatro lu-
gares decimales. Estos ndmeros nos dan la aproximacion x, = x(0.2) y y, = y(0.2). Los
valores subsecuentes, obtenidos con la ayuda de una computadora, se resumen en las
tablas 9.8 y 9.9. ]

Se debe comprobar que la solucién del problema con valores iniciales del ejemplo
3 estd dada por x(f) = (26t — 1)e*, y(t) = (13t + 6)e*. De estas ecuaciones vemos
que los valores reales x(0.6) = 160.9384 y y(0.6) = 152.1198 se comparan favora-
blemente con las entradas del Gltimo rengldn de la tabla 9.9. La gréafica de la solucion
en una vecindad de t = 0 que se muestra en la figura 9.4.2; la gréafica se obtuvo de un

FIGURA 9.4.2 Curvas solucién

numeérica para el PVI del ejemplo 3.

programa de solucidn numérico usando el método RK4 con h = 0.1.

En conclusidn, establacemos el método de Euler para el sistema general (6):

Xn+1 = Xn + hf(tnr anyn)

yn+l = yn + hg(tnv an yn)

EJERCICIOS 9.4 Lasrespuestas a los problemas seleccionados con nimero impar comienzan en la pagina RES-16.

1.

Use el método de Euler para aproximar y(0.2), donde y(x)
es la solucion del problema con valores iniciales

y"—4y' +4y =10, y0) = -2, y(0) =1

Use h = 0.1. Encuentre la solucion analitica del problema
y compare el valor real de y(0.2) cony,

Use el método de Euler para aproximar y(1.2), donde y(x)
es la solucion del problema con valores iniciales

X2y" —2xy' +2y =0, y(1) =4, y(1) =09,

donde x > 0. Use h = 0.1. Encuentre la soluci6n analitica
del problema y compare el valor real de y(1.2) con y,.

En los problemas 3y 4 repita el problema indicado con el mé-
todo RK4. Primero utilice h = 0.2 y después h = 0.1.

3. Problema 1
4. Problema 2
5. Use el método RK4 para aproximar y(0.2), donde y(x) es
la solucién del problema con valores iniciales.
y" =2y + 2y =e'cost, y(0) =1, y'(0) =2
Primero use h = 0.2 y después h = 0.1.
6. Cuando E = 100V, R =10 QyL = 1 h, el sistema de

ecuaciones diferenciales para las corrientes i (t) e i,(t) en
la red eléctrica dada en la figura 9.4.3 es

di _ .
ﬁ=—muﬂm+mo
di . .
szlml—zm@

donde i,(0) = 0 e i,(0) = 0. Use el método RK4 para
aproximar i (t) e i,(ty ent = 0.1, 0.2,0.3, 0.4y 0.5. Use
h = 0.1. Mediante un programa de solucién numérica
obtenga la grafica de la solucion en el intervalo0 = t < 5.
Use las graficas para predecir el comportamiento de i (t)
i,(t) conforme t — <.

FIGURA 9.4.3 Red del problema 6.

En los problemas 7 a 12, use el método de Runge-Kutta para
aproximar x(0.2) y y(0.2). Primero use h = 0.2 y después h
= 0.1. Use un programa de solucién numéricay h = 0.1 para
trazar la gréfica de la solucién en una vecindad de t = 0.

7. X' =2x—y 8. X' =x+2y
y =X y' =4x + 3y
x(0) =6, y(0)=2 x(0) =1, y(0)=1
9. X' = -y +t 10. x' =6x +y + 6t
y =x-—t y'=4x+ 3y — 10t + 4

x(0) = =3, y(0)=5 x(0) = 0.5, y(0)=0.2

11 X' +4x —y' =Tt 12. X'+ y'=4t
X' +y —2y=3t X" +y +y=06t2+ 10
x(0)=1, y(0)=-2 x(0)=3, y(0)=-1
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9.5

PROBLEMAS CON VALORES EN LA FRONTERA DE SEGUNDO ORDEN

REPASO DE MATERIAL
Seccion 4.1 (pagina 119)
Ejercicios 4.3 (Problemas 37-40)
Ejercicios 4.4 (Problemas 37-40)
Seccion 5.2

INTRODUCCION  En la seccion 9.4 vimos como aproximar la solucién de un problema con valores
iniciales de segundo orden

y =06y, Y), V(X)) =Y, V(X)) = U,

En esta seccion se tratan dos métodos para encontrar una solucion aproximada de un problema con
valores en la frontera de segundo orden

y'=fxy,y), y@ =a, y) =258

A diferencia del procedimiento utilizado en los problemas con valores iniciales de segundo orden, en
los métodos para los problemas con valores en la frontera de segundo orden no se requiere escribir la
ED de segundo orden como un sistema de ED de primer orden.

APROXIMACIONES POR DIFERENCIAS FINITAS EI desarrollo en serie de
Taylor centrado en el punto a, de una funcién y(x) es

X—a (x—a)
2!

x=aP

2
+y"(a) +y7@)

y(x) =y(@) +y'@—,
Si se hace h = x — a, entonces el rengl6n anterior es igual a

h h? h3
yx) =y@ +y'(@ TR y”(a)i +y7(a) TR

Para el andlisis posterior es conveniente volver a escribir la Gltima expresion en las dos
formas alternativas:

h? h?
YO+ 1) = Y60 +Y0Oh + Y7005 +y 0 + )
h? h®
y Yix =) = Y60 —y0Oh + Y7005~y 00+ @

Si h es pequefia, podemos despreciar los términos que implican a h%, h®, . .. puesto que
estos valores son despreciables. En realidad, si se ignoran todos los términos con h? y
superiores, y resolviendo (1) y (2), respectivamente, para y’(x) se obtienen las aproxi-
maciones siguientes para la primera derivada:

Y00 = 1 G+ 1) — Y] ®

Y00 = ¢ [y6) — yex = ] @
Restando (1) y (2) también se obtiene

y'() = 2_1h [y(x+h) = y(x = h)]. ®)
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Por otro lado, si se ignoran los términos con h® y superiores, entonces al sumar (1) y
(2) se obtiene una aproximacion de la segunda derivada y”(x):

y"(¥) “%[V(X +h) = 2y() +yx = h)]. (6)

Los lados derechos de (3), (4), (5) y (6) se llaman cocientes de diferencias. Las ex-
presiones

yx +h) =y, yx) —yx—nh), yx+h)—yx-nh),
y y(x +h) — 2y(x) + y(x — h)

se llaman diferencias finitas. En particular, y(x + h) — y(x) recibe el nombre de dife-
rencia hacia adelante, y(x) — y(x — h) es una diferencia hacia atras y tanto y(x + h)
— y(x — h) como y(x + h) — 2y(x) + y(x — h) se llaman diferencias centrales. Los
resultados que se presentan en (5) y (6) se Ilaman aproximaciones por diferencias
centrales de las derivadas y’ y y".

METODO DE DIFERENCIAS FINITAS Ahora considere un problema lineal con
valores en la frontera de segundo orden

y"+ Py + Q(Xy =1(),  y(@) =a y(b) =28 ()

Supongaquea =X, <x, <x,<...<Xx _, <X = brepresenta una particion regular
del intervalo [a, b], es decir, x, = a + ih, dondei =0,1,2,...,nyh = (b — a)/n.
Los puntos

X, =a+h, X, =a+ 2h,..., Xp—1 = a+ (n — 1)h
se llaman puntos de malla interiores del intervalo [a, b]. Si hacemos
Yi =y (%), Pi = P(x), Qi = Q(x) y fi = f(x))

ysiy"yy' en (7) se reemplazan por las aproximaciones de diferencias centrales (5) y
(6), se obtiene

: — 4V ; — Vi
y|+1 zhgl yl*l + Pi y|+12hy|71 + Qiyi — fi

o0 después de simplificar

(1 + 2P|>y|+l + (72 + h2Q|)yi + (1 o 2P|>y|1 - hzfI' (8)

La ultima ecuacién se conoce como ecuacion de diferencias finitas y es una aproxi-
macion a la ecuacién diferencial. Permite aproximar la solucién y(x) de (7) en los
puntos de malla interiores x, X,, ..., X, _, del intervalo [a, b]. Si i toma los valores
1,2,...,n—1en(8), se obtienen n — 1 ecuaciones con n — 1incognitasy,,y,, ...,
y,_,- Considere que se conocen y, y y, porque son las condiciones prescritas en la
fronteray, = y(x)) = y(@) = ayy, = y(x,) = y(b) = B.

En el ejemplo 1 se considera un problema con valores en la frontera para el que
se pueden comparar los valores aproximados con los valores reales de una solucién

explicita.

I EJEMPLO 1T Uso del método de diferencias finitas

Use la ecuacion de diferencias (8) con n = 4 para aproximar la solucidn del problema
con valores en la fronteray” — 4y = 0, y(0) = 0, y(1) = 5.
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SOLUCION Para usar (8), se identifica P(x) = 0, Qx) = —4, f(x) = 0 y
h = (1 — 0)/4 = . De donde la ecuaci6n de diferencia es
Yier — 2.25y; + i1 = 0. )

Ahora, los puntos interiores son X; = 0 + 5, %, = 0 + 4,x; = 0 + 2 por lo que para i
= 1,2y 3, laecuacion (9) genera el sistema siguiente para las correspondientesy,, y, y y,

Yy, — 2.25y;+y, =0
ys —2.25y,+y; =0
Vi — 2.25y;+Yy, = 0.
Con las condiciones en la fronteray, = 0y y, = 5 el sistema anterior se convierte en
—2.25y, + Y, =0
y, — 225y, + y,=0
y, — 2.25y, = —5.

La solucion del sistemaesy, = 0.7256, y, = 1.6327y y, = 2.9479.

Ahora la solucion general de la ecuacion diferencial dada esy = ¢, cosh 2x + c,
senh 2x. La condicion y(0) = 0 significa que ¢, = 0. La otra condicion en la frontera
da c,. De este modo se ve que una solucion del problema con valores en la frontera es
y(x) = (5 senh 2x) /senh 2. Por tanto, los valores reales (redondeados a cuatro decima-
les) de esta solucién en los puntos interiores son los siguientes: y(0.25) = 0.7184,
y(0.5) = 1.6201 y y(0.75) = 2.9354. ]

La precision de las aproximaciones en el ejemplo 1 se puede mejorar usando un
valor mas pequefio de h. Por supuesto, usar un valor mas pequefio de h requiere resol-
ver un sistema mas grande de ecuaciones. Se deja como ejercicio demostrar que con
h = % las aproximaciones a y(0.25), y(0.5) y y(0.75) son 0.7202, 1.6233 y 2.9386,
respectivamente. VVéase el problema 11 en los ejercicios 9.5.

I EJEMPLO 2 Usando el método de diferencias finitas

Use la ecuacidn diferencial (8) con n = 10 para aproximar la solucién de
y'+3y'+ 2y =4x?  y@d)=1, y(@) =6.

SOLUCION En este caso se identifica P(x) = 3, Q(x) = 2, f(x) = 4x2y h = (2 —
1)/10 = 0.1, y asi (8) se convierte en

1.15y,,, — 1.98y, + 0.85y,_, = 0.04x2. (10)

Ahora los puntos interiores son x, = 1.1, x, = 1.2, x, = 1.3, X, = 1.4, x, = 1.5, X, =
16,x,=17,x,=18yx,=19.Parai=1,2,...,9yy, =1y, = 6, laecuacion
(10) da un sistema de nueve ecuaciones y nueve incognitas:

1.15y, — 1.98y, = —0.8016
1.15y, — 1.98y, + 0.85y, = 0.0576
1.15y, — 1.98y, + 0.85y, = 0.0676
115y, — 1.98y, + 0.85y, = 0.0784
1.15y, — 1.98y; + 0.85y, = 0.0900
1.15y, — 1.98y, + 0.85y; = 0.1024
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115y, — 1.98y, + 0.85y,; = 0.1156
115y, — 1.98y, + 0.85y, = 0.1296

— 1.98y, + 0.85y, = —6.7556.

Se puede resolver este grande sistema usando eliminacion de Gauss o, con relativa
facilidad, por medio de un sistema algebraico computarizado. El resultado que se en-
cuentra esy, = 2.4047,y, = 3.4432, y, = 4.2010, y, = 4.7469, y, = 5.1359, y, =
5.4124,y, = 5.6117,y, = 5.7620 y y, = 5.8855. [ |

METODO DE TANTEOS Otro modo de aproximar una solucion de un problema
con valores en la fronteray” = f(x, y, ¥'), y(&) = «, y(b) = B se denomina método de
tanteos. El punto de partida de este método es reemplazar el problema con valores en
la frontera por un problema con valores iniciales
y"=1txy.y) y@ =a y'(@)=m. (11)

El nimero m, en (11) es simplemente una suposicion de la pendiente desconocida de
la curva solucién en el punto conocido (a, y(a)). Se puede aplicar entonces una de las
técnicas numéricas paso a paso a la ecuacién de segundo orden en (11) para encontrar
una aproximacion 3, del valor de y(b). Si 8, concuerda con el valor dado y(b) = 3 den-
tro de alguna tolerancia asignada antes, se detiene el calculo; de otro modo se repiten
los calculos, empezando con una suposicion distinta y’(a) = m, para obtener una se-
gunda aproximacion 3, para y(b). Se puede continuar con este método usando prueba
y error o las pendientes siguientes m,, m,, . . . se ajustan de alguna manera sistematica.
La interpolacién lineal proporciona, en especial, resultados satisfactorios cuando la
ecuacion diferencial en (11) es lineal. EI procedimiento es similar al tiro al blanco (el
objetivo es elegir la pendiente inicial), se dispara hacia una objetivo ojo de buey y(b)
hasta que se acierta. Véase el problema 14 en los ejercicios 9.5.

Por supuesto, lo que subyace en el uso de estos métodos numéricos es la suposi-
cién de que existe una solucién para el problema con valores en la frontera, la que se
sabe, no esta siempre garantizada.

COMENTARIOS

El método de aproximacion con diferencias finitas se puede generalizar a proble-
mas con valores en la frontera en los que la primera derivada se especifica en una
frontera, por ejemplo, un problema del tipo y” = f(x, y, y'), y'(a) = «, y(b) = B.
Véase el problema 13 de los ejercicios 9.5.

EJERCICIOS 9.5 Lasrespuestas a los problemas seleccionados con nimero impar comienzan en la pagina RES-16.

En los problemas | a 10 use el método de diferencias finitas y 8. X%y —xy'"+y=Inx, y(1)=0,y@2) =—-2; n=8
el valor indicado de n para aproximar la solucion de los pro-

blemas con valores en la frontera.
y"+9 =0, y0)=4y2 =1

y'—y=x% y(0)=0y(1)=0;
y(0)=0,y(1)=0; n=5

1.

a k> wbd

S

y" +2y" +y =5,

y" —4y' + 4y = (x + 1)e¥,

9. ¥vV'+(L—xy +xy=% y0)=0,y1)=2;, n=10
n=4 10. y"+xy"+y=% y0)=1y(1l)=0;, n=10
n=4 11. Resuelva de nuevo el ejemplo 1 usando n = 8.

12. El potencial electrostatico u entre dos esferas concéntri-

y" =10y’ +25y =1, y(0)=1y(1)=0; n=5 cas de radio r = 1y r = 4 se determina a partir de
d2u  2du
== = = .
o =0, u(1) =50 u() =100

y(0) = 3,y(1) = 0;

y'+ 5y =4Vx, y(1) =1, y@ =-1, n=6

n==o6

Use el método de esta seccion con n = 6 para aproximar

7. x%y"+3xy" +3y =0, y(1)=5y(2) =0 n=8 la solucién de este problema con valores en la frontera.
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Considere el problema con valores en la frontera y” + xy

=0,y(0)=1,y(1) = -1

a) Encuentre la ecuacion en diferencias correspondiente
a la ecuacion diferencial. Demuestre que parai = 0,
1,2,...,n— 1laecuacién en diferencias produce
nconn + lincognitasy ., Y, Yy Yo - - -+ Y, _,- AQui
Y_,Y Y, son incognitas, puesto que y_, representa una
aproximacion a y al punto exterior x = —hy y, no
esta especificada en x = 0.

b) Use la aproximacion de diferencias centrales (5) para
demostrar que y, — y_, = 2h. Utilice esta ecuacion
para eliminar y_, del sistema en el inciso a).

c) Use n = 5y el sistema de ecuaciones encontradas
en los incisos a) y b) para aproximar la solucion del
problema con valores en la frontera original.

Tarea para el laboratorio de computacién

14. Considere el problema con valores en la fronteray” =y’

—sen(xy), y(0) = 1, y(1) = 1.5. Use el método de tanteos
para aproximar la solucion de este problema. (La aproxi-
macion se puede obtener usando una técnica numérica,
digamos, el método RK4 con h = 0.1; o, ain mejor, si
tiene acceso a un SAC tal como Mathematica o Maple,
puede usar la funcién NDSolve).

REPASO DEL CAPITULO 9

Las respuestas a los problemas seleccionados con nimero impar
comienzan en la pagina RES-16.

En los problemas 1 a 4 construya una tabla para comparar
los valores indicados de y(x) mediante el método de Euler,
el método de Euler mejorado y el método RK4. Calcule re-
dondeando a cuatro cifras decimales. Primero use h = 0.1y
después h = 0.05.

