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AL ESTUDIANTE

Los autores de los libros viven con la esperanza de que alguien en realidad los lea. 
Contrariamente a lo que usted podría creer, casi todo texto de matemáticas de nivel 
universitario está escrito para usted y no para el profesor. Cierto es, que los temas 
cubiertos en el texto se escogieron consultando a los profesores ya que ellos toman 
la decisión acerca de si hay que usarlos en sus clases, pero todo lo escrito en él está 
dirigido directamente al estudiante. Entonces quiero motivarle — no, en realidad 
quiero decirle  que — ¡lea este libro de texto! Pero no lo haga como leería una no-
vela; no debe leerlo rápido y no debe saltarse nada. Piense en éste como un cuaderno 
de ejercicios. Por eso creo que las matemáticas siempre deberían ser leídas con lápiz 
y papel a la mano porque muy probablemente, tendrá que trabajar a su manera los 
ejemplos y hacer el análisis. Lea —más bien, trabaje— todos los ejemplos de una 
sección antes de intentar cualquiera de los ejercicios; los ejemplos se han construido 
para mostrar lo que considero son los aspectos más importantes de la sección y, por 
tanto, muestran los procedimientos necesarios para trabajar la mayor parte de los 
problemas de los conjuntos de ejercicios. Yo les digo a mis estudiantes que cuando 
lean un ejemplo, cubran su solución y que intenten trabajar primero en ella, comparar 
su respuesta con la solución dada y luego resolver cualquier diferencia. He tratado de 
incluir lo más importante de cada ejemplo, pero si algo no es claro usted podría siem-
pre intentarlo —y aquí es donde el papel y el lápiz entran otra vez— complete los 
detalles o pasos que faltan. Puede no ser fácil, pero es parte del proceso de aprendi-
zaje. La acumulación de hechos seguidos por la lenta asimilación del entendimiento 
simplemente no se puede alcanzar sin luchar.

Concluyendo, le deseo buena suerte y éxito. Espero que disfrute el libro y el curso 
que está por iniciar— cuando era estudiante de la licenciatura en matemáticas, este 
curso fue uno de mis favoritos porque me gustan las matemáticas que están conectadas 
con el mundo físico—. Si tiene algún comentario o si encuentra algún error cuando 
lo lea o trabaje con él o si me quiere hacer llegar una buena idea para mejorar el libro 
o el SRSM, por favor póngase en contacto conmigo o con mi editor en Brooks/Cole 
Publishig Company: charlie.vanwagner@cengage.com

AL PROFESOR

¿QUÉ ES LO NUEVO EN ESTA EDICIÓN? 

Primero, déjeme decirle que no ha cambiado. La estructura del capítulo por temas, el 
número y el orden de las secciones dentro de un capítulo, se conservan igual que en 
las ediciones anteriores.

En caso de que examine este texto por primera vez, Ecuaciones diferenciales con apli-
caciones de modelado, 9a. edición, se puede utilizar ya sea para un curso de un semes-
tre o de un trimestre de ecuaciones diferenciales ordinarias. La versión completa del libro, 
Ecuaciones diferenciales con problemas con valores en la frontera, 7a. edición, se puede 
utilizar para un curso de uno o dos semestres abarcando ecuaciones diferenciales ordina-
rias y ecuaciones diferenciales parciales. La versión extendida contiene seis capítulos más 
que cubren sistemas autónomos planos y estabilidad, series y transformadas de Fourier, 

PREFACIO
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ecuaciones diferenciales parciales, lineales y problemas con valores en la frontera y mé-
todos numéricos para ecuaciones diferenciales parciales. Para un curso de un semestre, 
supongo que los estudiantes han concluido con éxito al menos un curso de dos semestres 
de cálculo. Puesto que está leyendo esto, sin duda ya ha examinado la tabla de contenidos 
para los temas que cubrirá. En este prefacio no encontrará “un programa sugerido”. No 
pretenderé ser tan sabio para decir lo que otros profesores den en sus clases. Siento que hay 
mucho material aquí para escoger y formar un curso a su gusto. El texto tiene un equilibrio 
razonable entre los métodos analíticos, cualitativos, y cuantitativos en el estudio de las ecua-
ciones diferenciales. Por lo que mi “fi losofía subyacente” es: “Un libro para estudiantes de 
licenciatura debería estar escrito considerando siempre el entendimiento del estudiante, lo 
que signifi ca que el material debería estar presentado en una forma directa, legible y útil, 
considerando el nivel teórico compatible con la idea ‘de un primer curso’”.

Para las personas familiarizadas con las ediciones anteriores, me gustaría mencio-
narles algunas de las mejoras hechas en esta edición.

• Problemas aportados Los conjuntos de ejercicios seleccionados concluyen con 
uno o dos problemas aportados. Estos problemas se han probado en clase y los 
han enviado profesores de cursos de ecuaciones diferenciales y muestran cómo 
los profesores han complementado sus presentaciones de clase con proyectos 
adicionales.

• Ejercicios Se ha actualizado un gran número de ejercicios agregando nuevos pro-
blemas para evaluar mejor y presentarles retos a los estudiantes. De igual forma, 
se han mejorado algunos conjuntos de ejercicios quitando algunos problemas.

• Diseño Esta edición se ha mejorado con un diseño a cuatro colores, lo que le 
da profundidad de signifi cado a todas las gráfi cas y énfasis a frases impor-
tantes. Supervisé la creación de cada parte del arte para asegurarme de que está 
matemáticamente correcta conforme al texto.

• Nueva numeración de fi guras Me tomó muchas ediciones hacer esto, pero 
fi nalmente me convencí de que la vieja numeración de fi guras, teoremas y 
defi niciones tenía que cambiarse. En esta revisión he utilizado un sistema de 
numeración de doble-decimal. Por ejemplo, en la última edición la fi gura 7.52 
sólo indica que es la 52a. del capítulo 7. En esta edición, la misma fi gura se 
numeró como la fi gura 7.6.5 donde

  Capítulo Sección
        
        7.6.5d Quinta fi gura en la sección

 Siento que este sistema proporciona una indicación clara de dónde están las 
cosas, sin necesidad de agregar el molesto número de página.

• Proyectos de ediciones anteriores Problemas y ensayos seleccionados de edi-
ciones pasadas del libro se pueden encontrar en el sitio web de la compañía en 
academic.cengage.com/math/zill.

RECURSOS PARA LOS ESTUDIANTES

• Student Resource and Solutions Manual, de Warren S. Wright, Dennis G. 
Zill y Carol D. Wright (ISBN 0495385662 (que acompaña a Ecuaciones 
diferenciales con aplicaciones de modelado, 9a. edición), 0495383163 (que 
acompaña a Ecuaciones diferenciales con problemas con valores en la fron-
tera, 7a. edición) presentan repasos del material más importante de álgebra 
y cálculo, la solución de cada tercer problema de cada conjunto de ejercicios 
(con excepción de los problemas de análisis y las tareas para el laboratorio de 
computación), la sintaxis de las instrucciones importantes para cálculo de sis-
temas algebraicos de Mathematica y Maple, listas de conceptos importantes, 
así como sugerencias útiles de cómo iniciar ciertos problemas.

• Herramientas de ED (DE Tools) es un conjunto de simulaciones que propor-
cionan una exploración iteractiva y visual de los conceptos que se presentan en 
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este libro. Visite academic.cengage.com/math/zill para encontrar más o para 
contactar con los representantes de ventas de su localidad para que les pre-
gunte acerca de otras opciones para utilizar DE Tools con este libro.

MATERIAL DE APOYO PARA EL PROFESOR

Este libro cuenta con una serie de recursos para el profesor, los cuales están disponibles 
en inglés y sólo se proporcionan a los docentes que lo adopten como texto en sus cursos. 
Para mayor información, póngase en contacto con el área de servicio a clientes en las 
siguientes direcciones de correo electrónico:

 Cengage Learning México y Centroamérica clientes.mexicoca@cengage.com
 Cengage Learning Caribe clientes.caribe@cengage.com
 Cengage Learning Cono Sur clientes.conosur@cengage.com
 Cengage Learning Pacto Andino clientes.pactoandino@cengage.com

Los recursos disponibles se encuentran en el sitio web del libro:
http://latinoamerica.cengage.com/zill
Las direcciones de los sitios web referidas en el texto no son administradas por 
Cengage Learning Latinoamérica, por lo que ésta no es responsable de los cambios o 

actualizaciones de las mismas.

RECONOCIMIENTOS

Componer un libro de texto de matemáticas como éste y asegurarse de que sus miles de 
símbolos y cientos de ecuaciones estén (en la mayoría) correctos es una enorme tarea, 
pero puesto que yo me llamo “el autor” este es mi trabajo y responsabilidad. Sin em-
bargo, muchas personas además de mí invirtieron enormes cantidades de tiempo y energía 
para lograr por fi n su publicación. Entonces me gustaría aprovechar esta oportunidad para 
expresar mi más sincero aprecio a cada uno —la mayoría de ellos no me conoce— en 
Brooks/Cole Publishing Company, en Cengage Learning y en Hearthside Publication 
Services quienes estuvieron implicados con la publicación de esta nueva edición. Sin 
embargo, me gustaría seleccionar a algunas personas para un reconocimiento especial: 
en Brooks/Cole/Cengage, a Cheryll Linthicum, jefa del proyecto de producción, por su 
buena voluntad para escuchar las ideas de autores y contestar pacientemente las muchas 
preguntas de los autores; a Larry Didona por sus excelentes diseños de los forros; a Diane 
Beasley por el diseño interior; a Vernon Boes por su supervisión de todo el arte y el di-
seño; a Charlie van Wagner, editor anfi trión; a Stacy Green por la coordinación de todos 
los suplementos; a Leslie Lahr, editora de desarrollo, por sus sugerencias y apoyo y por 
conseguir y organizar los problemas aportados; y en Hearthside Production Services, a 
Anne Seitz, editora de producción, quien puso de nuevo todos los pedazos del rompeca-
bezas juntos. Mis más especiales gracias van para John Samons por el trabajo excepcional 
que hizo al revisar el texto y conseguir el manuscrito correcto.

También extiendo mi más sincero aprecio a aquellas personas que invirtieron su 
tiempo a pesar de sus ocupados horarios académicos para envíar un problema aportado.

Ben Fitzpatrick, Loyola Marymount University
Layachi Hadji, University of Alabama
Michael Prophet, University of Northern Iowa
Doug Shaw, University of Northern Iowa
Warren S. Wright, Loyola Marymount University
David Zeigler, California State University-Sacramento

Finalmente, conforme han pasado los años, estos libros de texto se han mejorado 
por un número incontable de caminos por las sugerencias y las críticas de los revisores. 
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Así que es justo concluir con un reconocimiento de mi deuda con las siguientes perso-
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Philip Bacon, University of Florida
Bruce Bayly, University of Arizona
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1

INTRODUCCIÓN A LAS 
ECUACIONES DIFERENCIALES

1.1 Defi niciones y terminología

1.2 Problemas con valores iniciales

1.3 Ecuaciones diferenciales como modelos matemáticos

REPASO DEL CAPÍTULO 1

Las palabras ecuaciones y diferenciales ciertamente sugieren alguna clase de 

ecuación que contiene derivadas y�, y�, . . . Al igual que en un curso de álgebra y 

trigonometría, en los que se invierte bastante tiempo en la solución de ecuaciones 

tales como x2 � 5x � 4 � 0 para la incógnita x, en este curso una de las tareas 

será resolver ecuaciones diferenciales del tipo y� � 2y� � y � 0 para la función 

incógnita y � �(x).

Nos dice algo el párrafo anterior, pero no la historia completa acerca del curso 

que está por iniciar. Conforme el curso se desarrolle verá que hay más en el estudio 

de las ecuaciones diferenciales, que solamente dominar los métodos que alguien ha 

inventado para resolverlas.

Pero las cosas en orden. Para leer, estudiar y platicar de un tema especializado, 

tiene que aprender la terminología de esta disciplina. Esa es la idea de las dos 

primeras secciones de este capítulo. En la última sección examinaremos brevemente 

el vínculo entre las ecuaciones diferenciales y el mundo real. Las preguntas 

prácticas como ¿qué tan rápido se propaga una enfermedad? ¿Qué tan rápido 

cambia una población? implican razones de cambio o derivadas. Así, la descripción 

matemática —o modelo matemático— de experimentos, observaciones o teorías 

puede ser una ecuación diferencial.

1
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2 ● CAPÍTULO 1  INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES

DEFINICIONES Y TERMINOLOGÍA

REPASO DE MATERIAL
● Defi nición de derivada
● Reglas de derivación
● Derivada como una razón de cambio
● Primera derivada y crecimiento/decrecimiento
● Segunda derivada y concavidad

INTRODUCCIÓN  La derivada dy�dx de una función y � �(x) es otra función ��(x) que se en-
cuentra con una regla apropiada. La función y = e0.1x2 es derivable en el intervalo (��, �), y usando 
la regla de la cadena, su derivada es dy�dx = 0.2xe0.1x2. Si sustituimos e0.1x2 en el lado derecho de la 
ultima ecuación por y, la derivada será

 .
dy

dx
0.2xy  (1)

Ahora imaginemos que un amigo construyó su ecuación (1) ; usted no tiene idea de cómo la hizo 
y se pregunta ¿cuál es la función representada con el símbolo y? Se está enfrentando a uno de los 
problemas básicos de este curso: 

¿Cómo resolver una ecuación para la función desconocida y � �(x)?

1.1

UNA DEFINICIÓN  La ecuación (1) es llamada ecuación diferencial. Antes de pro-
seguir, consideremos una defi nición más exacta de este concepto.

DEFINICIÓN 1.1.1  Ecuación diferencial

Una ecuación que contiene derivadas de una o más variables respecto a una o 
más variables independientes, se dice que es una ecuación diferencial (ED).

Para hablar acerca de ellas clasifi caremos a las ecuaciones diferenciales por tipo, 
orden y linealidad.

CLASIFICACIÓN POR TIPO  Si una ecuación contiene sólo derivadas de una o más 
variables dependientes respecto a una sola variable independiente se dice que es una 
ecuación diferencial ordinaria (EDO). Por ejemplo,

 Una ED puede contener
 más de una variable dependiente,

 

 
dy

dx
5y ex,

d 2y

dx2

dy

dx
6y 0, y

dx

dt

dy

dt
2x y  (2)

son ecuaciones diferenciales ordinarias. Una ecuación que involucra derivadas par-
ciales de una o más variables dependientes de dos o más variables independientes 
se llama ecuación diferencial parcial (EDP). Por ejemplo,

08367_01_ch01_p001-033-ok.indd   208367_01_ch01_p001-033-ok.indd   2 6/4/09   12:14:55 PM6/4/09   12:14:55 PM



 
2u

x2

2u

y2 0,
2u

x2

2u

t2 2
u

t
, y

u

y

v

x
 (3)

son ecuaciones diferenciales parciales.*

En todo el libro las derivadas ordinarias se escribirán usando la notación de Leibniz 
dy�dx, d2y�dx2, d3y�dx3, . . . o la notación prima y�, y�, y���, . . . . Usando esta última 
notación, las primeras dos ecuaciones diferenciales en (2) se pueden escribir en una 
forma un poco más compacta como y� � 5y � ex y y� � y� � 6y � 0. Realmente, la 
notación prima se usa para denotar sólo las primeras tres derivadas: la cuarta derivada se 
denota y(4) en lugar de y��. En general, la n-ésima derivada de y se escribe como dny�dxn 
o y(n). Aunque es menos conveniente para escribir o componer tipográfi camente, la no-
tación de Leibniz tiene una ventaja sobre la notación prima en que muestra claramente 
ambas variables, las dependientes y las independientes.  Por ejemplo, en la ecuación

 

d 2x
–––
dt 2

� 16x � 0

función incógnita 
o variable dependiente

variable independiente  

se ve inmediatamente que ahora el símbolo x representa una variable dependiente, 
mientras que la variable independiente es t. También se debe considerar que en ingenie-
ría y en ciencias físicas, la notación de punto de Newton (nombrada despectivamente 
notación de “puntito”) algunas veces se usa para denotar derivadas respecto al tiem-
po t. Así la ecuación diferencial d2s�dt2 � �32 será s̈ � �32. Con frecuencia las 
derivadas parciales se denotan mediante una notación de subíndice que indica las va-
riables independientes. Por ejemplo, con la notación de subíndices la segunda ecuación 
en (3) será u

xx
 � u

tt
 � 2u

t
.

CLASIFICACIÓN POR ORDEN  El orden de una ecuación diferencial (ya sea 
EDO o EDP) es el orden de la mayor derivada en la ecuación. Por ejemplo, 

 

primer ordensegundo orden

� 5(     )3
 � 4y � ex

dy
–––
dx

d 2y
––––
dx 2  

es una ecuación diferencial ordinaria de segundo orden. Las ecuaciones diferenciales 
ordinarias de primer orden algunas veces son escritas en la forma diferencial M(x, y)dx 
� N(x, y) dy � 0. Por ejemplo, si suponemos que y denota la variable dependiente en 
(y � x) dx � 4xdy � 0, entonces y�� dy�dx, por lo que al dividir entre la diferencial 
dx, obtenemos la forma alterna 4xy� � y � x. Véanse los Comentarios al fi nal de esta 
sección.

Simbólicamente podemos expresar una ecuación diferencial ordinaria de n-ésimo 
orden con una variable dependiente por la forma general

 ,F(x, y, y , . . . , y(n)) 0  (4)

donde F es una función con valores reales de n � 2 variables: x, y, y�, …, y(n). Por ra-
zones tanto prácticas como teóricas, de ahora en adelante supondremos que es posible 
resolver una ecuación diferencial ordinaria en la forma de la ecuación (4) únicamente 
para la mayor derivada y(n) en términos de las n � 1 variables restantes. 

*Excepto esta sección de introducción, en Un primer curso de ecuaciones diferenciales con aplicaciones de 
modelado, novena edición, sólo se consideran ecuaciones diferenciales ordinarias. En ese libro la palabra 
ecuación y la abreviatura ED se refi ere sólo a las EDO. Las ecuaciones diferenciales parciales o EDP se 
consideran en el volumen ampliado Ecuaciones diferenciales con problemas con valores en la frontera. 
séptima edición.

1.1  DEFINICIONES Y TERMINOLOGÍA ● 3
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4 ● CAPÍTULO 1  INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES

La ecuación diferencial 

 ,
dny

dxn f (x, y, y , . . . , y(n 1))  (5)

donde f es una función continua con valores reales, se conoce como la forma normal 
de la ecuación (4). Así que cuando sea adecuado para nuestros propósitos, usaremos las 
formas normales

 
dy

dx
f (x, y) y

d 2y

dx2 f (x, y, y )  

para representar en general las ecuaciones diferenciales ordinarias de primer y segundo 
orden. Por ejemplo, la forma normal de la ecuación de primer orden 4xy� � y � x es 
y� � (x � y)�4x; la forma normal de la ecuación de segundo orden y� � y� � 6y � 0 
es y� � y� � 6y. Véanse los Comentarios.

CLASIFICACIÓN POR LINEALIDAD  Una ecuación diferencial de n-ésimo orden 
(4) se dice que es lineal si F es lineal en y, y�, . . . , y(n). Esto signifi ca que una EDO de 
n-ésimo orden es lineal cuando la ecuación (4) es a

n
(x)y(n) � a

n�1
(x)y(n�1) � � � � � a

1

(x)y� � a
0
(x)y � g(x) � 0 o

 .an(x)
dny

dxn an 1(x)
dn 1y

dxn 1 a1(x)
dy

dx
a0(x)y g(x)  (6)

Dos casos especiales importantes de la ecuación (6) son las ED lineales de primer 
orden (n � 1) y de segundo orden (n � 2):

 
.a1(x)

dy

dx
a0(x)y g(x) y a2(x)

d 2y

dx2 a1(x)
dy

dx
a0(x)y g(x)

 
(7)

En la combinación de la suma del lado izquierdo de la ecuación (6) vemos que las dos 
propiedades características de una EDO son las siguientes:

• La variable dependiente y y todas sus derivadas y�, y�, . . . , y (n) son de primer 
grado, es decir, la potencia de cada término que contiene y es igual a 1.

• Los coefi cientes de a
0
, a

1
, . . . , a

n
 de y, y�, . . . , y (n) dependen a lo más de la 

variable independiente x.

Las ecuaciones

 (y x)dx 4x dy 0, y 2y y 0, y
d 3y

dx3 x
dy

dx
5y ex

son, respectivamente, ecuaciones diferenciales de primer, segundo y tercer orden. Aca-
bamos sólo de mostrar que la primera ecuación es lineal en la variable y cuando se escribe 
en la forma alternativa 4xy� � y � x. Una ecuación diferencial ordinaria no lineal es sim-
plemente no lineal. Funciones no lineales de la variable dependiente o de sus derivadas, 
tales como sen y o ey�, no se pueden presentar en una ecuación lineal. Por tanto

 

término no lineal: 
coeficiente depende de y

término no lineal: 
función no lineal de y

término no lineal: 
el exponente es diferente de 1

(1 � y)y� � 2y � e x, � sen y � 0, y
d 2y
––––
dx 2

� y 2 � 0
d 4y
––––
dx 4  

son ejemplos de ecuaciones diferenciales ordinarias no lineales de primer, segundo y 
cuarto orden respectivamente.

SOLUCIONES  Como ya se ha establecido, uno de los objetivos de este curso es 
resolver o encontrar soluciones de ecuaciones diferenciales. En la siguiente defi nición 
consideramos el concepto de solución de una ecuación diferencial ordinaria.
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DEFINICIÓN 1.1.2  Solución de una EDO

Cualquier función �, defi nida en un intervalo I y que tiene al menos n deriva-
das continuas en I, las cuales cuando se sustituyen en una ecuación diferencial 
ordinaria de n-ésimo orden reducen la ecuación a una identidad, se dice que es 
una solución de la ecuación en el intervalo.

En otras palabras, una solución de una ecuación diferencial ordinaria de n-ésimo orden 
(4) es una función � que posee al menos n derivadas para las que

 F(x, (x), (x), . . . , (n)(x)) 0 para toda x en I.  

Decimos que � satisface la ecuación diferencial en I. Para nuestros propósitos supondremos 
que una solución � es una función con valores reales. En nuestro análisis de introducción 
vimos que y = e0.1x 2 es una solución de dy�dx � 0.2xy en el intervalo (��, �).

Ocasionalmente será conveniente denotar una solución con el símbolo alternativo y(x).

INTERVALO DE DEFINICIÓN  No podemos pensar en la solución de una ecuación 
diferencial ordinaria sin simultáneamente pensar en un intervalo. El intervalo I en la defi -
nición 1.1.2 también se conoce con otros nombres como son intervalo de defi nición, in-
tervalo de existencia, intervalo de validez, o dominio de la solución y puede ser un 
intervalo abierto (a, b), un intervalo cerrado [a, b], un intervalo infi nito (a, �), etcétera.

EJEMPLO 1  Verifi cación de una solución

Verifi que que la función indicada es una solución de la ecuación diferencial dada en 
el intervalo (��, �).

a) dy
dx xy ; y 1

16

1
2 x4     b) y 2y y 0; y xex

SOLUCIÓN  Una forma de verifi car que la función dada es una solución, es ver, una 
vez que se ha sustituido, si cada lado de la ecuación es el mismo para toda x en el 
intervalo.

a) De

 

lado derecho: xy1/2 x
1

16
x 4

1/2

x
1

4
x 2 1

4
x 3,

lado izquierdo:
dy

dx

1

16
 (4 x 3)

1

4
x 3,

     vemos que cada lado de la ecuación es el mismo para todo número real x. Observe 
que y1/2 1

4 x 2  es, por defi nición, la raíz cuadrada no negativa de 1
16 x 4 .

b)  De las derivadas y� � xex � ex y y� � xex � 2ex tenemos que para todo número 
real x,

 lado derecho: .0

lado izquierdo: y 2y y (xex 2ex) 2(xex ex) xex 0,

  

 En el ejemplo 1, observe también, que cada ecuación diferencial tiene la solución 
constante y � 0, �� � x � �. Una solución de una ecuación diferencial que es igual 
a cero en un intervalo I se dice que es la solución trivial.

CURVA SOLUCIÓN  La gráfi ca de una solución � de una EDO se llama curva 
solución. Puesto que � es una función derivable, es continua en su intervalo de de-

1.1  DEFINICIONES Y TERMINOLOGÍA ● 5
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6 ● CAPÍTULO 1  INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES

fi nición I. Puede haber diferencia entre la gráfi ca de la función � y la gráfi ca de la 
solución �. Es decir, el dominio de la función � no necesita ser igual al intervalo de 
defi nición I (o dominio) de la solución �. El ejemplo 2 muestra la diferencia.

EJEMPLO 2  Función contra solución

El dominio de y � 1�x, considerado simplemente como una función, es el conjunto de 
todos los números reales x excepto el 0. Cuando trazamos la gráfi ca de y � 1�x, dibuja-
mos los puntos en el plano xy correspondientes a un juicioso muestreo de números toma-
dos del dominio. La función racional y � 1�x es discontinua en x � 0, en la fi gura 1.1.1a 
se muestra su gráfi ca, en una vecindad del origen. La función y � 1�x no es derivable en 
x � 0, ya que el eje y (cuya ecuación es x � 0) es una asíntota vertical de la gráfi ca. 

Ahora y � 1�x es también una solución de la ecuación diferencial lineal de primer 
orden xy� � y � 0 (Compruebe). Pero cuando decimos que y � 1�x es una solución de 
esta ED, signifi ca que es una función defi nida en un intervalo I en el que es derivable y 
satisface la ecuación. En otras palabras, y � 1�x es una solución de la ED en cualquier 
intervalo que no contenga 0, tal como (�3, �1), (1

2
, 10), (��, 0), o (0, �). Porque las 

curvas solución defi nidas por y � 1�x para �3 � x ��1 y 1
2
 � x � 10 son simple-

mente tramos, o partes, de las curvas solución defi nidas por y � 1�x para �� � x � 0 
y 0 � x � �, respectivamente, esto hace que tenga sentido tomar el intervalo I tan 
grande como sea posible. Así tomamos I ya sea como (��, 0) o (0, �). La curva so-
lución en (0, �) es como se muestra en la fi gura 1.1.1b. 

SOLUCIONES EXPLÍCITAS E IMPLÍCITAS  Usted debe estar familiarizado con 
los términos funciones explícitas y funciones implícitas de su curso de cálculo. Una 
solución en la cual la variable dependiente se expresa sólo en términos de la variable 
independiente y las constantes se dice que es una solución explícita. Para nuestros 
propósitos, consideremos una solución explícita como una fórmula explícita y � �(x) 
que podamos manejar, evaluar y derivar usando las reglas usuales. Acabamos de ver 
en los dos últimos ejemplos que y � 1

16 x
4, y � xex, y y � 1�x son soluciones explíci-

tas, respectivamente, de dy�dx � xy1/2, y� � 2y� � y � 0, y xy� � y � 0. Además, la 
solución trivial y � 0 es una solución explícita de cada una de estas tres ecuaciones. 
Cuando lleguemos al punto de realmente resolver las ecuaciones diferenciales ordi-
narias veremos que los métodos de solución no siempre conducen directamente a una 
solución explícita y � �(x). Esto es particularmente cierto cuando intentamos resolver 
ecuaciones diferenciales de primer orden. Con frecuencia tenemos que conformarnos 
con una relación o expresión G(x, y) � 0 que defi ne una solución �.

DEFINICIÓN 1.1.3  Solución implícita de una EDO

Se dice que una relación G(x, y) � 0 es una solución implícita de una ecuación 
diferencial ordinaria (4) en un intervalo I, suponiendo que existe al menos una 
función � que satisface la relación así como la ecuación diferencial en I.

Está fuera del alcance de este curso investigar la condición bajo la cual la relación 
G(x, y) � 0 defi ne una función derivable �. Por lo que supondremos que si implemen-
tar formalmente un método de solución nos conduce a una relación G(x, y) � 0, enton-
ces existe al menos una función � que satisface tanto la relación (que es G(x, �(x)) � 
0) como la ecuación diferencial en el intervalo I. Si la solución implícita G(x, y) � 0 es 
bastante simple, podemos ser capaces de despejar a y en términos de x y obtener una o 
más soluciones explícitas. Véanse los Comentarios.

1

x

y

1

a) función y � 1/x, x 0

b) solución y � 1/x, (0, ∞)

1

x

y

1

FIGURA 1.1.1  La función y � 1�x no 
es la misma que la solución y � 1�x
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EJEMPLO 3  Comprobación de una solución implícita

La relación x2 � y2 � 25 es una solución implícita de la ecuación diferencial

 
dy

dx

x

y  (8)

en el intervalo abierto (�5, 5). Derivando implícitamente obtenemos

 .
d

dx
x2 d

dx
y2 d

dx
 25    o 2x 2y

dy

dx
0  

Resolviendo la última ecuación para dy�dx se obtiene (8). Además, resolviendo 
x2 � y2 � 25 para y en términos de x se obtiene y � 	225 � x2 . Las dos funciones 


2(x) � �125 � x2y � 
1(x) � 125 � x2 y y �  satisfacen la relación (que es, 
x2 � �

1
2 � 25) y x2 � �

2
2 � 25) y son las soluciones explícitas defi nidas en el inter-

valo (�5, 5). Las curvas solución dadas en las fi guras 1.1.2b y 1.1.2c son tramos de la 
gráfi ca de la solución implícita de la fi gura 1.1.2a. 

Cualquier relación del tipo x2 � y2 – c � 0 formalmente satisface (8) para cual-
quier constante c. Sin embargo, se sobrentiende que la relación siempre tendrá sentido 
en el sistema de los números reales; así, por ejemplo, si c � �25, no podemos decir 
que x2 � y2 � 25 � 0 es una solución implícita de la ecuación. (¿Por qué no?)

Debido a que la diferencia entre una solución explícita y una solución implícita 
debería ser intuitivamente clara, no discutiremos el tema diciendo siempre: “Aquí está 
una solución explícita (implícita)”.

FAMILIAS DE SOLUCIONES  El estudio de ecuaciones diferenciales es similar al 
del cálculo integral. En algunos libros una solución � es algunas veces llamada inte-
gral de la ecuación y su gráfi ca se llama curva integral. Cuando obtenemos una anti-
derivada o una integral indefi nida en cálculo, usamos una sola constante c de integra-
ción. De modo similar, cuando resolvemos una ecuación diferencial de primer orden 
F(x, y, y�) � 0, normalmente obtenemos una solución que contiene una sola constante 
arbitraria o parámetro c. Una solución que contiene una constante arbitraria representa 
un conjunto G(x, y, c) � 0 de soluciones llamado familia de soluciones uniparamé-
trica. Cuando resolvemos una ecuación diferencial de orden n, F(x, y, y�, . . . , y(n)) � 0, 
buscamos una familia de soluciones n-paramétrica G(x, y, c

1
, c

2
, . . . , c

n
) � 0. Esto 

signifi ca que una sola ecuación diferencial puede tener un número infi nito de solu-
ciones correspondiendo a un número ilimitado de elecciones de los parámetros. Una 
solución de una ecuación diferencial que está libre de la elección de parámetros se 
llama solución particular. Por ejemplo, la familia uniparamétrica y � cx � x cos x 
es una solución explícita de la ecuación lineal de primer orden xy� � y � x2 sen x en 
el intervalo (��, �) (Compruebe). La fi gura 1.1.3 que se obtuvo usando un paquete 
computacional de trazado de gráfi cas, muestra las gráfi cas de algunas de las solu-
ciones en esta familia. La solución y � �x cos x, la curva azul en la fi gura, es una 
solución particular correspondiente a c � 0. En forma similar, en el intervalo (��, �), 
y � c

1
ex � c

2
xex es una familia de soluciones de dos parámetros de la ecuación lineal 

de segundo orden y� � 2y� � y � 0 del ejemplo 1 (Compruebe). Algunas soluciones 
particulares de la ecuación son la solución trivial y � 0 (c

1
 � c

2
 � 0), y � xex (c

1
 � 0, 

c
2
 � 1), y � 5ex � 2xex (c

1
 � 5, c

2
 � �2), etcétera.

Algunas veces una ecuación diferencial tiene una solución que no es miembro de una 
familia de soluciones de la ecuación, esto es, una solución que no se puede obtener 
usando un parámetro específi co de la familia de soluciones. Esa solución extra se llama 
solución singular. Por ejemplo, vemos que y � 1

16 x
4 y y � 0 son soluciones de la ecua-

ción diferencial dy�dx � xy1/2 en (��, �). En la sección 2.2 demostraremos, al resol-
verla realmente, que la ecuación diferencial dy�dx � xy1/2  tiene la familia de solucio-
nes uniparamétrica y � (1

4 x2 � c)2. Cuando c � 0, la solución particular resultante es 
y � 1

16 x
4. Pero observe que la solución trivial y � 0 es una solución singular, ya que 

y

x
5

5

y

x
5

5

y

x

5

5

−5

a) solución implícita

x2 � y2 � 25

b) solución explícita

y1 � � ��25 x2, 5 � x � 5

c) solución explícita

y2 � ��25 � x2, �5 � x � 5

FIGURA 1.1.2  Una solución implícita 
de dos soluciones explícitas de y� � �x�y.

FIGURA 1.1.3  Algunas soluciones de 
xy� � y � x2 sen x.

y

x

c>0

c<0

c=0
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8 ● CAPÍTULO 1  INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES

no es un miembro de la familia y � (1
4 x2 � c)2 ya que no hay manera de asignarle un 

valor a la constante c para obtener y � 0.
En todos los ejemplos anteriores, hemos usado x y y para denotar las variables 

independiente y dependiente, respectivamente. Pero debería acostumbrarse a ver y tra-
bajar con otros símbolos que denotan estas variables. Por ejemplo, podríamos denotar 
la variable independiente por t y la variable dependiente por x:

EJEMPLO 4  Usando diferentes símbolos

Las funciones x � c
1 
cos 4t y x � c

2 
sen 4t, donde c

1
 y c

2
 son constantes arbitrarias o 

parámetros, son ambas soluciones de la ecuación diferencial lineal

 x 16x 0.  

Para x � c
1
 cos 4t las dos primeras derivadas respecto a t son x� � �4c

1
 sen 4t y 

x� � �16c
1
 cos 4t. Sustituyendo entonces a x� y x se obtiene

 x 16x 16c1 cos 4t 16(c1 cos 4t) 0.  

De manera parecida, para x � c
2
 sen 4t tenemos x� � �16c

2
 sen 4t, y así

 x 16x 16c2sen 4t 16(c2 sen 4t) 0.  

Finalmente, es sencillo comprobar directamente que la combinación lineal de solucio-
nes, o la familia de dos parámetros x � c

1
 cos 4t � c

2
 sen 4t, es también una solución 

de la ecuación diferencial. 

El siguiente ejemplo muestra que una solución de una ecuación diferencial puede 
ser una función defi nida por tramos.

EJEMPLO 5  Una solución defi nida por tramos

Debe comprobar que la familia uni-paramétrica y � cx4 es una familia de solucio-
nes uni-paramétrica de la ecuación diferencial xy� � 4y � 0 en el intervalo (��, �). 
Véase la fi gura 1.1.4a. La función derivable defi nida por tramos

 y
x4, x 0

x4, x 0  

es una solución particular de la ecuación pero no se puede obtener de la familia y � cx4 
por una sola elección de c; la solución se construye a partir de la familia eligiendo c � 
�1 para x � 0 y c � 1 para x � 0. Véase la fi gura 1.1.4b. 

SISTEMAS DE ECUACIONES DIFERENCIALES  Hasta este momento hemos ana-
lizado sólo ecuaciones diferenciales que contienen una función incógnita. Pero con fre-
cuencia en la teoría, así como en muchas aplicaciones, debemos tratar con sistemas de 
ecuaciones diferenciales. Un sistema de ecuaciones diferenciales ordinarias tiene 
dos o más ecuaciones que implican derivadas de dos o más funciones incógnitas de 
una sola variable independiente. Por ejemplo, si x y y denotan a las variables depen-
dientes y t denota a la variable independiente, entonces un sistema de dos ecuaciones 
diferenciales de primer orden está dado por

 

dy

dt
g(t, x, y).

dx

dt
f(t, x, y)  

  

(9)
FIGURA 1.1.4  Algunas soluciones de
xy� � 4y � 0.

a) dos soluciones explícitas

b) solución definida en tramos

c = 1

c = −1
x

y

c = 1,
x 0≤

c = −1,
x < 0

x

y
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Una solución de un sistema tal como el de la ecuación (9) es un par de funciones 
derivables x � �

1
(t), y � �

2
(t), defi nidas en un intervalo común I, que satisface cada 

ecuación del sistema en este intervalo.

COMENTARIOS

i) Algunos comentarios fi nales respecto a las soluciones implícitas de las ecua-
ciones diferenciales. En el ejemplo 3 pudimos despejar fácilmente a y de la re-
lación x2 � y2 � 25 en términos de x para obtener las dos soluciones explícitas, 

1(x) � 125 � x2 y 
2(x) � �125 � x2, de la ecuación diferencial (8). Pero 
no debemos engañarnos con este único ejemplo. A menos que sea fácil o impor-
tante o que se le indique, en general no es necesario tratar de despejar y explí-
citamente en términos de x, de una solución implícita, G(x, y) � 0. Tampoco 
debemos malinterpretar el posterior segundo enunciado en la defi nición 1.1.3. 
Una solución implícita G(x, y) � 0 puede defi nir perfectamente bien a una fun-
ción derivable � que es una solución de una ecuación diferencial; aunque no se 
pueda despejar a y de G(x, y) � 0 con métodos analíticos como los algebraicos. 
La curva solución de � puede ser un tramo o parte de la gráfi ca de G(x, y) 
� 0. Véanse los problemas 45 y 46 en los ejercicios 1.1. También lea el análisis 
siguiente al ejemplo 4 de la sección 2.2.

ii) Aunque se ha enfatizado el concepto de una solución en esta sección, también 
debería considerar que una ED no necesariamente tiene una solución. Véase el 
problema 39 del ejercicio 1.1. El tema de si existe una solución se tratará en la 
siguiente sección.

iii) Podría no ser evidente si una EDO de primer orden escrita en su forma di-
ferencial M(x, y)dx � N(x, y)dy � 0 es lineal o no lineal porque no hay nada 
en esta forma que nos muestre qué símbolos denotan a la variable dependiente. 
Véanse los problemas 9 y 10 del ejercicio 1.1.

iv) Podría parecer poco importante suponer que F(x, y, y�, . . . , y(n)) � 0 puede 
resolver para y(n), pero hay que ser cuidadoso con esto. Existen excepciones y 
hay realmente algunos problemas conectados con esta suposición. Véanse los 
problemas 52 y 53 del ejercicio 1.1.

v) Puede encontrar el término soluciones de forma cerrada en libros de ED o 
en clases de ecuaciones diferenciales. La traducción de esta frase normalmente 
se refi ere a las soluciones explícitas que son expresables en términos de funcio-
nes elementales (o conocidas): combinaciones fi nitas de potencias enteras de x, 
raíces, funciones exponenciales y logarítmicas y funciones trigonométricas y 
funciones trigonométricas inversas.

vi) Si toda solución de una EDO de n-ésimo orden F(x, y, y�, . . . , y(n)) � 0 en un inter-
valo I se puede obtener a partir de una familia n-parámetros G(x, y, c

1
, c

2
, . . . , c

n
) 

� 0 eligiendo apropiadamente los parámetros c
i
, i � 1, 2, . . . , n, entonces diremos 

que la familia es la solución general de la ED. Al resolver EDO lineales impone-
mos algunas restricciones relativamente simples en los coefi cientes de la ecuación; 
con estas restricciones podemos asegurar no sólo que existe una solución en un 
intervalo sino también que una familia de soluciones produce todas las posibles 
soluciones. Las EDO no lineales, con excepción de algunas ecuaciones de primer 
orden, son normalmente difíciles o imposibles de resolver en términos de funciones 
elementales. Además si obtenemos una familia de soluciones para una ecuación 
no lineal, no es obvio si la familia contiene todas las soluciones. Entonces a nivel 
práctico, la designación de “solución general” se aplica sólo a las EDO lineales. 
No se preocupe por el momento de este concepto, pero recuerde las palabras “solu-
ción general” pues retomaremos este concepto en la sección 2.3 y nuevamente en el 
capítulo 4.
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10 ● CAPÍTULO 1  INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES

EJERCICIOS 1.1  Las respuestas a los problemas con número impar comienzan en la página RES-1.

En los problemas 1 a 8 establezca el orden de la ecuación dife-
rencial ordinaria dada. Determine si la ecuación es lineal o no 
lineal, comparando con la ecuación (6).

 1. 

 2. 

 3. 

 4. 

 5. 

 6. 

 7. 

 8. 

(1 x)y 4xy 5y cos x

t5y(4) t3y 6y 0

(sen )y (cos )y 2

ẍ 1
x. 2

3
x. x 0

d 2R

dt 2

k

R2

d 2y

dx 2 1
dy

dx

2

d 2u

dr 2

du

dr
u cos(r u)

x
d3y

dx3

dy

dx

4

y 0

En los problemas 9 y 10 establezca si la ecuación diferencial 
de primer orden dada es lineal en la variable dependiente com-
parándola con la primera ecuación dada en (7).

 9. (y2 � 1) dx � x dy � 0; en y; en x

10. u dv (v uv ueu) du 0; en v; en u

En los problemas ll a 14, compruebe que la función indicada 
es una solución de la ecuación diferencial dada. Suponga un 
intervalo I de defi nición adecuado para cada solución.

11. 2y� � y � 0;  y � e�x/2

12. 
dy

dt
20y 24; y

6

5

6

5
e 20t

13. y� � 6y� � 13y � 0;  y � e3x cos 2x

14. y� � y � tan x;  y � �(cos x)ln(sec x � tan x)

En los problemas 15 a 18 compruebe que la función indicada 
y � �(x) es una solución explícita de la ecuación diferencial 
de primer orden dada. Proceda como en el ejemplo 2, conside-
rando a � simplemente como una función, dando su dominio. 
Después considere a � como una solución de la ecuación dife-
rencial, dando al menos un intervalo I de defi nición.

15. (y x)y y x 8; y x 4 x 2

16. y� � 25 � y2;  y � 5 tan 5x

17. y� � 2xy2;  y � 1�(4 � x2)

18. 2y� � y3 cos x;  y � (1 � sen x)�1/2

En los problemas 19 y 20 compruebe que la expresión indi-
cada es una solución implícita de la ecuación diferencial dada. 
Encuentre al menos una solución explícita y � �(x) en cada 
caso. Use alguna aplicación para trazar gráfi cas para obtener 
la gráfi ca de una solución explícita. Dé un intervalo I de defi -
nición de cada solución �.

19. 
dX

dt
(X 1)(1 2X); ln

2X 1

X 1
t

20. 2xy dx � (x2 � y) dy � 0;  �2x2y � y2 � 1

En los problemas 21 a 24 compruebe que la familia de funciones 
indicada es una solución de la ecuación diferencial dada. Suponga 
un intervalo I de defi nición adecuado para cada solución.

21. 

22. 

23. 

24. 

y c1x 1 c2x c3x ln x 4x2

x3 d 3y

dx3 2x2 d 2y

dx2 x
dy

dx
y 12x2;

d 2y

dx2 4
dy

dx
4y 0; y c1e2x c2xe2x

dy

dx
2xy 1; y e x2

x

0
et2

dt c1e x2

dP

dt
P(1 P); P

c1et

1 c1et

 
 

25. Compruebe que la función defi nida en tramos

y
x2, x 0

x2, x 0

  es una solución de la ecuación diferencial xy� � 2y � 0 
en (��, �).

26. En el ejemplo 3 vimos que y � �1(x) �125 � x2
 y 

y � 
2(x) � �125 � x2 son soluciones de dy�dx � 
�x�y en el intervalo (�5, 5). Explique por qué la función 
defi nida en tramos

y
25 x2,
25 x2,

5 x 0

0 x 5

  no es una solución de la ecuación diferencial en el inter-
valo (�5, 5).
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En los problemas 27 a 30 determine los valores de m tales que la 
función y � emx sea una solución de la ecuación diferencial dada.

27. y� � 2y � 0 28. 5y� � 2y

29. y� � 5y� � 6y � 0 30. 2y� � 7y� � 4y � 0

En los problemas 31 y 32 determine los valores de m tales que 
la función y � xm sea una solución de la ecuación diferencial 
dada.

31. xy� � 2y� � 0 

32. x2y� � 7xy� � 15y � 0

En los problemas 33 a 36 use el concepto de que y � c, 
�� � x � �, es una función constante si y solo si y� � 0 para 
determinar si la ecuación diferencial tiene soluciones constantes.

33. 3xy� � 5y � 10 

34. y� � y2 � 2y � 3

35. (y � 1)y� � 1 

36. y� � 4y� � 6y � 10

En los problemas 37 y 38 compruebe que el par de funciones 
indicado es una solución del sistema dado de ecuaciones dife-
renciales en el intervalo (��, �).

37.   38. 

,

y cos 2t sen 2 t 1
5 et

x cos 2t sen 2 t 1
5 et

d 2y

dt 2 4x et;

d 2x

dt 2 4y et

  

 

  y e 2t 5e6t

x e 2t 3e6t,

dy

dt
5x 3y;

dx

dt
x 3y

  

Problemas para analizar

39. Construya una ecuación diferencial que no tenga ninguna 
solución real.

40. Construya una ecuación diferencial que usted asegure tenga 
sólo la solución trivial y � 0. Explique su razonamiento.

41. ¿Qué función conoce de cálculo tal que su primera de-
rivada sea ella misma? ¿Que su primera derivada sea un 
múltiplo constante k de ella misma? Escriba cada res-
puesta en la forma de una ecuación diferencial de primer 
orden con una solución.

42. ¿Qué función (o funciones) conoce de cálculo tal que su 
segunda derivada sea ella misma? ¿Que su segunda de-
rivada sea el negativo de ella misma? Escriba cada res-
puesta en la forma de una ecuación diferencial de segundo 
orden con una solución.

43. Dado que y � sen x es una solución explícita de la ecuación 

diferencial de primer orden dy

dx
� 11 � y2, encuentre

  un intervalo de defi nición I. [Sugerencia: I no es el inter-
valo (��, �).]

44. Analice por qué intuitivamente se supone que la ecuación 
diferencial lineal y� � 2y� � 4y � 5 sen t tiene una solu-
ción de la forma y � A sen t � B cos t, donde A y B son 
constantes. Después determine las constantes específi cas 
A y B tales que y � A sen t � B cos t es una solución par-
ticular de la ED.

En los problemas 45 y 46 la fi gura dada representa la gráfi ca 
de una solución implícita G(x, y) � 0 de una ecuación dife-
rencial dy�dx � f (x, y). En cada caso la relación G(x, y) � 0 
implícitamente defi ne varias soluciones de la ED. Reproduzca 
cuidadosamente cada fi gura en una hoja. Use lápices de dife-
rentes colores para señalar los tramos o partes, de cada gráfi ca 
que corresponda a las gráfi cas de las soluciones. Recuerde que 
una solución � debe ser una función y derivable. Utilice la
curva solución para estimar un intervalo de defi nición I 
de cada solución �.

45.

FIGURA 1.1.5  Gráfi ca del problema 45.

y

x

1

1

FIGURA 1.1.6  Gráfi ca del problema 46.

1 x

1

y46. 

47. Las gráfi cas de los miembros de una familia uni-para-
métrica x3� y3 � 3cxy se llaman folium de Descartes. 
Compruebe que esta familia es una solución implícita de 
la ecuación diferencial de primer orden 

dy

dx

y(y3 2x3)

x(2y3 x3)
.
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12 ● CAPÍTULO 1  INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES

48. La gráfi ca de la fi gura 1.1.6 es el miembro de la fami-
lia del folium del problema 47 correspondiente a c � 1. 
Analice: ¿cómo puede la ED del problema 47 ayudar 
a determinar los puntos de la gráfi ca de x3 � y3 � 3xy 
donde la recta tangente es vertical? ¿Cómo saber dónde 
una recta tangente que es vertical ayuda a determinar un 
intervalo I de defi nición de una solución � de la ED? 
Lleve a cabo sus ideas y compare con sus estimaciones 
de los intervalos en el problema 46.

49. En el ejemplo 3, el intervalo I más grande sobre el cual 
las soluciones explícitas y � �

1
(x) y y � �

2
(x) se encuen-

tran defi nidas en el intervalo abierto (�5, 5). ¿Por qué I 
no puede ser el intervalo cerrado I defi nido por [�5, 5]?

50. En el problema 21 se da una familia uni-paramétrica de 
soluciones de la ED  P� � P(1�P). ¿Cualquier curva so-
lución pasa por el punto (0, 3)? ¿Y por el punto (0, 1)?

51. Analice y muestre con ejemplos cómo resolver ecuaciones 
diferenciales de las formas dy�dx � f (x) y d  2y�dx 2 � f (x).

52. La ecuación diferencial x(y�)2 � 4y� � 12x3 � 0 tiene la 
forma dada en la ecuación (4). Determine si la ecuación 
se puede poner en su forma normal dy�dx � f (x, y).

53. La forma normal (5) de una ecuación diferencial de 
n-ésimo orden es equivalente a la ecuación (4) si las dos 
formas tienen exactamente las mismas soluciones. Forme 
una ecuación diferencial de primer orden para la que F(x, 
y, y�) � 0 no sea equivalente a la forma normal dy�dx � 
f (x, y).

54. Determine una ecuación diferencial de segundo orden 
F(x, y, y�, y�) � 0 para la que y � c

1
x � c

2
x2 sea una fami-

lia de soluciones de dos parámetros. Asegúrese de que su 
ecuación esté libre de los parámetros arbitrarios c

1
 y c

2
.

  Información cualitativa respecto a una solución y � �(x) 
de una ecuación diferencial con frecuencia puede obte-
nerse de la misma ecuación. Antes de trabajar con los 
problemas 55 a 58, recuerde el signifi cado geométrico de 
las derivadas dy�dx y d 2y�dx 2.

55. Considere la ecuación diferencial 
dy
dx

 = e−x 2.

a)  Explique por qué una solución de la ED debe ser una 
función creciente en cualquier intervalo del eje de las x.

b)  ¿A qué son iguales lím
x x

dy dx  y lím dy dx. ¿Qué

  le sugiere esto respecto a una curva solución con-
forme x : 	�?

c)  Determine un intervalo sobre el cual una curva solu-
ción sea cóncava hacia abajo y un intervalo sobre el 
que la curva sea cóncava hacia arriba.

d)  Trace la gráfi ca de una solución y � �(x) de la ecua-
ción diferencial cuya forma se sugiere en los incisos 
a) a c).

56. Considere la ecuación diferencial dy�dx � 5 – y.

a)  Ya sea por inspección o por el método sugerido en los 
problemas 33 a 36, encuentre una solución constante 
de la ED.

b)  Utilizando sólo la ecuación diferencial, determine los 
intervalos en el eje y en los que una solución cons-
tante y � �(x) sea creciente. Determine los intervalos 
en el eje y en los cuales y � �(x) es decreciente.

57. Considere la ecuación diferencial dy�dx � y(a – by), 
donde a y b son constantes positivas.

a)  Ya sea por inspección o por los métodos sugeridos 
en los problemas 33 a 36, determine dos soluciones 
constantes de la ED.

b)  Usando sólo la ecuación diferencial, determine los 
intervalos en el eje y en los que una solución no cons-
tante y � �(x) es creciente. Determine los intervalos 
en los que y � �(x) es decreciente.

c)  Utilizando sólo la ecuación diferencial, explique por qué 
y � a�2b es la coordenada y de un punto de infl exión de 
la gráfi ca de una solución no constante y � �(x).

d)  En los mismos ejes coordenados, trace las gráfi cas 
de las dos soluciones constantes en el inciso a). Estas 
soluciones constantes parten el plano xy en tres regio-
nes. En cada región, trace la gráfi ca de una solución 
no constante y � �(x) cuya forma se sugiere por los 
resultados de los incisos b) y c).

58. Considere la ecuación diferencial y� � y2 � 4.

a)  Explique por qué no existen soluciones constantes de 
la ecuación diferencial.

b)  Describa la gráfi ca de una solución y � �(x). Por 
ejemplo, ¿puede una curva solución tener un extremo 
relativo?

c)  Explique por qué y � 0 es la coordenada y de un 
punto de infl exión de una curva solución.

d)  Trace la gráfi ca de una solución y � �(x) de la ecua-
ción diferencial cuya forma se sugiere en los incisos 
a) a c).

Tarea para el laboratorio de computación
En los problemas 59 y 60 use un CAS (por sus siglas en inglés, 
Sistema Algebraico Computacional) para calcular todas las 
derivadas y realice las simplifi caciones necesarias para com-
probar que la función indicada es una solución particular de la 
ecuación diferencial.

59. y(4) � 20y���� � 158y� � 580y� � 841y � 0; 

  y � xe5x cos 2x

60. 

y � 20
cos(5 ln x)

x
� 3

x

x3y� � 2x2y � � 20xy� � 78y � 0;

sen(5 ln x)
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PVI DE PRIMER Y SEGUNDO ORDEN  EI problema dado en (1) también se llama 
problema con valores iniciales de n-ésimo orden. Por ejemplo,

  

  
(2)

y  

 y(x0) y0, y (x0) y1

d 2y

dx2 f (x, y, y )

y(x0) y0

dy

dx
f (x, y)Resolver:

Sujeto a:

Resolver:

Sujeto a:  

(3)

son problemas con valores iniciales de primer y segundo orden, respectivamente. Estos 
dos problemas son fáciles de interpretar en términos geométricos. Para la ecuación (2) 
estamos buscando una solución de la ecuación diferencial en un intervalo I que contenga 
a x

0
, tal que su gráfi ca pase por el punto dado (x

0
, y

0
). En la fi gura 1.2.1 se muestra en 

azul una curva solución. Para la ecuación (3) queremos determinar una solución  y(x) de 
la ecuación diferencial y� � f (x, y, y�) en un intervalo I que contenga a x

0
 de tal manera 

que su gráfi ca no sólo pase por el punto dado (x
0
, y

0
), sino que también la pendiente a la 

curva en ese punto sea el número y
1
. En la fi gura 1.2.2 se muestra en azul una curva solu-

ción. Las palabras condiciones iniciales surgen de los sistemas físicos donde la variable 
independiente es el tiempo t y donde y(t

0
) � y

0
 y y�(t

0
) � y

1
 representan la posición y la 

velocidad respectivamente de un objeto al comienzo o al tiempo inicial t
0
.

Con frecuencia, resolver un problema con valores iniciales de n-ésimo orden tal 
como (1) implica determinar primero una familia n-paramétrica de soluciones de la 
ecuación diferencial dada y después usando las n condiciones iniciales en x

0
 deter-

minar los valores numéricos de las n constantes en la familia. La solución particular 
resultante está defi nida en algún intervalo I que contiene al punto inicial x

0
.

EJEMPLO 1  Dos PVI de primer orden

En el problema 41 de los ejercicios 1.1 se le pidió que dedujera que y � cex es una 
familia uniparamétrica de soluciones de la ecuación de primer orden y� � y. Todas las 
soluciones en esta familia están defi nidas en el intervalo (��, �). Si imponemos una 
condición inicial, digamos, y(0)�3, entonces al sustituir x � 0, y � 3 en la familia se 

PROBLEMAS CON VALORES INICIALES

REPASO DE MATERIAL
● Forma normal de una ED
● Solución de una ED
● Familia de soluciones

INTRODUCCIÓN  Con frecuencia nos interesan problemas en los que buscamos una solución y(x) 
de una ecuación diferencial tal que y(x) satisface condiciones prescritas, es decir, condiciones impues-
tas sobre una y(x) desconocida o sus derivadas. En algún intervalo I que contiene a x

0
 el problema

 

 0 0 0 1
(n�1)(x0) � yn�1,

dny

dxn � f �x, y, y�, . . . , y(n�1)�Resolver:  
Sujeto a   :  y(x ) � y , y�(x ) � y , . . . , y  

(1)

donde y
0
, y

1
, . . . , y

n�1
 son constantes reales arbitrarias dadas se llama problema con valores ini-

ciales (PVI). Los valores de y(x) y de sus primeras n – 1 derivadas en un solo punto x
0
, y(x

0
) � y

0
, 

y�(x
0
) � y

1
, . . . , y (n�1)(x

0
) � y

n�1
, se llaman condiciones iniciales.

FIGURA 1.2.2  Solución del PVI de 
segundo orden.

xI

soluciones de la ED

( x 0 ,  y 0 ) 

y

m  = y 1 

FIGURA 1.2.1  Solución del PVI de 
primer orden.

xI

soluciones de la ED

( x 0 ,  y 0 ) 

y

1.2  PROBLEMAS CON VALORES INICIALES ● 13

1.2
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14 ● CAPÍTULO 1  INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES

determina la constante 3 � ce0 � c por lo que y � 3ex es una solución del PVI

 y� � y,  y(0) � 3.

Ahora si hacemos que la curva solución pase por el punto (1, �2) en lugar de (0, 3), 
entonces y(1) � �2 se obtendrá �2 � ce o c � �2e�1. En este caso y � �2ex�1 es 
una solución del PVI

 y� � y,  y(1) � �2.

En la fi gura 1.2.3 se muestran en azul oscuro y en rojo oscuro las dos curvas solución. 

El siguiente ejemplo muestra otro problema con valores iniciales de primer orden. 
En este ejemplo observe cómo el intervalo de defi nición I de la solución y(x) depende 
de la condición inicial y(x

0
) � y

0
.

EJEMPLO 2  Intervalo I de defi nición de una solución

En el problema 6 de los ejercicios 2.2 se le pedirá mostrar que una familia uniparamé-
trica de soluciones de la ecuación diferencial de primer orden y� � 2xy2 � 0 es y � 
1�(x2 � c). Si establecemos la condición inicial y(0) � �1, entonces al sustituir x � 
0 y y � �1 en la familia de soluciones, se obtiene �1 � 1�c o c � �1. Así y � 
1�(x2�1). Ahora enfatizamos las siguientes tres diferencias:

• Considerada como una función, el dominio de y � 1�(x2 �1) es el conjunto de 
todos los números reales x para los cuales y (x) está defi nida, excepto en x � �1 
y en x � 1. Véase la fi gura 1.2.4a.

• Considerada como una solución de la ecuación diferencial y� � 2xy2�0, el 
intervalo I de defi nición de y � 1�(x2 � 1) podría tomarse como cualquier 
intervalo en el cual y(x) está defi nida y es derivable. Como se puede ver en 
la fi gura 1.2.4a, los intervalos más largos en los que y � 1�(x2 � 1) es una 
solución son (��, �1), (�1,1) y (1, �).

• Considerada como una solución del problema con valores iniciales y� � 2xy2 
� 0, y(0) � �1, el intervalo I de defi nición de y � 1�(x2 � 1) podría ser 
cualquier intervalo en el cual y(x) está defi nida, es derivable y contiene al 
punto inicial x � 0; el intervalo más largo para el cual esto es válido es (�1, 
1). Véase la curva roja en la fi gura 1.2.4b. 

Véanse los problemas 3 a 6 en los ejercicios 1.2 para continuar con el ejemplo 2.

EJEMPLO 3  PVI de segundo orden

En el ejemplo 4 de la sección 1.1 vimos que x � c
1
 cos 4t � c

2
 sen 4t es una familia de 

soluciones de dos parámetros de x� � 16x � 0. Determine una solución del problema 
con valores iniciales

 x � � 16x � 0,  x�


2� � �2,  x��


2� � 1.  (4)

SOLUCIÓN  Primero aplicamos x(p�2) � �2 en la familia de soluciones: c
1 
cos 2p 

� c
2
 sen 2p � �2. Puesto que cos 2p � 1 y sen 2p � 0, encontramos que c

1
 � �2. 

Después aplicamos x�(p�2) � 1 en la familia uniparamétrica de soluciones x(t) � �2 
cos 4t � c

2
 sen 4t. Derivando y después haciendo t � p�2 y x� � 1 se obtiene 8 sen 2p � 

4c
2
 cos 2p � 1, a partir del cual vemos que c2 � 1

4. Por tanto x � �2 cos 4t � 1
4 sen 4t 

es una solución de (4). 

EXISTENCIA Y UNICIDAD  Al considerar un problema con valores iniciales sur-
gen dos importantes preguntas:

¿Existe la solución del problema?
Si existe la solución, ¿es única?

FIGURA 1.2.3  Soluciones de los dos 
PVI.

y

x

(0, 3)

(1, −2)

FIGURA 1.2.4  Gráfi cas de la función 
y de la solución del PVI del ejemplo 2.

(0, −1)

x 

y 

1 −1

x 

y 

1 −1

a) función definida para toda x excepto 
en x = ±1

b) solución definida en el intervalo que 
contiene x = 0

08367_01_ch01_p001-033-ok.indd   1408367_01_ch01_p001-033-ok.indd   14 6/4/09   12:15:09 PM6/4/09   12:15:09 PM



Para el problema con valores iniciales de la ecuación (2) pedimos:

Existencia
 {¿La ecuación diferencial dy�dx � f (x, y) tiene soluciones?

  ¿Alguna de las curvas solución pasa por el punto (x
0
, y

0
)?

Unicidad
 { ¿Cuándo podemos estar seguros de que hay precisamente una 

curva solución que pasa a través del punto (x
0
, y

0
)?

Observe que en los ejemplos 1 y 3 se usa la frase “una solución” en lugar de “la solu-
ción” del problema. El artículo indefi nido “una” se usa deliberadamente para sugerir la 
posibilidad de que pueden existir otras soluciones. Hasta el momento no se ha demos-
trado que existe una única solución de cada problema. El ejemplo siguiente muestra un 
problema con valores iniciales con dos soluciones.

EJEMPLO 4  Un PVI puede tener varias soluciones

Cada una de las funciones y � 0 y y � 1
16 x

4 satisface la ecuación diferencial dy�x � 
xy1/2 y la condición inicial y(0) � 0, por lo que el problema con valores iniciales

 
dy

dx
� xy1/2,  y(0) � 0 

tiene al menos dos soluciones. Como se muestra en la fi gura 1.2.5, las gráfi cas de las 
dos soluciones pasan por el mismo punto (0, 0). 

Dentro de los límites de seguridad de un curso formal de ecuaciones diferenciales 
uno puede confi ar en que la mayoría de las ecuaciones diferenciales tendrán soluciones 
y que las soluciones de los problemas con valores iniciales probablemente serán únicas. 
Sin embargo, en la vida real, no es así. Por tanto es deseable conocer antes de tratar de 
resolver un problema con valores iniciales si existe una solución y cuando así sea, si ésta 
es la única solución del problema. Puesto que vamos a considerar ecuaciones diferencia-
les de primer orden en los dos capítulos siguientes, estableceremos aquí sin demostrarlo 
un teorema directo que da las condiciones sufi cientes para garantizar la existencia y uni-
cidad de una solución de un problema con valores iniciales de primer orden de la forma 
dada en la ecuación (2). Esperaremos hasta el capítulo 4 para retomar la pregunta de la 
existencia y unicidad de un problema con valores iniciales de segundo orden. 

TEOREMA 1.2.1  Existencia de una solución única

Sea R una región rectangular en el plano xy defi nida por a � x � b, c � y � d 
que contiene al punto (x

0
, y

0
) en su interior. Si f (x, y) y ∂f�∂y son continuas en 

R, entonces existe algún intervalo I
0
: (x

0
 � h, x

0
 � h), h � 0, contenido en [a, 

b], y una función única y(x), defi nida en I
0
, que es una solución del problema 

con valores iniciales (2).

El resultado anterior es uno de los más populares teoremas de existencia y unici-
dad para ecuaciones diferenciales de primer orden ya que el criterio de continuidad de 
f (x, y) y de ∂f�∂y son relativamente fáciles de comprobar. En la fi gura 1.2.6 se muestra 
la geometría del teorema 1.2.1.

EJEMPLO 5  Revisión del ejemplo 4

Como vimos en el ejemplo 4 la ecuación diferencial dy�dx � xy1/2 tiene al menos dos 
soluciones cuyas gráfi cas pasan por el punto (0, 0). Analizando las funciones 

 f (x, y) � xy1/2 �f

�y
�

x

2y1/2    y  

y

y = 0

y = x4/16

(0, 0)

1

x

FIGURA 1.2.5  Dos soluciones del 
mismo PVI.

xI0

R

a b

c

d

(x0, y0)

y

FIGURA 1.2.6  Región rectangular R.

1.2  PROBLEMAS CON VALORES INICIALES ● 15
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16 ● CAPÍTULO 1  INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES

vemos que son continuas en la mitad superior del plano defi nido por y � 0. Por tanto 
el teorema 1.2.1 nos permite concluir que a través de cualquier punto (x

0
, y

0
), y

0
 � 0 en 

la mitad superior del plano existe algún intervalo centrado en x
0
 en el cual la ecuación 

diferencial dada tiene una solución única. Así, por ejemplo, aún sin resolverla, sabe-
mos que existe algún intervalo centrado en 2 en el cual el problema con valores inicia-
les dy�dx � xy1/2, y(2) � 1 tiene una solución única. 

En el ejemplo 1, el teorema 1.2.1 garantiza que no hay otras soluciones de los pro-
blemas con valores iniciales y� � y, y(0) � 3 y y� � y, y(1)� �2 distintas a y � 3ex y y 
� �2ex�1, respectivamente. Esto es consecuencia del hecho de que f(x, y) � y y ∂f�∂y � 
1 son continuas en todo el plano xy. Además podemos mostrar que el intervalo I en el 
cual cada solución está defi nida es (��, �).

INTERVALO DE EXISTENCIA Y UNICIDAD  Suponga que y(x) representa una so-
lución del problema con valores iniciales (2). Los siguientes tres conjuntos de números 
reales en el eje x pueden no ser iguales: el dominio de la función y(x), el intervalo I en 
el cual la solución y(x) está defi nida o existe, y el intervalo I

0
 de existencia y unicidad. 

El ejemplo 2 de la sección 1.1 muestra la diferencia entre el dominio de una función y 
el intervalo I de defi nición. Ahora suponga que (x

0
, y

0
) es un punto en el interior de la 

región rectangular R en el teorema 1.2.1. Esto da como resultado que la continuidad de 
la función f (x, y) en R por sí misma es sufi ciente para garantizar la existencia de al menos 
una solución de dy�dx � f (x, y), y(x

0
) � y

0
, defi nida en algún intervalo I. El intervalo I de 

defi nición para este problema con valores iniciales normalmente se toma como el inter-
valo más grande que contiene x

0
 en el cual la solución y(x) está defi nida y es derivable. 

El intervalo I depende tanto de f (x, y) como de la condición inicial y(x
0
) � y

0
. Véanse 

los problemas 31 a 34 en los ejercicios 1.2. La condición extra de continuidad de la 
primera derivada parcial ∂f�∂y en R nos permite decir que no sólo existe una solución 
en algún intervalo I

0
 que contiene x

0
, sino que esta es la única solución que satisface 

y(x
0
) � y

0
. Sin embargo, el teorema 1.2.1 no da ninguna indicación de los tamaños de los 

intervalos I e I
0
; el intervalo de defi nición I no necesita ser tan amplio como la región 

R y el intervalo de existencia y unicidad I
0
 puede no ser tan amplio como I. El número 

h . 0 que defi ne el intervalo I
0
: (x

0 
� h, x

0
 � h) podría ser muy pequeño, por lo que es 

mejor considerar que la solución y(x) es única en un sentido local, esto es, una solución 
defi nida cerca del punto (x

0
, y

0
). Véase el problema 44 en los ejercicios 1.2.

COMENTARIOS

(i) Las condiciones del teorema 1.2.1 son sufi cientes pero no necesarias. Esto signi-
fi ca que cuando f (x, y) y ∂f�∂y son continuas en una región rectangular R, debe siem-
pre seguir que existe una solución de la ecuación (2) y es única siempre que (x

0
, y

0
) 

sea un punto interior a R. Sin embargo si las condiciones establecidas en la hipótesis 
del teorema 1.2.1 no son válidas, entonces puede ocurrir cualquier cosa: el problema 
de la ecuación (2) puede tener una solución y esta solución puede ser única o la ecua-
ción (2) puede tener varias soluciones o puede no tener ninguna solución. Al leer 
nuevamente el ejemplo 5 vemos que la hipótesis del teorema 1.2.1 no es válida en la 
recta y � 0 para la ecuación diferencial dy�dx � xy1/2, pero esto no es sorprendente, 
ya que como vimos en el ejemplo 4 de esta sección, hay dos soluciones defi nidas en 
un intervalo común –  h � x � h que satisface y(0) � 0. Por otra parte, la hipótesis 
del teorema 1.2.1 no es válida en la recta y � 1 para la ecuación diferencial dy�
dx � |y � 1|. Sin embargo se puede probar que la solución del problema con valores 
iniciales dy�dx � |y � 1|, y(0) � 1 es única ¿Puede intuir la solución?

(ii) Es recomendable leer, pensar, trabajar y después recordar el problema 43 en 
los ejercicios 1.2.
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EJERCICIOS 1.2  Las respuestas a los problemas con número impar comienzan en la página RES-1

En los problemas 1 y 2, y � 1�(1 � c
1
e�x) es una familia uni-

paramétrica de soluciones de la ED de primer orden y�� y �y2. 
Encuentre una solución del PVI de primer orden que consiste en 
esta ecuación diferencial y la condición inicial dada.

 1. y(0) � �1
3  2. y(�1) � 2

En los problemas 3 a 6, y � 1�(x2 � c) es una familia unipara-
métrica de soluciones de la ED de primer orden y� � 2xy2 � 0. 
Determine una solución del PVI de primer orden que consiste 
en esta ecuación diferencial y la condición inicial dada. Dé el 
intervalo I más largo en el cual está defi nida la solución.

 3. y(2) � 1
3  4. y(�2) � 1

2

 5. y(0) � 1 6. y(1
2) � �4

En los problemas 7 a 10, x � c
1
cos t � c

2
 sen t es una familia 

de soluciones de dos parámetros de la ED de segundo orden 
x� � x � 0. Determine una solución del PVI de segundo or-
den que consiste en esta ecuación diferencial y las condicio-
nes iniciales dadas.

 7. x(0) � �1,  x�(0) � 8

 8. x(��2) � 0,  x�(��2) � 1

 9. 

10. x( 4) 2, x ( 4) 2 2

x( 6) 1
2 x ( 6) 0,

En los problemas 11 a 14, y � c
1
ex � c

2
e�x es una familia de solu-

ciones de dos parámetros de la ED de segundo orden y� – y � 0. 
Determine una solución del PVI de segundo orden que consiste 
en esta ecuación diferencial y las condiciones iniciales dadas.

11. y�(0) � 2y(0) � 1,

12. y(1) � 0,  y�(1) � e

13. y(�1) � 5,  y�(�1) � �5

14. y(0) � 0,  y�(0) � 0

En los problemas 15 y 16 determine por inspección al menos 
dos soluciones del PVI de primer orden dado.

15. y� � 3y2/3,  y(0) � 0

16. xy� � 2y,  y(0) � 0

En los problemas 17 a 24 determine una región del plano xy 
para el que la ecuación diferencial dada tendría una solución 
única cuyas gráfi cas pasen por un punto (x

0
, y

0
) en la región.

17. 
dy

dx
� y2/3

 
18. 

dy

dx
� 1xy

19. x
dy

dx
� y

 
20. 

dy

dx
� y � x

21. (4 � y2)y� � x2 22. (1 � y3)y� � x2

23. (x2 � y2)y� � y2 24. (y � x)y� � y � x

En los problemas 25 a 28 determine si el teorema 1.2.1 ga-
rantiza que la ecuación diferencial y� � 1y2 � 9  tiene una 
solución única que pasa por el punto dado.

25. (1, 4) 26. (5, 3)

27. (2, �3) 28. (�1, 1)

29. a)  Por inspección determine una familia uniparamétrica 
de soluciones de la ecuación diferencial xy� � y. Com-
pruebe que cada miembro de la familia es una solución 
del problema con valores iniciales xy� � y, y(0) � 0.

b)  Explique el inciso a) determinando una región R en el 
plano xy para el que la ecuación diferencial xy� � y 
tendría una solución única que pase por el punto 
(x

0
, y

0
) en R.

c) Compruebe que la función defi nida por tramos

y � �0,  x � 0

x,  x � 0

    satisface la condición y(0)�0. Determine si esta fun-
ción es también una solución del problema con valo-
res iniciales del inciso a).

30. a)  Compruebe que y � tan (x � c) es una familia uni-
paramétrica de soluciones de la ecuación diferencial 
y� � 1 � y2.

b)  Puesto que f (x, y) � 1 � y2 y ∂f�∂y � 2y son conti-
nuas en donde quiera, la región R en el teorema 1.2.1 
se puede considerar como todo el plano xy. Utilice la 
familia de soluciones del inciso a) para determinar una 
solución explícita del problema con valores iniciales 
de primer orden y� � 1 � y2, y(0) � 0. Aun cuando x

0
 � 

0 esté en el intervalo (�2, 2), explique por qué la so-
lución no está defi nida en este intervalo.

c)  Determine el intervalo I de defi nición más largo para la 
solución del problema con valores iniciales del inciso b).

31. a)  Verifi que que y � �1�(x � c) es una familia de so-
luciones uniparamétrica de la ecuación diferencial 
y� � y2.

b)  Puesto que f (x, y) � y2 y ∂f�∂y � 2y son continuas 
donde sea, la región R del teorema 1.2.1 se puede 
tomar como todo el plano xy. Determine una solución 
de la familia del inciso a) que satisfaga que y(0) � 1. 
Después determine una solución de la familia del in-
ciso a) que satisfaga que y(0) � �1. Determine el 
intervalo I de defi nición más largo para la solución de 
cada problema con valores iniciales.

SECCIÓN 1.2  PROBLEMAS CON VALORES INICIALES ● 17
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18 ● CAPÍTULO 1  INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES

c)  Determine el intervalo de defi nición I más largo para 
la solución del problema con valores iniciales y�� y2, 
y(0) � 0. [Sugerencia: La solución no es un miembro 
de la familia de soluciones del inciso a)].

32. a)  Demuestre que una solución de la familia del inciso a) 
del problema 31 que satisface y� � y2, y(1) � 1, es y 
� 1�(2 �x).

b)  Después demuestre que una solución de la familia del 
inciso a) del problema 31 que satisface y� � y2, y(3) 
� �1, es y � 1�(2 �x).

c) ¿Son iguales las soluciones de los incisos a) y b)?

33. a)  Verifi que que 3x2 – y2 � c es una familia de solu-
ciones uniparamétricas de la ecuación diferencial 
y dy�dx � 3x.

b)  Bosqueje, a mano, la gráfi ca de la solución implícita 
3x2 – y2 � 3. Determine todas las soluciones explíci-
tas y � �(x) de la ED del inciso a) defi nidas por esta 
relación. Dé un intervalo I de defi nición de cada una 
de las soluciones explícitas.

c)  El punto (�2, 3) está en la gráfi ca de 3x2 – y2 � 3 pero 
¿cuál de las soluciones explícitas del inciso b) satis-
face que y(�2) � 3?

34.  a)  Utilice la familia de soluciones del inciso a) del problema 
33 para determinar una solución implícita del proble-
ma con valores iniciales y dy�dx � 3x, y(2) � � 4. Des-
pués bosqueje, a mano, la gráfi ca de la solución explícita 
de este problema y dé su intervalo I de defi nición.

b)  ¿Existen algunas soluciones explícitas de y dy�dx � 
3x que pasen por el origen?

En los problemas 35 a 38 se presenta la gráfi ca de un miembro 
de la familia de soluciones de una ecuación diferencial de se-
gundo orden d 2y�dx 2 � f (x, y, y�). Relacione la curva solución 
con al menos un par de las siguientes condiciones iniciales.

a) y(1) � 1,  y�(1) � �2

b) y(�1) � 0,  y�(�1) � �4

c) y(1) � 1,  y�(1) � 2

d) y(0) � �1,  y�(0) � 2

e) y(0) � �1,  y�(0) � 0

f ) y(0) � �4,  y�(0) � �2

35.

Problemas de análisis

En los problemas 39 y 40 utilice el problema 51 de los ejerci-
cios 1.1 y (2) y (3) de esta sección.

39. Encuentre una función y � f (x) cuya gráfi ca en cada punto 
(x, y) tiene una pendiente dada por 8e2x � 6x y la intersec-
ción con el eje y en (0,9).

40. Determine una función y � f (x) cuya segunda derivada es y�� 
� 12x � 2 en cada punto (x, y) de su gráfi ca y y � �x � 5 
es tangente a la gráfi ca en el punto correspondiente a x � 1.

41. Considere el problema con valores iniciales y� � x � 2y, 
y(0) � 1

2. Determine cuál de las dos curvas que se mues-
tran en la fi gura 1.2.11 es la única curva solución posible. 
Explique su razonamiento.FIGURA 1.2.7  Gráfi ca del problema 35.

y

x

5

−5

5

FIGURA 1.2.10  Gráfi ca del problema 38.

y

x

5

−5

5

38. 

37.

FIGURA 1.2.9  Gráfi ca del problema 37.

y

x

5

−5

5

36.

FIGURA 1.2.8  Gráfi ca del problema 36.

y

x

5

−5

5
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42. Determine un valor posible para x
0
 para el que la gráfi ca 

de la solución del problema con valores iniciales y� � 2y 
� 3x – 6, y(x

0
) � 0 es tangente al eje x en (x

0
, 0). Explique 

su razonamiento.

43. Suponga que la ecuación diferencial de primer orden 
dy�dx � f (x, y) tiene una familia uniparamétrica de solu-
ciones y que f (x, y) satisface la hipótesis del teorema 1.2.1 
en alguna región rectangular R del plano xy. Explique por 
qué dos curvas solución diferentes no se pueden intercep-
tar o ser tangentes entre sí en un punto (x

0
,y

0
) en R.

44. Las funciones y(x) � 1
16 x

4, �� � x � �  y

y(x) � �0,
1
16 x

4,

 x � 0

  x � 0

  tienen el mismo dominio pero son obviamente diferentes. 
Véanse las fi guras 1.2.12a y 1.2.12b, respectivamente. 
Demuestre que ambas funciones son soluciones del pro-
blema con valores iniciales dy�dx � xy1/2, y(2) � 1 en el 

FIGURA 1.2.11  Gráfi cas del problema 41.

(0, )1
2

1

1 x

y

intervalo (��, �). Resuelva la aparente contradicción 
entre este hecho y el último enunciado del ejemplo 5.

Modelo matemático

45. Crecimiento de la población  Al inicio de la siguiente 
sección veremos que las ecuaciones diferenciales se 
pueden usar para describir o modelar diversos sistemas 
físicos. En este problema suponemos que un modelo de 
crecimiento de la población de una pequeña comunidad 
está dado por el problema con valores iniciales 

dP

dt
� 0.15P(t) � 20,  P(0) � 100,

  donde P es el número de personas en la comunidad y el 
tiempo t se mide en años. ¿Qué tan rápido, es decir, con 
qué razón está aumentando la población en t � 0? ¿Qué tan 
rápido está creciendo la población cuando la población es 
de 500?

FIGURA 1.2.12  Dos soluciones del PVI del problema 44.

a)

(2, 1)

y

x

b)

(2, 1)

y

x

ECUACIONES DIFERENCIALES COMO MODELOS MATEMÁTICOS

REPASO DE MATERIAL
● Unidades de medida para el peso, masa y densidad
● Segunda ley de Newton
● Ley de Hooke
● Leyes de Kirchhoff
● Principio de Arquímedes

INTRODUCCIÓN  En esta sección introduciremos la idea de una ecuación diferencial como un 
modelo matemático y analizaremos algunos modelos específi cos en biología, química y física. Ya 
que hayamos estudiado algunos de los métodos de solución de las ED en los capítulos 2 y 4, retoma-
remos y resolveremos algunos de estos modelos en los capítulos 3 y 5.

1.3

MODELOS MATEMÁTICOS  Con frecuencia es deseable describir en términos mate-
máticos el comportamiento de algunos sistemas o fenómenos de la vida real, sean físicos, 
sociológicos o hasta económicos. La descripción matemática de un sistema de fenómenos 
se llama modelo matemático y se construye con ciertos objetivos. Por ejemplo, pode-
mos desear entender los mecanismos de cierto ecosistema al estudiar el crecimiento de la 
población animal en ese sistema, o podemos desear datar fósiles y analizar el decaimiento 
de una sustancia radiactiva ya sea en el fósil o en el estrato en que éste fue descubierto.

1.3  ECUACIONES DIFERENCIALES COMO MODELOS MATEMÁTICOS ● 19
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20 ● CAPÍTULO 1  INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES

La formulación de un modelo matemático de un sistema se inicia con

i)  identifi cación de las variables que ocasionan el cambio del sistema. 
Podremos elegir no incorporar todas estas variables en el modelo desde el 
comienzo. En este paso especifi camos el nivel de resolución del modelo.

Después,

ii)  se establece un conjunto de suposiciones razonables o hipótesis, acerca del 
sistema que estamos tratando de describir. Esas hipótesis también incluyen 
todas las leyes empíricas que se pueden aplicar al sistema.

Para algunos objetivos quizá baste con conformarse con modelos de baja resolución.  
Por ejemplo, usted ya es consciente de que en los cursos básicos de física algunas veces 
se desprecia la fuerza retardadora de la fricción del aire al modelar el movimiento de un 
cuerpo que cae cerca de la superfi cie de la Tierra. Pero si usted es un científi co cuyo trabajo 
es predecir con exactitud la trayectoria de vuelo de un proyectil de largo alcance, deberá 
considerar la resistencia del aire y otros factores, tales como la curvatura de la Tierra.

Puesto que con frecuencia las hipótesis acerca de un sistema implican una razón 
de cambio de una o más de las variables, el enunciado matemático de todas esas hi-
pótesis puede ser una o más ecuaciones que contengan derivadas. En otras palabras, 
el modelo matemático puede ser una ecuación diferencial o un sistema de ecuaciones 
diferenciales.

Una vez que se ha formulado un modelo matemático, ya sea una ecuación diferen-
cial o un sistema de ecuaciones diferenciales, nos enfrentamos al problema no fácil de 
tratar de resolverlo. Si podemos resolverlo, entonces consideramos que el modelo es 
razonable si su solución es consistente con los datos experimentales o con los hechos 
conocidos acerca del comportamiento del sistema. Si las predicciones que se obtienen 
son defi cientes, podemos aumentar el nivel de resolución del modelo o hacer hipótesis 
alternativas acerca de los mecanismos de cambio del sistema. Entonces se repiten los 
pasos del proceso de modelado, como se muestra en el diagrama siguiente:

Hipótesis
Formulación 
matemática

Obtener 
soluciones

Comprobar las 
predicciones 

del modelo con 
hechos conocidos

Expresar las hipótesis en 
términos de las ecuaciones 

diferenciales

Presentar las predicciones 
del modelo (por ejemplo 

en forma gráfica)

Resolver las ED
Si es necesario, modificar 
las hipótesis o aumentar 
la resolución del modelo

Por supuesto, al aumentar la resolución, aumentamos la  complejidad del modelo ma-
temático y la probabilidad de que no podamos obtener una solución explícita.

Con frecuencia, el modelo matemático de un sistema físico inducirá la variable 
tiempo t. Una solución del modelo expresa el estado del sistema; en otras palabras,  
los valores de la variable dependiente (o variables) para los valores adecuados de t que 
describen el sistema en el pasado, presente y futuro.

DINÁMICA POBLACIONAL  Uno de los primeros intentos para modelar el cre-
cimiento de la población humana por medio de las matemáticas fue realizado en 
1798 por el economista inglés Thomas Malthus. Básicamente la idea detrás del mo-
delo de Malthus es la suposición de que la razón con la que la población de un país 
en un cierto tiempo es proporcional* a la población total del país en ese tiempo. En 
otras palabras, entre más personas estén presentes al tiempo t, habrá más en el fu-

*Si dos cantidades u y v son proporcionales, se escribe u � v. Esto signifi ca que una cantidad es un 
múltiplo constante de otra: u � kv.
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turo. En términos matemáticos, si P(t) denota la población al tiempo t, entonces esta 
suposición se puede expresar como

 ,
dP

dt
P    o     

dP

dt
kP  (1)

donde k es una constante de proporcionalidad. Este modelo simple, falla si se con-
sideran muchos otros factores que pueden infl uir en el crecimiento o decrecimiento 
(por ejemplo, inmigración y emigración), resultó, sin embargo, bastante exacto en 
predecir la población de los Estados Unidos, durante 1790-1860. Las poblaciones que 
crecen con una razón descrita por la ecuación (1) son  raras; sin embargo, (1) aún se 
usa para modelar el crecimiento de pequeñas poblaciones en intervalos de tiempo 
cortos (por ejemplo, crecimiento de bacterias en una caja de Petri).

DECAIMIENTO RADIACTIVO  El núcleo de un átomo está formado por combina-
ciones de protones y neutrones. Muchas de esas combinaciones son inestables, esto 
es, los átomos se desintegran o se convierten en átomos de otras sustancias. Se dice 
que estos núcleos son radiactivos. Por ejemplo, con el tiempo, el radio Ra 226, inten-
samente radiactivo, se transforma en el radiactivo gas radón, Rn-222. Para modelar el 
fenómeno del decaimiento radiactivo, se supone que la razón dA�dt con la que los 
núcleos de una sustancia se desintegran es proporcional a la cantidad (más precisa-
mente, el número de núcleos), A(t) de la sustancia que queda al tiempo t:

 .
dA

dt
A    o     

dA

dt
kA  (2)

Por supuesto que las ecuaciones (1) y (2) son exactamente iguales; la diferencia radica 
sólo en la interpretación de los símbolos y de las constantes de proporcionalidad. En el 
caso del crecimiento, como esperamos en la ecuación (l), k � 0, y para la desintegra-
ción como en la ecuación (2), k � 0.

El modelo de la ecuación (1) para crecimiento también se puede ver como la ecua-
ción dS�dt � rS, que describe el crecimiento del capital S cuando está a una tasa anual 
de interés r compuesto continuamente. El modelo de desintegración de la ecuación 
(2) también se aplica a sistemas biológicos tales como la determinación de la “vida 
media” de un medicamento, es decir, el tiempo que le toma a 50% del medicamento 
ser eliminado del cuerpo por excreción o metabolización. En química el modelo del 
decaimiento, ecuación (2), se presenta en la descripción matemática de una reacción 
química de primer orden. Lo importante aquí es:

Una sola ecuación diferencial puede servir como modelo matemático de muchos 
fenómenos distintos.

Con frecuencia, los modelos matemáticos se acompañan de condiciones que los de-
fi nen. Por ejemplo, en las ecuaciones (l) y (2) esperaríamos conocer una población inicial 
P

0
 y por otra parte la cantidad inicial de sustancia radioactiva A

0
. Si el tiempo inicial se 

toma en t � 0, sabemos que P(0) � P
0
 y que A(0) � A

0
. En otras palabras, un modelo 

matemático puede consistir en un problema con valores iniciales o, como veremos más 
adelante en la sección 5.2, en un problema con valores en la frontera.

LEY DE ENFRIAMIENTO/CALENTAMIENTO DE NEWTON  De acuerdo con  
la ley empírica de Newton de enfriamiento/calentamiento, la rapidez con la que cam-
bia la temperatura de un cuerpo es proporcional a la diferencia entre la temperatura 
del cuerpo y la del medio que lo rodea, que se llama temperatura ambiente. Si T(t) 
representa la temperatura del cuerpo al tiempo t, T

m
 es la temperatura del medio que lo 

rodea y dT�dt es la rapidez con que cambia la temperatura del cuerpo, entonces la ley de
Newton de enfriamiento/calentamiento traducida en una expresión matemática es

 ,
dT

dt
T Tm    o     

dT

dt
k(T Tm)  (3)

donde k es una constante de proporcionalidad. En ambos casos, enfriamiento o calen-
tamiento, si T

m
 es una constante, se establece que k � 0.

1.3  ECUACIONES DIFERENCIALES COMO MODELOS MATEMÁTICOS ● 21
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22 ● CAPÍTULO 1  INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES

PROPAGACIÓN DE UNA ENFERMEDAD  Una enfermedad contagiosa, por ejem-
plo un virus de gripe, se propaga a través de una comunidad por personas que han estado 
en contacto con otras personas enfermas. Sea que x(t) denote el número de personas que 
han contraído la enfermedad y sea que y(t) denote el número de personas que aún no han 
sido expuestas al contagio.  Es lógico suponer que la razón dx�dt con la que se propaga 
la enfermedad es proporcional al número de encuentros, o  interacciones, entre estos 
dos grupos de personas. Si suponemos que el número de interacciones es conjuntamente 
proporcional a x(t) y y(t), esto es, proporcional al producto xy, entonces

 ,
dx

dt
� kxy  (4)

donde k es la constante usual de proporcionalidad. Suponga que una pequeña comuni-
dad tiene una población fi ja de n personas. Si se introduce una persona infectada den-
tro de esta comunidad, entonces se podría argumentar que x(t) y y(t) están relacionadas 
por x � y � n � 1. Utilizando esta última ecuación para eliminar y en la ecuación (4) 
se obtiene el modelo

 .
dx

dt
� kx(n � 1 � x)  (5)

Una condición inicial obvia que acompaña a la ecuación (5) es x(0) � 1.

REACCIONES QUÍMICAS  La desintegración de una sustancia radiactiva, caracterizada 
por la ecuación diferencial (l), se dice que es una reacción de primer orden. En química 
hay algunas reacciones que siguen esta misma ley empírica: si las moléculas de la sustancia 
A se descomponen y forman moléculas más pequeñas, es natural suponer que la rapidez 
con que se lleva a cabo esa descomposición es proporcional a la cantidad de la primera sus-
tancia que no ha experimentado la conversión; esto es, si X(t) es la cantidad de la sustancia 
A que permanece en cualquier momento, entonces dX�dt � kX, donde k es una constante 
negativa ya que X es decreciente. Un ejemplo de una reacción química de primer orden es 
la conversión del cloruro de terbutilo, (CH

3
)

3
CCl  en alcohol t-butílico (CH

3
)

3
COH:

 (CH3)3CCl � NaOH : (CH3)3COH � NaCl. 

Sólo la concentración del cloruro de terbutilo controla la rapidez de la reacción. Pero 
en la reacción

 CH3Cl � NaOH : CH3OH � NaCl  

se consume una molécula de hidróxido de sodio, NaOH, por cada molécula de cloruro 
de metilo, CH

3
Cl, por lo que se forma una molécula de alcohol metílico, CH

3
OH y una 

molécula de cloruro de sodio, NaCl. En este caso, la razón con que avanza la reacción 
es proporcional al producto de las concentraciones de CH

3
Cl y NaOH que quedan. Para 

describir en general esta segunda reacción, supongamos una molécula de una sustancia 
A que se combina con una molécula de una sustancia B para formar una molécula de una 
sustancia C. Si X denota la cantidad de un químico C formado al tiempo t y si � y � son, 
respectivamente, las cantidades de los dos químicos A y B en t � 0 (cantidades iniciales), 
entonces las cantidades instantáneas no convertidas de A y B al químico C son � � X y 
� � X, respectivamente. Por lo que la razón de formación de C está dada por

 ,
dX

dt
� k(� � X)(� � X)  (6)

donde k es una constante de proporcionalidad. Una reacción cuyo modelo es la ecua-
ción (6) se dice que es una reacción de segundo orden.

MEZCLAS  Al mezclar dos soluciones salinas de distintas concentraciones surge 
una ecuación diferencial de primer orden, que defi ne la cantidad de sal contenida en 
la mezcla. Supongamos que un tanque mezclador grande inicialmente contiene 300 
galones de salmuera (es decir, agua en la que se  ha disuelto una cantidad de sal).  Otra 
solución de salmuera entra al tanque con una razón de 3 galones por minuto; la con-
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centración de sal que entra es 2 libras/galón. Cuando la solución en el tanque está 
bien mezclada, sale con la misma rapidez con que entra. Véase la fi gura 1.3.1. Si A(t) 
denota la cantidad de sal (medida en libras) en el tanque al tiempo t, entonces la razón 
con la que A(t) cambia es una razón neta:

 .
dA

dt

razón de
entrada
de la sal

razón de
salida

de la sal
Rentra Rsale  (7)

La razón de entrada R
entra

 con la que entra la sal en el tanque es el producto de la con-
centración de entrada de sal por la razón de entrada del fl uido. Observe que R

entra
 está 

medida en libras por minuto:

 

concentración 
de sal en 
el fluido,

razón de entrada 
de la salmuera,

razón de 
entrada de la sal

Rentra � (2 lb/gal) � (3 gal/min) � (6 lb/min).
 

Ahora, puesto que la solución sale del tanque con la misma razón con la que entra, 
el número de galones de la salmuera en el tanque al tiempo t es una constante de 300 
galones. Por lo que la concentración de la sal en el tanque así como en el fl ujo de salida 
es c(t) � A(t)�300 lb/gal, por lo que la razón de salida R

sale
 de sal es

 
Rsale � (        lb/gal) � (3 gal/min) �         lb/min.

A(t)
––––
300

A(t)
––––
100

concentración de 
sal en el flujo 

de salida
razón de salida 
de la salmuera

razón de 
salida 

de la sal

 

La razón neta, ecuación (7) entonces será

 
dA

dt
� 6 �

A

100

dA

dt
�

1

100
A � 6.    o  (8)

Si r
entra

 y r
sale

 denotan las razones generales de entrada y salida de las soluciones 
de salmuera,* entonces existen tres posibilidades r

entra
 � r

sale
, r

entra
 � r

sale
 y r

entra
 � r

sale
. 

En el análisis que conduce a la ecuación (8) suponemos que r
entra

 � r
sale

. En los dos 
últimos casos el número de galones de salmuera está ya sea aumentando (r

entra
 � r

sale
) 

o disminuyendo (r
entra

 � r
sale

) a la razón neta r
entra

 � r
sale

. Véanse los problemas 10 a 
12 en los ejercicios 1.3.

DRENADO DE UN TANQUE  En hidrodinámica, la ley de Torricelli establece que 
la rapidez v de salida del agua a través de un agujero de bordes afi lados en el fondo de 
un tanque lleno con agua hasta una profundidad h es igual a la velocidad de un cuerpo 
(en este caso una gota de agua), que está cayendo libremente desde una altura h � 
esto es, v � 12gh , donde g es la aceleración de la gravedad. Esta última expresión 
surge al igualar la energía cinética, 1

2mv2 con la energía potencial, mgh, y despejar v. 
Suponga  que un tanque lleno de agua se vacía a través de un agujero, bajo la infl uencia 
de la gravedad. Queremos encontrar la profundidad, h, del agua que queda en el tanque 
al tiempo t. Considere el tanque que se muestra en la fi gura 1.3.2. Si el área del agujero 
es A

h
, (en pies2) y la rapidez del agua que sale del tanque es v � 12gh  (en pies/s), en-

tonces el volumen de agua que sale del tanque, por segundo, es Ah12gh  (en pies3/s). 
Así, si V(t) denota al volumen de agua en el tanque al tiempo t, entonces

 ,
dV

dt
Ah 2gh  (9)

razón de entrada de la salmuera
3 gal/min

razón de salida de la 
salmuera 3 gal/min

constante
300 gal

FIGURA 1.3.1  Tanque de mezclado.

h

Aw

Ah

FIGURA 1.3.2  Drenado de un tanque.

*No confunda estos símbolos con R
entra

 y R
sale

, que son las razones de entrada y salida de sal.
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24 ● CAPÍTULO 1  INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES

donde el signo menos indica que V está disminuyendo. Observe  que aquí estamos 
despreciando la posibilidad de fricción en el agujero, que podría causar una reducción 
de la razón de fl ujo. Si ahora el tanque es tal que el volumen del agua al tiempo t se 
expresa como V(t) � A

w
h, donde A

w
 (en pies2) es el área constante de la superfi cie su-

perior del agua (véase la fi gura 1.3.2), entonces dV�dt � A
w
 dh�dt. Sustituyendo esta 

última expresión en la ecuación (9) obtenemos la ecuación diferencial que deseábamos 
para expresar la altura del agua al tiempo t:

 .
dh

dt

Ah

Aw

2gh  (10)

Es interesante observar que la ecuación (10) es válida aun cuando A
w
, no sea constante. 

En este caso, debemos expresar el área de la superfi cie superior del agua en función de 
h, esto es, A

w
 � A(h). Véase el problema 14 de los ejercicios 1.3.

CIRCUITOS EN SERIE  Considere el circuito en serie simple que tiene un inductor, 
un resistor y un capacitor que se muestra en la fi gura 1.3.3a. En un circuito con el 
interruptor cerrado, la corriente se denota por i(t) y la carga en el capacitor al tiempo 
t se denota por q(t). Las letras L, R y C son conocidas como inductancia, resistencia 
y capacitancia, respectivamente y en general son constantes. Ahora de acuerdo con la 
segunda ley de Kirchhoff, el voltaje aplicado E(t) a un circuito cerrado debe ser igual 
a la suma de las caídas de voltaje en el circuito. La fi gura 1.3.3b muestra los símbolos 
y fórmulas de las caídas respectivas de voltaje a través de un inductor, un capacitor y 
un resistor. Como la corriente i(t) está relacionada con la carga q(t) en el capacitor 
mediante i � dq�dt, sumamos los tres voltajes

 inductor resistor capacitor

     L
di

dt
L

d 2q

dt2
,    iR R

dq

dt
,    y     

1

C
q  

e igualando la suma de los voltajes con el voltaje aplicado se obtiene la ecuación dife-
rencial de segundo orden 

 L
d 2q

dt2
� R

dq

dt
�

1

C
q � E(t).  (11)

En la sección 5.1 examinaremos con detalle una ecuación diferencial análoga a 
(11).

CUERPOS EN CAÍDA  Para establecer un modelo matemático del movimiento de un 
cuerpo que se mueve en un campo de fuerzas, con frecuencia se comienza con la segunda 
ley de Newton. Recordemos de la física elemental, la primera ley del movimiento 
de Newton establece que un cuerpo permanecerá en reposo o continuará moviéndose 
con una velocidad constante, a menos que sea sometido a una fuerza externa. En los 
dos casos, esto equivale a decir que cuando la suma de las fuerzas F � � Fk, esto es, 
la fuerza neta o fuerza resultante, que actúa sobre el cuerpo es cero, la aceleración a del 
cuerpo es cero. La segunda ley del movimiento de Newton indica que cuando la fuerza 
neta que actúa sobre un cuerpo no es cero, entonces la fuerza neta es proporcional a su 
aceleración a o, más exactamente, F � ma, donde m es la masa del cuerpo.

Supongamos ahora que se arroja una piedra hacia arriba desde el techo de un edi-
fi cio como se muestra en la fi gura 1.3.4. ¿Cuál es la posición s(t) de la piedra respecto 
al suelo al tiempo t?  La aceleración de la piedra es la segunda derivada d 2s�dt 2. Si 
suponemos que la dirección hacia arriba es positiva y que no hay otra fuerza, además 
de la fuerza de la gravedad, que actúe sobre la piedra, entonces utilizando la segunda 
ley de Newton se tiene que

 .m
d 2s

dt 2 mg o
d 2s

dt 2 g  (12)

En otras palabras, la fuerza neta es simplemente el peso F � F
1
 � �W de la piedra cerca 

de la superfi cie de la Tierra. Recuerde que la magnitud del peso es W � mg, donde m es la 

(a)

(b)

E(t)
L

C

R

a) Circuito en serie- LRC

b)

L

R

Inductor
inductancia L: henrys (h)

caída de voltaje: L
di
dt

i

Capacitor
capacitancia C: farads (f)

caída de voltaje:
1
C

i

Resistor
resistencia R: ohms (Ω)
caída de voltaje: iR

i

q

C

FIGURA 1.3.3  Símbolos, unidades y 
voltajes. Corriente i(t) y carga q(t) están 
medidas en amperes (A) y en coulombs 
(C), respectivamente.

suelo

edificio

piedra

s(t)
s0

v0

FIGURA 1.3.4  Posición de la piedra 
medida desde el nivel del suelo.

08367_01_ch01_p001-033-ok.indd   2408367_01_ch01_p001-033-ok.indd   24 6/4/09   12:15:18 PM6/4/09   12:15:18 PM



masa del cuerpo y g es la aceleración debida a la gravedad. El signo menos en la ecuación 
(12) se usa porque el peso de la piedra es una fuerza dirigida hacia abajo, que es opuesta 
a la dirección positiva. Si la altura del edifi cio es s

0
 y la velocidad inicial de la roca es v

0
, 

entonces s se determina a partir del problema con valores iniciales de segundo orden

 .
d 2s

dt 2 � �g,  s(0) � s0,  s�(0) � v0  (13)

Aunque no hemos indicado soluciones de las ecuaciones que se han formulado, ob-
serve que la ecuación 13 se puede resolver integrando dos veces respecto a t la cons-
tante –g. Las condiciones iniciales determinan las dos constantes de integración. De 
la física elemental podría reconocer la solución de la ecuación (13) como la fórmula 
s(t) 1

2gt 2 v0t s0.

CUERPOS EN CAÍDA Y RESISTENCIA DEL AIRE  Antes del famoso experimento 
de la torre inclinada de Pisa de Galileo generalmente se creía que los objetos más pe-
sados en caída libre, como una bala de cañón, caían con una aceleración mayor que los 
objetos ligeros como una pluma. Obviamente, una bala de cañón y una pluma cuando 
se dejan caer simultáneamente desde la misma altura realmente caen en tiempos dife-
rentes, pero esto no es porque una bala de cañón sea más pesada. La diferencia en los 
tiempos es debida a la resistencia del aire. En el modelo que se presentó en la ecuación 
(13) se despreció la fuerza de la resistencia del aire. Bajo ciertas circunstancias, un 
cuerpo que cae de masa m, tal como una pluma con densidad pequeña y forma irregu-
lar, encuentra una resistencia del aire que es proporcional a su velocidad instantánea v. 
Si en este caso, tomamos la dirección positiva dirigida hacia abajo, entonces la fuerza 
neta que está actuando sobre la masa está dada por F � F

1
 � F

2
 � mg � kv, donde el 

peso F
1
 � mg del cuerpo es una fuerza que actúa en la dirección positiva y la resisten-

cia del aire F
2
 � �kv es una fuerza, que se llama de amortiguamiento viscoso, que 

actúa en la dirección contraria o hacia arriba. Véase la fi gura 1.3.5. Ahora puesto que v 
está relacionada con la aceleración a mediante a � dv�dt, la segunda ley de Newton 
será F � ma � m dv/dt. Al igualar la fuerza neta con esta forma de la segunda ley, 
obtenemos una ecuación diferencial para la velocidad v(t) del cuerpo al tiempo t,

 .m
dv

dt
� mg � kv   (14)

Aquí k es una constante positiva de proporcionalidad. Si s(t) es la distancia que el 
cuerpo ha caído al tiempo t desde su punto inicial o de liberación, entonces v � ds�dt 
y a � dv�dt � d 2s�dt 2. En términos de s, la ecuación (14) es una ecuación diferencial 
de segundo orden.

 m
d 2s

dt 2 mg k
ds

dt
    o     m

d 2s

dt 2 k
ds

dt
mg. (15)

CABLES SUSPENDIDOS  Suponga un cable fl exible, alambre o cuerda pesada 
que está suspendida entre dos soportes verticales. Ejemplos físicos de esto podría ser 
uno de los dos cables que soportan el fi rme de un puente de suspensión como el que 
se muestra en la fi gura 1.3.6a o un cable telefónico largo entre dos postes como el que se 
muestra en la fi gura 1.3.6b. Nuestro objetivo es construir un modelo matemático que 
describa la forma que tiene el cable.

Comenzaremos por acordar en examinar sólo una parte o elemento del cable entre 
su punto más bajo P

1
 y cualquier punto arbitrario P

2
. Señalado en color azul en la fi -

gura 1.3.7, este elemento de cable es la curva en un sistema de coordenada rectangular 
eligiendo al eje y para que pase a través del punto más bajo P

1
 de la curva y eligiendo 

al eje x para que pase a a unidades debajo de P
1
. Sobre el cable actúan tres fuerzas: las 

tensiones T
1
 y T

2
 en el cable que son tangentes al cable en P

1
 y P

2
, respectivamente, 

y la parte W de la carga total vertical entre los puntos P
1
 y P

2
. Sea que T

1
 � �T

1
�, 

T
2
 � �T

2
�, y W � �W� denoten las magnitudes de estos vectores. Ahora la tensión T

2
 se 

dirección 
positiva

resistencia 
del aire

gravedad

kv

mg

FIGURA 1.3.5  Cuerpo de masa m 
cayendo.

a) cable de suspensión de un puente

b) alambres de teléfonos

FIGURA 1.3.6  Cables suspendidos 
entre soportes verticales.

FIGURA 1.3.7  Elemento del cable.

cosalambre T2 θθ

senT2

T2

P2

T1

W

P1

θ

y

x(x, 0)

(0, a)
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26 ● CAPÍTULO 1  INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES

descompone en sus componentes horizontal y vertical (cantidades escalares) T
2
 cos � 

y T
2
 sen �.  Debido al equilibrio estático podemos escribir

 T1 T2 cos y W T2 sen .  

Al dividir la ultima ecuación entre la primera, eliminamos T
2
 y obtenemos tan 

� � W�T
1
. Pero puesto que dy�dx � tan �, llegamos a

 dy

dx

W

T1
.  (16)

Esta sencilla ecuación diferencial de primer orden sirve como modelo tanto para modelar 
la forma de un alambre fl exible como el cable telefónico colgado bajo su propio peso, 
como para modelar la forma de los cables que soportan el fi rme de un puente suspendido. 
Regresaremos a la ecuación (16) en los ejercicios 2.2 y la sección 5.3.

CUÁLES SON LOS MÉTODOS  En este libro veremos tres diferentes tipos de méto-
dos para el análisis de las ecuaciones diferenciales. Por siglos las ecuaciones diferenciales 
han ocupado los esfuerzos de científi cos o ingenieros para describir algún fenómeno físico 
o para traducir una ley empírica o experimental en términos matemáticos. En consecuen-
cia el científi co, ingeniero o matemático con frecuencia pasaría muchos años de su vida 
tratando de encontrar las soluciones de una ED. Con una solución en la mano, se prosigue 
con el estudio de sus propiedades. A esta búsqueda de soluciones se le llama método ana-
lítico para las ecuaciones diferenciales. Una vez que comprendieron que las soluciones 
explícitas eran muy difíciles de obtener y en el peor de los casos imposibles de obtener, 
los matemáticos aprendieron que las ecuaciones diferenciales en sí mismas podrían ser 
una fuente de información valiosa. Es posible, en algunos casos, contestar directamente 
de las ecuaciones  diferenciales preguntas como ¿en realidad la ED tiene soluciones? Si 
una solución de la ED existe y satisface una condición inicial, ¿es única esa solución? 
¿Cuáles son algunas propiedades de las soluciones desconocidas? ¿Qué podemos decir 
acerca de la geometría de las curvas de solución?  Este método es análisis cualitativo. Por 
último, si una ecuación diferencial no se puede resolver por métodos analíticos, aún así 
podemos demostrar que una solución existe; la siguiente pregunta lógica es ¿de qué modo 
podemos aproximarnos a los valores de una solución desconocida? Aquí entra al reino 
del análisis numérico. Una respuesta afi rmativa a la última pregunta se basa en el hecho de 
que una ecuación diferencial se puede usar como un principio básico para la construcción 
de algoritmos de aproximación muy exactos. En el capítulo 2 comenzaremos con consi-
deraciones cualitativas de las EDO de primer orden, después analizaremos los artifi cios 
analíticos para resolver algunas ecuaciones especiales de primer orden y concluiremos 
con una introducción a un método numérico elemental. Véase la fi gura 1.3.8.

a) analítico b) cualitativo c) numérico 

y'=f(y)

¡HÁBLAME!

FIGURA 1.3.8  Métodos diferentes para el estudio de ecuaciones diferenciales.
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COMENTARIOS

Cada ejemplo de esta sección ha descrito un sistema dinámico, un sistema que 
cambia o evoluciona con el paso del tiempo t. Puesto que el estudio de los siste-
mas dinámicos es una rama de las matemáticas de moda en la actualidad, a veces 
utilizaremos la terminología de esa rama en nuestros análisis.

En términos más precisos, un sistema dinámico consiste en un conjunto de 
variables dependientes del tiempo, que se llaman variables de estado, junto con 
una regla que permita determinar (sin ambigüedades) el estado del sistema (que 
puede ser pasado, presente o futuro) en términos de un estado prescrito al tiempo 
t
0
. Los sistemas dinámicos se clasifi can ya sea como sistemas discretos o continuos 

en el tiempo, o de tiempos discretos o continuos. En este curso sólo nos ocupare-
mos de los sistemas dinámicos continuos en el tiempo, sistemas en los que todas 
las variables están defi nidas dentro de un intervalo continuo de tiempo. La regla o 
modelo matemático en un sistema dinámico continuo en el tiempo es una ecuación 
diferencial o sistema de ecuaciones diferenciales. El estado del sistema al tiempo 
t es el valor de las variables de estado en ese instante; el estado especifi cado del 
sistema al tiempo t

0
 son simplemente las condiciones iniciales que acompañan al 

modelo matemático. La solución de un problema con valores iniciales se llama 
respuesta del sistema. Por ejemplo, en el caso del decaimiento radiactivo, la regla 
es dA�dt � kA. Ahora, si se conoce la cantidad de sustancia radiactiva al tiempo t

0
, 

digamos A(t
0
) � A

0
, entonces, al resolver la regla se encuentra que la respuesta del 

sistema para t � t
0
  es A(t) � A

0
 e (t � t0)  (véase la sección  3.1). La respuesta A(t) es 

la única variable de estado para este sistema. En el caso de la piedra arrojada desde 
el techo de un edifi cio, la respuesta del sistema, es decir, la solución a la ecuación 
diferencial d 2s�dt 2 � �g, sujeta al estado inicial s(0) � s

0
, s�(0) � v

0
, es la función 

,s(t) 1
2gt2 v0t s0; 0 t T  donde T representa el valor del tiempo en

que la piedra golpea en el suelo. Las variables de estado son s(t) y s�(t), la po-
sición y la velocidad verticales de la piedra, respectivamente. La aceleración, 
s�(t), no es una variable de estado ya que sólo se conocen la posición y la velo-
cidad iniciales al tiempo t

0
 para determinar, en forma única, la posición s(t) y la 

velocidad s�(t) � v(t) de la piedra en cualquier momento del intervalo t
0 
� t � T. 

La aceleración, s�(t) � a(t) está, por supuesto, dada por la ecuación diferencial 
s�(t) � �g, 0 � t � T.

Un último punto: No todos los sistemas que se estudian en este libro son 
sistemas dinámicos. Examinaremos algunos sistemas estáticos en que el modelo 
es una ecuación diferencial.

EJERCICIOS 1.3  Las respuestas a los problemas con número impar comienzan en la página RES-1.

Dinámica poblacional

 1. Con base en las mismas hipótesis detrás del modelo de 
la ecuación (1), determine una ecuación diferencial para la 
población P(t) de un país cuando se les permite a las 
personas inmigrar a un país con una razón constante 
r � 0. ¿Cuál es la ecuación diferencial para la población 
P(t) del país cuando se les permite a las personas emigrar 
del país con una razón constante r � 0?

 2. El modelo de población dado en la ecuación (1) falla al no 
considerar la tasa de mortalidad; la razón de crecimiento es 
igual a la tasa de natalidad. En otro modelo del cambio de 
población de una comunidad se supone que la razón 
de cambio de la población es una razón neta, esto es, la 

diferencia entre la tasa de natalidad y la de mortalidad en 
la comunidad. Determine un modelo para la población 
P(t) si tanto la tasa de natalidad y la mortalidad son pro-
porcionales a la población presente al tiempo t.

 3. Utilice el concepto de razón neta introducido en el pro-
blema 2 para determinar un modelo para una población P(t) 
si la tasa de natalidad es proporcional a la población presen-
te al tiempo t, pero la tasa de mortalidad es proporcional al 
cuadrado de la población presente al tiempo t.

 4. Modifi que el problema 3 para la razón neta con la que la 
población P(t) de una cierta clase de pez cambia al supo-
ner que el pez está siendo pescado con una razón cons-
tante h � 0.
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28 ● CAPÍTULO 1  INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES

Ley de enfriamiento/calentamiento de Newton

 5. Una taza de café se enfría de acuerdo con la ley de enfria-
miento de Newton, ecuación (3). Utilice los datos de la 
gráfi ca de la temperatura T(t) en la fi gura 1.3.9 para estimar 
las constantes T

m
, T

0
 y k en un modelo de la forma de un 

problema con valores iniciales de primer orden: dT�dt � k
(T �T

m
), T(0) � T

0
.

cial para el número de personas x(t) que hayan adoptado 
la innovación al tiempo t si se supone que la razón con la 
que se propaga la innovación es conjuntamente propor-
cional al número de personas que ya la han adoptado y al 
número de personas que no la han adoptado.

Mezclas
 9. Suponga que un tanque grande de mezclado contiene ini-

cialmente 300 galones de agua en los que se disolvieron 
50 libras de sal. Entra agua pura a una razón de 3 gal/min 
y cuando la solución está bien revuelta, sale a la misma 
razón. Determine una ecuación diferencial que exprese 
la cantidad A(t) de sal que hay en el tanque al tiempo t. 
¿Cuánto vale A(0)?

10. Suponga que un tanque grande de mezclado contiene ini-
cialmente 300 galones de agua, en los que se han disuelto 
50 libras de sal. Otra salmuera introducida al tanque a 
una razón de 3 gal/min y cuando la solución está bien 
mezclada sale a una razón lenta de 2 gal/min. Si la con-
centración de la solución que entra es 2 lb/gal, determine 
una ecuación diferencial que exprese la cantidad de sal 
A(t) que hay en el tanque al tiempo t.

11. ¿Cuál es la ecuación diferencial del problema 10, si la 
solución bien mezclada sale a una razón más rápida de 
3.5 gal/min?

12. Generalice el modelo dado en la ecuación (8) de la página 
23, suponiendo que el gran tanque contiene inicialmente 
N

0
  número de galones de salmuera, r

entra
 y r

sale
 son las ra-

zones de entrada y salida de la salmuera, respectivamente 
(medidas en galones por minuto), c

entra
 es la concentra-

ción de sal en el fl ujo que entra, c(t) es la concentración 
de sal en el tanque así como en el fl ujo que sale al tiempo 
t (medida en libras de sal por galón), y A(t) es la cantidad 
de sal en el tanque al tiempo t.

Drenado de un tanque

13. Suponga que está saliendo agua de un tanque a través de un 
agujero circular de área A

h
 que está en el fondo. Cuando el 

agua sale a través del agujero, la fricción y la contracción 
de la corriente cerca del agujero reducen el volumen de 
agua que sale del tanque por segundo a cAh12gh , donde 
c (0 � c � 1) es una constante empírica. Determine una 
ecuación diferencial para la altura h del agua al tiempo t 
para el tanque cúbico que se muestra en la fi gura 1.3.11. El 
radio del agujero es de 2 pulg, y g � 32 pies/s2.

FIGURA 1.3.9  Curva de enfriamiento del problema 5.
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FIGURA 1.3.10  Temperatura ambiente del problema 6.
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 6. La temperatura ambiente T
m
 en la ecuación (3) podría ser 

una función del tiempo t. Suponga que en un medio am-
biente controlado, T

m
(t) es periódica con un periodo de 

24 horas, como se muestra en la fi gura 1.3.10. Diseñe un 
modelo matemático para la temperatura T(t) de un cuerpo 
dentro de este medio ambiente.

Propagación de una enfermedad/tecnología

 7.  Suponga que un alumno es portador del virus de la gripe y 
regresa al apartado campus de su universidad de 1000 estu-
diantes. Determine una ecuación diferencial para el número 
de personas x(t) que contraerán la gripe si la razón con la que 
la enfermedad se propaga es proporcional al número de inte-
racciones entre el número de estudiantes que tiene gripe y el 
número de estudiantes que aún no se han expuesto a ella.

 8. Al tiempo denotado por t � 0, se introduce una innova-
ción tecnológica en una comunidad que tiene una canti-
dad fi ja de n personas. Determine una ecuación diferen-

h

agujero 
circular

10 pies

Aw

FIGURA 1.3.11  Tanque cúbico del problema 13.
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14. Del tanque cónico rectangular recto que se muestra en la 
fi gura 1.3.12 sale agua por un agujero circular que está 
en el fondo. Determine una ecuación diferencial para 
la altura h del agua al tiempo t. El radio del agujero es 
2 pulg, g � 32 pies/s2, y el factor de fricción/contracción 
es c � 0.6.

Segunda ley de Newton y Principio de Arquímedes

18. Un barril cilíndrico de s pies de diámetro y w lb de peso, 
está fl otando en agua como se muestra en la fi gura 1.3.16a. 
Después de un hundimiento inicial el barril presenta un mo-
vimiento oscilatorio, hacia arriba y hacia abajo, a lo largo 
de la vertical. Utilizando la fi gura 1.3.16b, defi na una ecua-
ción diferencial para establecer el desplazamiento vertical 
y(t), si se supone que el origen está en el eje vertical y en 
la superfi cie del agua cuando el barril está en reposo. Use 
el Principio de Arquímedes: la fuerza de fl otación o hacia 
arriba que ejerce el agua sobre el barril es igual al peso del 
agua desplazada. Suponga que la dirección hacia abajo es 
positiva, que la densidad de masa del agua es 62.4 lb/pies3 y 
que no hay resistencia entre el barril y el agua.

L

R

E

FIGURA 1.3.13  Circuito en serie LR del problema 15.

FIGURA 1.3.14  Circuito RC en serie del problema 16.

R

C

E

FIGURA 1.3.12  Tanque cónico del problema 14.

8 pies

agujero circular

h
20 pies

Aw

FIGURA 1.3.15  Resistencia del aire proporcional al 
cuadrado de la velocidad del problema 17.

mg

kv2

SKYDIVING

MADE

EASY

FIGURA 1.3.16  Movimiento oscilatorio del barril 
fl otando del problema 18.

0 y(t)0superficie

s/2

b)a)

s/2

Circuitos en serie

15. Un circuito en serie tiene un resistor y un inductor como 
se muestra en la fi gura 1.3.13. Determine una ecuación 
diferencial para la corriente i(t) si la resistencia es R, la 
inductancia es L y el voltaje aplicado es E(t).

16.  Un circuito en serie contiene un resistor y un capacitor como 
se muestra en la fi gura 1.3.14. Determine una ecuación dife-
rencial que exprese la carga q(t) en el capacitor, si la resisten-
cia es R, la capacitancia es C y el voltaje aplicado es E(t).

Caida libre y resistencia del aire

17. Para movimientos de gran rapidez en el aire, como el del 
paracaidista que se muestra en la fi gura 1.3.15, que está 
cayendo antes de que se abra el paracaídas la resistencia 
del aire es cercana a una potencia de la velocidad ins-
tantánea v(t). Determine una ecuación diferencial para 
la velocidad v(t) de un cuerpo de masa m que cae, si la 
resistencia del aire es proporcional al cuadrado de la ve-
locidad instantánea.

Segunda ley de Newton y ley de Hooke

19. Después de que se fi ja una masa m a un resorte, éste se estira 
s unidades y cuelga en reposo en la posición de equilibrio 
como se muestra en la fi gura 1.3.17b. Después el sistema 

FIGURA 1.3.17  Sistema resorte/masa del problema 19.

resorte sin 
deformar

posición de 
equilibrio m

x = 0
x(t) > 0

x(t) < 0

m
s

a) b) c)
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30 ● CAPÍTULO 1  INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES

resorte/masa se pone en movimiento, sea que x(t) denote la 
distancia dirigida del punto de equilibrio a la masa. Como se 
indica en la fi gura 1.3.17c, suponga que la dirección hacia 
abajo es positiva y que el movimiento se efectúa en una recta 
vertical que pasa por el centro de gravedad de la masa y que 
las únicas fuerzas que actúan sobre el sistema son el peso 
de la masa y la fuerza de restauración del resorte estirado. 
Utilice la ley de Hooke: la fuerza de restauración de un 
resorte es proporcional a su elongación total. Determine una 
ecuación diferencial del desplazamiento x(t) al tiempo t.

20. En el problema 19, ¿cuál es la ecuación diferencial para el 
desplazamiento x(t) si el movimiento tiene lugar en un medio 
que ejerce una fuerza de amortiguamiento sobre el sistema 
resorte/masa que es proporcional a la velocidad instantánea 
de la masa y actúa en dirección contraria al movimiento?

Segunda ley de Newton y la ley 
de la gravitación universal

21. De acuerdo con la ley de la gravitación universal de 
Newton, la aceleración de caída libre a de un cuerpo, tal 
como el satélite que se muestra en la fi gura 1.3.18, que 
está cayendo desde una gran distancia hacia la superfi cie 
no es la constante g. Más bien, la aceleración a es inver-
samente proporcional al cuadrado de la distancia desde 
el centro de la Tierra a � k�r2 donde k es la constante de 
proporcionalidad. Utilice el hecho de que en la superfi cie 
de la Tierra, r � R y a � g, para determinar k. Si la direc-
ción positiva se considera hacia arriba, utilice la segunda 
ley de Newton y la ley de la gravitación universal para 
encontrar una ecuación diferencial para la distancia r.

Modelos matemáticos adicionales

23. Teoría del aprendizaje  En la teoría del aprendizaje, se 
supone que la rapidez con que se memoriza algo es propor-
cional a la cantidad que queda por memorizar. Suponga que 
M denota la cantidad total de un tema que se debe memorizar 
y que A(t) es la cantidad memorizada al tiempo t. Determine 
una ecuación diferencial para determinar la cantidad A(t).

24. Falta de memoria  Con los datos del problema anterior 
suponga que la razón con la cual el material es olvidado 
es proporcional a la cantidad memorizada al tiempo t. 
Determine una ecuación diferencial para A(t), cuando se 
considera la falta de memoria.

25. Suministro de un medicamento  Se inyecta un medica-
mento en el torrente sanguíneo de un paciente a una razón 
constante de r gramos por segundo. Simultáneamente, se 
elimina el medicamento a una razón proporcional a la 
cantidad x(t) presente al tiempo t. Determine una ecua-
ción diferencial que describa la cantidad x(t).

26. Tractriz  Una persona P que parte del origen se mueve en 
la dirección positiva del eje x, jalando un peso a lo largo de la 
curva C, llamada tractriz, como se muestra en la fi gura 
1.3.20. Inicialmente el peso se encontraba en el eje y, en 
(0, s) y es jalado con una cuerda de longitud constante s, que 
se mantiene tensa durante el movimiento. Determine una 
ecuación diferencial para la trayectoria C de movimiento. 
Suponga que la cuerda siempre es tangente a C.

FIGURA 1.3.18  Satélite 
del problema 21. Tierra de masa M

R

satellite of 
mass  m 

r

satélite de 
masa m

superficie

FIGURA 1.3.19  Agujero 
que pasa a través de la Tierra del 
problema 22.

superficie

m

R

r

22.  Suponga que se hace un agujero que pasa por el centro de la 
Tierra y que por él se deja caer una bola de masa m como se 
muestra en la fi gura 1.3.19. Construya un modelo matemá-
tico que describa el posible movimiento de la bola. Al tiempo 
t sea que r denote la distancia desde el centro de la Tierra a la 
masa m, que M denote la masa de la Tierra, que M

r
 denote 

la masa de la parte de la Tierra que está dentro de una esfera 
de radio r, y que d denote la densidad constante de la Tierra.

FIGURA 1.3.20  Curva tractriz del problema 26.
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FIGURA 1.3.21  Superfi cie refl ectora del problema 27.
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tangente

27. Superfi cie refl ectora  Suponga que cuando la curva 
plana C que se muestra en la fi gura 1.3.21 se gira respecto 
al eje x genera una superfi cie de revolución, con la pro-
piedad de que todos los rayos de luz paralelos al eje x que 
inciden en la superfi cie son refl ejados a un solo punto O 
(el origen). Utilice el hecho de que el ángulo de incidencia 
es igual al ángulo de refl exión para determinar una ecua-
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ción diferencial que describa la forma de la curva C. Esta 
curva C es importante en aplicaciones como construcción de 
telescopios o antenas de satélites, faros delanteros de auto-
móviles y colectores solares. [Sugerencia: La inspección de 
la fi gura muestra que podemos escribir � � 2u. ¿Por qué? 
Ahora utilice una identidad trigonométrica adecuada.]

Problemas de análisis
28. Repita el problema 41 de los ejercicios 1.1 y después 

proporcione una solución explicíta P(t) para la ecuación 
(1). Determine una familia uniparamétrica de soluciones 
de (1).

29. Lea nuevamente la oración que se encuentra a continuación 
de la ecuación (3) y suponga que T

m
 es una constante posi-

tiva. Analice por qué se podría esperar que k � 0 en ambos 
casos de enfriamiento y de calentamiento. Podría empezar 
por interpretar, digamos, T(t) � T

m
 en una forma gráfi ca.

30. Lea nuevamente el análisis que condujo a la ecuación (8). 
Si suponemos que inicialmente el tanque conserva, diga-
mos 50 libras de sal, es porque se le está agregando sal 
continuamente al tanque para t � 0, A(t) será una función 
creciente. Analice cómo podría determinar a partir de la 
ED, sin realmente resolverla, el número de libras de sal 
en el tanque después de un periodo largo.

31. Modelo de población  La ecuación diferencial

  
dP

dt
(k cos t)P, donde k es una constante positiva,

  modela la población humana, P(t), de cierta comunidad. 
Analice e interprete la solución de esta ecuación. En otras 
palabras, ¿qué tipo de población piensa que describe esta 
ecuación diferencial?

32.  Fluido girando  Como se muestra en la fi gura 1.3.22 un 
cilindro circular recto parcialmente lleno con un fl uido está 
girando con una velocidad angular constante v respecto al 
eje vertical que pasa por su centro. El fl uido girando forma 
una superfi cie de revolución S. Para identifi car S, primero 
establecemos un sistema coordenado que consiste en un 
plano vertical determinado por el eje y y el eje x dibujado 
en forma perpendicular al eje y de tal forma que el punto de 
intersección de los ejes (el origen) está localizado en el punto 
inferior de la superfi cie S. Entonces buscamos una función 
y � f (x) que represente la curva C de intersección de la su-
perfi cie S y del plano coordenado vertical. Sea que el punto 
P(x, y) denote la posición de una partícula del fl uido girando, 
de masa m, en el plano coordenado. Véase la fi gura 1.3.22b.
a)  En P hay una fuerza de reacción de magnitud F de-

bida a las otras partículas del fl uido que es perpen-
dicular a la superfi cie S. Usando la segunda ley de 
Newton la magnitud de la fuerza neta que actúa sobre 
la partícula es mv2x. ¿Cuál es esta fuerza? Utilice la 
fi gura 1.3.22b para analizar la naturaleza y el origen 
de las ecuaciones 

F cos u = mg,  F sen u = mv2x

b)  Use el inciso a) para encontrar una ecuación diferen-
cial que defi na la función y � f(x).

33.  Cuerpo en caída  En el problema 21 suponga que r � 
R � s donde s es la distancia desde la superfi cie de la 
Tierra al cuerpo que cae. ¿Cómo es la ecuación diferencial 
que se obtuvo en el problema 21 cuando s es muy pequeña 
en comparación con R? [Sugerencia: Considere la serie 
binomial para

(R � s)�2 � R�2 (1 � s�R)�2.]

34. Gotas de lluvia cayendo  En meteorología el término 
virga se refi ere a las gotas de lluvia que caen o a partículas 
de hielo que se evaporan antes de llegar al suelo. Suponga 
que en algún tiempo, que se puede denotar por t � 0, las 
gotas de lluvia de radio r

0
 caen desde el reposo de una nube 

y se comienzan a evaporar.

a)  Si se supone que una gota se evapora de tal manera 
que su forma permanece esférica, entonces también 
tiene sentido suponer que la razón a la cual se evapora 
la gota de lluvia, esto es, la razón con la cual ésta 
pierde masa, es proporcional a su área superfi cial. 
Muestre que esta última suposición implica que la 
razón con la que el radio r de la gota de lluvia dismi-
nuye es una constante. Encuentre r (t). [Sugerencia: 
Véase el problema 51 en los ejercicios 1.1.]

b)  Si la dirección positiva es hacia abajo, construya un 
modelo matemático para la velocidad v de la gota de 
lluvia que cae al tiempo t. Desprecie la resistencia del 
aire. [Sugerencia: Cuando la masa m de un cuerpo está 
cambiando con el tiempo, la segunda ley de Newton es 

  F
d

dt
 (mv),

 donde F es la fuerza neta que actúa so-

 bre el cuerpo y mv es su cantidad de movimiento.]

ω

P

y

x
θ

θ mg

2xmω
P(x, y)

F

recta tangente 
a la curva C en P

curva C de intersección 
del plano xy y la 
superficie de 
revolución

a)

b)

y

FIGURA 1.3.22  Fluido girando del problema 32.
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32 ● CAPÍTULO 1  INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES

35.  Deja que nieve  El “problema del quitanieves” es un clá-
sico que aparece en muchos libros de ecuaciones diferenciales 
y que fue probablemente inventado por Ralph Palmer Agnew.

“Un día comenzó a nevar en forma intensa y cons-
tante. Un quitanieve comenzó a medio día, y avanzó 
2 millas la primera hora y una milla la segunda. ¿A 
qué hora comenzó a nevar?”

Se encuentra en el libro Differential Equations, de Ralph 
Palmer Agnew, McGraw-Hill Book Co., búsquelo y después 
analice la construcción y solución del modelo matemático.

36. Lea nuevamente esta sección y clasifi que cada  modelo 
matemático como lineal o no lineal.

REPASO DEL CAPÍTULO 1
 Las respuestas a los problemas con número impar 

                                                                                                                                  comienzan en la página RES-1.

En los problemas 1 y 2 llene el espacio en blanco y después 
escriba este resultado como una ecuación diferencial de pri-
mer orden que no contiene al símbolo c

1
 y que tiene la forma 

dy�dx � f(x, y). El símbolo c
1
 representa una constante.

 1. 

 2. 
d

dx
 (5 c1e 2x)

d

dx
c1e10x

En los problemas 3 y 4 llene el espacio en blanco y después 
escriba este resultado como una ecuación diferencial lineal de 
segundo orden que no contiene a las constantes c

1
 y c

2
 y que 

tiene la forma F(y, y�) � 0. Los símbolos c
1
, c

2
 y k representan 

las constantes.

 3. 

 4. 
d 2

dx2 (c1 cosh kx c2 senh kx)

d 2

dx2 (c1 cos kx c2 sen kx)

En los problemas 5 y 6 calcule y� y y�  y después combine 
estas derivadas con y como una ecuación diferencial lineal de 
segundo orden que no contiene los símbolos c

1
 y c

2
 y que tiene 

la forma F(y, y�, y�) � 0. Estos símbolos c
1
 y c

2
 representan 

constantes.

 5. y � c
1
ex � c

2
xex  6. y � c

1
ex cos x � c

2
ex sen x

En los problemas 7 a 12 relacione cada una de las siguientes 
ecuaciones diferenciales con una o más de estas soluciones.

a) y � 0,    b) y � 2,    c) y � 2x,    d) y � 2x2.

 7. xy� � 2y  8. y� � 2

 9. y� � 2y � 4 10. xy� � y

11. y� � 9y � 18 12. xy� � y� � 0

En los problemas 13 y 14 determine por inspección al menos 
una solución de la ecuación diferencial dada.

13. y� � y� 14. y� � y(y � 3)

En los problemas 15 y 16 interprete cada enunciado como una 
ecuación diferencial.

15. En la gráfi ca de y � �(x) la pendiente de la recta tangente 
en el punto P(x, y) es el cuadrado de la distancia de P(x, 
y) al origen.

16. En la gráfi ca de y � �(x) la razón con la que la pendiente 
cambia respecto a x en un punto P(x, y) es el negativo de 
la pendiente de la recta tangente en P(x, y).

17. a) Dé el dominio de la función y � x2/3.

  b)  Dé el intervalo I de defi nición más largo en el cual 
y � x2/3 es solución de la ecuación diferencial 3xy� � 
2y � 0.

18. a)  Compruebe que la familia uniparamétrica y2 � 2y 
� x2 –x � c es una solución implícita de la ecuación 
diferencial (2y � 2)y� � 2x � 1.

  b)  Encuentre un miembro de la familia uniparamétrica en
el inciso a) que satisfaga la condición inicial y(0) � 1.

  c)  Utilice su resultado del inciso b) para determinar una 
función explícita y � �(x) que satisfaga y(0) � 1. Dé 
el dominio de la función �. ¿Es y � �(x) una solución 
del problema con valores iniciales? Si es así, dé su in-
tervalo I de defi nición; si no, explique por qué.

19. Dado que y � x – 2�x es una solución de la ED xy� � y 
� 2x. Determine x

0
 y el intervalo I más largo para el cual 

y(x) es una solución del PVI de primer orden xy� � y � 
2x, y(x

0
) � 1.

20. Suponga que y(x) denota una solución del PVI de primer 
orden y� � x2 � y2, y(1) � �1 y que y(x) tiene al menos 
una segunda derivada en x � 1. En alguna vecindad de x 
� 1 utilice la ED para determinar si y(x) está creciendo o 
decreciendo y si la gráfi ca y(x) es cóncava hacia arriba 
o hacia abajo.

21. Una ecuación diferencial puede tener más de una familia 
de soluciones.

  a)  Dibuje diferentes miembros de las familias y � �
1
(x) 

� x2 � c
1
 y y � �

2
(x)� �x2 � c

2
.

  b)  Compruebe que y � �
1
(x) y  y � �

2
(x) son dos solu-

ciones de la ecuación diferencial no lineal de primer 
orden (y�)2 � 4x2.

  c)  Construya una función defi nida en tramos que sea una 
solución de la ED no lineal del inciso b) pero que no es 
miembro de la familia de soluciones del inciso a).

22. ¿Cuál es la pendiente de la recta tangente a la gráfi ca de 
una solución de y 61y 5x3 que pasa por (�1, 4)?
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En los problemas 23 a 26 verifi que que la función indicada es 
una solución particular de la ecuación diferencial dada. Dé un 
intervalo I de defi nición para cada solución.

23. y� � y � 2 cos x � 2 sen x;  y � x sen x � x cos x

24. y� � y � sec x;  y � x sen x � (cos x)ln(cos x)

25. x2y� � xy� � y � 0;  y � sen(ln x)

26. x2y� � xy� � y � sec(ln x);  
  y � cos(ln x) ln(cos(ln x)) � (ln x) sen(ln x)

En los problemas 27 a 30, y � c
1
e3x � c

2
e�x �2x es una familia 

de soluciones de dos parámetros de la ED de segundo orden 
y� – 2y� � 3y � 6x � 4. Determine una solución del PVI de 
segundo orden que consiste en esta ecuación diferencial y en 
las condiciones iniciales dadas.

27. y (0) � 0, y�(0) � 0 28. y (0) � 1, y�(0) � �3

29. y (1) � 4, y�(1) � �2 30. y (�1) � 0, y�(�1) � 1

31. En la fi gura 1.R.1, se presenta la gráfi ca de una solución 
de un problema con valores iniciales de segundo orden 
d 2y�dx 2 � f (x, y, y�), y(2) � y

0
; y�(2) � y

1
. Utilice la 

gráfi ca para estimar los valores de y
0
 y y

1
.

32. Un tanque que tiene la forma de cilindro circular recto, 
de 2 pies de radio y 10 pies de altura, está parado sobre 
su base. Inicialmente, el tanque está lleno de agua y ésta 
sale por un agujero circular de 1

2
 pulg de radio en el fondo. 

Determine una ecuación diferencial para la altura h del 
agua al tiempo t. Desprecie la fricción y contracción 
del agua en el agujero.

33. El número de ratones de campo en una pastura está dado 
por la función 200 � 10t, donde el tiempo t se mide en 
años. Determine una ecuación diferencial que gobierne 
una población de búhos que se alimentan de ratones si la 
razón a la que la población de búhos crece es proporcio-
nal a la diferencia entre el número de búhos al tiempo t y 
el número de ratones al mismo tiempo t.

34. Suponga que dA�dt � �0.0004332 A(t) representa un 
modelo matemático para el decaimiento radiactivo del 
radio-226, donde A(t) es la cantidad de radio (medida en 
gramos) que queda al tiempo t (medido en años). ¿Cuánto 
de la muestra de radio queda al tiempo t cuando la mues-
tra está decayendo con una razón de 0.002 gramos por 
año?

y

x5

−5

5

FIGURA 1.R.1  Gráfi ca para el problema 31.
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2.1 Curvas solución sin una solución

2.1.1 Campos direccionales

2.1.2 ED de primer orden autónomas

2.2 Variables separables

2.3 Ecuaciones lineales 

2.4 Ecuaciones exactas

2.5 Soluciones por sustitución

2.6 Un método numérico

REPASO DEL CAPÍTULO 2

La historia de las matemáticas tiene muchos relatos de personas que han dedicado 

gran parte de su vida a la solución de ecuaciones, al principio de ecuaciones 

algebraicas y después de ecuaciones diferenciales. En las secciones 2.2 a 2.5 

estudiaremos algunos de los métodos analíticos más importantes para resolver 

ED de primer orden. Sin embargo, antes de que empecemos a resolverlas, 

debemos considerar dos hechos: es posible que una ecuación diferencial no tenga 

soluciones y que una ecuación diferencial tenga una solución que con los 

métodos existentes actuales no se puede determinar. En las secciones 2.1 y 2.6 

no resolveremos ninguna ED pero mostraremos cómo obtener información 

directamente de la misma ecuación. En la sección 2.1 podemos ver cómo, a partir 

de la ED, obtenemos información cualitativa de la misma respecto a sus gráfi cas, 

lo que nos permite interpretar los dibujos de las curvas solución. En la sección 2.6 

usamos ecuaciones diferenciales para construir un procedimiento numérico para 

soluciones aproximadas.

ECUACIONES DIFERENCIALES 
DE PRIMER ORDEN2
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CURVAS SOLUCIÓN SIN UNA SOLUCIÓN

REPASO DE MATERIAL
● La primera derivada como pendiente de una recta tangente.
● El signo algebraico de la primera derivada indica crecimiento o decrecimiento.

INTRODUCCIÓN  Imaginemos por un momento que nos enfrentamos con una ecuación diferencial 
de primer orden dy�dx � f (x, y), y que además no podemos encontrar ni inventar un método para 
resolverla analíticamente. Esto no es tan malo como se podría pensar, ya que la ecuación diferencial 
en sí misma a veces puede “decirnos” concretamente cómo se “comportan” sus soluciones.

Iniciaremos nuestro estudio de las ecuaciones diferenciales de primer orden con dos formas 
cualitativas de analizar una ED. Estas dos formas nos permiten determinar, de una manera aproximada, 
cómo es una curva solución sin resolver realmente la ecuación.

2.1

2.1.1  CAMPOS DIRECCIONALES

ALGUNAS PREGUNTAS FUNDAMENTALES  En la sección 1.2 vimos que si f (x, 
y) y �f��y satisfacen algunas condiciones de continuidad, se pueden responder preguntas 
cualitativas acerca de la existencia y unicidad de las soluciones. En esta sección veremos 
otras preguntas cualitativas acerca de las propiedades de las soluciones. ¿Cómo se com-
porta una solución cerca de un punto dado? ¿Cómo se comporta una solución cuando x 
: �? Con frecuencia, estas preguntas se pueden responder cuando la función f depende 
sólo de la variable y. Sin embargo, comenzaremos con un simple concepto de cálculo: 

Una derivada dy�dx de una función derivable y � y(x) da las pendientes de las 
rectas tangentes en puntos de su gráfi ca.

PENDIENTE  Debido a que una solución y � y(x) de una ecuación diferencial de 
primer orden

 
dy

dx
� f (x, y)  (1)

es necesariamente una función derivable en su intervalo I de defi nición, debe también 
ser continua en I. Por tanto la curva solución correspondiente en I no tiene cortes y debe 
tener una recta tangente en cada punto (x, y(x)). La función f en la forma normal (1) se 
llama función pendiente o función razón. La pendiente de la recta tangente en (x, y(x)) 
en una curva solución es el valor de la primera derivada dy�dx en este punto y sabemos 
de la ecuación (1) que es el valor de la función pendiente f (x, y(x)). Ahora suponga -
mos que (x, y) representa cualquier punto de una región del plano xy en la que está 
defi nida la función f. El valor f (x, y) que la función f  le asigna al punto representa la 
pendiente de una recta o que la visualizaremos como un segmento de recta llamado 
elemento lineal. Por ejemplo, considere la ecuación dy�dx � 0.2xy, donde f (x, y) � 
0.2xy. En el punto (2, 3) la pendiente de un elemento lineal es f (2, 3) � 0.2(2)(3) 
� 1.2. La fi gura 2.1.1a muestra un segmento de recta con pendiente 1.2 que pasa por 
(2, 3). Como se muestra en la fi gura 2.1.1b, si una curva solución también pasa por el 
punto (2, 3), lo hace de tal forma que el segmento de recta es tangente a la curva; en otras 
palabras, el elemento lineal es una recta tangente miniatura en ese punto.

CAMPO DIRECCIONAL  Si evaluamos sistemáticamente a f en una malla rectan-
gular de puntos en el plano xy y se dibuja un elemento lineal en cada punto (x, y) de la 
malla con pendiente f (x, y), entonces al conjunto de todos estos elementos lineales se 
le llama campo direccional o campo de pendientes de la ecuación diferencial dy�dx 
� f (x, y). Visualmente, la dirección del campo indica el aspecto o forma de una familia 
de curvas solución de la ecuación diferencial dada y, en consecuencia, se pueden ver 
a simple vista aspectos cualitativos de la solución, por ejemplo, regiones en el plano 

curva 
solución

a) elemento lineal en un punto.

b) el elemento lineal es tangente 
a la curva solución que  
pasa por el punto.

pendiente = 1.2

(2, 3)

x

y

tangente

(2, 3)

x

y

FIGURA 2.1.1  El elemento lineal es 
tangente a la curva solución en (2, 3).
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36 ● CAPÍTULO 2  ECUACIONES DIFERENCIALES DE PRIMER ORDEN

en las que una solución presenta un comportamiento poco común. Una sola curva 
solución que pasa por un campo direccional debe seguir el patrón de fl ujo del campo: 
el elemento lineal es tangente a la curva cuando intercepta un punto de la malla. La 
fi gura 2.1.2 muestra un campo direccional generado por computadora de la ecuación 
diferencial dy�dx � sen(x � y) en una región del plano xy. Observe cómo las tres cur-
vas solución que se muestran a colores siguen el fl ujo del campo.

EJEMPLO 1  Campo direccional

El campo direccional para la ecuación diferencial dy�dx � 0.2xy que se muestra en la fi gura 
2.1.3a se obtuvo usando un paquete computacional en el que se defi nió una malla 5 � 5 (mh, 
nh) con m y n enteros, haciendo – 5 � m � 5, �5 � n � 5, y h � 1. Observe en la fi gura 
2.1.3a que en cualquier punto del eje de las x (y � 0) y del eje y (x � 0), las pendientes son 
f (x, 0) � 0 y f (0, y) � 0, respectivamente, por lo que los elementos lineales son horizontales. 
Además observe que en el primer cuadrante para un valor fi jo de x los valores de f (x, y) � 
0.2xy aumentan conforme crece y; análogamente, para una y los valores de f (x, y) 
� 0.2xy aumentan conforme x aumenta. Esto signifi ca que conforme x y y crecen, los ele-
mentos lineales serán casi verticales y tendrán pendiente positiva ( f (x, y) � 0.2xy � 0 para 
x � 0, y � 0). En el segundo cuadrante,  � f (x, y)� aumenta conforme crecen �x� y y crecen, 
por lo que nuevamente los elementos lineales serán casi verticales pero esta vez tendrán 
pendiente negativa ( f (x, y) � 0.2xy 	 0 para x 	 0, y � 0). Leyendo de izquierda a dere-
cha, imaginemos una curva solución que inicia en un punto del segundo cuadrante, se 
mueve abruptamente hacia abajo, se hace plana conforme pasa por el eje y y después, 
conforme entra al primer cuadrante, se mueve abruptamente hacia arriba; en otras palabras, 
su forma sería cóncava hacia arriba y similar a una herradura. A partir de esto se podría 
inferir que y : � conforme x : 
�. Ahora en el tercer y el cuarto cuadrantes, puesto que 
f (x, y) � 0.2xy � 0 y f (x, y) � 0.2xy 	 0, respectivamente, la situación se invierte: una 
curva solución crece y después decrece conforme nos movamos de izquierda a derecha. 
Vimos en la ecuación (1) de la sección 1.1 que y � e0.1x2 es una solución explícita de 
dy�dx � 0.2xy; usted debería comprobar que una familia uniparamétrica de soluciones 
de la misma ecuación está dada por: y � ce0.1x2. Con objeto de comparar con la fi gura 2.1.3a, 
en la fi gura 2.1.3b se muestran algunos miembros representativos de esta familia. 

EJEMPLO 2  Campo direccional

Utilice un campo direccional para dibujar una curva solución aproximada para el pro-
blema con valores iniciales dy�dx � sen y, y(0) � � 3

2.