1.

y' =2Inxy, y@1)=2;
y(1.1), y(1.2), y(1.3), y(1.4), y(1.5)

y' =senx?+ cosy? y(0) =0;
y(0.1), y(0.2), y(0.3), y(0.4), y(0.5)

y = Vx+y, y(0.5)=0.5
y(0.6), y(0.7), y(0.8), y(0.9), y(1.0)
y =xy+y5, y@@) =1

y(1.1), y(1.2), y(1.3), y(1.4), y(1.5)

Aplique el método de Euler para aproximar y(0.2), donde
y(x) es la solucién del problema con valores iniciales y”
—(2x + L)y = 1, y(0) = 3, y'(0) = 1. Primero use un
paso con h = 0.2 y después repita los calculos usando dos
pasos con h = 0.1.

. Utilice el método de Adams-Bashforth-Moulton para

aproximar y(0.4), donde y(x) es la solucion del problema
convaloresinicialesy’ = 4x — 2y,y(0) = 2.Useh = 0.1
y el método de RK4 para calculary,, y,, y ¥..

. Utilice el método de Euler para aproximar x(0.2) y y(0.2),

donde x(t), y(t) es la solucion del problema con valores
iniciales.

X' =xX+y
y =x-y
x(0) = 1, y(0) = 2.

. Use el método de las diferencias finitas con n = 10,

aproxime la solucion del problema con valores en la fron-
teray” + 6.55(1 + x)y = 1, y(0) = 0, y(1) = 0.
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FIGURA 1.1

Gréfica de I'(x) para x

distinto de cero y que sea un entero no

negativo.

La definicion integral de Euler de la funcion gamma es

I'x) = fxtX1etdt. )

La convergencia de la integral requiere que x — 1 > —I 0 x > 0. La relacion de
recurrencia

I'x + 1) = xI'(x), 2

como vimos en la seccidn 6.3, se puede obtener de (1) al integrar por partes. Ahora
cuando x = 1,I'(1) = ﬁ;" e 'dt = 1, y por tanto de la ecuacion (2) da se obtiene

I =11 =1
r@ =2 =2-1
T@4)=3r@3) =3-2-1

y asi sucesivamente. Asi de esta manera vemos que cuando n es un entero positivo,
I'(n + 1) = n!. Por esto a la funcién gamma se le llama con frecuencia funcién fac-
torial generalizada.

Aunque la forma integral (1) no converge cuando x < 0, se puede demostrar por
medio de definiciones alternativas, que la funcion gamma esta definida para todos
los nimeros reales y complejos, exceptox = —n,n =0, 1, 2, .. .. Como una conse-
cuencia, la ecuacion (2) solo es valida para x # —n. La gréfica de I'(x), considerada
como una funcion de una variable real x, se presenta en la figura 1.1. Observe que los
enteros no positivos corresponden a las asintotas verticales de la gréafica.

En los problemas 31 y 32 de los ejercicios 6.3 hemos usado el hecho de que
F(%) = /. Este resultado se puede deducir a partir de (1) y haciendo x = %:

r(t) = fo Tttt @3)

Cuando se hace t = u?, la ecuacion (3) se puede escribir como F(%) =2 f3° e du.
Pero [y e " du = [5 e *"dv, por lo que

[ = (2 e an)(2f e va) =af [evauan

El cambiar a coordenadas polares, u = r cos 6, v = r sen 6 nos permite evaluar la

integral doble:
o [ oo w2 [
4f j e~ W) dudv = 4f f e "rdrdo =
0 Jo 0 0

@ == o 1()=-v= (@)

Por tanto

APE-1
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I EJEMPLO 1 valor de I'(-3)

Evalte I'(—1).

SOLUCION Usando las ecuaciones (2) y (4), con x = —32

Por tanto

-l

—2r(}) = —2vm m

EJERCICIOS PARA EL APENDICE |

Las respuestas a los problemas seleccionados con nimero
impar comienzan en la pagina RES-29.

1. Evalte.
a) I'(5) b) I'(7)
o ri d) It

2. Utilice laecuacion (1) y el hecho de que r(g) = 0.92 para
evaluar f x5e~**dx. [Sugerencia: Hagat = x°.]
0

3. Utilice la ecuacion (1) y el hecho de que F(%) = 0.89

para evaluar | x‘e™dx.
0

1 3
EvalGe f X3 (In%) dx [Sugerencia: Hagat = —In x.]
0

1
Utilice el hecho de que I'(x) > f t*"te 'dt parademos-
0

trar que I'(x) no esta acotada cuando x — 0*.

Utilice (1) para deducir (2) cuando x > 0.
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I1.1 DEFINICIONES BASICAS Y TEORIA

| DEFINICION I1.1  Matriz

Una matriz A es cualquier arreglo rectangular de nimeros o funciones:

Ay Qp o A
Ay ayp - Ay

A=l | (@)
G 4w - Am

Si una matriz tiene m renglones y n columnas, se dice que su tamafio es m por n
(se escribe como m X n). Una matriz n X n se llama matriz cuadrada de orden n.

El elemento, o entrada del i-ésimo rengldon y la j-ésima columna de una matriz
Am X n se representa por a,. Una matriz A m X n se representa en la forma A =
(a”.)m ., 0 simplemente A = (a”.). Una matriz 1 X 1 es s6lo una constante o funcion.

| DEFINICION I1.2  Igualdad de matrices

Dos matrices m X n Ay B son iguales si a = bij paratodaiyj.

DEFINICION 11.3  Matriz columna

Una matriz columna X es cualquier matriz que tenga n renglones y una
columna:

X = . (bil)n><1-

Una matriz columna también se llama vector columna o simplemente vector.

DEFINICION 1.4 Mdltiplos de matrices

Un multiplo de una matriz A se define como

ka;; ka, - ka,
ka21 ka22 R kazn

KA = = (kaij)mxna
kay kayp -+ Ko

donde k es una constante o una funcion.

APE-3
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I EJEMPLO 1 Mdiltiplos de matrices

2 -3 10 —15 1 ¢
a) 54 —-1|=(20 -5 b) €| -2|=|-2¢
: 6 1 30 4 4¢ [

Observamos que para toda matriz A el producto kA es igual al producto Ak. Por

ejemplo,
2 2e 3t 2
-3t — — -3t
¢ (5) <5e3t> (5) °

DEFINICION II.5 Suma de matrices

La suma de dos matrices Ay B m X n se define como la matriz

A =F B = (a” r bij)an'

En otras palabras, cuando se suman dos matrices del mismo tamafio, se suman los
elementos correspondientes.

I EJEMPLO 2 Suma de matrices

2 -1 3 4 7 -8
Lasumade A=| O 4 6lyB= 19 3 5|es
-6 10 -5 1 -1 2
2+4 —-1+7 3+ (-8) 6 6 -5
A+B=| 0+9 4+3 6+5 = 9 7 1 [ |
-6+1 10+ (-1 -5+2 -5 9 -3

I EJEMPLO 3 Una matriz escrita como una suma de matrices columna

3t2 — 2¢
Lamatrizsola| t> + 7t | se puede escribir como la suma de tres vectores columna:
5t
3t2 — 2¢ 3t? 0 —2¢ 3 0 -2
+7t |={ | +|Tt|+| O |=|1|t2+([7|t+]| O]€ ]
5t 0 5t 0 0 5 0

La diferencia de dos matrices m X n se define en la forma usual: A-B = A +
(—B), donde -B = (—1)B.
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DEFINICION I1.6 Multiplicacién de matrices
Sea A una matriz con m renglones y n columnas y B una matriz con n renglo-
nes y p columnas. El producto AB se define como la matrizm X p
a;; ap (P
[@21 3 Dy
AB = ;
Am A Brp
a1y + agby + aybyp + aphy, + - - - 4+ by
Ay by + ayb,; + Ay + axplyy + - - -+ ayby,
by + Ay + - - -+ aby - Aubyp + Ay, T - -+ agby,
n
(E kbkj) o
k=1 mxp

Observe con cuidado en la definicion 11.6, que el producto AB = C esta definido
solo cuando el nimero de columnas en la matriz A es igual al nimero de renglones en
B. El tamafio del producto se determina de

Am><an><p = Cm><p-
17

También, reconocera que los elementos en, digamos, el i-ésimo renglén de la matriz
producto AB se forman aplicando la definicion en componentes del producto interior,
0 punto, del i-ésimo renglén de A con cada una de las columnas de B.

I EJEMPLO 4 Multiplicacién de matrices

-2
a)ParaA=< )yB ( 8>’
AB - <4 9+7-6 4-(-2)+7- 8) (78 48)
3:94+5-6 3-(—2)+5-8 57 34)
5 8
b) Para A = |1 O)y B=( 4 _§>'
2 7
5-(—4)+8-2 5-(-3)+8-0 -4 —15
AB=[1-(-4)+0-2 1-(-3)+0-0|=|-4 -3
2-(-4)+7-2 2-(-3)+7-0 6 —6 -

En general, la multiplicacién de matrices no es conmutativa; es decir, AB # BA.
30 53) _ linci

18 82) mientras que en el inciso
b) el producto BA no esta definido, porque en la definicion 11.6 se requiere que la
primera matriz, en este caso B, tenga el mismo nimero de columnas como renglones
tenga de la segunda.

Nos interesa en particular el producto de una matriz cuadrada por un vector co-
lumna.

Observe en el inciso a) del ejemplo 4, que BA = (
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I EJEMPLO 5 Multiplicacion de matrices

2 -1 3\/-3 2:(=3)+(-1)-6+3-4 0
a) (0 4 5 6|=10-(-3)+ 4 -6+5-4|=|44
1 -7 9 4 1-(=3)+(-7)-6+9-4 -9
b) (—4 2><x>:<—4x+2y> .
3 8/\y 3x + 8y
IDENTIDAD MULTIPLICATIVA Para un entero positivo n, la matrizn X n
100 ---0
010 ---0
=1 .
000 ..-1

se llama matriz identidad multiplicativa. Por la definicion 1.6, para toda matriz
An Xn.

Al =1A=A

También se comprueba con facilidad que si X es una matriz columna n X 1, entonces
IX =X.

MATRIZ CERO Una matriz formada s6lo por elementos cero se conoce como ma-
triz cero y se representa por 0. Por ejemplo,

0 0
o-(O) 0= %) oo o
0 0

y asi sucesivamente. Si A y 0 son matrices m X n, entonces
A+0=0+A=A

LEY ASOCIATIVA Aungue no lo demostraremos, la multiplicacion de matrices es aso-
ciativa. Si A es una matrizm X p, B una matriz p X r y C una matriz r X n, entonces

A(BC) = (AB)C
es una matrizm X n.

LEY DISTRIBUTIVA Si todos los productos estan definidos, la multiplicacion es
distributiva respecto de la suma:

AB+C)=AB+AC vy (B + C)A = BA + CA.

DETERMINANTE DE UNA MATRIZ Asociado a toda matriz cuadrada A de cons-
tantes hay un nimero llamado determinante de la matriz, que se denota por det A.

I EJEMPLO 6 Determinante de una matriz cuadrada

3 6 2
Para A=| 2 5 1| desarrollamos det A por cofactores del primer renglén:
-1 2 4
3 6 2
5 1 2 1 2 5
A= 2 1| = - +
LR L I
-1 2 4

=3(20 — 2) — 6(8 + 1) + 2(4 + 5) = 18. -



APENDICE IT MATRICES ° APE-7

Se puede demostrar que un determinante, det A se puede desarrollar por cofactores
usando cualquier renglon o cualquier columna. Si det A tiene un renglén (o una co-
lumna) con muchos elementos cero, el sentido comun aconseja desarrollar el determi-
nante por ese renglén (o columna).

| DEFINICION IL.7 Transpuesta de una matriz

La transpuesta de la matriz (1) m X nes la matriz AT de n X m dada por

Q; @y -+ apy

Qp dp - Ap
AT =| - .

Ay Sy o A

Es decir, los renglones de una matriz A se convierten en las columnas de su
transpuesta AT.

I EJEMPLO 7 Transpuesta de una matriz

3 6 2 3 2 -1
a) Latranspuestade A=| 2 5 1|esAT=(6 5 2.
-1 2 4 2 1 4
5
b) SiX ={0],entoncesX"=(5 0 3). ]
3

| DEFINICION IL.8 Inversa multiplicativa de una matriz

Sea A una matriz n X n. Si existe una matriz B n X n tal que
AB = BA = |,

en donde I es la identidad multiplicativa, se dice que B es la inversa multipli-
cativa de Ay se denota por B = A%,

DEFINICION I1.9 Matrices no singular/singular

Sea A una matriz n X n. Si det A # 0, entonces se dice que A es no singular.
Si det A = 0, entonces A es singular.

El siguiente teorema especifica una condicién necesaria y suficiente para que una
matriz cuadrada tenga inversa multiplicativa.

TEOREMA I1.1 La no singularidad implica que A tiene una inversa

Una matriz A n X n tiene una inversa multiplicativa A~* si y solo si A es no
singular.

El siguiente teorema describe un método para determinar la inversa multiplicativa
de una matriz no singular.
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TEOREMA I1.2 Una férmula para la inversa de una matriz

Sea A una matriz no singular n X ny sea C; = (=)’ M, donde M, es el de-
terminante de la matriz de (n — 1) X (n — 1) obtenido al eliminar el i-ésimo
renglon y la j-ésima columna de A, entonces

SN
A= () @

Cada C, en el teorema 1.2, es simplemente el cofactor (el menor con signo) del ele-
mento a, en A. Observe que en la formula (2) se utiliza la transpuesta.
Para futuras referencias observe que en el caso de una matriz no singular 2 X 2

a a
A= < 1 12)
dy  Ap

queC,=a,,C,=—-a,,C, = —a,yC, =a,. Portanto

22" 712

A71 _ 1< an a21>T _ 1( Aoy a12> (3)
det A *&12 all det A *&21 an '

Para una matriz no singular 3 X 3

21’

a;;  dpp ag
A=lay axp ax),

dz Az adgs

C, = 2 App ’ Cp,=— axn A ’ Cps = an Aap ’
ds; Ag ds ag sz agp
y asi sucesivamente. Al realizar la transposicién se obtiene
1 Cll CZl C31
1= m Cp Cp GCaplf 4)
C13 C23 CSS

I EJEMPLO 8 Inversade una matriz2 x 2

. L 1 4
Encuentre la inversa multiplicativa de A = (2 10).

SOLUCION Puesto que det A = 10 — 8 = 2 # 0, A es no singular. De acuerdo con
el teorema 11.1, A~ existe. Utilizando la ecuacidn (3) encontramos que

1/10 -4 5 -2
Al== = : |
2(—2 1) (—1 ;)

2 2
No toda matriz cuadrada tiene inversa multiplicativa. La matriz A = (3 )
es singular, porque det A = 0. Por tanto, A™* no existe.

I EJEMPLO 9 Inversade una matriz3 x 3

2 2 0
Encuentre la inversa multiplicativade A= -2 1 1
3 0 1
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SOLUCION Puesto que det A = 12 # 0, la matriz dada es no singular. Los cofactores
correspondientes a los elementos de cada rengldn de det A son

1 1 -2 1 -2 1
= = l = — = = = —
Cll 0 l‘ C12 3 1 5 C13 ‘ 3 0 3
2 0 2 0 2 2
Cy=- = =2 C,, = =2 Cpo = — =6
21 ‘0 1‘ 22 ‘3 1‘ 23 ‘3 0
2 0 2 0 2 2
Cy = =2 Cp=— = -2 Cy = = 6.
31 ‘1 1‘ 32 ’_2 1’ 33 ‘_2 1
Utilizando la ecuacién (4) se tiene que
(1722 212 _% %
A71 = E 5 2 -2\ = Ti ? _E .
-3 6 6 i 2 2
Le pedimos que compruebe que A7*A = AA 1 = 1. [ |

La formula (2) presenta dificultades obvias cuando las matrices no singulares son
mayores de 3 X 3. Por ejemplo, para aplicarla a una matriz 4 X 4 necesitariamos calcular
dieciséisdeterminantes 3 X 3.* Para una matriz grande, hay métodos mas eficientes para
calcular A%, El lector interesado puede consultar cualquier libro de algebra lineal.

Puesto que nuestra meta es aplicar el concepto de una matriz a sistemas de ecuacio-
nes diferenciales lineales de primer orden, necesitaremos las definiciones siguientes:

| DEFINICION I1.10 Derivada de una matriz de funciones

SIA®) = (aij(t))m ., €8 Una matriz cuyos elementos son funciones derivables en
un intervalo comun, entonces

dA _ (Ea_>
dt dt /e

| DEFINICION 1111 Integral de una matriz de funciones

Si A(t) = (a,(t),, ., es una matriz cuyos elementos son funciones continuas en
un intervalo que contiene aty t, entonces

th(s)ds = (J'taij(s)ds> .

Para derivar o integrar una matriz de funciones, s6lo se deriva o integra cada uno
de sus elementos. La derivada de una matriz también se denota por A’(t).

I EJEMPLO 10 Derivada/integral de una matriz

d
asen 2t
sen 2t d 2 cos 2t
Si X@®=| € | oemonces X(@O=| e |=| 3¢
8t—1 4 8
—@Bt—1
Olt( )

“Estrictamente hablando, un determinante es un nimero, pero a veces conviene manejarlo como si fuera
un arreglo.
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. [ysen2sds —cos2t + 3
y JOX(s)ds= [peds  |=| iet-% | |
[, (8s— 1)ds 412 — t

1.2 ELIMINACION GAUSSIANA Y DE GAUSS-JORDAN

Las matrices son una ayuda insustituible para resolver sistemas algebraicos de n ecua-
ciones lineales con n incégnitas

Xy T apX, + -+ apX =b
AnX + anX + o+ ayX = b (5)
auXy + apX + - - -+ apX, = by,

Si A denota a la matriz de los coeficientes en (5), sabemos que es posible usar la regla de
Cramer para resolver el sistema, siempre que det A # O. Sin embargo, para seguir esa
regla se necesita realizar un gran trabajo si A es mayor de 3 X 3. El procedimiento que
describiremos a continuacion tiene la particular ventaja de no sélo ser un método eficiente
para manejar sistemas grandes, sino también una forma de resolver sistemas consistentes
(5), en los que det A = 0y para resolver m ecuaciones lineales con n incégnitas.

|DEFINICI6N 11.12 Matriz aumentada

La matriz aumentada del sistema (5) es la matrizn X (n + 1)
& ap - an|b
Q1 8p b
8y ap - anlb,
Si B es la matriz columna de las b, i = 1,2, ..., n, la matriz aumentada de (5)

se denota por (A|B).