SOLUCIÓN  Antes de proceder, recuerde que a partir de la continuidad de f (x, y) � sen y y 
�f��y � cos y el teorema 1.2.1 garantiza la existencia de una curva solución única que pase 
por un punto dado (x

0
, y

0
) en el plano. Ahora nuevamente seleccionando en nuestro paquete 

computacional la opción para una región rectangular 5 � 5 y dando puntos (debidos a la 
condición inicial) en la región con separación vertical y horizontal de 1

2 unidad, es decir, 
en puntos (mh, nh), h � 1

2, m y n enteros tales como �10 � m � 10, �10 � n � 10. En 
la fi gura 2.1.4 se presenta el resultado. Puesto que el lado derecho de dy�dx � sen y es 0 
en y � 0, y en y � �p, los elementos lineales son horizontales en todos los puntos cuyas 
segundas coordenadas son y � 0 o y � �p. Entonces tiene sentido que una curva solución 
que pasa por el punto inicial (0, �3

2), tenga la forma que se muestra en la fi gura. 

CRECIMIENTO/DECRECIMIENTO  La interpretación de la derivada dy�dx como 
una función que da la pendiente juega el papel principal en la construcción de un 
campo direccional. A continuación se usará otra contundente propiedad de la primera 
derivada, es decir, si dy�dx � 0 (o dy�dx 	 0) para toda x en un intervalo I, entonces 
una función derivable y � y(x) es creciente (o decreciente) en I.

c>0 

c<0 

x

y

4_4

_4

_2

2

4

_4

_2

2

4

_2 2

4_4 _2 2

x

y

c=0 

b) Algunas curvas solución 
en la familia y � ce     .  0.1x2

a) Campo direccional para
dy/dx � 0.2xy.

FIGURA 2.1.3  Campo direccional y 
curvas solución.

FIGURA 2.1.2  Las curvas solución 
siguen el fl ujo de un campo direccional.
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FIGURA 2.1.4  Campo direccional 
del ejemplo 2.

COMENTARIOS

Dibujar a mano un campo direccional es directo pero tardado; por eso es proba-
ble que en la vida solo una o dos veces se realice esta tarea, pero generalmente 
es más efi ciente realizarlo usando un paquete computacional. Antes de las calcu-
ladoras, de las computadoras personales y de los programas se utilizaba el mé-
todo de las isoclinas para facilitar el dibujo a mano de un campo direccional. 
Para la ED dy�dx � f (x, y), cualquier miembro de la familia de curvas f (x, y) 
� c, donde c es una constante, se llama isoclina. Se dibujan elementos lineales 
que pasen por los puntos en una isoclina dada, digamos, f (x, y) � c

1
 todos con la 

misma pendiente c
1
. En el problema 15 de los ejercicios 2.1 tiene dos oportuni-

dades para dibujar un campo direccional a mano.

2.1.2  ED DE PRIMER ORDEN AUTÓNOMAS

ED DE PRIMER ORDEN AUTÓNOMAS  En la sección 1.1 dividimos la clase 
de las ecuaciones diferenciales ordinarias en dos tipos: lineales y no lineales. Ahora 
consideraremos brevemente otra clase de clasifi cación de las ecuaciones diferenciales 
ordinarias, una clasifi cación que es de particular importancia en la investigación cua-
litativa de las ecuaciones diferenciales. Una ecuación diferencial ordinaria en la que la 
variable independiente no aparece explícitamente se llama autónoma. Si el símbolo x 
denota a la variable independiente, entonces se puede escribir una ecuación diferencial 
autónoma de primer orden como f (y, y�) � 0 o en la forma normal como

 .
dy

dx
� f (y)  (2)

Supondremos que la función f en la ecuación (2) y su derivada f � son funciones conti-
nuas de y en algún intervalo I. Las ecuaciones de primer orden
 f (y) f (x, y)
 p p

 
dy

dx
2 dy

dx
� 0.2xy� 1 � y         y  

son respectivamente autónoma y no autónoma.
Muchas ecuaciones diferenciales que se encuentran en aplicaciones o ecuaciones 

que modelan leyes físicas que no cambian en el tiempo son autónomas. Como ya 
hemos visto en la sección 1.3, en un contexto aplicado, se usan comúnmente otros 
símbolos diferentes de y y de x para representar las variables dependientes e indepen-
dientes. Por ejemplo, si t representa el tiempo entonces al examinar a

,
dA

dt
� kA,    

dx

dt
� kx(n � 1 � x),    

dT

dt
� k(T � Tm),    

dA

dt
� 6 �

1

100
A

donde k, n y T
m
 son constantes, se encuentra que cada ecuación es independiente del 

tiempo. Realmente, todas las ecuaciones diferenciales de primer orden introducidas en 
la sección 1.3 son independientes del tiempo y por tanto son autónomas.

PUNTOS CRÍTICOS  Las raíces de la función f en la ecuación (2) son de especial 
importancia. Decimos que un número real c es un punto crítico de la ecuación dife-
rencial autónoma (2) si es una raíz de f, es decir, f (c) � 0. Un punto crítico también 
se llama punto de equilibrio o punto estacionario. Ahora observe que si sustituimos 
la función constante y(x) � c en la ecuación (2), entonces ambos lados de la ecuación 
son iguales a cero. Esto signifi ca que:

Si c es un punto crítico de la ecuación (2), entonces y(x) � c es una solución 
constante de la ecuación diferencial autónoma.

Una solución constante y(x) � c se llama solución de equilibrio; las soluciones de 
equilibrio son las únicas soluciones constantes de la ecuación (2).

2.1  CURVAS SOLUCIÓN SIN UNA SOLUCIÓN ● 37
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38 ● CAPÍTULO 2  ECUACIONES DIFERENCIALES DE PRIMER ORDEN

Como ya lo hemos mencionado, podemos decir cuándo una solución no constante 
y � y(x) de la ecuación (2) está creciendo o decreciendo determinando el signo alge-
braico de la derivada dy�dx; en el caso de la ecuación (2) hacemos esto identifi cando 
los intervalos del eje y en los que la función f (y) es positiva o negativa.

EJEMPLO 3  Una ED autónoma

La ecuación diferencial

 
dP

dt
� P(a � bP),

donde a y b son constantes positivas, tiene la forma normal dP�dt � f (P), la de la ecua-
ción (2) con t y P jugando los papeles de x y y respectivamente y por tanto es autónoma. 
De f (P) � P(a – bP) � 0 vemos que 0 y a�b son puntos críticos de la ecuación, así que 
las soluciones de equilibrio son P(t) � 0 y P(t) � a�b. Poniendo los puntos críticos en 
una recta vertical, dividimos esta recta en tres intervalos defi nidos por �� 	 P 	 0, 0 	 
P 	 a�b, a�b 	 P 	 �. Las fl echas en la recta que se presenta en la fi gura 2.1.5 indican 
el signo algebraico de f (P) � P(a – bP) en estos intervalos y si una solución constante 
P(t) está creciendo o decreciendo en un intervalo. La tabla siguiente explica la fi gura:

Intervalo Signo de f (P) P(t) Flecha

(��, 0) menos decreciente apunta hacia abajo
(0, a�b) más creciente apunta hacia arriba
(a�b, �) menos decreciente apunta hacia abajo  

La fi gura 2.1.5 se llama un esquema de fase unidimensional, o simplemente 
esquema de fase, de la ecuación diferencial dP�dt � P(a � bP). La recta vertical se 
llama recta de fase.

CURVAS SOLUCIÓN  Sin resolver una ecuación diferencial autónoma, normalmen-
te podemos decir gran cantidad de detalles respecto a su curva solución. Puesto que 
la función f en la ecuación (2) es independiente de la variable x, podemos suponer 
que f está defi nida para �� 	 x 	 � o para 0 � x 	 �. También, puesto que f y su 
derivada f � son funciones continuas de y en algún intervalo I del eje y, los resultados 
principales del teorema 1.2.1 valen en alguna franja o región R en el plano xy corres-
pondiente a I, y así pasa por algún punto (x

0
, y

0
) en R por el que pasa una curva solución 

de la ecuación (2). Véase la fi gura 2.1.6a. Para realizar nuestro análisis, supongamos
que la ecuación (2) tiene exactamente dos puntos críticos c

1
 y c

2
 y que c

1
 	 c

2
. Las gráfi -

cas de las soluciones y(x) � c
1
 y y(x) � c

2
 son rectas horizontales y estas rectas dividen 

la región R en tres subregiones R
1
, R

2
 y R

3
, como se muestra en la fi gura 2.1.6b. Aquí se 

presentan sin prueba alguna de nuestras conclusiones respecto a una solución no cons-
tante y(x) de la ecuación (2):

• Si (x
0
, y

0
) es una subregión R

i
,  i � 1, 2, 3, y y(x) es una solución cuya gráfi ca 

pasa a través de este punto, entonces y(x) permanece en la subregión R
i
 para 

toda x. Como se muestra en la fi gura 2.1.6b, la solución y(x) en R
2
 está acotada 

por debajo con c
1
 y por arriba con c

2
, es decir, c

1
 	 y(x) 	 c

2
 para toda x. La 

curva solución está dentro de R
2
 para toda x porque la gráfi ca de una solución no 

constante de la ecuación (2) no puede cruzar la gráfi ca de cualquier solución de 
equilibrio y(x) � c

1
 o y(x) � c

2
. Véase el problema 33 de los ejercicios 2.1.

• Por continuidad de f debe ser f (y) � 0 o f (y) 	 0 para toda x en una 
subregión R

i
,  i � 1, 2, 3. En otras palabras, f (y) no puede cambiar de signo 

en una subregión. Véase el problema 33 de los ejercicios 2.1.

eje P

a

0

b

FIGURA 2.1.5  Esquema de fase de 
dP�dt � P(a � bP).

R

I

R1

R2
(x0, y0)

(x0, y0)

y(x) = c2

y(x) = c1

R3

y

y

x

x

a) región R.

b) subregiones R1, R2, y R3 de R.

FIGURA 2.1.6  Las rectas y(x) � c
1
 y 

y(x) � c
2
 dividen a R en tres subregiones 

horizontales.
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• Puesto que dy�dx � f (y(x)) es ya sea positiva o negativa en una subregión R
i
, 

i � 1, 2, 3, una solución y(x) es estrictamente monótona, es decir, y(x) está 
creciendo o decreciendo en la subregión R

i
. Por tanto y(x) no puede oscilar, ni 

puede tener un extremo relativo (máximo o mínimo). Véase el problema 33 
de los ejercicios 2.1. 

• Si y(x) está acotada por arriba con un punto crítico c
1
 (como en la subregión 

R
1
 donde y(x) 	 c

1
 para toda x), entonces la gráfi ca de y(x) debe tender a la 

gráfi ca de la solución de equilibrio y(x) � c
1
 conforme x : � o x : ��. Si 

y(x) está acotada, es decir, acotada por arriba y por debajo por dos puntos 
críticos consecutivos (como en la subregión R

2
 donde c

1
 	 y(x) 	 c

2
 para 

toda x), entonces la gráfi ca de y(x) debe tender a las gráfi cas de las soluciones 
de equilibrio y(x) � c

1
 y y(x) � c

2
, conforme x : � en una y x : �� en 

la otra. Si y(x) está acotada por debajo por un punto crítico (como en la 
subregión R

3
 donde c

2
 	 y(x) para toda x), entonces la gráfi ca de y(x) debe 

tender a la gráfi ca de la solución de equilibrio y(x) � c
2
 conforme ya sea 

x : � o x : ��. Véase el problema 34 de los ejercicios 2.1.

Considerando estos hechos, analicemos la ecuación diferencial del ejemplo 3.

EJEMPLO 4  Volver a tratar el ejemplo

Los tres intervalos determinados en el eje P o recta de fase con los puntos críticos P � 
0 y P � a�b ahora corresponden en el plano tP a tres subregiones defi nidas por:

 R
1
: �� 	 P 	 0,    R

2
: 0 	 P 	 a�b,    y    R

3
: a�b 	 P 	 �, 

donde �� 	 t 	 �. El esquema de fase de la fi gura 2.1.7 nos dice que P(t) está de-
creciendo en R

1
, creciendo en R

2
 y decreciendo en R

3
. Si P(0) � P

0
 es un valor inicial, 

entonces en R
1
, R

2
 y R

3
 tenemos, respectivamente, que:

i) Para P
0
 	 0, P(t) está acotada por arriba. Puesto que  P(t) está decreciendo 

sin límite conforme aumenta t, y así P(t) : 0 conforme t : ��. Lo que 
signifi ca que en el eje t negativo, la gráfi ca de la solución de equilibrio P(t) 
� 0, es una asíntota horizontal para una curva solución.

ii) Para 0 	 P
0
 	 a�b, P(t) está acotada. Puesto que P(t) está creciendo, 

P(t) : a�b conforme t : � y P(t) : 0 conforme t : ��. Las gráfi cas 
de las dos soluciones de equilibrio, P(t) � 0 y P(t) � a�b, son rectas 
horizontales que son asíntotas horizontales para cualquier curva solución 
que comienza en esta subregión.

iii) Para P
0
 � a�b, P(t) está acotada por debajo. Puesto que P(t) está 

decreciendo, P(t) : a�b conforme t : �. La gráfi ca de la solución de 
equilibrio P(t) � a�b es una asíntota horizontal para una curva solución.

En la fi gura 2.1.7 la recta de fase es el eje P en el plano tP. Por claridad la recta de 
fase original de la fi gura 2.1.5 se ha reproducido a la izquierda del plano en el cual se 
han sombreado las regiones R

1
, R

2
 y R

3
. En la fi gura se muestran las gráfi cas de las 

soluciones de equilibrio P(t) � a�b y P(t) � 0 (el eje t) como las rectas punteadas 
azules; las gráfi cas sólidas representan las gráfi cas típicas de P(t) mostrando los tres 
casos que acabamos de analizar. 

En una subregión tal como R
1
 en el ejemplo 4, donde P(t) está decreciendo y no 

está acotada por debajo, no se debe tener necesariamente que P(t) : ��. No inter-
prete que este último enunciado signifi ca que P(t) : �� conforme t : �; podríamos 
tener que P(t) : �� conforme t : T, donde T � 0 es un número fi nito que depende 
de la condición inicial P(t

0
) � P

0
. Considerando términos dinámicos, P(t) “explota” 

en un tiempo fi nito; considerando la gráfi ca, P(t) podría tener una asíntota vertical en 
t � T � 0. Para la subregión R

3 
vale una observación similar.

La ecuación diferencial dy�dx � sen y en el ejemplo 2 es autónoma y tiene un nú-
mero infi nito de puntos críticos, ya que sen y � 0 en y � np, con n entero. Además, sabe-

R1

R2
P0

P0

P0

PP

a
b

0
t

R3

recta de fase

decreciente

decreciente

creciente

Plano tP

FIGURA 2.1.7  Esquema de fase y 
curvas solución en cada una de las tres 
subregiones.
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40 ● CAPÍTULO 2  ECUACIONES DIFERENCIALES DE PRIMER ORDEN

mos que debido a que la solución y(x) pasa por (0, �3
2) está acotada por arriba y por debajo 

por dos puntos críticos consecutivos (�p 	 y(x) 	 0) y decrece (sen y 	 0 para �p 	 
y 	 0), la gráfi ca de y(x) debe tender a las gráfi cas de las soluciones de equilibrio como 
asíntotas horizontales: y(x) : �p conforme x : � y y(x) : 0 conforme x : ��.

EJEMPLO 5  Curvas solución de una ED autónoma

La ecuación autónoma dy�dx � (y � 1)2 tiene un solo punto crítico 1. Del esquema 
de fase de la fi gura 2.1.8a concluimos que una solución y(x) es una función creciente 
en las subregiones defi nidas por �� 	 y 	 1 y 1 	 y 	 �, donde �� 	 x 	 �. Para 
una condición inicial y(0) � y

0
 	 1, una solución y(x) está creciendo y está acotada 

por arriba por 1 y así y(x) : 1 conforme x : �; para y(0) � y
0
 � 1, una solución y(x) 

está creciendo y está acotada.
Ahora y(x) � 1 �1�(x � c) es una familia uniparamétrica de soluciones de la 

ecuación diferencial (vea el problema 4 de los ejercicios 2.2). Una condición ini-
cial dada determina un valor para c. Para las condiciones iníciales, y(0) � �1 	 1 
y y(0) � 2 � 1, encontramos, respectivamente, que y(x)�1 − 1/(x � 1

2), y(x)�1 − 1/(x 
− 1). Como se muestra en las fi guras 2.1.8b y 2.1.8c, la gráfi ca de cada una de estas 

c c c c 

y0

d)

y0

c)

y0

b)

y0

a)

FIGURA 2.1.9  El punto crítico c es un 
atractor en a) y un repulsor en b) y semi-
estable en c) y d).

1 

creciente

y

creciente

a) recta de fase

(0, −1)

y 1

1
2

x

x

y

b) plano xy
y(0) 	 1

(0, 2)

y 1

x 1

x

y

c) plano xy
y(0) � 1

= =

=

= −

FIGURA 2.1.8  Comportamiento de las soluciones cerca de y � 1.

funciones racionales tienen una asíntota vertical. Pero tenga en mente que las solucio-
nes de los problemas con valores iniciales

 
dy

dx
2 dy

dx
� (y � 1)2,  y(0) � 2� ( y � 1) ,  y(0) � �1    y   . 

están defi nidas en intervalos especiales. Éstos son, respectivamente,

y(x) 1
1

x 1
2

1
2

1

x 1
, x 1., x y y(x) 1

Las curvas solución son las partes de las gráfi cas de las fi guras 2.1.8b y 2.1.8c que 
se muestran en azul. Como lo indica el esquema de fase, para la curva solución de la 
fi gura 2.1.8b, y(x) : 1 conforme x : � para la curva solución de la fi gura 2.1.8c, y(x) 
: � conforme x : 1 por la izquierda. 

ATRACTORES Y REPULSORES  Suponga que y(x) es una solución no constante de 
la ecuación diferencial autónoma dada en (1) y que c es un punto crítico de la ED. 
Básicamente hay tres tipos de comportamiento que y(x) puede presentar cerca de c. En 
la fi gura 2.1.9 hemos puesto a c en las cuatro rectas verticales. Cuando ambas puntas 
de fl echa en cualquier lado del punto c apuntan hacia c, como se muestra en la fi gura 
2.1.9a, todas las soluciones y(x) de la ecuación (1) que comienzan en el punto inicial 
(x

0
, y

0
) sufi cientemente cerca de c presentan comportamiento asintótico lím

x→�  y(x) � c. 
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Por esta razón se dice que el punto crítico c es asintóticamente estable. Utilizando una 
analogía física, una solución que comienza en c se parece a una partícula cargada que, 
con el tiempo, se transforma en una partícula de carga contraria y así c también se conoce 
como un atractor. Cuando ambas puntas de fl echa a los lados de la fl echa del punto c 
apuntan alejándose de c, como se muestra en la fi gura 2.1.9b, todas las soluciones y(x) de 
la ecuación (1) que comienzan en un punto inicial (x

0
, y

0
) se alejan de c conforme crece x. 

En este caso se dice que el punto crítico c es inestable. Un punto crítico inestable se co-
noce como un repulsor, por razones obvias. En las fi guras 2.1.9c y 2.1.9d se muestra el 
punto crítico c que no es ni un atractor ni un repulsor. Pero puesto que c presenta carac-
terísticas tanto de atractor como de repulsor, es decir, una solución que comienza desde 
un punto inicial (x

0
, y

0
) que está sufi cientemente cerca de c es atraída hacia c por un lado 

y repelida por el otro, este punto crítico se conoce como semiestable. En el ejemplo 3 el 
punto crítico a�b es asintóticamente estable (un atractor) y el punto crítico 0 es inestable 
(un repulsor). El punto crítico 1 del ejemplo 5 es semiestable.

ED AUTÓNOMAS Y CAMPOS DIRECCIONALES  Si una ecuación diferencial de 
primer orden es autónoma, entonces vemos del miembro derecho de su forma normal 
dy�dx � f (y) que las pendientes de los elementos lineales que pasan por los puntos en 
la malla rectangular que se usa para construir un campo direccional para la ED que sólo 
depende de la coordenada y de los puntos. Expresado de otra manera, los elementos li-
neales que pasan por puntos de cualquier recta horizontal deben tener todos la misma 
pendiente; por supuesto, pendientes de elementos lineales a lo largo de cualquier recta 
vertical, variarán. Estos hechos se muestran examinando la banda horizontal amarilla y 
la banda vertical azul de la fi gura 2.1.10. La fi gura presenta un campo direccional para la 
ecuación autónoma dy�dx � 2y – 2. Recordando estos hechos, examine nuevamente 
la fi gura 2.1.4.

varían las pendientes 
de los elementos sobre 
una recta vertical.

las pendientes de los 
elementos lineales 
sobre una recta 
horizontal son 
todas iguales.

x

y

FIGURA 2.1.10  Campo direccional 
para una ED autónoma.

x

321_1_2_3
_3

_2

_1

1

2

3
y

FIGURA 2.1.11  Campo direccional del problema 1.

x

y

8_8

_8

_4

4

8

_4 4
FIGURA 2.1.12  Campo direccional del problema 2.

EJERCICIOS 2.1  Las respuestas a los problemas con número impar comienzan en la página RES-1.

2.1.1  CAMPOS DIRECCIONALES

En los problemas 1 a 4 reproduzca el campo direccional dado ge-
nerado por computadora. Después dibuje a mano, una curva solu-
ción aproximada que pase por cada uno de los puntos indicados. 
Utilice lápices de colores diferentes para cada curva solución.

 1. 
dy

dx
� x2 � y2

a) y(�2) � 1 b) y(3) � 0

c) y(0) � 2 d) y(0) � 0

 3. 
dy

dx
� 1 � xy

a) y(0) � 0 b) y(�1) � 0

c) y(2) � 2 d) y(0) � �4

 2. dy

dx
� e�0.01xy2

a) y(�6) � 0 b) y(0) � 1

c) y(0) � �4 d) y(8) � �4

2.1  CURVAS SOLUCIÓN SIN UNA SOLUCIÓN ● 41
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42 ● CAPÍTULO 2  ECUACIONES DIFERENCIALES DE PRIMER ORDEN

En los problemas 13 y 14 la fi gura dada representa la gráfi ca 
de f (y) y de f (x), respectivamente. Dibuje a mano un campo 
direccional sobre una malla adecuada para dy�dx � f (y) (pro-
blema 13) y después para dy�dx � f (x) (problema 14).

13. 

 4. dy

dx
� (sen x) cos y

a) y(0) � 1 b) y(1) � 0

c) y(3) � 3 d) y(0) � �5
2

En los problemas 5 a 12 use un paquete computacional para 
obtener un campo direccional para la ecuación diferencial 
dada. Dibuje a mano una curva solución aproximada que pase 
por los puntos dados.

 5. y� � x  6. y� � x � y

a) y(0) � 0 a) y(�2) � 2

b) y(0) � �3 b) y(1) � �3

 7. y
dy

dx
� �x

 
 8. 

dy

dx
�

1

y
a) y(1) � 1 a) y(0) � 1

b) y(0) � 4 b) y(�2) � �1

 9. 
dy

dx
� 0.2x2 � y

 
10. 

dy

dx
� xey

a) y(0) � 1
2  a) y(0) � �2

b) y(2) � �1 b) y(1) � 2.5

11. y� � y � cos
�

2
x

 
12. 

dy

dx
� 1 �

y

x
a) y(2) � 2 a) y(�1

2) � 2

b) y(�1) � 0 b) y(3
2) � 0

x

y

4_4
_4

_2

2

4

_2 2

FIGURA 2.1.13  Campo direccional del problema 3.

f

1 y

1

FIGURA 2.1.15  Gráfi ca del problema 13.

f

x1

1

FIGURA 2.1.16  Gráfi ca del problema 14.

x

y

4_4

_4

_2

2

4

_2 2

FIGURA 2.1.14  Campo direccional del problema 4.

14. 

15. En los incisos a) y b) dibuje isoclinas f (x, y) � c (vea los 
omentarios  de la página 37) para la ecuación diferencial 
dada usando los valores de c indicados. Construya un campo 
direccional sobre una malla dibujando con cuidado elemen-
tos lineales con la pendiente adecuada en los puntos elegi-
dos de cada isoclina. En cada caso, utilice esta dirección 
para dibujar una curva solución aproximada para el PVI que 
consiste en la ED y en la condición inicial y (0) � 1.

a) dy�dx � x � y; c un entero que satisface �5 � c � 5

b) dy�dx � x2 � y2; c � 1
4, c � 1, c � 9

4, c � 4

Problemas para analizar
16. a)  Considere el campo direccional de la ecuación dife-

rencial dy�dx � x(y – 4)2 – 2, pero no use tecnología 
para obtenerlo. Describa las pendientes de los elemen-
tos lineales en las rectas x � 0, y � 3, y � 4 y y � 5.

b)  Considere el PVI  dy�dx � x(y – 4)2 – 2, y(0) � y
0
, 

donde y
0
 	 4. Analice, basándose en la información 

del inciso a), ¿sí puede una solución y(x) : � con-
forme x : �?

17. Para la ED de primer orden dy�dx � f (x, y) una curva en 
el plano defi nido por f (x, y) � 0 se llama ceroclina de 
la ecuación, ya que un elemento lineal en un punto de la 
curva tiene pendiente cero. Use un paquete computacional 
para obtener un campo direccional en una malla rectangu-

08367_02_ch02_p034-081-ok.indd   4208367_02_ch02_p034-081-ok.indd   42 6/4/09   12:15:50 PM6/4/09   12:15:50 PM



lar de puntos dy�dx � x2 � 2y y después superponga la 
gráfi ca de la ceroclina y � 1

2 x2 sobre el campo direccional. 
Analice el campo direccional. Analice el comportamiento 
de las curvas solución en regiones del plano defi nidas por 
y 	 1

2 x2 y por y � 1
2 x2. Dibuje algunas curvas solución 

aproximadas. Trate de generalizar sus observaciones.

18. a)  Identifi que las ceroclinas (vea el problema 17) en los 
problemas 1, 3 y 4. Con un lápiz de color, circule 
todos los elementos lineales de las fi guras 2.1.11, 
2.1.13 y 2.1.14, que usted crea que pueden ser un ele-
mento lineal en un punto de la ceroclina.

b)  ¿Qué son las ceroclinas de una ED autónoma de pri-
mer orden?

2.1.2  ED DE PRIMER ORDEN AUTÓNOMAS

19. Considere la ecuación diferencial de primer orden dy�dx 
� y – y3 y la condición inicial y(0) � y

0
. A mano, dibuje 

la gráfi ca de una solución típica y(x) cuando y
0
 tiene los 

valores dados.

a) y
0
 � 1 b) 0 	 y

0
 	 1 

c) �1 	 y
0
 	 0 d) y

0
 	 �1

20. Considere la ecuación diferencial autónoma de primer 
orden dy�dx � y2 – y4 y la condición inicial y(0) � y

0
. A 

mano, dibuje la gráfi ca de una solución típica y(x) cuando 
y

0
 tiene los valores dados.

a) y
0
 � 1 b) 0 	 y

0
 	 1 

c) �1 	 y
0
 	 0 d) y

0
 	 �1

En los problemas 21 a 28 determine los puntos críticos y el es-
quema de fase de la ecuación diferencial autónoma de primer 
orden dada. Clasifi que cada punto crítico como asintótica-
mente estable, inestable o semiestable. Dibuje a mano curvas 
solución típicas en las regiones del plano xy determinadas por 
las gráfi cas de las soluciones de equilibrio.

21.  22. 

23.  24. 

25.  26. 

27. 
dy

dx
� y ln(y � 2)

dy

dx
� y2(4 � y2)

dy

dx
� (y � 2)4

dy

dx
� y2 � 3y

 28. dy

dx
�

yey � 9y

ey

dy

dx
� y(2 � y)(4 � y)

dy

dx
� 10 � 3y � y2

dy

dx
� y2 � y3

En los problemas 29 y 30 considere la ecuación diferencial 
autónoma dy�dx � f (y), donde se presenta la gráfi ca de f. 
Utilice la gráfi ca para ubicar los puntos críticos de cada una 
de las ecuaciones diferenciales. Dibuje un esquema de fase de 
cada ecuación diferencial. Dibuje a mano curvas solución 
típicas en las subregiones del plano xy determinadas por las 
gráfi cas de las soluciones de equilibrio.

29. f

c y

FIGURA 2.1.17  Gráfi ca del problema 29.

30. f

y1

1

FIGURA 2.1.18  Gráfi ca del problema 30.

Problemas para analizar

31. Considere la ED autónoma dy�dx � (2�p)y – sen y. 
Determine los puntos críticos de la ecuación. Proponga 
un procedimiento para obtener un esquema de fase de la 
ecuación. Clasifi que los puntos críticos como asintótica-
mente estable, inestable o semiestable.

32. Un punto crítico c de una ED de primer orden autónoma 
se dice que está aislada si existe algún intervalo abierto 
que contenga a c pero no otro punto crítico. ¿Puede exis-
tir una ED autónoma de la forma dada en la ecuación (1) 
para la cual todo punto crítico no esté aislado? Analice: 
no considere ideas complicadas.

33. Suponga que y(x) es una solución no constante de la ecua-
ción diferencial autónoma dy�dx � f (y) y que c es un punto 
crítico de la ED. Analice. ¿Por qué no puede la gráfi ca de 
y(x) cruzar la gráfi ca de la solución de equilibrio y � c? 
¿Por qué no puede f (y) cambiar de signo en una de las re-
giones analizadas de la página 38? ¿Por qué no puede y(x) 
oscilar o tener un extremo relativo (máximo o mínimo)?

34. Suponga que y(x) es una solución de la ecuación autó-
noma  dy�dx � f (y) y está acotada por arriba y por debajo 
por dos puntos críticos consecutivos c

1
 	 c

2
, como una 

subregión R
2
 de la fi gura 2.1.6b. Si f (y) � 0 en la región, 

entonces lím
x:�

 y(x) � c
2
. Analice por qué no puede exis-

tir un número L 	 c
2
 tal que lím

x:�
 y(x) � L. Como parte 

de su análisis, considere qué pasa con y �(x) conforme 
x : �.

35. Utilizando la ecuación autónoma (1), analice cómo se 
puede obtener información respecto a la ubicación de 
puntos de infl exión de una curva solución.

2.1  CURVAS SOLUCIÓN SIN UNA SOLUCIÓN ● 43
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44 ● CAPÍTULO 2  ECUACIONES DIFERENCIALES DE PRIMER ORDEN

36. Considere la ED dy�dx � y2 – y – 6. Use sus ideas del pro-
blema 35 para encontrar los intervalos en el eje y para los
que las curvas solución son cóncavas hacia arriba y en los que 
las curvas solución son cóncavas hacia abajo. Analice por 
qué cada curva solución de un problema con valores ini-
ciales dy�dx � y2 � y – 6, y(0) � y

0
, donde �2 	 y

0
 	 

3, tiene un punto de infl exión con la misma coordenada 
y. ¿Cuál es la coordenada y? Con cuidado dibuje la curva 
solución para la que y(0) � �1. Repita para y(2) � 2.

37. Suponga que la ED autónoma en la ecuación (1) no tiene 
puntos críticos. Analice el comportamiento de las solu-
ciones.

Modelos matemáticos

38. Modelo de población  La ecuación diferencial en el 
ejemplo 3 es un muy conocido modelo de población. 
Suponga que la ED se cambia por

,
dP

dt
� P(aP � b)

  donde a y b son constantes positivas. Analice qué le pasa 
a la población P conforme pasa el tiempo.

39. Modelo de población  Otro modelo de población está 
dado por

,
dP

dt
� kP � h

  donde h y k son constantes positivas. ¿Para qué valor ini-
cial P(0) � P

0
 este modelo predice que la población des-

aparecerá?

40. Velocidad terminal  En la sección 1.3 vimos que la 
ecuación diferencial autónoma

.m
dv

dt
mg kv

  donde k es una constante positiva y g es la aceleración 
de la gravedad, es un modelo para la velocidad v de un 

cuerpo de masa m que está cayendo bajo la infl uencia de 
la gravedad. Debido a que el término –kv representa la 
resistencia del aire, la velocidad de un cuerpo que cae de 
una gran altura no aumenta sin límite conforme pasa el 
tiempo t. Utilice un esquema de fase de la ecuación dife-
rencial para encontrar la velocidad límite o terminal del 
cuerpo. Explique su razonamiento.

41. Suponga que el modelo del problema 40 se modifi ca de tal 
manera que la resistencia del aire es proporcional a v2, es 
decir

.m
dv

dt
mg kv2

  Vea el problema 17 de los ejercicios 1.3. Utilice un es-
quema de fase para determinar la velocidad terminal del 
cuerpo. Explique su razonamiento.

42. Reacciones químicas  Cuando se combinan ciertas cla-
ses de reacciones químicas, la razón con la que se forman 
los nuevos componentes se modela por la ecuación dife-
rencial autónoma

dX

dt
� k(
 � X)(� � X),

  donde k � 0 es una constante de proporcionalidad y b � 
a � 0. Aquí X(t) denota el número de gramos del nuevo 
componente al tiempo t.

a)  Utilice un esquema de fase de la ecuación diferencial 
para predecir el comportamiento de X(t) conforme 
t : �.

b)  Considere el caso en que a � b. Utilice un esquema 
de fase de la ecuación diferencial para predecir el 
comportamiento de X(t) conforme t : � cuando X(0) 
	 a. Cuando X(0) � a.

c)  Compruebe que una solución explícita de la ED en 
el caso en que k � 1 y a � b es X(t) � a � 1�(t � 
c). Determine una solución que satisfaga que X(0) � 
a�2. Después determine una solución que satisfaga 
que X(0) � 2a. Trace la gráfi ca de estas dos solucio-
nes. ¿El comportamiento de las soluciones conforme 
t : � concuerdan con sus respuestas del inciso b)?

2.2 VARIABLES SEPARABLES

REPASO DE MATERIAL
● Fórmulas básicas de integración (véase al fi nal del libro).
● Técnicas de integración: integración por partes y por descomposición en fracciones parciales.

INTRODUCCIÓN  Comenzaremos nuestro estudio de cómo resolver las ecuaciones diferenciales 
con las más simple de todas las ecuaciones diferenciales: ecuaciones diferenciales de primer orden con 
variables separables. Debido a que el método que se presenta en esta sección y que muchas de las técni-
cas para la solución de ecuaciones diferenciales implican integración, consulte su libro de cálculo para 
recordar las fórmulas importantes (como �  du�u) y las técnicas (como la integración por partes).
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SOLUCIÓN POR INTEGRACIÓN  Considere la ecuación diferencial de primer 
orden dy�dx � f (x, y). Cuando f no depende de la variable y, es decir, f (x, y) � g(x), 
la ecuación diferencial 

 
dy

dx
� g(x) (1)

se puede resolver por integración. Si g(x) es una función continua, al integrar ambos 
lados de la ecuación (1) se obtiene y � �g(x) dx = G(x) � c, donde G(x) es una anti-
derivada (integral indefi nida) de g(x). Por ejemplo, si dy�dx � 1 � e2x, entonces su 
solución es .1

2e2x cy (1 e2x) dx o y x
 

UNA DEFINICIÓN  La ecuación (l) así como su método de solución, no son más 
que un caso especial en el que f, en la forma normal dy�dx  � f (x, y) se puede factori-
zar como el  producto de una función de x por una función de y.

DEFINICIÓN 2.2.1  Ecuación separable

Una ecuación diferencial de primer orden de la forma

dy

dx
� g(x)h(y)

Se dice que es separable o que tiene variables separables.

Por ejemplo, las ecuaciones 

dy

dx
� y2xe3x�4y dy

dx
 y � y � sen x

son respectivamente, separable y no separable. En la primera ecuación podemos fac-
torizar f (x, y) � y2xe3x�4y como

    g(x)    h(y)
     p   p

,f (x, y) � y2xe3x�4y �  (xe3x)( y2e4y)
 

pero en la segunda ecuación no hay forma de expresar a y � sen x como un producto 
de una función de x por una función de y.

Observe que al dividir entre la función h(y), podemos escribir una ecuación sepa-
rable dy�dx � g(x)h(y) como

 ,p(y)
dy

dx
� g(x)  (2)

donde, por conveniencia p(y) representa a l�h(y). Podemos ver inmediatamente que la 
ecuación (2) se reduce a la ecuación (1) cuando h(y) � 1.

Ahora si y � f(x) representa una solución de la ecuación (2), se tiene que 
p(f(x))f �(x) � g(x), y por tanto

 .� p(� (x))��(x) dx � � g(x) dx  (3)

Pero dy � f �(x)dx, por lo que la ecuación (3) es la misma que

 ,p(y) dy g(x) dx o H(y) G(x) c  (4)

donde H(y) y G(x) son antiderivadas de p(y) � 1�h(y) y g(x), respectivamente.
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46 ● CAPÍTULO 2  ECUACIONES DIFERENCIALES DE PRIMER ORDEN

MÉTODO DE SOLUCIÓN  La ecuación (4) indica el procedimiento para resolver 
ecuaciones separables. Al integrar ambos lados de p(y) dy � g(x) dx, se obtiene una fa-
milia uniparamétrica de soluciones, que usualmente se expresa de manera implícita.

NOTA  No hay necesidad de emplear dos constantes cuando se integra una ecuación 
separable, porque si escribimos H(y) � c

1
 � G(x) � c

2
, entonces la diferencia c

2
 – c

1
 se 

puede reemplazar con una sola constante c, como en la ecuación (4). En muchos casos 
de los capítulos siguientes, sustituiremos las constantes en la forma más conveniente 
para una ecuación dada. Por ejemplo, a veces se pueden reemplazar los múltiplos o las 
combinaciones de constantes con una sola constante.

EJEMPLO 1  Solución  de una ED separable

Resuelva (1 � x) dy � y dx � 0.

SOLUCIÓN  Dividiendo entre (1 � x)y, podemos escribir dy�y � dx�(1 � x), de 
donde tenemos que

  

  

 

  

  
� 
ec1(1 � x).

� � 1 � x � ec1

y � eln�1�x��c1 � eln�1�x� � ec1

 ln� y � � ln� 1 � x � � c1

� dy

y
� � dx

1 � x

;�� 1 � x � � 1 � x,

� 1 � x � � �(1 � x),  
x ��1

x <�1

; leyes de exponentes

Haciendo c igual a �ec1 se obtiene y � c(1 � x).

SOLUCIÓN ALTERNATIVA  Como cada integral da como resultado un logaritmo, la 
elección más prudente para la constante de integración es ln�c�, en lugar de c. Rees-
cribiendo el segundo renglón de la solución como ln�y� � ln�1 � x� � ln�c� nos permi-
te combinar los términos del lado derecho usando las propiedades de los logaritmos. 
De ln�y� � ln�c(1 � x)� obtenemos inmediatamente que y � c(1 � x). Aun cuando no 
todas las integrales indefi nidas sean logaritmos, podría seguir siendo más conveniente 
usar ln�c�. Sin embargo, no se puede establecer una regla fi rme. 

En la sección 1.1 vimos que una curva solución puede ser sólo un tramo o un arco 
de la gráfi ca de una solución implícita G(x, y) � 0.

EJEMPLO 2  Curva solución

Resuelva el problema con valores iniciales .
dy

dx
� �

x

y
,  y(4) � �3

SOLUCIÓN  Si reescribe la ecuación como y dy � �x dx, obtiene

.� y dy � �� y2

2
� �

x2

� c12
x dx    y    

Podemos escribir el resultado de la integración como x2 � y2 � c2, sustituyendo a la 
constante 2c

1
 por c2. Esta solución de la ecuación diferencial representa una familia de 

circunferencias concéntricas centradas en el origen.
Ahora cuando x � 4, y � �3, se tiene 16 � 9 � 25 � c2. Así, el problema con valo-

res iniciales determina la circunferencia x2 � y2 � 25 de radio 5. Debido a su sencillez 
podemos escribir de esta solución implícita como una solución explícita que satisfaga la 
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condición inicial. Vimos en el ejemplo 3 de la sección 1.1, esta solución como y � 
f

2
(x) o 25 � x2, �5 	 x 	 5 y � �1 . Una curva solución es la gráfi ca de una fun-

ción derivable. En este caso la curva solución es la semicircunferencia inferior, que se 
muestra en azul oscuro en la fi gura 2.2.1 que contiene al punto (4, �3). 

PÉRDIDA DE UNA SOLUCIÓN  Se debe tener cuidado al separar las variables ya 
que las variables que sean divisores podrían ser cero en un punto. Concretamente, 
si r es una raíz de la función h(y), entonces sustituyendo y � r en dy�dx � g(x)h(y) 
se encuentra que ambos lados son iguales a cero; es decir, y � r es una solución 
constante de la ecuación diferencial. Pero después de que las variables se separan, 

el lado izquierdo de � g
dy

h(y)
 (x) dx está indefi nido en r. Por tanto, y � r podría no 

representar a la familia de soluciones que se ha obtenido después de la integración 
y simplifi cación. Recuerde que una solución de este tipo se llama solución singular.

EJEMPLO 3  Pérdida de una solución

Resuelva .
dy

dx
� y2 � 4

SOLUCIÓN  Poniendo la ecuación en la forma

 .
dy

y2 � 4
� dx    o     � 1

4

y � 2
�

1
4

y � 2 � dy � dx  (5)

La segunda ecuación en la ecuación (5) es el resultado de utilizar fracciones parciales 
en el lado izquierdo de la primera ecuación. Integrando y utilizando las leyes de los 
logaritmos se obtiene

. o ln
y 2

y 2
4x c2 o

y 2

y 2
e4x c2

1

4
 ln y 2

1

4
 ln y 2 x c1

Aquí hemos sustituido 4c
1
 por c

2
. Por último, después de sustituir 
ec2 por c y despe-

jando y de la última ecuación, obtenemos una familia uniparamétrica de soluciones

 .y � 2
1 � ce4x

1 � ce4x  (6)

Ahora, si factorizamos el lado derecho de la ecuación diferencial como dy�dx � 
(y � 2)(y � 2), sabemos del análisis de puntos críticos de la sección 2.1 que y � 2 y y 
� �2 son dos soluciones constantes (de equilibrio). La solución y � 2 es un miembro 
de la familia de soluciones defi nida por la ecuación (6) correspondiendo al valor
c � 0. Sin embargo, y � �2 es una solución singular; ésta no se puede obtener de la 
ecuación (6) para cualquier elección del parámetro c. La última solución se perdió al 
inicio del proceso de solución. El examen de la ecuación (5) indica claramente que 
debemos excluir y � 
2 en estos pasos. 

EJEMPLO 4  Un problema con valores iniciales

Resuelva (e2y � y) cos x
dy

dx
y� e  sen 2x, y(0) � 0.

FIGURA 2.2.1  Curvas solución para 
el PVI del ejemplo 2.

x

y

(4, −3)
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48 ● CAPÍTULO 2  ECUACIONES DIFERENCIALES DE PRIMER ORDEN

SOLUCIÓN  Dividiendo la ecuación entre ey cos x se obtiene

.
e2y � y

ey dy �
cos x

dx
sen 2x

Antes de integrar se realiza la división del lado izquierdo y utilizamos la identidad 
trigonométrica sen 2x � 2 sen x cos x en el lado derecho. Entonces tenemos que

  (ey ye y) dy 2  sen x dxintegración de partes

se obtiene ey � ye�y � e�y � �2 cos x � c. (7)

La condición inicial y � 0 cuando x � 0 implica que c � 4. Por tanto una solución del 
problema con valores iniciales es

 ey � ye�y � e�y � 4 � 2 cos x. (8)  

USO DE COMPUTADORA  Los Comentarios al fi nal de la sección 1.1 mencionan 
que puede ser difícil utilizar una solución implícita G(x, y) � 0 para encontrar una solu-
ción explícita y � f(x). La ecuación (8) muestra que la tarea de despejar y en términos 
de x puede presentar más problemas que solamente el aburrido trabajo de presionar 
símbolos; ¡en algunos casos simplemente no se puede hacer! Las soluciones implícitas 
tales como la ecuación (8) son un poco frustrantes; ya que no se aprecia ni en la gráfi ca 
de la ecuación ni en el intervalo una solución defi nida que satisfaga que y(0) � 0. El 
problema de “percibir” cuál es la solución implícita en algunos casos se puede resol-
ver mediante la tecnología. Una manera* de proceder es utilizar la aplicación contour 
plot de un sistema algebraico de computación (SAC). Recuerde del cálculo de varias 
variables que para una función de dos variables z � G(x, y) las curvas bi-dimensionales 
defi nidas por G(x, y) � c, donde c es una constante, se llaman las curvas de nivel de la 
función. En la fi gura 2.2.2 se presentan algunas de las curvas de nivel de la función G(x, 
y) � ey � ye�y � e�y � 2 cos x que se han reproducido con la ayuda de un SAC. La fa-
milia de soluciones defi nidas por la ecuación (7) son las curvas de nivel G(x, y) � c. En 
la fi gura 2.2.3 se muestra en color azul la curva de nivel G(x, y) � 4, que es la solución 
particular de la ecuación (8). La otra curva de la fi gura 2.2.3 es la curva de nivel G(x, y) 
� 2, que es miembro de la familia G(x, y) � c que satisface que y(p�2) � 0.

Si al determinar un valor específi co del parámetro c en una familia de soluciones 
de una ecuación diferencial de primer orden llegamos a una solución particular, hay una 
inclinación natural de la mayoría de los estudiantes (y de los profesores) a relajarse y estar 
satisfechos. Sin embargo, una solución de un problema con valores iniciales podría no ser 
única. Vimos en el ejemplo 4 de la sección 1.2 que el problema con valores iniciales

 
dy

dx
� xy1/2,  y(0) � 0  (9)

tiene al menos dos soluciones, y � 0 y y � 1
16 x4. Ahora ya podemos resolver esa ecua-

ción. Separando las variables e integrando y�1�2 dy � x dx obtenemos

 .2y1/2 x2

2
c1 o y

x2

4
c

2

 

Cuando x � 0, entonces y � 0, así que necesariamente, c � 0. Por tanto y � 1
16 x4. Se 

perdió la solución trivial y � 0 al dividir entre y1�2. Además, el problema con valores 
iniciales, ecuación (9), tiene una cantidad infi nitamente mayor de soluciones porque 
para cualquier elección del parámetro a � 0 la función defi nida en tramos

x

y

2_2
_2

_1

1

2

_1 1

FIGURA 2.2.2  Curvas de nivel
G(x, y) � c, donde 
G(x, y) � ey � ye�y � e�y � 2 cos x.

FIGURA 2.2.3  Curvas de nivel 
c � 2 y c � 4.

(0, 0) /2,0) ( π 
x

y

2_2
_2

_1

1

2

_1 1

c=4 

c=2 

*En la sección 2.6 analizaremos algunas otras maneras de proceder que están basadas en el concepto de una 
solución numérica.
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y � �0,

1
16 (x

2 � a2)2,

x 	 a

x � a
 

satisface tanto a la ecuación diferencial como a la condición inicial. Véase la fi -
gura 2.2.4.

SOLUCIONES DEFINIDAS POR INTEGRALES  Si g es una función continua en 
un intervalo abierto I que contiene a a, entonces para toda x en I,

 
d

dx
�x

a
g(t) dt � g(x).

Usted podría recordar que el resultado anterior es una de las dos formas del teorema 
fundamental del cálculo. Es decir,  �x

a
 g(t) dt es una antiderivada de la función g. En 

ocasiones esta forma es conveniente en la solución de ED. Por ejemplo, si g es continua 
en un intervalo I que contiene a x

0
 y a x, entonces una solución del sencillo problema 

con valores iniciales dy�dx � g(x), y(x
0
) � y

0
, que está defi nido en I está dado por

 y(x) � y0 � �x

x0

g(t) dt

Usted debería comprobar que y(x) defi nida de esta forma satisface la condición inicial. 
Puesto que una antiderivada de una función continua g no siempre puede expresarse 
en términos de las funciones elementales, esto podría ser lo mejor que podemos hacer 
para obtener una solución explícita de un PVI. El ejemplo siguiente ilustra esta idea.

EJEMPLO 5  Un problema con valores iniciales

Resuelva 
dy

dx
� e�x2

,  y(3) � 5.

SOLUCIÓN  La función g(x) � e−x2 es continua en (��, �), pero su antiderivada 
no es una función elemental. Utilizando a t como una variable muda de integración, 
podemos escribir

 

 

 

 y(x) � y(3) � �x

3
e�t2

dt.

y(x) � y(3) � �x

3
e�t2

dt

y(t)]x

3
� �x

3
e�t2

dt

�x

3

dy

dt
dt � �x

3
e�t2

dt

Utilizando la condición inicial y(3) � 5, obtenemos la solución

 y(x) � 5 � �x

3
e�t2

dt.  

El procedimiento que se mostró en el ejemplo 5 también funciona bien en las ecua-
ciones separables dy�dx � g(x) f (y) donde, f (y) tiene una antiderivada elemental pero g(x) 
no tiene una antiderivada elemental. Véanse los problemas 29 y 30 de los ejercicios 2.2.

a  =   > 0 a 0 

(0, 0) x

y

FIGURA 2.2.4  Soluciones de la 
ecuación (9) defi nida en tramos.
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50 ● CAPÍTULO 2  ECUACIONES DIFERENCIALES DE PRIMER ORDEN

COMENTARIOS

i) Como acabamos de ver en el ejemplo 5, algunas funciones simples no tienen 
una antiderivada que es una función elemental. Las integrales de estas clases de 
funciones se llaman no elementales. Por ejemplo �x

3
 e−t2dt y �sen x2 dx son integra-

les no elementales. Retomaremos nuevamente este concepto en la sección 2.3.

ii) En algunos de los ejemplos anteriores vimos que la constante de la familia 
uniparamétrica de soluciones de una ecuación diferencial de primer orden se 
puede redefi nir cuando sea conveniente. También se puede presentar con faci-
lidad el caso de que dos personas obtengan distintas expresiones de las mismas 
respuestas resolviendo correctamente la misma ecuación. Por ejemplo, sepa-
rando variables se puede demostrar que familias uniparamétricas de soluciones 
de la ED (l � y2) dx � (1� x2) dy � 0 son

.arctan x � arctan y � c    o     
x � y

1 � xy
� c

Conforme avance en las siguientes secciones, considere que las familias de so-
luciones pueden ser equivalentes, en el sentido de que una se puede obtener de 
otra, ya sea por redefi nición de la constante o utilizando álgebra o trigonometría. 
Vea los problemas 27 y 29 de los ejercicios 2.2.

EJERCICIOS 2.2  Las respuestas a los problemas con número impar comienzan en la página RES-1.

En los problemas 1 a 22 resuelva la ecuación diferencial dada 
por separación de variables. 

 1. 
dy

dx
sen 5x   2. 

dy

dx
(x 1)2

 3. dx � e3xdy � 0  4. dy � (y � 1)2dx � 0

 5. x
dy

dx
4y

 
 6. 

dy

dx
2xy2 0

 7. 
dy

dx
e3x 2y   8. exy

dy

dx
e y e 2x y

 9. y ln x
dx

dy

y 1

x

2

 10. 
dy

dx

2y 3

4x 5

2

11. csc y dx � sec2x dy � 0

12. sen 3x dx � 2y cos33x dy � 0

13. (ey � 1)2e�y dx � (ex � 1)3e�x dy � 0

14. x(1 � y2)1�2 dx � y(1 � x2)1�2 dy

15. 
dS

dr
kS

 
16. 

dQ

dt
k(Q 70)

17. 
dP

dt
P P2  18. 

dN

dt
N Ntet 2

19. 
dy

dx

xy 3x y 3

xy 2x 4y 8
 20. 

dy

dx

xy 2y x 2

xy 3y x 3

21. 
dy

dx
� x11 � y2  22. (ex � e�x)

dy

dx
� y2

En los problemas 23 a 28 encuentre una solución explícita del 
problema con valores iniciales dado.

23. 

24. 

25. 

26. 

27. 11 � y2 dx � 11 � x2 dy � 0, y(0) �
13

2

dy

dt
� 2y � 1, y(0) � 5

2

x2 dy

dx
� y � xy, y(�1) � �1

dy

dx
�

y2 � 1

x2 � 1
, y(2) � 2

dx

dt
� 4(x2 � 1), x(�>4) � 1

28. (1 � x4) dy � x(1 � 4y2) dx � 0,  y(1) � 0

En los problemas 29 y 30 proceda como en el ejemplo 5 y de-
termine una solución explícita del problema con valores ini-
ciales dado.

29. 

30. 
dy

dx
� y 2 2 1

3

dy

dx
� ye�x2

,  y(4) � 1

sen x ,  y(�2) �

31. a)  Encuentre una solución al problema con valores inicia-
les que consiste en la ecuación diferencial del ejemplo 
3 y de las condiciones iniciales y(0) � 2, y(0) � �2, 
y .y(1

4) � 1
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  b)  Encuentre la solución de la ecuación diferencial en el 
ejemplo 4 cuando se utiliza In c

1
 como la constante de 

integración del lado izquierdo en la solución y 4 In c
1
 

se sustituye por In c. Después resuelva los mismos pro-
blemas con valores iniciales que en el inicio a).

32. Encuentre una solución de x
dy

dx
� y2 � y que pase por 

los puntos indicados.
   a) (0, 1)  b) (0, 0)  c) d) (2, 1

4)(1
2,

1
2)

33. Encuentre una solución singular del problema 21 y del 
problema 22.

34. Demuestre que una solución implícita de
2 2 � 10) cos y dy � 02x sen y dx � (x

  está dada por ln(x2 � 10) � csc y � c. Determine las so-
luciones constantes si se perdieron cuando se resolvió la 
ecuación diferencial.

Con frecuencia, un cambio radical en la forma de la solución 
de una ecuación diferencial corresponde a un cambio muy 
pequeño en la condición inicial o en la ecuación misma. En 
los problemas 35 a 38 determine una solución explícita del 
problema con valores iniciales dado. Utilice un programa de 
grafi cación para dibujar la gráfi ca de cada solución. Compare 
cada curva solución en una vecindad de (0, 1).

35. 

36. 

37. 

38. 
dy

dx
� (y � 1)2 � 0.01, y(0) � 1

dy

dx
� (y � 1)2 � 0.01, y(0) � 1

dy

dx
� (y � 1)2, y(0) � 1.01

dy

dx
� (y � 1)2, y(0) � 1

39.  Toda ecuación autónoma de primer orden dy�dx � f (y) es 
separable. Encuentre las soluciones explícitas y

1
(x), y

2
(x), 

y
3
(x) y y

4
(x) de la ecuación diferencial dy�dx � y – y3, que 

satisfagan, respectivamente las condiciones iniciales y
1
(0) � 

2, y
2
(0) � 12 , y3

(0) � � 12  y y
4
(0) � �2. Utilice un programa 

de grafi cación para cada solución. Compare estas gráfi cas 
con las bosquejadas en el problema 19 de los ejercicios 2.1. 
Dé el intervalo de defi nición exacto para cada solución.

40. a)  La ecuación diferencial autónoma de primer orden 
dy�dx �1�(y �3) no tiene puntos críticos. No obs-
tante, coloque 3 en la recta de fase y obtenga un es-
quema de fase de la ecuación. Calcule d 2y�dx2 para 
determinar dónde las curvas solución son cóncavas 
hacia arriba y dónde son cóncavas hacia abajo (vea 
los problemas 35 y 36 de los ejercicios 2.1). Utilice 
el esquema de fase y la concavidad para que, a mano, 
dibuje algunas curvas solución típicas.

  b)  Encuentre las soluciones explícitas y
1
(x), y

2
(x), y

3
(x) 

y y
4
(x) de la ecuación diferencial del inciso a) que 

satisfagan, respectivamente las condiciones iniciales 

y
1
(0) � 4, y

2
(0) � 2, y

3
(1) � 2  y y

4
(�1) � 4. Trace 

la gráfi ca de cada solución y compare con sus dibu-
jos del inciso a). Indique el intervalo de defi nición 
exacto de cada solución.

41. a)  Determine una solución explícita del problema con 
valores iniciales

.
dy

dx

2x 1

2y
,  y( 2) 1

  b)  Utilice un programa de grafi cación para dibujar la 
gráfi ca de la solución del inciso a). Use la gráfi ca para 
estimar el intervalo I de defi nición de la solución.

  c)  Determine el intervalo I de defi nición exacto me-
diante métodos analíticos.

42. Repita los incisos a) al c) del problema 41 para el PVI que 
consiste en la ecuación diferencial del problema 7 y de la 
condición inicial y(0) � 0.

Problemas para analizar
43. a)  Explique por qué el intervalo de defi nición de la solu-

ción explícita y � f
2
(x) del problema con valores ini-

ciales en el ejemplo 2 es el intervalo abierto (�5, 5).

  b)  ¿Alguna solución de la ecuación diferencial puede 
cruzar el eje x? ¿Usted cree que x2 � y2 � 1 es una 
solución implícita del problema con valores iniciales 
dy�dx � �x�y, y(1) � 0?

44. a)  Si a � 0 analice las diferencias, si existen, entre las 
soluciones de los problemas con valores iniciales 
que consisten en la ecuación diferencial dy�dx � x�y 
y de cada una de las condiciones iniciales y(a) � a, 
y(a) � �a, y(�a) � a y y(�a) � �a.

b)  ¿Tiene una solución el problema con valores iniciales 
dy�dx � x�y, y(0) � 0?

  c)  Resuelva dy�dx � x�y, y(1) � 2 e indique el inter-
valo de defi nición exacto de esta solución.

45. En los problemas 39 y 40 vimos que toda ecuación di- 
ferencial autónoma de primer orden dy�dx � f(y) es se- 
parable. ¿Ayuda este hecho en la solución del problema 

con valores iniciales  ?
dy

dx
� 1 2 2 1

21 � y  sen y, y(0) �

  Analice. A mano, dibuje una posible curva solución del 
problema.

46. Sin usar tecnología. ¿Cómo podría resolver

?(1x � x) dy

dx
� 1y � y

  Lleve a cabo sus ideas.

47. Determine una función cuyo cuadrado más el cuadrado 
de su derivada es igual a 1.

48. a)  La ecuación diferencial del problema 27 es equiva-
lente a la forma normal

dy

dx
�
B

1 � y2

1 � x2

2.2  VARIABLES SEPARABLES ● 51
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52 ● CAPÍTULO 2  ECUACIONES DIFERENCIALES DE PRIMER ORDEN

  en la región cuadrada del plano xy defi nida por �x� 	 
1, �y� 	 1. Pero la cantidad dentro del radical es no ne-
gativa también en las regiones defi nidas por �x� � 1, 
�y� � 1. Dibuje todas las regiones del plano xy para las 
que esta ecuación diferencial tiene soluciones reales.

  b)  Resuelva la ED del inciso a) en las regiones defi nidas 
por �x� � 1, �y� � 1. Después determine una solución 
implícita y una explícita de la ecuación diferencial su-
jeta a y(2) � 2.

Modelo matemático

49. Puente suspendido  En la ecuación (16) de la sección 
1.3 vimos que un modelo matemático para la forma de un 
cable fl exible colgado de dos postes es

 ,
dy

dx
�

W

T1

 (10)

  donde W denota la porción de la carga vertical total entre 
los puntos P

1
 y P

2
 que se muestran en la fi gura 1.3.7. La 

ED, ecuación (10) es separable bajo las siguientes condi-
ciones que describen un puente suspendido.

   Supongamos que los ejes x y y están como se mues-
tra en la fi gura 2.2.5, es decir, el eje x va a lo largo de la 
superfi cie de la carretera y el eje y pasa por (0, a), que 
es el punto más bajo de un cable en la región que abarca 
el puente, que coincide con el intervalo [�L�2, L�2]. En el 
caso de un puente suspendido, la suposición usual es que la 
carga vertical en (10) es sólo una distribución uniforme de 
la superfi cie de la carretera a lo largo del eje horizontal. En 
otras palabras, se supone que el peso de todos los cables es 
despreciable en comparación con el peso de la superfi cie de 
la carretera y que el peso por unidad de longitud de la super-
fi cie de la carretera (digamos, libras por pie horizontal) es 
una constante r. Utilice esta información para establecer y 
resolver un adecuado problema con valores iniciales a par-
tir del cual se determine la forma (una curva con ecuación 
y � f(x)) de cada uno de los dos cables en un puente sus-
pendido. Exprese su solución del PVI en términos del pan-
deo h y de la longitud L. Véase la fi gura 2.2.5.

de la familia de soluciones de la ecuación diferencial

 
 

  
.

dy

dx

8x 5

3y2 1
 Experimente con diferentes números

    de las curvas de nivel así como con diferentes regiones 
rectangulares defi nidas por a � x � b, c � y � d.

  b)  En diferentes ejes coordenados dibuje las gráfi cas 
de las soluciones particulares correspondientes a las 
condiciones iniciales: y(0) � �1; y(0) � 2; y(�1) � 
4; y(�1) � �3.

51. a)  Determine una solución implícita del PVI

(2y � 2) dy � (4x3 � 6x) dx �  0, y(0) � �3.

b)  Utilice el inciso a) para encontrar una solución explí-
cita y � f(x) del PVI.

c)  Considere su respuesta del inciso b) como una sola 
función. Use un programa de grafi cación o un SAC 
para trazar la gráfi ca de esta función y después utilice 
la gráfi ca para estimar su dominio.

d)  Con la ayuda de un programa para determinar raíces 
de un SAC, determine la longitud aproximada del in-
tervalo de defi nición más grande posible de la solu-
ción y � f(x) del inciso b). Utilice un programa de 
grafi cación o un SAC para trazar la gráfi ca de la curva 
solución para el PVI en este intervalo.

52. a)  Utilice un SAC y el concepto de curvas de nivel para 
dibujar las gráfi cas representativas de los miembros 
de la familia de soluciones de la ecuación diferencial

  
dy

dx
�

x(1 � x)

y(�2 � y)
. Experimente con diferentes núme- 

  ros de curvas de nivel así como en diferentes regiones 
rectangulares del plano xy hasta que su resultado se 
parezca a la fi gura 2.2.6.

b)  En diferentes ejes coordenados, dibuje la gráfi ca de 
la solución implícita correspondiente a la condición 
inicial y(0) � 3

2
. Utilice un lápiz de color para indicar 

el segmento de la gráfi ca que corresponde a la curva 
solución de una solución f que satisface la condición 
inicial. Con ayuda de un programa para determinar raí-
ces de un SAC, determine el intervalo I de defi nición 
aproximado más largo de la solución f. [Sugerencia: 
Primero encuentre los puntos en la curva del inciso a) 
donde la recta tangente es vertical.]

c)  Repita el inciso b) para la condición inicial y(0) � �2.

FIGURA 2.2.5  Forma de un cable del problema 49.

L/2
L longitud

cable 

superficie de la carretera (carga)

x

(0, a)

L/2

y

h (pandeo)

x

y

FIGURA 2.2.6  Curvas de nivel del problema 52.

Tarea para el laboratorio de computación

50. a)  Utilice un SAC y el concepto de curvas de nivel para 
dibujar las gráfi cas representativas de los miembros 
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2.3 ECUACIONES LINEALES 

REPASO DE MATERIAL
● Repase la defi nición de las ED en las ecuaciones (6 ) y (7) de la sección 1.1

INTRODUCCIÓN  Continuamos con nuestra búsqueda de las soluciones de las ED de primer orden 
examinando ecuaciones lineales. Las ecuaciones diferenciales lineales son una familia especialmente 
“amigable” de ecuaciones diferenciales en las que, dada una ecuación lineal, ya sea de primer orden 
o de un miembro de orden superior, siempre hay una buena posibilidad de que podamos encontrar 
alguna clase de solución de la ecuación que podamos examinar.

UNA DEFINICIÓN  En la ecuación (7) de la sección 1.1, se presenta la forma de 
una ED lineal de primer orden. Aquí, por conveniencia, se reproduce esta forma en la 
ecuación (6) de la sección 1.1, para el caso cuando n � 1.

DEFINICIÓN 2.3.1  Ecuación lineal

Una ecuación diferencial de primer orden de la forma

 a1(x)
dy

dx
� a0(x)y � g(x)  (1)

se dice que es una ecuación lineal en la variable dependiente y.

Se dice que la ecuación lineal (1) es homogénea cuando g(x) � 0; si no es no 
homogénea.

FORMA ESTÁNDAR  Al dividir ambos lados de la ecuación (1) entre el primer coefi -
ciente, a

1
(x), se obtiene una forma más útil, la forma estándar de una ecuación lineal:

 
dy

dx
� P(x)y � f (x).  (2)

Buscamos una solución de la ecuación (2) en un intervalo I, en el cual las dos funcio-
nes P y f sean continuas.

En el análisis que se presenta a continuación ilustraremos una propiedad y un proce-
dimiento y terminaremos con una fórmula que representa la forma de cada solución de la 
ecuación (2).  Pero más importantes que la fórmula son la propiedad y el procedimiento, 
porque ambos conceptos también se aplican a ecuaciones lineales de orden superior.

LA PROPIEDAD  La ecuación diferencial (2) tiene la propiedad de que su solución 
es la suma de las dos soluciones, y � y

c
  �  y

p
, donde y

c
 es una solución de la ecuación 

homogénea asociada

 
dy

dx
� P(x)y � 0  (3)

y y
p
 es una solución particular de ecuación no homogénea (2). Para ver esto, observe que

d
–––
dx

[yc � yp] � P(x)[yc � yp] � [       � P(x)yc] �  [       � P(x)yp] � f (x).

f (x)0

dyc–––
dx

dyp–––
dx

2.3  ECUACIONES LINEALES ● 53

08367_02_ch02_p034-081-ok.indd   5308367_02_ch02_p034-081-ok.indd   53 6/4/09   12:16:07 PM6/4/09   12:16:07 PM



54 ● CAPÍTULO 2  ECUACIONES DIFERENCIALES DE PRIMER ORDEN

Ahora la ecuación (3) es también separable. Por lo que podemos determinar y
c
 al es-

cribir la ecuación (3) en la forma

 

dy

y
� P(x) dx � 0

 
e integramos. Despejando y, se obtiene y

c
 � ce��P(x)dx. Por conveniencia escribimos 

y
c
 � cy

1
(x), donde y

1
 � e��P(x)dx. A continuación se utiliza el hecho de que dy

1
�dx � 

P(x)y
1
 � 0, para determinar y

p
.

EL PROCEDIMIENTO  Ahora podemos defi nir una solución particular de la ecua-
ción (2), siguiendo un procedimiento llamado variación de parámetros. Aquí, la idea 
básica es encontrar una función, u tal que y

p
 � u(x)y

1
(x) � u(x)e−�P(x)dx sea una solución 

de la ecuación (2). En otras palabras, nuestra suposición para y
p
 es la misma que y

c
 � 

cy
1
(x) excepto que c se ha sustituido por el “parámetro variable” u. Sustituyendo y

p
 � 

uy
1
 en la ecuación (2) se obtiene

por tanto y1
du

dx
f (x).

y1 P(x)uy1 f (x) ou
dy1–––
dx

du
–––
dx

f (x)u[ P(x)y1] y1
dy1–––
dx

du
–––
dx

Regla del producto cero

Entonces separando las variables e integrando se obtiene

.du �
f (x)

y1(x)
� f (x)

y1(x)
dxdx  y  u �

Puesto que y
1
(x) � e��P(x)dx, vemos que 1�y

1
(x) � e�P(x)dx. Por tanto

 

,

y � ce��P (x)dx � e��P (x)dx� e�P (x)dxf (x) dx.

ypyc

yp � uy1 � �� f (x)

y1(x)
dx	e��P(x)dx � e��P(x)dx � e�P(x)dxf (x) dx

 
y

 
 

(4)

Por tanto, si la ecuación (2) tiene una solución, debe ser de la forma de la ecuación (4). 
Recíprocamente, es un ejercicio de derivación directa comprobar que la ecuación (4) 
es una familia uniparamétrica de soluciones de la ecuación (2).

No memorice la fórmula que se presenta en la ecuación (4). Sin embargo recuerde 
el término especial

 e∫P(x)dx  (5)

ya que se utiliza para resolver la ecuación (2) de una manera equivalente pero más 
fácil. Si la ecuación (4) se multiplica por (5),

 e�P(x)dxy � c � � e�P(x)dxf (x) dx, (6)

y después se deriva la ecuación (6),

  (7)

se obtiene 

,

.e�P(x)dx dy

dx
� P(x)e�P(x)dxy � e�P(x)dx f (x)

d

dx
[e�P(x)dxy] � e�P(x)dxf (x)

 (8)

Dividiendo el último resultado entre e�P(x)dx se obtiene la ecuación (2).
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MÉTODO DE SOLUCIÓN  El método que se recomienda para resolver la ecuación 
(2) consiste en realidad en trabajar con las ecuaciones (6) a (8) en orden inverso. En otras 
palabras, si la ecuación (2) se multiplica por la ecuación (5), obtenemos la ecuación (8). Se 
reconoce que el lado izquierdo de la ecuación (8) es la derivada del producto de e�P(x)dx por 
y. Esto nos conduce a la ecuación (7). Entonces, integrando ambos lados de la ecuación 
(7) se obtiene la solución (6). Como podemos resolver la ecuación (2) por integración, 
después de multiplicar por e�P(x)dx, esta función se llama factor integrante de la ecuación 
diferencial. Por conveniencia resumiremos estos resultados. Nuevamente le indicamos 
que no debe memorizar la fórmula (4) sino seguir cada vez el siguiente procedimiento.

SOLUCIÓN DE UNA ECUACIÓN LINEAL DE PRIMER ORDEN

 i) Ponga la ecuación lineal de la forma (1) en la forma estándar (2).

 ii) Identifi que de la identidad de la forma estándar P(x) y después 
determine el factor integrante e�P(x)dx.

 iii) Multiplique la forma estándar de la ecuación por el factor integrante. El 
lado izquierdo de la ecuación resultante es automáticamente la derivada 
del factor integrante y y:

d

dx
[e�P(x)dxy] � e�P(x)dx f (x).

 iv) Integre ambos lados de esta última ecuación.

EJEMPLO 1  Solución de una ED lineal homogénea

Resuelva .
dy

dx
� 3y � 0

SOLUCIÓN  Esta ecuación lineal se puede resolver por separación de variables. En 
otro caso, puesto que la ecuación ya está en la forma estándar (2), vemos que P(x) � 
�3 y por tanto el factor integrante es e�(�3)dx � e�3x. Multiplicando la ecuación por este 
factor y reconociendo que

 
e 3x dy

dx
3e 3xy 0 es la misma que

d

dx
 [e 3xy] 0.

Integrando ambos lados de la última ecuación se obtiene e�3xy � c. Despejando y se 
obtiene la solución explícita y � ce3x, �� 	 x 	 �. 

EJEMPLO 2  Solución de una ED lineal no homogénea

Resuelva 
dy

dx
.� 3y � 6

SOLUCIÓN  La ecuación homogénea asociada a esta ED se resolvió en el ejemplo 1. 
Nuevamente la ecuación está ya en la forma estándar (2) y el factor integrante aún es 
e�(�3)dx � e�3x. Ahora al multiplicar la ecuación dada por este factor se obtiene 

 e 3x dy

dx
3e 3xy 6e 3x, que es la misma que

d

dx
 [e 3xy] 6e 3x.  

Integrando ambos lados de la última ecuación se obtiene e�3xy � �2e�3x � c o 
y � �2 � ce3x, �� 	 x 	 �. 

2.3  ECUACIONES LINEALES ● 55

08367_02_ch02_p034-081-ok.indd   5508367_02_ch02_p034-081-ok.indd   55 6/4/09   12:16:09 PM6/4/09   12:16:09 PM



56 ● CAPÍTULO 2  ECUACIONES DIFERENCIALES DE PRIMER ORDEN

FIGURA 2.3.1  Algunas soluciones 
y� � 3y � 6.

1_1 2 3 4

_2
_1

1

_3

x

y

y =_2 

La solución fi nal del ejemplo 2 es la suma de dos soluciones: y � y
c
 � y

p
, donde y

c
 

� ce3x  es la solución de la ecuación homogénea del ejemplo 1 y y
p
 � �2 es una solu-

ción particular de la ecuación no homogénea y � – 3y � 6. No necesita preocuparse de 
si una ecuación lineal de primer orden es homogénea o no homogénea; cuando sigue 
el procedimiento de solución que se acaba de describir, la solución de una ecuación 
no homogénea necesariamente produce y � y

c
 � y

p
. Sin embargo, la diferencia entre 

resolver una ED homogénea y una no homogénea será más importante en el capítulo 4, 
donde se resolverán ecuaciones lineales de orden superior.

Cuando a
1
, a

0
 y g en la ecuación (1) son constantes, la ecuación diferencial es 

autónoma. En el ejemplo 2 podemos comprobar de la forma normal dy�dx � 3(y � 2) 
que �2 es un punto crítico y que es inestable (un repulsor). Así, una curva solución 
con un punto inicial ya sea arriba o debajo de la gráfi ca de la solución de equilibrio 
y � �2 se aleja de esta recta horizontal conforme x aumenta. La fi gura 2.3.1, obtenida 
con la ayuda de una aplicación para trazo de gráfi cas, muestra la gráfi ca de y � �2 
junto con otras curvas solución.

CONSTANTE DE INTEGRACIÓN  Observe que en el análisis general y en los 
ejemplos 1 y 2 no se ha considerado una constante de integración en la evaluación de 
la integral indefi nida en el exponente e�P(x)dx. Si consideramos las leyes de los expo-
nentes y el hecho de que el factor integrante multiplica ambos lados de la ecuación 
diferencial, usted podría explicar por qué es innecesario escribir �P(x)dx � c. Vea el 
problema 44 de los ejercicios 2.3.

SOLUCIÓN GENERAL  Suponga que las funciones P y f en la ecuación (2) son 
continuas en un intervalo I. En los pasos que conducen a la ecuación (4) mostramos 
que si la ecuación (2) tiene una solución en I, entonces debe estar en la forma dada en 
la ecuación (4). Recíprocamente, es un ejercicio directo de derivación comprobar que 
cualquier función de la forma dada en (4) es una solución de la ecuación diferencial (2) 
en I. En otras palabras (4) es una familia uniparamétrica de soluciones de la ecuación 
(2) y toda solución de la ecuación (2) defi nida en I es un miembro de esta familia. Por 
tanto llamamos a la ecuación (4) la solución general de la ecuación diferencial en 
el intervalo I. (Véase los Comentarios al fi nal de la sección 1.1.) Ahora escribiendo la 
ecuación (2) en la forma normal y � � F(x, y), podemos identifi car F(x, y) � �P(x)y 
� f (x) y �F��y � �P(x). De la continuidad de P y f en el intervalo I vemos que F y 
�F��y son también continuas en I. Con el teorema 1.2.1 como nuestra justifi cación, 
concluimos que existe una y sólo una solución del problema con valores iniciales 

 
dy

dx
� P(x)y � f (x),  y(x0) � y0  (9)

defi nida en algún intervalo I
0
 que contiene a x

0
. Pero cuando x

0
 está en I, encontrar una 

solución de (9) es exactamente lo mismo que encontrar un valor adecuado de c en la 
ecuación (4), es decir, a toda x

0
 en I le corresponde un distinto c. En otras palabras, 

el intervalo de existencia y unicidad I
0
 del teorema 1.2.1 para el problema con valores 

iniciales (9) es el intervalo completo I.

EJEMPLO 3  Solución general

Resuelva  .x
dy

� 4y � x 6ex

dx

SOLUCIÓN  Dividiendo entre x, obtenemos la forma estándar

 .
dy

dx
�

4

x
y � x5ex  (10)
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En esta forma identifi camos a P(x) � �4�x y f (x)� x5ex y además vemos que P y f son 
continuas en (0, �). Por tanto el factor integrante es

e�4�dx/x � e�4ln x � eln x�4 � x�4.

podemos utilizar ln x en lugar de ln 
x
 ya que x � 0

Aquí hemos utilizado la identidad básica blogbN � N, N � 0. Ahora multiplicamos la 
ecuación (10) por x�4 y reescribimos

x 4 dy

dx
4x 5 x d

dx
 [x 4y] xex.y xe como

De la integración por partes se tiene que la solución general defi nida en el intervalo (0, 
�) es x�4y � xex � ex � c o y � x5ex � x4ex � cx4. 

Excepto en el caso en el que el coefi ciente principal es 1, la reformulación de la 
ecuación (1) en la forma estándar (2) requiere que se divida entre a

1
(x). Los valores 

de x para los que a
1
(x) � 0 se llaman puntos singulares de la ecuación. Los puntos 

singulares son potencialmente problemáticos. En concreto, en la ecuación (2), si P(x) 
(que se forma al dividir a

0
(x) entre a

1
(x)) es discontinua en un punto, la discontinuidad 

puede conducir a soluciones de la ecuación diferencial.

EJEMPLO 4  Solución general

Determine la solución general de .(x 2 � 9)
dy

dx
� xy � 0

SOLUCIÓN  Escribimos la ecuación diferencial en la forma estándar

 
dy

dx
�

x

x2 � 9
y � 0  (11)

e identifi cando P(x) � x�(x2 – 9). Aunque P es continua en (��, �3), (�3, 3) y (3, 
�), resolveremos la ecuación en el primer y tercer intervalos. En estos intervalos el 
factor integrante es

 .e�x dx/(x2�9) � e
1
2 �2x dx/(x2�9) � e

1
2 ln�x2�9� � 1x2 � 9  

Después multiplicando la forma estándar (11) por este factor, obtenemos

 
.

d

dx �1x2 � 9 y� � 0

Integrando ambos lados de la última ecuación se obtiene 1x2 � 9 y � c.  Por
tanto para cualquiera x � 3 o x 	 �3 la solución general de la ecuación es

 
.y �

c

1x2 � 9
         

Observe en el ejemplo 4 que x � 3 y x � �3 son puntos singulares de la ecuación 
y que toda función en la solución general y � c�1x2 � 9  es discontinua en estos pun-
tos. Por otra parte, x � 0 es un punto singular de la ecuación diferencial en el ejemplo 
3, pero en la solución general y � x5ex – x4ex � cx4 es notable que cada función de esta 
familia uniparamétrica es continua en x � 0 y está defi nida en el intervalo (��, �) y no 
sólo en (0, �), como se indica en la solución. Sin embargo, la familia y � x5ex – x4ex � cx4 
defi nida en (��, �) no se puede considerar la solución general de la ED, ya que el punto 
singular x � 0 aún causa un problema. Véase el problema 39 en los ejercicios 2.3.
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58 ● CAPÍTULO 2  ECUACIONES DIFERENCIALES DE PRIMER ORDEN

EJEMPLO 5  Un problema con valores iniciales

Resuelva .
dy

dx
� y � x, y(0) � 4

SOLUCIÓN  La ecuación está en forma estándar, y P(x) � 1 y f(x) � x son continuas 
en (��, �). El factor integrante es e�dx � ex, entonces integrando

 

d

dx
 [exy] � xex

 

se tiene que exy � xex – ex � c. Despejando y de esta última ecuación se obtiene la 
solución general y � x � 1 � ce�x. Pero de la condición general sabemos que y � 4 
cuando x � 0. El sustituir estos valores en la solución general implica que c � 5. Por 
tanto la solución del problema es

 y � x � 1 � 5e�x,  �� 	 x 	 �. (12)  

La fi gura 2.3.2, que se obtuvo con la ayuda de un programa de grafi cación, mues-
tra la gráfi ca de (12) en azul oscuro, junto con las gráfi cas, de las otras soluciones re-
presentativas de la familia uniparamétrica y � x – 1 �ce�x. En esta solución general 
identifi camos y

c
 � ce�x y y

p
 � x – 1. Es interesante observar que conforme x aumenta, 

las gráfi cas de todos los miembros de la familia son cercanas a la gráfi ca de la solución 
particular y

p
 � x – 1 que se muestra con una línea sólida de la fi gura 2.3.2. Esto es de-

bido a que la contribución de y
c
 � ce�x a los valores de una solución es despreciable al 

aumentar los valores de x. Decimos que y
c
 � ce�x es un término transitorio, ya que y

c
 

: 0 conforme x : �. Mientras que este comportamiento no es característico de todas 
las soluciones generales de las ecuaciones lineales (véase el ejemplo 2), el concepto de 
un transitorio es frecuentemente importante en problemas aplicados.

COEFICIENTES DISCONTINUOS  En aplicaciones, los coefi cientes P(x) y f(x) 
en (2) pueden ser continuos por tramos. En el siguiente ejemplo f(x) es continua por 
tramos en [0, �) con una sola discontinuidad, en particular un salto (fi nito) discontinuo 
en x � 1. Resolvemos el problema en dos partes correspondientes a los dos interva-
los en los que f está defi nida. Es entonces posible juntar las partes de las dos soluciones 
en x � 1 así que y(x) es continua en [0, �).

EJEMPLO 6  Un problema con valores iniciales

Resuelva 
dy

dx
y f (x), y(0) 0 donde f (x)

1,

0,

0 x 1,

x 1.
a

SOLUCIÓN  En la fi gura 2.3.3 se muestra la gráfi ca de la función discontinua f. 
Resolvemos la ED para y(x) primero en el intervalo [0, 1] y después en el intervalo 
(1, �). Para 0 � x � 1 se tiene que 

 .
dy

dx

d

dx
 [exy] exy 1 o, el equivalente,  

Integrando esta última ecuación y despejando y se obtiene y � 1 � c
1
e�x. Puesto que 

y(0) � 0, debemos tener que c
1
 � �1 y por tanto y � 1 � e�x

, 
0 � x � 1. Entonces 

para x � 1 la ecuación 

 

dy

dx
� y � 0

 

x

y

4_4
_4

_2

2

4

_2 2

c=0 

c>0 

c<0 

FIGURA 2.3.2  Algunas soluciones 
y� � y � x.

FIGURA 2.3.3  f(x) discontinua.

x

y
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conduce a y � c
2
e�x. Por tanto podemos escribir

 y � �1 � e�x,

c2e�x,

0 � x � 1,

  x � 1.
 

Invocando a la defi nición de continuidad en un punto, es posible determinar c
2
 así la 

última función es continua en x � 1. El requisito de  lím
x→1� y(x) � y(1)  implica que 

c
2
e�1 � 1 – e�1 o c

2 
� e�1. Como se muestra en la fi gura 2.3.4, la función

 y � �1 � e�x,

(e � 1)e�x,

0 � x � 1,

  x � 1
 (13)

es continua en (0, �). 

Es importante considerar la ecuación (13) y la fi gura 2.3.4 como un bloque pe-
queño; le pedimos que lea y conteste el problema 42 de los ejercicios 2.3.

FUNCIONES DEFINIDAS POR INTEGRALES  Al fi nal de la sección 2.2 analiza-
mos el hecho de que algunas funciones continuas simples no tienen antiderivadas que 
sean funciones elementales y que las integrales de esa clase de funciones se llaman no 
elementales. Por ejemplo, usted puede haber visto en cálculo que �e−x2 dx y �sen x2 dx 
no son integrales elementales. En matemáticas aplicadas algunas funciones importan-
tes están defi nidas en términos de las integrales no elementales. Dos de esas funciones 
especiales son la función error y la función error complementario: 

 .erf(x) �
2

1�
�x

0
e�t2 2

1�
��

x
e�t2

dtdt    y    erfc(x) �  (14)

Del   conocido  resultado *��
0 e�t2

dt � 1��2  podemos   escribir   (2�1�) ��
0 e�t2

dt � 1. 
Entonces de la forma �

0
�� � �

0
x � �

x
�� se ve de la ecuación (14) que la función error 

complementario, erfc(x), se relaciona con erf(x) por erf(x) � erfc(x) � 1.  Debido a su 
importancia en probabilidad, estadística y en ecuaciones diferenciales parciales apli-
cadas se cuenta con extensas tablas de la función error. Observe que erf(0) � 0 es un 
valor obvio de la función. Los valores de erf(x) se pueden determinar con un sistema 
algebraico de computación (SAC). 

EJEMPLO 7  La función error

Resuelva el problema con valores iniciales .
dy

dx
� 2xy � 2,  y(0) � 1

SOLUCIÓN  Puesto que la ecuación ya se encuentra en la forma normal, el factor 
integrante es  e−x2 dx, y así de

 .
d

dx
 [e x2

y] 2e x2
obtenemos y 2ex2

x

0

e t2
dt cex2

 (15)

Aplicando y(0) � 1 en la última expresión obtenemos c � 1. Por tanto, la solución del 
problema es

y � 2ex2 �x

0

e�t2
dt � ex2

 o  y � ex2
[1 � 1� erf(x)].

En la fi gura 2.3.5 se muestra en azul oscuro, la gráfi ca de esta solución en el intervalo 
(��, �) junto con otros miembros de la familia defi nida en la ecuación (15), obtenida 
con la ayuda de un sistema algebraico de computación. 

1 x

y

FIGURA 2.3.4  Gráfi ca de la función 
de (13).

*Este resultado normalmente se presenta en el tercer semestre de cálculo.

FIGURA 2.3.5  Algunas soluciones 
de y� � 2xy � 2.

x

y
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60 ● CAPÍTULO 2  ECUACIONES DIFERENCIALES DE PRIMER ORDEN

USO DE COMPUTADORAS  Algunos sistemas algebraicos de computación como 
Mathematica y Maple permiten obtener soluciones implícitas o explícitas para algunos 
tipos de ecuaciones diferenciales, usando la instrucción dsolve.*

COMENTARIOS

i) En general, una ED lineal de cualquier orden se dice que es homogénea cuando 
g(x) � 0 en la ecuación (6) de la sección 1.1. Por ejemplo, la ED lineal de se-
gundo orden y� – 2y � � 6y � 0 es homogénea. Como se puede ver en este ejem-
plo y en el caso especial de la ecuación (3) de esta sección, la solución trivial 
y � 0  es siempre una solución de una ED lineal homogénea.

ii) A veces, una ecuación diferencial de primer orden es no lineal en una variable 
pero es lineal en la otra variable. Por ejemplo, la ecuación diferencial

dy

dx
�

1

x � y2

es no lineal en la variable y. Pero su recíproca

dx

dy
� x � y2    o     

dx

dy
� x � y2

se reconoce como lineal en la variable x. Usted debería comprobar que el factor 
integrante es e�(�1)dy � e�y e integrando por partes se obtiene la solución ex-
plícita x � �y2 � 2y � 2 � cey para la segunda ecuación. Esta expresión es, 
entonces, una solución implícita de la primera ecuación.

iii) Los matemáticos han adoptado como propias algunas palabras de ingeniería 
que consideran adecuadas para describir. La palabra transitorio, que ya hemos 
usado, es uno de estos términos. En futuros análisis ocasionalmente se presenta-
rán las palabras entrada y salida. La función f en la ecuación (2) es la función 
de entrada o de conducción; una solución y(x) de la ecuación diferencial para 
una entrada dada se llama salida o respuesta.

iv) El término funciones especiales mencionado en relación con la función error 
también se aplica a la función seno integral y a la integral seno de Fresnel 
introducidas en los problemas 49 y 50 de los ejercicios 2.3. “Funciones especia-
les” es una rama de las matemáticas realmente bien defi nidas. En la sección 6.3 
se estudian funciones más especiales.

EJERCICIOS 2.3  Las respuestas a los problemas con número impar comienzan en la página RES-2.

En los problemas 1 a 24 determine la solución general de la 
ecuación diferencial dada. Indique el intervalo I más largo en 
el que está defi nida la solución general. Determine si hay al-
gunos términos transitorios en la solución general.

 1.   
  

2. 

 3. 
dy

dx
y e3x

dy

dx
5y

  4. 3
dy

dx
12y  4

dy

dx
2y  0

 5. y� � 3x2y � x2  6. y� � 2xy � x3

 7. x2y� � xy � 1  8. y� � 2y � x2 � 5

 9.    10. 

11. x
dy

dx
 4y x3 x

x
dy

dx
y x2 senx

 12. (1 x)
dy

dx
xy x x2

x
dy

dx
2y  3

13. x2y� � x(x � 2)y � ex

*Ciertas instrucciones se deletrean igual, pero las instrucciones en Mathematica inician con una letra 
mayúscula (Dsolve) mientras que en Maple la misma instrucción comienza con una letra minúscula 
(dsolve). Cuando analizamos la sintaxis de las instrucciones, nos comprometimos y escribimos, por 
ejemplo dsolve.
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14. xy� � (1 � x)y � e�x sen 2x

15. y dx � 4(x � y6) dy � 0 

16. y dx � (yey � 2x) dy

17. 
 

18. 

19. 

20. 

21.  

22. 

23. 

24. (x2 � 1)
dy

dx
� 2y � (x � 1)2

x
dy

dx
� (3x � 1)y � e�3x

dP

dt
� 2tP � P � 4t � 2

dr

d�
� r sec � � cos �

(x � 2)2 dy

dx
� 5 � 8y � 4xy

(x � 1)
dy

dx
� (x � 2)y � 2xe�x

2 dy

dx
� (cos3x)y � 1

cos x
dy

dx
� (sen x)y � 1

cos x sen x

En los problemas 25 a 30 resuelva el problema con valores ini-
ciales. Indique el intervalo I más largo en el que está defi nida 
la solución.

25. xy� � y � ex,  y(1) � 2

26. y
dx

dy
2� x � 2y ,  y(1) � 5

27. L
di

dt
� Ri � E, i(0) � i0,  

  L, R, E e i
0
 constantes

28. 
dT

dt
� k(T � Tm); T(0) � T0,

  k, T
m
 y T

0
 constantes

29. (x � 1)
dy

dx
� y � ln x, y(1) � 10

30. y� � (tan x)y � cos2x,  y(0) � �1

En los problemas 31 a 34 proceda como en el ejemplo 6 para 
resolver el problema con valores iniciales dado. Utilice un pro-
grama de grafi cación para trazar la función continua y(x).

31. 

32. 

f (x)
1,

1,

0 x 1

x 1

dy

dx

f (x)
1,

0,

0 x 3

x 3

dy

dx
2y f (x), y(0) 0, donde

y f (x), y(0) 1, donde

33.  

34. 

donde

f (x)
x,

x,

0 x 1

x 1

(1 x2)
dy

dx

f (x)
x,

0,

0 x 1

x 1

dy

dx
2xy f (x), y(0) 2,

2xy f (x), y(0) 0, donde

35.  Proceda en una forma similar al ejemplo 6 para resolver el pro-
blema con valores iniciales y� � P(x)y � 4x, y(0) � 3, donde

P(x) � � 2,

�2>x,
 0 � x � 1,

x � 1.

  Utilice un programa de grafi cación para para trazar la grá-
fi ca de la función continua y(x).

36. Considere el problema con valores iniciales y � � exy � 
f (x), y(0) � 1. Exprese la solución del PVI para x � 0 
como una integral no elemental cuando f (x) � 1. ¿Cuál 
es la solución cuando f (x) � 0? ¿Y cuándo f (x) � ex?

37. Exprese la solución del problema con valores iniciales 
y � – 2xy � 1, y(1) � 1, en términos de erf(x).

Problemas para analizar

38. Lea nuevamente el análisis siguiente al ejemplo 2. Cons-
truya una ecuación diferencial lineal de primer orden 
para la que todas las soluciones no constantes tienden a la 
asíntota horizontal y � 4 conforme x : �.

39. Lea nuevamente el ejemplo 3 y después analice, usando 
el teorema 1.2.1, la existencia y unicidad de una solución 
del problema con valores iniciales que consiste en xy � 
– 4y � x6ex y de la condición inicial dada.

a) y(0) � 0    b) y(0) � y
0
, y

0
 � 0  

c) y(x
0
) � y

0
, x

0
 � 0, y

0
 � 0

40.  Lea nuevamente el ejemplo 4 y después determine la solu -
ción general de la ecuación diferencial en el intervalo (�3, 3).

41. Lea nuevamente el análisis siguiente al ejemplo 5. 
Construya una ecuación diferencial lineal de primer orden 
para la que todas las soluciones son asintóticas a la recta 
y � 3x � 5 conforme x : �.

42. Lea nuevamente el ejemplo 6 y después analice por qué 
es técnicamente incorrecto decir que la función en (13) es 
una “solución” del PVI en el intervalo [0, �).

43. a)  Construya una ecuación diferencial lineal de primer 
orden de la forma xy � � a

0
(x)y � g(x) para la cual y

c
 

� c�x3 y y
p
 � x3. Dé un intervalo en el que y � x3 � 

c�x3 es la solución general de la ED.

b)  Dé una condición inicial y(x
0
) � y

0
 para la ED que 

se determinó en el inciso a) de modo que la solución 
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62 ● CAPÍTULO 2  ECUACIONES DIFERENCIALES DE PRIMER ORDEN

del PVI sea y � x3 � 1�x3. Repita si la solución es y � 
x3 � 2�x3. Dé un intervalo de defi nición I de cada una 
de estas soluciones. Trace la gráfi ca de las curvas so-
lución. ¿Hay un problema con valores iniciales cuya 
solución esté defi nida en (��, �)?

c)  ¿Es único cada PVI encontrado en el inciso b)? Es decir, 
puede haber más de un solo PVI para el cual, digamos, 
y � x3 � 1�x3, x en algún intervalo I, es la solución?

44. Al determinar el factor integrante (5), no usamos una 
constante de integración en la evaluación de �P(x) dx. 
Explique por qué usar �P(x) dx � c no tiene efecto en la 
solución de (2).

45. Suponga que P(x) es continua en algún intervalo I y a es un 
número en I. ¿Qué se puede decir acerca de la solución del 
problema con valores iniciales y � � P(x)y � 0, y(a) � 0?

Modelos matemáticos

46. Series de decaimiento radiactivo  El siguiente siste-
ma de ecuaciones diferenciales se encuentra en el estudio 
del decaimiento de un tipo especial de series de elemen-
tos radiactivos:

dy

dt
� �1x � �2y,

dx

dt
� ��1x

  donde l
1
 y l

2
 son constantes. Analice cómo resolver este sis-

tema sujeto a x(0) � x
0
, y(0) � y

0
. Lleve a cabo sus ideas.

47. Marcapasos de corazón  Un marcapasos de corazón 
consiste en un interruptor, una batería de voltaje cons-
tante E

0
, un capacitor con capacitancia constante C y 

un corazón como un resistor con resistencia constante 
R. Cuando se cierra el interruptor, el capacitor se carga; 
cuando el interruptor se abre, el capacitor se descarga en-
viando estímulos eléctricos al corazón. Todo el tiempo 

el corazón se está estimulando, el voltaje E a través del 
corazón satisface la ecuación diferencial lineal

dE

dt
� �

1

RC
E.

  Resuelva la ED sujeta a E(4) � E
0
.

Tarea para el laboratorio de computación

48. a)  Exprese la solución del problema con valores inicia- 
les y� � 2xy � �1, , y(0) 1  2  en términos de 
erfc(x).

  b)  Utilice las tablas de un SAC para determinar el valor 
de y(2). Use un SAC para trazar la gráfi ca de la curva 
solución para el PVI en (��, �).

49. a)  La función seno integral está defi nida por 
    Si(x) x

0 (sen t>t) dt, donde el integrando está defi -
nido igual a 1 en t � 0. Exprese la solución y(x) del 
problema con valores iniciales x3y � � 2x2y � 10 sen 
x, y(1) � 0 en términos de Si(x).

  b)  Use un SAC para trazar la gráfi ca de la curva solu-
ción para el PVI para x � 0.

  c)  Use un SAC para encontrar el valor del máximo ab-
soluto de la solución y(x) para x � 0.

50. a)  La integral seno de Fresnel está defi nida por
    .S(x) x

0 sen(pt2>2) dt . Exprese la solución y(x) del 
problema con valores iniciales y � – (sen x2)y � 0, 
y(0) � 5, en términos de S(x).

  b)  Use un SAC para trazar la gráfi ca de la curva solu-
ción para el PVI en (��, �).

  c)  Se sabe que S(x) : 1
2  conforme x : � y S(x) : � 1

2  
conforme x : �� . ¿A dónde tiende la solución y(x) 
cuando x : �? ¿Y cuando x : ��?

  d)  Use un SAC para encontrar los valores del máximo 
absoluto y del mínimo absoluto de la solución y(x).

2.4 ECUACIONES EXACTAS

REPASO DE MATERIAL
● Cálculo de varias variables. 
● Derivación parcial e integración parcial.
● Diferencial de una función de dos variables.

INTRODUCCIÓN  Aunque la sencilla ecuación diferencial de primer orden 
y dx � x dy � 0 

es separable, podemos resolver la ecuación en una forma alterna al reconocer que la expresión del 
lado izquierdo de la ecuación es la diferencial de la función f (x, y) � xy, es decir

d(xy) � y dx � x dy. 

En esta sección analizamos ecuaciones de primer orden en la forma diferencial M(x, y) dx � N(x, y) dy 
� 0. Aplicando una prueba simple a M y a N, podemos determinar si M(x, y) dx � N(x, y) dy es una 
diferencial de una función f (x, y). Si la respuesta es sí, construimos f integrando parcialmente.
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DIFERENCIAL DE UNA FUNCIÓN DE DOS VARIABLES  Si z � f (x, y) es una 
función de dos variables con primeras derivadas parciales continuas en una región R 
del plano xy, entonces su diferencial es

 .dz �
�f

�x
dx �

�f

�y
dy  (1)

En el caso especial cuando f (x, y) � c, donde c es una constante, entonces la ecuación 
(1) implica que

 .
�f

�x
dx �

�f

�y
dy � 0  (2)

En otras palabras, dada una familia de curvas f (x, y) � c, podemos generar una ecua-
ción diferencial de primer orden si calculamos la diferencial de ambos lados de la 
igualdad. Por ejemplo, si x2 � 5xy � y3 � c, entonces la ecuación (2) da la ED de 
primer orden

 .(2x � 5y) dx � (�5x � 3y2) dy � 0  (3)

UNA DEFINICIÓN  Por supuesto, que no todas las ED de primer orden escritas en 
la forma M(x, y) dx � N(x, y) dy � 0 corresponden a una diferencial de f (x, y) � c. Por 
tanto para nuestros objetivos es muy importante regresar al problema anterior; en par-
ticular, si nos dan una ED de primer orden tal como la ecuación (3), ¿hay alguna forma 
de reconocer que la expresión diferencial (2x � 5y) dx � (�5x � 3y2) dy es la diferen-
cial d(x2 � 5xy � y3)? Si la hay, entonces una solución implícita de la ecuación (3) es 
x2 � 5xy � y3 � c. Podemos contestar esta pregunta después de la siguiente defi nición.

DEFINICIÓN 2.4.1  Ecuación exacta

Una expresión diferencial M(x, y) dx � N(x, y) dy es una diferencial exacta en 
una región R del plano xy si ésta corresponde a la diferencial de alguna función 
f (x, y) defi nida en R. Una ecuación diferencial de primer orden de la forma

 M(x, y) dx � N(x, y) dy � 0  

se dice que es una ecuación exacta si la expresión del lado izquierdo es una 
diferencial exacta. 

Por ejemplo x2y3 dx � x3y2 dy � 0 es una ecuación exacta, ya que su lado iz-
quierdo es una diferencial exacta:

 
.d �1

3 x3 y3	 � x2y3 dx � x3y2 dy
 

Observe que si hacemos las identifi caciones M(x, y) � x2y3 y N(x, y) � x3y2, entonces 
�M��y � 3x2y2 � �N��x. El teorema 2.4.1, que se presenta a continuación, muestra 
que la igualdad de las derivadas parciales �M��y y �N��x no es una coincidencia.

TEOREMA 2.4.1  Criterio para una diferencial exacta

Sean M(x, y) y N(x, y) continuas y que tienen primeras derivadas parciales con-
tinuas en una región rectangular R defi nida por a 	 x 	 b, c 	 y 	 d. Entonces 
una condición necesaria y sufi ciente para que M(x, y) dx � N(x, y) dy sea una 
diferencial exacta es 

 .
�M

�y
�

�N

�x  (4)
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64 ● CAPÍTULO 2  ECUACIONES DIFERENCIALES DE PRIMER ORDEN

PRUEBA DE LA NECESIDAD  Por simplicidad suponemos que M(x, y) y N(x, y) tie-
nen primeras derivadas parciales continuas para todo (x, y). Ahora si la expresión 
M(x, y) dx � N(x, y) dy es exacta, existe alguna función f tal que para toda x en R,

Por tanto 

y 

.

,

.
�M

�y
�

�

�y �
�f

�x	 �
�2 f

�y �x
�

�

�x �
�f

�y	 �
�N

�x

M(x, y) �
�f

�x
,    N(x, y) �

�f

�y

M(x, y) dx � N(x, y) dy �
�f

�x
dx �

�f

�y
dy

La igualdad de las parciales mixtas es una consecuencia de la continuidad de las pri-
meras derivadas parciales de M(x, y) y N(x, y). 

La parte de sufi ciencia del teorema 2.4.1 consiste en mostrar que existe una fun-
ción f para la que �f��x � M(x, y) y �f��y � N(x, y) siempre que la ecuación (4) sea 
válida. La construcción de la función f en realidad muestra un procedimiento básico 
para resolver ecuaciones exactas.

MÉTODO DE SOLUCIÓN  Dada una ecuación en la forma diferencial M(x, y) dx � 
N(x, y) dy � 0, determine si la igualdad de la ecuación (4) es válida. Si es así, entonces 
existe una función f para la que

.
�f

�x
� M(x, y)

Podemos determinar f integrando M(x, y) respecto a x mientras y se conserva cons-
tante:

 ,f (x, y) � �M(x, y) dx � g(y)  (5)

donde la función arbitraria g(y) es la “constante” de integración. Ahora derivando 
(5) respecto a y y suponiendo que �f��y � N(x, y):

Se obtiene .g�(y) � N(x, y) �
�

�y
�M(x, y) dx

�f

�y
�

�

�y
� M(x, y) dx � g�(y) � N(x, y).

 (6)

Por último, se integra la ecuación (6) respecto a y y se sustituye el resultado en la 
ecuación (5). La solución implícita de la ecuación es f (x, y) � c.

Haremos algunas observaciones en orden. Primero, es importante darse cuenta de 
que la expresión N(x, y) � (��� y) � M(x, y) dx en (6) es independiente de x, ya que

 .
�

�x �N(x, y) �
�

�y
�M(x, y) dx � �

�N

�x
�

�

�y �
�

�x
�M(x, y) dx	 �

�N

�x
�

�M

�y
� 0

Segunda, pudimos iniciar bien el procedimiento anterior con la suposición de que �f��y 
� N(x, y). Después, integrando N respecto a y y derivando este resultado, encontraría-
mos las ecuaciones que, respectivamente, son análogas a las ecuaciones (5) y (6), 

.f (x, y) � � �

�x
� N(x, y) dyN(x, y) dy � h(x)    y    h�(x) � M(x, y) �

En ninguno de ambos casos se deben memorizar estas fórmulas.
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EJEMPLO 1  Resolviendo una ED exacta

Resuelva 2xy dx � (x2 � 1) dy � 0.

SOLUCIÓN  Con M(x, y) � 2xy y N(x, y) � x2 � 1 tenemos que

 .
�M

�y
� 2x �

�N

�x
 

Así la ecuación es exacta y por el teorema 2.4.1 existe una función f (x, y) tal que

 .
�f

�x

�f

�y
� x2 � 1� 2xy    y     

Al integrar la primera de estas ecuaciones, se obtiene:

f (x, y) � x2y � g (y).

Tomando la derivada parcial de la última expresión con respecto a y y haciendo el 
resultado igual a N(x, y) se obtiene

 . ; N(x, y)
�f

�y
� x2 � g�(y) � x2 � 1

Se tiene que g�(y) � �1 y g(y) � �y. Por tanto f (x, y) � x2y � y, así la solución de 
la ecuación en la forma implícita es x2y � y � c. La forma explícita de la solución se 
ve fácilmente como y � c�(1 � x2) y está defi nida en cualquier intervalo que no con-
tenga ni a x � 1 ni a x � �1. 

NOTA  La solución de la ED en el ejemplo 1 no es f (x, y) � x 2y � y. Sino que es 
f (x, y) � c; si se usa una constante en la integración de g �(y), podemos escribir la 
solución como f (x, y) � 0. Observe que la ecuación también se podría haber resuelto 
por separación de variables.

EJEMPLO 2  Solución de una ED exacta

Resuelva (e2y � y cos xy) dx � (2xe2y � x cos xy � 2y) dy � 0.

SOLUCIÓN  La ecuación es exacta ya que

 .
�M

�y
� 2e2y �N

�x
� xy sen xy � cos xy �  

Por tanto existe una función f (x, y) para la cual

 .M(x, y) �
�f

�x

�f

�y
    y   N(x, y) �  

Ahora, para variar, comenzaremos con la suposición de que �f ��y � N(x, y); es decir

.f (x, y) � 2x � e2y dy � x � cos xy dy � 2 � y dy

�f

�y
� 2xe2y � x cos xy � 2y
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66 ● CAPÍTULO 2  ECUACIONES DIFERENCIALES DE PRIMER ORDEN

Recuerde que la razón por la que x sale del símbolo � es que en la integración respecto 
a y se considera que x es una constante ordinaria. Entonces se tiene que

 
, ;M(x, y)

�f

�x
� e2y � y cos xy � h�(x) � e2y � y cos xy

f (x, y) � xe2y 2 � h(x)� sen xy � y

 

y así h �(x) � 0 o h(x) � c. Por tanto una familia de soluciones es

 xe2y � sen xy � y2 � c � 0. 

EJEMPLO 3  Problema con valores iniciales

Resuelva  .
dy

dx
�

xy2

y(1 � x2)
, y(0) � 2

� cos x sen x

SOLUCIÓN  Al escribir la ecuación diferencial en la forma

(cos x sen x � xy2) dx � y(1 � x2) dy � 0,

reconocemos que la ecuación es exacta porque

 

Ahora 
 

.

�f

�x
� �xy2 2

f (x, y) �
y2

2
 (1 � x2) � h(x)

�f

�y
� y(1 � x2)

�M

�y
� �2xy �

�N

�x

� h�(x) � cos x sen x � xy .

La última ecuación implica que h �(x) � cos x sen x. Integrando se obtiene

Por tanto ,
y2

2
 (1 x2)

1

2
 cos2 x c1 o y2(1 x2) cos2 x c

h(x)
1

2
2(cos x)( sen x dx)  cos x.

 (7)

donde se sustituye 2c
1
 por c. La condición inicial y � 2 cuando x � 0 exige que 

4(1) � cos2 (0) � c, y por tanto c � 3. Una solución implícita del problema es enton-
ces y2(1 � x2) � cos2 x � 3.

En la fi gura 2.4.1, la curva solución del PVI es la curva dibujada en azul oscuro, y 
forma parte de una interesante familia de curvas. Las gráfi cas de los miembros de la fa-
milia uniparamétrica de soluciones dadas en la ecuación (7) se puede obtener de diferen-
tes maneras, dos de las cuales son utilizando un paquete de computación para trazar grá-
fi cas de curvas de nivel (como se analizó en la sección 2.2) y usando un programa de 
grafi cación para dibujar cuidadosamente la gráfi ca de las funciones explícitas obtenidas 
para diferentes valores de c despejando a y de y2 � (c � cos2 x)�(1 � x2) para y. 

FACTORES INTEGRANTES  Recuerde de la sección 2.3 que el lado izquierdo de la 
ecuación lineal y � � P(x)y � f (x) se puede transformar en una derivada cuando mul-
tiplicamos la ecuación por el factor integrante. Esta misma idea básica algunas veces 
funciona bien para una ecuación diferencial no exacta M(x, y) dx � N(x, y) dy � 0. 

x

y

FIGURA 2.4.1  Algunas gráfi cas 
de los miembros de la familia 
y2(1 � x2) � cos2x � c.
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Es decir, algunas veces es posible encontrar un factor integrante m(x, y) de manera 
que, después de multiplicar el lado izquierdo de

 m(x, y)M(x, y) dx � m(x, y)N(x, y) dy � 0 (8)

es una diferencial exacta. En un intento por encontrar m, regresamos al criterio (4) de 
la exactitud. La ecuación (8) es exacta si y sólo si (mM)

y
 � (mN)

x
, donde los subíndi-

ces denotan derivadas parciales. Por la regla del producto de la derivación la última 
ecuación es la misma que mM

y
 � m

y
M � mN

x
 � m

x
N o

 m
x
N � m

y
M � (M

y
 � N

x
)m. (9)

Aunque M, N, M
y
 y N

x
 son funciones conocidas de x y y, la difi cultad aquí al determinar 

la incógnita m(x, y) de la ecuación (9) es que debemos resolver una ecuación diferencial 
parcial. Como no estamos preparados para hacerlo, haremos una hipótesis para simpli-
fi car. Suponga que m es una función de una variable; por ejemplo, m depende sólo de x. 
En este caso, m

x
 � dm�dx y m

y
 � 0, así la ecuación (9) se puede escribir como

 
.

d�

dx
�

My � Nx

N
�  (10)

Estamos aún en un callejón sin salida si el cociente (M
y
 � N

x
)�N depende tanto de x 

como de y. Sin embargo, si después de que se hacen todas las simplifi caciones alge-
braicas el cociente (M

y
 � N

x
)�N resulta que depende sólo de la variable x, entonces la 

ecuación (10) es separable así como lineal. Entonces de la sección 2.2 o de la sección 
2.3 tenemos que m(x) � e�((My�Nx)/N)dx. Análogamente, de la ecuación (9) tenemos que 
si m depende sólo de la variable y, entonces

 
.

d�

dy
�

Nx � My

M
�  (11)

En este caso, si (N
x
 � M

y
)�M es una función sólo de y, podemos despejar m de la 

ecuación (11). 
Resumiendo estos resultados para la ecuación diferencial.

 M(x, y) dx � N(x, y) dy � 0. (12)

• Si (M
y
 � N

x
)�N es una función sólo de x, entonces un factor integrante para 

la ecuación (12) es

 .�(x) � e
�My�Nx

N
dx

 (13)

• Si (N
x
 � M

y
)�M es una función sólo de y, entonces un factor integrante de (12) es

 .�(y) � e
�Nx�My

M
dy

 (14)

EJEMPLO 4  Una ED no exacta hecha exacta

La ecuación diferencial no lineal de primer orden

 xy dx � (2x2 � 3y2 � 20) dy � 0 

es no exacta. Identifi cando M � xy, N � 2x2 � 3y2 � 20, encontramos que las deriva-
das parciales M

y
 � x y N

x
 � 4x. El primer cociente de la ecuación (13) no nos conduce 

a nada, ya que

My � Nx

N
�

x � 4x

2x2 � 3y2 � 20
�

�3x

2x2 � 3y2 � 20

depende de x y de y. Sin embargo, la ecuación (14) produce un cociente que depende 
sólo de y:

.
Nx � My

M
�

4x � x

xy
�

3x

xy
�

3

y
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68 ● CAPÍTULO 2  ECUACIONES DIFERENCIALES DE PRIMER ORDEN

El factor integrante es entonces e�3dy�y � e3lny � elny3 � y3. Después de multiplicar la 
ED dada por m(y) � y3, la ecuación resultante es

xy4 dx � (2x2y3 � 3y5 � 20y3) dy � 0.

Usted debería comprobar que la última ecuación es ahora exacta así como mostrar, 
usando el método que se presentó en esta sección, que una familia de soluciones es

  
.1

2 x2y4 � 1
2 y6 � 5y4 � c

    

COMENTARIOS

i) Cuando pruebe la exactitud de una ecuación, se debe asegurar que tiene exac-
tamente la forma M(x, y) dx � N(x, y) dy � 0. Algunas veces una ecuación dife-
rencial se escribe como G(x, y) dx � H(x, y) dy . En este caso, primero rescriba 
como G(x, y) dx � H(x, y) dy � 0 y después identifi que M(x, y) � G(x, y) y N(x, 
y) � �H(x, y) antes de utilizar la ecuación (4).

ii) En algunos libros de ecuaciones diferenciales el estudio de las ecuaciones 
exactas precede al de las ED lineales. Entonces el método que acabamos de des-
cribir para encontrar los factores integrantes se puede utilizar para deducir un 
factor integrante para y � � P(x) y � f (x). Reescribiendo la última ecuación en la 
forma diferencial (P(x)y � f (x)) dx � dy � 0, vemos que

.
My � Nx

N
� P(x)

A partir de la ecuación (13) hemos obtenido el conocido factor integrante e�P(x)dx, 
utilizado en la sección 2.3.

EJERCICIOS 2.4  Las respuestas a los problemas con número impar comienzan en la página RES-2.

En los problemas 1 a 20 determine si la ecuación diferencial 
dada es exacta. Si lo es, resuélvala.

 1. (2x � 1) dx � (3y � 7) dy � 0

 2. (2x � y) dx � (x � 6y) dy � 0

 3. (5x � 4y) dx � (4x � 8y3) dy � 0

 4. (sen y � y sen x) dx � (cos x � x cos y � y) dy � 0

 5. (2xy2 � 3) dx � (2x2y � 4) dy � 0

 6. �2y �
1

x
� cos 3x	 dy

dx
�

y

x2 � 4x3 � 3y sen 3x � 0

 7. (x2 � y2) dx � (x2 � 2xy) dy � 0

 8. �1 � ln x �
y

x	 dx � (1 � ln x) dy

 9. (x � y3 � y2 sen x) dx � (3xy2 � 2y cos x) dy

10. (x3 � y3) dx � 3xy2 dy � 0

11. (y ln y � e�xy) dx � �1

y
� x ln y	 dy � 0

12. (3x2y � ey) dx � (x3 � xey � 2y) dy � 0

13. x
dy

dx
� 2xex � y � 6x2

14. �1 �
3

y
� x	 dy

dx
� y �

3

x
� 1

15. �x2y3 �
1

1 � 9x2	 dx

dy
� x3y2 � 0

16. (5y � 2x)y� � 2y � 0

17. (tan x � sen x sen y) dx � cos x cos y dy � 0

18. 2 xy2
) dx(2y sen x cos x � y � 2y e

                                
2 xy2

) dy� (x � sen x � 4xye

19. (4t3y � 15t2 � y) dt � (t4 � 3y2 � t) dy � 0

20. �1

t
�

1

t 2 �
y

t 2 � y2	 dt � �yey �
t

t 2 � y2	 dy � 0
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En los problemas 21 a 26 resuelva el problema con valores 
iniciales.

21. (x � y)2 dx � (2xy � x2 � 1) dy � 0,  y(1) � 1

22. (ex � y) dx � (2 � x � yey) dy � 0,  y(0) � 1

23. (4y � 2t � 5) dt � (6y � 4t � 1) dy � 0,  y(�1) � 2

24. �3y2 � t 2

y5 	 dy

dt
�

t

2y4 � 0, y(1) � 1

25. (y2 cos x � 3x2y � 2x) dx 
  � (2y sen x � x3 � ln y) dy � 0,  y(0) � e

26. � 1

1 � y2 � cos x � 2xy	 dy

dx
� y(y � sen x), y(0) � 1

En los problemas 27 y 28 determine el valor de k para el que 
la ecuación diferencial es exacta.

27. (y3 � kxy4 � 2x) dx � (3xy2 � 20x2y3) dy � 0

28. (6xy3 � cos y) dx � (2kx2y2 � x sen y) dy � 0

En los problemas 29 y 30 compruebe que la ecuación dife-
rencial dada es no exacta. Multiplique la ecuación diferencial 
dada por el factor integrante indicado m(x, y) y compruebe que 
la nueva ecuación es exacta. Resuelva.

29. (�xy sen x � 2y cos x) dx � 2x cos x dy � 0;
  m(x, y) � xy

30. (x2 � 2xy � y2) dx � (y2 � 2xy � x2) dy � 0;
  m(x, y) � (x � y)�2

En los problemas 31 a 36 resuelva la ecuación diferencial dada 
determinando, como en el ejemplo 4, un factor integrante ade-
cuado.

31. (2y2 � 3x) dx � 2xy dy � 0

32. y(x � y � 1) dx � (x � 2y) dy � 0

33. 6xy dx � (4y � 9x2) dy � 0

34. cos x dx � �1 �
2

y	 sen x dy � 0

35. (10 � 6y � e�3x) dx � 2 dy � 0

36. (y2 � xy3) dx � (5y2 � xy � y3 sen y) dy � 0

En los problemas 37 y 38 resuelva el problema con valores 
iniciales determinando, como en el ejemplo 5, un factor inte-
grante adecuado.

37. x dx � (x2y � 4y) dy � 0,  y(4) � 0

38. (x2 � y2 � 5) dx � (y � xy) dy,  y(0) � 1

39. a)  Demuestre que una familia de soluciones uniparamé-
trica de soluciones de la ecuación

(4xy � 3x2) dx � (2y � 2x2) dy � 0

 es x3 � 2x2y � y2 � c.

b)  Demuestre que las condiciones iniciales y(0) � �2 y 
y(1) � 1 determinan la misma solución implícita.

c)  Encuentre las soluciones explícitas y
1
(x) y y

2
(x) de la 

ecuación diferencial del inciso a) tal que y
1
(0) � �2 

y y
2
(1) � 1. Utilice un programa de grafi cación para 

trazar la gráfi ca de y
1
(x) y y

2
(x).

Problemas para analizar

40. Considere el concepto de factor integrante utilizado en 
los problemas 29 a 38. ¿Son las dos ecuaciones Mdx � N 
dy � 0 y mM dx � mN dy � 0 necesariamente equivalen-
tes en el sentido de que la solución de una es también una 
solución de la otra? Analice.

41. Lea nuevamente el ejemplo 3 y después analice por qué 
podemos concluir que el intervalo de defi nición de la so-
lución explícita del PVI (curva azul de la fi gura 2.4.1) es 
(�1, 1).

42. Analice cómo se pueden encontrar las funciones M(x, y) y 
N(x, y) tal que cada ecuación diferencial sea exacta. Lleve 
a cabo sus ideas.

a) 

b) �x�1/2y1/2 �
x

x2 � y	 dx � N(x, y) dy � 0

M(x, y) dx � �xexy � 2xy �
1

x	 dy � 0

43. Algunas veces las ecuaciones diferenciales se re-
suelven con una idea brillante. Este es un pe-
queño ejercicio de inteligencia: aunque la ecuación
(x � ) dx � y dy � 01x2 � y2  no es exacta, demuestre 
cómo el reacomodo (x dx � y dy) � dx�1x2 � y2  y la 
observación 1

2
d(x2 � y2) � x dx � y dy puede conducir a 

una solución.

44. Verdadero o falso: toda ecuación de primer orden separa-
ble dy�dx � g(x)h(y) es exacta.

Modelos matemáticos

45. Cadena cayendo  Una parte de una cadena de 8 pies de 
longitud está enrollada sin apretar alrededor de una cla-
vija en el borde de una plataforma horizontal y la parte 
restante de la cadena cuelga descansando sobre el borde 
de la plataforma. Vea la fi gura 2.4.2. Suponga que la lon-
gitud de la cadena que cuelga es de 3 pies, que la cadena 
pesa 2 lb�pie y que la dirección positiva es hacia abajo. 
Comenzando en t � 0 segundos, el peso de la cadena que 
cuelga causa que la cadena sobre la plataforma se desenro-
lle suavemente y caiga al piso. Si x(t) denota la longitud de 
la cadena que cuelga de la mesa al tiempo t � 0, entonces 
v � dx�dt es su velocidad. Cuando se desprecian todas las 
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70 ● CAPÍTULO 2  ECUACIONES DIFERENCIALES DE PRIMER ORDEN

fuerzas de resistencia se puede demostrar que un modelo 
matemático que relaciona a v con x está dado por

.xv
dv

dx
� v2 � 32x

a)  Rescriba este modelo en forma diferencial. Proceda 
como en los problemas 31 a 36 y resuelva la ED para 
v en términos de x determinando un factor integrante 
adecuado. Determine una solución explícita v(x).

b)  Determine la velocidad con que la cadena abandona 
la plataforma.

Tarea para el laboratorio de computación

 46. Líneas de fl ujo

  a)  La solución de la ecuación diferencial

2xy

(x2 � y2)2 dx � �1 �
y2 � x2

(x2 � y2)2 � dy � 0

    es una familia de curvas que se pueden interpretar 
como líneas de fl ujo de un fl uido que discurre alrede-
dor de un objeto circular cuya frontera está descrita 
por la ecuación x2 � y2 � 1. Resuelva esta ED y ob-
serve que la solución f (x, y) � c para c � 0.

b)  Use un SAC para dibujar las líneas de fl ujo para c � 0, 

0.2, 
0.4, 
0.6 y 
0.8 de tres maneras diferentes. 
Primero, utilice el contourplot de un SAC. Segundo, 
despeje x en términos de la variable y. Dibuje las dos 
funciones resultantes de y para los valores dados de 
c, y después combine las gráfi cas. Tercero, utilice el 
SAC para despejar y de una ecuación cúbica en térmi-
nos de x.

SUSTITUCIONES  Con frecuencia el primer paso para resolver una ecuación diferen-
cial es transformarla en otra ecuación diferencial mediante una sustitución. Por ejemplo, 
suponga que se quiere transformar la ecuación diferencial de primer orden dy�dx � f (x, 
y) sustituyendo y � g(x, u), donde u se considera una función de la variable x. Si g tiene 
primeras derivadas parciales, entonces, usando la regla de la cadena

.
dy

dx

g

x

dx

dx

g

u

du

dx
obtenemos

dy

dx
gx(x, u) gu(x, u)

du

dx

Al sustituir dy�dx por la derivada anterior y sustituyendo y en f(x, y) por g (x, u), obte- 

nemos la ED dy�dx � f (x, y) que se convierten en  g
x
(x, u) � g

u
(x, u) 

du

dx
 � f (x, g (x, u)), la

cual, resuelta para 
du

dx
, tiene la forma 

du

dx
 � F(x, u). Si podemos determinar una solu-

ción u � f(x) de esta última ecuación, entonces una solución de la ecuación diferen-
cial original es y(x) � g(x, f(x)). 

En el análisis siguiente examinaremos tres clases diferentes de ecuaciones dife-
renciales de primer orden que se pueden resolver mediante una sustitución.

x(t)

borde de la 
plataforma

clavija

FIGURA 2.4.2  Cadena desenrollada del problema 45.

2.5 SOLUCIONES POR SUSTITUCIÓN

REPASO DE MATERIAL
● Técnicas de integración.
● Separación de variables.
● Solución de ED.

INTRODUCCIÓN  Normalmente resolvemos una ecuación diferencial reconociéndola dentro de 
una cierta clase de ecuaciones (digamos separables, lineales o exactas) y después aplicamos un proce-
dimiento, que consiste en pasos matemáticos específi cos para el tipo de ecuación que nos conducen 
a la solución de la misma. Pero no es inusual que nos sorprenda el tener una ecuación diferencial que 
no pertenece a alguna de las clases de ecuaciones que sabemos cómo resolver. Los procedimientos 
que se analizan en esta sección pueden ser útiles en este caso.
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ECUACIONES HOMÓGENEAS  Si una función f tiene la propiedad f (tx, ty) � 
taf (x, y) para algún número real a, entonces se dice que es una función homogénea de 
grado a. Por ejemplo f (x, y) � x3 � y3 es una función homogénea de grado 3, ya que 

f (tx, ty) � (tx)3 � (ty)3 � t3(x3 � y3) � t3f (x, y),

mientras que f (x, y) � x3 � y3 � 1 es no homogénea. Una ED de primer orden en 
forma diferencial

 M(x, y) dx � N(x, y) dy � 0 (1)

se dice que es homogénea* si ambas funciones coefi cientes M y N son ecuaciones ho-
mogéneas del mismo grado. En otras palabras, la ecuación (1) es homogénea si

 M(tx, ty) � t�M(x, y) y N(tx, ty) = t�N(x, y). 

Además, si M y N son funciones homogéneas de grado a, podemos escribir

 M(x, y) � x�M(1, u) y N(x, y) � x�N(1, u) donde u � y/x, (2)

y

 M(x, y) � y�M(v, 1) y N(x, y) � y�N(v, 1) donde v � x/y. (3)

Vea el problema 31 de los ejercicios 2.5. Las propiedades (2) y (3) sugieren las sus-
tituciones que se pueden usar para resolver una ecuación diferencial homogénea. En 
concreto, cualquiera de las sustituciones y � ux o x � vy, donde u y v son las nuevas 
variables dependientes, reducirán una ecuación homogénea a una ecuación diferencial 
de primer orden separable. Para mostrar esto, observe que como consecuencia de (2) 
una ecuación homogénea M(x, y)dx � N(x, y)dy � 0 se puede reescribir como

 x�M(1, u) dx � x�N(1, u) dy � 0  o bien  M(1, u) dx � N(1, u) dy � 0,

donde u � y�x o y � ux. Sustituyendo la diferencial dy � u dx � x du en la última 
ecuación y agrupando términos, obtenemos una ED separable en las variables u y x:

  

  

o .
dx

x
�

N(1, u) du

M(1, u) � uN(1, u)
� 0

 [M(1, u) � uN(1, u)] dx � xN(1, u) du � 0

M(1, u) dx � N(1, u)[u dx � x du] � 0

 

En este momento le damos el mismo consejo que en las secciones anteriores. No memo-
rice nada de aquí (en particular la última fórmula); más bien, cada vez siga el procedi-
miento. Pruebe a partir de la ecuación (3) que las sustituciones x � vy y dx � v dy � y dv 
también conducen a una ecuación separable siguiendo un procedimiento similar.

EJEMPLO 1  Solución de una ED homogénea

Resuelva (x2 � y2) dx � (x2 � xy) dy � 0.

SOLUCIÓN  Examinando a M(x, y) � x2 � y2 y a N(x, y) � x2 � xy se muestra que 
estas funciones coefi cientes son homogéneas de grado 2. Si hacemos y � ux, entonces 

*Aquí la palabra homogénea no signifi ca lo mismo que en la sección 2.3. Recuerde que una ecuación lineal 
de primer orden a1(x)y a0(x)y g(x) es homogénea cuando g(x) � 0.
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72 ● CAPÍTULO 2  ECUACIONES DIFERENCIALES DE PRIMER ORDEN

dy � u dx � x du, de modo que después de sustituir, la ecuación dada se convierte en

  

  

  

.1
2

1 u
du

dx

x
0

1 u

1 u
du

dx

x
0

x2 (1 u) dx x3(1 u) du 0

 (x2 u2x2) dx (x2 ux2)[u dx x du] 0

división larga

Después de integrar la última ecuación se obtiene

  

  .�
y

x
� 2 ln� 1 �

y

x � � ln� x � � ln�c �

�u � 2 ln� 1 � u � � ln� x � � ln� c �

; sustituyendo de nuevo u � y�x

Utilizando las propiedades de los logaritmos, podemos escribir la solución anterior como

 .
(x y)2

cx

y

x
o (x y)2 cxey/xln  

Aunque cualquiera de las soluciones indicadas se puede usar en toda ecuación 
diferencial homogénea, en la práctica se intenta con x � vy cuando la función M(x, y) 
sea más fácil que N(x, y). También podría ocurrir que después de utilizar una sustitu-
ción, podemos encontrar integrales que son difíciles o imposibles de evaluar en forma 
cerrada; y el cambiar las sustituciones puede facilitar el problema.

ECUACIÓN DE BERNOULLI  La ecuación diferencial

 ,
dy

dx
� P(x)y � f (x)y n  (4)

donde n es cualquier número real, se llama ecuación de Bernoulli. Observe que para 
n � 0 y n � 1, la ecuación (4) es lineal. Para n ã 0 y n ã 1 la sustitución u � y1�n 
reduce cualquier ecuación de la forma (4) a una ecuación lineal.

EJEMPLO 2  Solución de una ED de Bernoulli

Resuelva x
dy

dx
� y � x2y2.

SOLUCIÓN  Primero reescribimos la ecuación como

 
dy

dx
�

1

x
y � xy2

 

al dividir entre x. Con n � 2 tenemos u � y�1 o y � u�1. Entonces sustituimos

 
dy

dx
�

dy

du

du

dx
� �u�2 du

dx
; Regla de la cadena 

en la ecuación dada y simplifi cando. El resultado es

 .
du

dx
�

1

x
u � �x  
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El factor integrante para esta ecuación lineal en, digamos, (0, �) es

  

Integrando 

.

d

dx
 [x�1u] � �1

e��dx/x � e�ln x � eln x�1
� x�1

 

se obtiene x�1u � �x � c o u � �x2 � cx. Puesto que u � y�1, tenemos que y � 1�u, 
así una solución de la ecuación dada es y � 1�(�x2 � cx). 

Observe que no hemos obtenido una solución general de la ecuación diferencial 
no lineal original del ejemplo 2 ya que y � 0 es una solución singular de la ecuación.

REDUCCIÓN A SEPARACIÓN DE VARIABLES  Una ecuación diferencial de la 
forma 

 
dy

dx
� f (Ax � By � C)  (5)

Se puede siempre reducir a una ecuación con variables separables por medio de la 
sustitución u � Ax � By � C, B ã 0. El ejemplo 9 muestra la técnica.

EJEMPLO 3  Un problema con valores iniciales

Resuelva  
dy

dx
� (�2x � y)2 � 7,  y(0) � 0.

SOLUCIÓN  Si hacemos u � �2x � y, entonces du�dx � �2 � dy�dx, por lo que la 
ecuación diferencial se expresa como

 .
du

dx
� 2 � u2 du

dx
� u2 � 9� 7    o     

La última ecuación es separable. Utilizando fracciones parciales

 
du

(u � 3)(u � 3)

1

6 �
1

u � 3
�

1

u � 3� du � dx� dx    o     

y después de integrar se obtiene

 
.

1

6
 ln

u 3

u 3
x c1 o

u 3

u 3
e6x 6c1 ce6x e6c1odneyutitsus por c

Despejando u de la última ecuación y resustituyendo a u en términos de x y y, se ob-
tiene la solución

 .u �
3(1 � ce6x)

1 � ce6x

3(1 � ce6x)

1 � ce6x    o    y � 2x �  (6)

Por último, aplicando la condición inicial y(0) � 0 a la última ecuación en (6) se ob-
tiene c � �1. La fi gura 2.5.1, obtenida con la ayuda de un programa de grafi cación, 

muestra en azul oscuro la gráfi ca de la solución particular y � 2x �
3(1 � e6x)

1 � e6x  junto 

con las gráfi cas de algunos otros miembros de la familia de soluciones (6). 

x

y

FIGURA 2.5.1  Algunas soluciones de 
y� � (�2x � y)2 � 7.
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74 ● CAPÍTULO 2  ECUACIONES DIFERENCIALES DE PRIMER ORDEN

EJERCICIOS 2.5  Las respuestas a los problemas con número impar comienzan en la página RES-2.

Cada una de las ED de los problemas 1-14 es homogénea. 

En los problemas 1 a 10 resuelva la ecuación diferencial dada 
usando las sustituciones adecuadas.

 1. (x � y) dx � x dy � 0  2. (x � y) dx � x dy � 0

 3. x dx � (y � 2x) dy � 0  4. y dx � 2(x � y) dy 

 5. (y2 � yx) dx � x2 dy � 0

 6. (y2 � yx) dx � x2 dy � 0

 7. 

 8. 

 9. 

10. x
dy

dx
� y � 1x2 � y2, x � 0

�y dx � (x � 1xy) dy � 0

dy

dx
�

x � 3y

3x � y

dy

dx
�

y � x

y � x

En los problemas 11 a 14 resuelva el problema con valores 
iniciales dado.

11. 

12. (x2 � 2y2)
dx

dy
� xy, y(�1) � 1

xy2 dy

dx
� y3 � x3, y(1) � 2

13. (x � yey�x) dx � xey�x dy � 0,  y(1) � 0

14. y dx � x(ln x � ln y � 1) dy � 0,  y(1) � e

Cada una de las ED de los problemas 15 a 22 es una ecuación 
de Bernoulli.

En los problemas 15 a 20 resuelva la ecuación diferencial 
dada usando una sustitución adecuada.

15.   
 

16. 

17.   
 

18. 

19. t2 dy

dt
� y2 � ty

dy

dx
� y (xy3 � 1)

x
dy

dx
� y �

1

y2

 20. 3(1 � t2)
dy

dt
� 2ty( y3 � 1)

x
dy

dx
� (1 � x)y � xy2

dy

dx
� y � exy2

En los problemas 21 y 22 resuelva el problema con valores 
iniciales dado.

21. 

22. y1/2 dy

dx
� y3/2 � 1, y(0) � 4

x2 dy

dx
� 2xy � 3y4, y(1) � 1

2

Cada una de las ED de los problemas 23 a 30 es de la forma 
dada en la ecuación (5).

En los problemas 23 a 28 resuelva la ecuación diferencial 
dada usando una sustitución adecuada.

23. 
 

24. 

25. 
 

26. 

27. 
dy

dx
� 2 � 1y � 2x � 3

dy

dx
� tan2(x � y)

dy

dx
� (x � y � 1)2

 
28. 

dy

dx
� 1 � ey�x�5

dy

dx

dy

dx
�

1 � x � y

x � y

� sen(x � y)

En los problemas 29 y 30 resuelva el problema con valores 
iniciales dado.

29. 

30. 
dy

dx
�

3x � 2y

3x � 2y � 2
, y (�1) � �1

dy

dx
� cos(x � y), y(0) � �>4

Problemas para analizar

31.  Explique por qué es posible expresar cualquier ecuación di -
ferencial homogénea M(x, y) dx � N(x, y) dy � 0 en la forma

.
dy

dx
� F �y

x	
  Podría comenzar por demostrar que

    M(x, y) � x�M(1, y/x)  y  N(x, y) � x�N(1, y/x).

32. Ponga la ecuación diferencial homogénea

(5x2 � 2y2) dx � xy dy � 0

  en la forma dada en el problema 31.

33. a)  Determine dos soluciones singulares de la ED en el 
problema 10.

  b)  Si la condición inicial y(5) � 0 es como se indicó para 
el problema 10, entonces ¿cuál es el intervalo I de de-
fi nición más grande en el cual está defi nida la solu-
ción? Utilice un programa de grafi cación para obtener 
la gráfi ca de la curva solución para el PVI.

34. En el ejemplo 3 la solución y(x) es no acotada conforme 
x : 
�. Sin embargo, y(x) es asintótica a una curva con-
forme x : �� y a una diferente curva conforme x : �. 
¿Cuáles son las ecuaciones de estas curvas?

35. La ecuación diferencial dy�dx � P(x) � Q(x)y � R(x)y2 
se conoce como la ecuación de Riccati.

  a)  Una ecuación de Riccati se puede resolver por dos 
sustituciones consecutivas, siempre y cuando conoz-
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camos una solución particular, y
1
, de la ecuación. 

Muestre que la sustitución y � y
1
 � u reduce la ecua-

ción de Riccati a una ecuación de Bernoulli (4) con 
n � 2. La ecuación de Bernoulli se puede entonces 
reducir a una ecuación lineal sustituyendo w � u�1. 

  b)  Determine una familia uniparamétrica de soluciones 
de la ecuación diferencial

dy

dx
� �

4

x2 �
1

x
y � y2

    donde y
1
 � 2�x es una solución conocida de la ecua-

ción.

36. Determine una sustitución adecuada para resolver

xy� � y ln(xy).

Modelos matemáticos

37. Cadena cayendo  En el problema 45 de los ejercicios 
2.4 vimos que un modelo matemático para la velocidad v 

de una cadena que se desliza por el borde de una plata-
forma horizontal es

.xv
dv

dx
� v2 � 32x

  En ese problema se le pidió que resolviera la ED convir-
tiéndola en una ecuación exacta usando un factor inte-
grante. Esta vez resuelva la ED usando el hecho de que es 
una ecuación de Bernoulli.

38. Crecimiento de la población  En el estudio de la pobla-
ción dinámica uno de los más famosos modelos para un 
crecimiento poblacional limitado es la ecuación logística

,
dP

dt
� P(a � bP)

  donde a y b son constantes positivas. Aunque retomaremos 
esta ecuación y la resolveremos utilizando un método al-
ternativo en la sección 3.2, resuelva la ED por esta primera 
vez usando el hecho de que es una ecuación de Bernoulli.

2.6 UN MÉTODO NUMÉRICO

INTRODUCCIÓN  Una ecuación diferencial dy�dx � f (x, y) es una fuente de información. Comen-
zaremos este capítulo observando que podríamos recolectar información cualitativa de una ED de 
primer orden respecto a sus soluciones aun antes de intentar resolver la ecuación. Entonces en las sec-
ciones 2.2 a 2.5 examinamos a las ED de primer orden analíticamente, es decir, desarrollamos algunos 
procedimientos para obtener soluciones explícitas e implícitas. Pero una ecuación diferencial puede 
tener una solución aun cuando no podamos obtenerla analíticamente. Así que para redondear el esquema  
de los diferentes tipos de análisis de las ecuaciones diferenciales, concluimos este capítulo con un mé-
todo con el cual podemos “resolver” la ecuación diferencial numéricamente; esto signifi ca que la ED se 
utiliza como el principio básico de un algoritmo para aproximar a la solución desconocida.

En esta sección vamos a desarrollar únicamente el más sencillo de los métodos numéricos, un 
método que utiliza la idea de que se puede usar una recta tangente para aproximar los valores de una 
función en una pequeña vecindad del punto de tangencia. En el capítulo 9 se presenta un tratamiento 
más extenso de los métodos numéricos.

USANDO LA RECTA TANGENTE  Suponemos que el problema con valores iniciales

 y′ � f (x, y), y(x
0
) � y

0
 (1)

tiene una solución. Una manera de aproximar esta solución es usar rectas tangentes. Por 
ejemplo, sea que y(x) denote la solución incógnita para el problema con valores inicia-
les y 0.11y 0.4x2, y(2) 4. La ecuación diferencial no lineal en este PVI no 
se puede resolver directamente por cualquiera de los métodos considerados en las sec-
ciones 2.2, 2.4 y 2.5; no obstante, aún podemos encontrar valores numéricos aproxi-
mados de la incógnita y(x). En concreto, supongamos que deseamos conocer el valor 
de y(2, 5). El PVI tiene una solución y como el fl ujo del campo direccional de la ED 
en la fi gura 2.6.1a sugiere, una curva solución debe tener una forma similar a la curva 
que se muestra en azul.

El campo direccional de la fi gura 2.6.1a se generó con elementos lineales que pasan 
por puntos de una malla de coordenadas enteras. Puesto que la curva solución pasa por el 
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76 ● CAPÍTULO 2  ECUACIONES DIFERENCIALES DE PRIMER ORDEN

punto inicial (2, 4), el elemento lineal en este punto es una recta tangente con pendiente 
dada por  f (2, 4) 0.114 0.4(2)2 1.8. Como se muestra en la fi gura 2.6.1a y el 
“zoom in” (acercamiento) de la fi gura 2.6.1b, cuando x está cerca de 2, los puntos en la 
curva solución están cerca de los puntos de la recta tangente (el elemento lineal). Utilizando 
el punto (2, 4), la pendiente f (2, 4) � 1.8 y la forma punto pendiente de una recta, encon-
tramos que una ecuación de la recta tangente es y  � L(x), donde L(x) � 1.8x � 0.4. Esta 
última ecuación se llama linealización de y(x) en x � 2 que se puede utilizar para aproxi-
mar los valores dentro de una pequeña vecindad de x � 2. Si y

1
 � L(x

1
) denota la coorde-

nada y en la recta tangente y y(x
1
) es la coordenada y de la curva solución correspondiente 

a una coordenada x, x
1
 que está cerca de x � 2, entonces y(x

1
) � y

1
. Si elegimos, x

1
 � 2.1, 

entonces y
1
 � L(2.1) � 1.8(2.1) � 0.4 � 4.18, entonces y(2.1) � 4.18.

2

(2, 4) pendiente
m  = 1.8 

x

y

2

4

_2

a) campo direccional para y � 0. b) elemento lineal 
en (2, 4). 

curva 
solución

FIGURA 2.6.1  Amplifi cación de una vecindad del punto (2, 4).

curva solución

x

y

x1 = +x0 hx0

L(x)

(x0, y0)
(x1, y1)

h

(x1, y(x1))

pendiente = f(x0, y0)

error

FIGURA 2.6.2  Aproximación de y(x
1
) 

usando una recta tangente. 

MÉTODO DE EULER  Para generalizar el procedimiento que acabamos de ilustrar, 
usamos la linealización de una solución incógnita y(x) de (1) en x � x

0
:

 .L(x) � y0 � f (x0, y0)(x � x0)  (2)

La gráfi ca de esta linealización es una recta tangente a la gráfi ca de y � y (x) en el punto 
(x

0
, y

0
). Ahora hacemos que h sea un incremento positivo del eje x, como se muestra en 

la fi gura 2.6.2. Entonces sustituyendo x por x
1
 � x

0
 � h en la ecuación (2), obtenemos

 ,L(x1) � y0 � f (x0, y0)(x0 0 1 � y0 � h f (x1, y1)� h � x )    o    y  

donde y
1
 � L(x

1
). El punto (x

1
, y

1
) en la recta tangente es una aproximación del 

punto (x
1
, y(x

1
)) sobre la curva solución. Por supuesto, la precisión de la aproxima-

ción L(x
1
) � y(x

1
) o y

1
 � y(x

1
) depende fuertemente del tamaño del incremento h. 

Normalmente debemos elegir este tamaño de paso para que sea “razonablemente 
pequeño”. Ahora repetimos el proceso usando una segunda “recta tangente” en (x

1
, 

y
1
).* Identifi cando el nuevo punto inicial como (x

1
, y

1
) en lugar de (x

0
, y

0
) del análisis 

anterior, obtenemos una aproximación y
2
 � y(x

2
) correspondiendo a dos pasos de lon-

gitud h a partir de x
0
, es decir, x

2
 � x

1
 � h � x

0
 � 2h, y

 .y(x2) � y(x0 � 2h) � y(x1 � h) � y2 � y1 � h f (x1, y1)  
Continuando de esta manera, vemos que y

1
, y

2
, y

3
, . . . , se puede defi nir recursivamente 

mediante la fórmula general

 ,yn�1 � yn � h f (xn, yn)  (3)

donde x
n
 � x

0
 � nh, n � 0, 1, 2, . . . Este procedimiento de uso sucesivo de las “rectas 

tangentes” se llama método de Euler.

*Esta no es una recta tangente real, ya que (x
1
, y

1
) está sobre la primera tangente y no sobre la curva solución.

08367_02_ch02_p034-081-ok.indd   7608367_02_ch02_p034-081-ok.indd   76 6/4/09   12:16:35 PM6/4/09   12:16:35 PM



EJEMPLO 1  Método de Euler

Considere el problema con valores iniciales y� � 0.11y � 0.4x2, y(2) � 4 Utilice 
el método de Euler para obtener una aproximación de y(2.5) usando primero h � 0.1 
y después h � 0.05.

SOLUCIÓN  Con la identifi cación f (x, y) � 0.11y � 0.4x2 la ecuación (3) se con-
vierte en

 .yn�1 � yn � h(0.11yn � 0.4xn
2)  

Entonces para h � 0.1, x
0
 � 2, y

0
 � 4 y n � 0 encontramos

 ,y1 � y0 � h(0.11y0 � 0.4x0
2) � 4 � 0.1(0.114 � 0.4(2)2) � 4.18

 
que, como ya hemos visto, es una estimación del valor y(2.1). Sin embargo, si usamos el 
paso de tamaño más pequeño h � 0.05, le toma dos pasos alcanzar x � 2.1. A partir de

 y2 � 4.09 � 0.05(0.114.09 � 0.4(2.05)2) � 4.18416187

y1 � 4 � 0.05(0.114 � 0.4(2)2) � 4.09

 

tenemos y
1
 � y(2.05) y y

2
 � y(2.1). El resto de los cálculos fueron realizados usando 

un paquete computacional. En las tablas 2.1 y 2.2 se resumen los resultados, donde 
cada entrada se ha redondeado a cuatro lugares decimales. Vemos en las tablas 2.1 y 
2.2 que le toma cinco pasos con h � 0.1 y 10 pasos con h � 0.05, respectivamente, 
para llegar a x � 2.5. Intuitivamente, esperaríamos que y

10
 � 5.0997 correspondiente 

a h � 0.05  sea la mejor aproximación de y(2.5) que el valor y
5
 � 5.0768 correspon-

diente a h � 0.1. 

En el ejemplo 2 aplicamos el método de Euler para una ecuación diferencial para 
la que ya hemos encontrado una solución. Hacemos esto para comparar los valores de 
las aproximaciones y

n
 en cada caso con los valores verdaderos o reales de la solución 

y(x
n
) del problema con valores iniciales.

EJEMPLO 2  Comparación de los valores aproximados y reales

Considere el problema con valores iniciales y � � 0.2xy, y(1) � 1. Utilice el método de Euler 
para obtener una aproximación de y (1.5) usando primero h � 0.1 y después h � 0.05.

SOLUCIÓN  Con la identifi cación f (x, y) � 0.2xy, la ecuación (3) se convierte en

 y
n�1

 � y
n
 � h(0.2x

n
y

n
) 

donde x
0
 � 1 y y

0
 � 1. De nuevo con la ayuda de un paquete computacional obtenga 

los valores de las tablas 2.3 y 2.4.

TABLA 2.1  h � 0.1

x
n
 y

n

2.00 4.0000
2.10 4.1800
2.20 4.3768
2.30 4.5914
2.40 4.8244
2.50 5.0768

TABLA 2.2  h � 0.05

x
n
 y

n

2.00 4.0000
2.05 4.0900
2.10 4.1842
2.15 4.2826
2.20 4.3854
2.25 4.4927
2.30 4.6045
2.35 4.7210
2.40 4.8423
2.45 4.9686
2.50 5.0997

TABLA 2.3  h � 0.1

x
n
 y

n
 Valor real Error absoluto % Error relativo

1.00 1.0000 1.0000 0.0000 0.00
1.10 1.0200 1.0212 0.0012 0.12
1.20 1.0424 1.0450 0.0025 0.24
1.30 1.0675 1.0714 0.0040 0.37
1.40 1.0952 1.1008 0.0055 0.50
1.50 1.1259 1.1331 0.0073 0.64

TABLA 2.4  h � 0.05

x
n
 y

n
 Valor real Error absoluto % Error relativo

1.00 1.0000 1.0000 0.0000 0.00
1.05 1.0100 1.0103 0.0003 0.03
1.10 1.0206 1.0212 0.0006 0.06
1.15 1.0318 1.0328 0.0009 0.09
1.20 1.0437 1.0450 0.0013 0.12
1.25 1.0562 1.0579 0.0016 0.16
1.30 1.0694 1.0714 0.0020 0.19
1.35 1.0833 1.0857 0.0024 0.22
1.40 1.0980 1.1008 0.0028 0.25
1.45 1.1133 1.1166 0.0032 0.29
1.50 1.1295 1.1331 0.0037 0.32
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78 ● CAPÍTULO 2  ECUACIONES DIFERENCIALES DE PRIMER ORDEN

En el ejemplo 1 se calcularon los valores verdaderos o reales de la solución cono-
cida y � e0.1(x2−1) . (Compruebe.) El error absoluto se defi ne como

 
 valor real – aproximado 
. 