OPERACIONES ELEMENTALES DE RENGLON Recuerde de algebra que pode-
mos transformar un sistema algebraico de ecuaciones en un sistema equivalente (es
decir, un sistema que tenga la misma solucioén) multiplicando una ecuacién por una
constante distinta de cero, intercambiando el orden de dos ecuaciones cualesquiera del
sistema y sumando un mdltiplo constante de una ecuacion a otra. A estas operaciones,
sobre un sistema de ecuaciones, se les define como operaciones elementales de ren-
glon en una matriz aumentada:

i)  Multiplicar un rengldn por una constante distinta de cero.
ii)  Intercambiar dos renglones cualesquiera.

iii)  Sumar un multiplo constante, distinto de cero, de un renglén a cualquier
otro renglon.

METODOS DE ELIMINACION  Para resolver un sistema como el (5), con una matriz
aumentada, se emplea la eliminacion de Gauss o el método de eliminacion de Gauss-
Jordan. En el primero de los métodos se realiza una secuencia de operaciones elementa-
les de rengldn hasta llegar a una matriz aumentada que tenga la forma rengldn escaldn.
i) El primer elemento distinto de cero en un renglén distinto de cero es 1.
ii)  Enlos renglones consecutivos distintos de cero el primer elemento 1, en el
renglon inferior, aparece a la derecha del primer 1 en el rengldn superior.
iii)  Los renglones formados Unicamente con ceros estan en la parte inferior de
la matriz.
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En el método de Gauss-Jordan se continta con las operaciones de renglén hasta obtener
una matriz aumentada que este en la forma escalonada reducida. Una matriz escalo-
nada reducida presenta las mismas tres propiedades de arriba, ademas de la siguiente:

iv)  Una columna que contiene un primer elemento 1 tiene ceros en todos sus
demas lugares.

I EJEMPLO 11 Formas escalonada/escalonada reducida

a) Las matrices aumentadas

éig _i y <001—62‘2>
0 0 0 0 000 0 1]4

estan en su forma escalonada. Debe comprobar que se satisfacen los tres criterios.
b) Las matrices aumentadas

(1)28 _Z y (OOl—GO‘—6>
0 0 0 0 000 01| 4

estan en su forma escalonada reducida. Observe que los elementos restantes en las co-
lumnas contienen un 1 como entrada principal y que los elementos son igualesa 0. |

Observe en la eliminacion de Gauss que nos detenemos una vez obtenida una matriz
aumentada en su forma escalonada. En otras palabras, al usar operaciones consecutivas
de rengldn llegaremos a formas escalonadas distintas. Este método requiere entonces del
uso de sustitucion regresiva. En la eliminacion de Gauss-Jordan nos detenemos cuando
se ha llegado a la matriz aumentada en su forma escalonada reducida. Cualquier orden
de operaciones de renglén conduce a la misma matriz aumentada en su forma escalo-
nada reducida. Este método no necesita sustitucion regresiva; la solucion del sistema se
conocera examinando la matriz final. En términos de las ecuaciones del sistema original,
nuestra meta con ambos métodos es simplemente hacer el coeficiente de x, en la primera
ecuacion™ igual a 1y después utilizar multiplos de esa ecuacion para eliminar x, de las
otras ecuaciones. El proceso se repite con las otras variables.

Para mantener el registro de las operaciones de renglén, que se llevaron a cabo en
una matriz aumentada, se utilizara la siguiente notacion:

Simbolo Significado

R, Intercambio de los renglonesiy j

cR Multiplicacién del i-ésimo renglén por la constante c, distinta
de cero

cR +R Multiplicacién del i-ésimo renglén por ¢y suma del
resultado al j-ésimo renglén

I EJEMPLO 12 Solucién por eliminacion

Resuelva 2% + 6% + X=17
Xp+ 2% — X3 =—1
5% + 7%, — 4% =9
utilizando a) eliminacion de Gauss y b) eliminacién de Gauss-Jordan.

“Siempre se pueden intercambiar ecuaciones de tal forma que la primera ecuacion contenga a la variable x,.
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i
R

J

SOLUCION a) Usando operaciones de rengldn en la matriz aumentada del sistema,
obtenemos

2 6 1| 7 1 2 -1|-1] 2R+R [1 2 -1|-1
1 2 —1|-1| "2 {26 1) 7|t B 0o 2 3] 9
5 7 —41 9 5 7 —41 9 0 -3 11l 14
1 2 -1]-1 12 —-1|-1 1 2 -1|-1
3R, + R ZR
0 1 3| 3o g 3l —loo1 3] g
0 -3 1114 00 4l 2 0 0 11 5
La ultima matriz esta en la forma escalonada y representa al sistema

X+ 2% — X = -1

X, + =X _9

2272

X3:5.
Sustituyendo x, = 5 en la segunda ecuacion se obtiene x, = — 3. Sustituyendo ambos

valores en la primera ecuacion finalmente se obtiene x, = 10.

b) Comenzamos con la Gltima de las matrices anteriores. Como los primeros elemen-
tos en el segundo y tercer renglones son 1, debemos hacer que los elementos restantes
en las columnas dos y tres sean iguales a 0:

1 2 -1]-1 1 0 —4|-10 4Rs+ R [1 0 0O 10
O 1 % g *2R2+R1 O 1 % % 2R3+R2 O 1 O _3 .
00 1] 5 00 1 5 0 0 1] 5

La altima matriz ya se encuentra en su forma escalonada reducida. Debido al signifi-
cado de esta matriz, en términos de las ecuaciones que representa, se ve que la solu-
cion del sistemaes x, = 10, x, = —3,x, = 5. ]

I EJEMPLO 13 Eliminacion de Gauss-Jordan

Resuelva X+ 3y —2z= -7
4x+ y+3z=5
2x — 5y + 7z = 19.

SOLUCION Resolveremos este sistema con la eliminacién Gauss-Jordan:

1 3 —2]-7| ®R+R [1 3 —2|-7
4 1 3| 5| PR lo —11 11 33
2 -5 7119 0 —11 11| 33
*111R2 1 3 —2|—-7| 3R +R 1 0 1 1
TRl 1 —1| -3 TR e 1 -1 -3
0 1 -1/-3 o 0o 0l 0

En este caso, la Ultima matriz, en su forma escalonada reducida, implica que el sistema
original de tres ecuaciones con tres incégnitas es equivalente, en realidad, a dos ecua-
ciones con tres incdgnitas. Puesto que s6lo zes comun a ambas ecuaciones (los renglo-
nes distintos de cero), le podemaos asignar valores arbitrarios. Si hacemos z = t, donde
t representa cualquier namero real, veremos que el sistema tiene una cantidad infinita
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de soluciones: x =2 — t,y = — 3 + t, z= t. Geométricamente, esas ecuaciones son
las ecuaciones paramétricas de la recta de interseccion de los planos x + 0y +z= 2y
Ox+y—z=3. [ |

USO DE OPERACIONES DE RENGLON PARA ENCONTRAR UNA INVERSA
Debido a la cantidad de determinantes que hay que evaluar, casi no se usa la férmula
(2) del teorema 11.2 para determinar la inversa cuando la matriz A es grande. En el caso
de matrices de 3 X 3 0 mayores, el método que se describe en el siguiente teorema es
particularmente eficiente para determinar A~

TEOREMA I1.3 Determinacion de A~ usando las operaciones elementales
de renglon

Si una matriz A n X n se puede transformar en la matriz identidad I n X n
con una secuencia de operaciones elementales de renglon, entonces A es no
singular. La misma secuencia de operaciones que transforma A en la identidad
| también transformaa l en A~

Es conveniente realizar estas operaciones de renglon en forma simultdnea en A
y en I, mediante una matriz n X 2n obtenida aumentando A con la identidad I, como
aqui se muestra:

8, &, -+ a,|1 0 --- 0
8y @ ' 3|1 0 -0
AN =]|: | '
81 &y - an!0 0 .- 1

En el diagrama siguiente se indica el procedimiento para encontrar A~

Realice las operaciones de renglon
en A hasta que obtenga I. Esto
significa que A es no singular.

(ﬁ]l 1) — (1A

Simultaneamente aplique las
mismas operaciones sobre I,
para obtener A~1,

I EJEMPLO 14 Inversa por operaciones elementales de renglon

2 0 1
Determine la inversa multiplicativade A = -2 3 4|
-5 5 6

SOLUCION  Usaremos la misma notacion que cuando redujimos una matriz aumen-
tada a la forma escalonada:

2 0 1/1 0 0| | 10 3|z 00 R*R (1 0 3|z 00
2340010 " ]234]01 0 "% 0035110
-5 5 6/0 0 1 -5 5 610 0 1 05 ¥l3 01
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MATRICES

I
Py}
N

1910%%00441 iz 00
01 55 s 001 515 50
01w, 03 00 %5 =3 5
1033 00 R*R 1 00[-2 5 -3
SR doo1 st rol S ® 0o 1 0l-8 17 —10|
00 115 -10 6 001l 5 -10 6

Puesto que | se presenta a la izquierda de la recta vertical, concluimos que la matriz a
la derecha de la recta es

-2 5 -3
Al=|-8 17 —-10|.
5 -—10 6 ]

Si la reduccion de renglones (A|l) conduce a la situacion
Operaciones entre

renglones
(A1) (B C),

donde la matriz B contiene un renglén de ceros, entonces A es necesariamente singu-
lar. Como una reduccidn adicional de B siempre produce otra matriz con un renglén
de ceros, nunca se transformard A en I.

II.3 EL PROBLEMA DE EIGENVALORES

La eliminacién Gauss-Jordan se puede emplear para determinar los eigenvectores
(vectores propios) de una matriz cuadrada.

| DEFINICION I1.13 Eigenvalores y eigenvectores

Sea A una matriz n X n. Se dice que un ndmero A es un eigenvalor de A si
existe un vector solucion K distinto de cero del sistema lineal

AK = AK. (6)

El vector solucion K es un eigenvector que corresponde al eigenvalor A.

La palabra eigenvalor es una combinacién de aleman y espafiol adaptada de la
palabra alemana eigenwert que, traducida literalmente, es “valor propio”. A los eigen-
valores y eigenvectores se les llama también valores caracteristicos y vectores carac-
teristicos, respectivamente.

I EJEMPLO 15 Eigenvector de una matriz

1
Compruebe que K = [ —1 [ es un eigenvector de la matriz
1
0 -1 -3
A=| 2 3 3



APENDICE IT MATRICES ° APE-15

SOLUCION Al realizar la multiplicacion AK vemos que

0 -1 -3 1 —9 1 eigenvalor
AK=| 2 3 3f|[-1=]| 2|=(-2)|-1]=(—2)K.
—2 1 1 1 —2 1
Vemos de la definicion 11.3 y del rengl6n anterior que A = — 2 es un eigenvalor de A. ®

Usando las propiedades del algebra matricial, podemos expresar la ecuacion (6)
en la forma alternativa

(A — AK =0, (7

donde I es la identidad multiplicativa. Si hacemos

Ky
k=",
"
entonces (7) es igual que
(a1 — kg + apk, + - - - + ak, =0

a21k1 + (a22 - A)kz + -+ a.2nkn =0

(8)
Ak, + apky, + - - - + (@ — Ak, = 0.

Aunque una solucion obvia de la ecuacion (8) esk, = 0,k, =0, ...,k = 0, solo nos inte-
resan las soluciones no triviales. Se sabe que un sistema homogéneo de n ecuaciones linea-
les con nincognitas (estoes, b = 0,i =1,2,..., nen laecuacion (5)) tiene una solucion
no trivial si y solo si el determinante de la matriz de coeficientes es igual a cero. Por tanto,
para determinar una solucion K distinta de cero de la ecuacion (7) se debe tener que

det(A — Al) = 0. )

Examinando la ecuacién (8) se ve que el desarrollo del det(A — Al) por cofactores
da como resultado un polinomio en A de grado n. La ecuacién (9) se llama ecuacion
caracteristica de A. Por lo que, los eigenvalores de A son las raices de la ecuacion
caracteristica. Para encontrar un eigenvector que corresponde a un eigenvalor A, sélo
se resuelve el sistema de ecuaciones (A — Al)K = 0 aplicando la eliminacién Gauss-
Jordan a la matriz aumentada (A — Al|0).

I EJEMPLO 16 Eigenvalores/eigenvectores

1 2 1
Determinar los eigenvalores y los eigenvectoresde A = 6 -1 0.
-1 -2 -1

SOLUCION Para desarrollar el determinante y formar la ecuacion caracteristica usa-
remos los cofactores del segundo rengldn:

1-2 2 1
det(A — Al)=| 6 -1-A 0 =-A-A+121=0.
-1 -2 -1-A
Puesto que —A® — A2 + 12X = —A(A + 4)(A — 3) = 0 vemos que los eigenvalores

son A, =0, A, = —4y A, = 3. Para determinar los eigenvectores debemos reducir
tres veces (A — Al|0), que corresponden a los tres diferentes eigenvalores.
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Para A= 0 tenemos

1 2 1]0| ®R*+R |1 2 1]0
R +R
(A-o010)=| 6 -1 0/0|—-"".]0 -13 -6|0
-1 -2 —-110 0 0 010
1 12 1|0 10 5|0
T do 1 slo| R o 1 8]0
0 00O 0 0010
Por lo que vemos que Ky = —5Ksy k, = — k3. Eligiendo k, = —13, obtenemos el
eigenvector®
1
K, = 6.
-13
Para A, = —4,
5 2 1|0 R (1 2 —-3|0
Aa+4a100= 6 3 0lo] |6 3 oo
-1 -2 310 52 110
CORPR, 12 =30 iR (1 2 =3[0| R*R [1 0 1]0
SRR e —9 180 T lo 1 —2]0] 2P0 1 20
0 -8 1610 01 -2]0 00 010
lo que implica que k, = —k, y k, = 2k,. Eligiendo k, = 1 se obtiene el segundo
eigenvector
-1
KZ - 2 .
1
Finalmente, para A, = 3 con la eliminacion de Gauss se obtiene
-2 2 1]0 operacion 1 0 1|0
(A—3|\0)= 6 —4 olo entre renglones 0 1 % 0],

-1 -2 —410 0 0010
porloquek = —k,y k; = —%kg. La eleccion de k, = —2 conduce al tercer eigen-
vector:

2

K3 = 3
-2 m
Cuando una matriz A n X n tiene n eigenvalores distintos A, A,, . .., A, se
puede demostrar que es posible determinar un conjunto de n eigenvectores lineal-
mente independientes” K, K, ..., K . Sin embargo, cuando la ecuacién caracte-

ristica tiene raices repetidas, tal vez no se pueda determinar n eigenvectores de A
linealmente independientes.

“Por supuesto k, pudo ser cualquier nimero distinto de cero. En otras palabras, un multiplo constante distinto
de cero de un eigenvector también es un eigenvector.
La independencia lineal de los vectores columna se define igual que la de las funciones.
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I EJEMPLO 17 Eigenvalores/eigenvectores

. . . 3 4
Determine los eigenvalores y los eigenvectores de A = <_1 7).

SOLUCION De la ecuacion caracteristica

det(A — Al) =

3-A 4
‘_ =(A-5?2=0

1 7—)\‘

vemos que A, = A, = 5 es un eigenvalor de multiplicidad dos. En el caso de una matriz
de 2 X 2 no se necesita usar la eliminacién Gauss-Jordan. Para determinar los eigen-
vectores que corresponden a A, = 5, recurriremos al sistema (A — 51|0) en su forma

equivalente
_2k1 + 4k2 - 0
_kl + 2k2 - 0

En este sistema se ve que k, = 2k,. Por lo que si elegimos k, = 1, encontraremos un

solo eigenvector:

<= (3)

I EJEMPLO 18 Eigenvalores/eigenvectores

9 1 1
Determine los eigenvalores y eigenvectoresde A=|1 9 1
1 1
SOLUCION La ecuacion caracteristica
9—- A 1 1
det(A — Al) = 1 9—- A 1 =-A—-1D)(A—-8)?=0
1 1 9 -2

muestra que A, = 11y que A, = A, = 8 es un eigenvalor de multiplicidad dos.
Para A, = 11, usando eliminacion Gauss-Jordan se obtiene

-2 1 110 operaciones 1 0 —-1]0
(A—111|10)=| 1 —2 1|ofentrerenglones |9 1 —1|0|.
1 1 =210 0 0 010

Por tanto, k, = k, y k, = k,. Si k, = 1, entonces
1

Kl =11
1

Ahora para A, = 8 tenemos que

1110 operaciones 11 10
(A—81[0)=(1 1 1|0 |cnerndonesig o o0 |.
1110 0 0O0IlO
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En la ecuacion k, + k, + k, = 0 seleccionamos libremente dos de las variables.
Eligiendo, por un lado que k, = 1, k, = 0y, por otro, k, = 0, k, = 1, obtendremos dos
eigenvectores linealmente independientes:

-1 -1
K2 = 1 y K3 = O |
0 1

- Las respuestas a los problemas seleccionados con nimero impar
EJERCICIOS DEL APENDICE Il gienzan en la pagina RES 29.