El error relativo y el error relativo porcentual son, respectivamente,

 error absoluto  error absoluto
 
 valor real 
 y 
 valor real 
 

× 100.

Es evidente de las tablas 2.3 y 2.4 que la precisión de las aproximaciones mejora 
conforme disminuye el tamaño del paso h. También nosotros vemos esto aun cuando 
el error relativo porcentual esté creciendo en cada paso, no parece estar mal. Pero no 
debe engañarse por un ejemplo. Si simplemente cambiamos el coefi ciente del lado de-
recho de la ED del ejemplo 2 de 0.2 a 2 entonces en x

n
 � 1.5 los errores relativos por-

centuales crecen dramáticamente. Véase el problema 4 del ejercicio 2.6.

UNA ADVERTENCIA  El método de Euler es sólo uno de los diferentes métodos en 
los que se puede aproximar una solución de una ecuación diferencial. Aunque por su 
sencillez es atractivo, el método de Euler rara vez se usa en cálculos serios. Aquí se ha 
presentado sólo para dar un primer esbozo de los métodos numéricos. En el capítulo 9 
trataremos en detalle el análisis de los métodos numéricos que tienen mucha precisión, 
en especial el método de Runge-Kutta conocido como el método RK4.

SOLUCIONADORES NUMÉRICOS  Independientemente de si se puede realmente 
encontrar una solución explícita o implícita, si existe una solución de una ecuación 
diferencial, ésta se representa por una curva suave en el plano cartesiano. La idea bá-
sica detrás de cualquier método numérico para las ecuaciones diferenciales ordinarias 
de primer orden es de alguna manera aproximar los valores de y de una solución para 
valores de x preseleccionados. Comenzamos con un punto inicial dado (x

0
, y

0
) de una 

curva solución y procedemos a calcular en un modelo paso por paso una secuencia 
de puntos (x

1
, y

1
), (x

2
, y

2
),…, (x

n
, y

n
) cuyas coordenadas y, y

i
 se aproximan a las coor-

denadas y, y(x
i
) de los puntos (x

1
, y(x

1
)), (x

2
, y(x

2
)), …, (x

n
, y(x

n
)) que yacen sobre la 

gráfi ca de la solución normalmente desconocida y(x). Tomando las coordenadas x más 
cercanas (es decir, para valores pequeños de h) y uniendo los puntos (x

1
, y

1
), (x

2
, y

2
),…, 

(x
n
, y

n
) con segmentos de recta cortos, obtenemos una curva poligonal cuyas caracte-

rísticas cualitativas esperamos sean cercanas a las de una curva solución real. El dibujo 
de curvas es muy adecuado en una computadora. A un programa de cómputo escrito 
para implementar un método numérico o para mostrar una representación visual de 
una solución aproximada que ajusta los datos numéricos producidos por este segundo 
método se le conoce como un solucionador numérico. Comercialmente hay disponi-
bles muchos solucionadores numéricos ya sea que estén integrados en un gran paquete 
computacional, tal como en un sistema algebraico computacional o que sean un pa-
quete autónomo. Algunos paquetes computacionales simplemente dibujan las aproxi-
maciones numéricas generadas, mientras que otros generan pesados datos numéricos 
así como la correspondiente aproximación o curvas solución numérica. En la fi gura 
2.6.3 se presenta a manera de ilustración la conexión natural entre los puntos de las 
gráfi cas producidas por un solucionador numérico, las gráfi cas poligonales pintadas 
con dos colores son las curvas solución numérica para el problema con valores inicia-
les y � � 0.2xy, y(0) � 1 en el intervalo [0, 4] obtenidas de los métodos de Euler y RK4 
usando el tamaño de paso h � 1. La curva suave en azul es la gráfi ca de la solución 
exacta  y � e0.1x2  del PVI. Observe en la fi gura 2.6.3 que, aun con el ridículo tamaño 
de paso de h � 1, el método RK4 produce la “curva solución” más creíble. La curva 
solución numérica obtenida del método RK4 es indistinguible de la curva solución real 
en el intervalo [0, 4] cuando se usa el tamaño de paso usual de h � 0.1.

solución
exacta

(0,1) método
Euler

método
RK4

_1 1 2 3 4 5

y

x

4

5

3

2

1

_1

FIGURA 2.6.3  Comparación de los 
métodos de Runge-Kutta (RK4) y de 
Euler.
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USANDO UN SOLUCIONADOR NUMÉRICO  No es necesario conocer los di-
ferentes métodos numéricos para utilizar un solucionador numérico. Un solucionador 
usualmente requiere que la ecuación diferencial se pueda expresar en la forma normal 
dy�dx � f (x, y). Los solucionadores numéricos que sólo generan curvas requieren que se 
les proporcione f (x, y) y los datos iniciales x

0
 y y

0
 y que se indique el método numérico 

deseado. Si la idea es aproximarse al valor numérico de y(a), entonces un solucionador 
numérico podría requerir además expresar un valor de h o, del mismo modo, dar el nú-
mero de pasos que quiere tomar para llegar de x � x

0
 a x � a. Por ejemplo, si queremos 

aproximar y(4) para el PVI que se muestra en la fi gura 2.6.3, entonces, comenzando en 
x � 0 le tomaría cuatro pasos llegar a x � 4 con un tamaño de paso de h � 1; 40 pasos 
son equivalentes a un tamaño de paso de h � 0.1. Aunque aquí no investigaremos todos 
los problemas que se pueden encontrar cuando se intenta aproximar cantidades matemá-
ticas, al menos debe estar consciente del hecho de que el solucionador numérico puede 
dejar de funcionar cerca de ciertos puntos o dar una incompleta o engañosa imagen 
cuando se aplica a ciertas ecuaciones diferenciales en la forma normal. La fi gura 2.6.4 
muestra la gráfi ca que se obtuvo al aplicar el método de Euler a un problema con valores 
iniciales de primer orden dy�dx � f (x, y), y(0) � 1. Se obtuvieron resultados equiva-
lentes utilizando tres diferentes solucionadores numéricos, sin embargo la gráfi ca di-
fícilmente es una posible curva solución. (¿Por qué?) Hay diferentes caminos de solución 
cuando un solucionador numérico tiene difi cultades; las tres más obvias son disminuir el 
tamaño del paso, usar otro método numérico e intentar con un solucionador diferente.

FIGURA 2.6.4  Una curva solución 
que no ayuda mucho.

x

y

1 2 3 4 5
_1

1
2
3
4
5
6

_2 _1

EJERCICIOS 2.6  Las respuestas a los problemas con número impar comienzan en la página RES-2.

En los problemas 1 y 2 use el método de Euler para obtener 
una aproximación a cuatro decimales del valor indicado, 
ejecute a mano la ecuación de recursión (3), usando primero 
h � 0.1 y después usando h � 0.05.

 1. y� � 2x � 3y � 1, y(1) � 5;  y(1.2)

 2. y� � x � y2, y(0) � 0;  y(0.2)

En los problemas 3 y 4 use el método de Euler para obte-
ner una aproximación a cuatro decimales del valor indicado. 
Primero utilice h � 0.1 y después utilice h � 0.05. Determine 
una solución explícita para cada problema con valores inicia-
les y después construya tablas similares a las tablas 2.3 y 2.4.

 3. y� � y, y(0) � 1;  y(1.0)

 4. y� � 2xy, y(1) � 1;  y(1.5)

En los problemas 5 a 10 use un solucionador numérico y el 
método de Euler para obtener una aproximación a cuatro de-
cimales del valor indicado. Primero utilice h � 0.1 y después 
utilice h � 0.05.

 5. y� � e�y, y(0) � 0;  y(0.5)

 6. y� � x2 � y2, y(0) � 1;  y(0.5)

 7. y� � (x � y)2, y(0) � 0.5;  y(0.5)

 8. y� � xy � 1y, y(0) � 1; y(0.5)

 9. y� � xy2 �
y

x
, y(1) � 1; y(1.5)

10. y� � y � y2, y(0) � 0.5;  y(0.5)

En los problemas 11 y 12 utilice un solucionador para obtener 
una curva solución numérica para el problema con valores iniciales 
dado. Primero utilice el método de Euler y después el método RK4. 
Utilice h � 0.25 en cada caso. Superponga ambas curvas solución 
en los mismos ejes coordenados. Si es posible, utilice un color 
diferente para cada curva. Repita, usando h � 0.1 y h � 0.05.

11. y� � 2(cos x)y,  y(0) � 1

12. y� � y(10 � 2y),  y(0) � 1

Problemas para analizar

13. Use un solucionador numérico y el método de Euler para 
aproximar y(0.1), donde y(x) es la solución de y� � 2xy2, 
y(0) � 1. Primero use h � 0.1 y después use h � 0.05. 
Repita, usando el método RK4. Analice qué podría cau-
sar que las aproximaciones a y(1.0) difi eran mucho.

Tarea para el laboratorio de computación

14. a)  Utilice un solucionador numérico y el método RK4 
para trazar la gráfi ca de la solución del problema con 
valores iniciales y� � �2xy � 1, y(0) � 0.

  b)  Resuelva el problema con valores iniciales por uno de
los procedimientos analíticos desarrollados en las 
secciones anteriores en este capítulo.

  c)  Use la solución analítica y(x) que encontró en el in-
ciso b) y un SAC para determinar las coordenadas de 
todos los extremos relativos.
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80 ● CAPÍTULO 2  ECUACIONES DIFERENCIALES DE PRIMER ORDEN

REPASO DEL CAPÍTULO 2
 Las respuestas a los problemas con número impar 

                                                                                                                                          comienzan en la página RES-3.

Responda los problemas 1 a 4 sin consultar las respuestas del libro. 
Llene los espacios en blanco o responda si es verdadero o falso.

 1. La ED lineal, y � � ky � A, donde k  y A son constantes, 
es autónomo. El punto crítico  de la ecuación 
es un  (atractor o repulsor) para k � 0 y un 

 (atractor o repulsor) para k 	 0.

 2. El problema x � 4y � 0, y(0) � k
dy

dx
, tiene un número

 infi nito de soluciones para k �  y no tiene so-
lución para k � .

 3. La ED lineal, y � � k
1
y � k

2
, donde k

1 
y k

2
 son constantes 

distintas de cero, siempre tiene una solución constante. 

 4. La ED lineal, a
1
(x)y� � a

2
(x)y � 0 es también separable.  

En los problemas 5 y 6 construya una ecuación diferencial de 
primer orden dy�dx � f (y) cuyo esquema de fase es consis-
tente con la fi gura dada.

 5. 

1

3

y

FIGURA 2.R.1  Gráfi ca del problema 5.

 6. 

0

2

4

y

FIGURA 2.R.2  Gráfi ca del problema 6.

 7. El número 0 es un punto crítico de la ecuación diferen-
cial autónoma dx�dt � xn, donde n es un entero positivo. 
¿Para qué valores de n es 0 asintóticamente estable? 
¿Semiestable? ¿Inestable? Repita para la ecuación dife-
rencial dx�dt � �xn.

 8. Considere la ecuación diferencial dP / dt � f (P), donde 

 f (P) � �0.5P3 � 1.7P � 3.4.

 La función f (P) tiene una raíz real, como se muestra en la 
fi gura 2.R.3. Sin intentar resolver la ecuación diferencial, 
estime el valor de lím

t→�
 P(t).

FIGURA 2.R.4  Parte de un campo direccional del problema 9.

P1

1

f

FIGURA 2.R.3  Gráfi ca del problema 8.

 9. La fi gura 2.R.4 es una parte de un campo direccional de 
una ecuación diferencial dy�dx � f (x, y). Dibuje a mano 
dos diferentes curvas solución, una que es tangente al ele-
mento lineal que se muestra en negro y el otro que es tan-
gente al elemento lineal que se muestra de color (rojo).

10. Clasifi que cada ecuación diferencial como separable, 
exacta, lineal, homogénea o Bernoulli. Algunas ecuacio-
nes pueden ser de más de una clase. No las resuelva.

 a) 
dy

dx
�

x � y

x
 b) 

dy

dx
�

1

y � x

 c) (x � 1)
dy

dx
� �y � 10  d) 

dy

dx
�

1

x(x � y)

 e) 
dy

dx
�

y2 � y

x2 � x
 f ) 

dy

dx
� 5y � y2

 g) y dx � (y � xy2) dy h) x
dy

dx
� yex/y � x

 i) xy y� � y2 � 2x j) 2xy y� � y2 � 2x2

 k) y dx � x dy � 0

 l) �x2 �
2y

x 	 dx � (3 � ln x2) dy

 m) 
dy

dx
�

x

y
�

y

x
� 1  n) 

y

x2

dy

dx
� e2x3�y2

� 0
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En los problemas resuelva la ecuación diferencial dada.

11. (y2 � 1) dx � y sec2 x dy

12. y(ln x � ln y) dx � (x ln x � x ln y � y) dy

13. (6x � 1)y2 dy

dx
� 3x2 � 2y3 � 0

14. 
dx

dy
� �

4y2 � 6xy

3y2 � 2x

15. t
dQ

dt
� Q � t 4 ln t

16. (2x � y � 1)y� � 1

17. (x2 � 4) dy � (2x � 8xy) dx

18. (2r2 cos u sen u � r cos u) du

� (4r � sen u � 2r cos2 u) dr � 0

En los problemas 19 y 20 resuelva el problema con valores 
iniciales dado e indique el intervalo I más largo en el que la 
solución está defi nida.

19. senx
dy

dx
(cos x)y 0, y

7

6
2

20. 
dy

dt
2(t 1)y2 0, y(0) 1

8

21. a)  Sin resolver, explique por qué el problema con valores 
iniciales

dy

dx
� 1y,  y(x0) � y0

  no tiene solución para y
0
 	 0.

 b)  Resuelva el problema con valores iniciales del inciso 
a) para y

0
 � 0 y determine el intervalo I más largo en 

el que la solución está defi nida.

22. a)  Determine una solución implícita del problema con 
valores iniciales

.
dy

dx
�

y2 � x2

xy
,  y(1) � �12

 b)  Determine una solución explícita del problema del 
inciso a) e indique el intervalo de solución más largo 
de I en el que la solución está defi nida. Aquí puede 
ser útil un programa de grafi cación.

23. En la fi gura 2.R.5 se presentan las gráfi cas de algunos miem-
bros de una familia de soluciones para una ecuación dife-
rencial de primer orden dy�dx � f (x, y). Las gráfi cas de dos 
soluciones implícitas, una que pasa por el punto (1, �1) y la 
otra que pasa por (�1, 3) se muestran en rojo. Reproduzca 
la fi gura en una hoja. Con lápices de colores trace las curvas 
solución para las soluciones y � y

1
(x) y y � y

2
(x) defi nidas 

por las soluciones implícitas tales como y
1
(1) � �1 y y

2
(�1) 

� 3, respectivamente. Estime los intervalos en los que las 
soluciones y � y

1
(x) y y � y

2
(x) están defi nidas.

x

y

FIGURA 2.R.5  Gráfi ca para el problema 23.

24. Utilice el método de Euler con tamaño de paso h � 0.1 
para aproximar y(1.2), donde y(x) es una solución del pro-
blema con valores iniciales , y(1) 9.y 1 x1y

En los problemas 25 y 26 cada fi gura representa una parte de 
un campo direccional de una ecuación diferencial de primer 
orden dy�dx � f (y). Reproduzca esta fi gura en una hoja y des-
pués termine el campo direccional sobre la malla. Los puntos 
de la malla son (mh, nh) donde h � 1

2, m y n son enteros, �7 
� m � 7, �7 � n � 7. En cada campo direccional dibuje a 
mano una curva solución aproximada que pase por cada uno 
de los puntos sólidos mostrados en rojo. Analice: ¿parece que 
la ED tiene puntos críticos en el intervalo �3.5 � m � 3.5? 
Si es así, clasifi que los puntos críticos como asintóticamente 
estables, inestables o semiestables.

25. 

26. 

FIGURA 2.R.7  Parte de un campo direccional del problema 26.

x

321_1_2_3

_3
_2
_1

1
2
3

y

x

321_1_2_3

_3
_2
_1

1
2
3

y

FIGURA 2.R.6  Parte de un campo direccional del problema 25.

REPASO DEL CAPÍTULO 2 ● 81

08367_02_ch02_p034-081-ok.indd   8108367_02_ch02_p034-081-ok.indd   81 6/4/09   12:16:41 PM6/4/09   12:16:41 PM



82

3.1 Modelos lineales

3.2 Modelos no lineales

3.3 Modelado con sistemas de ED de primer orden

REPASO DEL CAPÍTULO 3

En la sección 1.3 vimos cómo se podría utilizar una ecuación diferencial de 

primer orden como modelo matemático en el estudio de crecimiento poblacional, 

decaimiento radiactivo, interés compuesto continuo, enfriamiento de cuerpos, 

mezclas, reacciones químicas, drenado del fl uido de un tanque, velocidad de un 

cuerpo que cae y corriente en un circuito en serie. Utilizando los métodos del 

capítulo 2 ahora podemos resolver algunas de las ED lineales (sección 3.1) y ED 

no lineales (sección 3.2) que aparecen comúnmente en las aplicaciones. El capítulo 

concluye con el siguiente paso natural: en la sección 3.3 examinamos cómo surgen 

sistemas de ED como modelos matemáticos en sistemas físicos acoplados (por 

ejemplo, una población de predadores como los zorros que interactúan con una 

población de presas como los conejos).

MODELADO CON ECUACIONES 
DIFERENCIALES DE PRIMER ORDEN3

08367_03_ch03_p082-116-ok.indd   8208367_03_ch03_p082-116-ok.indd   82 6/4/09   12:17:02 PM6/4/09   12:17:02 PM



MODELOS LINEALES

REPASO DE MATERIAL
● Ecuación diferencial como modelo matemático en la sección 1.3.
● Leer nuevamente “Solución de una ecuación diferencial lineal de primer orden”, página 55 en la 

sección 2.3.

INTRODUCCIÓN  En esta sección resolvemos algunos de los modelos lineales de primer orden 
que se presentaron en la sección 1.3.

3.1

CRECIMIENTO Y DECAIMIENTO  El problema con valores iniciales

 ,
dx

dt
� kx,  x(t0) � x0  (1)

donde k es una constante de proporcionalidad, sirve como modelo para diferentes fe-
nómenos que tienen que ver con crecimiento o decaimiento. En la sección 1.3 vimos 
que en las aplicaciones biológicas la razón de crecimiento de ciertas poblaciones (bac-
terias, pequeños animales) en cortos periodos de tiempo es proporcional a la población 
presente en el tiempo t. Si se conoce la población en algún tiempo inicial arbitrario t

0
, 

la solución de la ecuación (1) se puede utilizar para predecir la población en el futuro, 
es decir, a tiempos t � t

0
. La constante de proporcionalidad k en la ecuación (1) se de-

termina a partir de la solución del problema con valores iniciales, usando una medida 
posterior de x al tiempo t

1
 � t

0
. En física y química la ecuación (1) se ve en la forma de 

una reacción de primer orden, es decir, una reacción cuya razón, o velocidad, dx�dt es 
directamente proporcional a la cantidad x de sustancia que no se ha convertido o que 
queda al tiempo t. La descomposición, o decaimiento, de U-238 (uranio) por radiacti-
vidad en Th-234 (torio) es una reacción de primer orden.

EJEMPLO 1  Crecimiento de bacterias

Inicialmente un cultivo tiene un número P
0
 de bacterias. En t � 1 h se determina que 

el número de bacterias es 3
2P0

. Si la razón de crecimiento es proporcional al número 
de bacterias P(t) presentes en el tiempo t, determine el tiempo necesario para que se 
triplique el número de bacterias.

SOLUCIÓN  Primero se resuelve la ecuación diferencial (1), sustituyendo el símbolo 
x por P. Con t

0
 � 0 la condición inicial es P(0) � P

0
. Entonces se usa la observación 

empírica de que P(1) � 3
2P0

 para determinar la constante de proporcionalidad k.
Observe que la ecuación diferencial dP�dt � kP es separable y lineal. Cuando se 

pone en la forma estándar de una ED lineal de primer orden,

 ,
dP

dt
� kP � 0  

se ve por inspección que el factor integrante es e�kt. Multiplicando ambos lados de la 
ecuación e integrando se obtiene, respectivamente,

 .
d

dt
 [e�kt �ktP � cP] � 0     y     e  

Por tanto P(t) cekt. En t � 0 se tiene que P
0
 � ce0 � c, por tanto P(t) � P

0
ekt. En 

t � 1 se tiene que 3
2P0

 � P
0
ek, o ek � 3

2. De la última ecuación se obtiene k � 1n 3
2 � 

0.4055, por tanto P(t) � P
0
e0.4055t. Para determinar el tiempo en que se ha triplicado el 

número de bacterias, resolvemos 3P
0
 � P

0
e0.4055t para t. Entonces 0.4055t � 1n 3, o

 .t �
ln 3

0.4055
� 2.71 h  

Vea la fi gura 3.1.1. 

t

P

3P0

P0

t =  2.71

P(t) = P0e0.4055t

FIGURA 3.1.1  Tiempo en que se 
triplica la población.
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84 ● CAPÍTULO 3  MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN

Observe en el ejemplo 1 que el número real P
0
 de bacterias presentes en el tiempo 

t � 0 no tiene que ver en el cálculo del tiempo que se requirió para que el número de bac-
terias en el cultivo se triplique. El tiempo necesario para que se triplique una población 
inicial de, digamos, 100 o 1 000 000 de bacterias es de aproximadamente 2.71 horas.

Como se muestra en la fi gura 3.1.2, la función exponencial ekt aumenta conforme 
crece t para k � 0 y disminuye conforme crece t para k � 0. Así los problemas que descri-
ben el crecimiento (ya sea de poblaciones, bacterias o aun de capital) se caracterizan por un 
valor positivo de k, en tanto que los problemas relacionados con decaimiento (como en la 
desintegración radiactiva) tienen un valor k negativo. De acuerdo con esto, decimos que k 
es una constante de crecimiento (k � 0) o una constante de decaimiento (k � 0).

VIDA MEDIA  En física la vida media es una medida de la estabilidad de una sus-
tancia radiactiva. La vida media es, simplemente, el tiempo que tarda en desintegrarse 
o transmutarse en otro elemento la mitad de los átomos en una muestra inicial A

0
. 

Mientras mayor sea la vida media de una sustancia, más estable es la sustancia. Por 
ejemplo, la vida media del radio altamente radiactivo Ra-226 es de aproximadamente 
1 700 años. En 1 700 años la mitad de una cantidad dada de Ra-226 se transmuta en 
radón, Rn-222. El isótopo más común del uranio, U-238, tiene una vida media de 
4 500 000 000 años. En aproximadamente 4.5 miles de millones de años la mitad 
de una cantidad de U-238 se transmuta en plomo 206.

EJEMPLO 2  Vida media del plutonio

Un reactor de cría convierte uranio 238 relativamente estable en el isótopo plutonio 
239. Después de 15 años, se ha determinado que 0.043% de la cantidad inicial A

0
 de 

plutonio se ha desintegrado. Determine la vida media de ese isótopo, si la razón de 
desintegración es proporcional a la cantidad que queda.

SOLUCIÓN  Sea A(t) la cantidad de plutonio que queda al tiempo t. Como en el ejem-
plo 1, la solución del problema con valores iniciales 

 
dA

dt
� kA,  A(0) � A0 

es A(t) � A
0
ekt. Si se ha desintegrado 0.043% de los átomos de A

0
, queda 99.957%. 

Para encontrar la constante k, usamos 0.99957A
0
 � A(15), es decir, 099957 

A
0
 � A

0
e15k. Despejando k se obtiene k � 1

15 1n 0.99957 � �0.00002867. Por tanto 
A(t) � A

0
e−0.00002867t. Ahora la vida media es el valor del tiempo que le corresponde a 

A(t) � 1
2  A0

. Despejando t se obtiene 1
2 A0

 � A
0
e−0.00002867t o 1

2  � e−0.00002867t. De la última 
ecuación se obtiene

 .t
ln 2

0.00002867
24,180 años  

FECHADO CON CARBONO  Alrededor de 1950, el químico Willard Libby inventó 
un método que utiliza al carbono radiactivo para determinar las edades aproximadas 
de fósiles. La teoría del fechado con carbono, se basa en que el isótopo carbono 14 se 
produce en la atmósfera por acción de la radiación cósmica sobre el nitrógeno. La razón 
de la cantidad de C-l4 con el carbono ordinario en la atmósfera parece ser constante y, 
en consecuencia, la cantidad proporcional del isótopo presente en todos los organismos 
vivos es igual que la de la atmósfera. Cuando muere un organismo cesa la absorción 
del C-l4 sea por respiración o alimentación. Así, al comparar la cantidad proporcional de 
C-14 presente, por ejemplo en un fósil con la razón constante que hay en la atmósfera, es 
posible obtener una estimación razonable de la edad del fósil. El método se basa en que 
se sabe que la vida media del C-l4 radiactivo es de aproximadamente 5 600 años. Por 
este trabajo, Libby obtuvo el Premio Nobel de química en 1960. El método de Libby se 

t

ekt, k > 0
crecimiento

ekt, k < 0
crecimiento

y

FIGURA 3.1.2  Crecimiento (k � 0) y 
decaimiento (k � 0).
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ha utilizado para fechar los muebles de madera en las tumbas egipcias y las envolturas 
de lino de los rollos del Mar Muerto y la tela del enigmático sudario de Turín.

EJEMPLO 3  Edad de un fósil

Se encuentra que un hueso fosilizado contiene la centésima parte de la cantidad de 
C-14 encontrada en la materia viva. Determine la edad del fósil.

SOLUCIÓN  El punto de partida es, de nuevo, A(t) � A
0
ekt. Para determinar el valor de la 

constante de decaimiento k, usamos el hecho de que A0 0 � A0e5600k.1
2

1
2 � A(5600) o  A  

De 5600k � ln � �ln 21
2 , obtenemos k � �(1n 2)/5600 � �0.00012378, por tanto 

A(t) � A
0
e�0.00012378t. Con A0 A0 � A0e�0.00012378t,1

1000
1

1000A(t) � tenemos  por lo que 
�0.00012378t � ln � �ln 10001

1000 . Así la edad del fósil es aproximadamente

 .t
ln 1000

0.00012378
55 800 años  

En realidad, la edad determinada en el ejemplo 3 está en el límite de exactitud del 
método. Normalmente esta técnica se limita a aproximadamente 9 vidas medias 
del isótopo, que son aproximadamente 50 000 años. Una razón para esta limitante es que 
el análisis químico necesario para una determinación exacta del C-l4 que queda, presenta 
obstáculos formidables cuando se alcanza el punto de  1

1000
 A

0
. También, en este método 

se necesita destruir gran parte de la muestra. Si la medición se realiza indirectamente, 
basándose en la radiactividad existente en la muestra, es muy difícil distinguir la radia-
ción que procede del fósil de la radiación de fondo normal.* Pero recientemente, con los 
aceleradores de partículas los científi cos han podido separar al C-l4 del estable C-12. 
Cuando se calcula la relación exacta de C-l4 a C-12, la exactitud de este método se puede 
ampliar hasta 70 000 a 100 000 años. Hay otras técnicas isotópicas, como la que usa 
potasio 40 y argón 40, adecuadas para establecer edades de varios millones de años.† A 
veces, también es posible aplicar métodos que se basan en el empleo de aminoácidos.

LEY DE NEWTON DEL ENFRIAMIENTO/CALENTAMIENTO  En la ecuación 
(3) de la sección 1.3 vimos que la formulación matemática de la ley empírica de 
Newton del enfriamiento/calentamiento de un objeto, se expresa con la ecuación dife-
rencial lineal de primer orden

 ,
dT

dt
� k(T � Tm)  (2)

donde k es una constante de proporcionalidad, T(t) es la temperatura del objeto para 
t � 0, y T

m
 es la temperatura ambiente, es decir, la temperatura del medio que rodea al 

objeto. En el ejemplo 4 suponemos que T
m
 es constante.

EJEMPLO 4  Enfriamiento de un pastel

Al sacar un pastel del horno, su temperatura es 300° F. Tres minutos después su tempe-
ratura es de 200° F. ¿Cuánto tiempo le tomará al pastel enfriarse hasta la temperatura 
ambiente de 70º F?

*El número de desintegraciones por minuto por gramo de carbono se registra usando un contador Geiger. 
El nivel mínimo de detección es de aproximadamente 0.1 desintegraciones por minuto por gramo.
†El fechado con potasio-argón se usa en el registro de materiales tales como minerales, piedras, lava 
y materiales extraterrestres como rocas lunares y meteoritos. La edad de un fósil se puede estimar 
determinando la edad del estrato en que se encontraba la roca.
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86 ● CAPÍTULO 3  MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN

SOLUCIÓN  En la ecuación (2) identifi camos T
m
 � 70. Debemos resolver el problema 

con valores iniciales

 
dT

dt
� k(T � 70),  T(0) � 300  (3)

y determinar el valor de k tal que T(3) � 200.
La ecuación (3) es tanto lineal como separable. Si separamos las variables

 ,
dT

T � 70
� k dt

 
se obtiene ln|T – 70| � kt � c

1
, y así T � 70 � c

2
ekt. Cuando t � 0, T � 300, así 

300 � 70 � c
2
 da c

2
 � 230. Por tanto T � 70 � 230 ekt. Por último, la medición de 

T(3) � 200 conduce a ln 13
23 � �0.190181

3e3k � 13
23, o  k � . Así 

 .T (t) � 70 � 230e�0.19018t  (4)

Observamos que la ecuación (4) no tiene una solución fi nita a T(t) � 70 porque 
t→�

 T(t) 
� 70. No obstante, en forma intuitiva esperamos que el pastel se enfríe al transcurrir 
un intervalo razonablemente largo. ¿Qué tan largo es “largo”? Por supuesto, no nos 
debe inquietar el hecho de que el modelo (3) no se apegue mucho a nuestra intuición 
física. Los incisos a) y b) de la fi gura 3.1.3 muestran claramente que el pastel estará a 
la temperatura ambiente en aproximadamente una media hora.  

La temperatura ambiente en la ecuación (2) no necesariamente es una constante, 
pudiera ser una función T

m
(t) del tiempo t. Vea el problema 18 de los ejercicios 3.1.

MEZCLAS  Al mezclar dos fl uidos a veces surgen ecuaciones diferenciales lineales 
de primer orden. Cuando describimos la mezcla de dos salmueras en la sección 1.3, 
supusimos que la razón con que cambia la cantidad de sal A�(t) en el tanque de mezcla 
es una razón neta

 .
dA

dt
R´ ´ entra Rsale  (5)

En el ejemplo 5 resolveremos la ecuación (8) de la sección 1.3.

EJEMPLO 5  Mezcla de dos soluciones de sal

Recordemos que el tanque grande de la sección 1.3 contenía inicialmente 300 galones 
de una solución de salmuera. Al tanque entraba y salía sal porque se bombeaba una 
solución a un fl ujo de 3 gal/min, se mezclaba con la solución original y salía del tanque 
con un fl ujo de 3 gal/min. La concentración de la solución entrante era 2 lb/gal, por 
consiguiente, la entrada de sal era R

entra
 � (2 lb/gal) � (3 gal/min) � 6 lb/min y salía del 

tanque con una razón R
sale

 � (A�300 lb/gal) � (3 gal/min) � A�l00 lb/min. A partir de 
esos datos y de la ecuación (5) obtuvimos la ecuación (8) de la sección 1.3. Permítanos 
preguntar: si había 50 lb de sal disueltas en los 300 galones iniciales, ¿cuánta sal habrá 
en el tanque pasado un gran tiempo?

SOLUCIÓN  Para encontrar la cantidad de sal A(t) en el tanque al tiempo t, resolve-
mos el problema con valores iniciales

            .
dA

dt
�

1

100
A � 6,  A(0) � 50  

Aquí observamos que la condición adjunta es la cantidad inicial de sal A(0) � 50 en 
el tanque y no la cantidad inicial de líquido. Ahora como el factor integrante de esta 

t

T

15 30

300

150 T = 70

a)

T(t) t (min)

75� 20.1
74� 21.3
73� 22.8
72� 24.9
71� 28.6
70.5� 32.3

b)

FIGURA 3.1.3  La temperatura 
de enfriamiento del pastel tiende a la 
temperatura ambiente.

08367_03_ch03_p082-116-ok.indd   8608367_03_ch03_p082-116-ok.indd   86 6/4/09   12:17:05 PM6/4/09   12:17:05 PM



ecuación diferencial lineal es et/100, podemos escribir la ecuación como

 .
d

dt
 [et/100A] � 6et/100  

Integrando la última ecuación y despejando A se obtiene la solución general 
A(t) � 600 � ce�t/100. Conforme t � 0, A � 50, de modo que c � �550. Entonces, la 
cantidad de sal en el tanque al tiempo t está dada por

 .A(t) � 600 � 550e�t/100  (6)

La solución (6) se usó para construir la tabla de la fi gura 3.1.4b. En la ecuación (6) y en 
la fi gura 3.1.4a también se puede ver, que A(t) : 600 conforme t : �. Por supuesto que 
esto es lo que se esperaría intuitivamente en este caso; cuando ha pasado un gran tiempo 
la cantidad de libras de sal en la solución debe ser (300 ga1)(2 lb/gal) � 600 lb. 

En el ejemplo 5 supusimos que la razón con que entra la solución al tanque es 
la misma que la razón con que sale. Sin embargo, el caso no necesita ser siempre el 
mismo; la salmuera mezclada se puede sacar con una razón r

sale
 que es mayor o menor 

que la razón r
entra

 con la que entra la otra salmuera. Por ejemplo, si la solución bien mez-
clada del ejemplo 5 sale con una razón menor, digamos de r

sale
 � 2 gal/min, entonces 

se acumulará líquido en el tanque con una razón de  r
entra

 � r
sale

 � (3 � 2) gal/min � 
1 gal/min. Después de t minutos (1 gal/min) � (t min) � t gal se acumularán, por lo que 
en el tanque habrá 300 � t galones de salmuera. La concentración del fl ujo de salida es 
entonces c(t) � A�(300 � t) y la razón con que sale la sal es R

sale
 � c(t) 	 r

sale
, o

 
.R � � A

300 � t
 lb/gal� � (2 gal/min) �

2A

300 � t
 lb/minsale

 

Por tanto, la ecuación (5) se convierte en

 
.

dA

dt
� 6 �

2A

300 � t
    o

dA

dt
�

2

300 � t
A � 6  

Debe comprobar que la solución de la última ecuación, sujeta a A(0) � 50, es A(t) � 
600 � 2t � (4.95 
 107)(300 � t)�2. Vea el análisis siguiente a la ecuación (8) de la 
sección 1.3, del problema 12 en los ejercicios 1.3 y en los problemas 25 a 28 de los 
ejercicios 3.1.

CIRCUITOS EN SERIE  Para un circuito en serie que sólo contiene un resistor y un 
inductor la segunda ley de Kirchhoff establece que la suma de la caída de voltaje a 
través del inductor (L(di�dt)) más la caída de voltaje a través del resistor (iR) es igual 
al voltaje aplicado (E(t)) al circuito. Vea la fi gura 3.1.5.

Por tanto obtenemos la ecuación diferencial lineal para la corriente i(t),

 ,L
di

dt
� Ri � E(t)  (7)

donde L y R son constantes conocidas como la inductancia y la resistencia, respectiva-
mente. La corriente i(t) se llama, también respuesta del sistema.

La caída de voltaje a través de un capacitor de capacitancia C es q(t)�C, donde q 
es la carga del capacitor. Por tanto, para el circuito en serie que se muestra en la fi gura 
3.1.6, la segunda ley de Kirchhoff da

 .Ri �
1

C
q � E(t)  (8)

Pero la corriente i y la carga q están relacionadas por i � dq�dt, así la ecuación (8) se 
convierte en la ecuación diferencial lineal

 .R
dq

dt
�

1

C
q � E(t)  (9)

t

A A = 600

500

a)

t (min) A (lb)

50 266.41
100 397.67
150 477.27
200 525.57
300 572.62
400 589.93

b)

FIGURA 3.1.4  Libras de sal en el 
tanque como una función del tiempo t.

FIGURA 3.1.5  Circuito en serie LR.

E
L

R

R

C

E

FIGURA 3.1.6  Circuito en serie RC.
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EJEMPLO 6  Circuito en serie

Una batería de 12 volts se conecta a un circuito en serie en el que el inductor es de 1
2
 henry 

y la resistencia es de 10 ohms. Determine la corriente i, si la corriente inicial es cero.

SOLUCIÓN  De la ecuación (7) debemos resolver

 ,
1

2
 

di

dt
10 i 12  

sujeta a i(0) � 0. Primero multiplicamos la ecuación diferencial por 2, y vemos que el 
factor integrante es e20t. Entonces sustituyendo

 
.

d

dt
 [e20ti] 24e20t

 

Integrando cada lado de la última ecuación y despejando i se obtiene i(t) � � ce�20t.6
5  

Ahora i(0) � 0 implica que 0 � � c 6
5

6
5 o c � � . . Por tanto la respuesta es 

i(t) � � e�20t.6
5

6
5  

De la ecuación (4) de la sección 2.3, podemos escribir una solución general de (7):

 .i(t) �
e�(R/L)t

L
� e(R/L)tE(t) dt � ce�(R/L)t  (10)

En particular, cuando E(t) � E
0
 es una constante, la ecuación (l0) se convierte en

 .i(t) �
E0

R
� ce�(R/L)t  (11)

Observamos que conforme t : �, el segundo término de la ecuación (11) tiende a 
cero. A ese término usualmente se le llama término transitorio; los demás términos 
se llaman parte de estado estable de la solución. En este caso, E

0
�R también se llama 

corriente de estado estable; para valores grandes de tiempo resulta que la corriente 
está determinada tan sólo por la ley de Ohm (E � iR).

COMENTARIOS

La solución P(t) � P
0
e0.4055t del problema con valores iniciales del ejemplo 1 des-

cribe la población de una colonia de bacterias a cualquier tiempo t � 0. Por 
supuesto, P(t) es una función continua que toma todos los números reales del 
intervalo P

0
 � P � �. Pero puesto que estamos hablando de una población, el 

sentido común indica que P puede tomar sólo valores positivos. Además, no es-
peraríamos que la población crezca continuamente, es decir, cada segundo, cada 
microsegundo, etc., como lo predice nuestra solución; puede haber intervalos de 
tiempo [t

1
, t

2
], en los que no haya crecimiento alguno. Quizá, entonces, la gráfi ca 

que se muestra en la fi gura 3.1.7a es una descripción más real de P que la gráfi  -
ca de una función exponencial. Usar una función continua para describir un fenó-
meno discreto con frecuencia es más conveniente que exacto. Sin embargo, para 
ciertos fi nes nos podemos sentir satisfechos si el modelo describe con gran exac-
titud el sistema, considerado macroscópicamente en el tiempo como se mues -
tra en las fi guras 3.1.7b y 3.1.7c, más que microscópicamente, como se muestra 
en la fi gura 3.1.7a.FIGURA 3.1.7  El crecimiento 

poblacional es un proceso discreto.

t1t1 t2

P

P0

t1

P

P0

a)

b)

c)

t1

P

P0
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EJERCICIOS 3.1  Las respuestas a los problemas con número impar comienzan en la página RES-3.

Crecimiento y decrecimiento

 1. Se sabe que la población de una comunidad crece con una 
razón proporcional al número de personas presentes en el 
tiempo t. Si la población inicial P

0
 se duplicó en 5 años, 

¿En cuánto tiempo se triplicará y cuadruplicará?

 2. Suponga que se sabe que la población de la comunidad del 
problema 1 es de 10 000 después de tres años. ¿Cuál era la 
población inicial P

0
? ¿Cuál será la población en 10 años? 

¿Qué tan rápido está creciendo la población en t � 10?

 3. La población de un pueblo crece con una razón propor-
cional a la población en el tiempo t. La población inicial 
de 500 aumenta 15% en 10 años. ¿Cuál será la población 
pasados 30 años? ¿Qué tan rápido está creciendo la po-
blación en t � 30?

 4. La población de bacterias en un cultivo crece a una razón 
proporcional a la cantidad de bacterias presentes al tiempo 
t. Después de tres horas se observa que hay 400 bacterias 
presentes. Después de 10 horas hay 2 000 bacterias pre-
sentes. ¿Cuál era la cantidad inicial de bacterias?

 5. El isótopo radiactivo del plomo Pb-209, decae con una 
razón proporcional a la cantidad presente al tiempo t y 
tiene un vida media de 3.3 horas. Si al principio había 
1 gramo de plomo, ¿cuánto tiempo debe transcurrir para 
que decaiga 90%?

 6. Inicialmente había 100 miligramos de una sustancia ra-
diactiva. Después de 6 horas la masa disminuyó 3%. Si la 
razón de decaimiento, en cualquier momento, es propor-
cional a la cantidad de la sustancia presente al tiempo t, 
determine la cantidad que queda después de 24 horas.

 7. Calcule la vida media de la sustancia radiactiva del pro-
blema 6.

 8. a)  El problema con valores iniciales dA�dt � kA, A(0) 
� A

0
 es el modelo de decaimiento de una sustancia 

radiactiva. Demuestre que, en general, la vida media T 
de la sustancia es T � �(ln 2)�k.

b)  Demuestre que la solución del problema con valores 
iniciales del inciso a) se puede escribir como A(t) � 
A

0
2�t/T.

c)  Si una sustancia radiactiva tiene la vida media T dada 
en el inciso a), ¿cuánto tiempo le tomará a una canti-
dad inicial A

0
 de sustancia decaer a 1

8
 A

0
? 

 9. Cuando pasa un rayo vertical de luz por un medio trans-
parente, la razón con que decrece su intensidad I es pro-
porcional a I(t), donde t representa el espesor, en pies, del
medio. En agua limpia de mar, la intensidad a 3 pies de-
bajo de la superfi cie es 25% de la intensidad inicial I

0
 

del rayo incidente. ¿Cuál es la intensidad del rayo a 15 
pies debajo de la superfi cie? 

10.  Cuando el interés es compuesto continuamente, la can-
tidad de dinero aumenta con una razón proporcional a 

la cantidad presente S al tiempo t, es decir, dS�dt � rS, 
donde r es la razón de interés anual.

a)  Calcule la cantidad reunida al fi nal de 5 años cuando 
se depositan $5 000 en una cuenta de ahorro que rinde 
el 53

4
% de interés anual compuesto continuamente.

b)  ¿En cuántos años se habrá duplicado el capital inicial?

c)  Utilice una calculadora para comparar la cantidad ob-
tenida en el inciso a) con la cantidad S � 5000(1 � 
1
4
(0.0575))5(4) que se reúne cuando el interés se com-

pone trimestralmente.

Fechado con carbono

11. Los arqueólogos utilizan piezas de madera quemada o 
carbón vegetal, encontradas en el lugar para fechar pin-
turas prehistóricas de paredes y techos de una caverna en 
Lascaux, Francia. Vea la fi gura 3.1.8. Utilice la informa-
ción de la página 84 para precisar la edad aproximada de 
una pieza de madera quemada, si se determinó que 85.5% 
de su C-l4 encontrado en los árboles vivos del mismo tipo 
se había desintegrado.

FIGURA 3.1.8  Pintura rupestre en las cuevas de Altamira, España.

12. El sudario de Turín muestra el negativo de la imagen del 
cuerpo de un hombre que parece que fue crucifi cado, mu-
chas personas creen que es el sudario del entierro de Jesús 
de Nazaret. Vea la fi gura 3.1.9. En 1988 el Vaticano con-
cedió permiso para fechar con carbono el sudario. Tres la-
boratorios científi cos independientes analizaron el paño y 
concluyeron que el sudario tenía una antigüedad de 660 
años,* una antigüedad consistente con su aparición histó-

FIGURA 3.1.9  

*Algunos eruditos no están de acuerdo con este hallazgo. Para más 
información de este fascinante misterio vea la página del Sudario de Turín 
en la página http://www.shroud.com
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rica. Usando esta antigüedad determine qué porcentaje de 
la cantidad original de C-14 quedaba en el paño en 1988.

Ley de Newton enfriamiento/calentamiento

13.  Un termómetro se cambia de una habitación donde la tempe-
ratura es de 70° F al exterior, donde la temperatura del aire 
es de 10° F. Después de medio minuto el termómetro indica 
50° F. ¿Cuál es la lectura del termómetro en t � 1 min? 
¿Cuánto tiempo le tomará al termómetro alcanzar los 15° F?

14. Un termómetro se lleva de una habitación hasta el am-
biente exterior, donde la temperatura del aire es 5° F. 
Después de 1 minuto, el termómetro indica 55° F y des-
pués de 5 minutos indica 30° F. ¿Cuál era la temperatura 
inicial de la habitación?

15. Una pequeña barra de metal, cuya temperatura inicial era 
de 20° C, se deja caer en un gran tanque de agua hir-
viendo. ¿Cuánto tiempo tardará la barra en alcanzar los 
90° C si se sabe que su temperatura aumentó 2° en 1 se-
gundo? ¿Cuánto tiempo tardará en alcanzar los 98° C?

16. Dos grandes tanques A y B del mismo tamaño se llenan con 
fl uidos diferentes. Los fl uidos en los tanques A y B se man-
tienen a 0° C y a 100° C, respectivamente. Una pequeña 
barra de metal, cuya temperatura inicial es 100° C, se su-
merge dentro del tanque A. Después de 1 minuto la tem-
peratura de la barra es de 90° C. Después de 2 minutos se 
saca la barra e inmediatamente se transfi ere al otro tanque. 
Después de 1 minuto en el tanque B la temperatura se eleva 
10° C. ¿Cuánto tiempo, medido desde el comienzo de todo 
el proceso, le tomará a la barra alcanzar los 99.9° C?

17. Un termómetro que indica 70° F se coloca en un horno pre-
calentado a una temperatura constante. A través de una ven-
tana de vidrio en la puerta del horno, un observador registra 
que el termómetro lee 110° F después de 12  minuto y 145° F 
después de 1 minuto. ¿Cuál es la temperatura del horno?

18. Al tiempo t � 0 un tubo de ensayo sellado que contiene 
una sustancia química está inmerso en un baño líquido. La 
temperatura inicial de la sustancia química en el tubo de 
ensayo es de 80° F. El baño líquido tiene una temperatura 
controlada (medida en grados Fahrenheit) dada por T

m
(t) � 

100 – 40e�0.1t, t � 0, donde t se mide en minutos.

a)  Suponga que k � �0.1 en la ecuación (2). Antes de 
resolver el PVI, describa con palabras cómo espera 
que sea la temperatura T(t) de la sustancia química a 
corto plazo. Y a largo plazo.

b)  Resuelva el problema con valores iniciales. Use un 
programa de grafi cación para trazar la gráfi ca de T(t) 
en diferentes intervalos de tiempo. ¿Las gráfi cas con-
cuerdan con sus predicciones del inciso a)?

19. Un cadáver se encontró dentro de un cuarto cerrado en una 
casa donde la temperatura era constante a 70° F. Al tiempo 
del descubrimiento la temperatura del corazón del cadáver 
se determinó de 85° F. Una hora después una segunda me-

dición mostró que la temperatura del corazón era de 80° F. 
Suponga que el tiempo de la muerte corresponde a t � 0 
y que la temperatura del corazón en ese momento era de 
98.6° F. Determine ¿cuántas horas pasaron antes de que se 
encontrara el cadáver? [Sugerencia: Sea que t

1
 � 0 denote 

el tiempo en que se encontró el cadáver.]

20. La razón con la que un cuerpo se enfría también depende 
de su área superfi cial expuesta S. Si S es una constante

, 

entonces una modifi cación de la ecuación (2) es

dT

dt
� kS(T � Tm),

  donde k � 0 y T
m
 es una constante. Suponga que dos tazas 

A y B están llenas de café al mismo tiempo. Inicialmente 
la temperatura del café es de 150° F. El área superfi cial del 
café en la taza B es del doble del área superfi cial del café 
en la taza A. Después de 30 min la temperatura del café en 
la taza A es de 100° F. Si T

m
 � 70° F, entonces ¿cuál es la 

temperatura del café de la taza B después de 30 min?

Mezclas

21. Un tanque contiene 200 litros de un líquido en el que se 
han disuelto 30 g de sal. Salmuera que tiene 1 g de sal 
por litro entra al tanque con una razón de 4 L/min; la so-
lución bien mezclada sale del tanque con la misma razón. 
Encuentre la cantidad A(t) de gramos de sal que hay en el 
tanque al tiempo t.

22. Resuelva el problema 21 suponiendo que al tanque entra 
agua pura.

23. Un gran tanque de 500 galones está lleno de agua pura. 
Le entra salmuera que tiene 2 lb de sal por galón a razón 
de 5 gal/min. La solución bien mezclada sale del tanque 
con la misma razón. Determine la cantidad A(t) de libras 
de sal que hay en el tanque al tiempo t.

24. En el problema 23, ¿cuál es la concentración c(t) de sal en 
el tanque al tiempo t? ¿Y al tiempo t � 5 min? ¿Cuál es la 
concentración en el tanque después de un largo tiempo, es 
decir, conforme t : �? ¿Para qué tiempo la concentración 
de sal en el tanque es igual a la mitad de este valor límite?

25. Resuelva el problema 23 suponiendo que la solución sale 
con una razón de 10 gal/min. ¿Cuándo se vacía el tanque?

26. Determine la cantidad de sal en el tanque al tiempo t en el 
ejemplo 5 si la concentración de sal que entra es variable 
y está dada por c

entra
(t) � 2 � sen(t�4) lb/gal. Sin trazar la 

gráfi ca, infi era a qué curva solución del PVI se parecería. 
Después utilice un programa de grafi cación para trazar la 
gráfi ca de la solución en el intervalo [0, 300]. Repita para 
el intervalo [0, 600] y compare su gráfi ca con la que se 
muestra en la fi gura 3.1.4a.

27. Un gran tanque está parcialmente lleno con 100 galones 
de fl uido en los que se disolvieron 10 libras de sal. La sal-
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muera tiene 12  de sal por galón que entra al tanque a razón 
de 6 gal/min. La solución bien mezclada sale del tanque a 
razón de 4 gal/min. Determine la cantidad de libras de sal 
que hay en el tanque después de 30 minutos.

28. En el ejemplo 5, no se dio el tamaño del tanque que tiene 
la solución salina. Suponga, como en el análisis siguiente 
al ejemplo 5, que la razón con que entra la solución al tan-
que es de 3 gal/min pero que la solución bien mezclada 
sale del tanque a razón de 2 gal/min. Esta es la razón por 
la cual la salmuera se está acumulando en el tanque a 
razón de 1 gal/min, cualquier tanque de tamaño fi nito ter-
minará derramándose. Ahora suponga que el tanque está 
destapado y tiene una capacidad de 400 galones.

a)  ¿Cuándo se derramará el tanque?

b)  ¿Cuántas libras de sal habrá en el tanque cuando co-
mienza a derramarse?

c)  Suponga que el tanque se derrama, que la salmuera 
continúa entrando a razón de 3 gal/min, que la solu-
ción está bien mezclada y que la solución sigue sa-
liendo a razón de 2 gal/min. Determine un método 
para encontrar la cantidad de libras de sal que hay en 
el tanque al tiempo t � 150 min.

d)  Calcule la cantidad de libras de sal en el tanque con-
forme t : �. ¿Su respuesta coincide con su intuición?

e)  Utilice un programa de grafi cación para trazar la grá-
fi ca de A(t) en el intervalo [0, 500).

Circuitos en serie

29. Se aplica una fuerza electromotriz de 30 V a un circuito 
en serie LR con 0.1 henrys de inductancia y 50 ohms 
de resistencia. Determine la corriente i(t), si i(0) � 0. 
Determine la corriente conforme t : �.

30. Resuelva la ecuación (7) suponiendo que E(t) � E
0
 sen vt 

y que i(0) � i
0
.

31. Se aplica una fuerza electromotriz de 100 volts a un cir-
cuito en serie RC, en el que la resistencia es de 200 ohms 
y la capacitancia es de l0�4 farads. Determine la carga q(t) 
del capacitor, si q(0) � 0. Encuentre la corriente i(t).

32. Se aplica una fuerza electromotriz de 200 V a un circuito 
en serie RC, en el que la resistencia es de 1000 ohms y 
la capacitancia es de 5 
 10�6 farads. Determine la carga 
q(t) en el capacitor, si i(0) � 0.4 amperes. Determine la 
carga y la corriente en t � 0.005 s. Encuentre la carga 
conforme t : �.

33. Se aplica una fuerza electromotriz

E(t) � �120,

0, 
0 � t � 20

    t � 20

  a un circuito en serie LR en el que la inductancia es de 
20 henrys y la resistencia es de 2 ohms. Determine la co-
rriente i(t), si i(0) � 0.

34. Suponga que un circuito en serie RC tiene un resistor va-
riable. Si la resistencia al tiempo t está dada por R � k

1
 

� k
2
t, donde k

1
 y k

2
 son constantes positivas, entonces la 

ecuación (9) se convierte en

.(k1 � k2t)
dq

dt
�

1

C
q � E(t)

  Si E(t) � E
0
 y q(0) � q

0
, donde E

0
 y q

0
 son constantes, 

muestre que

.q(t) � E0C � (q0 � E0C )� k1

k1 � k2t
�

1/Ck2

Modelos lineales adicionales

35. Resistencia del aire  En la ecuación (14) de la sección 
1.3 vimos una ecuación diferencial que describe la velo-
cidad v de una masa que cae sujeta a una resistencia del 
aire proporcional a la velocidad instantánea es

,m
dv

dt
� mg � kv

  donde k � 0 es una constante de proporcionalidad. La 
dirección positiva se toma hacia abajo.

  a)  Resuelva la ecuación sujeta a la condición inicial 
v(0) � v

0
.

  b)  Utilice la solución del inciso a) para determinar la 
velocidad límite o terminal de la masa. Vimos cómo 
determinar la velocidad terminal sin resolver la ED 
del problema 40 en los ejercicios 2.1.

  c)  Si la distancia s, medida desde el punto en el que se 
suelta la masa se relaciona con la velocidad v por 
ds�dt � v(t), determine una expresión explícita para 
s(t), si s(0) � 0.

36. ¿Qué tan alto? (Sin resistencia del aire)  Suponga que 
una pequeña bala de cañón que pesa 16 libras se dispara 
verticalmente hacia arriba, como se muestra en la fi gura 
3.1.10, con una velocidad inicial de v

0
 � 300 pies/s. La res-

puesta a la pregunta “¿Qué tanto sube la bala de cañón?”, 
depende de si se considera la resistencia del aire.

  a)  Suponga que se desprecia la resistencia del aire. Si 
la dirección es positiva hacia arriba, entonces un 
modelo para la bala del cañón está dado por d 2s�dt 2 
� �g (ecuación (12) de la sección 1.3). Puesto que 
ds�dt � v(t) la última ecuación diferencial es la 

FIGURA 3.1.10  Determinación 
de la altura máxima de la bala de 
cañón del problema 36.

nivel del 
suelo

−mg
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misma que la ecuación dv�dt � �g, donde se toma 
g � 32 pies/s2. Encuentre la velocidad v(t) de la bala 
de cañón al tiempo t.

  b)  Utilice el resultado que se obtuvo en el inciso a) para 
determinar la altura s(t) de la bala de cañón medida 
desde el nivel del suelo. Determine la altura máxima 
que alcanza la bala.

37. ¿Qué tan alto? (Resistencia lineal del aire)  Repita el 
problema 36, pero esta vez suponga que la resistencia del 
aire es proporcional a la velocidad instantánea. Esta es 
la razón por la que la altura máxima que alcanza la bala 
del cañón debe ser menor que la del inciso b) del pro-
blema 36. Demuestre esto suponiendo que la constante de 
proporcionalidad es k � 0.0025. [Sugerencia: Modifi que 
ligeramente la ED del problema 35.]

38. Paracaidismo  Una paracaidista pesa 125 libras y su 
paracaídas y equipo juntos pesan otras 35 libras. Después 
de saltar del avión desde una altura de 15 000 pies, la 
paracaidista espera 15 segundos y abre su paracaídas. 
Suponga que la constante de proporcionalidad del mo-
delo del problema 35 tiene el valor k � 0.5 durante la 
caída libre y k � 10 después de que se abrió el paracaí-
das. Suponga que su velocidad inicial al saltar del avión 
es igual a cero. ¿Cuál es la velocidad de la paracaidista 
y qué distancia ha recorrido después de 20 segundos de 
que saltó del avión? Vea la fi gura 3.1.11. ¿Cómo se com-
para la velocidad de la paracaidista a los 20 segundos con 
su velocidad terminal? ¿Cuánto tarda en llegar al suelo? 
[Sugerencia: Piense en función de dos diferentes PVI.]

a)  Determine v(t) si la gota de lluvia cae a partir del re-
poso.

b)  Vuelva a leer el problema 34 de los ejercicios 1.3 
y demuestre que el radio de la gota de lluvia en el 
tiempo t es r(t) � (k�r)t � r

0
.

c)  Si r
0
 � 0.01 pies y r � 0.007 pies, 10 segundos des-

pués de que la gota cae desde una nube, determine el 
tiempo en el que la gota de lluvia se ha evaporado por 
completo.

40. Población fl uctuante  La ecuación diferencial dP�dt � 
(k cos t)P, donde k es una constante positiva, es un modelo 
matemático para una población P(t) que experimenta fl uc-
tuaciones anuales. Resuelva la ecuación sujeta a P(0) � P

0
. 

Utilice un programa de grafi cación para trazar la gráfi ca de 
la solución para diferentes elecciones de P

0
.

41. Modelo poblacional  En un modelo del cambio de po-
blación de P(t) de una comunidad, se supone que

,
dP

dt
�

dB

dt
�

dD

dt

  donde dB�dt y dD�dt son las tasas de natalidad y mortan-
dad, respectivamente.

  a)  Determine P(t) si dB�dt � k
1
P y dD�dt � k

2
P.

  b)  Analice los casos k
1
 � k

2
, k

1
 � k

2
 y k

1
 � k

2
.

42. Modelo de cosecha constante  Un modelo que describe 
la población de una pesquería en la que se cosecha con 
una razón constante está dada por

dP

dt
� kP � h,

  donde k y h son constantes positivas.

  a) Resuelva la ED sujeta a P(0) � P
0
.

  b)  Describa el comportamiento de la población P(t) 
conforme pasa el tiempo en los tres casos P

0 
� h�k, 

P
0 
� h�k y 0 � P

0 
� h�k.

  c)  Utilice los resultados del inciso b) para determinar 
si la población de peces desaparecerá en un tiempo 
fi nito, es decir, si existe un tiempo T � 0 tal que P(T) 
� 0. Si la población desaparecerá, entonces deter-
mine en qué tiempo T.

43. Propagación de una medicina  Un modelo matemático 
para la razón con la que se propaga una medicina en el 
torrente sanguíneo está dado por

dx

dt
� r � kx,

  donde r y k son constantes positivas. Sea x(t) la función 
que describe la concentración de la medicina en el to-
rrente sanguíneo al tiempo t.

  a)  Ya que la ED es autónoma, utilice el concepto de 
esquema de fase de la sección 2.1 para determinar el 
valor de x(t) conforme t : �.

FIGURA 3.1.11
Cálculo del tiempo 
que tarda en llegar al 
suelo del problema 38.

caída libre

el paracaídas 
se abre

la resistencia del 
aire es 0.5v

la resistencia del 
aire es 10 v

t = 20 s

39. Evaporación de una gota de lluvia  Cuando cae una gota 
de lluvia, ésta se evapora mientras conserva su forma esfé-
rica. Si se hacen suposiciones adicionales de que la rapidez 
a la que se evapora la gota de lluvia es proporcional a su área 
superfi cial y que se desprecia la resistencia del aire, enton-
ces un modelo para la velocidad v(t) de la gota de lluvia es

.
dv

dt
�

3(k/
)

(k/
)t � r0
v � g

  Aquí r es la densidad del agua, r
0
 es el radio de la gota de 

lluvia en t � 0, k � 0 es la constante de proporcionalidad 
y la dirección hacia abajo se considera positiva.
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  b)  Resuelva la ED sujeta a x(0) � 0. Dibuje la gráfi ca 
de x(t) y compruebe su predicción del inciso a). ¿En 
cuánto tiempo la concentración es la mitad del valor 
límite?

44. Memorización  Cuando se considera la falta de memo-
ria, la razón de memorización de un tema está dada por

,
dA

dt
� k1(M � A) � k2A

  donde k
1
 � 0, k

2
 � 0, A(t) es la cantidad memorizada al 

tiempo t, M es la cantidad total a memorizarse y M – A es 
la cantidad que falta por memorizar.

a)  Puesto que la ED es autónoma, utilice el concepto de es-
quema de fase de la sección 2.1 para determinar el valor 
límite de A(t) conforme t : �. Interprete el resultado.

b)  Resuelva la ED sujeta a A(0) � 0. Dibuje la gráfi ca de 
A(t) y compruebe su predicción del inciso a).

45. Marcapasos de corazón  En la fi gura 3.1.12 se muestra 
un marcapasos de corazón, que consiste en un interruptor, 
una batería, un capacitor y el corazón como un resistor. 
Cuando el interruptor S está en P, el capacitor se carga; 
cuando S está en Q, el capacitor se descarga, enviando 
estímulos eléctricos al corazón. En el problema 47 de los 
ejercicios 2.3 vimos que durante este tiempo en que se 
están aplicado estímulos eléctricos al corazón, el voltaje 
E a través del corazón satisface la ED lineal

.
dE

dt
� �

1

RC
E

  a)  Suponga que en el intervalo de tiempo de duración 
t
1
, 0 � t � t

1
, el interruptor S está en la posición P 

como se muestra en la fi gura 3.1.12 y el capacitor 
se está cargando. Cuando el interruptor se mueve a 
la posición Q al tiempo t

1
 el capacitor se descarga, 

enviando un impulso al corazón durante el intervalo 
de tiempo de duración t

2
: t

1
 � t � t

1 
� t

2
. Por lo que 

el intervalo inicial de carga descarga 0 � t � t
1
 � t

2
 

el voltaje en el corazón se modela realmente por la 
ecuación diferencial defi nida por tramos.

.

dE

dt
� �0,

�
1

RC
E,

0 � t � t1

t1 � t � t1 � t2

    Al moverse S entre P y Q, los intervalos de carga y 
descarga de duraciones t

1
 y t

2
 se repiten indefi nida-

mente. Suponga que t
1 
� 4 s, t

2
 � 2 s, E

0
 � 12 V, E(0) 

� 0, E(4) � 12, E(6) � 0, E(10) � 12, E(12) � 0, 
etc. Determine E(t) para 0 � t � 24.

  b)  Suponga para ilustrar que R � C � 1. Utilice un pro-
grama de grafi cación para trazar la gráfi ca de la solu-
ción del PVI del inciso a) para 0 � t � 24.

46. Caj a deslizándose a) Una caja de masa m se desliza 
hacia abajo por un plano inclinado que forma un án-
gulo u con la horizontal como se muestra en la fi gura 
3.1.13. Determine una ecuación diferencial para la 
velocidad v(t) de la caja al tiempo t para cada uno de 
los casos siguientes:

i)  No hay fricción cinética y no hay resisten-
cia del aire.

ii)  Hay fricción cinética y no hay resistencia 
del aire.

iii)  Hay fricción cinética y hay resistencia del 
aire. 

    En los casos ii) y iii) utilice el hecho de que la fuerza 
de fricción que se opone al movimiento es mN, donde 
m es el coefi ciente de fricción cinética y N es la com-
ponente normal del peso de la caja. En el caso iii) 
suponga que la resistencia del aire es proporcional a 
la velocidad instantánea.

b)  En el inciso a), suponga que la caja pesa 96 libras, que 
el ángulo de inclinación del plano es u � 30°, que el 
coefi ciente de fricción cinética es 13 4, y que 
la fuerza de retardo debida a la resistencia del aire es 
numéricamente igual a 1

4
v. Resuelva la ecuación dife-

rencial para cada uno de los tres casos, suponiendo 
que la caja inicia desde el reposo desde el punto más 
alto a 50 pies por encima del suelo.

corazón

C

Q

P S
interruptor

E0

R

FIGURA 3.1.12  Modelo de un marcapasos del problema 45.

FIGURA 3.1.13  Caja deslizándose hacia abajo del plano 
inclinado del problema 46.

θ

50 piesmovimiento

fricción

W = mg

47. Continuación de caja deslizándose a) En el problema
    46 sea s(t) la distancia medida hacia abajo del plano 

inclinado desde el punto más alto. Utilice ds�dt � 
v(t) y la solución de cada uno de los tres casos del 
inciso b) del problema 46 para determinar el tiempo 
que le toma a la caja deslizarse completamente hacia 
abajo del plano inclinado. Aquí puede ser útil un pro-
grama para determinar raíces con un SAC.

3.1  MODELOS LINEALES ● 93
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94 ● CAPÍTULO 3  MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN

  b)  En el caso en que hay fricción (m � 0) pero no hay 
resistencia del aire, explique por qué la caja no se 
desliza hacia abajo comenzando desde el reposo 
desde el punto más alto arriba del suelo cuando el 
ángulo de inclinación u satisface a tan u � m.

  c)  La caja se deslizará hacia abajo del plano con-
forme tan u � m si a ésta se le proporciona una 
velocidad inicial v(0) � v

0
 � 0. Suponga que 

13 4 y u � 23°. Compruebe que tan u � m. 
¿Qué distancia se deslizará hacia abajo del plano 
si v

0
 � 1 pie/s?

  d)  Utilice los valores 13 4 y u � 23° para aproxi-
mar la menor velocidad inicial v

0
 que puede tener la 

caja, para que a partir del reposo a 50 pies arriba 
del suelo, se deslice por todo el plano inclinado. 

Después encuentre el tiempo que tarda en deslizarse 
el plano.

48. Qué  sube . . . a) Es bien conocido que el modelo que 
desprecia la resistencia del aire, inciso a) del pro-
blema 36, predice que el tiempo t

a
 que tarda la bala 

de cañón en alcanzar su altura máxima es el mismo 
tiempo t

d
 que tarda la bala de cañón en llegar al suelo. 

Además la magnitud de la velocidad de impacto v
i
 

es igual a la velocidad inicial v
0
 de la bala de cañón. 

Compruebe ambos resultados.

  b)  Después, utilizando el modelo del problema 37 que 
considera la resistencia del aire, compare el valor de 
t
a 
con t

d
 y el valor de la magnitud de v

i
 con v

0
. Aquí 

puede ser útil un programa para determinar raíces 
con un SAC (o una calculadora grafi cadora).

MODELOS NO LINEALES

REPASO DE MATERIAL
● Ecuaciones (5), (6) y (10) de la sección 1.3 y problemas 7, 8, 13, 14 y 17 de los ejercicios 1.3.
● Separación de variables de la sección 2.2.

INTRODUCCIÓN  Terminamos nuestro estudio de ecuaciones diferenciales de primer orden sim-
ples con el análisis de algunos modelos no lineales.

3.2

DINÁMICA POBLACIONAL  Si P(t) es el tamaño de una población al tiempo t, el 
modelo del crecimiento exponencial comienza suponiendo que dP�dt � kP para cierta 
k � 0. En este modelo, la tasa específi ca o relativa de crecimiento, defi nida por

 
dP>dt

P  (1)

es una constante k. Es difícil encontrar casos reales de un crecimiento exponencial durante 
largos periodos, porque en cierto momento los recursos limitados del ambiente ejercerán 
restricciones sobre el crecimiento de la población. Por lo que para otros modelos, se puede 
esperar que la razón (1) decrezca conforme la población P aumenta de tamaño.

La hipótesis de que la tasa con que crece (o decrece) una población sólo depende del 
número presente P y no de mecanismos dependientes del tiempo, tales como los fenóme-
nos estacionales (vea el problema 18, en los ejercicios 1.3), se puede enunciar como:

 .
dP>dt

P

dP

dt
� Pf (P)� f (P)    o     (2)

Esta ecuación diferencial, que se adopta en muchos modelos de población de anima-
les, se llama hipótesis de dependencia de densidad.

ECUACIÓN LOGÍSTICA  Supóngase que un medio ambiente es capaz de sostener, 
como máximo, una cantidad K determinada de individuos en una población. La cantidad K 
se llama capacidad de sustento del ambiente. Así para la función f en la ecuación (2) se 
tiene que f (K) � 0 y simplemente hacemos f (0) � r. En la fi gura 3.2.1 vemos tres funcio-
nes que satisfacen estas dos condiciones. La hipótesis más sencilla es que f (P) es lineal, 
es decir, f (P) � c

1
P � c

2
. Si aplicamos las condiciones f (0) � r y f (K) � 0, tenemos 

P

f(P)

r

K

FIGURA 3.2.1  La suposición más 
simple para f (P) es una recta (color azul).
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que c
2
 � r y c

1
 � �r�K, respectivamente, y así f adopta la forma f (P) � r � (r�K)P. 

Entonces la ecuación (2) se convierte en

 .
dP

dt
� P�r �

r

K
P�  (3)

Redefi niendo las constantes, la ecuación no lineal (3) es igual a 

 .
dP

dt
� P(a � bP)  (4)

Alrededor de 1840, P. F. Verhulst, matemático y biólogo belga, investigó mo-
delos matemáticos para predecir la población humana en varios países. Una de las 
ecuaciones que estudió fue la (4), con a � 0 y b � 0. Esa ecuación se llamó ecuación 
logística y su solución se denomina función logística. La gráfi ca de una función lo-
gística es la curva logística.

La ecuación diferencial dP�dt � kP no es un modelo muy fi el de la población 
cuando ésta es muy grande. Cuando las condiciones son de sobrepoblación, se presen-
tan efectos negativos sobre el ambiente como contaminación y exceso de demanda de 
alimentos y combustible, esto puede tener un efecto inhibidor en el crecimiento para 
la población. Como veremos a continuación, la solución de (4) está acotada conforme 
t : �. Si se rescribe (4) como dP�dt � aP � bP2, el término no lineal �bP2, b � 0 se 
puede interpretar como un término de “inhibición” o “competencia”. También, en la 
mayoría de las aplicaciones la constante positiva a es mucho mayor que b.

Se ha comprobado que las curvas logísticas predicen con bastante exactitud el cre-
cimiento de ciertos tipos de bacterias, protozoarios, pulgas de agua (Dafnia) y moscas 
de la fruta (Drosófi la) en un espacio limitado. 

SOLUCIÓN DE LA ECUACIÓN LOGÍSTICA  Uno de los métodos para resolver 
la ecuación (4) es por separación de variables. Al descomponer el lado izquierdo de 
dP�P(a � bP) � dt en fracciones parciales e integrar, se obtiene

  

 
 

  

 P

a � bP
� c1eat.

 ln � P

a � bP � � at � ac

1

a
 ln� P � �

1

a
 ln� a � bP � � t � c

�1>a

P
�

b>a

a � bP�dP � dt

 

De la última ecuación se tiene que

 .P(t) �
ac1eat

1 � bc1eat �
ac1

bc1 � e�at  

Si P(0) � P
0
, P

0
 � a�b, encontramos que c

1
 � P

0
b(a � bP

0
) y así, sustituyendo y 

simplifi cando, la solución se convierte en

 .P(t) �
aP0

bP0 � (a � bP0)e�at
 (5)

GRÁFICAS DE P(t)  La forma básica de la función logística P(t) se puede obtener 
sin mucho esfuerzo. Aunque la variable t usualmente representa el tiempo y raras veces 
se consideran aplicaciones en las que t � 0, sin embargo tiene cierto interés incluir este 
intervalo al mostrar las diferentes gráfi cas de P. De la ecuación (5) vemos que

 .P(t)
aP0

bP0

a

b
tt y P(t) 0 conformeconforme  

3.2  MODELOS NO LINEALES ● 95
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96 ● CAPÍTULO 3  MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN

La línea punteada P � a�2b de la fi gura 3.2.2 corresponde a la ordenada de un punto 
de infl exión de la curva logística. Para mostrar esto derivamos la ecuación (4) usando 
la regla del producto:

 
 

  

 .� 2b2P �P �
a

b��P �
a

2b�
� P(a � bP)(a � 2bP)

d 2P

dt2 � P ��b
dP

dt� � (a � bP)
dP

dt
�

dP

dt
 (a � 2bP)

 

Recuerde del cálculo que los puntos donde d 2P�dt 2 � 0 son posibles puntos de in-
fl exión, pero obviamente se pueden excluir P � 0 y P � a�b. Por tanto P � a�2b es 
el único valor posible para la ordenada en la cual puede cambiar la concavidad de la 
gráfi ca. Para 0 � P � a�2b se tiene que P� � 0, y a�2b � P � a�b implica que P� � 
0. Así cuando se lee de izquierda a derecha, la gráfi ca cambia de cóncava hacia arriba a 
cóncava hacia abajo, en el punto que corresponde a P � a�2b. Cuando el valor inicial 
satisface a 0 � P

0
 � a�2b, la gráfi ca de P(t) adopta la forma de una S, como se ve en 

la fi gura 3.2.2a. Para a�2b � P
0
 � a�b la gráfi ca aún tiene la forma de S, pero el punto 

de infl exión ocurre en un valor negativo de t, como se muestra en la fi gura 3.2.2b.
En la ecuación (5) de la sección 1.3 ya hemos visto a la ecuación (4) en la forma 

dx�dt � kx(n � 1 – x), k � 0. Esta ecuación diferencial presenta un modelo razonable 
para describir la propagación de una epidemia que comienza cuando se introduce una 
persona infectada en una población estática. La solución x(t) representa la cantidad 
de personas que contraen la enfermedad al tiempo t.

EJEMPLO 1  Crecimiento logístico

Suponga que un estudiante es portador del virus de la gripe y regresa a su aislado cam-
pus de 1000 estudiantes. Si se supone que la razón con que se propaga el virus es pro-
porcional no sólo a la cantidad x de estudiantes infectados sino también a la cantidad 
de estudiantes no infectados, determine la cantidad de estudiantes infectados después 
de 6 días si además se observa que después de cuatro días x(4) � 50.

SOLUCIÓN  Suponiendo que nadie deja el campus mientras dura la enfermedad, de-
bemos resolver el problema con valores iniciales

 .
dx

dt
� kx(1000 � x), x(0) � 1  

Identifi cando a � 1000k y b � k, vemos de inmediato en la ecuación (5) que

 .x(t) �
1000k

k � 999ke�1000kt �
1000

1 � 999e�1000kt
 

Ahora, usamos la información x(4) � 50 y calculamos k con

 50 �
1000

1 � 999e�4000k
. 

Encontramos �1000k � 1
4
 1n � 19 

999
 � �0.9906. Por tanto

 
.x(t)

1000

1 999e 0.9906t  

Finalmente, x(6) �
1000

1 � 999e�5.9436 � 276 estudiantes. 

En la tabla de la fi gura 3.2.3b se dan otros valores calculados de x(t). 

P

P0 

a/2b 

a)

a/b 

t

P

P0 a/2b 

b)

a/b 

t

FIGURA 3.2.2  Curvas logísticas para 
diferentes condiciones iniciales.

(a)

t

x x = 1000

10

500

5

a)

t (días) x (número de infectados)

4 50 (observados)
5 124
6 276
7 507
8 735
9 882

10 953

b)

FIGURA 3.2.3  El número de 
estudiantes infectados x(t) tiende a 1000 
conforme pasa el tiempo t.
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MODIFICACIONES DE LA ECUACIÓN LOGÍSTICA  Hay muchas variaciones de 
la ecuación logística. Por ejemplo, las ecuaciones diferenciales

 
dP

dt
� P(a � bP) � h

dP

dt
� P(a � bP) � h y  (6)

podrían servir, a su vez, como modelos para la población de una pesquería donde el 
pez se pesca o se reabastece con una razón h. Cuando h � 0 es una constante, las 
ED en las ecuaciones (6) se analizan fácilmente cualitativamente o se resuelven ana-
líticamente por separación de variables. Las ecuaciones en (6) también podrían servir 
como modelos de poblaciones humanas que decrecen por emigración o que crecen por 
inmigración, respectivamente. La razón h en las ecuaciones (6) podría ser función del 
tiempo t o depender de la población; por ejemplo, se podría pescar periódicamente o 
con una razón proporcional a la población P al tiempo t. En el último caso, el modelo 
sería P� � P(a – bP) – cP, c � 0. La población humana de una comunidad podría cam-
biar debido a la inmigración de manera tal que la contribución debida a la inmigración 
es grande cuando la población P de la comunidad era pequeña pero pequeña cuando 
P es grande; entonces un modelo razonable para la población de la comunidad sería 
P′ � P(a � bP) � ce�kP, c � 0, k � 0. Vea el problema 22 de los ejercicios 3.2. Otra 
ecuación de la forma dada en (2),

 
,

dP

dt
� P(a � b ln P)  (7)

es una modifi cación de la ecuación logística conocida como la ecuación diferencial 
de Gompertz. Esta ED algunas veces se usa como un modelo en el estudio del cre-
cimiento o decrecimiento de poblaciones, el crecimiento de tumores sólidos y cierta 
clase de predicciones actuariales. Vea el problema 22 de los ejercicios 3.2.

REACCIONES QUÍMICAS  Suponga que a gramos de una sustancia química A se 
combinan con b gramos de una sustancia química B. Si hay M partes de A y N partes 
de B formadas en el compuesto y X(t) es el número de gramos de la sustancia química 
C formada, entonces el número de gramos de la sustancia química A y el número de 
gramos de la sustancia química B que quedan al tiempo t son, respectivamente,

 .a �
M

M � N
X        b �

N

M � N
Xy  

La ley de acción de masas establece que cuando no hay ningún cambio de temperatura, 
la razón con la que reaccionan las dos sustancias es proporcional al producto de las 
cantidades de A y de B que aún no se han transformado al tiempo t:

 .
dX

dt
� �a �

M

M � N
X��b �

N

M � N
X�  (8)

Si se saca el factor M�(M � N) del primer factor y N�(M � N) del segundo y se intro-
duce una constante de proporcionalidad k � 0, la expresión (8) toma la forma

 ,
dX

dt
� k(� � X)(� � X)  (9)

donde a � a(M � N )�M y b � b(M � N )�N. Recuerde de (6) de la sección 1.3 
que una reacción química gobernada por la ecuación diferencial no lineal (9) se 
dice que es una reacción de segundo orden.

EJEMPLO 2  Reacción química de segundo orden

Cuando se combinan dos sustancias químicas A y B se forma un compuesto C. La 
reacción resultante entre las dos sustancias químicas es tal que por cada gramo de A 
se usan 4 gramos de B. Se observa que a los 10 minutos se han formado 30 gramos 
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98 ● CAPÍTULO 3  MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN

del producto C. Determine la cantidad de C en el tiempo t si la razón de la reacción es 
proporcional a las cantidades de A y B que quedan y si inicialmente hay 50 gramos de 
A y 32 gramos de B. ¿Qué cantidad de compuesto C hay a los 15 minutos? Interprete 
la solución cuando t : �.

SOLUCIÓN  Sea X(t) la cantidad de gramos del compuesto C presentes en el tiempo 
t. Es obvio que X(0) � 0 g y X(10) � 30 g.

Si, por ejemplo, hay 2 gramos del producto C, hemos debido usar, digamos, a 
gramos de A y b gramos de B, así a � b � 2 y b � 4a. Por tanto, debemos usar 
a � � 2(1

5)2
5  de la sustancia química A y b � � 2(4

5)8
5  

g de B. En general, para obtener 
X gramos de C debemos usar

 .
1

5
X         

4

5
Xgramos de A y gramos de B. 

Entonces las cantidades de A y B que quedan al tiempo t son

 ,50 �
1

5
X  32 �

4

5
Xy  

respectivamente.
Sabemos que la razón con la que se forma el compuesto C satisface que

 .
dX

dt
� �50 �

1

5
X��32 �

4

5
X�  

Para simplifi car las operaciones algebraicas subsecuentes, factorizamos 1
5
 del primer 

término y 4
5
 del segundo y después introduciremos la constante de proporcionalidad:

 .
dX

dt
� k(250 � X )(40 � X )  

Separamos variables y por fracciones parciales podemos escribir que

 .�
1

210

250 � X
dX �

1
210

40 � X
dX � k dt  

Integrando se obtiene

 
250 X

40 X
210kt c1 o

250 X

40 X
c2e210kt.In  (10)

Cuando t � 0, X � 0, se tiene que en este punto c
2
 � 25

4 
. Usando X � 30 g en t � 10 

encontramos que 210 k � ln �88
25

1
10 0.1258. Con esta información se despeja X de la 

última ecuación (10):

 .X(t) � 1000
1 � e�0.1258t

25 � 4e�0.1258t
 (11)

En la fi gura 3.2.4 se presenta el comportamiento de X como una función del tiempo. 
Es claro de la tabla adjunta y de la ecuación (11) que X : 40 conforme t : �. Esto 
signifi ca que se forman 40 gramos del compuesto C, quedando

 
.50 �

1

5
(40) � 42 g A        32 �

4

5
(40) � 0 g Byde de

 

10 20 30 40 t

X
X = 40

a)

t (min) X (g)

10 30 (medido)
15 34.78
20 37.25
25 38.54
30 39.22
35 39.59

b)

FIGURA 3.2.4  X(t) comienza en 0 y 
tiende a 40 cuando t crece.
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COMENTARIOS

La integral indefi nida � du�(a2 � u2) se puede evaluar en términos de logarit-
mos tangente hiperbólica inversa, o de la cotangente hiperbólica inversa. Por 
ejemplo, de los dos resultados

  (12)

 
du

a 2 u 2

1

2a

a u

a u
c, u a,

du

a 2 u 2

1

a
tanh 1 u

a
c, u a

 In  (13)

la ecuación (12) puede ser conveniente en los problemas 15 y 24 de los ejercicios 
3.2, mientras que la ecuación (13) puede ser preferible en el problema 25.

EJERCICIOS 3.2  Las respuestas a los problemas con número impar comienzan en la página RES-3.

Ecuación logística

 1. La cantidad N(t) de supermercados del país que están 
usando sistemas de revisión computarizados se describe 
por el problema con valores iniciales

.
dN

dt
� N(1 � 0.0005N ),  N(0) � 1

a)  Use el concepto de esquema de fase de la sección 2.1 
para predecir cuántos supermercados se espera que 
adopten el nuevo procedimiento en un periodo de 
tiempo largo. A mano, dibuje una curva solución del 
problema con valores iniciales dados.

b)  Resuelva el problema con valores iniciales y después 
utilice un programa de grafi cación para comprobar y 
trazar la curva solución del inciso a). ¿Cuántas com-
pañías se espera que adopten la nueva tecnología 
cuando t � 10?

 2. La cantidad N(t) de personas en una comunidad bajo la 
infl uencia de determinado anuncio está gobernada por 
la ecuación logística. Inicialmente N(0) � 500 y se ob-
serva que N(1) � 1000. Determine N(t) si se predice que 
habrá un límite de 50 000 personas en la comunidad 
que verán el anuncio.

 3. Un modelo para la población P(t) en un suburbio de una 
gran ciudad está descrito por el problema con valores ini-
ciales

,
dP

dt
P(10 1 10 7 P), P(0) 5000

  donde t se expresa en meses. ¿Cuál es el valor límite de 
la población? ¿Cuánto tardará la población en alcanzar la 
mitad de ese valor límite? 

 4. a)  En la tabla 3.1 se presentan los datos del censo de los 
Estados Unidos entre 1790 y 1950. Construya un mo-
delo de población logístico usando los datos de 1790, 
1850 y 1910.

  b)  Construya una tabla en la que se compare la pobla-
ción real del censo con la población predicha por el 
modelo del inciso a). Calcule el error y el error por-
centual para cada par de datos.

TABLA 3.1  

Año Población (en millones)

1790 3.929
1800 5.308
1810 7.240
1820 9.638
1830 12.866
1840 17.069
1850 23.192
1860 31.433
1870 38.558
1880 50.156
1890 62.948
1900 75.996
1910 91.972
1920 105.711
1930 122.775
1940 131.669
1950 150.697

Modifi caciones del modelo logístico

 5.  a)  Si se pesca un número constante h de peces de una pes-
quería por unidad de tiempo, entonces un modelo para la 
población P(t) de una pesquería al tiempo t está dado por

,
dP

dt
� P(a � bP) � h, P(0) � P0

  donde a, b, h y P
0
 son constantes positivas. Suponga 

que a � 5, b � 1 y h � 4. Puesto que la ED es au-
tónoma, utilice el concepto de esquema de fase de la 
sección 2.1 para dibujar curvas solución representa-
tivas que corresponden a los casos P

0
 � 4, 1 � P

0
 � 
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100 ● CAPÍTULO 3  MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN

4 y 0 � P
0
 � 1. Determine el comportamiento de la 

población a largo plazo en cada caso.

b)  Resuelva el PVI del inciso a). Compruebe los resul-
tados de su esquema de fase del inciso a) utilizando 
un programa de grafi cación para trazar la gráfi ca de 
P(t) con una condición inicial tomada de cada uno 
de los tres intervalos dados.

c)  Utilice la información de los incisos a) y b) para deter-
minar si la población de la pesquería desaparecerá en 
un tiempo fi nito. De ser así, determine ese tiempo.

 6. Investigue el modelo de pesca del problema 5 tanto cuali-
tativa como analíticamente en el caso en que a � 5, b � 
1, h � 25

4 . Determine si la población desaparecerá en un 
tiempo fi nito. De ser así, determine ese tiempo.

 7. Repita el problema 6 en el caso a � 5, b � 1, h � 7.

 8. a)  Suponga a � b � 1 en la ecuación diferencial de 
Gompertz, ecuación (7). Puesto que la ED es autó-
noma, utilice el concepto de esquema de fase de la sec-
ción 2.1 para dibujar curvas solución representativas 
correspondientes a los casos P

0
 � e y 0 � P

0
 � e.

b)  Suponga que a � 1, b � �1 en la ecuación (7). 
Utilice un nuevo esquema de fase para dibujar las 
curvas solución representativas correspondientes a 
los casos P

0
 � e�1 y 0 � P

0
 � e�1.

c)  Encuentre una solución explícita de la ecuación (7) 
sujeta a P(0) � P

0
.

Reacciones químicas

 9. Dos sustancias químicas A y B se combinan para formar la 
sustancia química C. La razón de reacción es proporcional 
al producto de las cantidades instantáneas de A y B que no 
se han convertido en C. Al principio hay 40 gramos de A y 
50 gramos de B, y por cada gramo de B se consumen 2 de 
A. Se observa que a los cinco minutos se han formado 10 
gramos de C. ¿Cuánto se forma en 20 minutos de C? ¿Cuál 
es la cantidad límite de C a largo plazo? ¿Cuánto de las 
sustancias A y B queda después de mucho tiempo?

10. Resuelva el problema 9 si hay al principio 100 gramos 
de la sustancia química A. ¿Cuándo se formará la mitad de 
la cantidad límite de C? 

Modelos no lineales adicionales

11. Tanque cilíndrico con gotera  Un tanque en forma de 
un cilindro recto circular en posición vertical está sacando 
agua por un agujero circular en su fondo. Como se vio en 
(10) de la sección 1.3, cuando se desprecia la fricción y la 
contracción del agujero, la altura h del agua en el tanque 
está descrita por

,
dh

dt
� �

Ah

Aw

12gh

  donde A
a
 y A

h
 son las áreas de sección transversal del 

agua y del agujero, respectivamente.

a)  Resuelva la ED si la altura inicial del agua es H. A 
mano, dibuje la gráfi ca de h(t) y de su intervalo de 

defi nición I en términos de los símbolos A
w
, A

h
 y H. 

Utilice g � 32 pies/s2.

b)  Suponga que el tanque tiene 10 pies de altura y un 
radio de 2 pies y el agujero circular tiene un radio de 
1
2
 pulg. Si el tanque está inicialmente lleno, ¿cuánto 

tarda en vaciarse?

12. Tanque cilíndrico con gotera (continuación)  Cuando 
se considera la fricción y contracción del agua en el agu-
jero, el modelo del problema 11 se convierte en

,
dh

dt
� �c

Ah

Aw

12gh

  donde 0 � c � 1. ¿Cuánto tarda el tanque del problema 
11b en vaciarse si c � 0.6? Vea el problema 13 de los 
ejercicios 1.3.

13. Tanque cónico con gotera  Un tanque con forma de 
cono recto con el vértice hacia abajo, está sacando agua 
por un agujero circular en su fondo.

a)  Suponga que el tanque tiene 20 pies de altura y tiene 
un radio de 8 pies y el agujero circular mide dos pul-
gadas de radio. En el problema 14 de los ejerci cios 
1.3 se le pidió mostrar que la ecuación diferencial que 
gobierna la altura h del agua que sale del tanque es

.
dh

dt
� �

5

6h3/2

  En este modelo, se consideró la fricción y la contrac-
ción del agua en el agujero con c � 0.6 y el valor de g 
se tomó de 32 pies/s2. Véase la fi  gura 1.3.12. Si al prin-
cipio el tanque está lleno, ¿cuánto tarda en vaciarse? 

b)  Suponga que el tanque tiene un ángulo de vértice de 
60° y el agujero circular mide dos pulgadas de radio. 
Determine la ecuación diferencial que go bierna la al-
tura h del agua. Utilice c � 0.6 y g � 32 pies/s2. Si al 
principio la altura del agua es de 9 pies, ¿cuánto tarda 
en vaciarse el tanque?

14. Tanque cónico invertido  Suponga que se invierte el 
tanque cónico del problema 13a, como se mues tra en la 
fi gura 3.2.5 y que sale agua por un agujero circular con un 
radio de dos pulgadas en el centro de su base circular. ¿El 
tiempo en que se vacía el tanque lleno es el mismo que 
para el tanque con el vértice hacia abajo del problema l3? 
Tome el coefi ciente de fricción/contracción de c � 0.6 y 
g � 32 pies/s2.

8 pies

Aw

h
20 pies

FIGURA 3.2.5  Tanque cónico invertido del problema 14.
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15. Resistencia del aire  Una ecuación diferencial para la ve-
locidad v de una masa m que cae sujeta a la resistencia del 
aire proporcional al cuadrado de la velocidad instantánea es

,m
dv

dt
� mg � kv 2

  donde k � 0 es una constante de proporcionalidad. La 
dirección positiva es hacia abajo.

a)  Resuelva la ecuación sujeta a la condición inicial 
v(0) � v

0
. 

b)  Utilice la solución del inciso a) para determinar la ve-
locidad límite, o terminal de la masa. En el pro blema 
41 de los ejercicios 2.1 vimos cómo deter minar la ve-
locidad terminal sin resolver la ED. 

c)  Si la distancia s, medida desde el punto donde se 
suelta la masa sobre el suelo, está relacionada con la 
velocidad v por ds�dt � v(t), encuentre una expresión 
explícita para s(t) si s(0) � 0.

16. ¿Qué tan alto? (Resistencia del aire no lineal)  Consi-
dere la bala de cañón de 16 libras que se dispara vertical-
mente hacia arriba en los problemas 36 y 37 en los ejercicios 
3.1 con una velocidad inicial v

0
 � 300 pies/s. Determine 

la altura máxima que alcanza la bala si se supone que la 
resistencia del aire es proporcional al cuadrado de la ve-
locidad instantánea. Suponga que la dirección positiva es 
hacia arriba y tome k � 0.0003. [Sugerencia: Modifi que 
un poco la ED del problema 15.]

17. Esa sensación de hundimiento  a) Determine una ecua-  
 ción diferencial para la velocidad v(t) de una masa m que 
se hunde en agua que le da una resistencia proporcional 
al cuadrado de la velocidad instantánea y también ejerce 
una fuerza boyante hacia arriba cuya magnitud está dada 
por el principio de Arquímedes. Véase el problema 18 de 
los ejercicios 1.3. Suponga que la dirección po sitiva es 
hacia abajo.

b) Resuelva la ecuación diferencial del inciso a).

c)  Determine la velocidad límite, o terminal, de la masa 
hundida.

18. Colector solar  La ecuación diferencial

dy

dx
�

�x � 1x2 � y2

y

  describe la forma de una curva plana C que refl eja los 
ha ces de luz entrantes al mismo punto y podría ser un mo-
delo para el espejo de un telescopio refl ector, una antena 
de satélite o un colector solar. Vea el problema 27 de los 
ejercicios 1.3. Hay varias formas de resolver esta ED.

a)  Compruebe que la ecuación diferencial es homogénea 
(véase la sección 2.5). Demuestre que la susti tución y 
� ux produce

.
u du

11 � u2 (1 � 11 � u2)
�

dx

x

  Utilice un SAC (u otra sustitución adecuada) para in-
tegrar el lado izquierdo de la ecuación. Muestre que 
la curva C debe ser una parábola con foco en el origen 
y simétrica respecto al eje x.

b)  Demuestre que la ecuación diferencial puede también 
resolverse por medio de la sustitución u � x2 � y2.

19. Tsunami  a) Un modelo simple para la forma de un tsu-
nami o maremoto, está dado por

,
dW

dx
� W 14 � 2W

  donde W(x) � 0 es la altura de la ola expresada como 
una función de su posición respecto a un punto en 
alta mar. Examinando, encuentre todas las soluciones 
cons tantes de la ED.

b)  Resuelva la ecuación diferencial del inciso a). Un 
SAC puede ser útil para la integración.

c)  Use un programa de grafi cación para obtener las grá-
fi cas de las soluciones que satisfacen la con dición ini-
cial W(0) � 2. 

20. Evaporación  Un estanque decorativo exterior con for -
ma de tanque semiesférico se llenará con agua bombeada 
hacia el tanque por una entrada en su fon do. Suponga que 
el radio del tanque es R � 10 pies, que el agua se bombea a 
una rapidez de p pies3/minuto y que al inicio el tanque está 
vacío. Véase la fi gura 3.2.6. Conforme se llena el tanque, 
éste pierde agua por evaporación. Suponga que la rapidez 
de evaporación es proporcional al área A de la superfi cie sobre 
el agua y que la constante de proporcionalidad es k � 0.01.

a)  La rapidez de cambio dV�dt del volumen del agua 
al tiempo t es una rapidez neta. Utilice esta rapi dez 
neta para determinar una ecuación diferen cial para la 
altura h del agua al tiempo t. El vo lumen de agua que 
se muestra en la fi gura es V � pRh2 � ph31

3 , donde R 
� 10. Exprese el área de la superfi cie del agua A � 
pr2 en términos de h.

b)  Resuelva la ecuación diferencial del inciso a). Trace 
la gráfi ca de la solución.

c)   Si no hubiera evaporación, ¿cuánto tardaría en lle-
narse el tanque?

d)  Con evaporación, ¿cuál es la profundidad del agua en 
el tiempo que se determinó en el inciso c)? ¿Alguna 
vez se llenará el tanque? Demuestre su afi rmación.

FIGURA 3.2.6  Estanque decorativo del problema 20.

pies 3

A
V

Salida: el agua se evapora con una razón 
proporcional al área A de la superficie

Entrada: el agua se bombea con 
una razón de 3/minπ

 a) tanque semiesférico  b) sección transversal del tanque

R

r

h
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Problemas de proyecto

21. Recta de regresión  Lea en el manual de su SAC acerca 
de gráfi cas de dispersión (o diagramas de dispersión) y 
ajuste de rectas por mínimos cuadrados. La recta que 
mejor se ajusta a un conjunto de datos se llama recta de 
re gresión o recta de mínimos cuadrados. Su tarea 
es construir un modelo logístico para la población de 
Estados Unidos, defi niendo f (P) en (2) como una ecua-
ción de una recta de regresión que se basa en los datos 
de población que aparecen en la tabla del proble ma 4. 
Una manera de hacer esto es aproximar el lado izquierdo 

   
1

P

dP

dt
 de la primera ecuación en (2), utilizando el co-

ciente de diferencias hacia adelante en lugar de dP�dt: 

.Q(t) �
1

P(t)

P(t � h) � P(t)

h

a)  Haga una tabla de los valores t, P(t) y Q(t) usando t 
� 0, 10, 20, . . . , 160 y h � 10. Por ejemplo, el pri-
mer renglón de la tabla debería contener t � 0, P(0) y 
Q(0). Con P(0) � 3.929 y P(10) � 5.308,

.Q(0) �
1

P(0)

P(10) � P(0)

10
� 0.035

  Observe que Q(160) depende de la población del 
censo de 1960 P(l70). Busque este valor.

b)  Use un SAC para obtener el diagrama de disper sión 
de los datos (P(t), Q(t)) que se calculó en el inci so a). 
También utilice un SAC para encontrar una ecuación 
de la recta de regresión y superponer su gráfi ca en el 
diagrama de dispersión.

c)  Construya un modelo logístico dP�dt � Pf (P), donde 
f (P) es la ecuación de la recta de regresión que se 
encontró en el inciso b).

d)  Resuelva el modelo del inciso c) usando la condi ción 
inicial P(0) � 3.929.

e)  Utilice un SAC para obtener un diagrama de dis persión, 
esta vez de los pares ordenados (t, P(t)) de su tabla del 
inciso a). Utilice un SAC para super poner la gráfi ca de 
la solución del inciso d) en el diagrama de dispersión.

f )  Busque los datos del censo de Estados Unidos pa ra 
1970, 1980 y 1990. ¿Qué población predice el mo-
delo logístico del inciso c) para estos años? ¿Qué 
predice el modelo para la población P(t) de Estados 
Unidos conforme t : �?

22. Modelo de inmigración  a) En los ejemplos 3 y 4 de
   la sección 2.1 vimos que cualquier solución P(t) de (4) 

tiene el comportamiento asintótico P(t) : a�b conforme 
t : � para P

0
 � a�b y para 0 � P

0
 � a�b; como con-

secuencia, la solución de equilibrio P � a�b se llama un 
atractor. Utilice un programa para determinar raíces de 
un SAC (o una calculadora grafi cadora) para aproximar 
la solución de equilibrio del modelo de inmigración

.
dP

dt
� P(1 � P) � 0.3e�P

b)  Utilice un programa de grafi cación para trazar la grá-
fi ca de la función F(P) � P(1 � P) � 0.3e�P. Explique 
cómo se puede utilizar esta gráfi ca para determinar 
si el número que se encontró en el inciso a) es un 
atractor.

c)  Use un programa de solución numérica para compa-
rar las curvas solución de los PVI

 

dP

dt
� P(1 � P), P(0) � P0

  Para P
0
 � 0.2 y P

0
 � 1.2 con las curvas solución para 

los PVI.

dP

dt
� P(1 � P) � 0.3e�P, P(0) � P0

  para P
0
 � 0.2 y P

0
 � 1.2. Superponga todas las curvas en 

los mismos ejes de coordenadas pero, si es posible, uti-
lice un color diferente para las curvas del segundo pro-
blema con valores iniciales. En un periodo largo, ¿qué 
incremento porcentual predice el mo delo de inmigración 
en la población comparado con el modelo logístico?

23. Lo que sube . . .  En el problema 16 sea t
a
 el tiempo que 

tarda la bala de cañón en alcanzar su altura máxi ma y 
sea t

d
 el tiempo que tarda en caer desde la altura máxima 

hasta el suelo. Compare el valor t
a
 con el valor de t

d
 y 

compare la magnitud de la velocidad de impacto v
i
 con 

la velocidad inicial v
0
. Vea el problema 48 de los ejerci-

cios 3.1. Aquí puede ser útil un programa para determinar 
raíces de un SAC. [Sugerencia: Utili ce el modelo del pro-
blema 15 cuando la bala de cañón va cayendo.]

24. Paracaidismo  Un paracaidista está equipado con un 
cronómetro y un altímetro. Como se muestra en la fi gura 
3.2.7, el paracaidista abre su paracaídas 25 segundos des-
pués de saltar del avión que vuela a una altitud de 20 000 
pies, y observa que su altitud es de 14 800 pies. Suponga 
que la resistencia del aire es proporcional al cuadrado 
de la velocidad instantánea, la velocidad inicial del pa-
racaidista al saltar del avión es cero y g � 32 pies/s2.

a)  Encuentre la distancia s(t), medida desde el avión, que 
ha recorrido el paracaidista durante la caída libre en el 
tiempo t. [Sugerencia: No se especifi ca la constante 
de proporcionalidad k en el modelo del problema 15. 
Use la expresión para la velocidad terminal v

t
 que se 

s(t)

25 s

14 800 pies

FIGURA 3.2.7  Paracaidista del problema 24.
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obtuvo en el inciso b) del problema 15 para eliminar k 
del PVI. Luego, fi nalmente encuentre v

t
.]

b)  ¿Qué distancia descendió el paracaidista y cuál es su 
velocidad cuando t � 15 s?

25. Impacto en el fondo  Un helicóptero sobrevuela 500 pies 
por arriba de un gran tanque abierto lleno de líquido (no 
agua). Se deja caer un objeto compacto y denso que pesa 
160 libras (liberado desde el reposo) desde el helicóptero en 
el líquido. Suponga que la resistencia del aire es proporcional 
a la velocidad instantánea v en tanto el objeto está en el aire y 
que el amortiguamiento viscoso es proporcional a v2 después 
de que el objeto ha entrado al líquido. Para el aire, tome k � 
1
4
, y para el líquido tome k � 0.1. Suponga que la dirección 

positiva es hacia abajo. Si el tanque mide 75 pies de alto, de-
termine el tiempo y la velocidad de impacto cuando el objeto 
golpea el fondo del tanque. [Sugerencia: Piense en términos 
de dos PVI distintos. Si se utiliza la ecuación (13), tenga 
cuidado de eliminar el signo de valor absoluto. Se podría 
comparar la velocidad cuando el objeto golpea el líquido, la 
velocidad inicial para el segundo problema, con la velocidad 
terminal v

t
 del objeto cuando cae a través del líquido.]

26. Hombre viejo de río . . .  En la fi gura 3.2.8a suponga 
que el eje y y la recta vertical x � 1 representan, respecti-
vamente, las playas oeste y este de un río que tiene 1 milla 
de ancho. El río fl uye hacia el norte con una velocidad v

r
, 

donde |v
r
| � v

r
 mi/h es una constante. Un hombre entra a 

la corriente en el punto (1, 0) en la costa este y nada en 
una dirección y razón respecto al río dada por el vector v

s
, 

donde la velocidad |v
s
| � v

s
 mi/h es una constante. El hom-

bre quiere alcanzar la costa oeste exactamente en (0, 0) y 
así nadar de tal forma que conserve su vector velocidad v

s
 

siempre con dirección hacia (0, 0). Utilice la fi gura 3.2.8b 
como una ayuda para mostrar que un modelo matemático 
para la trayectoria del nadador en el río es 

dy

dx
�

vsy � vr1x2 � y2

vsx
.

  [Sugerencia: La velocidad v del nadador a lo largo de la 
trayectoria o curva que se muestra en la fi gura 3.2.8 es 
la resultante v � v

s
 � v

r
. Determine v

s
 y v

r
 en compo-

nentes en las direcciones x y y. Si x � x(t), y � y(t) son 
ecuaciones paramétricas de la trayectoria del nadador, en-
tonces v � (dx�dt, dy�dt)].

27. a)  Resuelva la ED del problema 26 sujeto a y(1) � 0. Por 
conveniencia haga k � v

r
�v

s
.

b)  Determine los valores de v
s
, para los que el nadador 

alcanzará el punto (0, 0) examinando lím
x : 0

y(x) en los 
casos k � 1, k � 1 y 0 � k � 1.

28. Hombre viejo de río conserva su movimiento . . . 
Suponga que el hombre del problema 26 de nuevo entra 
a la corriente en (1, 0) pero esta vez decide nadar de tal 
forma que su vector velocidad v

s
 está siempre dirigido 

hacia la playa oeste. Suponga que la rapidez |v
s
| � v

s
 mi/h 

es una constante. Muestre que un modelo matemático 
para la trayectoria del nadador en el río es ahora

dy

dx
� �

vr

vs

.

29. La rapidez de la corriente v
r
 de un río recto tal como el del 

problema 26 usualmente no es una constante. Más bien, 
una aproximación a la rapidez de la corriente (medida en 
millas por hora) podría ser una función tal como v

r
(x) � 

30x(1 � x), 0 � x � 1, cuyos valores son pequeños en las 
costas (en este caso, v

r
(0) � 0 y v

r
(1) � 0 y más grande 

en la mitad de río. Resuelva la ED del problema 28 sujeto 
a y(1) � 0, donde v

s
 � 2 mi/h y v

r
(x) está dado. Cuando el 

nadador hace esto a través del río, ¿qué tanto tendrá que 
caminar en la playa para llegar al punto (0, 0)?

30. Gotas de lluvia continúan cayendo . . .  Cuando hace 
poco se abrió una botella de refresco se encontró que 
decía dentro de la tapa de la botella:

  La velocidad promedio de una gota de lluvia cayendo es 
de 7 millas/hora. 

  En una búsqueda rápida por la internet se encontró que el 
meteorólogo Jeff Haby ofrecía información adicional de que 
una gota de lluvia esférica en “promedio” tenía un radio de 
0.04 pulg. y un volumen aproximado de 0.000000155 pies3. 
Utilice estos datos y, si se necesita investigue más y haga 
otras suposiciones razonables para determinar si “la veloci-
dad promedio de . . . 7 millas por hora” es consistente con 
los modelos de los problemas 35 y 36 de los ejercicios 3.1 
y con el problema 15 de este conjunto de ejercicios. También 
vea el problema 34 de los ejercicios 1.3.

31. El tiempo gotea El clepsidra, o reloj de agua, fue un 
dispositivo que los antiguos egipcios, griegos, romanos y 
chinos usaban para medir el paso del tiempo al observar el 
cambio en la altura del agua a la que se le permitía salir por 
un agujero pequeño en el fondo de un tanque.

a)  Suponga que se ha hecho un tanque de vidrio y que 
tiene la forma de un cilindro circular recto de radio 1 
pie. Suponga que h(0) � 2 pies corresponde a agua 
llena hasta la tapa del tanque, un agujero en el fondo 
es circular con radio 21

32 pulg, g � 32 pies/s  y c � 0.6. 

y

(0, 0) (1, 0)

y(t)

x(t)

θ

(x(t), y(t))

vr

playa 
oeste

playa 
este

nadador

corriente

x

y

(0, 0) (1, 0)

vs

vr

x

a)

b)

FIGURA 3.2.8  Trayectoria del nadador del problema 26.
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104 ● CAPÍTULO 3  MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN

Utilice la ecuación diferencial del problema 12 para 
encontrar la altura h(t) del agua.

b)  Para el tanque del inciso a), ¿a qué altura desde su 
fondo se debería marcar ese lado, como se muestra en 
la fi gura 3.2.9, que corresponde al paso de una hora? 
Después determine dónde colocaría las marcas corres-
pondientes al paso de 2 h, 3 h, . . . , 12 h. Explique por 
qué estas marcas no están igualmente espaciadas.

Problema aportado

34. Un modelo logístico para 
el crecimiento del gira-
sol  Este problema implica 
un plantío de semillas de girasol y el dibujo de la altura en 
función del tiempo. Podría llevar de 3 a 4 meses obtener 
los datos, por lo que ¡comencemos ya! Si puede cámbiela 
por una planta diferente, pero puede tener que ajustar la 
escala de tiempo y la escala de altura adecuada.

a)  Usted va a crear una gráfi ca de la altura del girasol 
(en cm) contra el tiempo (en días). Antes de iniciar 
intuya cómo será esta curva y ponga la gráfi ca intuida 
en la malla.

21 hora

2 horas

1

FIGURA 3.2.9  Clepsidra del problema 31.

32. a)  Suponga que un tanque de vidrio tiene la forma de un 
cono con sección transversal circular como se muestra 
en la fi gura 3.2.10. Como en el inciso a) del problema 
31, suponga que h(0) � 2 pies corresponde a agua 
llena hasta la parte superior del tanque, un agujero 
circular en el fondo de radio 1

32
 pulg, g � 32 pies/s2 y 

c � 0.6. Utilice la ecuación diferencial del problema 
12 para encontrar la altura h(t) del agua.

b)  ¿Puede este reloj de agua medir 12 intervalos de tiempo 
de duración de 1 hora? Explique usando matemáticas.

2

1

FIGURA 3.2.10  Clepsidra del problema 12.

33. Suponga que r � f (h) defi ne la forma de un reloj de agua 
en el que las marcas del tiempo están igualmente espacia-
das. Utilice la ecuación diferencial del problema 12 para 
encontrar f (h) y dibuje una gráfi ca típica de h como una 
función de r. Suponga que el área de sección transver-
sal A

h
 del agujero es constante. [Sugerencia: En este caso 

dh�dt � �a donde a � 0 es una constante.]

altura

0 10 20 30 40 50
días

60 70 80 90 100

400

300

200

100

b)  Ahora plante su girasol. Tome la medida de la altura el 
primer día que su fl or brote y llámelo el día 0. Después 
tome una medida al menos una vez a la semana; éste 
es el momento para empezar a escribir sus datos.

c)  ¿Sus datos de puntos más cercanos parecen crecimiento 
exponencial o crecimiento logístico? ¿Por qué?

d)  Si sus datos más cercanos semejan crecimiento exponen-
cial, la ecuación para la altura en términos del tiempo será 
dH�dt � kH. Si sus datos más cercanos se asemejan a un 
crecimiento logístico, la ecuación de peso en términos de 
la altura será dH�dt � kH (C – H). ¿Cuál es el signifi cado 
físico de C? Utilice sus datos para calcular C.

e)  Ahora experimentalmente determine k. Para cada uno 
de sus valores de t, estime dH�dt usando diferencias de 

cocientes. Después use el hecho de que k �
dH>dt

H(C � H)para obtener la mejor estimación de k. 

f)  Resuelva su ecuación diferencial. Ahora trace la grá-
fi ca de su solución junto con los datos de los puntos. 
¿Llegó a un buen modelo? ¿Cree que k cambiará si 
planta un girasol diferente el año que entra?

Problema aportado

35. Ley de Torricelli  Si perfo-
ramos un agujero en un cubo 
lleno de agua, el líquido sale 
con una razón gobernada por la ley de Torricelli, que esta-
blece que la razón de cambio del volumen es proporcional 
a la raíz cuadrada de la altura del líquido.

Dr. Michael Prophet, Dr. Doug 
Shaw, profesores asociados del 
Departamento de Matemáticas 
de la Universidad de Iowa del 
Norte

Ben Fitzpatrick, Ph. D Clarence 
Wallen, Departamento de 
Matemáticas de la Universidad 
Loyola Marymount
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 La ecuación de la razón dada en la fi gura 3.2.11 surge 
del principio de Bernoulli de hidrodinámica que establece 
que la cantidad P � 1

2 
�v2 � �gh es una constante. Aquí P 

es la presión, r es la densidad del fl uido, v es la velocidad 
y g es la aceleración de la gravedad. Comparando la parte 
superior del fl uido, a la altura h, con el fl uido en el agu-
jero, tenemos que

Pparte superior
1
2rv

2
parte superior rgh Pagujero

1
2rv

2
agujero rg 0.

  Si la presión en la parte superior y en el fondo son las dos 
igual a la presión atmosférica y el radio del agujero es 
mucho menor que el radio del cubo, entonces Pparte superior � 

  Pagujero  y vparte superior � 0, por lo que rgh � 1
2 rv

2
agujero  conduce a la 

  ley de Torricelli: v � 12gh. Puesto que 
dV

dt
Aagujerov,

tenemos la ecuación diferencial 

dV

dt
� �A 12gh.agujero

 En este problema, vemos una comparación de la ecua-
ción diferencial de Torricelli con los datos reales.

a)  Si el agua está a una altura h, podemos encontrar el 
volumen de agua en el cubo usando la fórmula

 V(h) �
p

3m
[(mh � RB)3 � R3

B]
  en la que m � (R

T
 � R

B
)/H. Aquí R

T
 y R

B
 denotan el 

radio de la parte superior y del fondo del cubo, res-
pectivamente y H denota la altura del cubo. Tomando 
esta fórmula como dada, se deriva para encontrar una 
relación entre las razones dV�dt y dh�dt.

b)  Use la expresión deducida en el inciso a) para en-
contrar una ecuación diferencial para h(t) (es decir, 
tendría una variable independiente t, una variable de-
pendiente h y las constantes en la ecuación).

c)  Resuelva esta ecuación diferencial usando separación 
de variables. Es relativamente directo determinar al 
tiempo como una función de la altura, pero despejar la 
altura como una función del tiempo puede ser difícil.

d)  Haga una maceta, llénela con agua y vea cómo gotea. 
Para un conjunto fi jo de alturas, registre el tiempo para 
el que el agua alcanza la altura. Compare los resultados 
con los de la solución de la ecuación diferencial.

e)  Se puede ver que una ecuación diferencial más exacta 
es

dV

dt
� �(0.84)A 1gh.agujero

  Resuelva esta ecuación diferencial y compare los re-
sultados del inciso d).

altura del cubo
Haltura del agua

h(t)

ecuación 
de razón: = –Aagujero 2ghdV

dt

FIGURA 3.2.11  Cubo con gotera.

MODELADO CON SISTEMAS DE ED DE PRIMER ORDEN

REPASO DE MATERIAL
● Sección 1.3.

INTRODUCCIÓN  Esta sección es similar a la sección 1.3 en que se van a analizar ciertos modelos 
matemáticos, pero en lugar de una sola ecuación diferencial los modelos serán sistemas de ecuaciones 
diferenciales de primer orden. Aunque algunos de los modelos se basan en temas que se analizaron 
en las dos secciones anteriores, no se desarrollan métodos generales para resolver estos sistemas. Hay 
razones para esto: primero, hasta el momento no se tienen las herramientas matemáticas necesarias 
para resolver sistemas. Segundo, algunos de los sistemas que se analizan, sobre todo los sistemas de 
ED no lineales de primer orden, simplemente no se pueden resolver de forma analítica. Los capítulos 
4, 7 y 8 tratan métodos de solución para sistemas de ED lineales. 

3.3

SISTEMAS LINEALES Y NO LINEALES  Se ha visto que una sola ecuación dife-
rencial puede servir como modelo matemático para una sola población en un medio 
ambiente. Pero si hay, por ejemplo, dos especies que interactúan, y quizá compiten, 
viviendo en el mismo medio ambiente (por ejemplo, conejos y zorros), entonces un 
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106 ● CAPÍTULO 3  MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN

modelo para sus poblaciones x(t) y y(t) podría ser un sistema de dos ecuaciones dife-
renciales de primer orden como

  

 
.

dy

dt
� g2(t, x, y)

dx

dt
� g1(t, x, y)

 

(1)

Cuando g
1
 y g

2
 son lineales en las variables x y y, es decir, g

1
 y g

2
 tienen las formas

 1 1 2 1 2 3   4 2g (t, x, y) c x c y f (t) y g (t, x, y) c x c y f (t), 

donde los coefi cientes c
i
 podrían depender de t� entonces se dice que es un sistema 

lineal. Un sistema de ecuaciones diferenciales que no es lineal se llama no lineal.

SERIES RADIACTIVAS  En el análisis del decaimiento radiactivo en las secciones 1.3 
y 3.1 se supuso que la razón de decaimiento era proporcional a la cantidad A(t) de nú-
cleos de la sustancia presentes en el tiempo t. Cuando una sustancia se desintegra por 
radiactividad, usualmente no transmuta en un solo paso a una sustancia estable, sino que 
la primera sustancia se transforma en otra sustancia radiactiva, que a su vez forma una 
tercera sustancia, etc. Este proceso, que se conoce como serie de decaimiento radiac-
tivo continúa hasta que llega a un elemento estable. Por ejemplo, la serie de decaimiento 
del uranio es U-238 : Th-234 : 	 	 	 :Pb-206, donde Pb-206 es un isótopo estable del 
plomo. La vida media de los distintos elementos de una serie radiactiva pueden variar 
de miles de millones de años (4.5 
 109 años para U-238) a una fracción de segundo. 
Suponga que una serie radiactiva se describe en forma esquemática por X

��1
: Y

��2
: Z, 

donde k
1
 � �l

1
 � 0 y k

2
 � �l

2
 � 0 son las constantes de desintegración para las sus-

tancias X y Y, respectivamente, y Z es un elemento estable. Suponga, también, que x(t), 
y(t) y z(t) denotan las cantidades de sustancias X, Y y Z, respectivamente, que quedan al 
tiempo t. La desintegración del elemento X se describe por 

 ,
dx

dt
� ��1x  

mientras que la razón a la que se desintegra el segundo elemento Y es la razón neta

 ,
dy

dt
� �1x � �2y  

porque Y está ganando átomos de la desintegración de X y al mismo tiempo perdiendo 
átomos como resultado de su propia desintegración. Como Z es un elemento estable, 
simplemente está ganando átomos de la desintegración del elemento Y:

 .
dz

dt
� �2y  

En otras palabras, un modelo de la serie de decaimiento radiactivo para los tres ele-
mentos es el sistema lineal de tres ecuaciones diferenciales de primer orden

  

  (2)

 
dz

dt
� �2y.

dy

dt
� �1x � �2y

dx

dt
� ��1x

 

MEZCLAS  Considere los dos tanques que se ilustran en la fi gura 3.3.1. Su ponga 
que el tanque A contiene 50 galones de agua en los que hay disueltas 25 libras de sal. 
Suponga que el tanque B contiene 50 galones de agua pura. A los tanques entra y sale 
líquido como se indica en la fi gura; se supone que tanto la mezcla intercambiada entre 
los dos tanques como el líquido bombeado hacia fuera del tanque B están bien mezcla-
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dos. Se desea construir un modelo matemático que describa la cantidad de libras x
1
(t) 

y x
2
(t) de sal en los tanques A y B, respectivamente, en el tiempo t.
Con un análisis similar al de la página 23 en la sección 1.3 y del ejemplo 5 de la 

sección 3.1 vemos que la razón de cambio neta de x
1
(t) para el tanque A es

mezcla
3 gal/min

mezcla
4 gal/min

BA

agua pura
3 gal/min

mezcla
1 gal/min

FIGURA 3.3.1  Tanques mezclados conectados.

dx1–––
dt

� (3 gal/min) � (0 lb/gal) � (1 gal/min) � (      lb/gal) � (4 gal/min) � (      lb/gal)
� �     x1 �      x2.

razón de entrada 
de la sal

razón de salida 
de la sal

x2–––
50

1
–––
50

x1–––
50

2
–––
25

De manera similar, para el tanque B la razón de cambio neta de x
2
(t) es

  

 �
2

25
x1 �

2

25
x2.

dx2

dt
� 4 �

x1

50
� 3 �

x2

50
� 1 �

x2

50

 

Así obtenemos el sistema lineal

  

(3)
 dx2

dt
�

2

25
x1 �

2

25
x2.

dx1

dt
� � 2

25
x1 �

1

50
x2

 

Observe que el sistema anterior va acompañado de las condiciones iniciales x
1
(0) � 

25, x
2
(0) � 0.

MODELO PRESA-DEPREDADOR  Suponga que dos especies de animales interac-
túan dentro del mismo medio ambiente o ecosistema y suponga además que la primera 
especie se alimenta sólo de vegetación y la segunda se alimenta sólo de la primera es -
pecie. En otras palabras, una especie es un depredador y la otra es una presa. Por 
ejemplo, los lobos cazan caribúes que se alimentan de pasto, los tiburones devoran 
peces pequeños y el búho nival persigue a un roedor del ártico llamado lemming. Por 
razones de análisis, imagínese que los depredadores son zorros y las presas conejos.

Sea x(t) y y(t) las poblaciones de zorros y conejos, respectivamente, en el tiempo t. 
Si no hubiera conejos, entonces se podría esperar que los zorros, sin un suministro 
adecuado de alimento, disminuyeran en número de acuerdo con

 .
dx

dt
� �ax,    a � 0  (4)

Sin embargo cuando hay conejos en el medio, parece razonable que el número de 
encuentros o interacciones entre estas dos especies por unidad de tiempo sea conjunta-
mente proporcional a sus poblaciones x y y, es decir, proporcional al producto xy. Así, 
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108 ● CAPÍTULO 3  MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN

cuando están presentes los conejos hay un suministro de alimento y, en consecuencia, 
los zorros se agregan al sistema en una proporción bxy, b � 0. Sumando esta última 
proporción a (4) se obtiene un modelo para la población de zorros:

 
dx

dt
� �ax � bxy.  (5)

Por otro lado, si no hay zorros, entonces la población de conejos, con una suposición 
adicional de suministro ilimitado de alimento, crecería con una razón proporcional al 
número de conejos presentes en el tiempo t:

 .
dy

dt
� dy,    d � 0  (6)

Pero cuando están presentes los zorros, un modelo para la población de conejos es 
la ecuación (6) disminuida por cxy, c � 0; es decir, la razón a la que los conejos son 
comidos durante sus encuentros con los zorros:

 
dy

dt
� dy � cxy.  (7)

Las ecuaciones (5) y (7) constituyen un sistema de ecuaciones diferenciales no lineales

  

(8)

 
dy

dt
� dy � cxy � y(d � cx),

dx

dt
� �ax � bxy � x(�a � by)

 

donde a, b, c y d son constantes positivas. Este famoso sistema de ecuaciones se co-
noce como modelo presa-depredador de Lotka-Volterra.

Excepto por dos soluciones constantes, x(t) � 0, y(t) � 0 y x(t) � d�c, y(t) � a�b, 
el sistema no lineal (8) no se puede resolver en términos de funciones elementales. Sin 
embargo, es posible analizar estos sistemas en forma cuantitativa y cualitativa. Vea 
el capítulo 9, “Soluciones numéricas de ecuaciones diferenciales”, y el capítulo 10 
“Sistemas autónomos planos.”*

EJEMPLO 1  Modelo presa-depredador

Suponga que

  

 
dy

dt
� 4.5y � 0.9xy

dx

dt
� �0.16x � 0.08xy

 

representa un modelo presa-depredador. Debido a que se está tratando con poblaciones, se 
tiene x(t)� 0, y(t) � 0. En la fi gura 3.3.2, que se obtuvo con la ayuda de un programa de 
solución numérica, se ilustran las curvas de población características de los depredadores 
y presa para este modelo superpuestas en los mismos ejes de coordenadas. Las condicio-
nes iniciales que se utilizaron fueron x(0) � 4, y(0) � 4. La curva en color rojo representa 
la población x(t) de los depredadores (zorros) y la curva en color azul es la población y(t) 
de la presa (conejos). Observe que el modelo al parecer predice que ambas poblaciones 
x(t) y y(t) son periódicas en el tiempo. Esto tiene sentido desde el punto de vista intuitivo 
porque conforme decrece el número de presas, la población de depredadores decrece en 
algún momento como resultado de un menor suministro de alimento; pero junto con un 
decrecimiento en el número de depredadores hay un incremento en el número de presas; 
esto a su vez da lugar a un mayor número de depredadores, que en última instancia origina 
otro decrecimiento en el número de presas. 

*Los capítulos 10 a 15 están en la versión ampliada de este libro, Ecuaciones diferenciales con problemas 
con valores en la frontera.

FIGURA 3.3.2  Parecen ser periódicas 
las poblaciones de depredadores (rojo) y 
presa (azul).
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MODELOS DE COMPETENCIA  Ahora suponga que dos especies de animales 
ocupan el mismo ecosistema, no como depredador y presa sino como competidores por 
los mismos recursos (como alimento y espacio vital) en el sistema. En ausencia de la 
otra, suponga que la razón a la que crece cada población está dada por

 ,
dx

dt
� ax        

dy

dt
� cyy  (9)

respectivamente.
Como las dos especies compiten, otra suposición podría ser que cada una de estas 

razones se reduzca simplemente por la infl uencia o existencia, de la otra población. 
Así un modelo para las dos poblaciones está dado por el sistema lineal

  

(10)

 ,
dy

dt
� cy � dx

dx

dt
� ax � by

 

donde a, b, c y d son constantes positivas.
Por otra parte, se podría suponer, como se hizo en (5), que cada razón de creci-

miento en (9) debe ser reducida por una razón proporcional al número de interacciones 
entre las dos especies:

  

(11)
 .

dy

dt
� cy � dxy

dx

dt
� ax � bxy

 

Examinando se encuentra que este sistema no lineal es similar al modelo depredador-
presa de Lotka-Volterra. Por último, podría ser más real reemplazar las razones en (9), 
lo que indica que la población de cada especie en aislamiento crece de forma exponen-
cial, con tasas que indican que cada población crece en forma logística (es decir, en un 
tiempo largo la población se acota):

 .
dx

dt
� a1x � b1x2        

dy

dt
� a2 y � b2 y2y  (12)

Cuando estas nuevas razones decrecen a razones proporcionales al número de interac-
ciones, se obtiene otro modelo no lineal

 
 

(13)

 ,
dy

dt
� a2y � b2y 2 � c2xy � y (a2 � b2y � c2x)

dx

dt
� a1x � b1x2 � c1xy � x (a1 � b1x � c1y)

 

donde los coefi cientes son positivos. Por supuesto, el sistema lineal (10) y los sistemas 
no lineales (11) y (13) se llaman modelos de competencia.

REDES  Una red eléctrica que tiene más de una malla también da lugar a ecuaciones 
diferenciales simultáneas. Como se muestra en la fi gura 3.3.3, la corriente i

1
(t) se di-

vide en las direcciones que se muestran en el punto B
1
 llamado punto de ramifi cación 

de la red. Por la primera ley de Kirchhoff se puede escribir

 i
1
(t) � i

2
(t) � i

3
(t). (14)

Además, también se puede aplicar la segunda ley de Kirchhoff a cada malla. Para la 
malla A

1
B

1
B

2
A

2
A

1
, suponiendo una caída de voltaje en cada parte del circuito, se obtiene

 .E(t) � i1R1 � L1
di2

dt
� i2R2  (15)

De modo similar, para la malla A
1
B

1
C

1
C

2
B

2
A

2
A

1
 tenemos que

 .E (t) � i1R1 � L2
di3

dt
 (16)

A1

L1

R1

R2

A2

B1

B2

C1

C2

i1 i2

i3

L2E

FIGURA 3.3.3  Red cuyo modelo está 
dado en (17).
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110 ● CAPÍTULO 3  MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN

Usando (14) para eliminar i
1
 en (15) y (16) se obtienen dos ecuaciones lineales de 

primer orden para las corrientes i
2
(t) e i

3
(t):

  

(17)

 .L2
di3

dt
� R1i2 � R1i3 � E(t)

L1
di2

dt
�  (R1 � R2)i2 � R1i3 � E (t)

 

Dejamos esto como un ejercicio (vea el problema 14) el mostrar que el sistema de 
ecuaciones diferenciales que describe las corrientes i

1
(t) e i

2
(t) en la red formada por un 

resistor, un inductor y un capacitor que se muestra en la fi gura 3.3.4 es

  

(18)

 RC
di2

dt
� i2 � i1 � 0.

L
di1

dt
� Ri2 � E(t)

 FIGURA 3.3.4  Red cuyo modelo son 
las ecuaciones (18).

i1 L

R C

i2

i3

E

EJERCICIOS 3.3  Las respuestas a los problemas con número impar comienzan en la página RES-4.

Series radiactivas

 1. Hasta el momento no se han analizado métodos mediante los 
que se puedan resolver sistemas de ecuaciones diferenciales. 
Sin embargo, sistemas como (2) se pueden resolver sin otro 
conocimiento que el necesario para resolver una ecuación 
diferencial lineal. Encuentre una solución de (2) sujeto a las 
condiciones iniciales x(0) � x

0
, y(0) � 0, z(0) � 0.

 2. En el problema 1, suponga que el tiempo se mide en días, 
que las constantes de desintegración son k

1
 � �0.138629 

y k
2
 � �0.004951, y que x

0
 � 20. Utilice un programa de 

grafi cación para trazar las gráfi cas de las soluciones x(t), 
y(t) y z(t) en el mismo conjunto de ejes de coordenadas. 
Utilice las gráfi cas para aproximar las vidas medias de 
sustancias X y Y.

 3. Utilice las gráfi cas del problema 2 para aproximar los 
tiempos cuando las cantidades x(t) y y(t) son las mismas, 
los tiempos cuando las cantidades x(t) y z(t) son las mis-
mas y los tiempos cuando las cantidades y(t) y z(t) son 
las mismas. ¿Por qué, desde el punto de vista intuitivo, el 
tiempo determinado cuando las cantidades y(t) y z(t) son 
las mismas, tiene sentido?

 4. Construya un modelo matemático para una serie radiac-
tiva de cuatro elementos W, X, Y y Z, donde Z es un ele-
mento estable.

Mezclas

 5. Considere dos tanques A y B, en los que se bombea y se 
saca líquido en la misma proporción, como se describe 
mediante el sistema de ecuaciones (3). ¿Cuál es el sistema 
de ecuaciones diferenciales si, en lugar de agua pura, se 
bombea al tanque A una solución de salmuera que con-
tiene dos libras de sal por galón?

 6. Utilice la información que se proporciona en la fi gura 
3.3.5 para construir un modelo matemático para la can-

mezcla
5 gal/min

mezcla
6 gal/min

mezcla
4 gal/min

agua pura
4 gal/min

B
100 gal

C
100 gal

A
100 gal

mezcla
2 gal/min

mezcla
1 gal/min

FIGURA 3.3.5  Tanques de mezclado del problema 6.

tidad de libras de sal x
1
(t), x

2
(t) y x

3
(t) al tiempo t en los 

tanques A, B y C, respectivamente.

 7. Dos tanques muy grandes A y B están parcialmente lle-
nos con 100 galones de salmuera cada uno. Al inicio, se 
disuelven 100 libras de sal en la solución del tanque A y 
50 libras de sal en la solución del tanque B. El sistema es 

mezcla
2 gal/min

mezcla
3 gal/min

B
100 gal

A
100 gal

FIGURA 3.3.6  Tanques de mezclado del problema 7.

cerrado ya que el líquido bien mezclado se bombea sólo 
entre los tanques, como se muestra en la fi gura 3.3.6.

a)  Utilice la información que aparece en la fi gura para 
construir un modelo matemático para el número de 
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libras de sal x
1
(t) y x

2
(t) al tiempo t en los tanques A y 

B, respectivamente.

b)  Encuentre una relación entre las variables x
1
(t) y x

2
(t) 

que se cumpla en el tiempo t. Explique por qué esta 
relación tiene sentido desde el punto de vista intui-
tivo. Use esta relación para ayudar a encontrar la can-
tidad de sal en el tanque B en t � 30 min.

 8. Tres tanques grandes contienen salmuera, como se mues-
tra en la fi gura 3.3.7. Con la información de la fi gura 
construya un modelo matemático para el número de libras 
de sal x

1
(t), x

2
(t) y x

3
(t) al tiempo t en los tanques A, B y 

C, respectivamente. Sin resolver el sistema, prediga los 
valores límite de x

1
(t), x

2
(t) y x

3
(t) conforme t : �.

 c) x(0) � 2,  y(0) � 7
 d) x(0) � 4.5,  y(0) � 0.5

11. Considere el modelo de competencia defi nido por

,
dy

dt
� y(1.7 � 0.1y � 0.15x)

dx

dt
� x(1 � 0.1x � 0.05y)

  donde las poblaciones x(t) y x(t) se miden en miles y t en 
años. Utilice un programa de solución numérica para ana-
lizar las poblaciones en un periodo largo para cada uno de 
los casos siguientes:

 a) x(0) � 1,  y(0) � 1
 b) x(0) � 4,  y(0) � 10
 c) x(0) � 9,  y(0) � 4
 d) x(0) � 5.5,  y(0) � 3.5

Redes

12. Demuestre que un sistema de ecuaciones diferenciales 
que describa las corrientes i

2
(t) e i

3
(t) en la red eléctrica 

que se muestra en la fi gura 3.3.8 es

�R1
di2

dt
� R2

di3

dt
�

1

C
i3 � 0.

L
di2

dt
� L

di3

dt
� R1i2 � E(t)

FIGURA 3.3.7  Tanques de mezclado del problema 8.

mezcla
4 gal/min

mezcla
4 gal/min

mezcla
4 gal/min

agua pura
4 gal/min

B
150 gal

C
100 gal

A
200 gal

Modelos depredador–presa

 9. Considere el modelo depredador-presa de Lotka-Volterra 
defi nido por

,
dy

dt
� 0.2y � 0.025xy

dx

dt
� �0.1x � 0.02xy

  donde las poblaciones x(t) (depredadores) y y(t) (presa) 
se miden en miles. Suponga que x(0) � 6 y y(0) � 6. 
Utilice un programa de solución numérica para grafi car 
x(t) y y(t). Use las gráfi cas para aproximar el tiempo t � 0 
cuando las dos poblaciones son al principio iguales. Use 
las gráfi cas para aproximar el periodo de cada población.

Modelos de competencia

10. Considere el modelo de competencia defi nido por

,
dy

dt
� y(1 � 0.1y � 0.3x)

dx

dt
� x(2 � 0.4x � 0.3y)

  donde las poblaciones x(t) y y(t) se miden en miles y t en 
años. Use un programa de solución numérica para anali-
zar las poblaciones en un periodo largo para cada uno de 
los casos siguientes:

 a) x(0) � 1.5,  y(0) � 3.5
 b) x(0) � 1,  y(0) � 1

R1E

i1 L i2
i3

C

R2

FIGURA 3.3.8  Red del problema 12.

i1 i2

i3R1

R2 R3

E L1 L2

FIGURA 3.3.9  Red del problema 13.

13. Determine un sistema de ecuaciones diferenciales de pri-
mer orden que describa las corrientes i

2
(t) e i

3
(t) en la red 

eléctrica que se muestra en la fi gura 3.3.9.

14. Demuestre que el sistema lineal que se proporciona en 
(18) describe las corrientes i

1
(t) e i

2
(t) en la red que se 

muestra en la fi gura 3.3.4. [Sugerencia: dq�dt � i
3
.]
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08367_03_ch03_p082-116-ok.indd   11108367_03_ch03_p082-116-ok.indd   111 6/4/09   12:17:29 PM6/4/09   12:17:29 PM



112 ● CAPÍTULO 3  MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN

Modelos no lineales adicionales

15. Modelo SIR  Una enfermedad contagiosa se propaga en 
una pequeña comunidad, con una población fi ja de n per-
sonas, por contacto entre individuos infectados y personas 
que son susceptibles a la enfermedad. Suponga al princi-
pio que todos son susceptibles a la enfermedad y que nadie 
sale de la comunidad mientras se propaga la epidemia. En el 
tiempo t, sean s(t), i(t) y r(t), a su vez, el número de personas 
en la comunidad (medido en cientos) que son susceptibles a 
la enfermedad pero que aún no están infectadas, el número 
de personas que están infectadas con la enfermedad y el nú-
mero de personas que se han recuperado de la enfermedad. 
Explique por qué el sistema de ecuaciones diferenciales

dr

dt
� k2i,

di

dt
� �k2i � k1si

ds

dt
� �k1si

  donde k
1
 (llamada la razón de infección) y k

2
 (llamada 

la razón de eliminación) son constantes positivas, es un 
modelo matemático razonable, conocido comúnmente 
como modelo SIR, para la propagación de la epidemia 
en la comunidad. Asigne condiciones iniciales posibles 
relacionadas con este sistema de ecuaciones.

16. a)  En el problema 15, explique por qué es sufi ciente ana-
lizar sólo

.
di

dt
� �k2i � k1si

ds

dt
� �k1si

b)  Suponga que k
1
 � 0.2, k

2
 � 0.7 y n � 10. Elija varios 

valores de i(0) � i
0
, 0 � i

0
 � 10. Use un programa de 

solución numérica para determinar lo que predice el 
modelo acerca de la epidemia en los dos casos s

0
 � 

k
2
�k

1
 y s

0 
� k

2
�k

1
. En el caso de una epidemia, estime 

el número de personas que fi nalmente se infectan.

Problemas de proyecto

17. Concentración de un nutriente  Suponga que los com-
partimientos A y B que se muestran en la fi gura 3.3.10 se 

llenan con líquidos y se separan mediante una membrana 
permeable. La fi gura es una representación seccional del 
exterior y el interior de una célula. Suponga también que 
un nutriente necesario para el crecimiento de la célula 
pasa por la membrana. Un modelo para las concentracio-
nes x(t) y y(t) del nutriente en los compartimientos A y 
B, respectivamente, en el tiempo t se expresa mediante el 
siguiente sistema lineal de ecuaciones diferenciales 

,
dy

dt
�

�

VB

(x � y)

dx

dt
�

�

VA

(y � x)

  donde V
A
 y V

B
 son los volúmenes de los compartimientos, 

y k � 0 es un factor de permeabilidad. Sean x(0) � x
0
 y 

y(0) � y
0
 las concentraciones iniciales del nutriente. Con 

base únicamente en las ecuaciones del sistema y la supo-
sición x

0
 � y

0
 � 0, dibuje, en el mismo conjunto de coor-

denadas, posibles curvas solución del sistema. Explique 
su razonamiento. Analice el comportamiento de las solu-
ciones en un tiempo largo.

18. El sistema del problema 17, al igual que el sistema en 
(2), se puede resolver sin un conocimiento avanzado. 
Resuelva para x(t) y y(t) y compare sus gráfi cas con sus 
dibujos del problema 17. Determine los valores límite de 
x(t) y y(t) conforme t : �. Explique por qué la respuesta 
de la última pregunta tiene sentido intuitivamente.

19. Con base sólo en la descripción física del problema de 
mezcla de la página 107 y la fi gura 3.3.1, analice la natu-
raleza de las funciones x

1
(t) y x

2
(t). ¿Cuál es el comporta-

miento de cada función durante un tiempo largo? Dibuje 
las gráfi cas posibles de x

1
(t) y x

2
(t). Compruebe sus con-

jeturas mediante un programa de solución numérica para 
obtener las curvas solución de (3) sujetas a las condicio-
nes iniciales x

1
(0) � 25, x

2
(0) � 0.

20. Ley de Newton del enfriamiento/calentamiento  Como 
se muestra en la fi gura 3.3.11, una pequeña barra metálica se 
coloca dentro del recipiente A y éste se coloca dentro de un 
recipiente B mucho más grande. A medida que se enfría la 
barra metálica, la temperatura ambiente T

A
(t) del medio den-

tro del recipiente A cambia de acuerdo con la ley de Newton 
del enfriamiento. Conforme se enfría el recipiente A, la tem-
peratura en la parte media dentro del recipiente B no cambia 

FIGURA 3.3.10  Flujo de nutrientes a través de una 
membrana del problema 17.

BA

membrana

líquido a 
concentración

x(t)

líquido a 
concentración

y(t)

FIGURA 3.3.11  Recipiente dentro de un recipiente del problema 20.

TA (t)

recipiente A

recipiente B

TB  = constante

barra 
metálica
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de manera importante y se puede considerar una constante 
T

B
. Construya un modelo matemático para las temperaturas 

T(t) y T
A
(t), donde T(t) es la temperatura de la barra me-

tálica dentro del recipiente A. Como en los problemas 1 y 
18, este modelo se puede resolver usando los conocimientos 
adquiridos. Encuentre una solución del sistema sujeto a las 
condiciones iniciales T(0) � T

0
, T

A
(0) � T

1
.

Problema aportado

21. Un problema de mez-
clas  Un par de tanques 
están conectados como se 
muestra en la fi gura 3.3.12. Al tiempo t � 0, el tanque A 
contiene 500 litros de líquido, 7 de los cuales son de etanol. 
Comenzando en t � 0, se agregan 3 litros por minuto de 
una solución de etanol a 20%. Además se bombean 2 L/min 
del tanque B al tanque A. La mezcla resultante es continua-
mente mezclada y se bombean 5 L/min al tanque B. El con-
tenido del tanque B es también continuamente mezclado. 
Además de los 2 litros que se regresan al tanque A, 3 L/min 
se descargan desde el sistema. Sean que P(t) y Q(t) denoten 
el número de litros de etanol en los tanques A y B al tiempo 
t. Queremos encontrar P(t). Usando el principio de que

 razón de cambio � razón de entrada de etanol – razón de 
    salida de etanol,

  obtenemos el sistema de ecuaciones diferenciales de pri-
mer orden

 (19)

dQ

dt
� 5� P

500�� 5� Q

100��
P

100
�

Q

20
.

dP

dt
� 3(0.2) � 2� Q

100�� 5� P

500�� 0.6 �
Q

50
�

P

100

 (20)

Dr. Michael Prophet, Dr. Doug 
Shaw, Profesores Asociados del 
Departamento de Matemáticas 
de la Universidad de Iowa del 
Norte FIGURA 3.3.12  Tanque de mezclado del problema 21.

mezcla
3 L/min

mezcla
2 L/min

B
100 litros

A
500 litros

solución de etanol
3 L/min

mezcla
5 L/min

a)  Analice cualitativamente el comportamiento del sistema. 
¿Qué ocurre a corto plazo? ¿Qué ocurre a largo plazo?

b)  Intente resolver este sistema. Cuando la ecuación (19) 
se deriva respecto al tiempo t, se obtiene

d 2P

dt 2 �
1

50

dQ

dt
�

1

100

dP

dt
. � 3.

 Sustituyendo (20) en esta ecuación y simplifi cando.

c)  Muestre que cuando se determina Q de la ecuación (19) 
y se sustituye la respuesta en el inciso b), obtenemos

100
d 2P

dt 2 � 6
dP

dt
�

3

100
P � 3.

d)  Está dado que P(0) � 200. Muestre que P�(0) � �63
50

. 
Después resuelva la ecuación diferencial en el inciso 
c) sujeto a estas condiciones iniciales.

e)  Sustituya la solución del inciso d) en la ecuación 
(19) y resuelva para Q(t).

f) ¿Qué les pasa a P(t) y Q(t) conforme t : �?

REPASO DEL CAPÍTULO 3
 Las respuestas a los problemas con número impar 

                                                                                                                                     comienzan en la página RES-4.

Responda los problemas 1 a 4 sin consultar las respuestas del 
libro. Llene los espacios en blanco y responda verdadero o falso.

 1. Si P(t) � P
0
e0.15t da la población en un medio ambiente al 

tiempo t, entonces una ecuación diferencial que satisface 
P(t) es . 

 2. Si la razón de desintegración de una sustancia radiactiva 
es proporcional a la cantidad A(t) que queda en el tiempo 
t, entonces la vida media de la sustancia es necesaria-
mente T � �(ln 2)�k. La razón de decaimien to de la sus-
tancia en el tiempo t � T es un medio de la razón de 
decaimien to en t � 0. 

 3. En marzo de 1976 la población mundial llegó a cuatro mil 
millones. Una popular revista de noticias predijo que con 
una razón de crecimiento anual promedio de 1.8%, la pobla-
ción mundial sería de 8 mil millones en 45 años. ¿Cómo se 

compara este valor con el que se predice por el modelo en el 
que se supone que la razón de crecimiento en la población 
es proporcional a la pobla ción presente en el tiempo t?

 4. A una habitación cuyo volumen es 8000 pies3 se bombea 
aire que contiene 0.06% de dióxido de carbono. Se intro-
duce a la habitación un fl ujo de aire de 2000 pies3/min 
y se extrae el mismo fl ujo de aire circulado. Si hay una 
concentración inicial de 0.2% de dióxido de carbono en 
la habitación, determine la cantidad posterior en la habi-
tación al tiempo t. ¿Cuál es la concentración a los 10 mi-
nutos? ¿Cuál es la concentración de dióxido de carbono 
de estado estable o de equilibrio?

 5. Resuelva la ecuación diferencial

dy

dx
� � y

1s2 � y2

REPASO DEL CAPÍTULO 3 ● 113
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114 ● CAPÍTULO 3  MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN

  de la tractriz. Véase el problema 26 de los ejercicios 1.3. 
Suponga que el punto inicial en el eje y es (0, 10) y que la 
longitud de la cuerda es x � 10 pies.

 6. Suponga que una célula está suspendida en una solución 
que contiene un soluto de concentración constante C

s
. 

Suponga además que la célula tiene volumen constante V 
y que el área de su membrana permeable es la constante 
A. Por la ley de Fick, la rapidez de cambio de su masa m 
es directamente proporcional al área A y la diferencia C

s
 

– C(t), donde C(t) es la concentración del soluto dentro de 
la célula al tiempo t. Encuentre C(t) si m � V � C(t) y C(0) 
� C

0
. Vea la fi gura 3.R.1.

 9. Un circuito LR en serie tiene un inductor variable con la 
inductancia defi nida por

.
L(t) � �1 �

1

10
t,

0,

0 � t � 10

t � 10

  Encuentre la corriente i(t) si la resistencia es 0.2 ohm, el vol-
taje aplicado es E(t) � 4 e i(0) � 0. Trace la gráfi ca de i(t).

10.  Un problema clásico en el cálculo de variaciones es encontrar 
la forma de una curva � tal que una cuenta, bajo la infl uencia 
de la gravedad, se deslice del punto A(0, 0) al punto B(x

1
, y

1
) 

en el menor tiempo. Vea la fi gura 3.R.2. Se puede demostrar 
que una ecuación no lineal para la forma y(x) de la trayec-
toria es y[1 � (y�)2] � k, donde k es una constante. Primero 
resuelva para dx en términos de y y dy; y después utilice la 
sustitución y � k sen2u para obtener una forma paramétrica 
de la solución. La curva � resulta ser una cicloide.

concentración
C(t)

concentración
Cs

moléculas de soluto 
difundiéndose a través 
de la membrana de 
la célula

FIGURA 3.R.1  Célula del problema 6.