1.1 DEFINICIONES BASICAS Y TEORIA

8 SiA—(1 2> B—(_Z 3) determine
' “\2 4)Y" "\ 5 7)

1. SiA —< 4 5) = <_2 6) determine A+ BT b) 2AT — BT A'(A-B
AT e o)V 8 —10) 3 At ) 2AT- ) AA-B)
a) A+B b) B—A c) 2A + 3B 9. SiA= <3 4) yB= < > 10) determine

8 1 -2 =5/

-2 0 3 -1 a) (AB)T b) BTAT
2.SiIA=( 4 1|lyB=| 0 2 |, determine 5 9 5 g
7 3 -4 =2 A = _ .

10. Si A (_4 6> y A (_4 6) determine

a) A-B b) B—-A ) 2(A + B) a) AT+BT b) (A +B)T

. 2 -3 -1 6 .
3.SiA= (_5 4> yB= ( 3 2), determine En los problemas 11 a 14 escriba la suma en forma de una sola
matriz columna:

w4l g)-2(e) - %)

a) AB b) BA ) A’=AA d) B2=BB

1 4

4, SIA=|5 10]yB= <_4 6 _3>, determine
1 -3 2 2 -1 3t
8 12
AE b BA 12 3t t]+@-1)| —t|-2 4
3) ) 1 3 5t
1 -2 6 3 0 2 2 -3 -1 6\/—7
5 Si A= = = de- .
‘A (—2 4)'5 (2 1)’yC <3 4>' 13 <1 4)( 5) —2 3)( 2)
termine 1 —3 4 —t )
0O -4 -2 —t 4 —6

En los problemas 15 a 22 determine si la matriz dada es sin-

3
6. SSiIA=5 -6 7),B=| 4]y
1 gular o no singular. Si es no singular, determine A~! usando

1 2 4 el teorema 11.2:
C=|0 1 -—1], determine
' -3 6 2 5
15. A = 16. A =
s 2 53 3
a) AB b) BA c) (BA)C d) (AB)C 4 8 7 10
17. A = 18. A =
4 -3 -5 2 2
7. SiA= 8|yB=(2 4 5) determine 2 10 3 2 1
—-10 19. A=|-1 2 1 20. A = 4 1 0
a) AAA  b) BB ¢c) A+BT 1 2 1 -2 5 -1



2 1 1 4 1 -1
2. A=|1 -2 -3 22. A=| 6 2 -3
3 2 4 -2 -1 2

En los problemas 23 y 24 demuestre que la matriz dada es
no singular para todo valor real de t. Encuentre A~'(t) con el
teorema 11.2:

2et et
AR =
28 AW <4e‘t 3e‘“>
2€fsent  —2€'cost
24, A(t) =
® < ecost e‘sent)
En los problemas 25 a 28 determine dX/dt.
—t
S ;eﬁ 26 X — ( Tsen 2t — 4 cos 2t>
A € ' —3sen 2t + 5 cos 2t
_7e*t
27. X = 2( 1>e2‘ + 4<2>e3t 28. X = ( e’ )
' -1 1 ' tsen 3t
e*  cos mt
At) = . i
29. Sea A(t) <2t 32 — 1> Determine

a) dA b) j 2A('[) dt c) ftA(s) ds
dt 0 0

1

3t
2 6t 2
30. Sea A(t) = B(t) = }
ea A t2 t)Y ® <l/t 4t>
Determine
dA ., 98
Q) Gt ) Gt

1 2
0 fo A(t) dt d) fl B(t) dt

e) AD)B() f) %A(t)B(t)
0) fA(s)B(s)ds
1

1.2 ELIMINACION DE GAUSS Y DE
GAUSS-JORDAN

En los problemas 31 a 38 resuelva el correspondiente sistema
de ecuaciones, por eliminacion de Gauss o por eliminacion de
Gauss-Jordan.

3l. x+ y—2z=14
2x— y+ z=0
6X +3y+4z=1

32. 5x — 2y +4z=10
X+ y+ z=9
4x —3y+3z=1

33. y+ z=-5 34. 3x+ y+ z=4
5x + 4y — 16z= —10 dx+2y— z=17
X— y— 5z=7 X+ y—3z2=6
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35. 2x+ y+ z=14 36. x-+ 2z=18
10x—2y +2z= -1 X+2y—2z=4

6x —2y+4z=18 2X+ 5y —62=6

37. X, + X, = x3—x4=—l 38. 2X1+ X, + x3=0
X, + X, + x3+x4=3 x1+3x2+ x3=0
LT Xt x3—x4=3 7x1+ x2+3x3=0
4xl+xz—2x3+x4=0

En los problemas 39 y 40 utilice la eliminacién de Gauss-
Jordan para demostrar que el sistema dado de ecuaciones no
tiene solucion.

39. x+2y+4z=2 40.
2x+4y+3z=1
X+2y— z=17

X+ X, = X, +3x,=1

X, = X, —4x,=0
X, +2X, —2X,— X, =6
ax, + 7X, — X, =9

En los problemas 41 a 46 aplique el teorema 11.3 para deter-
minar A~! para la matriz dada o demuestre que no existe la
inversa.

2 3 2 4 -2
41. A= 2 1 0 2. A=4 2 =2
-1 -2 0 8 10 -6
-1 3 0 1 2 3
43. A= 1 -2 1 4. A=10 1 4
1 2 0 0 8
1 2 3 1 1 0 0 0
-1 0 2 1 00 1 0
BA= 5 -3 0 46'A_o 0 0 1
1 1 2 1 01 0 0

11.3 EL PROBLEMA DE LOS EIGENVALORES

En los problemas 47 a 54 encuentre los eigenvalores y los
eigenvectores de la matriz dada.

-1 2 2 1
47. 48.
(23 z 3
-8 -1 11
49. 50
<16 0) <i 1)
5 -1 0 3 0 0
51. [0 -5 9 52. {0 2 0
5 -1 0 4 0 1
0 4 0 1 6 0
53. (-1 -4 o 54. [0 2 1
0 0 -2 01 2
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En los problemas 55 y 56 compruebe que cada matriz tiene
eigenvalores complejos. Encuentre los eigenvectores respec-
tivos de la matriz:

1 2 2 -1 0
55. ( c 1) 56. | 5 2 4
0 1 2

Problemas diversos

57. Si A(t) es una matriz de 2 X 2 de funciones derivables y
X(t) es una matriz columna de 2 X 1 de funciones deriva-
bles, demuestre la regla de la derivada de un producto

d
gt AOXO] = ADX'(D) + A'MX(D).

58. Demuestre la formula (3). [Sugerencia: Encuentre una

matriz
bll l312)
B =
(bZl b22

para la que AB = I. Despeje b,,, b

demuestre que BA = 1].

0 0, 0, Y b,,. Después

59.
60.

61.

62.

Si A es no singular y AB = AC, compruebe que B = C.

Si Ay B son no singulares, demuestre que (AB)™! =
BAL

Sean Ay B matrices n X n. En general, ¢es

(A + B)2 = A2 + 2AB + B??

Se dice que una matriz cuadrada es una matriz diagonal
si todos sus elementos fuera de la diagonal principal son
cero, esto es, &, = 0, i # j. Los elementos a; en la dia-
gonal principal pueden ser cero o no. La matriz identidad
multiplicativa | es un ejemplo de matriz diagonal.

a) Determine la inversa de la matriz diagonal de 2 X 2

a; O )
A =
< 0 ay

usandoa,, # 0, a,, # 0.

b) Encuentre lainversade unamatriz diagonal Ade 3 X 3
cuyos elementos a, en la diagonal principal son todos
distintos de cero.

c) Engeneral, ;cual es la inversa de una matriz diagonal
Aden X ncuyos elementos de la diagonal principal a,
son distintos de cero?
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TRANSFORMADAS DE LAPLACE

f L{f()} = F(s)
1
1. 1 -
K
1
2.t ?
n! ..
3. —7» 7unentero positivo
s
4. 12 \/Z"
s
5. 12 Va
. 232
INa+ 1
6. 1 Rl -
K
k
7.
senkt R
K
8. cos kt m
2k?
2
9. sen” kt S+ AR
s2+ 2k
10. 2 - -
0. cos” kt REETE
11. e !
s—a
k
12. senhkt m
13. cosh kt ﬁ
2k>
2
14. senh“kt S5 — 40
2 2
) s*— 2k
15. cosh”kt 7s(s2 a0
1
16. te™ P
¢ (s — ay
17. " e nil’ 7 un entero positivo
(S _ a)n+1
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0 E{f (D)} = F(s)
k
18. ¢ senkt e Va2
(s —aP+ Kk
u _s-a
19. ¢“ cos kt s—al+ R
k
20. ¢ senhkt (s — )2 — 12
e sen G —af - R
21. ¢ cosh kt L
(s —a)P— Kk
2ks
22. tsenkt m
SZ _ k2
23. (24 122
3. tcos kt (52 + )2
2ks?
.S + 2 4 22
24. senkt + kt cos kt (2 + k)2
2k
25. senkt — kt cos kt m
2ks
26. tsenhkt PR
sen (2 — )2
2+ kK
27. tcosh kt POy
Ccos (Sz _ ](2)2
28' Lebr %
a—>b (s —a)(s = b)
29, 4¢" = be" -
a—b (s —a)s — b)
kZ
30. 1 — cos kt m
k}
31. kt — senkt m

32.

33.

34.

35.

36.

37.

asenbt — b senat
ab(a®> — b?)

cos bt — cos at
2 — b

senkt senhkt

senkt cosh kt

cos kt senhkt

cos kt cosh kt

1
(2 + a (s> + b

s
(52 + ad)(s* + b?)

2Kk%s
st 4 4k

k(s® + 2k2)
s+ 4Kt
k(s> — 2k%)
s+ 4kt
3

s
s+ At
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J® LD} = FGs)
38. Jo(kr) 1
o iR
eb/ _ 6‘“ s—a
39. |
! ns - b
2(1 — 2 42
40, 2L~ coskp) s K
t )
- 2 _ 12
a1, 20~ coshkn ok
! S
0. senat aretan (g)
! N
senat cos br b1 “—
43 R 5 arctan + —arctan
—aVs
44. Le*az/%‘ e
Vot v
a
45. —a*4t Y
b’ e
*a\ﬁ
a e
46. erfc| —=
5%) :
—aVs
ro_, a ¢
47. 2. |— e — g erf ( ) e
\/:Te a eric 2\/1‘ S\/E
48. e erfc (b\/t + -2 > e
. eve e
2V Vs(Vs + b)
: be™aVs
49. —cobet f<b\ﬁ+—a > _be
e 2Vi s(Vs + b)
+ erf < a )
eric\ ——+
2Vt
50. e“f(1) Fs — a)
51. Ut — a) e
S
52. f(t - a)ou(t —a) e*asF(S)

53. g(nU(t — a)
54. F(r)

55. 1" (1)

S6. ff(f)g(z - ndr
0

57. 8(1)

58. 8(1 — to)

e “Llgt+ a)}
s"F(s) — S(n—l)f(o) — .. _f(n—l)(O)

n

ds"

(—)"—F(s)

F(s)G(s)

e s







RESPUESTAS A LOS PROBLEMAS

SELECCIONADOS CON NUMERACION IMPAR

.1 (PA di . dv
E]ER_CICIOS 1.1 (PAGINA 10) _ 15 I__l +Ri = E@) 17. m&Y = mg — k2
1. lineal, segundo orden 3. lineal, cuarto orden dt dt
5. no lineal, segundo orden 7. lineal, tercer orden d2x d?r gR?
9. lineal en x pero no lineal en'y 19. mﬁ = —kx 2L. dt? * 2 0
15. el dominio de la funcién es [—2, «0); el intervalo mas dA dx
grande de definicion para la solucion es (—2, ) 23. o k(M —A),k>0 25 at +kx=rk>0
17. el dominio de la funcién es el conjunto de nimeros
reales excepto en x = 2y x = —2; los intervalos de 27, dy _ X+ VX2 + ¥
definicion mas grandes para la solucién son (—oe, —2), dx y
(_21 2)! 0 (2! OO)
t __ - -
19. X = z‘ ; definicion en (—, In 2) o en (In 2, ) REPASO DEL CAPITULO 1 (PAGINA 32)
27.m=-2 29.m=2m=3 3L m=0m=-1 dy
1 1 -2 — 10 " 2y —
33. y=2 35. ninguna solucion es constante L dx y 3y tky=0
. 5 y' =2y +y=0 7. a),d)
EJERCICIOS 1.2 (PAGINA 17) 9. b) 11. b)
1. y=1/1—4e™) 13. y=c,y,y = ce* c, Y, c, constantes,
3.y = 1/(¢ = 1); (1, ) 15y =+ "
5.y =1/(x2 + 1); (—, %) 17. a) Eldominio es el conjunto de todos los nimeros reales.
7. x = —cost+ 8sent b) yasea, (=, 0)0 (0, )
19. Parax, = —1 el intervalo es (—x, 0), y parax, = 2 el
— \f f— X —X
9. x=Fcost+gsent 11 y=je' — ;e intervalo es (0, ). ’
13. y =5e ! 15.y=0,y=x3 -x%3, x<0
17. semiplanos definidos pory > 00y <0 2l.¢) y= 2. x=0 23. (=%, )
19. semiplanos definidos porx >00x <0 B
21. las regiones definidas pory > 2,y < —2, 0 25. (0, ) 21. Yy = .87 — 3¢ X
2 < y < 2 29. y = %e3x73 + %eﬂwl — 2%
;g giualquier region que no contenga (0, 0) 3L y,=-3y,=0
' dP
27. no 33. — = k(P — 200 + 10t)
29. a) y=cx dt
b) cualquier region rectangular que no toque el eje y )
c) No, la funcién no es derivable en, x = 0. EJERCICIOS 2.1 (PAGINA 41)

31. b) y=1/(1 — x)en(—c, 1);
y=—1/(x+1)en (=1, )
c) y=0en(—x, x)

21. 0 es asint6ticamente estable (atractor); 3 es inestable
(repulsor).

23. 2 es semiestable.

25. —2 es inestable (repulsor); 0 es semiestable; 2 es

EJERCICIOS 1.3 (PAGINA 27) asintéticamente estable (atractor).

1 dp —KkP + 1 dp —KP — 1 27. —1 es asintéticamente estable (atractor); O es inestable
©odt " dt (repulsor).
dpP 39. 0<P <h/k
. — = kP — k,P? 0
ST ? 41. v/mg/k
d
7. 2~ kx(2000 — x) )
dt EJERCICIOS 2.2 (PAGINA 50)
A 1
9. (:j—terA:O;A(O):SO 1.y = —zC0S5X + ¢ 3.y=3e%+c¢c
dA 7 dh o 5.y =cxt 7. —3e ¥ =2e%+¢
11.E+600_tA—6 13.a=—ﬁ\m 9. %xalnx—%x3=%y2+2y+In]y]+c

RES-1
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RES-2 °

11.
13.

15.

19.

23.

217.

3L
33.

35.
37.
41.
49.

4cosy=2Xx +sen2x + ¢
(e*+1)2+2e¥+1)t=c

cet
S = cek 17.P=——
1+ cet
(y +3)°e*=c(x+4)%ey 21. y= sen(%x2 + c)
p—(1+1/x)
= -3 25. y =
X = tan (4t 477') y x
y=1x+ L Vi 29. y = elic'd
3 — e4x71
a y=2y=-2y= ZW

y = —1yy = 1son soluciones singulares del problema
21;y = 0 del problema 22
y=1

y=1+ Tl(,tan(%x)

a) y=—-V¥+x-1
y(x) = (4h/L?)x? + a

EJERCICIOS 2.3 (PAGINA 60)

1.

3. y= %e“ + ce X, (—oo, »); ce”* es transitoria
5.y =1+ ce™®, (—x, ), ce™ estransitoria
7.y =x"1Inx + cx1 (0, «); la solucion es transitoria
9. y =cx — xcosx, (0, «)
11, y = 23 — Ix + cx7%, (0, »); cx~* es transitoria
13. y = £x72e* + cx2e7%, (0, «); cx 2~ es transitoria
15. x = 2y® + cy?, (0, »)
17. y=senx + ccos X, (—m /2, 7 /2)
19. (x + 1)eXy = x% + ¢, (—1, «); la solucidn es transitoria
21. (secH +tanO@)r =0 —cos b +c, (—7 /2, 7/2)
23. y = e ¥ + cx e (0, ); la soluciodn es transitoria
25. y=x"te*+ (2 — e)x %, (0, )
. E . E\ _
27. i = R + <|0 - E)e RUL (=00, 0)
29. (x + 1)y =xInx —x + 21, (0, «)
jA—e?), 0=x=3
3. y= i( . LX
S =1 x>3
;e 0=x<1
33 y - (%e + g)e,Xz’ X = 1
35 v = 2x — 1 + 4e™ 0=x=1
Y T axeing + L+4e2)x3, x>1
37. y = e+ I VmeX (erf(x) — erf(L))
47. E(t) = E o~ 9rRe

y = ce>, (—%, »)

RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NUMERACION IMPAR

EJERCICIOS 2.4 (PAGINA 68)

1.

5.
9.

11.
13.
15.

17.
19.
21.
23.
25.

217.
31.

35.
37.
39.

45.

XX—x+3¥2+7y=c 3.
x?y?2—=3x+4y=c 7. no exacta
Xy® + y2cosx —3x2 =

no exacta

Xy — 2xe*¥ + 2eX —2x3=c¢

x%y® —tan~'3x =c¢
—In|cos x| + cosxseny = ¢

tly -5t —ty+y*=c

I+ xy+xyP—y=1%

4ty +t2 -5t +3y2—y =38

yZsenx — x®%y = x2+ylny—y=0
k=10 29. x?y2cosx =cC
Xy?+x3=¢ 33. 3%y +y'=c
—2ye* + De¥ + x=¢

e’ (X2 + 4) = 20

) i(x) = —x*— Vxt—x*+4

Vo) = =+ VX =8+ 4

9
a) v(x)=8\/§—;

b) 12.7 pies/s

EJERCICIOS 2.5 (PAGINA 74)

1

3.
5.

13.
-3 = 1 3
17. y > =x+ 3 + ce*

21.

23.
25.
217.
29.

35.

7
9.
3
7

.y + xInx| = cx

x —yin[x —y[ =y +cx—y)

x + ylIn|x| = cy

. In(x2 +y?) +2tan"Y(y/x) =c¢

4x = y(Inly| —c)? 11. y® + 3x3 In|x| = 8x3
Injx| = e —1 15. y3 =1+ cx3
19. e =ct

y = —Ixt+ Exe
y=—x—1+tan(x +c)

2y —2x +sen2(x +y)=c

4(y — 2x + 3) = (x + ¢)?

—cot(x +y)+esc(x+y)=x+ V2 -1

b) y= 5 + (—%x + cx*3)*1

EJERCICIOS 2.6 (PAGINA 79)

[N

W O N 01w

.y, =29800, y,=31151

Yy = 25937, y,, = 2.6533;y = ¢

.Y, = 04198, vy, = 04124

. Y, = 0.5639, vy, = 0.5565

.Y, = 12194, y = 12696

. Euler:y, =3.8191, vy, =5.9363
RK4: y, = 429931, vy, = 84.0132

X+ 4xy -2yt =c



RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NUMERACION IMPAR °

REPASO DEL CAPITULO 2 (PAGINA 80)

N o w

11.
13.

15.
17.
19.
21.

—A/k, un repulsor para k > 0, un repulsor parak < 0
verdadero

dy

- oDy -3y

semiestable para n par e inestable para n impar;
semiestable para n par y asintéticamente estable para n
impar.

2x +sen2x=2In(y>+ 1) +¢c

(6x + 1)y® = —-3x3+c

Q=ct!+ £t*'(-1+5Int)

y=;+c0¢+ 4"

y = ¢SC X, (m, 27)

b) y=%(X+2\/370—X0)2,(X0—2\/)7,00)

EJERCICIOS 3.1 (PAGINA 89)

39.

7.9 afios; 10 afios

760; aproximadamente 11 personas/afio

11h

136.5h

1(15) = 0.00098l, 0 aproximadamente 0.1% de I,

. 15600 afios

. T(1) = 36.67° F; aproximadamente 3.06 min

. aproximadamente 82.1 s; aproximadamente 145.7 s
. 390°

. aproximadamente 1.6 horas antes de descubierto el

cuerpo

. A(t) = 200 — 170et50
. A(t) = 1000 — 1000e 100
. A(t) = 1000 — 10t — £(100 — t)% 100 min
. 64.38 Ib
H _ 3 34— . 3
i) =:—ze ™ i—>ccomot— o

Cq) = 555 — g 0 () = Fe0

0=t=20

(o = |80~ 60
t>20

60(e? — 1)e 11,

mg

ca) V() = % + (vo - T)e“’m

m
b) v—>Tgcomot—>oo

o sm="91- g(vo _ %)

c) 33 ; segundos

41.
43.

47.

a) P(t) = Pyetkat

a) Comot— o, x(t) —>r/k

b) x(t) =r/k — (r/k)e7*; (In2)/k
c) 1.988 pies

EJERCICIOS 3.2 (PAGINA 99)

1.

11.

13.

15.

17.

19.

a) N = 2000
2000 ¢
b =—
) NO 1999 + eV
1000000; 5.29 meses
4(Pp — 1) — (Po — 4)e™™
(Po = 1) = (Py — 4)e™™
c) Para0 <P, < 1,eltiempo en que desaparecera es
1. 4P, —
3 PO - 4
5 V3 V3 <2P0 - 5>
= — 4+ — -1t + -1
P(t) > 5 tan[ 5 t + tan 3
el tiempo en que desaparecera es

t= i[tan‘1i + '[an‘1<2p0 - 5)]
V3 V3 V3

N(10) = 1834

b) P =

t:

. 29.309;X—60comot—;0gde Ay30gdeB

4A,.\?
a) h() = (\FH - A_t> (les0=t = VHA, /4A,

W

b) 576 V10s030.36 min
a) aproximadamente 858.65 s 0 14.31 min
b) 243s04.05min

m k
a) v(t) = Tgtanh<w /th + cl>
. |k
donde ¢, = tanh 1( —v0>
mg
mg
b -
) |
c) s(t) = mIn cosh(1 /k—gt +c > +c
Tk m ! z

donde ¢, = —(m/k)In cosh c,
a) m(tj:i_\tl =mg — kv? — pV,

donde p es la densidad del agua

b) v(t) = mg—thanh kmg—kat+Cl
k m

mg — pV

a) W=0yw=2
b) W(x) = 2sech*(x —c))
c) W(x) = 2 sech?x

RES-3
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RES-4 [ RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NUMERACION IMPAR

EJERCICIOS 3.3 (PAGINA 110)
1. x(t) = xge Mt

XoA1 _ _
)= —— (e Mt e Ayt
YO = o )

2(t) = X (1 Ay LeAzt>
Ay = A Ay = A
3. 5, 20, 147 dias. El tiempo cuando y(t) y z(t) son iguales
tiene sentido porque se ha ido la mayor parte de Ay
la mitad de B ha desparecido asi que se debe haber
formado la mitad de C.

dx,

5. HZG_%X]-_{_S%)XZ
dx
a BN s
dx, Xo X1
7. — =3 -2
dt 100 — t 100 + t
b, x %

= -3
dt 100 + t 100 — t
b) x,(t) + x,(t) = 150; x,(30) =~ 47.41b

N
13. Llﬁ + (R, + Ry, + Ry = E(t)

di . .
de_s + R1|2 + (Rl + R3) |3 = E(t)

15.i(0) =i, s(0) =n — i, r(0) = 0

REPASO DEL CAPITULO 3 (PAGINA 113)

1. dP/dt = 0.15P
3. P(45) = 8.99 miles de millones

(10 + V100 — y?) B
y

5 x=10In V100 — y2

, BT, + T, BT, + T,
3 T1{B’ 1+B
BT1+T2+T1_T2 ek(l+B)t

1+8B 1+B

: 4t-12, 0=t<10
it =
20, t=10

b) T(t) =

aCle“klt

1L X0 = T oo cet

y(t) = cp(1 + creckitylelh
13. x=—-y+1+ce?

1
15. 3) p(x) = —p(X)g<y tx J q(x) dX>

b) El cociente estd aumentando; el cociente es constante

_ K - Ko
D PO gy T e P \/Z(CKp - B)

EJERCICIOS 4.1 (PAGINA 128)
1Ly=3€—je”
3. y=3x—4xInx

9. (—,2)
senhx
= X _ X =
11.a) vy ez_1(e e b) y senh 1
13. a) y =e*cosx — e*senx
b) ninguna solucién
C) Yy =eXcosx + e "2eXsenx
d) y = c,e*senx, donde c, es arbitraria
15. dependiente 17. dependiente
19. dependiente 21. independiente

23. Las funciones satisfacen la ED y son linealmente
independientes en el intervalo ya que W (e,
e¥) =T7e*# 0,y = ce ¥ + ce™

25. Las funciones satisfacen la ED y son linealmente
independientes en el intervalo ya que W(e* cos 2x, e* sen
2x) = 2e* # 0;y = c,£*C0s 2X + C,e* sen 2x.

27. Las funciones satisfacen la ED y son linealmente
independientes en el intervalo ya que W(x3, x*)

=x*#0;y = ¢ x* + c,x"

29. Las funciones satisfacen la ED y son linealmente
independientes en el intervalo ya que W(x, x 2, x"2In x)
=0 °*# 0y =cX+cx?+cx?Inx

35. b) y,=x*+3x+3e Yy, = —2x — 6X — se

EJERCICIOS 4.2 (PAGINA 132)

1y, =xe* 3.y, = sen 4x

5.y, =senhx 7.y, =xe??

9.y, =x*In|x]| 1. y,=1
13. y, = xcos (Inx) 15, y,=x*+x+2
17. Vo= ey, = =5 19, Vo= ¥y, =5

EJERCICIOS 4.3 (PAGINA 138)
lLy=c+ce™ 3. y=ce¥+ce™
5. y=ce ™ +c,xe ™ 7.y=ce*®+ce”
9. y = c,cos 3x + c,sen 3x

11. y = e*(c,cos x + c,sen x)

13. y = e‘x’3(cl COS:V2X + cyseni V2 x)

15. y=c, +c,e* + c.e>

17. y =ce ™+ c,e® + ¢ xe*

19. u=ce'+e"(c,cost+c,sent)

21. y=ce ™+ c,xe ¥+ cxe*

23. y =, + Cpx + e X2 (cscos%\/@x + c4sen%\@x)

25. y = ¢, c0s3V3X + cysen 3 V3x

+ C3x cos 3 V3x + ¢, xsen3 V3x

27. u=ce'+cre"+ce"+cre’"+ce™

29. y = 2cos 4x — sen 4x

3Ly = —1e ("D 4 g5t

33.y=0
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3. y=ce*+ce*—6

— 5 _54,-6 lya—6

35 y =g~z Fgxe™ 37.y=c, +ce*+3x
37.y = e¥ — xe¥ 39. y = e X+ cpxe X +Ix+1
39.y=0 41,y = ¢y + CX + Ce ¥ + 5x* — 3x® + 8x?

1 5 - 1 S — —3x 4% 1y ndx
41. y=—<1——>e\/§x+—<1+—>e\/§X; 43. y = e + c e + oxe

2 3 2 3

Ve 5 V3 45. y=ce*+ce¥*—e +3
y = cosh \/§x+7§senh\/37x 47. y = ¢, C0S 5X + C,sen 5x + 1 senx
49. y = ¢ + cxe ¥ — Lxe + Ze¥
. — oo 1.3ex _ Ly2ex 4 Lygx —

EJERCICIOS 4.4 (PAGINA 148) SL.y =i + o8t + gxet — pxe + xe" — 5

53. y = €*(C,C08 2X + C,8en 2x) + 1eXsenx

l.y=ce>*+ce®+3
y=o 2 55. y = c¢,cos 5x + ¢,sen 5x — 2x cos 5x

3.y = 8% + coxe™ + 2x + &
_ _ 7 V3 V3
5. y=ce ¥+ e+ x2—4x + 5 57. y = e X2 €1 €05 —= X + C; 56N — =X
7.y = ¢, €08 V3X + ¢, 5enV3x + (—4x% + 4x — &)
o y 1+ o a 2 ( 3) + sen x + 2 Cos X — X COS X
.y=¢C tcCe X — —8x 4 1ly2 4 7.3 1.4
11, y = 0,62 + cpxe2 + 12 + Lx2e 59. Y = Cp F CoX + Cg ™™ + 555 X" + 3 X — X

61. Y = Ci&° + CXe* + CxPe* + ix%e* + x — 13

63. Y = Cy + CoX + C35 + CXe* + 3x2X + ;X2
5.8k 4 5a8x _ 1

65.y—§e x+§ex 7

13. y = ¢, C0S 2X + €, SeNn 2X — 3x cos 2X
15. y = €, COS X + C,SeNX — 3X2 COS X + X Sen X
17. y = c,€¥C0s 2X + C,€*sen 2x + ; xe* sen 2x

_ 41 41 ,5x 12 9
- - LY = o e — X%+ X
19. y = c.e7* + cxe ¥ — cos X 67. V= "1 125e11 B
69. y = —mCOSX — 3 SeNnX — 5 C0S 2X + 2X COS X

+ 12sen 2x — = COS 2X
_ 6x _ 1y2 _ 6 1
21. y =cC; + CX + C3€ 7X° — 357 COSX + 55 senx
23. y = C,€* + Cxe* + cyx%e* — x — 3 — 2x%e
25.y = ¢, CosX + C,sen X + C,XCOS X + C,X sen X

— D@a2x — 3 a2 13 4 3y2 4 3
71,y = 287 C0S 2X — 5;87sen 2X + 5X° + X7 + 5 X

EJERCICIOS 4.6 (PAGINA 161)
1. y =c,cosX + C,senx + x senx + cos x In|cos x|

+x2—2x—3 1
27y = \Vasen2x — b 3.y =0C,C05X + CySenx — 5 X COS X
99, y = —200 + 200845 — 3x2 + 30x 5. y =€ COSX + CpSenX + 2 — £ cos 2x
31. y = —10e > cos X + 9e 2 sen x + 7~ 7.y =€ + ce* + ;xsenhx

I:O FO xe4t
33. X = —senwt — —1t cos wt = ¢, e2 —2x 4 1 a2x —e x|

5 et — o ) 9. y=ce* + e +4<e Injx| — e L : dt>,
35. y = 11 — 11e* + 9xe* + 2x — 12x%e* + ;€% Xo >0
37. y=6c0sx — 6(cot1)senx + x* — 1

4 sen \/3x 1l.y=ce*+ce®+(e*+e?)In(l+e

— -2 X _— a2
39. 13. y=ce®+ce*—e>sene

y = + 2X
senV3 + V3 cos V3 15, y = ciet + otet + Lo tint — I e

4.y = {COS 2x + gsen2x + jsenx, 0=x= /2 17. y = cie¥senx + C,e*cos X + Lxe*senx
]2 5
530S 2X + ¢ sen 2x, X> /2 + Lexcos x In|cos X |

. 19. =lox2 4 3x2 4 Ly2axi2 _ Ly axi2
EJERCICIOS 4.5 (PAGINA 156) Y =a® 4877 TR XETT T XE
1. 3D — 2)(3D + 2)y = senx
3.(D-6)(D+2)y=x—6 23. y=c,x "2 cosx + c,x Y2senx + x 12
5 D(D + 5% =¢ 25. y = ¢; + €, €08 X + Czsenx — In|cos x|
7. (0 = DO —2)(D + 5y = xe — senx In|sec x + tan x|

9. D(D + 2)(D? — 2D + 4)y = 4

— 4,-4x 25 n2x 1 ,-2x 1,—x
21, y =g5e %+ Ze 167+ e

15. D* 17. D(D — 2) ,

19. D2 + 4 21. D3(D? + 16) EJERCICIOS 4.7 (PAGINA 168)
23. (D+ 1)(D—1)® 25. D(D? — 2D +5) Ly=cxt+cx

27. 1, %, X% X3, x4 29. e, e~ 3.y=c,+c,Inx

31. cos \[5X, sen \[5X 33. 1, e5x, xesx 5. y = Cl COS(Z In X) + CZ Sen(z In x)

s
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7.
9.
11.
13.

15.
17.
19.

21.
23.

25.
29.
33.

35.
37.

y = c;x27VO) 4 ¢,x@+V6)

y = C; COS (% In x) +c, sen(% In x)
y=cx?+cx?Inx

y = x‘“z[c1 cos(% V3In x) +c, sen(% V3In x)]

y =c;x3 + czcos(\/iln x) + c3sen(\f2In x)
y=c¢,+cx+cxt+c,x?

y =C + Cx° + x5 Inx

y = ¢, x + ¢, xInx + x(Inx)?
y=cx'+cx—Inx
y=2-—2x7? 27. y = cos(Inx) + 2 sen(In x)

3 _

Yy =13

— -1 -8 1.2
Y = CX A+ x84 X

Lyo2 —c x-10 2
Inx + x> 3L y=cx+cx

y = x2[c; cos(3Inx) + cysen(3Inx)] + 55 + X
y = 2(=x)¥2 = 5(=x)2In(—x), x < 0

EJERCICIOS 4.8 (PAGINA 172)

1.

3.

11.

13.

15.

17.

X =ce'+ c,te'

y=(c, —c)e' +c,te
x=c,cost+c,sent+t+1
y=c,sent—c,cost+t—1

X = %clsent + %cz cost — 2cysen V6t — 2¢, cos V6t
y = c;sent + ¢, cost + cysen V6t + ¢, cos V6t
X = 162 + c,e7%' + cysen 2t + ¢, cos 2t + fe'
y = 6% + ce 2 — cysen 2t — ¢, cos 2t — et
X =€, — C,C08t + Cysent + 1Ledt
y =C + Cysent + cycost — e
X = cie' + c,e 2 cos: V3t + cze "2 sen; V3t
y= (—%cz - %\@cg)e‘“z cos ; V3t
+ (3V3c, — Scy)e 2 sen /3t
X = ceft + St
y = —5c.e’ + ¢, + 5et
X =Cy + Cot + Cse' + ciet — 182
y=(0C—C+2)+ (c; + Dt + et — 1t
X = cie' + ce Y2 sen1 V3t + cze 2 cos 3 V3t
y =ce' + (—%Cz - %\/§C3)e*”2 sens /3t
+ (2V/3c, — Lcg)e 2 cos 13t
z=ce'+ (—%Cz + %\/503)e“’2 sen3 V3t
+(~1V3c, — Leg)e 2 cosi V3t

RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON

19.

21.

23.

NUMERACION IMPAR

x = —6ce"—3c,e ®+ 2c.e*
— -t —2t 3t

y=ce'+ce +ce

z=>5ce " +c,e?+ e

X = @ 3t+3 _ tp—3t+3

y - _673t+3 + 2tef3t+3

mx” =0
my” = —mg;
X = Cl_t + Cz_

y=—1gt? +cit+ ¢y

EJERCICIOS 4.9 (PAGINA 177)

3.