 7.  Suponga que conforme se enfría un cuerpo, la temperatura del 
medio circundante aumenta debido a que absorbe por com-
pleto el calor que pierde el cuerpo. Sean T(t) y Tm(t) las tem-
peraturas del cuerpo y el medio al tiempo t, respectivamente. 
Si la temperatura inicial del cuerpo es T

1
 y la temperatura ini-

cial del medio de T
2
, entonces se puede mostrar en este caso 

que la ley de Newton del enfriamiento es dT�dt � k(T – T
m
), 

k � 0, donde T
m
 � T

2 
� B(T

1
 � T), B � 0 es una constante.

a)  La ED anterior es autónoma. Utilice el concepto de 
esquema de fase de la sección 2.1 para determinar el 
valor límite de la temperatura T(t) conforme t : �. 
¿Cuál es el valor límite de T

m
(t) conforme t : �?

b)  Compruebe sus respuestas del inciso a) resolviendo 
la ecuación diferencial.

c)  Analice una interpretación física de sus respuestas en 
el inciso a).

 8. De acuerdo con la ley de Stefan de la radiación, la tem-
peratura absoluta T de un cuerpo que se enfría en un medio 
a temperatura absoluta constante T

m
 está dada como

,
dT

dt
� k(T 4 � T 4

m )

  donde k es una constante. La ley de Stefan se puede uti-
lizar en un intervalo de temperatura mayor que la ley de 
Newton del enfriamiento.

a)  Resuelva la ecuación diferencial.

b)  Muestre que cuando T � T
m
 es pequeña comparada 

con T
m
 entonces la ley de Newton del enfriamiento se 

aproxima a la ley de Stefan. [Sugerencia: Considere la 
serie binomial del lado derecho de la ED.]

FIGURA 3.R.2  Cuenta deslizando del problema 10.

x

y

B(x1, y1)

A(0, 0)

cuenta

mg

11. Un modelo para las poblaciones de dos especies de ani-
males que interactúan es

dy

dt
� k2xy.

dx

dt
� k1x (� � x)

  Resuelva para x y y en términos de t.

12. En un principio, dos tanques grandes A y B contienen cada 
uno 100 galones de salmuera. El líquido bien mezclado se 
bombea entre los recipientes como se muestra en la fi gura 
3.R.3. Utilice la información de la fi gura para construir un 
modelo matemático para el número de libras de sal x

1
(t) y 

x
2
(t) al tiempo t en los recipientes A y B, respectivamente.

  Cuando todas las curvas de una familia G(x, y, c
1
) � 0 in-

tersecan ortogonalmente todas las curvas de otra familia 

FIGURA 3.R.3  Recipientes de mezclado del problema 12.

2 lb/gal
7 gal/min

mezcla
5 gal/min

A
100 gal

B
100 gal

mezcla
3 gal/min

mezcla
1 gal/min

mezcla
4 gal/min
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H(x, y, c
2
) � 0, se dice que las familias son trayectorias 

ortogonales entre sí. Vea la fi gura 3.R.4. Si dy�dx � f (x, 
y) es la ecuación diferencial de una familia, entonces la 
ecuación diferencial para las trayectorias ortogonales de 
esta familia es dy�dx � �1�f (x, y). En los problemas 13 y 
14, encuentre la ecuación diferencial de la familia suminis-
trada. Determine las trayectorias de esta familia. Utilice un 
programa de grafi cación para trazar las gráfi cas de ambas 
familias en el mismo conjunto de ejes coordenados.

  donde la longitud se mide en metros (m) y el tiempo en 
segundos (s):

  Q � fl ujo volumétrico (m3/s)
  A �  área transversal del fl ujo, perpendicular a la direc-

ción del fl ujo (m2)
  K � conductividad hidráulica (m/s)
  L � longitud de la trayectoria de fl ujo (m)
  �h � diferencia de carga hidráulica (m)

  Donde la carga hidráulica en un punto dado es la suma 
de la carga de presión y la elevación, el fl ujo volumétrico 
puede rescribirse como

  Q � AK

�	 p

rg
� y


L
,

  donde

  p � presión del agua (N/m2)
  r � densidad del agua (kg/m3)
  g � aceleración de la gravedad (m/s2)
  y � elevación (m)

  Una forma más general de la ecuación resulta cuando el lí-
mite de �h respecto a la dirección de fl ujo (x, como se mues-
tra en la fi gura 3.R.5) se evalúa como la longitud de trayec-
toria del fl ujo L : 0. Realizando este cálculo se obtiene

  Q � �AK
d

dx 	
p

rg
� y
,

  donde el cambio en el signo indica el hecho de que la carga 
hidráulica disminuye siempre en la dirección del fl ujo. El 
fl ujo volumétrico por unidad de área se llama fl ujo q de 
Darcy y se defi ne mediante la ecuación diferencial

  q �
Q

A
� �K

d

dx 	
p

rg
� y
,  (1)

  donde q se mide en m/s.

a)  Suponga que la densidad del fl uido r y el fl ujo de Darcy 
q son funciones de x. Despeje la presión p de la ecua-
ción (1). Puede suponer que K y g son constantes.

b)  Suponga que el fl ujo de Darcy es evaluado negativa-
mente, es decir, q � 0. ¿Qué indica esto respecto del 
cociente p�r? En concreto, ¿el cociente entre la pre-
sión y la densidad aumenta o disminuye respecto a x? 
Suponga que la elevación y del cilindro es fi ja. ¿Qué 
puede inferirse acerca del cociente p�r si el fl ujo de 
Darcy es cero?

c)  Suponga que la densidad del fl uido r es constante. 
Despeje la presión p(x) de la ecuación (1) cuando el 
fl ujo de Darcy es proporcional a la presión, es decir, q 
� ap, donde a es una constante de proporcionalidad. 
Dibuje la familia de soluciones para la presión.

d)  Ahora, si suponemos que la presión p es constante 
pero la densidad r es una función de x, entonces el 
fl ujo de Darcy es una función de x. Despeje la den-

FIGURA 3.R.4  Trayectorias ortogonales.

tangentes

H(x, y, c2) = 0

G(x, y, c1) = 0

13. y � �x � 1 � c
1
e x    14. y �

1

x � c1

Problema aportado

15. Acuíferos y la ley de 
Darcy  De acuerdo con el 
departamento de servicios 
de Sacramento en California, aproximadamente 15% del 
agua para Sacramento proviene de acuíferos. A diferencia 
de fuentes de agua tales como ríos o lagos que yacen sobre 
del suelo, un acuífero es una capa de un material poroso 
bajo el suelo que contiene agua. El agua puede residir en 
espacios vacíos entre rocas o entre las grietas de las rocas. 
Debido al material que está arriba, el agua está sujeta a una 
presión que la impulsa como un fl uido en movimiento.

   La ley de Darcy es una expresión generalizada para 
describir el fl ujo de un fl uido a través de un medio poroso. 
Muestra que el fl ujo volumétrico de un fl uido a través de un 
recipiente es una función del área de sección transversal, de 
la elevación y de la presión del fl uido. La confi guración que 
consideraremos en este problema es la denominada pro-
blema para un fl ujo unidimensional. Considere la columna 
de fl ujo como la que se muestra en la fi gura 3.R.5. Como 
lo indican las fl echas, el fl ujo del fl uido es de izquierda a 
derecha a través de un recipiente con sección transversal 
circular. El recipiente está lleno con un material poroso 
(por ejemplo piedras, arena o algodón) que permiten que 
el fl uido fl uya. A la entrada y a la salida del contenedor se 
tienen piezómetros que miden la carga hidráulica, esto es, la 
presión del agua por unidad de peso, al reportar la altura de 
la columna de agua. La diferencia en las alturas de agua en 
los piezómetros se denota por �h. Para esta confi guración 
se calculó experimentalmente mediante Darcy que

  Q � AK
�h

L

Dr. David Zeigler profesor 
asistente Departamento de 
Matemáticas y Estadística 
CSU Sacramento
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116 ● CAPÍTULO 3  MODELADO CON ECUACIONES DIFERENCIALES DE PRIMER ORDEN

sidad r(x) de la ecuación (1). Despeje la densidad 
r(x) de la ecuación (1) cuando el fl ujo de Darcy es 
proporcional a la densidad, q � br, donde b es una 
constante de proporcionalidad.

e)  Suponga que el fl ujo de Darcy es q(x) � sen e�x y la 
función densidad es

  r(x) �
1

1 � ln(2 � x)
.

  Use un SAC para trazar la presión p(x) sobre el inter-
valo 0 � x � 2p. Suponga que K�g � �1 y que la pre-
sión en el extremo izquierdo del punto (x � 0) está nor-
malizado a 1. Suponga que la elevación y es constante. 
Explique las implicaciones físicas de su resultado.

f)  Considere la solución que corresponde a P(0)� 0. 
¿Cómo afectaría a la solución un pequeño cambio en 
P(0)?

        Modelo de crecimiento logístico:  Como vimos 
en el inciso d), el modelo de crecimiento exponencial 
que se acaba de presentar no es real para tiempos muy 
grandes t. ¿Qué limita la población de algas? Suponga 
que el agua al fl uir proporciona una fuente de nutrien-
tes estable y saca la basura. En este caso el mayor fac-
tor límite es el área del vertedero. Podemos modelarlo 
como: cada interacción alga-alga tensiona a los orga-
nismos implicados. Esto ocasiona una mortandad adi-
cional. El número de todas las posibles interacciones 
es proporcional al cuadrado del número de organismos 
presentes. Así un modelo razonable sería

dP

dt
� kP � mP2,

    donde k y  m son las constantes positivas. En este caso 
particular tomamos k � 1

12  y m � 1
500.

g)  Construya un campo direccional para esta ecuación 
diferencial y dibuje la curva solución.

h)  Resuelva esta ecuación diferencial y trace la gráfi ca 
de la solución. Compare su gráfi ca con la que dibujó 
en el inciso g).

i)  Describa las soluciones de equilibrio para esta ecua-
ción diferencial autónoma.

j)  De acuerdo con este modelo, ¿qué pasa conforme 
t : �?

k)   En nuestro modelo P(0) � 1. Describa cómo afecta-
ría la solución un cambio en P(0).

l)   Considere la solución correspondiente a P(0) � 0. ¿Có-
mo afectaría la solución un pequeño cambio en P(0)?

m)  Considere la solución correspondiente a P(0) � k�m. 
¿Cómo afectaría la solución un pequeño cambio en 
P(0)?

   Un modelo no autónomo:  Suponga que el fl ujo de 
agua a través de un vertedero está decreciendo conforme 
pasa el tiempo por lo que también disminuye al paso del 
tiempo el hábitat del alga. Esto también aumenta el efecto 
de hacinamiento. Un modelo razonable ahora sería

dP

dt
� kP � m(1 � nt)P2,

  Donde n se determinaría como la razón con la cual el ver-
tedero se está secando. En nuestro ejemplo, tomamos k y 
m como ya se consideraron y .n � 1

10

n)  Construya un campo direccional para esta ecuación 
diferencial y dibuje la curva solución. 

o)  Describa las soluciones constantes de esta ecuación 
diferencial no autónoma.

p)  De acuerdo con este modelo, ¿qué pasa conforme 
t : �? ¿Qué pasa si se cambia el valor de P(0)?

FIGURA 3.R.5  Flujo del problema 15.

Δh

Q

A

L

x

y

Problema aportado

16. Modelos de crecimiento 
  de población  Se pueden 

usar campos direccionales 
para obtener bastante información acerca de los modelos 
de población. En este problema puede usted construir cam-
pos direccionales a mano o utilizar un sistema algebraico de 
computación para crear algunos detalles. Al tiempo t � 0 
una fi na lámina de agua comienza a fl uir sobre el vertedero 
concreto de una presa. Al mismo tiempo, 1000 algas son 
agregadas por el vertedero. Modelaremos a P(t), como el 
número de algas (en miles) presentes después de t horas.

   Modelo de crecimiento exponencial:  Suponemos 
que la razón de cambio es proporcional a la población 
presente: dP�dt � kP. En este caso en particular toma-
mos k � 1

12.

a)  Construya un campo direccional para esta ecuación 
diferencial y dibuje la curva solución.

b)  Resuelva la ecuación diferencial y trace la gráfi ca de 
la solución. Compare su gráfi ca con el dibujo del in-
ciso a).

c)  Describa las soluciones de equilibrio de esta ecua-
ción diferencial autónoma.

d)  De acuerdo con este modelo, ¿qué pasa cuando t : �?

e)  En nuestro modelo, P(0) � 1. Describa cómo un 
cambio de P(0) afecta la solución.

Dr. Michael Prophet y Dr. 
Doug Shaw profesores 
asociados del Departamento 
de Matemáticas Universidad de 
Iowa del Norte
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4
ECUACIONES DIFERENCIALES 
DE ORDEN SUPERIOR

4.1 Teoría preliminar: Ecuaciones lineales

4.1.1 Problemas con valores iniciales y con valores en la frontera

4.1.2 Ecuaciones homogéneas

4.1.3 Ecuaciones no homogéneas

4.2 Reducción de orden

4.3 Ecuaciones lineales homogéneas con coefi cientes constantes

4.4 Coefi cientes indeterminados: Método de superposición

4.5 Coefi cientes indeterminados: Método del anulador

4.6 Variación de parámetros

4.7 Ecuación de Cauchy-Euler

4.8 Solución de sistemas de ED lineales por eliminación

4.9 Ecuaciones diferenciales no lineales

REPASO DEL CAPÍTULO 4

Ahora trataremos la solución de ecuaciones diferenciales de orden dos o superior. 

En las primeras siete secciones de este capítulo se analizan la teoría fundamental 

y cierta clase de ecuaciones lineales. El método de eliminación para resolver 

sistemas de ecuaciones lineales se introduce en la sección 4.8 porque este método 

simplemente desacopla un sistema en ecuaciones lineales de cada variable 

dependiente. El capítulo concluye con un breve análisis de ecuaciones no lineales 

de orden superior. 
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118 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

TEORÍA PRELIMINAR: ECUACIONES LINEALES

REPASO DE MATERIAL
● Lea nuevamente los Comentarios al fi nal de la sección 1.1.
● Sección 2.3 (especialmente páginas 54 a 58).

INTRODUCCIÓN  En el capítulo 2 vimos que se pueden resolver algunas ecuaciones diferencia-
les de primer orden si se reconocen como separables, exactas, homogéneas o quizás como ecuacio-
nes de Bernoulli. Aunque las soluciones de estas ecuaciones estuvieran en la forma de una familia 
uniparamétrica, esta familia, con una excepción, no representa la solución de la ecuación diferen-
cial. Sólo en el caso de las ED lineales de primer orden se pueden obtener soluciones generales 
considerando ciertas condiciones iniciales. Recuerde que una solución general es una familia de so-
luciones defi nida en algún intervalo I que contiene todas las soluciones de la ED que están defi nidas 
en I. Como el objetivo principal de este capítulo es encontrar soluciones generales de ED lineales de 
orden superior, primero necesitamos examinar un poco de la teoría de ecuaciones lineales.

4.1

4.1.1   PROBLEMAS CON VALORES INICIALES 
Y CON VALORES EN LA FRONTERA

PROBLEMA CON VALORES INICIALES  En la sección 1.2 se defi nió un problema 
con valores iniciales para una ecuación diferencial de n-ésimo orden. Para una ecua-
ción diferencial lineal, un problema con valores iniciales de n-ésimo orden es

Resuelva: an(x)
dny

dxn an 1(x)
dn 1y

dxn 1 a1(x)
dy

dx
a0(x)y g(x)   

Sujeta a: .y(x0) y0, y (x0) y1 , . . . ,  y(n 1)(x0) yn 1   

(1)

Recuerde que para un problema como éste se busca una función defi nida en algún in-
tervalo I, que contiene a x

0
, que satisface la ecuación diferencial y las n condiciones 

iniciales que se especifi can en x
0
: y(x

0
) � y

0
, y�(x

0
) � y

1
,  . . .  , y(n�1)(x

0
) � y

n�1
. Ya hemos 

visto que en el caso de un problema con valores iniciales de segundo orden, una curva 
solución debe pasar por el punto (x

0
, y

0
) y tener pendiente y

1
 en este punto. 

EXISTENCIA Y UNICIDAD  En la sección 1.2 se expresó un teorema que daba las 
condiciones con las que se garantizaba la existencia y unicidad de una solución de un 
problema con valores iniciales de primer orden. El teorema siguiente tiene condiciones 
sufi cientes para la existencia y unicidad de una solución única del problema en (1).

TEOREMA 4.1.1  Existencia de una solución única

Sean a
n
(x), a

n � 1
(x),  . . .  , a

1
(x), a

0
(x) y g(x) continuas en un intervalo I, y sea 

a
n
(x) � 0 para toda x en este intervalo. Si x � x

0
 es cualquier punto en este 

intervalo, entonces una solución y(x) del problema con valores iniciales (1) 
existe en el intervalo y es única.

EJEMPLO 1  Solución única de un PVI

El problema con valores iniciales

 3y 5y y 7y 0, y(1) 0, y (1) 0, y (1) 0  
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tiene la solución trivial y � 0. Debido a que la ecuación de tercer orden es lineal con 
coefi cientes constantes, se cumplen las condiciones del teorema 4.1.1. Por tanto y � 0 
es la única solución en cualquier intervalo que contiene a x � 1. 

EJEMPLO 2  Solución única de un PVI

Se debe comprobar que la función y � 3e2x � e�2x � 3x es una solución del problema 
con valores iniciales

 y 4y 12x,  y(0) 4,  y (0) 1.  

Ahora la ecuación diferencial es lineal; los coefi cientes, así como g(x) � 12x, son 
continuos y a

2
(x) � 1 � 0 en algún intervalo I que contenga a x � 0. Concluimos del 

teorema 4.1.1 que la función dada es la única solución en I. 

Los requisitos en el teorema 4.1.1 de que a
i
(x), i � 0, 1, 2, . . . , n sean continuas 

y a
n
(x) � 0 para toda x en I son importantes. En particular, si a

n
(x) � 0 para algún x 

en el intervalo, entonces la solución de un problema lineal con valores iniciales po-
dría no ser única o ni siquiera existir. Por ejemplo, se debe comprobar que la función 
y � cx2 � x � 3 es una solución de problema con valores iniciales

 x2y 2xy 2y 6,  y(0) 3,  y (0) 1  

en el intervalo (��, �) para alguna elección del parámetro c. En otras palabras, no 
hay solución única del problema. Aunque se satisface la mayoría de las condiciones 
del teorema 4.1.1, las difi cultades obvias son que a

2
(x) � x2 es cero en x � 0 y que las 

condiciones iniciales también se imponen en x � 0.

PROBLEMA CON VALORES EN LA FRONTERA  Otro tipo de problema consiste 
en resolver una ecuación diferencial lineal de orden dos o mayor en que la variable de-
pendiente y o sus derivadas se específi can en diferentes puntos. Un problema tal como 

 Resuelva: a2(x) 
d 2y

dx2 a1(x) 
dy

dx
a0(x)y g(x) 

 Sujeto a: y(a) y0,  y(b) y1  

se llama problema con valores en la frontera (PVF). Los valores prescritos y(a) � y
0
 

y y(b) � y
1
 se llaman condiciones en la frontera. Una solución del problema anterior 

es una función que satisface la ecuación diferencial en algún intervalo I, que contiene 
a a y b, cuya gráfi ca pasa por los puntos (a, y

0
) y (b, y

1
). Véase la fi gura 4.1.1.

Para una ecuación diferencial de segundo orden, otros pares de condiciones en la 
frontera podrían ser

  

  

  y (a) y0,     y (b) y1,

 y(a) y0,     y (b) y1

 y (a) y0,     y(b) y1

 

donde y
0
 y y

1
 denotan constantes arbitrarias. Estos pares de condiciones son sólo casos 

especiales de las condiciones en la frontera generales.

  

  2y(b) 2y (b) 2.

 1y(a) 1y (a) 1

 

En el ejemplo siguiente se muestra que aun cuando se cumplen las condiciones del 
teorema 4.1.1, un problema con valores en la frontera puede tener varias soluciones (como 
se sugiere en la fi gura 4.1.1), una solución única o no tener ninguna solución.

FIGURA 4.1.1  Curvas solución de un 
PVF que pasan a través de dos puntos.

I

soluciones de la ED

(b, y1)

(a, y0)

x

y
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120 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

EJEMPLO 3  Un PVF puede tener muchas, una o ninguna solución

En el ejemplo 4 de la sección 1.1 vimos que la familia de soluciones de dos parámetros 
de la ecuación diferencial x� � 16x � 0 es

 x c1 cos 4t c2 sen 4t. (2)

a)  Suponga que ahora deseamos determinar la solución de la ecuación que satisface 
más condiciones en la frontera x(0) � 0, x(p�2) � 0. Observe que la primera 
condición 0 � c

1
 cos 0 � c

2
 sen 0 implica que c

1
 � 0, por tanto x � c

2
 sen 4t. Pero 

cuando t � p�2, 0 � c
2
 sen 2p se satisface para cualquier elección de c

2
 ya que 

sen 2p � 0. Por tanto el problema con valores en la frontera

 x 16x 0,  x(0) 0,  x 
2

0  (3)

 tiene un número infi nito de soluciones. En la fi gura 4.1.2 se muestran las gráfi cas 
de algunos de los miembros de la familia uniparamétrica x � c

2
 sen 4t que pasa 

por los dos puntos (0, 0) y (p�2, 0).

b) Si el problema con valores en la frontera en (3) se cambia a

 ,x 16x 0,  x(0) 0,  x 
8

0  (4)

 entonces x(0) � 0 aún requiere que c
1
 � 0 en la solución (2). Pero aplicando 

x(p�8) � 0 a x � c
2
 sen 4t requiere que 0 � c

2
 sen (p�2) � c

2
 � 1. Por tanto x � 0 

es una solución de este nuevo problema con valores en la frontera. De hecho, se 
puede demostrar que x � 0 es la única solución de (4).

c) Por último, si se cambia el problema a

 ,x 16x 0,  x(0) 0,  x 
2

1  (5)

 se encuentra de nuevo de x(0) � 0 que c
1
 � 0, pero al aplicar x(p�2) � 1 a x � 

c
2
 sen 4t conduce a la contradicción 1 � c

2
 sen 2p � c

2
 � 0 � 0. Por tanto el 

problema con valores en la frontera (5) no tiene solución. 

4.1.2  ECUACIONES HOMOGÉNEAS

Una ecuación diferencial lineal de n-ésimo orden de la forma

 an(x) 
dny

dxn an 1(x) 
dn 1y

dxn 1 a1(x) 
dy

dx
a0(x)y 0  (6)

se dice que es homogénea, mientras que una ecuación

 an(x) 
dny

dxn an 1(x) 
dn 1y

dxn 1 a1(x) 
dy

dx
a0(x)y g(x),  (7)

con g(x) no igual a cero, se dice que es no homogénea. Por ejemplo, 2y� � 3y� � 5y � 
0 es una ecuación diferencial lineal homogénea de segundo orden, mientras que x3y� 
� 6y� � 10y � ex es una ecuación diferencial lineal de tercer orden no homogénea. La 
palabra homogénea en este contexto no se refi ere a los coefi cientes que son funciones 
homogéneas, como en la sección 2.5.

Después veremos que para resolver una ecuación lineal no homogénea (7), pri-
mero se debe poder resolver la ecuación homogénea asociada (6).

Para evitar la repetición innecesaria en lo que resta de este libro, se harán, 
como algo natural, las siguientes suposiciones importantes cuando se establezcan 

FIGURA 4.1.2  Algunas curvas 
solución de (3)

x

c2 = 0

c2 = 1
c2 =

c2 =

c2 = −
(0, 0) ( /2, 0)

1

1

t

π

1
2

1
4

1
2
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defi niciones y teoremas acerca de las ecuaciones lineales (1). En algún intervalo 
común I,

• las funciones coefi cientes a
i
(x), i � 0, 1, 2,  . . .  , n y g(x) son continuas;

• a
n
(x) � 0 para toda x en el intervalo. 

OPERADORES DIFERENCIALES  En cálculo la derivación se denota con frecuen-
cia con la letra D mayúscula, es decir, dy�dx � Dy. El símbolo D se llama opera-
dor diferencial porque convierte una función derivable en otra función. Por ejemplo, 
D(cos 4x) � �4 sen 4x y D(5x3 � 6x2) � 15x2 � 12x. Las derivadas de orden superior 
se expresan en términos de D de manera natural:

 
d

dx

dy

dx

d 2y

dx2 D(Dy) D2y 
     

y, en general
     

dny

dxn Dny,  

donde y representa una función sufi cientemente derivable. Las expresiones polino-
miales en las que interviene D, tales como D � 3, D2 � 3D � 4 y 5x3D3 � 6x2D2 � 
4xD � 9, son también operadores diferenciales. En general, se defi ne un operador 
diferencial de n-ésimo orden u operador polinomial como

 L � a
n
(x)Dn � a

n�1
(x)Dn�1 � � � � � a

1
(x)D � a

0
(x). (8)

Como una consecuencia de dos propiedades básicas de la derivada, D(cf(x)) � cDf(x), 
c es una constante y D{f(x) � g(x)} � Df(x) � Dg(x), el operador diferencial L tiene 
una propiedad de linealidad; es decir, L operando sobre una combinación lineal de dos 
funciones derivables es lo mismo que la combinación lineal de L operando en cada una 
de las funciones. Simbólicamente esto se expresa como

 L{a f (x) � bg(x)} � aL( f (x)) � bL(g(x)), (9)

donde a y b son constantes. Como resultado de (9) se dice que el operador diferencial 
de n-ésimo orden es un operador lineal.

ECUACIONES DIFERENCIALES  Cualquier ecuación diferencial lineal puede ex-
presarse en términos de la notación D. Por ejemplo, la ecuación diferencial  y� � 5y� � 
6y � 5x � 3 se puede escribir como D2y � 5Dy � 6y � 5x – 3 o (D2 � 5D � 6)y � 5x 
� 3. Usando la ecuación (8), se pueden escribir las ecuaciones diferenciales lineales 
de n-énesimo orden (6) y (7) en forma compacta como

 L(y) 0        L(y) g(x),y  

respectivamente.

PRINCIPIO DE SUPERPOSICIÓN  En el siguiente teorema se ve que la suma o 
superposición de dos o más soluciones de una ecuación diferencial lineal homogénea 
es también una solución.

TEOREMA 4.1.2   Principio de superposición; ecuaciones homogéneas

Sean y
1
, y

2
,  . . .  , y

k
 soluciones de la ecuación homogénea de n-ésimo orden (6) 

en un intervalo I. Entonces la combinación lineal

 y c1y1(x) c2y2(x) ckyk(x),  
donde las c

i
, i � 1, 2,  . . .  , k son constantes arbitrarias, también es una solu-

ción en el intervalo. 

DEMOSTRACIÓN  Se demuestra el caso k � 2. Sea L el operador diferencial que 
se defi nió en (8) y sean y

1
(x) y y

2
(x) soluciones de la ecuación homogénea L(y) � 0. 

Si se defi ne y � c
1
y

1
(x) � c

2
y

2
(x), entonces por la linealidad de L se tiene que

L( y) L{c1y1(x) c2y2(x)} c1 L(y1) c2 L(y2) c1 0 c2 0 0. 

■ Por favor 
recuerde estas dos 
suposiciones
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122 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

COROLARIOS DEL TEOREMA 4.1.2

A)  Un múltiplo constante y � c
1
y

1
(x) de una solución y

1
(x) de una ecuación 

diferencial lineal homogénea es también una solución.
B)  Una ecuación diferencial lineal homogénea tiene siempre la solución tri-

vial y � 0.

EJEMPLO 4  Superposición; ED homogénea

Las funciones y
1
 � x2 y y

2 
� x2 ln x son soluciones de la ecuación lineal homogénea 

x3y� � 2xy� � 4y � 0 en el intervalo (0, �). Por el principio de superposición, la 
combinación lineal 

 y c1x2 c2x2 ln x  

es también una solución de la ecuación en el intervalo. 

La función y � e7x es una solución de y� � 9y� � 14y � 0. Debido a que la ecua-
ción diferencial es lineal y homogénea, el múltiplo constante y � ce7x es también una 
solución. Para varios valores de c se ve que y � 9e7x, y � 0, y 15e7x , . . . son 
todas soluciones de la ecuación.

DEPENDENCIA LINEAL E INDEPENDENCIA LINEAL  Los dos conceptos son 
básicos para el estudio de ecuaciones diferenciales lineales.

DEFINICIÓN 4.1.1  Dependencia e independencia lineal 

Se dice que un conjunto de funciones f
1
(x), f

2
(x),  . . .  , f

n
(x) es linealmente depen-

diente en un intervalo I si existen constantes c
1
, c

2
,  . . . ,c

n
 no todas cero, tales que

 c1 f1(x) c2 f2(x) cn fn(x) 0  

para toda x en el intervalo. Si el conjunto de funciones no es linealmente de-
pendiente en el intervalo, se dice que es linealmente independiente.

En otras palabras, un conjunto de funciones es linealmente independiente en un inter-
valo I si las únicas constantes para las que

 c1 f1(x) c2 f2(x) cn fn(x) 0  

para toda x en el intervalo son c
1
 � c

2
 �  . . .  � c

n
 � 0.

Es fácil entender estas defi niciones para un conjunto que consiste en dos funciones 
f
1
(x) y f

2
(x). Si el conjunto de funciones es linealmente dependiente en un intervalo, en-

tonces existen constantes c
1
 y c

2
 que no son ambas cero de manera tal que, para toda x en 

el intervalo, c
1  
f
1
(x) � c

2
 f

2
(x) � 0. Por tanto, si suponemos que c

1 
� 0, se deduce que f

1
(x) 

� (�c
2
�c

1
) f

2
(x); es decir, si un conjunto de dos funciones es linealmente dependiente, 

entonces una función es simplemente un múltiplo constante del otro. A la inversa, si f
1
(x) 

� c
2  
f
2
(x) para alguna constante c

2
, entonces (� 1) � f

1
(x) � c

2
  f

2
(x) � 0 para toda x en el 

intervalo. Por tanto, el conjunto de funciones es linealmente dependiente porque al menos 
una de las constantes (en particular, c

1
 � �1) no es cero. Se concluye que un conjunto 

de dos funciones f
1
(x) y f

2
(x) es linealmente independiente cuando ninguna función es un 

múltiplo constante de la otra en el intervalo. Por ejemplo, el conjunto de funciones f
1
(x) 

� sen 2x, f
2
(x) � sen x cos x es linealmente dependiente en (��, �) porque f

1
(x) es un 

múltiplo constante de f
2
(x). Recuerde de la fórmula del seno del doble de un ángulo que 

sen 2x � 2 sen x cos x. Por otro lado, el conjunto de funciones f
1
(x) � x, f

2
(x) � �x� es li-

nealmente independiente en (��, �). Al examinar la fi gura 4.1.3 usted debe convencerse 
de que ninguna función es un múltiplo constante de la otra en el intervalo.

FIGURA 4.1.3  El conjunto que consiste 
en f

1
 y f

2
 es linealmente independiente en 

(��, �).

f1  = x

x

y

f 2  = |x |

x

y

a)

b)
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Del análisis anterior se tiene que el cociente f
2
(x)�f

1
(x) no es una constante en un 

intervalo en el que el conjunto f
1
(x), f

2
(x) es linealmente independiente. Esto se usará 

en la siguiente sección.

EJEMPLO 5  Conjunto de funciones linealmente dependiente

El conjunto de funciones f
1
(x) � cos2x, f

2
(x) � sen2x, f

3
(x) � sec2x, f

4
(x) � tan2x es 

linealmente dependiente en el intervalo (�p�2, p�2) porque

 c1 cos2x c2 sen2x c3 sec2x c4 tan2x 0  

donde c
1
 � c

2
 � 1, c

3
 � �1, c

4
 � 1. Aquí se usa cos2x � sen2x � 1 y 1 � tan2x � sec2x.

 

Un conjunto de funciones f
1
(x), f

2
(x),  . . .  , f

n
(x) es linealmente dependiente en un 

intervalo si por lo menos una función se puede expresar como una combinación lineal 
de las otras funciones.

EJEMPLO 6  Conjunto de funciones linealmente dependientes

El conjunto de funciones f1(x) 1x 5, f2(x) 1x 5x, f
3
(x) � x � 1, f

4
(x) � x2 

es linealmente dependientes en el intervalo (0, �) porque f
2
 puede escribirse como una 

combinación lineal de f
l
, f

3
 y f

4
. Observe que

 f2(x) 1 f1(x) 5 f3(x) 0 f4(x)  

para toda x en el intervalo (0, �). 

SOLUCIONES DE ECUACIONES DIFERENCIALES  Estamos interesados princi-
palmente en funciones linealmente independientes o con más precisión, soluciones li-
nealmente independientes de una ecuación diferencial lineal. Aunque se podría apelar 
siempre en forma directa a la defi nición 4.1.1, resulta que la cuestión de si el conjunto 
de n soluciones y

l
, y

2
,  . . .  , y

n
 de una ecuación diferencial lineal homogénea de n-

ésimo orden (6) es linealmente independiente se puede establecer en forma un poco 
mecánica usando un determinante.

DEFINICIÓN 4.1.2  Wronskiano

Suponga que cada una de las funciones f
1
(x), f

2
(x),  . . .  , f

n
(x) tiene al menos n 

� 1 derivadas. El determinante

W( f1, f2, . . . , fn )

f1

f 1

f1
(n 1)

f2

f 2

f2
(n 1)

fn

f n

fn
(n 1)

,

donde las primas denotan derivadas, se llama el Wronskiano de las funciones.

TEOREMA 4.1.3  Criterio para soluciones linealmente independientes

Sean y
l
, y

2
,  . . .  , y

n
 n soluciones de la ecuación diferencial lineal homogénea de 

n-ésimo orden (6) en el intervalo I. El conjunto de soluciones es linealmente in-
dependiente en I si y sólo si W(y

l
, y

2
,  . . .  , y

n
) � 0 para toda x en el intervalo.
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124 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

Se tiene del teorema 4.1.3 que cuando y
l
, y

2
,  . . .  , y

n
 son n soluciones de (6) en un in-

tervalo I, el Wronskiano W(y
l
, y

2
,  . . .  , y

n
) es igual a cero o nunca es cero en el intervalo.

Al conjunto de n soluciones linealmente independientes de una ecuación diferen-
cial lineal homogénea de n-ésimo orden se le da un nombre especial.

DEFINICIÓN 4.1.3  Conjunto fundamental de soluciones

Cualquier conjunto y
l
, y

2
,  . . .  , y

n
 de n soluciones linealmente independientes 

de la ecuación diferencial lineal homogénea de n-ésimo orden (6) en un inter-
valo I es un conjunto fundamental de soluciones en el intervalo.

La respuesta a la cuestión básica sobre la existencia de un conjunto fundamental 
de soluciones para una ecuación lineal está en el siguiente teorema.

TEOREMA 4.1.4  Existencia de un conjunto fundamental

Existe un conjunto fundamental de soluciones para la ecuación diferencial li-
neal homogénea de n-ésimo orden (6) en un intervalo I.

Similar al hecho de que cualquier vector en tres dimensiones se puede expresar 
como una combinación lineal de los vectores linealmente independientes i, j, k, cual-
quier solución de una ecuación diferencial lineal homogénea de n-ésimo orden en un 
intervalo I se expresa como una combinación lineal de n soluciones linealmente inde-
pendientes en I. En otras palabras, n soluciones linealmente independientes y

l
, y

2
,  . . .  , 

y
n
 son los bloques básicos para la solución general de la ecuación.

TEOREMA 4.1.5  Solución general; ecuaciones homogéneas

Sea y
l
, y

2
,  . . .  , y

n
 un conjunto fundamental de soluciones de la ecuación di-

ferencial lineal homogénea de n-ésimo orden (6) en el intervalo I. Entonces la 
solución general de la ecuación en el intervalo es

 y c1y1(x) c2y2(x) cnyn(x),  

donde c
i
, i � 1, 2,  . . .  , n son constantes arbitrarias.

El teorema 4.1.5 establece que si Y(x) es alguna solución de (6) en el intervalo, 
entonces siempre se pueden encontrar constantes C

l
, C

2
,  . . .  , C

n
 tales que

 Y(x) C1y1(x) C2y2(x) Cnyn(x).  

Demostraremos el caso cuando n � 2.

DEMOSTRACIÓN  Sea Y una solución y y
l 
y y

2
 soluciones linealmente independientes 

de a
2 
y� � a

l 
y� � a

0 
y � 0 en un intervalo I. Suponga que x � t es un punto en I para 

el cual W(y
l
(t), y

2
(t)) � 0. Suponga también que Y(t) � k

l
 y Y�(t) � k

2
. Si ahora exa-

minamos las ecuaciones

C1y1(t) C2y2(t) k2,

C1y1(t) C2y2(t) k1

se tiene que podemos determinar C
l 
y C

2
 de manera única, a condición de que el deter-

minante de los coefi cientes satisfaga

y1(t)

y1(t)

y2(t)

y2(t)
0.
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Pero este determinante es simplemente el Wronskiano evaluado en x � t y por supo-
sición, W � 0. Si se defi ne G(x) � C

l
 y

l
(x) � C

2
 y

2
(x), se observa que G(x) satisface 

la ecuación diferencial puesto que es una superposición de dos soluciones conocidas; 
G(x) satisface las condiciones iniciales

G(t) C1y1(t) C2y2(t) k1     y     G (t) C1y1(t) C2y2(t) k2;

y Y(x) satisface la misma ecuación lineal y las mismas condiciones iniciales. Debido a 
que la solución de este problema con valores iniciales lineal es única (teorema 4.1.1), 
se tiene Y(x) � G(x) o Y(x) � C

l 
y

l
(x) � C

2 
y

2
(x). 

EJEMPLO 7  Solución general de una ED homogénea

Las funciones y
l
 � e3x y y

2
 � e�3x son soluciones de la ecuación lineal homogénea y� 

– 9y � 0 en el intervalo (��, �). Por inspección las soluciones son linealmente inde-
pendientes en el eje x. Este hecho se corrobora al observar que el Wronskiano 

 W(e3x, e 3x)
e3x

3e3x

e 3x

3e 3x 6 0 

para toda x. Se concluye que y
l
 y y

2
 forman un conjunto fundamental de soluciones y 

por tanto, y � c
1
e3x � c

2
e�3x es la solución general de la ecuación en el intervalo. 

EJEMPLO 8  Una solución obtenida de una solución general

La función y � 4 senh 3x � 5e3x es una solución de la ecuación diferencial del ejemplo 
7. (Compruebe esto.) Aplicando el teorema 4.1.5, debe ser posible obtener esta solu-
ción a partir de la solución general y � c

1
e3x � c

2
e�3x. Observe que si se elige c

1
 � 2 y 

c
2
 � �7, entonces y � 2e3x � 7e�3x puede rescribirse como

 
y 2e3x 2e 3x 5e 3x 4

e3x e 3x

2
5e 3x.

 

Esta última expresión se reconoce como y � 4 senh 3x � 5e�3x. 

EJEMPLO 9  Solución general de una ED homogénea

Las funciones y
1 

� ex, y
2 

� e2x y y
3 

� e3x satisfacen la ecuación de tercer orden y� 
� 6y� � l1y� � 6y � 0. Puesto que

 
W(ex, e2x, e3x ) p

ex

ex

ex

e2x

2e2x

4e2x

e3x

3e3x

9e3x
p 2e6x 0

 

para todo valor real de x, las funciones y
1
, y

2 
y y

3
 forman un conjunto fundamental de 

soluciones en (��, �). Se concluye que y � c
1
ex � c

2
e2x � c

3
e3x es la solución general 

de la ecuación diferencial en el intervalo. 

4.1.3  ECUACIONES NO HOMOGÉNEAS

Cualquier función y
p
 libre de parámetros arbitrarios, que satisface (7) se dice que es 

una solución particular o integral particular de la ecuación. Por ejemplo, es una 
tarea directa demostrar que la función constante y

p
 � 3 es una solución particular de la 

ecuación no homogénea y� � 9y � 27.
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126 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

Ahora si y
l
, y

2
,  . . .  , y

k
 son soluciones de (6) en un intervalo I y y

p
 es cualquier 

solución particular de (7) en I, entonces la combinación lineal

 y c1y1(x) c2y2(x) ckyk(x) yp  (10)

es también una solución de la ecuación no homogénea (7). Si piensa al respecto, esto tiene 
sentido, porque la combinación lineal c

l
 y

l
(x) � c

2
 y

2
(x) � . . . � c

k
y

k
(x) se transforma en 

0 por el operador L � a
n
Dn � a

n � 1
D

 
n � 1 � . . . � a

1
D � a

0
, mientras que y

p
 se convierte 

en g(x). Si se usa k � n soluciones linealmente independientes de la ecuación de n-ésimo 
orden (6), entonces la expresión en (10) se convierte en la solución general de (7).

TEOREMA 4.1.6  Solución general; ecuaciones no homogéneas

Sea y
p
 cualquier solución particular de la ecuación diferencial lineal no homo-

génea de n-ésimo orden (7) en un intervalo I, y sea y
l
, y

2
,  . . .  , y

n
 un conjunto 

fundamental de soluciones de la ecuación diferencial homogénea asociada (6) 
en I. Entonces la solución general de la ecuación en el intervalo es 

 y c1y1(x) c2y2(x) cn yn(x) yp , 

donde las c
i
, i � 1, 2,  . . .  , n son constantes arbitrarias.

DEMOSTRACIÓN  Sea L el operador diferencial defi nido en (8) y sean Y(x) y y
p
(x) 

soluciones particulares de la ecuación no homogénea L(y) � g(x). Si se defi ne u(x) 
� Y(x) – y

p
(x), entonces por la linealidad de L se tiene

L(u) � L{Y(x) � y
p
(x)} � L(Y(x)) � L(y

p
(x)) � g(x) � g(x) � 0.

Esto demuestra que u(x) es una solución de la ecuación homogénea L(y) � 0. Así 
por el teorema 4.1.5, u(x) � c

l 
y

l
(x) � c

2 
y

2
(x) � . . . � c

n
y

n
(x), y así 

       

o Y(x) c1y1(x) c2y2(x) cnyn(x) yp(x).

Y(x) yp(x) c1y1(x) c2y2(x) cnyn(x)

 

FUNCIÓN COMPLEMENTARIA  Vemos en el teorema 4.1.6 que la solución general 
de una ecuación lineal no homogénea está compuesta por la suma de dos funciones:

 y c1y1(x) c2y2(x) cnyn(x) yp(x) yc(x) yp(x).  

La combinación lineal y
c
(x) � c

l
 y

l
(x) � c

2
 y

2
(x) � . . . � c

n
 y

n
(x), que es la solución ge-

neral de (6), se llama función complementaria para la ecuación (7). En otras palabras, 
para resolver una ecuación diferencial lineal no homogénea, primero se resuelve la 
ecuación homogénea asociada y luego se encuentra una solución particular de la ecua-
ción no homogénea. La solución general de la ecuación no homogénea es entonces

           y � función complementaria � cualquier solución particular 
 � y

c
 � y

p
.
 

EJEMPLO 10  Solución general de una ED no homogénea

Por sustitución, se demuestra con facilidad que la función yp
11
12

1
2 x  es una 

solución particular de la ecuación no homogénea

 y 6y 11y 6y 3x. (11)
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Para escribir la solución general de (11), también se debe poder resolver la ecuación 
homogénea asociada

 y 6y 11y 6y 0. 

Pero en el ejemplo 9 vimos que la solución general de esta última ecuación en el intervalo 
(��, �) fue y

c
 � c

l
ex � c

2
e2x � c

3
e3x. Por tanto la solución general de (11) en el intervalo es

 y yc yp c1ex c2e2x c3e3x 11

12

1

2
x. 

OTRO PRINCIPIO DE SUPERPOSICIÓN  El último teorema de este análisis se 
usará en la sección 4.4 cuando se considera un método para encontrar soluciones par-
ticulares de ecuaciones no homogéneas.

TEOREMA 4.1.7   Principio de superposición; ecuaciones 

 no homogéneas

Sean y
p1

, y
p2

, . . . , y
pk

 k soluciones particulares de la ecuación diferencial lineal 
no homogénea de n-ésimo orden (7) en un intervalo I que corresponde, a su 
vez, a k funciones diferentes g

1
, g

2
,  . . .  , g

k
. Es decir, se supone que y

pi
 denota 

una solución particular de la ecuación diferencial correspondiente

 an(x)y(n) an 1(x)y(n 1) a1(x)y a0(x)y gi(x),  (12)

donde i � 1, 2,  . . .  , k. Entonces

 yp yp1
(x) yp2

(x) ypk
(x) (13)

es una solución particular de

  

 g1(x) g2(x) gk(x).

an(x)y(n) an 1(x)y(n 1) a1(x)y a0(x)y

 (14)

DEMOSTRACIÓN  Se demuestra el caso k � 2. Sea L el operador diferencial de-
fi nido en (8) y sean y

p1
(x) y y

p2
(x) soluciones particulares de las ecuaciones no ho-

mogéneas L(y) � g
1
(x) y L(y) � g

2
(x), respectivamente. Si defi nimos y

p
 � y

p1
(x) 

� y
p2

(x), queremos demostrar que y
p
 es una solución particular de L(y) � g

1
(x) � 

g
2
(x). Nuevamente se deduce el resultado por la linealidad del operador L: 

 L(yp) L{yp1
(x) yp2

(x)} L( yp1
(x)) L( yp2

(x)) g1(x) g2(x). 

EJEMPLO 11  Superposición, ED no homogénea

Usted debe comprobar que

 es una solución particular de  

 es una solución particular de 

 yp3
xex 

yp2
e2x 

yp1
4x2 

 es una solución particular de  y 3y 4y 2xex ex.

y 3y 4y 2e2x,

y 3y 4y 16x2 24x 8,

Se tiene de (13) del teorema 4.1.7 que la superposición de y
p1

, y
p2

, y  y
p3

,

 y yp1
yp2

yp3
4x2 e2x xex, 

es una solución de

 y � � 3y� � 4y � �16x2 � 24x � 8 � 2e2x � 2xex � ex.

g1(x) g3(x)g2(x)
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128 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

NOTA  Si las y
pi
 son soluciones particulares de (12) para i � 1,2, . . .  , k, entonces 

la combinación lineal

 yp c1yp1
c2yp2

ckypk
,  

donde las c
i
 son constantes, es también una solución particular de (14) cuando el 

miembro del lado derecho de la ecuación es la combinación lineal

 c1g1(x) c2g2(x) ckgk(x). 

Antes de que empecemos a resolver realmente ecuaciones diferenciales lineales 
homogéneas y no homogéneas, se necesita un poco más de la teoría, que se presenta 
en la siguiente sección.

COMENTARIOS

Esta observación es una continuación del breve análisis de sistemas dinámicos 
que se presentó al fi nal de la sección 1.3.

Un sistema dinámico cuya regla o modelo matemático es una ecuación di-
ferencial lineal de n-ésimo orden

 an(t)y(n) an 1(t)y(n 1) a1(t)y a0(t)y g(t)  
se dice que es un sistema lineal de n-ésimo orden. Las n funciones dependientes del 
tiempo y(t), y�(t),  . . .  , y(n�1)(t) son las variables de estado del sistema. Recuerde 
que sus valores en el tiempo t dan el estado del sistema. La función g tiene varios 
nombres: función de entrada, función de fuerza o función de excitación. Una 
solución y(t) de la ecuación diferencial se llama salida o respuesta del sistema. 
Bajo las condiciones establecidas en el teorema 4.1.1, la salida o respuesta y(t) se 
determina de manera única por la entrada y el estado del sistema prescritos en el 
tiempo t

0
; es decir, por las condiciones iniciales y(t

0
), y�(t

0
),  . . .  , y(n�1)( t

0
).

Para que un sistema dinámico sea un sistema lineal es necesario que se cumpla 
en el sistema el principio de superposición (teorema 4.1.7); es decir, la respuesta 
del sistema a una superposición de entradas es una superposición de salidas. Ya se 
analizaron algunos de los sistemas lineales simples en la sección 3.1 (ecuaciones 
lineales de primer orden); en la sección 5.l se examinan sistemas lineales en los 
que los modelos matemáticos son ecuaciones diferenciales de segundo orden.

EJERCICIOS 4.1  Las respuestas a los problemas con número impar comienzan en la página RES-4.

4.1.1   PROBLEMAS CON VALORES INICIALES 
Y CON VALORES EN LA FRONTERA

En los problemas 1 a 4 la familia de funciones que se propor-
ciona es la solución general de la ecuación diferencial en el 
intervalo que se indica. Encuentre un miembro de la familia 
que sea una solución del problema con valores iniciales.

 1. y � c
1
ex � c

2
e�x, (��, �);  

  y� � y � 0,  y(0) � 0,  y�(0) � 1

 2. y � c
1
e4x � c

2
e�x, (��, �);  

  y� � 3y� � 4y � 0,  y(0) � 1,  y�(0) � 2

 3. y � c
1
x � c

2
x ln x, (0, �); 

  x2y� � xy� � y � 0,  y(1) � 3,  y�(1) � �1

 4. y � c
1
 � c

2
 cos x � c

3
 sen x, (��, �); 

  y� � y� � 0,  y(p) � 0,  y�(p) � 2,  y�(p) � �1

 5. Dado que y � c
1
 � c

2
x2 es una familia de dos parámetros 

de soluciones de xy� � y� � 0 en el intervalo (��, �), 
demuestre que no se pueden encontrar las constantes c

1
 y 

c
2
 tales que un miembro de la familia satisface las condi-

ciones iniciales y(0) � 0, y�(0) � 1. Explique por qué esto 
no viola el teorema 4.1.1.

 6. Encuentre dos miembros de la familia de soluciones del 
problema 5 que satisfagan las condiciones iniciales y(0) 
� 0, y�(0) � 0.

 7. Como x(t) � c
1
 cos  vt � c

2
 sen vt es la solución general 

de x� � v2x � 0 en el intervalo (��, �), demuestre que 
una solución que satisface las condiciones iniciales x(0) 
� x

0
, x�(0) � x

1
 está dada por

x(t) x0 cos t
x1 sen t.v v
v
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 8. Use la solución general de x� � v2x � 0 que se da en el 
problema 7 para demostrar que una solución que satisface 
las condiciones iniciales x(t

0
) � x

0
, x�(t

0
) � x

1
 es la solu-

ción dada en el problema 7 cambiada por una cantidad t
0
:

x(t) x0 cos (t t0 )
x1 sen (t t0 ).v
v

v

En los problemas 9 y 10 encuentre un intervalo centrado en x 
� 0 para el cual el problema con valores iniciales dado tiene 
una solución única.

 9. (x � 2)y� � 3y � x,  y(0) � 0,  y�(0) � 1

10. y� � (tan x)y � ex,  y(0) � 1,  y�(0) � 0

11. a)  Utilice la familia del problema 1 para encontrar una 
solución de y� � y � 0 que satisfaga las condiciones 
en la frontera y(0) � 0, y(l) � 1.

b)  La ED del inciso a) tiene la solución general alterna-
tiva y � c

3
 cosh x � c

4
 senh x en (��, �). Use esta 

familia para encontrar una solución que satisfaga las 
condiciones en la frontera del inciso a).

c)  Demuestre que las soluciones de los incisos a) y b) 
son equivalentes.

12. Use la familia del problema 5 para encontrar una solución 
de xy� – y� � 0 que satisfaga las condiciones en la fron-
tera y(0) � 1, y�(1) � 6.

En los problemas 13 y 14 la familia de dos parámetros dada es 
una solución de la ecuación diferencial que se indica en el in-
tervalo (��, �). Determine si se puede encontrar un miembro 
de la familia que satisfaga las condiciones en la frontera.

13. y � c
1
ex cos x � c

2
ex sen x;  y� � 2y� � 2y � 0

 a) y(0) � 1,  y�(p) � 0 b) y(0) � 1,  y(p) � �1

 c) y(0) � 1,  y
2

1 d) y(0) � 0,  y(p) � 0.

14. y � c
1
x2 � c

2
x4 � 3;  x2y� � 5xy� � 8y � 24

 a) y(�1) � 0,  y(1) � 4 b) y(0) � 1,  y(1) � 2
 c) y(0) � 3,  y(1) � 0 d) y(1) � 3,  y(2) � 15

4.1.2  ECUACIONES HOMOGÉNEAS

En los problemas 15 a 22 determine si el conjunto de funcio-
nes es linealmente independiente en el intervalo (��, �).

15. f
1
(x) � x,  f

2
(x) � x2,  f

3
(x) � 4x � 3x2

16. f
1
(x) � 0,  f

2
(x) � x,  f

3
(x) � ex

17. f
1
(x) � 5,  f

2
(x) � cos2x,  f

3
(x) � sen2x

18. f
1
(x) � cos 2x,  f

2
(x) � 1,  f

3
(x) � cos2x

19. f
1
(x) � x,  f

2
(x) � x � 1,  f

3
(x) � x � 3

20. f
1
(x) � 2 � x,  f

2
(x) � 2 � �x � 

21. f
1
(x) � 1 � x,  f

2
(x) � x,  f

3
(x) � x2

22. f
1
(x) � ex,  f

2
(x) � e�x,  f

3
(x) � senh x

En los problemas 23 a 30 compruebe que las funciones dadas 
forman un conjunto fundamental de soluciones de la ecua-
ción diferencial en el intervalo que se indica. Forme la so-
lución general.

23. y� � y� � 12y � 0;  e�3x, e4x, (��, �)

24. y� � 4y � 0;  cosh 2x, senh 2x, (��, �)

25. y� � 2y� � 5y � 0;  ex cos 2x, ex sen 2x, (��, �)

26. 4y� � 4y� � y � 0;  ex/2, xex/2, (��, �)

27. x2y� � 6xy� � 12y � 0;  x3, x4, (0, �)

28. x2y� � xy� � y � 0;  cos(ln x), sen(ln x), (0, �)

29. x3y� � 6x2y� � 4xy� � 4y � 0;  x, x�2, x�2 ln x, (0, �)

30. y(4) � y� � 0;  1, x, cos x, sen x, (��, �)

4.1.3  ECUACIONES NO HOMOGÉNEAS

En los problemas 31 a 34 compruebe que dada la familia de so-
luciones de dos parámetros, se trata de la solución general de la 
ecuación diferencial no homogénea en el intervalo indicado.

31. y� � 7y� � 10y � 24ex;
  y � c

1
e2x � c

2
e5x � 6ex, (��, �)

32. y� � y � sec x;
  y � c

1
 cos x � c

2
 sen x � x sen x � (cos x) ln(cos x), 

(�p�2, p�2)

33. y� � 4y� � 4y � 2e2x � 4x � 12;
  y � c

1
e2x � c

2
xe2x � x2e2x � x � 2, (��, �)

34. 2x2y� � 5xy� � y � x2 � x;

  y c1x 1/2 c2x 1 1
15 x2 1

6 x, (0, )

35. a)  Compruebe que y
p1

 � 3e2x y y
p2

 � x2 � 3x son, respec-
tivamente, soluciones particulares de

  

  y y 6y 5y 5x2 3x 16.

y 6y 5y 9e2x

 
  b)  Use el inciso a) para encontrar soluciones particula-

res de

  

  y  y 6y 5y 10x2 6x 32 e2x.

y 6y 5y 5x2 3x 16 9e2x

36. a)  Por inspección encuentre una solución particular de 

 y� � 2y � 10. 

  b)  Por inspección encuentre una solución particular de 

y� � 2y � �4x.

  c)  Encuentre una solución particular de y� � 2y � 
�4x � 10.

  d)  Determine una solución particular de y� � 2y � 
8x � 5.
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Problemas para analizar

37. Sea n � 1, 2, 3,  . . . . Analice cómo pueden utilizarse las 
observaciones Dnxn�l � 0 y Dnxn � n! para encontrar so-
luciones generales de las ecuaciones diferenciales dadas.

 a) y� � 0 b) y� � 0 c) y(4) � 0

 d) y� � 2 e) y� � 6 f) y(4) � 24

38. Suponga que y
1
 � ex y y

2
 � e�x son dos soluciones de una 

ecuación diferencial lineal homogénea. Explique por qué 
y

3
 � cosh x y y

4
 � senh x son también soluciones de la 

ecuación.

39. a)  Compruebe que y
1
 � x3 y y

2
 � �x�3 son soluciones li-

nealmente independientes de la ecuación diferencial 
x2y� � 4xy� � 6y � 0 en el intervalo (��, �).

b)  Demuestre que W(y
1
, y

2
) � 0 para todo número real x. 

¿Este resultado viola el teorema 4.1.3? Explique.

c)  Compruebe que Y
1
 � x3 y Y

2
 � x2 son también so-

luciones linealmente independientes de la ecuación 
diferencial del inciso a) en el intervalo (��, �).

d)  Determine una solución de la ecuación diferencial 
que satisfaga y(0) � 0, y�(0) � 0.

e)  Por el principio de superposición, teorema 4.1.2, 
ambas combinaciones lineales y � c

1
y

1 
� c

2
y

2
 y Y � 

c
1
Y

1
 � c

2
Y

2
 son soluciones de la ecuación diferencial. 

Analice si una, ambas o ninguna de las combinacio-
nes lineales es una solución general de la ecuación 
diferencial en el intervalo (��, �).

40. ¿El conjunto de funciones f
1
(x) � ex � 2, f

2
(x) � ex � 3 es 

linealmente dependiente o independiente en (��, �)? 
Explique.

41. Suponga que y
l
, y

2
,  . . .  , y

k
 son k soluciones linealmente 

independientes en (��, �) de una ecuación diferencial 
lineal homogénea de n-ésimo orden con coefi cientes 
constantes. Por el teorema 4.1.2 se tiene que y

k�1
 � 0 es 

también una solución de la ecuación diferencial. ¿Es el 
conjunto de soluciones y

l
, y

2
,  . . .  , y

k
, y

k�1
 linealmente 

dependiente o independiente en (��,�)? Explique.

42. Suponga que y
l
, y

2
,  . . .  , y

k
 son k soluciones no triviales 

de una ecuación diferencial lineal homogénea de n-ésimo 
orden con coefi cientes constantes y que k � n � 1. ¿Es el 
conjunto de soluciones y

l
, y

2
,  . . .  , y

k
 linealmente depen-

diente o independiente en (��, �)? Explique.

REDUCCIÓN DE ORDEN

REPASO DE  MATERIAL
● Sección 2.5 (utilizando una sustitución).
● Sección 4.1.

INTRODUCCIÓN  En la sección anterior vimos que la solución general de una ecuación diferen-
cial lineal homogénea de segundo orden

 a2(x)y a1(x)y a0(x)y 0  (1)

es una combinación lineal y � c
1
y

1
 � c

2
y

2
, donde y

1
 y y

2
 son soluciones que constituyen un con-

junto linealmente independiente en cierto intervalo I. Al comienzo de la siguiente sección se analiza 
un método para determinar estas soluciones cuando los coefi cientes de la ED en (1) son constantes. 
Este método, que es un ejercicio directo en álgebra, falla en algunos casos y sólo produce una solu-
ción simple y

1
 de la ED. En estos casos se puede construir una segunda solución y

2
 de una ecuación 

homogénea (1) (aun cuando los coefi cientes en (1) son variables) siempre que se conozca una solución 
no trivial y

1
 de la ED. La idea básica que se describe en esta sección es que la ecuación (1) se puede 

reducir a una ED lineal de primer orden por medio de una sustitución en la que interviene la solución 
conocida y

1
. Una segunda solución y

2
 de (1) es evidente después de resolver la ED de primer orden.

4.2

REDUCCIÓN DE ORDEN  Suponga que y
1
 denota una solución no trivial de (1) y que 

y
1
 se defi ne en un intervalo I. Se busca una segunda solución y

2
 tal que y

1
 y y

2
 sean un con-

junto linealmente independiente en I. Recuerde de la sección 4.1 que si y
1
 y y

2
 son lineal-

mente independientes, entonces su cociente y
2
�y

1
 no es constante en I, es decir, y

2
(x)� y

1
(x) 

� u(x) o y2(x) u(x)y1(x). La función u(x) se determina al sustituir y
2
(x) � u(x)y

1
(x) en 

la ecuación diferencial dada. Este método se llama reducción de orden porque debemos 
resolver una ecuación diferencial lineal de primer orden para encontrar a u.
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EJEMPLO 1  Una segunda solución por reducción de orden

Dado que y
1
 � ex es una solución de y� � y � 0 en el intervalo (��, �), use reducción 

de orden para determinar una segunda solución y
2
.

SOLUCIÓN  Si y � u(x)y
1
(x) � u(x)ex, entonces aplicando la regla del producto se 

obtiene

  

por tanto y y ex(u 2u ) 0.

y uex exu , y uex 2exu exu ,

 

Puesto que ex � 0, la última ecuación requiere que u� � 2u� � 0. Si se hace la sustitución 
w � u�, esta ecuación lineal de segundo orden en u se convierte en w� � 2w � 0, que 
es una ecuación lineal de primer orden en w. Si se usa el factor integrante e2x, se puede

escribir 
d

dx
 [e2xw] 0 . Después de integrar, se obtiene w � c

1
e�2x o u� � c

l
e�2x. Al

integrar de nuevo se obtiene u 1
2 c1e 2x c2.  Así

 
y u(x)ex c1

2
e x c2ex . (2)

Haciendo c
2
 � 0 y c

1
 � �2, se obtiene la segunda solución deseada, y

2
 � e�x. Puesto que 

W(ex, e�x) � 0 para toda x, las soluciones son linealmente independientes en (��, �). 

Puesto que se ha demostrado que y
1
 � ex y y

2
 � e�x son soluciones linealmente 

independientes de una ecuación lineal de segundo orden, la expresión en (2) es en 
realidad la solución general de y� � y � 0 en (��, �).

CASO GENERAL  Suponga que se divide entre a
2
(x) para escribir la ecuación (1) en 

la forma estándar

 y P(x)y Q(x)y 0,  (3)

donde P(x) y Q(x) son continuas en algún intervalo I. Supongamos además que y
1
(x) 

es una solución conocida de (3) en I y que y
1
(x) � 0 para toda x en el intervalo. Si se 

defi ne y � u(x)y
1
(x), se tiene que

 y uy1 y1u , y uy1 2y1u y1u  

 
y� � Py� � Qy � u[y1 � Py1 � Qy1] � y1u� � (2y1 � Py1)u� � 0.� � �

cero
 

Esto implica que se debe tener 

 y1u (2y1 Py1)u 0      o     y1w (2y1 Py1)w 0, (4)

donde hacemos que w � u�. Observe que la última ecuación en (4) es tanto lineal como 
separable. Separando las variables e integrando, se obtiene

  

 .ln wy1
2 P dx c        wy1

2 c1e P dx

dw

w
2

y1

y1
dx P dx 0

 

Despejamos a w de la última ecuación, usamos w � u� e integrando nuevamente:

 .u c1
e P dx

y1
2 dx c2  

4.2  REDUCCIÓN DE ORDEN ● 131
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132 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

Eligiendo c
1
 � 1 y c

2
 � 0, se encuentra de y � u(x)y

1
(x) que una segunda solución de 

la ecuación (3) es

 y2 y1(x)
e P(x) dx

y1
2(x)

dx.  (5)

Un buen ejercicio de derivación es comprobar que la función y
2
(x) que se defi ne en (5) 

satisface la ecuación (3) y que y
1
 y y

2
 son linealmente independientes en algún inter-

valo en el que y
1
(x) no es cero.

EJEMPLO 2  Una segunda solución por la fórmula (5)

La función y
1
 � x2 es una solución de x2y� � 3xy� � 4y � 0. Encuentre la solución 

general de la ecuación diferencial en el intervalo (0, �).

SOLUCIÓN  De la forma estándar de la ecuación,

 
 

encontramos de (5)     

                               .x2 dx

x
x2 ln x

; e3 d x /x eln x3
x3y2 x2 e3 dx /x

x4 dx

y
3

x
y

4

x2 y 0,

 

La solución general en el intervalo (0, �) está dada por y � c
1
 y

1
 � c

2
 y

2
; es decir, 

y � c
1
x2 � c

2
x2 ln x. 

COMENTARIOS

i) La deducción y uso de la fórmula (5) se ha mostrado aquí porque esta fór-
mula aparece de nuevo en la siguiente sección y en las secciones 4.7 y 6.2. La 
ecuación (5) se usa simplemente para ahorrar tiempo en obtener un resultado 
deseado. Su profesor le indicará si debe memorizar la ecuación (5) o si debe 
conocer los primeros principios de la reducción de orden.

ii) La reducción de orden se puede usar para encontrar la solución general de 
una ecuación no homogénea a

2
(x)y� � a

1
(x)y� � a

0
(x)y � g(x) siempre que se 

conozca una solución y
1
 de la ecuación homogénea asociada. Vea los problemas 

17 a 20 en los ejercicios 4.2.

EJERCICIOS 4.2  Las respuestas a los problemas con número impar comienzan en la página RES-4.

En los problemas 1 a 16 la función indicada y
1
(x) es una so-

lución de la ecuación diferencial dada. Use la reducción de 
orden o la fórmula (5), como se indica, para encontrar una 
segunda solución y

2
(x).

 1. y� � 4y� � 4y � 0;  y
1
 � e2x

 2. y� � 2y� � y � 0;  y
1
 � xe�x

 3. y� � 16y � 0;  y
1
 � cos 4x

 4. y� � 9y � 0;  y
1
 � sen 3x

 5. y� � y � 0;  y
1
 � cosh x

 6. y� � 25y � 0;  y
1
 � e5x

 7. 9y� � 12y� � 4y � 0;  y
1
 � e2x/3

 8. 6y� � y� � y � 0;  y
1
 � ex/3

 9. x2y� � 7xy� � 16y � 0;  y
1
 � x4

10. x2y� � 2xy� � 6y � 0;  y
1
 � x2

11. xy� � y� � 0;  y
1
 � ln x

12. 4x2y� � y � 0;  y
1
 � x1/2 ln x

13. x2y� � xy� � 2y � 0;  y
1
 � x sen(ln x)

14. x2y� � 3xy� � 5y � 0;  y
1
 � x2 cos(ln x)
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15. (1 � 2x � x2)y� � 2(1 � x)y� � 2y � 0;  y
1
 � x � 1

16. (1 � x2)y� � 2xy� � 0;  y
1
 � 1

En los problemas 17 al 20 la función que se indica y
1
(x) es una 

solución de la ecuación homogénea asociada. Use el método 
de reducción de orden para determinar una segunda solución 
y

2
(x) de la ecuación homogénea y una solución particular de la 

ecuación no homogénea dada.

17. y� � 4y � 2;  y
1
 � e�2x

18. y� � y� � 1;  y
1
 � 1

19. y� � 3y� � 2y � 5e3x;  y
1
 � ex

20. y� � 4y� � 3y � x;  y
1
 � ex

Problemas para analizar

21. a)  Proporcione una demostración convincente de que la 
ecuación de segundo orden ay� � by� � cy � 0, a, b, 
y c constantes, tiene siempre cuando menos una solu-
ción de la forma y1 em1x , m

1
 es una constante.

b)  Explique por qué la ecuación diferencial que se pro-
porciona en el inciso a) debe tener una segunda solu-

ción de la forma y2 em2 x  o de la forma y2 xem1x , 
m

1
 y m

2
  son constantes.

c)  Analice de nuevo los problemas 1 al 8. ¿Puede explicar 
por qué los enunciados de los incisos a) y b) anteriores no 
se contradicen con las respuestas de los problemas 3 al 5?

22. Compruebe que y
1
(x) � x es una solución de xy� – xy� � 

y � 0. Utilice la reducción de orden para encontrar una 
segunda solución y

2
(x) en la forma de una serie infi nita. 

Estime un intervalo de defi nición para y
2
(x).

Tarea para el laboratorio de computación

23. a)  Compruebe que y
1
(x) � ex es una solución de 

xy� � (x � 10)y� � 10y � 0.

b)  Use la ecuación (5) para determinar una segunda solu-
ción y

2
(x). Usando un SAC realice la integración que 

se requiere.

c)  Explique, usando el corolario (A) del teorema 4.1.2, 
por qué la segunda solución puede escribirse en forma 
compacta como

.y2(x)
10

n 0

1

n!
xn

ECUACIONES LINEALES HOMOGÉNEAS 

CON COEFICIENTES CONSTANTES

REPASO DE MATERIAL
● Repase el problema 27 de los ejercicios 1.1 y del teorema 4.1.5.
● Repase el álgebra de solución de ecuaciones polinomiales.

INTRODUCCIÓN  Como un medio para motivar el análisis en esta sección se tratan nuevamente 
las ecuaciones diferenciales de primer orden más específi camente, las ecuaciones lineales, homogé-
neas ay� � by � 0, donde los coefi cientes a � 0 y b son constantes. Este tipo de ecuación se resuelve 
ya sea por variables separables o con ayuda de un factor integrante, pero hay otro método de solución, 
uno que sólo utiliza álgebra. Antes de mostrar este método alternativo, hacemos una observación: 
despejando y� de la ecuación ay� � by � 0 se obtiene y� � ky, donde k es una constante. Esta obser-
vación revela la naturaleza de la solución desconocida y; la única función elemental no trivial cuya 
derivada es una constante múltiple de sí misma es la función exponencial emx. Ahora el nuevo método 
de solución: si sustituimos y � emx y y� � memx en ay� � by � 0, se obtiene

 amemx bemx 0     o   emx (am b) 0. 
Como emx nunca es cero para valores reales de x, la última ecuación se satisface sólo cuando m es una 
solución o raíz de la ecuación polinomial de primer grado am � b � 0. Para este único valor de m, y 
� emx es una solución de la ED. Para mostrar esto, considere la ecuación de coefi cientes constantes 2y� 
� 5y � 0. No es necesario realizar la derivación y la sustitución de y � emx en la ED; sólo se tiene que 
formar la ecuación 2m � 5 � 0 y despejar m. De m 5

2  se concluye que y � e�5x/2 es una solución 
de 2y� � 5y � 0, y su solución general en el intervalo (��, �) es y � c

1
e�5x/2.

En esta sección veremos que el procedimiento anterior genera soluciones exponenciales para las 
ED lineales homogéneas de orden superior,

 any(n) an 1y(n 1) a2y a1y a0y 0,  (1)

donde los coefi cientes a
i
, i � 0, 1,  . . .  , n son constantes reales y a

n
 � 0.

4.3
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134 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

ECUACIÓN AUXILIAR  Se empieza por considerar el caso especial de la ecuación 
de segundo orden

 ay by cy 0, (2)

donde a, b y c son constantes. Si se intenta encontrar una solución de la forma y � emx, 
entonces después de sustituir y� � memx y y� � m2emx, la ecuación (2) se convierte en

 am2emx bmemx cemx 0    o   emx(am2 bm c) 0. 
Como en la introducción se argumenta que debido a que emx � 0 para toda x, es obvio 
que la única forma en que y � emx puede satisfacer la ecuación diferencial (2) es cuando 
se elige m como una raíz de la ecuación cuadrática

 am2 bm c 0.  (3)

Esta última ecuación se llama ecuación auxiliar de la ecuación diferencial (2). Como las 
dos raíces de (3) son m1 ( b 1b2 4ac) 2a  y m2 ( b 1b2 4ac) 2a,  
habrá tres formas de la solución general de (2) que corresponden a los tres casos:

• m
l
 y m

2
 reales y distintas (b2 � 4ac 	 0),

• m
l
 y m

2
 reales e iguales (b2 � 4ac � 0), y

• m
l
 y m

2
 números conjugados complejos (b2 � 4ac 
 0).

Analicemos cada uno de estos casos.

CASO 1: RAÍCES REALES Y DISTINTAS  Bajo la suposición de que la ecuación 
auxiliar (3) tiene dos raíces reales desiguales m

l
 y m

2
, encontramos dos soluciones, 

y1 em1x  y y2 em2x.  Vemos que estas funciones son linealmente independientes 
en (��, �) y, por tanto, forman un conjunto fundamental. Se deduce que la solución 
general de (2) en este intervalo es

 y c1em1x c2em2x. (4)

CASO II: RAÍCES REALES REPETIDAS  Cuando m
l
 � m

2
, necesariamente se ob-

tiene sólo una solución exponencial, y1 em1x . De la fórmula cuadrática se encuentra 
que m

l
 � �b�2a puesto que la única forma en que se tiene que m

l
 � m

2
 es tener b2 � 

4ac � 0. Tenemos de (5) en la sección 4.2 que una segunda solución de la ecuación es

 y2 em1x
e2m1x

e2m1x
dx em1x dx xem1x.  (5)

En (5) hemos usado el hecho de que – b�a � 2m
1
. La solución general es entonces

 y c1em1x c2xem1x.  (6)

CASO III: RAÍCES COMPLEJAS CONJUGADAS  Si m
l
 y m

2
 son complejas, enton-

ces se puede escribir m
l
 � a � ib y m

2
 � a � ib, donde a y b 	 0 son reales i2 � �1. 