5.

7.

9.

11.

13.
15.
17.

y = In|cos(c, — X)| + ¢,
1 1
y=5lnfcix + 1] — =x + ¢,
C1 G
1
VP oay=x+¢
y=tan(17r—1x) Llar<x<inrm
4 20 2 2
1
y=-_Vi- cix? + ¢,
1
_ 1 1 1 1
y=1+x+5+53+ext + 58+ -

y=1+x—-3x2+23-Ix*+Lx+---

y=-Vi—x

REPASO DEL CAPITULO 4 (PAGINA 178)

Now

11.
13.
15.

17.
19.

21.
23.

25.

y=0

falso

(_oov 0)1 (07 oo)

y =ce¥+ce ¥+ cxe ™ + ¢ + cxet + cxe
= 3 -5 -5 2

y=cx*+cx°+cx*Inx+c,x+cxInx+cx(Inx)

y = Cle(l-%-\@)x + Cze(l—\/§)x

= -5 -5
y =c, +C,e %+ cxe ™
y =ce 3 + e*3X/2(c2cos%\f7x + cysens \ﬁx)

y = e9/2(c, cos 1 VITx + c5sent VIIx) + £x? + Ex?

46 222
+EX 625

_ 2 3 1 1 4
y = C; + Ce%¥ + c3e®* + zsenx — :COSX + 3X
y = e*(c,cos X + c,sen x) — e*cos x In|sec x + tan x|
— -1/3 1/2
y—C1X2 +C32X 4 2
y=cXxX*+c,x*+x*—x?Inx
a) Yy = C,C0S wX + C,Sen wx + A0S ax
+ Bsenax, w # a;
Yy = C,C0S wX + C,SeNn wX + AXCOS wX

+ Bxsen wX, w = «



217.

29.
3L
33.
37.

39.

RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NUMERACION IMPAR °

b) y=rce7®*+ ce”™ + Ae*, w # «;
y = Cie” ¥ + e + Axe”*, w = «
a) y = c,coshx + c,senh x + c,xcosh x
+ ¢, xsenh x
b) y, = Ax? cosh x + Bx? senh x

y = X7 C0oS X

y=2e— 2 —x—Isenx
y=x2+4
X = —cet — Sce?t + 3

— t 2t
y=ce'+c,e*—3
X =c.e' +c,e’ + te'
y = —c.e'+ 3c,e” — te' + 2¢

EJERCICIOS 5.1 (PAGINA 194)
L V2m

3.

5.

11.

8
x(t) = —;cos 4 V6t

2) (z>__£ (z)__;. (z>__1.
N2/~ "a"s)” 72"6) " 74

(17)_1. (9_W>_ﬁ
\2)=2\32) "4

b) 4 pies/s; hacia abajo

@n + D7
c) t=—7-—"
) 16
a) lamasade 20 kg
b) la masa de 20 kg; la masa de 50 kg
c) t=nmn=0,1,2,...;enlaposicion de equilibrio;
la masa de 50 kg se esta moviendo hacia arriba
mientras que la masa de 20 kg se estd moviendo
hacia arriba cuando n es par y hacia abajo cuando n
es impar.

,n=2012...

1 3 V13
x(t) = Ecos 2t + Zsen 2t = Tsen(Zt + 0.5880)
a) Xx(t) = —5cos 10t + ;sen 10t
= 2sen(10t — 0.927)

5 . m
b) gples,5

¢) 15ciclos
d) 0.721s

2n+1
5 %+0.0927,n=0,1,2,...

f) x(3) = —0.597 pies g) x'(3) = —5.814 pies
h) x”(3) = 59.702 pies> i) =8 pies/s

i) 01451 + ”?77; 0.3545 + ”?77 n=012.. .

n
K) 0.3545+§,n=0,1,2,...

13.

17.
19.

21.

23.

25.

217.

29.

31.

35.

37.

39.

45.
47,

49.

53.

57.

120 Ib/pies; x(t) = %gsen 8V3t

a) arriba b) apuntando hacia arriba
a) abajo b) apuntando hacia arriba

Isiis, x(%) = e72 esto es, la pesa esta
aproximadamente 0.14 pies debajo de la posicién de
equilibrio.

a) X(t) =3e % —3e®

by x(t) = —5e 2 + Ze®

a) x()=e2 (—cos 4t — % sen 4t)

b) x(t) = \/75 g2 sen(4t + 4.249)

c) t=1.29s
a) B>5 b)p=3 ¢ B=3
4 AT 64 VAT )
— atr2f 2 _
x(t) =e < 3cos > t 3\/536” 2 t

10
+ 3 (cos 3t + sen 3t)

x(t) = 2e7* + te™*' — 1 cos 4t
. X(t) = —5cos 4t + 2 sen 4t + 2e 2 cos 4t
— 2e *sen 4t
d?x dx
a) m——=-k(x—h—-B-0
) dt? ( )~ B dt
d?x dx
— + 20— + X = o?h(),
dt2 gt T e* = ehl)

donde 2A = B/my w? = k/m
b) x(t) = e (-2 cos 2t — Zsen2t) + £ cost
+ Zsent
x(f) = —cos 2t — £ sen 2t + 3tsen 2t + 2t cos 2t
b) ~tsenwt
2w

4.568 C; 0.0509 s

q(t) = 10 — 10e~%(cos 3t + sen 3t)
i(t) = 60e%sen 3t; 10.432 C

g, = Zsent + ~2 cost

s _ 100 _ 150
ip = 73 CcOSt — T2 sent

q(t) = —2e 1t (cos 10t + sen 10t) + 3;3C

(t)—< __EC )cos t
q %=1 ) Vic

. t E,C
+ VLCijsen + —

t
VIC "1 y2LC Y
i(t) = i, cos t 1 ( __EC )sen t
0 e T vic\ P T 1 )" Vi
ECy
—msenyt

RES-7

s

z
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RES-8

° RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NUMERACION IMPAR

EJERCICIOS 5.2 (P/\GINA 204)

1. 2y2 _ 3 4

a) yx) = 24EI —2 (6L2%2 — 4Lx3 + x4)
3.3 yKx) = 48EI x2 — 5Lx3 + 2x%)
5. a) y(x) = 360E| — 10123 + 3x°)

11.

13.

15.

17.
19.
21.

25.

217.

¢) x=051933,y .

~ 0.234799

Wl \ﬁ
y(x) = P2 cosh EIX
enh\/Ex
N WoEIseh P w,L VEI
p2 EI PVP p
osh , /—L
El
+W02+W0E|
2P p?
A, =n5n=123,...; y=sennx
~(2n = 17272 _
An_Tan_llzysy"'l
B 2n — 1)mx
y COS—ZL
A, =n,n=0,1,2...; y=cosnx
n?m? nx
An:2—5,n:1,2,3,...; y=e‘xsenT
A, =n5,n=123,...; y=sen(ninx)
A =n'mrh n=1,23,...; y=sennwx
x=L/4,x=L/2,x=3L/4
nw VT narx
= n=123,...; =sen—
RV y L
UO—Ul ab ulb_an
N=|——|—+ —
u() (b—a)r b—a

EJERCICIOS 5.3 (PAGINA 213)

15.
17.

d?x

—_ + —

e x=0

a) 5pies b) 4V/10 pies/s ¢) 0 =t = 3V/10; 7.5 pies

a) xy"=rV1+(y)2

Cuandot=0,x=a,y =0,dy/dx =0

b) Cuandor # 1,

B §|: 1 <§>1+r B 1 <§>lr}
y(X)_z 1+r\a 1-r\a

ar
1-—r?

Cuandor =1,

y(x) = %[i o — a?) + ilnﬂ

c) Las trayectorias se intersecan cuando r < 1.

REPASO DEL CAPITULO 5 (PAGINA 216)

1. 8 pies
3. m

5. Falso podria existir una fuerza aplicada que impulsa al

sistema.
7. sobreamortiguado
9. y = 0 puesto que A = 8 no es un eigenvalor

11. 14.41b 13. x(t) =
15. 0<m=2 17.y=§\f

19. x(t) = e*‘“(% cos2V2t + £ /2 sen 2\/§t) +3

21. a) q(t) = —;sen 100t +
b) i(t) =

C) t—n—w
50’

1
7 sen 50t

—2 cos 100t + £ cos 50t

n=012...
25. (322 +kx=0
EJERCICIOS 6.1 (PAGINA 230)
LR=} 1)

3. R=10, (-5, 15)
5. x — 2x3 + Zx5 —

4 7
aisX Tt

1y2 5 4
7l+§X+ﬂX+ﬁ +

,(—m/2, w/2)
9. i (k — 2)cp_pxk
k=3

11. 2¢; + X [2(k + 1)cypq + 6C,_4]X*

k=1
15. 5;4
1 1
17. =Co| 1+ 2+ 6
V1) CO[ 3.2° "6-5-3:-2"
1
+ X9+...
9:8:6:5-3:2 ]
1 1
= + 4 4 7
V209 cl[x 4.3 T7.6-4-3"
+ ! X0+ ...
10-9-7-6-4-3
1 3 21
19. yl(x)—co[l—ax2 4!x“—gxe }

3 5 =y
Yo(X) = cl[x+3lx +5x +7|x + ]

2 2t 4+ 1 e—4t

-t



RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NUMERACION IMPAR ° RES-9

1 42 72 . 42 17. ro= z' r, = 0
2L i) =cColl — =+ =x6 — ——x¥ + - - - 1 =gl
3! 6! 9l i
22 52. 92 y(x) = 01X7/8[1 _ ix I 2—x2
Yo(X) = C1|:X - —xt+ —X 15 23-15-2
41 71 ,
w5z wmEatt ]
— X0y ... I
10! } :
+c|1—2x+ X2
2[ 9-2

1
23. yi(X) = Coi Yo (X) = €1 % ﬁxn
n=1

23
1 1 1 _—X3+"}
25. y1(x) = Co[l +ox2 + ex3 4+ axt+ - ] 17 -9 - 31

1. =
Vo) = cofx + b2 + I + Iy 4 -] 19.1n=3r=0

1
1 7 23 -7 y(x) =C x1’3[1 +>x + X
27. X) =Co|1+ =% — ———x*+ ——x— - ' 2.
y1(X) 0[ 2 YR 35l ] 37 3.2
1
1 14 34 - 14 + X3+...]
X) = Cy|x —=x + x> — = 2.3l
V209 1[ 6 2.5 4.7 ] ¥3
1
1 1 1 +Cl1+=x+ X2 + X3 + }
29, y(x)=—2[1+—x2+—x3+—x4+---]+6x 2 5.2° ' 8.5-2
2! 3! 41
2L. n=51=0
= 8x — 2e* o ,
2-2 2c-3
31. y(x) = 3 — 12x% + 4x* y(x) = C1x5’2[1 Xt g X2
33. yl(x)=c0[1—%x3+1—§0x5+~--] N 23. 4 o
yz(x)=c1[x—%x4+ﬁx6+---] 11-9-7
1 1 1
) STy T3 — ...
EJERCICIOS 6.2 (PAGINA 239) " Cz[l T3 T8 }
1. x = 0, punto singular irregular 8. 1n=5n=;
3. x = —3, punto singular regular; y(x) = Clx2’3[1 —lx S - Lt ]
X = 3, punto singular irregular s L Ly 7
5. x = 0, 2i, —2i, puntos singulares regulares  Cox [1 TRXEEX T X ]

7. x = —3, 2, puntos singulares regulares 2. n=0r=-1

o0 1 o0
9. x = 0, punto singular irregular; y(X) = C; D>, ————x¥" + Cox 1Y x2n
x = —5, 5, 2, puntos singulares regulares n=o (2n + 1)! n-o (2M)!
— 1) — Clx‘l —X2n+1 + sz—l 2n
11. parax = 1: p(x) = 5, q(x) = % n—o (2n + 1)! n=o (2n)!
1
5(xx + 1) = =[C;senhx + C,cosh x]
arax = —1:p(x) = —=, q(X) = x> + x X
P Pi) x—=1 1) 27.r,=1r,=0
13. r1=%, r,=-1 y(x)=C1x+C2[xInx—l+%x2
15, n=3%r=0 + 3+ Axd 4]
2 —_— p—
y(x) = C&2| 1— —x + 2y 29.1,=r,=0
7:5-2 1
y(x) = Coy(x) + C, [yl(X)lnx + yl(X)<—x + X
23 5
e — + e
9-7-5-3" } _ et x4—--->
3-3! 44
23 = 1
+Cyl1+2x —2x2 + X - donde y;(x) = X, =x" = ¢*
3.3l Sont

s

z
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RES-10 o
& (-1 ,_sen(vay)
33. b) yi(t) = Eom(ﬁt)z T VAt
Ay o cos (V)
y2(t) =t 120 (Zn)' (\f/\t)z a f
c) y=Cix sen<%> + Cyx cos(%)

EJERCICIOS 6.3 (PAGINA 250)

1L y=cJd,x)+c,Jd KX

3. y=cJ,,(x) +c,d (X

5. y=cJ,(x) +c,Y, (X

7.y =c¢J,(3x) +c,Y,(3x)

9. y= ClJE’f/(zSX) + c2‘172,3(5_>§/)Z
11 y = ¢ x V2 ,(ax) + c,x2J_ (aX)
13, y =x""2[c J,(4x"?) + ¢,Y, (4x¥3)]
15. y = x[c,J,(x) + ¢,Y,(x)]
17. y =x"?[c J,,(x) + c,Y,,(X)
19. y = x7Yc, 5 %%) + CZJ,M(%XZ)]
23. y=x"[cJ ,(x) + ¢,J_,,(X]

= C,senx + C, cos X

25 y = X71/2 [Cl\]l/z(%xz) + 02\],1/2(%)(2)]

= Clx*3’zsen(%x2) + sz*3’zcos(%x2)
35 y = C1X1/2J1/3(§aX3/2) + C2X1/2J_1/3(§01X3/2)
45. P,(x), P.(x), P,(x), y P,(x) estan dados en el texto,
Pe(X) = = (231x® — 315x* + 105x? — 5),
Po(X) = 1 (429x" — 693x° + 315x® — 35x)
47. A, =2,1,=12,1,=30

REPASO DEL CAPITULO (PAGINA 253)
1. Falso

3[4
7.X(x—=1)y"+y +y=0
9. r = %: r, = 0
Y1(X) = Clxl/z[l - %X + %Xz — 67;0)(3 + .. ]
Yo(X) = Cz[l - X+ %xz — 9%)(3 + .- ]
11y, (0 = co[L + 32 + 1 + 5x¢ + -+ ]
Ya2(X) = cl[x +IC+ x4+ ]
13.r,=3r,=0
yi(x) = Clx3[l FIX 4 X+ g+ - ]
¥o(x) = Co[L + x + 1]
15. y(x) = 3[1 -+ It x4+ ]
2l b -]
17. i@
19. x = 0 es un punto ordinario

21.

1.

13.

17.

21.

25.

29.

33.

RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NUMERACION IMPAR

1
— _ T3
y(x)—co[l 3~ +32.2! .

Folx—Tx Loy
! 4 4.7

1 5 1
— 0+ .- ] + [—xz - =x®

C4-7-10 2" 3
1 1
6 _ 94 .
M T T TR }
EJERCICIOS 7.1 (PAGINA 261)
2 1 1 1
_e—S__ [ —— —S
S S 3 52 sZe
1+e ™ 7 1. s
41 ¢ T et
1 1 1 7
o4 Ze 1. -°
s s s s—1
1 1
5 ——
(s — 4y $2 425+ 2
-1
PRIV 19. @
(s*+1) s°
4 10 2 6 3
== 23 S 4+=- -2
¢ s ERCI
6 6 3 1 1 1
R 21. =
st s* s?2 s sts—2
1 2 1 8 15
=+ + 1. — ———
s s—2 s—4 3 2 249
kt _ a—kt
Utilice senh kt = para mostrar que

k
F{senhkt} = r

k¥
L 1 5 2
T2s—2) 25 s+ 16
4cos5 + (senb5)s
39. ————~—
s*+ 16
EJERCICIOS 7.2 (PAGINA 269)
138 3. t—2t
5. 1+3t+322+ 12 7.t—1+e?
9. 17 11. Ssen7t
t
13. cos > 15. 2 cos 3t — 2 sen 3t
17. ; — e ™ 19. e %t 4 et
21. 0.3e% + 0.6e 0% 23, Le? — ¥ 4 L
25. 1 — £cos V5t 27. —4+3e~' + cost + 3sent

29.
33.

1
5
jsent —gsen2t 3l y=-1+et
y

— 1 A4t 19 -6t
= et + e 35.
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37. y =10cost + 2sent — V2 sen\V/2t
30, y__§ —t/z_,_ 2t+get+l—t
41 y =tet — e*3tcos 2t + Te~sen 2t
EJERCICIOS 7.3 (PAGINA 278)
1 6
1. — 3. —
(s — 10)? (s + 2)*
1 2 1 3
5. + + 7.
(s—2?% (s—3)2 (s—4)7 (s—12+9
9 S _ s—1 s+ 4
2+ 25 (s—12+25 (s + 42+ 25
11. it2e 2 13. e*sent
15. e72cost — 2e #sent 17. et — te™
19. 5 —t — et — 4te™t — 3t%e
21 y=te ™+ 2e ™™ 23. y=e '+ 2te!
25 y=1t+ 2 — Zedt 4 Vet 27y = —Jelsen 2t
29. y =1 —Zelcost + je'sent
3l.y=(e+ 1)te*t + (e —1et
V15 7V15 V15
33. x(t) = — e 2008 ——t — ———e 2sen——t
2 10
-s —2s —2s
37, & 30. =+ 2°
s s s
S —r
41. el s 3.it—22ut-2)
45. —sentU(t — m)  47. Ut — 1) — e VYt — 1)
49. c) 51. f)
53. a)
2 4
55. f(t) =2 — 4t — 3); K{f(t)} = P 3s
e s e e
57. f(t) = ttut — 1); Z{f@M)} = 2— + 2— + —
1 —2s —2s
59. f(0) = t - tU(t - 2); AT} = - esz - es
g-as —bs
61. f(t) = Ut —a) — Ut — b); L{fO)} = -
63. y=1[5—5e D]t — 1)
65. y=—;+3t+ e —lat—1)
— 1t — 1) Ut —1) + e 2Dt - 1)
67. y = cos2t— tsen2(t— 2m) Ut — 2m)
+ 1sen (t— 2m) Ut — 2m)
69. y=sent+ [1 — cos(t — m)]Ult — )
— [1 — cos(t — 2m)] Ut — 2m)
71 x(t) =3t — 2>sen4t— 2 (t — 5) U(t — 5)
+ 2sen 4t — 5) Ut — 5) — 2 Ut — 5)

+ Zcos 4(t — 5) U(t — 5)

73. q(t) = 2t — 3) — Ze”

75. a) i(t) = 13

59 gyt — 3)

-1t icost + Esent
1 101 101

10 37
_ Y A-10(t-37/2) _ o7
101e %(t 2 >
10 37 3
+— - =
01 cos(t > ) %(t > >

+ isen(t 377) %(t - 3—7T>
101 2 2

b)yi,  ~0latt=17,i =~ —0latt=47
7y = 16I|;I X - 1V;OEL| . 2Zv|%| X
i 5) 9 5)
79 y09 = 48I|£I - z\%_l :
% [ix“ - x>+ (x - %>S%<x

81. a) 0('1_1 — k(T — 70 — 575t

EJERCICIOS 7.4 (PAGINA 289)

RES-11

)

(230 — 57.50%(t — 4))

1 s2—4
1. — 3. T u
(s + 10)? (s> + 4)
5 6s” + 2 . 12s — 24
S (st 1) " [(s — 2)* + 36)°
9. y=—Je '+ 1lcost—itcost+ stsent
11. y = 2cos 3t + 3sen 3t+ Stsen 3t
13. y = Fsen4t+ ftsen 4t
— 2t — msen 4t — MUt — =)
6
17. y =28 + ¢,? 19. ¢
s—1 1
21. 23.
G+ D6 — 12 + 1] sG — 1)
s+ 1 1
25, —————— 21. 00—
s[(s + 1)? + 1] s2(s — 1)
3+ 1
29, =55 31. et—1
s4(s? + 1)
3. el —ir—-t—-1 37. f(t) = sent
39. f(t) = —fe '+ et + 2tel + % 4L f()=e
43. f(t) = 2e* + le 2 + lcos 2t + Lsen 2t

s

z
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RES-12 o

45. y(t) = sent — tsent
47.i(t) = 100[e 0CD — g 2Dt — 1)
— 100[e710(t—2) — e720(t72)]0u(t _ 2)
1—e®
s(1 +e™®)

all 1
51, —|— —
s(bs eb5—1>

coth (7s/2)
s+ 1

49,

53.

55. i(t) = %(1 — eRu)

+ é S (1)1 - e Rt — n)

n=1

57. x(t) = 2(1 — e tcos 3t — e 'sen 3t)
+4 E(—l)”[l — e (=" ¢os 3(t — n)
n=1
— le~tMgen 3(t — nw)]%(t L)

EJERCICIOS 7.5 (PAGINA 295)
1.y = X2t — 2)

y =sent + sent AUt — 2m)

y = —cost Ut — %) + cost aut — %)

y=1-je 2+ [} —je ] a1

y = e 22Mgent Ut — 21)

11. y = e ?'cos 3t + e ?'sen 3t
+le2Msen 3(t — m) Ut — m)
+ 1e23msen 3(t — 3m) Ut — 37)

&Ez_la)
EI(4X ) °

Pl L) Loyst
4El \2 12) 2 7

© N o w

I

X<t
2
13. y(x) =

EJERCICIOS 7.6 (PAGINA 299)
1 x = —fe 2 + l¢t 3. x = —cos 3t — 3 sen 3t

y = te 2t + Z¢t y = 2cos 3t — £ sen 3t

5. x=—2e%+3e* -1 7. x=-1t—3v2sen V2t
y = et — S 1 y=—t+3v2senV2t
2 1
_ — $3 44
9. x—8+3!t +4!t
2 1
— __ T3 —+4
TR

11, x =32 +t+1—e
y=—3+3et+ite

RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NUMERACION IMPAR

1 2V6 2 2
13. x, = gsent + Fsen\@t + gcost — g cos Vet

2 6 4 1
X, = —sent —isen\/ét +§cost + £ cos V6t

5 15

15. b) i, = 120 — 10 g-o00t
i 80 _ 80 ,—900t
I3 =73 9 €

c) i, =20—20e

17. i, = —28e 2 4 2 e 15t + Meost + Bsent
iy = 20e72 4 B0 g5t — Mpogt 4 Mgent

19. i, = g - ge‘m‘ cosh50V2t — gl\—fe‘m senh 50V/2t
i, = g - g e 1% cosh 50V2t — G\sze*mm senh 50 V2t

REPASO DEL CAPITULO 7 (PAGINA 300)
1 2

1. 2 ?e‘s 3. fallso

5. verdadero 7. s+ 7

9 —2 1y s
T s?+4 " (s? + 4)?

13. ;t 15, jt2edt

17. eScos 2t + 2eStsen 2t
19. cos 7r(t — DUt — 1) + sena(t — 1)U — 1)
21. -5 23. e K"AF(s — a)
25. f(O)Ut — t,) 27. f(t — t,) Ut — t))
20. f(t) =t — (t — UL — 1) — Ut — 4);

1 1 1

— — _ —a-S _ Zpa4s.
A= G- ge - ™
1 1
A== ot
1 4
_ —4(s—1)
s—1°

3L f() =2+ (t—2) Ut — 2);
SO =2+ Se

PO} = —2— + 5 _1 :

—2(s—1)

s—1
33. y = 5te! + 1t%e!
3.y = —gtstriet—HeS - Lut-2)
— Lt —2) Ut - 2) + te Dt - 2)
— e AUt - 2)
37. y=1+t+;t
39. x=-1+2e 24 le2

y=t+3e2—1et
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41, i() = —9 + 2t + 9e

W, 1 L L2 L3
43. y(x) = — =X+ =xt = =x3+ —x?
3 Y( 12EIL[ 5 TN TN Ty
1 L\® L
+§<X‘z) “”(X‘E)]
+
45. a) 01(t)=¥cos wt + b 2¢ cos Vw? + 2Kt
+ p—
0,(t) = b > Y0 cos wt — wcos\/werZKt

EJERCICIOS 8.1 (PAGINA 310)

3 -5 X
X = X, X =
L (4 8> donde <y)

-3 4 -9 X
3. X'=| 6 -1 0([X, dondeX = |y
10 4 3 z
1 -1 1 t -1
5 X' =(2 1 —-1|X+ —3t2+ o+ Of
1 1 1 —t 2
X
donde X = [y

z

d

7. d—)t(=4x+2y+et
dy
dt

d
9. d—)t(=x—y+22+e*‘—3t
dy
dt

dz _ —2x + by + 6z + 2e7' —

dt

17. Si; W(X,, X,) = —2e7% # 0 implica que X, y X, son
linealmente independientes en (—oe, ).

19. No; W(X,, X,, X,) = 0 para toda t. Los vectores
solucién son linealmente dependientes en (—, o)
Observe que X, y X..

= —Xx+3y —¢

=3x—4y+z+2et+t

EJERCICIOS 8.2 (PAGINA 324)

1 -1
1. X= cl<2>e5t + c2< 1>e‘
2 2
3. X=¢ e‘3t+c<>et
(e a2
5 1
5. X =cy,|e¥ +c, | Je "
1(2) 2(4)

11.

13.

19.

21.

23.

25.

217.

29.
3L

33.

35.

37.

RES-13

1 2 1
X=c.|0]et+c,|3]e?+c3|0])et
0 1 2
-1 1 1
. X=c¢| Olet+c,|4]|e+cy|—1]e?
1 3 3
4 —-12 4
X=c¢/| Olet+c, 6le 2 +cy| 2]e 32
-1 5 -1

el b
SERCNE)
M@M[() (]

Xcl(let+c e’ + ¢, Oe2t

J>H—\J>H—‘

[EEN

—4
X=cf-5|+c¢c, O eSt
2
1 ]
2
+ ¢, 0 tedt + | —5 |e°
-1 -1/ |
0 0 o\ |
X=c|l]|et+c,||1|tet+|1]e
1 1 0/ |
o, [0 [
+cg||1]=et +|1])tet +|0]e
1 0 0

2 2t + 1
X = —7( )e‘“ + 13( )e‘“
1 t+1
Correspondiendo al eigenvalor A, = 2 de multiplicidad
5, los eigenvectores son

1 0 0
0 0 0
Kl =10 y K2 =11 f K3 =10|.
0 0 1
0 0 0
cos t sent
X = cl< >e4‘ + cz< )e‘“
2cost + sent 2sent — cost
cost sent
X = cl< )e‘” + cz< )e‘“
—cost — sent —sent + cos't

X—c< 5cos 3t >+c < 5sen3t >
\4cos3t + 3sen3t 2\4sen3t — 3cos3t

s

z
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RES-14 o

—cost sent
39. X = 01(0 + c,| cost|+ cg| —sent
sent cost
sent cost
41. X = 01(2 et + c,|cost |e' + c3| —sent et
cost —sent

4 cos 3t — 3 sen 3t
43. X =c¢,|—-5e** + ¢, —5cos 3t g2t
0
3 cos 3t + 4 sen 3t
+ ¢, —5sen 3t et
0
25 cos 5t — 5sen 5t
45, X = —| =7 |et — cos 5t
6 cos 5t
5 cos 5t + sen 5t
+ 6 sen 5t
sen 5t
EJERCICIOS 8.3 (P[\GINA 332)
-1 -3 -1
. X =c et+c et +
! 1( 1) 2( 1) ( 3)
1 _1
3. X= c1< 1) “2 ¢, < >e4t+< §>t2
4
1
()
2 4
1 1 s
c ( )em ( )en+< 36>et
3 9 -2
1 ;
7. —cloe‘+c 1e2‘+c 2|6 — | L |e*t
2 2
1 -9
9. X - 13 r+2( )+( )
( 1)e e+ (2

1

ol &
@ xeallerse(on- Qe
ool
ool

11.

=

X

C1

2 3 4
— t +c 2t + t4 t t
15. C, 1 e ( )e <3>e <2> e
4 —-12 :
17. X =c¢,| . Jet + c2< )e 3t 4+ ( )t - <3>
1 0 :

RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NUMERACION IMPAR

19 X=c<1>e‘+c<t>et+< ;>e“
' -1 AL -t -2
cos t sent cos t
21. + t
sent —cost sent
—sen
)In|cost\
cos

cost sent cost
2 ( ) ( ot (52 e
sen cost sent

+

cos t sent cos t
25. + t
—sent cos t —sent
—sent sent
+ In| cos t|
senttant cos t
sent 2cost 3sent
77 x =’ ) ( Jorr (327 e
cos t sent 5cost
c 2cost
+ et In|sent| + et In|cos t|
—sent
0
29. —1 + c2 e2‘ + c3| 0 )€
1
_,eZt + teZt
—et + 762 + Jtet
t2e31
2 -2 2
31 te?t + et + ( )te4t + ( )e“"
)= (e (Dere (e ¢

3 4 (19
3B. (M =2 )e 2+ 12t——< ) t
<|2> <3> 29( 1>e 20\42) %%
+i<83)sent
29\69
EJERCICIOS 8.4 (PAGINA 336)

et 0 ~ et 0
1. eAt = (0 e2‘>; e Al = <0 eZt)

t+1 t t
3. eft= t t+1 t
-2t -2t —-2t+1
1 0
. X = L+ o
5 cl<0>e cz(1>e
t+1 t t
-2t —2t -2t+1
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1 0 -3
9. X =c¢4 <O>e‘ + c4<1>92t + ( ;>
X = <cosht ) e <senh t) B <1>
' \senh t Z\cosh t 1

t+1 t t
13. X = t —4lt+1|+6 t
—2t —2t —2t+1

3a2t _ 12t 342t _ 3452t
15 eAt = 2€ 2€ € a® 7.
' —g2t 4 -2t _%eZt + ge—ZI ’

N (geﬂ _ ;eZt> e %eZt _ %e—Zt )
1 —g2t 4 g2t 2 _%62'( + %e’Z‘

3 1
X = c3<_2>e2t + c4<_2>e‘2t

e’ + 3te?!  —9te”
17. eAt = ;
te?! g2t — 3te?

1+ 3t -9t
X = cl< ¢ )ez‘ + cz<1 B 3t>e2‘

3 43t 1 45t 1,3t 1 45t
e —3se —se’t + se
_ 2 2 2 2
23. X—cl<383t_3 ) +Cz<_1 3 >

Ee3l + ieSt
1 1
X = c3<1>e3t + ¢, (3)(—35‘

REPASO DEL CAPITULO 8 (PAGINA 337)

1 k= 1
1 0
5. et +c tet + et
( ) z[<_1> (2)¢]
cos 2t sen 2t
7. et
—sen 2t cos 2t
7
9. e2t +c, e‘“ +cy| 12(e ™
—16
1 16 11
11. 2t + A+ +
Cl<o>e ¢ ( )e (—4)t (—1)
13 ( cos t ) Cz( sent ) B (1)
cost —sent sent + cost 1

sent
+ Injcsct — cot t|
sent + cos't

-1 -1 1
15. b) X=c¢| 1]+c,| 0]+ cy1]e
0 1 1

EJERCICIOS 9.1 (PAGINA 344)
1. parah =0.1,y, = 2.0801; parah = 0.05,y, = 2.0592

3. parah =0.1,y, = 0.5470; parah = 0.05,y,, = 0.5465
5. parah = 0.1,y, = 0.4053; parah = 0.05,y, = 0.4054
7. parah = 0.1,y, = 0.5503; parah = 0.05,y, = 0.5495
9. parah =0.1,y, = 1.3260; parah = 0.05,y, = 1.3315
11. parah =0.1,y, = 3.8254; parah = 0.05, y,, = 3.8840;
en x = 0.5 el valor real es y(0.5) = 3.9082
13. a) y, =12
h? 0.1)2
b) y”(c)E = 4ezc% = 0.02e%¢ = 0.02¢%2
= 0.0244
c) Elvalorreal es y(0.1) = 1.2214. El error es 0.0214.
d) Sih=005y,=121
e) Elerrorconh = 0.1es 0.0214. El error con
h = 0.05es 0.0114.
15. a) y, =08
h? 0.1)?
b) y"(c)E = 5e‘2°% = 0.025e72¢ =< 0.025
para0 =c =0.1.
c) Elvalor real es y(0.1) = 0.8234. El error es 0.0234.
d) Sih=0.05,y, = 0.8125.
e) Elerrorconh = 0.1is0.0234. El error con h = 0.05
es 0.0109.
17. a) El error con 19h% 3¢,
h2
b) Y'(©)7 = 19(0.1)*(1) = 0.19
¢) Sih=0.1,y, = 1.8207.
Sih=0.05Yy, = 19424,
d) Elerrorconh = 0.1is0.2325. El error con h = 0.05
es 0.1109.
19 El 1
. a) error es Cr 172
h? 0.1)?
b) ‘y”(c) > (1)( ) = 0.005
¢) Sih=0.1,y, =0.4198.1fh =0.05,y, = 0.4124.
d) Elerrorconh = 0.1is0.0143. El error con h = 0.05

es 0.0069.

EJERCICIOS 9.2 (PAGINA 348)
1.y, = 3.9078; el valor real es y(0.5) = 3.9082

3.y, = 2.0533 5.y, = 0.5463
7.y, = 0.4055 9. y, = 0.5493
11. y, = 1.3333

13. a) 35.7130

c)

ki
v(t) = \/%tanh \/%t; v(5) = 35.7678

s

z

RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NUMERACION IMPAR e CAPITULO 9
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15. a) parah =0.1,y, = 903.0282;

parah = 0.05,y, = 1.1 X 10®

17. a) y, = 0.82341667

19.

b)

c)

d)
e)

a)

b)
c)

h® h® (0.1)°
G)(c) — = ~2c_ 20) =02/
y (0)5! 40e °5! = 40e o

=3.333 X 1076

El valor real es y(0.1) = 0.8234134413. El error es
3.225 X 107 =< 3.333 X 10°%.

If h =0.05,y, = 0.82341363.

El erroresh = 0.1 es 3.225 X 1075, El error con
h=0.05es51.854 X 1077,

o 24 b
(5) —_——
YW Og =+ 175

24 K 1)°
— =24 0.1)
(c + 1)°5! 51
Del calculo con h = 0.1, y, = 0.40546517.
Del calculo con h = 0.05,y,, = 0.40546511.

= 2.0000 x 10°°

EJERCICIOS 9.3 (PAGINA 353)

1. y(x) = —x + e*; los valores reales son

y(0.2) = 1.0214, y(0.4) = 1.0918, y(0.6) = 1.2221,
y(0.8) = 1.4255; las aproximaciones estan dadas en el
ejemplo 1.

o

Ya

= 0.7232

parah = 0.2,y, = 1.5569; parah =0.1,y, = 15576
parah = 0.2,y, = 0.2385; parah =0.1,y, = 0.2384

EJERCICIOS 9.4 (PAGINA 357)

1.

o

11.

y(X) = —2e% + 5xe? y(0.2) = —1.4918,

Y,

Y, =

Yi
X

1
X 2
Xl
X2
Xl
X2

= —1.6800

—1.4928,y, = —1.4919
1.4640,y, = 1.4640

= 8.3055,y, = 3.4199;

= 8.3055,y, = 3.4199
—3.9123,y, = 4.2857;
—3.9123,y, = 4.2857
=04179,y, = —2.1824;
=04173,y, = —2.1821

EJERCICIOS 9.5 (PAGINA 361)

Y=
A

Ya
Y1

5

=Y,

Ys

~5.6774,y, = —2.5807, y, = 6.3226
—0.2259, y, = —0.3356, y, = —0.3308,
~0.2167

= 3.3751,y, = 3.6306, y, = 3.6448, y, = 3.2355,
=2.1411

= 3.8842,y, = 2.9640,y, = 2.2064, y, = 1.5826,
= 1.0681, y, = 0.6430, y, = 0.2913

9. y, = 0.2660, y, = 0.5097, y, = 0.7357, y, = 0.9471,
y, = 1.1465,y, = 1.3353,y, = 1.5149, y, = 1.6855,

y, = 1.8474

11. y, = 0.3492,y, = 0.7202, y, = 1.1363, y, = 1.6233,

y, = 2.2118,y, = 2.9386, y, = 3.8490

13. ¢) y, = —2.2755,y, = —2.0755,y, = —1.8589,
y, = —16126,y, = —1.3275

REPASO DEL CAPITULO 9 (PAGINA 362)

1. Comparacion de los métodos numéricos con h = 0.1:

X Euler
1.10 2.1386
1.20 2.3097
1.30 2.5136
1.40 2.7504
1.50 3.0201

Euler
mejorado

2.1549
2.3439
2.5672
2.8246
3.1157

RK4

2.1556
2.3454
2.5695
2.8278
3.1197

Comparacién de los métodos numéricos con h

X Euler
1.10 2.1469
1.20 2.3272
1.30 2.5409
1.40 2.7883
1.50 3.0690

Euler
mejorado

2.1554
2.3450
2.5689
2.8269
3.1187

RK4

2.1556
2.3454
2.5695
2.8278
3.1197

3. Comparacidn de los métodos numéricos con h

X, Euler
0.60 0.6000
0.70 0.7095
0.80 0.8283
0.90 0.9559
1.00 1.0921

Euler
mejorado

0.6048
0.7191
0.8427
0.9752
1.1163

RK4

0.6049
0.7194
0.8431
0.9757
1.1169

= 0.05:

Comparacién de los métodos numéricos con h = 0.05:

. Euler
0.60  0.6024
0.70  0.7144
0.80  0.8356
0.90  0.9657
100 1.1044

5. h=0.2:y(0.2) = 3.2;

Euler
mejorado

0.6049
0.7193
0.8430
0.9755
1.1168

RK4

0.6049
0.7194
0.8431
0.9757
1.1169

h=0.1:y(0.2) ~ 3.23
7. x(0.2) ~ 1.62, y(0.2) ~ 1.84
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182
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Adams-Bashforth, prediccion de, 351
Adams-Bashforth-Moulton, método de,
351
Adicion
de matrices APE-4
de serie de potencias, 221-222
Agnew, Ralph Palmer, 32, 138
Alambre que cuelga bajo su propio peso,
25-26, 210
Alambres de teléfonos, forma de, 210
Algebra de matrices, APE-3
Amortiguamiento no lineal, 207
Amortiguamiento viscoso, 25
Amperes (A), 24
Amplitud amortiguada, 189
Amplitud
amortiguada, 189
libre de vibraciones, 184
Analisis cualitativo
de una ecuacion diferencial de
primer orden, 35-41
Analitica en un punto, 221
Angulo de fase, 184, 188
Aproximacion de diferencia central, 359
Aproximaciones de diferencia finita, 358
Avritmética, serie de potencias, 221
Arquimedes principio, 29
Atractor, 41, 314

C

Cables suspendidos, 25

Cadena cayendo, 69-70, 75

Cadena jalada por una fuerza constante,
212

Caida de un cuerpo, 25, 29, 44, 91-92,
101-102

Caidas de voltaje, 24, 286

Caja deslizante, 93-94

Célculo de orden h", 341

Campo de pendientes, 35

Campo direccional de una ecuacién
diferencial de primer orden, 35
ceroclinas, 42
método de las isdclinas para, 37, 42
para una ecuacion diferencial de
primer orden auténoma, 41

Cantidades proporcionales, 20

Capacidad de carga del medio ambiente,
94
Capacidad de transporte, 94
Capacitancia, 24
Capas acuiferas, 115
Carga de Euler, 202
Cargas criticas, 202
Catenaria, 210
Centro de una serie de potencias, 220
Ceroclinas, 42
Ciclo, 366
Cicloide, 114
Circuito en serie criticamente amortiguado,
192
Circuito en serie, ecuaciones diferenciales
de, 24, 87-88, 192
Circuito en serie LR, ecuacion diferencial
de, 29, 87
Circuito en serie LRC, ecuacion diferencial
de, 24, 192
Circuito en serie no amortiguado, 192
Circuito en serie sobreamortiguado,
192
Circuitos, ecuaciones diferenciales de, 24,
29,192
Circuitos eléctricos en serie, 24, 29, 87,
192
analogia con sistemas resorte/masa,
192
Circuitos RC, ecuacion diferencial de, 29,
87-88
Clasificacion de ecuaciones diferenciales
ordinarias
por linealidad, 4
por orden, 3
por tipo, 2
Clepsidra, 103-104
Coeficientes indeterminados:
para ecuaciones diferenciales lineales,
141, 152
para sistemas lineales, 326
Cofactor, APE-8
Colector solar, 30-31, 101
Columna doblada bajo su propio peso,
252
Columna de una matriz, APE-3
Condiciones de extremo libre, 200
Condiciones frontera, 119, 200
periddica, 206
Concentracion de un nutriente en una
célula, 112
Condiciones iniciales, 13, 118
para una ecuacion diferencial inicial,
13,118, 176

para un sistema de ecuaciones
diferenciales lineales de primer
orden, 306
Condiciones periddicas de valores
iniciales, 206
Conjunto fundamental de soluciones
existencia de, 124, 308
de una ecuacion diferencial lineal,
124
de un sistema lineal, 308
Constante de amortiguamiento, 186
Constante de crecimiento, 84
Constante de decaimiento, 84
Constante de Euler, 245
Constante de resorte efectiva, 195, 217
Constante de resorte variable, 185-186
Constante de resorte, 182
Convergencia absoluta de una serie de
potencias, 220
Convolucién de dos funciones, 283
Corriente en estado estable, 88, 193
Corrimiento de indices en una suma, 222
Coulombs (C), 24
Crecimiento exponencial y decaimiento,
83-84
Crecimiento y decaimiento, 83-84
Cuasi frecuencia, 189
Cuasi periodo, 189
Cuerpo en caida libre, 24-25, 29, 91-92
Curvatura, 178, 199
Curva de deflexion, 199
Curva de Descartes, 11
Curva de Lissajous, 300
Curva de resonancia, 198
Curva de respuesta de la frecuencia, 198
Curva de persecucion, 214-215
Curva elastica, 199
Curva logistica, 95
Curva solucion, 5
Curvas de nivel, 48, 52
Curvas solucién numéricas, 78

D

Datado con carbono, 84

Decaimiento radiactivo, 21-22, 83-85,
106

Definicion de la funcion delta de Dirac,
292-293

Definicion de vectores de, APE-3
soluciones de sistemas de ecuaciones
diferenciales lineales, 305
ecuaciones diferenciales, 305

Definicion, intervalo de, 5

s,
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Deflexién de una viga, 199
Dependencia lineal
de funciones, 122
de vectores solucion, 307-308
Derivada de una serie de potencias, 221
Derivada, notacion de, 3
Derivadas de una trasformada de Laplace,
282
Desplazamiento extremo, 183
Determinante de una matriz cuadrada,
APE-6
desarrollo por cofactores, APE-6
Diferencia central, 359
Diferencia de cocientes, 359
Diferencia hacia adelante, 359
Diferencia hacia atras, 359
Diferencial de una funcién de dos
variables, 63
Diferencial exacta, 63
criterio para, 63
Diferencias finitas, 359
Distribucion, teoria de, 294
Division sintética, 137
Doblado de una columna cénica, 240
Doblado de una columna vertical delgada,
202
Doblamiento de una columna delgada, 252
Dominio:
de una funcién, 6
de una solucién, 5-6
Drenado de un tanque, 28, 100, 104-105
Droso6fila, 95

E

Ecuacion auxiliar
para ecuaciones lineales con
coeficientes constantes, 134
para las ecuaciones de Cauchy-Euler,
163
raices de, 137
Ecuacion caracteristica de una matriz, 312,
APE-15
Ecuacion de Bessel modificada de orden
v, 244
de primera clase, 244
de segunda clase, 244
Ecuacion de diferencia finita, 359
Ecuacion de diferencias
sustitucion para una ecuacion
diferencial ordinaria, 359
Ecuacion delta de Dirac
definicion de, 292, 293
transformada de Laplace de, 293
Ecuacion de indices, 235
Ecuacion de movimiento, 183
Ecuacion diferencial asociada homogénea,
120
Ecuacion diferencial autbnoma
primer orden, 37
segundo orden, 177

Ecuacion diferencial de Airy, 186, 226,
229, 245
curvas solucion, 229
solucion en términos de funciones de
Bessel, 251
solucion en términos de series de
potencias, 224-226
Ecuacion diferencial de Bernoulli, 72
Ecuacion diferencial de Cauchy-Euler,
162-163
ecuacion auxiliar para, 163
método de solucion para, 163
reduccidn para coeficientes
constantes, 167
Ecuacion diferencial de Duffing, 213
Ecuacion diferencial de Gompertz, 97
Ecuacion diferencial de Laguerre, 291
Ecuacion diferencial de Legendre
de orden, n, 241
solucion de, 248-249
Ecuacion diferencial de orden superior,
117,181
Ecuacion diferencial de Ricatti, 74
Ecuacion diferencial exacta, 63
método de solucion para, 64
Ecuacion diferencial homogénea
con coeficientes homogeéneos, 71
lineal, 53, 120
Ecuacion diferencial lineal no homogénea
solucion general de, 56, 125
solucion particular de, 53, 125
superposicion para, 127
Ecuacion diferencial logistica, 75, 95
Ecuacion diferencial ordinaria de segundo
orden como un sistema, 176, 353
Ecuacion diferencial ordinaria no lineal, 4
Ecuacion diferencial ordinaria, 2
Ecuacidn diferencial parcial
definicion de, 2
Ecuacion diferencial
autébnoma, 36, 77
Bernoulli, 72
Cauchy-Euler, 162-163
coeficientes homogéneos, 71
definicion de, 2
exacta, 63
familias de soluciones para, 7
forma estandar de, 53, 131, 157,
223,231
forma normal de, 4
homogénea, 53, 120, 133
lineal, 4, 53, 118-120
no auténoma, 37
no homogénea, 53, 125, 140, 150,
157
no lineal, 4
notacion para, 3
orden de, 3
ordinaria, 2
primer orden, 117
Ricatti, 74

separable, 45
sistemas de, 8
solucion de, 5
tipo, 2
Ecuacion integral de Volterra, 286
Ecuacion integral, 286
Ecuacion integro-diferencial, 286
Ecuacion paramétrica de Bessel
de orden v, 244
Ecuaciones algebraicas, métodos de
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GUIA DE CORRELACION DE TOOLS

Herramientas de ED (DE Tools) es un conjunto de simulaciones que proporcionan una exploracion interactiva y visual de los
conceptos que se presentan en este libro. Visite academic.cengage.com/math/zill para encontrar mas o para contactar con los re-

presentantes de ventas de su localidad para que les pregunte acerca de otras opciones para utilizar DE Tools con este libro.

HERRAMIENTAS DEL TEXTO

PROYECTOS

Capitulo 1

Intervalo de definicion
llustra el concepto de intervalo de definicion de una solucion de una
ecuacion diferencial.

Capitulo 2

Campo direccional
Apoya la exploracion visual de la relacién entre campos direccionales
y las soluciones de las ecuaciones diferenciales ordinarias de primer
orden (EDO) de la forma dy/dx = f(x, y).

Linea de fase
Le permite ver la linea de fase, las gréficas solucion y la gréfica de la
ecuacion diferencial para algunas ecuaciones diferenciales de primer
orden.

Método de Euler
Apoya la comparacion visual y numérica del método de Euler y del
método Runge-Kutta para aproximar soluciones de las EDO de primer
orden de la forma dy/dx = f(x, y).

Capitulo 3

Crecimiento y decaimiento
Exploracién visual del crecimiento exponencial y decaimiento de las
EDO de primer orden, dx/dt = rx, o su solucion x(t).

Mezclas
Le permiten variar la proporcion de entrada-salida y la concentracion de
entrada, esta herramienta le permite ver como cambia la cantidad de sal
cuando dos disoluciones son mezcladas en un gran tanque.

Circuitos LR
Exploracién cualitativa del comportamiento de un modelo de un
circuito en serie que contiene un inductor y un resistor cuando varian
los parametros.

Presa-Depredador
lustra las curvas solucién para el modelo presa-depredador de Lotka-
Volterra.

Capitulo 5

Masa/Resorte
Apoya la exploracion gréfica de los efectos del cambio de pardame-
tros en el movimiento del sistema masa/resorte: mx” + Bx’ + kx =
F, sen(yt).

Capitulo 7

Péndulo lineal doble
Exploracion visual de un péndulo doble.

Capitulo 8

Diagrama de fase lineal
Le permite generar diagramas de fase y curvas solucion para sistemas
X" = AX de dos ecuaciones diferenciales de primer orden con coefi-
cientes constantes. Podra ver como el diagrama de fase depende de los
eigenvalores de la matriz A de coeficientes.

Capitulo 9

Métodos numéricos
Comparacion visual y numérica del método de Euler, el método de Euler
mejorado y el método de Runge-Kutta de aproximacion de soluciones
para sistemas de dos ecuaciones diferenciales.

Capitulo 1

Proyecto: Deception Pass
Apoya la exploracion visual del efecto de la marea y la amplitud de
canal en la velocidad del agua moviéndose a través del Deception Pass.

Capitulo 2

Proyecto: Logistic Harvest
Exploracién del crecimiento logistico de la poblacion con cualquier
constante o recoleccion proporcional.

Capitulo 3

Proyecto: Swimming
Determine la relacion entre la velocidad de un rio y la velocidad de una
persona nadando a través del rio.

Capitulo 4

Proyecto: Bungee Jumping
Explore las fuerzas que acttan en un saltador de bungee cuando usted
cambia el peso del saltador y la elasticidad de la cuerda del bungee.

Capitulo 5

Proyecto: Tacoma Bridge
Exploracion del levantamiento y caida de la carpeta asfaltica de un
puente.

Capitulo 6

Proyecto: Tamarisk
Exploracion de la series solucion para el crecimiento de un arbol tama-
risco en un cafién desértico.

Capitulo 7

Proyecto: Newton’s Law of Cooling
Use el modelo matematico de la ley de enfriamiento de Newton para de-
terminar la rapidez con la que un cuerpo se calienta o se enfria para en-
contrar el tiempo que le toma al “Mayfair Diner Murder” ocupar su lugar
y el tiempo en el que el cadaver fue llevado de la cocina al refrigerador.

Capitulo 8

Proyecto: Earthquake
Exploracion visual de los desplazamientos de los pisos de tres edificios
durante un terremoto.

Capitulo 9

Proyecto: Hammer
Exploracion de un modelo de péndulo usando diferentes métodos nu-
méricos, tiempo y tamafio de paso, y condiciones iniciales.
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Ecuaciones diferenciales con aplicaciones de modelado 9a. edicién
logra un equilibrio razonable entre los acercamientos analiticos, cuali-
tativos y cuantitativos al estudio de ecuaciones diferenciales. Este texto
probado y accesible habla a los estudiantes de ingenieria y de mate-
mdticas que comienzan, con una abundancia de ayudas pedagégi-
cas, incluyendo una variedad de ejemplos, explicaciones, recuadros
de “observaciones”, definiciones y de proyectos de grupo. Usando un
estilo directo, legible y provechoso, este libro proporciona un trata-
miento exhaustivo de las ecuaciones diferenciales para cursos de un
semestre.

Caracteristicas:

El desarrollo del material en este texto progresa intuitivamente y
las explicaciones son claras y concisas. Los ejercicios refuerzan
y estructuran el contenido del capitulo.

Este texto guia a los estudiantes a través del material necesario
para progresar al siguiente nivel de estudio; su presentacién
clara y precisién matemética sirve como excelente herramienta
de referencia en cursos futuros.

Mientras que este texto ha sido probado a través del tiempo y
extensamente aceptado, se mantiene actualizado segin lo
demuestran los nuevos “problemas de contribucién” agregados.

Lo nuevo:

* El autor supervisé la creacién de cada seccién de arte para
asegurarse de que estd tan matemdticamente correcta como el
texto.

® los problemas de tarea al final de la seccién de ejercicios selec-
cionados fueron sometidos y probados por el salén de clase y
por los miembros de la comunidad de ensefianza de matemati-
cas.

* Los ejercicios se han puesto al dia para mejorar la prueba y para
desafiar a estudiantes. Las revisiones se basan en las sugeren-
cias del revisor y del usuario, asi como la comprensién del autor
de las metas del curso.
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