De manera formal, no hay diferencia entre este caso y el caso I y, por tanto,

 y C1e(a i )x C2e(a i )x.  

Sin embargo, en la práctica se prefi ere trabajar con funciones reales en lugar de expo-
nenciales complejas. Con este fi n se usa la fórmula de Euler:

 ei cos i sen ,  

donde u es cualquier número real.* Se tiene de esta fórmula que

 ei x cos x i sen x      y     e
i x cos x i sen x,  (7)

* Una deducción formal de la fórmula de Euler se obtiene de la serie de Maclaurin ex

n 0

xn

n!
 

sustituyendo x � iu, con i 2 � �1, i 3 � � i,  . . .  y después separando la serie en las partes real e imaginaria. 
Así se establece la plausibilidad, por lo que podemos adoptar a cos u � i sen u como la defi nición de eiu.
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donde se usaron cos(�bx) � cos bx y sen(�bx) � � sen bx. Observe que si primero 
se suma y luego se restan las dos ecuaciones en (7), se obtiene, respectivamente,

 ei x e i x 2 cos x    y   e
i x e i x 2i sen x.  

Puesto que y � C
1
e(a�ib)x � C

2
e(a�ib)x es una solución de (2) para alguna elección de las 

constantes C
1
 y C

2
, las elecciones C

1
 � C

2
 � 1 y C

1
 � 1, C

2
 � �1 dan, a su vez, dos 

soluciones:

  

Pero  

y  y2 eax(ei x e i x) 2ieax sen x.

y1 eax(ei x e i x) 2eax cos x

y1 e(a i )x e(a i )x        y2 e(a i )x e(a i )x.y

 

Por tanto, del corolario A) del teorema 4.1.2, los dos últimos resultados muestran que 
eax cos bx y eax sen bx son soluciones reales de (2). Además, estas soluciones forman 
un conjunto fundamental en (��, �). Por tanto, la solución general es

 y c1eax cos x c2eax sen x eax(c1 cos x c2 sen x).  (8)

EJEMPLO 1  ED de segundo orden

Resuelva las siguientes ecuaciones diferenciales.

a) 2y� � 5y� � 3y � 0    b) y� � 10y� � 25y � 0    c) y� � 4y� � 7y � 0 

SOLUCIÓN  Se dan las ecuaciones auxiliares, las raíces y las soluciones generales 
correspondientes.

a) 2m2 � 5m � 3 � (2m � 1)(m � 3) � 0,  , m2 3m1
1
2

De (4), y � c
1
e�x/2 � c

2
e3x.

b) m2 � 10m � 25 � (m � 5)2 � 0,  m
1
 � m

2
 � 5

De (6), y � c
1
e5x � c

2
xe5x.

c) m2 4m 7 0, m1 2 23i,  m2 2 23i

De (8) con 2, 23, y e 2x(c1 cos 23x c2 sen 23x).  

EJEMPLO 2  Un problema con valores iniciales

Resuelva 4y� � 4y� � 17y � 0, y(0) � �1, y�(0) � 2.

SOLUCIÓN  Usando la fórmula cuadrática tenemos que las raíces de la ecuación auxiliar

4m2 � 4m � 17 � 0 son m1
1
2 2i  y  .m2

1
2 2i  Por tanto, de la ecuación

(8) se tiene que y � e�x/2(c
1
 cos 2x � c

2
 sen 2x). Aplicando la condición y(0) � �1, 

se observa de e0(c
1
 cos 0 � c

2
 sen 0) � �1 que c

1
 � �1. Derivando y � e�x/2(� cos 

2x � c
2
 sen 2x) y después usando y�(0) � 2, se obtiene 2c2 2  o c2 .

2 )

3
4

1
2  Por tanto, 

la solución del PVI es y e x/2( cos 2x sen 2x)3
4 . En la fi gura 4.3.1 vemos que la

solución es oscilatoria, pero y : 0 conforme x : � y �y� : � conforme x : ��.  

DOS ECUACIONES QUE MERECEN CONOCERSE  Las dos ecuaciones diferenciales

 y k2y 0    y   ,y k2y 0  

FIGURA 4.3.1  Curva solución del 
PVI del ejemplo 2.

x

y

4 5
_4

_2

2

_3

_1

1

3
4

_2_3 21 _1 3
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136 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

donde k es real, son importantes en matemáticas aplicadas. Para y� � k2y � 0, la ecua-
ción auxiliar m2 � k2 � 0 tienen raíces imaginarias m

1
 � ki y m

2
 � �ki. Con a � 0 y 

b � k en (8) se ve que la solución general de la ED es

 y c1 cos kx c2 senkx.  (9)

Por otra parte, la ecuación auxiliar m2 � k2 � 0 para y� � k2y � 0 tiene raíces reales 
distintas m

1
 � k y m

2
 � �k, y así por la ecuación (4) la solución general de la ED es

 y c1ekx c2e kx.  (10)

Observe que si se elige 
1

c1 c2
1
2 c1

1
2, c2

1
2y  en (l0), se obtienen las 

soluciones particulares  .y 1
2 (ekx e kx) cosh kx y 1

2 (ekx e kx) senhkx
1 2 2 1 2 2 2y

y  
Puesto que cosh kx y senh kx son linealmente independientes en algún intervalo del eje 
x, una forma alternativa para la solución general de y� � k2y � 0 es

 y c1 cosh kx c2 senhkx.  (11)

Vea los problemas 41 y 42 de los ejercicios 4.3.

ECUACIONES DE ORDEN SUPERIOR  En general, para resolver una ecuación di-
ferencial de n-ésimo orden (1) donde a

i
, i � 0, 1,  . . .  , n son constantes reales, se debe 

resolver una ecuación polinomial de n-ésimo grado

 anmn an 1mn 1 a2m2 a1m a0 0.  (12)

Si todas las raíces de (12) son reales y distintas, entonces la solución general de (1) es

 y c1em1x c2em2x cnemnx.  

Es un poco difícil resumir los análogos de los casos II y III porque las raíces de una ecua-
ción auxiliar de grado mayor que dos ocurren en muchas combinaciones. Por ejemplo, 
una ecuación de quinto grado podría tener cinco raíces reales distintas, o tres raíces reales 
distintas y dos complejas, o una real y cuatro complejas, o cinco raíces reales pero iguales, 
o cinco raíces reales pero dos de ellas iguales, etc. Cuando m

1
 es una raíz de multiplicidad 

k de una ecuación auxiliar de n-ésimo grado (es decir, k raíces son iguales a m
1
), es posible 

demostrar que las soluciones linealmente independientes son

 em1x,  xem1x,  x2em1x, . . . ,  xk 1em1x  

y la solución general debe contener la combinación lineal

 c1em1x c2xem1x c3x2em1x ckxk 1em1x.  

Por último, se debe recordar que cuando los coefi cientes son reales, las raíces com-
plejas de una ecuación auxiliar siempre se presentan en pares conjugados. Así, por 
ejemplo, una ecuación polinomial cúbica puede tener a lo más dos raíces complejas.

EJEMPLO 3  ED de tercer orden

Resuelva y� � 3y� � 4y � 0.

SOLUCIÓN  Debe ser evidente de la inspección de m3 � 3m2 � 4 � 0 que una raíz es 
m

1
 � 1, por tanto, m � 1 es un factor de m3 � 3m2 � 4. Dividiendo se encuentra que

 m3 3m2 4 (m 1)(m2 4m 4) (m 1)(m 2)2,  

así las raíces son m
2
 � m

3
 � �2. Así, la solución general de la ED es y �

c
1
ex � c

2
e�2x � c

3
xe�2x. 
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EJEMPLO 4  ED de cuarto orden

Resuelva 
d 4y

dx4 2
d 2y

dx2 y 0.

SOLUCIÓN  La ecuación auxiliar m4 � 2m2 � 1 � (m2 � 1)2 � 0 tiene raíces m
1
 � 

m
3
 � i y m

2
 � m

4
 � �i. Así, del caso II la solución es 

 y C1eix C2e ix C3xeix C4xe ix.  

Por la fórmula de Euler el grupo C
1
eix � C

2
e�ix se puede rescribir como

 c1 cos x c2 senx  

después de redefi nir de nuevo las constantes. De manera similar, x(C
3
eix � C

4
e�ix) se 

puede expresar como x(c
3
 cos x � c

4
 sen x). Por tanto, la solución general es

 y c1 cos x c2 senx c3x cos x c4x sen x.  

El ejemplo 4 ilustra un caso especial cuando la ecuación auxiliar tiene raíces repeti-
das complejas. En general, si m

1
 � a � ib, b 	 0 es una raíz compleja de multiplicidad 

k de una ecuación auxiliar con coefi cientes reales, entonces su conjugada m
2
 � a � ib 

es también una raíz de multiplicidad k. De las 2k soluciones con valores complejos

 e(a i )x, xe(a i )x, x2e(a i )x,  . . . , xk 1e(a i )x,  

 e(a i )x, xe(a i )x, x2e(a i )x,  . . . , xk 1e(a i )x,  

concluimos, con la ayuda de la fórmula de Euler, que la solución general de la ecua-
ción diferencial correspondiente debe tener una combinación lineal de las 2k solucio-
nes reales linealmente independientes.

 eax cos x, xeax cos x, x2eax cos x,  . . . , xk 1eax cos x,b b b b  

  eax sen x, xeax sen x, x2eax sen x,  , ...  xk 1eax sen x.b b b b  

En el ejemplo 4 identifi camos k � 2, a � 0 y b � 1.
Por supuesto, el aspecto más difícil de resolver ecuaciones diferenciales de coefi -

cientes constantes es determinar las raíces de ecuaciones auxiliares de grado mayor 
que dos. Por ejemplo, para resolver 3y� � 5y� � 10y� � 4y � 0, debemos resolver 
3m3 � 5m2 � 10m � 4 � 0. Algo que se puede intentar es probar la ecuación auxiliar 
para raíces racionales. Recuerde que si m

1
 � p�q es una raíz racional (en su mínima 

expresión) de una ecuación auxiliar anmn a1m a0 0  con coefi cientes en-
teros, entonces p es un factor de a

0
 y q es un factor de a

n
. Para la ecuación auxiliar cúbica 

específi ca, todos los factores de a
0
 � �4 y a

n
 � 3 son p: 1, 2, 4

1 2 4
 y q: 1, 3  

por lo que las posibles raíces racionales son p>q: 1, 2, 4, 1
3,

2
3,

4
3 .Entonces 

se puede probar cada uno de estos números, digamos, por división sintética.  De esta 
forma se descubre la raíz m1

1
3  y la factorización 

 3m3 5m2 10m 4 (m 1
3)(3m2 6m 12). 

De la fórmula cuadrática se obtienen las otras raíces m2 1 i23  y m3 
1 i23 . Por tanto, la solución general de 3y 5y 10y 4y 0  es 
3

y c1ex/3 e x(c2 cos x c3 sen x).2323  

USO DE COMPUTADORAS  Determinar las raíces o aproximar las raíces de ecuacio-
nes auxiliares es un problema de rutina con una calculadora apropiada o con un paquete de 
cómputo. Las ecuaciones polinomiales (en una variable) de grado menor que cinco se re-
suelven por medio de fórmulas algebraicas usando las instrucciones solve en Mathematica 
y Maple. Para ecuaciones polinomiales de grado cinco o mayor podría ser necesario recurrir 
a comandos numéricos tales como NSolve y FindRoot en Mathematica. Debido a su ca-
pacidad para resolver ecuaciones polinomiales, no es sorprendente que estos sistemas alge-
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138 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

braicos para computadora también puedan,  usando sus comandos dsolve, dar soluciones 
explícitas de ecuaciones diferenciales lineales homogéneas con coefi cientes constantes.

En el libro clásico Differential Equations de Ralph Palmer Agnew* (que el autor 
usó cuando era estudiante), se expresa el siguiente enunciado:

No es razonable esperar que los alumnos de este curso tengan la capacidad y el 
equipo de cómputo necesario para resolver de manera efi caz ecuaciones tales como

 4.317
d 4y

dx4 2.179
d 3y

dx3 1.416
d 2y

dx2 1.295
dy

dx
3.169y 0. (13)

Aunque es debatible si en todos estos años ha mejorado la capacidad para realizar 
cálculos, es indiscutible que la tecnología sí lo ha hecho. Si se tiene acceso a un sistema 
algebraico para computadora, se podría ahora considerar razonable la ecuación (13). 
Después de simplifi car y efectuar algunas sustituciones en el resultado, Mathematica 
genera la solución general (aproximada)

 y c1e 0.728852x cos(0.618605x) c2e 0.728852x sen(0.618605x)  

 c3e0.476478x cos(0.759081x) c4e0.476478x sen(0.759081x). 
Por último, si se le presenta un problema con valores iniciales que consiste en, 

digamos, una ecuación de cuarto orden, entonces para ajustar la solución general de la 
ED a las cuatro condiciones iniciales, se deben resolver cuatro ecuaciones lineales con 
las cuatro incógnitas (c

1
, c

2
, c

3 
y c

4
 en la solución general). Si se emplea un SAC para 

resolver el sistema se puede ahorrar mucho tiempo. Véanse los problemas 59 y 60 del 
ejercicio 4.3 y el problema 35 en Repaso del capítulo 4.

*McGraw-Hill, Nueva York, 1960.

EJERCICIOS 4.3  Las respuestas a los problemas con número impar comienzan en la página RES-4.

En los problemas 1 a 14, obtenga la solución general de la 
ecuación diferencial de segundo orden dada.

 1. 4y� � y� � 0 2. y� � 36y � 0

 3. y� � y� � 6y � 0 4. y� � 3y� � 2y � 0

 5. y� � 8y� � 16y � 0 6. y� � 10y� � 25y � 0

 7. 12y� � 5y� � 2y � 0 8. y� � 4y� � y � 0

 9. y� � 9y � 0 10. 3y� � y � 0

11. y� � 4y� � 5y � 0 12. 2y� � 2y� � y � 0

13. 3y� � 2y� � y � 0 14. 2y� � 3y� � 4y � 0

En los problemas 15 a 28 encuentre la solución general de la 
ecuación diferencial de orden superior dada.

15. y� � 4y� � 5y� � 0

16. y� � y � 0

17. y� � 5y� � 3y� � 9y � 0

18. y� � 3y� � 4y� � 12y � 0

19. 
d 3u

dt3

d 2u

dt2 2u 0

20. 
d 3x

dt3

d 2x

dt2 4x 0

21. y� � 3y� � 3y� � y � 0

22. y� � 6y� � 12y� � 8y � 0

23. y(4) � y� � y� � 0

24. y(4) � 2y� � y � 0

25. 16
d 4y

dx4 24
d 2y

dx2 9y 0

26. 
d 4y

dx4 7
d 2y

dx2 18y 0

27. 
d 5u

dr5 5
d 4u

dr4 2
d 3u

dr3 10
d 2u

dr2

du

dr
5u 0

28. 2
d 5x

ds5 7
d 4x

ds4 12
d 3x

ds3 8
d 2x

ds2 0

En los problemas 29 a 36 resuelva el problema con valores 
iniciales

29. y� � 16y � 0,  y(0) � 2, y�(0) � �2

30. 
d 2y

d 2 y 0, y
3

0, y
3

2
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31. 
d 2y

dt2 4 
dy

dt
5y 0, y(1) 0, y (1) 2

32. 4y� � 4y� � 3y � 0,  y(0) � 1, y�(0) � 5

33. y� � y� � 2y � 0,  y(0) � y�(0) � 0

34. y� � 2y� � y � 0,  y(0) � 5, y�(0) � 10

35. y� � 12y� � 36y� � 0,  y(0) � 0, y�(0) � 1, y�(0) � �7

36. y� � 2y� � 5y� � 6y � 0,  y(0) � y�(0) � 0, y�(0) � 1

En los problemas 37 a 40 resuelva el problema con valores en 
la frontera dado.

37. y� � 10y� � 25y � 0,  y(0) � 1, y(1) � 0

38. y� � 4y � 0,  y(0) � 0, y(p) � 0

39. y y 0, y (0) 0, y
2

0

40. y� � 2y� � 2y � 0,  y(0) � 1, y(p) � 1

En los problemas 41 y 42 resuelva el problema dado usando 
primero la forma de la solución general dada en (10). Resuelva 
de nuevo esta vez usando la fórmula dada en (11).

41. y� � 3y � 0,  y(0) � 1, y�(0) � 5

42. y� � y � 0,  y(0) � 1, y�(1) � 0

En los problemas 43 a 48 cada fi gura representa la gráfi ca de 
una solución particular de una de las siguientes ecuaciones 
diferenciales.

  a) y� � 3y� � 4y � 0 b) y� � 4y � 0

 c) y� � 2y� � y � 0 d) y� � y � 0

  e) y� � 2y� � 2y � 0 f) y� � 3y� � 2y � 0

Relacione una curva solución con una de las ecuaciones dife-
renciales. Explique su razonamiento.

Problemas para analizar

49. Las raíces de una ecuación cúbica auxiliar son m
1
 � 4 y 

m
2
 � m

3
 � �5. ¿Cuál es la ecuación diferencial lineal 

homogénea correspondiente? Analice: ¿su respuesta es 
única?

50. Dos raíces de una ecuación auxiliar cúbica con coefi cien-
tes reales son m1

1
2  y m

2
 � 3 � i. ¿Cuál es la ecua-

ción diferencial lineal homogénea correspondiente?

x

y

FIGURA 4.3.2  Gráfi ca del problema 43.

43.

x

y

FIGURA 4.3.3  Gráfi ca del problema 44.

44.

x

y

FIGURA 4.3.4  Gráfi ca del problema 45.

45.

x

y

FIGURA 4.3.5  Gráfi ca del problema 46.

46.

π x

y

FIGURA 4.3.6  Gráfi ca del problema 47.

47.

π x

y

FIGURA 4.3.7  Gráfi ca del problema 48.

48.
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140 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

51. Determine la solución general de y� � 6y� � y� � 34y 
� 0 si se sabe que y

1
 � e�4x cos x es una solución.

52. Para resolver y(4) � y � 0, es necesario encontrar las raí-
ces de m4 � 1 � 0. Este es un problema trivial si se uti-
liza un SAC, pero también se resuelve a mano trabajando 
con números complejos. Observe que m4 � 1 � (m2 � 1)2 
� 2m2. ¿Cómo ayuda esto? Resuelva la ecuación diferen-
cial.

53. Compruebe que y � senh x � 2 cos(x � p�6) es una so-
lución particular de y(4) � y � 0. Reconcilie esta solución 
particular con la solución general de la ED.

54. Considere el problema con valores en la frontera y� � ly 
� 0, y(0) � 0, y(p�2) � 0. Analice: ¿es posible determi-
nar valores de l tal que el problema tenga a) soluciones 
triviales?, b) ¿soluciones no triviales?

Tarea para el laboratorio de computación

En los problemas 55 a 58 use una computadora ya sea como 
ayuda para resolver la ecuación auxiliar o como un medio para 
obtener de forma directa la solución general de la ecuación 

diferencial dada. Si utiliza un SAC para obtener la solución 
general, simplifi que el resultado y si es necesario, escriba la 
solución en términos de funciones reales.

55. y� � 6y� � 2y� � y � 0

56. 6.11y� � 8.59y� � 7.93y� � 0.778y � 0

57. 3.15y(4) � 5.34y� � 6.33y� � 2.03y � 0

58. y(4) � 2y� � y� � 2y � 0

En los problemas 59 y 60 utilice un SAC como ayuda para 
resolver la ecuación auxiliar. Forme la solución general de 
la ecuación diferencial. Después utilice un SAC como ayuda 
para resolver el sistema de ecuaciones para los coefi cientes 
c

i
, i � 1, 2, 3, 4 que resulta cuando se aplican las condiciones 

iniciales a la solución general.

59. 2y(4) � 3y� � 16y� � 15y� � 4y � 0,
y(0) � �2, y�(0) � 6, y�(0) � 3, y�(0) � 1

2

60. y(4) � 3y� � 3y� � y� � 0,
y(0) � y�(0) � 0, y�(0) � y�(0) � 1

COEFICIENTES INDETERMINADOS: MÉTODO 

DE SUPERPOSICIÓN*

REPASO DE MATERIAL
● Repaso de los teoremas 4.1.6 y 4.1.7 (sección 4.1).

INTRODUCCIÓN  Para resolver una ecuación diferencial lineal no homogénea

 an y (n) an 1 y (n 1) a1 y a0y g(x),  (1)

se debe hacer dos cosas: 

• encontrar la función complementaria y
c
 y

• encontrar alguna solución particular y
p
 de la ecuación no homogénea (1).

Entonces, como se explicó en la sección 4.1, la solución general de (1) es y � y
c
 � y

p
. La función 

complementaria y
c
 es la solución general de la ED homogénea asociada de (1), es decir,

 .an y(n) an 1 y(n 1) a1 y a0 y 0

En la sección 4.3 vimos cómo resolver esta clase de ecuaciones cuando los coefi cientes eran constan-
tes. Así, el objetivo en esta sección es desarrollar un método para obtener soluciones particulares.

4.4

*Nota para el profesor: En esta sección el método de coefi cientes indeterminados se desarrolla desde 
el punto de vista del principio de superposición para ecuaciones no homogéneas (teorema 4.7.1). En 
la sección 4.5 se presentará un método totalmente diferente que utiliza el concepto de operadores 
diferenciales anuladores. Elija el que convenga.
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MÉTODO DE COEFICIENTES INDETERMINADOS  La primera de las dos for-
mas que se consideran para obtener una solución particular y

p
 de una ED lineal no 

homogénea se llama método de coefi cientes indeterminados. La idea fundamental 
detrás de este método es una conjetura acerca de la forma de y

p
, en realidad una intui-

ción educada, motivada por las clases de funciones que forman la función de entrada 
g(x). El método general se limita a ED lineales como (1) donde

• los coefi cientes a
i
, i � 0, 1,  . . .  , n son constantes y

• g(x) es una constante k, una función polinomial, una función exponencial eax, 
una función seno o coseno sen bx o cos bx o sumas fi nitas y productos de 
estas funciones.

NOTA  Estrictamente hablando, g(x) � k (constante) es una función polinomial. 
Puesto que probablemente una función constante no es lo primero en que se piensa 
cuando se consideran funciones polinomiales, para enfatizar continuaremos con la re-
dundancia “funciones constantes, polinomios,  . . .  ”. 

Las siguientes funciones son algunos ejemplos de los tipos de entradas g(x) que 
son apropiadas para esta descripción:

 g(x) 10, g(x) x2 5x,    g(x) 15x 6 8e x, 

 g(x) sen 3x 5x cos 2x, g(x) xex senx (3x2 1)e 4x. 

Es decir, g(x) es una combinación lineal de funciones de la clase

P(x) an xn an 1 xn 1 a1x a0,    P(x) eax,  P(x) eax sen x y    P(x) eax cos x,

donde n es un entero no negativo y a y b son números reales. El método de coefi cientes 
indeterminados no es aplicable a ecuaciones de la forma (1) cuando

 g(x) ln x, g(x)
1

x
, g(x) tan x, g(x) sen 1x, 

etcétera. Las ecuaciones diferenciales en las que la entrada g(x) es una función de esta 
última clase se consideran en la sección 4.6. 

El conjunto de funciones que consiste en constantes, polinomios, exponen-
ciales eax, senos y cosenos tiene la notable propiedad de que las derivadas de sus 
sumas y productos son de nuevo sumas y productos de constantes, polinomios, ex-
ponenciales eax, senos y cosenos. Debido a que la combinación lineal de derivadas 
an y(n)

p an 1 yp
(n 1) a1 yp a0 yp debe ser idéntica a g(x), parece razonable 

suponer que y
p
 tiene la misma forma que g(x).

En los dos ejemplos siguientes se ilustra el método básico.

EJEMPLO 1  Solución general usando coefi cientes indeterminados

Resuelva y 4y 2y 2x2 3x 6. (2)

SOLUCIÓN  Paso 1.  Se resuelve primero la ecuación homogénea asociada y� � 4y� 
� 2y � 0. De la fórmula cuadrática se encuentra que las raíces de la ecuación auxiliar 
m2 � 4m � 2 � 0 son m1 2 16  y m2 2 16 . Por tanto, la función 
complementaria es

 yc c1e (2 16)x c2e( 2 16)x. 

Paso 2.  Ahora, debido a que la función g(x) es un polinomio cuadrático, supongamos 
una solución particular que también es de la forma de un polinomio cuadrático:

 yp Ax2 Bx C. 
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142 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

Se busca determinar coefi cientes específi cos A, B y C para los cuales y
p
 es una solución 

de (2). Sustituyendo y
p
 y las derivadas

 yp 2Ax B      y     yp 2A 

en la ecuación diferencial (2), se obtiene

 yp 4yp  2yp 2A 8Ax 4B 2Ax2 2Bx 2C 2x2 3x 6. 

Como se supone que la última ecuación es una identidad, los coefi cientes de los expo-
nentes semejantes a x deben ser iguales:

 

igual

�2A x2 � 8A � 2B x � 2A � 4B � 2C � 2x2 � 3x � 6  

Es decir,  2A 2,    8A 2B 3,    2A 4B 2C  6. 

Resolviendo este sistema de ecuaciones se obtienen los valores A � �1, B 5
2

 y 
C � �9. Así, una solución particular es

 yp x2 5

2
x 9. 

Paso 3.  La solución general de la ecuación dada es

 y yc yp c1e (2 16)x c1e( 2 16)x x2 5

2
x 9.  

EJEMPLO 2  Solución particular usando coefi cientes indeterminados

Encuentre una solución particular de y� � y� � y � 2 sen 3x.

SOLUCIÓN  Una primera suposición natural para una solución particular sería A sen 
3x. Pero debido a que las derivadas sucesivas de sen 3x producen sen 3x y cos 3x, se 
puede suponer una solución particular que incluye ambos términos:

 yp A cos 3x B sen 3x. 

Derivando y
p
 y sustituyendo los resultados en la ecuación diferencial, se obtiene, 

después de reagrupar,

 y p yp yp ( 8A 3B) cos 3x (3A 8B) sen 3x 2 sen 3x 
o

 

igual

�8A � 3B cos 3x � 3A � 8B sen 3x � 0 cos 3x � 2 sen 3x.  

Del sistema de ecuaciones resultante,

 8A 3B 0,    3A 8B 2, 

se obtiene  A 6
73  y B 16

73 . Una solución particular de la ecuación es

 yp

6

73
 cos 3x

16

73
 sen 3x.  

Como se mencionó, la forma que se supone para la solución particular y
p
 es una 

intuición educada; no es una intuición a ciegas. Esta intuición educada debe conside-
rar no sólo los tipos de funciones que forman a g(x) sino también, como se verá en el 
ejemplo 4, las funciones que conforman la función complementaria y

c
.
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EJEMPLO 3  Formando y
p
 por superposición

Resuelva y 2y 3y 4x 5 6xe2x.  (3)

SOLUCIÓN  Paso 1.  Primero, se encuentra que la solución de la ecuación homogé-
nea asociada y� � 2y� � 3y � 0 es y

c
 � c

1
e�x � c

2
e3x. 

Paso 2.  A continuación, la presencia de 4x � 5 en g(x) indica que la solución parti-
cular incluye un polinomio lineal. Además, debido a que la derivada del producto xe2x 
produce 2xe2x y e2x, se supone también que la solución particular incluye tanto a 
xe2x como a e2x. En otras palabras, g es la suma de dos clases básicas de funciones: 

 g(x) � g
1
(x) � g

2
(x) � polinomio � exponenciales. 

Por lo que, el principio de superposición para ecuaciones no homogéneas (teorema 
4.1.7) indica que se busca una solución particular

 yp yp1
yp2

,  

donde yp1
Ax B  y .yp2

Cxe2x Ee2x  Sustituyendo

 yp Ax B Cxe2x Ee2x  

en la ecuación (3) y agrupando términos semejantes, se obtiene

 yp 2yp 3yp 3Ax 2A 3B 3Cxe2x (2C 3E )e2x 4x 5 6xe2x.  (4)

De esta identidad obtenemos las cuatro expresiones

 3A 4,    2A 3B 5,    3C 6,    2C 3E 0.  

La última ecuación en este sistema es resultado de la interpretación de que el coefi -
ciente de e2x en el miembro derecho de (4) es cero. Resolviendo, se encuentra que 

B 23
9A 4

3 ,  C, � �2 y E 4
3. Por tanto,

 yp

4

3
x

23

9
2xe2x 4

3
e2x.  

Paso 3.  La solución general de la ecuación es

 y c1e x c2e3x 4

3
x

23

9
2x

4

3
e2x.  

En vista del principio de superposición (teorema 4.1.7) se puede aproximar tam-
bién el ejemplo 3 desde el punto de vista de resolver dos problemas más simples. Se 
debe comprobar que sustituyendo

  

y yp2
Cxe2x Ee2x    y 2y 3y 6xe2x

yp1
Ax B y 2y 3y 4x 5en

en  

se obtiene, a su vez, yp1

4
3 x 23

9  y .yp2
2x 4

3 e2x  Entonces, una solución 
particular de (3) es yp yp1

yp2
.

En el siguiente ejemplo se ilustra que algunas veces la suposición “obvia” para la 
forma de y

p
 no es una suposición correcta.

EJEMPLO 4  Una falla imprevista del método

Encuentre una solución particular de y� � 5y� � 4y � 8ex.

SOLUCIÓN  Derivando ex no se obtienen nuevas funciones. Así, si se procede como 
se hizo en los ejemplos anteriores, se puede suponer razonablemente que una solución 
particular de la forma y

p
 � Aex. Pero sustituir esta expresión en la ecuación diferencial 
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144 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

da como resultado la expresión contradictoria 0 � 8ex, por lo que claramente se hizo 
la conjetura equivocada para y

p
. 

La difi cultad aquí es evidente al examinar la función complementaria y
c
 � c

1
ex � 

c
2
e4x. Observe que la suposición Aex ya está presente en y

c
. Esto signifi ca que ex es una 

solución de la ecuación diferencial homogénea asociada y un múltiplo constante Aex 
cuando se sustituye en la ecuación diferencial necesariamente da cero.

¿Entonces cuál debe ser la forma de y
p
? Inspirados en el caso II de la sección 4.3, 

vemos que sí se puede encontrar una solución particular de la forma

 yp Axex.  

Sustituyendo yp Axex Aex  y y p Axex 2Aex en la ecuación diferencial y 
simplifi cando, se obtiene

 yp 5yp 4yp 3Aex 8ex.  

De la última igualdad se ve que el valor de A ahora se determina como .8
3A  Por 

tanto, una solución particular de la ecuación dada es yp
8
3 xex.                    

La diferencia en los procedimientos usados en los ejemplos 1 a 3 y en el ejemplo 4 
indica que se consideran dos casos. El primer caso refl eja la situación en los ejemplos 
1 a 3.

CASO I  Ninguna función de la solución particular supuesta es una solución de la 
ecuación diferencial homogénea asociada.

En la tabla 4.1 se muestran algunos ejemplos específi cos de g(x) en (1) junto con 
la forma correspondiente de la solución particular. Por supuesto, se da por sentado que 
ninguna función de la solución particular supuesta y

p
 se duplica por una función en la 

función complementaria y
c
.

TABLA 4.1  Soluciones particulares de prueba

g(x) Forma de y
p

 1. 1 (cualquier constante) A
 2. 5x � 7 Ax � B
 3. 3x2 � 2 Ax2 � Bx � C
 4. x3 � x � 1 Ax3 � Bx2 � Cx � E
 5. sen 4x A cos 4x � B sen 4x
 6. cos 4x A cos 4x � B sen 4x
 7. e5x Ae5x

 8. (9x � 2)e5x (Ax � B)e5x

 9. x2e5x (Ax2 � Bx � C)e5x

10. e3x sen 4x Ae3x cos 4x � Be3x sen 4x
11. 5x2 sen 4x (Ax2 � Bx � C) cos 4x � (Ex 2 � Fx � G ) sen 4x
12. xe3x cos 4x (Ax � B)e3x cos 4x � (Cx � E)e3x sen 4x

EJEMPLO 5  Formas de soluciones particulares. Caso I

Determine la forma de una solución particular de

a) y� � 8y� � 25y � 5x3e�x � 7e�x b) y� � 4y � x cos x

SOLUCIÓN  a) Se puede escribir g(x) � (5x3 � 7)e�x. Usando el elemento 9 de la 
tabla como modelo, suponemos una solución particular de la forma

 yp (Ax3 Bx2 Cx E)e x.

Observe que no hay duplicación entre los términos en y
p
 y los términos en la función 

complementaria y
c
 � e4x(c

1
 cos 3x � c

2
 sen 3x).
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b) La función g(x) � x cos x es similar al elemento 11 de la tabla 4.1 excepto, por 
supuesto, que se usa un polinomio lineal en vez de uno cuadrático y cos x y sen x en 
lugar de cos 4x y sen 4x en la forma de y

p
:

 yp (Ax B) cos x (Cx E) sen x.  

Nuevamente observe que no hay duplicación de términos entre y
p
 y y

c
 � c

1
 cos 2x � c

2
 

sen 2x. 

Si g(x) consiste en una suma de, digamos, m términos de la clase listada en la tabla, 
entonces (como en el ejemplo 3) la suposición para una solución particular y

p
 consiste en 

la suma de las formas de prueba yp1
, yp2

, . . . , ypm
 correspondientes a estos términos:

 yp yp1
yp2

ypm
.  

El enunciado anterior se puede escribir de otra forma:

Regla de forma para el caso I  La forma de y
p
 es una combinación lineal de las 

funciones linealmente independientes que se generan mediante derivadas suce-
sivas de g(x).

EJEMPLO 6  Formación de y
p
 por superposición. Caso I

Determine la forma de una solución particular de

 y 9y 14y 3x2 5 sen 2x 7xe6x.  

SOLUCIÓN

Se supone que a 3x2 le corresponde  yp1
Ax2 Bx C.

Se considera que a � 5 sen 2x le corresponde yp2
E cos 2x F sen 2x.

Se supone que a 7xe6x le corresponde  yp3
(Gx H)e6x.

Entonces la presunción para la solución particular es

 yp yp1
yp2

yp3
Ax2 Bx C E cos 2x F sen 2x (Gx H)e6x.  

En esta suposición ningún término duplica un término de y
c
 � c

1
e2x � c

2
e7x. 

CASO II  Una función en la solución particular supuesta también es una solución de 
la ecuación diferencial homogénea asociada.

El siguiente ejemplo es similar al ejemplo 4.

EJEMPLO 7  Solución particular. Caso II

Encuentre una solución particular de y� � 2y� � y � ex.

SOLUCIÓN  La función complementaria es y
c
 � c

1
ex � c

2
xex. Como en el ejemplo 

4, la suposición y
p
 � Aex falla, puesto que es evidente de y

c
 que ex es una solución de 

la ecuación homogénea asociada y� � 2y� � y � 0. Además, no es posible encontrar 
una solución particular de la forma y

p
 � Axex, ya que el término xex también se duplica 

en y
c
. A continuación se prueba

 yp Ax2ex.  

Sustituyendo en la ecuación diferencial dada se obtiene 2Aex � ex, así A 1
2.  Así una 

solución particular es yp
1
2 x2ex.                                         
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146 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

Nuevamente suponga que g(x) consiste en m términos de la clase que se propor-
ciona en la tabla 4.1 y suponga además que la presunción usual para una solución 
particular es

 yp yp1
yp2

ypm
,  

donde las ypi
, i 1, 2, . . . ,  m son las formas de solución particular de prueba corres-

pondientes a estos términos. Bajo las circunstancias descritas en el caso II, se puede 
formar la siguiente regla general.

Regla de multiplicación para el caso II  Si alguna ypi
 contiene términos que 

duplican los términos de y
c
, entonces esa ypi

 se debe multiplicar por xn, donde n es 
el entero positivo más pequeño que elimina esa duplicación.

EJEMPLO 8  Un problema con valores iniciales

Resuelva y� � y � 4x � 10 sen x, y(p) � 0, y�(p) � 2.

SOLUCIÓN  La solución de la ecuación homogénea asociada y� � y � 0 es y
c
 � c

1
 

cos x � c
2
 sen x. Debido a que g(x) � 4x � 10 sen x es la suma de un polinomio lineal 

y una función seno, la suposición normal para y
p
, de las entradas 2 y 5 de la tabla 4.1, 

sería la suma de yp1
Ax B  y yp2

C cos x E sen x :

 yp Ax B C cos x E sen x.  (5)

Pero hay una duplicación obvia de los términos cos x y sen x en esta forma supuesta y 
dos términos de la función complementaria. Esta duplicación se elimina simplemente 
multiplicando yp2

 por x. En lugar de (5) ahora se usa 

 yp Ax B Cx cos x Ex sen x.  (6)

Derivando esta expresión y sustituyendo los resultados en la ecuación diferencial, 
se obtiene

 yp yp Ax B 2C sen x 2E cos x 4x 10 sen x,  

y por tanto A � 4, B � 0, � 2C � l0, y 2E � 0. Las soluciones del sistema son inme-
diatas: A � 4, B � 0, C � �5, y E � 0. Por tanto de la ecuación (6) se obtiene y

p
 � 

4x � 5x cos x. La solución general de la ecuación es 

 y yc yp c1 cos x c2 senx 4x 5x cos x.  

Ahora se aplican las condiciones iniciales prescritas a la solución general de la ecua-
ción. Primero, y(p) � c

1
 cos p � c

2
 sen p � 4p � 5p cos p � 0 produce c

1
 � 9p 

puesto que cos p � �1 y sen p � 0. Ahora, de la derivada

  

y y ( ) 9  sen c2 cos 4 5  sen 5 cos 2

y 9  senx c2 cos x 4 5x sen x 5 cos x

 

encontramos c
2
 � 7. La solución del problema con valores iniciales es entonces

 y 9  cos x 7 sen x 4x 5x cos x.  

EJEMPLO 9  Uso de la regla de multiplicación

Resuelva y� � 6y� � 9y � 6x2 � 2 � 12e3x.

SOLUCIÓN  La función complementaria es y
c
 � c

1
e3x � c

2
xe3x. Y así, con base en los 

elementos 3 y 7 de la tabla 4.1, la suposición usual para una solución particular sería

 

yp � Ax2 � Bx � C � Ee3x.

yp1
yp2  
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La inspección de estas funciones muestra que un término en yp2
 se duplica en y

c
. Si 

multiplicamos yp2
 por x, se nota que el término xe3x aún es parte de y

c
. Pero multipli-

cando yp2
 por x2 se eliminan las duplicaciones. Así la forma operativa de una solución 

particular es 

 yp Ax2 Bx C Ex2e3x. 

Derivando esta última forma y sustituyendo en la ecuación diferencial, agrupando 
términos semejantes se obtiene

 yp 6yp 9yp 9Ax2 ( 12A 9B)x 2A 6B 9C 2Ee3x 6x2 2 12e3x.  

De esta identidad se tiene que A , B , C 2
3

8
9

2
3  y E 6 . Por tanto la solución

general y � y
c
 � y

p
 es y c1e3x c2xe3x x2 x 6x2e3x.2

3
8
9

2
3          

EJEMPLO 10  ED de tercer orden. Caso I

Resuelva y� � y� � ex cos x.

SOLUCIÓN  De la ecuación característica m3 � m2 � 0 encontramos que m
1
 � m

2
 � 

0 y m
3
 � �1. Así la función complementaria de la ecuación es y

c
 � c

1
 � c

2
x � c

3
e�x. 

Con g(x) � ex cos x, se ve de la entrada 10 de la tabla 4.1 que se debe suponer

 yp Aex cos x Bex senx.  

Debido a que no hay funciones en y
p
 que dupliquen las funciones de la solución com-

plementaria, procedemos de la manera usual. De

 y p y p ( 2A 4B)ex cos x ( 4A 2B)ex senx ex cos x  

se obtiene �2A � 4B � 1 y �4A � 2B � 0. De este sistema se obtiene A 1
10 y 

B 1
5 , así que una solución particular es .yp

1
10 e

x cos x 1
5 ex senx  La solución 

general de la ecuación es

 
y yc yp c1 c2x c3e x 1

10
ex cos x

1

5
ex senx.

 

EJEMPLO 11  ED de cuarto orden. Caso II

Determine la forma de una solución particular de y(4) � y� � 1 � x2e�x.

SOLUCIÓN  Comparando y
c
 � c

1
 � c

2
x � c

3
x2 � c

4
e�x con la suposición normal 

para una solución particular

 

yp � A � Bx2e�x � Cxe�x � Ee�x,

yp1
yp2  

vemos que las duplicaciones entre y
c
 y y

p
 se eliminan cuando y

p1
, se multiplica por x3 

y y
p2

 se multiplica por x. Así la suposición correcta para una solución particular es 
y

p
 � Ax3 � Bx3e�x � Cx2e�x � Exe�x. 
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148 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

COMENTARIOS

i) En los problemas 27 a 36 de los ejercicios 4.4 se pide resolver problemas 
con valores iniciales y en los problemas 37 a  40 se pide resolver problemas con 
valores en la frontera. Como se muestra en el ejemplo 8, asegúrese de aplicar las 
condiciones iniciales o condiciones en la frontera a la solución general y � y

c
 � 

y
p
. Los estudiantes con frecuencia cometen el error de aplicar estas condiciones 

sólo a la función complementaria y
c
 porque ésta es la parte de la solución que 

contiene las constantes c
1
, c

2
,  . . . , c

n
.

ii) De la “Regla de la forma para el caso I” de la página 145 de esta sección, se 
ve por qué el método de coefi cientes indeterminados no es muy adecuado para 
ED lineales no homogéneas cuando la función de entrada g(x) es algo distinta 
de uno de los cuatro tipos básicos resaltados en color azul en la página 141. Por 
ejemplo, si P(x) es un polinomio, entonces la derivación continua de P(x)eax 
sen bx genera un conjunto independiente que contiene sólo un número fi nito de 
funciones, todas del mismo tipo, en particular, un polinomio multiplicado por eax 
sen bx o un polinomio multiplicado por eax cos bx. Por otro lado, la derivación 
sucesiva de funciones de entrada como g(x) � ln x o g(x) � tan�1x genera un 
conjunto independiente que contiene un número infi nito de funciones:

                            
derivadas de ln x:

derivadas de tan�1 x: 1

1 x2
, 2x

(1 x2)2
, 2 6x2

(1 x2)3
, . . . .

1

x
, 1

x2
, 2

x3
, . . . ,

EJERCICIOS 4.4  Las respuestas a los problemas con número impar comienzan en la página RES-5.

En los problemas 1 a 26 resuelva la ecuación diferencial dada 
usando coefi cientes indeterminados.

 1. y� � 3y� � 2y � 6

 2. 4y� � 9y � 15

 3. y� � 10y� � 25y � 30x � 3

 4. y� � y� � 6y � 2x

 5. 1

4
y� � y� � y � x2 � 2x

 6. y� � 8y� � 20y � 100x2 � 26xex

 7. y� � 3y � �48x2e3x

 8. 4y� � 4y� � 3y � cos 2x

 9. y� � y� � �3

10. y� � 2y� � 2x � 5 � e�2x

11. y y
1

4
y 3 ex/2

12. y� � 16y � 2e4x

13. y� � 4y � 3 sen 2x

14. y� � 4y � (x2 � 3) sen 2x

15. y� � y � 2x sen x

16. y� � 5y� � 2x3 � 4x2 � x � 6

17. y� � 2y� � 5y � ex cos 2x

18. y� � 2y� � 2y � e2x(cos x � 3 sen x)

19. y� � 2y� � y � sen x � 3 cos 2x

20. y� � 2y� � 24y � 16 � (x � 2)e4x

21. y� � 6y� � 3 � cos x

22. y� � 2y� � 4y� � 8y � 6xe2x

23. y� � 3y� � 3y� � y � x � 4ex

24. y� � y� � 4y� � 4y � 5 � ex � e2x

25. y(4) � 2y� � y � (x � 1)2

26. y(4) � y� � 4x � 2xe�x

En los problemas 27 a 36 resuelva el problema con valores 
iniciales dado.

27. y� � 4y � �2,  y
8

1

2
, y

8
2

28. 2y� � 3y� � 2y � 14x2 � 4x � 11,  y(0) � 0, y�(0) � 0

29. 5y� � y� � �6x,  y(0) � 0, y�(0) � �10

30. y� � 4y� � 4y � (3 � x)e�2x,  y(0) � 2, y�(0) � 5

31. y� � 4y� � 5y � 35e�4x,  y(0) � �3, y�(0) � 1
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32. y� � y � cosh x,  y(0) � 2, y�(0) � 12

33. ,
d 2x

dt2
2x F0 sen tv   x(0) � 0, x�(0) � 0

34. ,
d 2x

dt 2
2x F0 cos tv   x(0) � 0, x�(0) � 0

35. y� � 2y� � y� � 2 � 24ex � 40e5x,  y(0) 1
2,  y y y

y (0) 9
2y (0) 5

2,

36. y� � 8y � 2x � 5 � 8e�2x,  y(0) � �5, y�(0) � 3, 
y�(0) � �4

En los problemas 37 a 40 resuelva el problema con valores en 
la frontera dado.

37. y� � y � x2 � 1,  y(0) � 5, y(1) � 0

38. y� � 2y� � 2y � 2x � 2,  y(0) � 0, y(p) � p

39. y� � 3y � 6x,  y(0) � 0, y(1) � y�(1) � 0

40. y� � 3y � 6x,  y(0) � y�(0) � 0, y(1) � 0

En los problemas 41 y 42 resuelva el problema con valores ini-
ciales dado en el que la función de entrada g(x) es discontinua. 
[Sugerencia: Resuelva cada problema en dos intervalos y des-
pués encuentre una solución tal que y y y� sean continuas en 
x � p�2 (problema 41) y en x � p (problema 42).]

41. y� � 4y � g(x),  y(0) � 1, y�(0) � 2,  donde

 g(x)
sen x, 0 x >2

0,   x >2

42. y� � 2y� � 10y � g(x),  y(0) � 0, y�(0) � 0,  donde

 g(x)
20, 0 x

0,   x

Problemas para analizar

43. Considere la ecuación diferencial ay� � by� � cy � ekx, 
donde a, b, c y k son constantes. La ecuación auxiliar de 
la ecuación homogénea asociada es am2 � bm � c � 0.

a)  Si k no es una raíz de la ecuación auxiliar, demuestre 
que se puede encontrar una solución particular de la 
forma y

p
 � Aekx, donde A � 1�(ak2 � bk � c).

b)  Si k es una raíz de la ecuación auxiliar de multiplici-
dad uno, muestre que se puede encontrar una solución 
particular de la forma y

p
 � Axekx, donde A � 1�(2ak 

� b). Explique cómo se sabe que k � �b�2a.

c)  Si k es una raíz de la ecuación auxiliar de multiplicidad 
dos, demuestre que podemos encontrar una solución 
particular de la forma y � Ax2ekx, donde A � 1�(2a).

44. Explique cómo se puede usar el método de esta sección 
para encontrar una solución particular de y� � y � sen x 
cos 2x. Lleve a cabo su idea.

45. Sin resolver, relacione una curva solución de y� � y � 
f(x) que se muestra en la fi gura con una de las siguientes 
funciones: 

  i) f (x) � 1,  ii) f (x) � e�x,
 iii) f (x) � ex,  iv) f (x) � sen 2x,
  v) f (x) � ex sen x,  vi) f (x) � sen x.

  Analice brevemente su razonamiento.

x

y

FIGURA 4.4.1  Curva solución.

  a)

FIGURA 4.4.2  Curva solución.

x

y  b)

FIGURA 4.4.3  Curva solución.

x

y  c)

FIGURA 4.4.4  Curva solución.

x

y  d)

Tarea para el laboratorio de computación

En los problemas 46 y 47 determine una solución particular 
de la ecuación diferencial dada. Use un SAC como ayuda para 
realizar las derivadas, simplifi caciones y álgebra.

46. y� � 4y� � 8y � (2x2 � 3x)e2x cos 2x 
 � (10x2 � x � 1)e2x sen 2x

47. y(4) � 2y� � y � 2 cos x � 3x sen x
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150 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

FACTORIZACIÓN DE OPERADORES  Cuando los coefi cientes a
i
, i � 0, 1,  . . .  , 

n son constantes reales, un operador diferencial lineal (1) se puede factorizar siempre 
el polinomio característico a

n
mn � a

n�1
mn�1 � � � � � a

1
m � a

0
 sea factorizable. En 

otras palabras, si r
1
 es una raíz de la ecuación auxiliar

 
anmn an 1mn 1 a1m a0 0,

 

entonces L � (D � r
l
) P(D), donde la expresión polinomial P(D) es un operador dife-

rencial lineal de orden n � 1. Por ejemplo, si se trata a D como una cantidad algebraica, 
entonces el operador D2 � 5D � 6 se puede factorizar como (D � 2)(D � 3) o como 
(D � 3)(D � 2). Así si una función y � f (x) tiene una segunda derivada, entonces

 (D2 5D 6)y (D 2)(D 3)y (D 3)(D 2)y.  
Esto muestra una propiedad general:

Los factores de un operador diferencial con coefi cientes constantes conmutan.

Una ecuación diferencial tal como y� � 4y� � 4y � 0 se escribe como

 (D2 � 4D � 4)y � 0  o  (D � 2)(D � 2)y � 0  o  (D � 2)2y � 0. 

OPERADOR ANULADOR  Si L es un operador diferencial lineal con coefi cientes 
constantes y f es una función sufi cientemente derivable tal que

 
L( f (x)) 0,

 
entonces se dice que L es un anulador de la función. Por ejemplo, D anula una fun-
ción constante y � k puesto que Dk � 0. El operador diferencial D2 anula la función y 
� x puesto que la primera y la segunda derivada de x son 1 y 0, respectivamente. De 
manera similar, D3x2 � 0, etcétera.

El operador diferencial Dn anula cada una de las funciones

 1,  x,  x2,  . . . ,  xn�1. (3)

COEFICIENTES INDETERMINADOS: MÉTODO DEL ANULADOR

REPASO DE MATERIAL
● Repaso de teoremas 4.1.6 y 4.1.7 (sección 4.1).

INTRODUCCIÓN  En la sección 4.1 vimos que una ecuación diferencial de n-ésimo orden se 
puede escribir como

 
anDny an 1Dn 1y a1Dy a0y g(x),  (1)

donde Dky � dky�dxk, k � 0, 1, . . . , n. Cuando es adecuado, la ecuación (1) también se escribe como 
L(y) � g(x), donde L denota el operador diferencial o polinomial, lineal de n-ésimo orden

 anDn an 1Dn 1 a1D a0. (2)

La notación de operador no sólo es una abreviatura útil, sino que en un nivel muy práctico la aplicación 
de operadores diferenciales permite justifi car las reglas un poco abrumadoras para determinar la forma de 
solución particular y

p
 presentada en la sección anterior. En esta sección no hay reglas especiales; la forma 

de y
p
 se deduce casi de manera automática una vez que se encuentra un operador diferencial lineal adecuado 

que anula a g(x) en (1). Antes de investigar cómo se realiza esto, es necesario analizar dos conceptos.

4.5
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Como una consecuencia inmediata de (3) y el hecho de que la derivación se puede 
hacer término a término, un polinomio

 c0 c1x c2x2 cn 1xn 1 (4)

se anula al encontrar un operador que aniquile la potencia más alta de x.
Las funciones que se anulan por un operador diferencial lineal de n-ésimo orden 

L son simplemente aquellas funciones que se obtienen de la solución general de la 
ecuación diferencial homogénea L(y) � 0.

El operador diferencial (D � a)n anula cada una de las funciones

 eax,  xeax,  x2eax,  . . . ,  xn�1eax. (5)

Para ver esto, observe que la ecuación auxiliar de la ecuación homogénea (D � 
a)n y � 0 es (m � a)n � 0. Puesto que a es una raíz de multiplicidad n, la solución 
general es

 y c1eax c2xeax cnxn 1eax. (6)

EJEMPLO 1  Operadores anuladores

Encuentre un operador diferencial que anule la función dada.

a) 1 � 5x2 � 8x3    b) e�3x    c) 4e2x � 10xe2x

SOLUCIÓN  a) De (3) se sabe que D4x3 � 0, así de (4) se tiene  que

 D4(1 5x2 8x3) 0.  

b) De (5), con a � �3 y n � l, vemos que

 (D 3)e 3x 0.  

c) De (5) y (6), con a � 2 y n � 2, se tiene que

 (D 2)2(4e2x 10xe2x) 0.  

Cuando a y b, b 	 0 son números reales, la fórmula cuadrática revela que [m2 � 
2am � (a2 � b2)]n � 0 tiene raíces complejas a � ib, a � ib, ambas de multiplicidad 
n. Del análisis al fi nal de la sección 4.3, se tiene el siguiente resultado.

El operador diferencial [D2 � 2aD � (a2 � b2)]n anula cada una de las fun-
ciones

 
e x cos x, xe x cos x, x2e x cos x, . . . , xn 1e x cos x,

e x sen x, xe x sen x, x2e x sen x, . . . , xn 1e x sen x.
 (7)

EJEMPLO 2  Operador anulador

Encuentre un operador diferencial que anule 5e�x cos 2x � 9e�x sen 2x.

SOLUCIÓN  La inspección de las funciones e�x cos 2x y e�x sen 2x muestra que a � 
�1 y b � 2. Por tanto, de la ecuación (7) se concluye que D2 � 2D � 5 anulará cual-
quier función que sea combinación lineal de estas funciones tales como 5e�x cos 2x � 
9e�x sen 2x. 
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152 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

Cuando a � 0 y n � 1, un caso especial de (7) es

 (D2 2)
cos x

sen x
0. (8)

Por ejemplo D2 � 16 anulará cualquier combinación lineal de sen 4x y cos 4x.
Con frecuencia estamos interesados en anular la suma de dos o más funciones. 

Como acabamos de ver en los ejemplos 1 y 2, si L es un operador diferencial lineal tal 
que L(y

1
) � 0 y L(y

2
) � 0, entonces L anulará la combinación lineal c

1
y

1
(x) � c

2
y

2
(x). 

Esta es una consecuencia directa del teorema 4.1.2. Supongamos ahora que L
1
 y L

2
 son 

operadores diferenciales lineales con coefi cientes constantes tales que L
1
 anula a y

1
(x) 

y L
2
 anula a y

2
(x), pero L

1
(y

2
) � 0 y L

2
(y

1
) � 0. Entonces el producto de los operadores 

diferenciales L
1
L

2
 anula la suma c

1
y

1
(x) � c

2
y

2
(x). Esto se puede demostrar fácilmente, 

usando la linealidad y el hecho de que L
1
L

2
 � L

2
L

1
:

 

L1L2(y1 � y2) � L1L2(y1) � L1L2(y2)

� L2L1(y1) � L1L2(y2)

� L2[L1(y1)] � L1[L2(y2)] � 0.  

cero cero  

Por ejemplo, sabemos de (3) que D2 anula a 7 � x y de (8) que D2 � 16 anula a sen 
4x. Por tanto el producto de operadores D2(D2 � 16) anulará la combinación lineal 
7 � x � 6 sen 4x.

NOTA  El operador diferencial que anula una función no es único. Vimos en el in-
ciso b) del ejemplo 1 que D � 3 anula a e�3x, pero también a los operadores diferen-
ciales de orden superior siempre y cuando D � 3 sea uno de los factores del operador. 
Por ejemplo (D � 3)(D � 1), (D � 3)2 y D3(D � 3) todos anulan a e�3x. (Compruebe 
esto.) Como algo natural, cuando se busca un anulador diferencial para una función y 
� f(x), se quiere que el operador de mínimo orden posible haga el trabajo.

COEFICIENTES INDETERMINADOS  Lo anterior lleva al punto del análisis pre-
vio. Suponga que L(y) � g(x) es una ecuación diferencial lineal con coefi cientes cons-
tantes y que la entrada g(x) consiste en sumas y productos fi nitos de las funciones 
listadas en (3), (5) y (7), es decir, g(x) es una combinación lineal de funciones de la 
forma

 k (constante), xm, xme x, xme x cos x, 
     y     

xme x sen x,  

donde m es un entero no negativo y a y b son números reales. Ahora se sabe que 
una función tal como g(x) puede ser anulada por un operador diferencial L

1
 de 

menor orden, que es producto de los operadores Dn, (D � a)n y (D2 � 2aD � a2 
� b2)n. Al aplicar L

1
 a ambos lados de la ecuación L(y) � g(x) se obtiene L

1
L(y) � 

L
1
(g(x)) � 0. Al resolver la ecuación homogénea de orden superior L

1
L(y) � 0, se 

descubre la forma de una solución particular y
p
 para la ecuación original no homo-

génea L(y) � g(x). Entonces sustituimos esta forma supuesta en L(y) � g(x) para 
encontrar una solución particular explícita. Este procedimiento para determinar y

p
, 

llamado método de los coefi cientes indeterminados, se ilustra a continuación en 
varios ejemplos.

Antes de proceder, recuerde que la solución general de una ecuación diferencial 
lineal no homogénea L(y) � g(x) es y � y

c
 � y

p
 donde y

c
 es la función complementaria, 

es decir, la solución general de la ecuación homogénea asociada L(y) � 0. La solución 
general de cada ecuación L(y) � g(x) se defi ne en el intervalo (��, �).
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EJEMPLO 3  Solución general usando coefi cientes indeterminados

Resuelva y 3y 2y 4x2. (9)

SOLUCIÓN  Paso 1.  Primero, resolvemos la ecuación homogénea y� � 3y� � 2y � 
0. Entonces, de la ecuación auxiliar m2 � 3m � 2 � (m � l)(m � 2) � 0 se encuentra 
m

l
 � �1 y m

2
 � �2 y así, la función complementaria es

 y
c
 � c

1
e�x � c

2
e�2x. 

Paso 2.  Ahora, puesto que 4x2 se anula con el operador diferencial D3, se ve que 
D3(D2 � 3D � 2)y � 4D3x2 es lo mismo que

 D3(D2 � 3D � 2)y � 0. (10)

La ecuación auxiliar de la ecuación de quinto orden en (10),

 m3(m2 � 3m � 2) � 0  o  m3(m � 1)(m � 2) � 0, 

tiene raíces m
l
 � m

2
 � m

3
 � 0, m

4
 � �1, y m

5
 � �2. Así que su solución general debe ser

 y � c
1
 � c

2
x � c

3
x2 � c

4
e �x � c

5
e �2x (11)

Los términos del cuadro sombreado en (11) constituyen la función complementaria 
de la ecuación original (9). Se puede argumentar que una solución particular y

p
, de (9) 

también debe satisfacer la ecuación (10). Esto signifi ca que los términos restantes en 
(11) deben tener la forma básica de y

p
:

 yp A Bx Cx2,  (12)

donde, por conveniencia, hemos remplazado c
1
, c

2
 y c

3
 por A, B y C, respectivamente. 

Para que (12) sea una solución particular de (9), es necesario encontrar coefi cientes 
específi cos A, B y C. Derivando la ecuación (12), se tiene que

 yp B 2Cx,    yp 2C, 

y sustituyendo esto en la ecuación (9) se obtiene

 yp 3yp 2yp 2C 3B 6Cx 2A 2Bx 2Cx2 4x2.  

Como se supone que la última ecuación es una identidad los coefi cientes de potencias 
semejantes de x deben ser iguales:

 

equal

2C x2 � 2B � 6C x � 2A � 3B � 2C � 4x2 � 0x � 0.  

Es decir 2C 4,    2B 6C 0,    2A 3B 2C 0.  (13)

Resolviendo las ecuaciones de (13) se obtiene A � 7, B � �6 y C � 2. Por tanto y
p
 

� 7 � 6x � 2x2.

Paso 3.  La solución general de la ecuación en (9) es y � y
c
 � y

p
 o

 y c1e
x c2e

2x 7 6x 2x2. 
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154 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

EJEMPLO 4  Solución general usando coefi cientes indeterminados

Resuelva y� � 3y� � 8e3x � 4 sen x. (14)

SOLUCIÓN  Paso 1.  La ecuación auxiliar para la ecuación homogénea asociada y� 
� 3y� � 0 es m2 � 3m � m(m � 3) � 0, y por tanto, y

c
 � c

1
 � c

2
e3x.

Paso 2.  Ahora, puesto que (D � 3)e3x � 0 y (D2 � 1) sen x � 0, se aplica el operador 
diferencial (D � 3)(D2 � 1) a ambos lados de la ecuación (14):

 (D 3)(D2 1)(D2 3D)y 0. (15)

La ecuación auxiliar de (15) es:

 (m 3)(m2 1)(m2 3m) 0    o   m(m 3)2(m2 1) 0. 

Así y �  c
1
 � c

2
e3x c3xe3x c4 cos x c5 senx. 

Una vez que se excluye la combinación lineal de términos dentro del cuadro que co-
rresponde a y

c
 se obtiene la forma de y

p
:

 yp Axe3x B cos x C sen x.  

Sustituyendo y
p
 en (14) y simplifi cando, se obtiene

 yp 3yp 3Ae3x ( B 3C ) cos x (3B C ) sen x 8e3x 4 sen x. 

Igualando los coefi cientes se obtiene que 3A � 8, � B � 3C � 0 y 3B � C � 4. Se 
encuentra que ,A 8

3
 B 6

5
, y C 2

5
 y por tanto,

 yp

8

3
xe3x 6

5
 cos x

2

5
 sen x. 

Paso 3.  Entonces la solución general de (14) es

 y c1 c2e3x 8

3
xe3x 6

5
 cos x

2

5
 sen x. 

EJEMPLO 5  Solución general usando coefi cientes indeterminados

Resuelva y y x cos x cos x.  (16)

SOLUCIÓN  La función complementaria es y
c
 � c

1
 cos x � c

2
 sen x. Ahora al com-

parar cos x y x cos x con las funciones del primer renglón de (7), vemos que a � 0 y 
n � 1 y así (D2 � 1)2 es un anulador para el miembro derecho de la ecuación en (16). 
Aplicando este operador a la ecuación diferencial se obtiene

 (D2 1)2 (D2 1)y 0    o   (D2 1)3y 0.  

Puesto que i y �i son raíces complejas de multiplicidad 3 de la última ecuación auxi-
liar, se concluye que

 y �  c1
 cos x � c

2
 sen x c3x cos x c4x sen x c5x2 cos x c6x2 sen x. 

Sustituyendo

 yp Ax cos x Bx sen x Cx2 cos x Ex2 sen x  

en (16) y simplifi cando:

  
 x cos x cos x.

yp yp 4 Ex cos x 4 Cx sen x (2B 2C ) cos x ( 2A 2E ) sen x
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Igualando los coefi cientes se obtienen las ecuaciones 4E � 1, �4C � 0, 2B � 2C � 
�1, y �2A � 2E � 0, de las que encontramos ,  C 0A 1

4 B 1
2  y E 1

4 . Por 
tanto la solución general de (16) es

 .y c1 cos x c2 sen x
1

4
x cos x

1

2
x sen x

1

4
x2sen x  

EJEMPLO 6  Forma de una solución particular 

Determine la forma de una solución particular para

 
y 2y y 10e 2x cos x.

 (17)

SOLUCIÓN  La función complementaria de la ecuación dada es y
c
 � c

1
ex � c

2
xex.

Ahora de (7), con a � �2, b � 1 y n � 1, se sabe que 

 (D2 4D 5)e 2x cos x 0. 

Aplicando el operador D2 � 4D � 5 a (17), se obtiene

 (D2 4D 5)(D2 2D 1)y 0.  (18)

Puesto que las raíces de la ecuación auxiliar de (18) son �2 –i, �2 � i, 1 y 1, vemos 
de

 y �  c1
ex � c

2
xex c3e 2x cos x c4e 2x sen x  

que una solución particular de (17) se puede encontrar con la forma

 yp Ae 2x cos x Be 2x sen x. 

EJEMPLO 7  Forma de una solución particular

Determine la forma de una solución particular para

 y 4y 4y 5x2 6x 4x2e2x 3e5x. (19)

SOLUCIÓN  Observe que

 D3(5x2 6x) 0,    (D 2)3x2e2x  0      y     (D 5)e5x 0. 

Por tanto, D3(D � 2)3(D � 5) aplicado a (19), se obtiene

  

o D4(D 2)5(D 5)y 0.

D3(D 2)3(D 5)(D3 4D2 4D)y 0

 

Las raíces de la ecuación auxiliar para la última ecuación diferencial son 0, 0, 0, 0, 2, 
2, 2, 2, 2 y 5. Por tanto,

y �  c
1
  � c

2
x � c

3
x2 � c

4
x3 �  c

5
e2x � c

6
xe2x  � c

7 
x2e2x � c

8
x3e2x � c

9
x4e2x � c

10
e5x. (20)

Debido a que la combinación lineal c
1
 � c

5
e2x � c

6
xe2x corresponde a la función com-

plementaria de (19), los términos restantes en (20) dan la forma de una solución parti-
cular de la ecuación diferencial:

 yp Ax Bx2 Cx3 Ex2e2x Fx3e2x Gx4e2x He5x. 

RESUMEN DEL MÉTODO  Por conveniencia se resume el método de coefi cientes 
indeterminados como sigue.
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156 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

COEFICIENTES INDETERMINADOS: MÉTODO DEL ANULADOR

La ecuación diferencial L(y) � g(x) tiene coefi cientes constantes y la función 
g(x) consiste en sumas y productos fi nitos de constantes, polinomios, funciones 
exponenciales eax, senos y cosenos.

i) Encuentre la función complementaria y
c
 para la ecuación homogénea 

L(y) � 0.

ii) Opere ambos lados de la ecuación no homogénea L(y) � g(x) con un 
operador diferencial L

1
 que anula la función g(x).

iii) Determine la solución general de la ecuación diferencial homogénea de 
orden superior L

1
L(y) � 0.

iv) Elimine de la solución del paso iii) los términos que se duplican en 
la solución complementaria y

c
 encontrada en el paso i). Forme una 

combinación lineal y
p
 de los términos restantes. Esta es la forma de una 

solución particular de L(y) � g(x).

v) Sustituya y
p
 encontrada en el paso iv) en L(y) � g(x). Iguale los 

coefi cientes de las distintas funciones en cada lado de la igualdad 
y resuelva el sistema resultante de ecuaciones para determinar los 
coefi cientes desconocidos de y

p
.

vi) Con la solución particular encontrada en el paso v), forme la solución 
general y � y

c
 � y

p
 de la ecuación diferencial dada.

COMENTARIOS

El método de coefi cientes indeterminados no es aplicable a ecuaciones diferen-
ciales lineales con coefi cientes variables ni tampoco es aplicable a ecuaciones 
lineales con coefi cientes constantes cuando g(x) es una función tal que 

 
g(x) ln x,    g(x)

1

x
,    g(x) tan x,    g(x) sen 1 x,

 

etcétera. Las ecuaciones diferenciales en las que la entrada g(x) es una función 
de esta última clase se consideran en la siguiente sección.

EJERCICIOS 4.5  Las respuestas a los problemas con número impar comienzan en la página RES-5.

En los problemas 1 a 10 escriba la ecuación diferencial en la 
forma L(y) � g(x), donde L es un operador diferencial lineal 
con coefi cientes constantes. Si es posible, factorice L.

 1. 9y� � 4y � sen x 2. y� � 5y � x2 � 2x

 3. y� � 4y� � 12y � x � 6 4. 2y� � 3y� � 2y � 1

 5. y� � 10y� � 25y� � ex 6. y� � 4y� � ex cos 2x

 7. y� � 2y� � 13y� � 10y � xe�x

 8. y� � 4y� � 3y� � x2 cos x � 3x

 9. y(4) � 8y� � 4

10. y(4) � 8y� � 16y � (x3 � 2x)e4x

En los problemas 11 a 14 compruebe que el operador diferen-
cial anula las funciones indicadas.

11. D4;  y � 10x3 � 2x 12. 2D � 1;  y � 4ex/2

13. (D � 2)(D � 5);  y � e2x � 3e�5x

14. D2 � 64;  y � 2 cos 8x � 5 sen 8x

En los problemas 15 a 26 determine el operador diferencial 
lineal que anula la función dada.

15. 1 � 6x � 2x3 16. x3(1 � 5x)

17. 1 � 7e2x 18. x � 3xe6x

19. cos 2x 20. 1 � sen x

21. 13x � 9x2 � sen 4x 22. 8x � sen x � 10 cos 5x

23. e�x � 2xex � x2ex 24. (2 � ex)2

25. 3 � ex cos 2x 26. e�x sen x � e2x cos x
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En los problemas 27 a 34 determine las funciones linealmente 
independientes que anulan el operador diferencial dado.

27. D5 28. D2 � 4D

29. (D � 6)(2D � 3) 30. D2 � 9D � 36

31. D2 � 5 32. D2 � 6D � 10

33. D3 � 10D2 � 25D 34. D2(D � 5)(D � 7)

En los problemas 35 a 64 resuelva la ecuación diferencial dada 
usando coefi cientes indeterminados.

35. y� � 9y � 54 36. 2y� � 7y� � 5y � �29

37. y� � y� � 3 38. y� � 2y� � y� � 10

39. y� � 4y� � 4y � 2x � 6

40. y� � 3y� � 4x � 5

41. y� � y� � 8x2 42. y� � 2y� � y � x3 � 4x

43. y� � y� � 12y � e4x 44. y� � 2y� � 2y � 5e6x

45. y� � 2y� � 3y � 4ex � 9

46. y� � 6y� � 8y � 3e�2x � 2x

47. y� � 25y � 6 sen x

48. y� � 4y � 4 cos x � 3 sen x � 8

49. y� � 6y� � 9y � �xe4x

50. y� � 3y� � 10y � x(ex � 1)

51. y� � y � x2ex � 5

52. y� � 2y� � y � x2e�x 

53. y� � 2y� � 5y � ex sen x

54. y y
1

4
y ex(sen 3x cos 3x)

55. y� � 25y � 20 sen 5x 56. y� � y � 4 cos x � sen x

57. y� � y� � y � x sen x 58. y� � 4y � cos2x

59. y� � 8y� � �6x2 � 9x � 2

60. y� � y� � y� � y � xex � e�x � 7

61. y� � 3y� � 3y� � y � ex � x � 16

62. 2y� � 3y� � 3y� � 2y � (ex � e�x)2

63. y(4) � 2y� � y� � ex � 1

64. y(4) � 4y� � 5x2 � e2x

En los problemas 65 a 72 resuelva el problema con valores ini-
ciales.

65. y� � 64y � 16,  y(0) � 1, y�(0) � 0

66. y� � y� � x,  y(0) � 1, y�(0) � 0

67. y� � 5y� � x � 2,  y(0) � 0, y�(0) � 2

68. y� � 5y� � 6y � 10e2x,  y(0) � 1, y�(0) � 1

69. y� � y � 8 cos 2x � 4 sen x,  y
2

1, y
2

0

70. y� � 2y� � y� � xex � 5,  y(0) � 2, y�(0) � 2,
y�(0) � �1

71. y� � 4y� � 8y � x3,  y(0) � 2, y�(0) � 4

72. y(4) � y� � x � ex,  y(0) � 0, y�(0) � 0, y�(0) � 0,
y�(0) � 0

Problemas para analizar

73. Suponga que L es un operador diferencial lineal que se 
factoriza pero que tiene coefi cientes variables. ¿Conmutan 
los factores de L? Defi enda su respuesta.

VARIACIÓN DE PARÁMETROS

REPASO DE MATERIAL
● La variación de parámetros se introdujo por primera vez en la sección 2.3 y se usó de nuevo en la 

sección 4.2. Se recomienda dar un repaso a estas secciones. 

INTRODUCCIÓN  El procedimiento que se utiliza para encontrar una solución particular y
p
 de una 

ecuación diferencial lineal de primer orden en un intervalo es también aplicable a una ED de orden supe-
rior. Para adaptar el método de variación de parámetros a una ecuación diferencial de segundo orden

 a2(x)y a1(x)y a0(x)y g(x),  (1)

comenzamos por escribir la ecuación en su forma estándar

 y P(x)y Q(x)y f (x) (2)

dividiendo entre el coefi ciente principal a
2
(x). La ecuación (2) es la análoga de segundo orden de la 

forma estándar de una ecuación lineal de primer orden: dy�dx � P(x)y � f(x). En (2) se supone que 
P(x), Q(x) y f(x) son continuas en algún intervalo común I. Como ya hemos visto en la sección 4.3, no 
hay difi cultad para obtener la función complementaria y

c
, la solución general de la ecuación homogé-

nea asociada de (2), cuando los coefi cientes son constantes.

4.6
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158 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

SUPOSICIONES  Correspondiendo con la suposición y
p
 �  u

1
(x)y

1
(x) que se usó en 

la sección 2.3 para encontrar una solución particular y
p
 de dy�dx � P(x)y � f(x), para la 

ecuación lineal de segundo orden (2) se busca una solución de la forma

 yp u1(x)y1(x) u2(x)y2(x),  (3)

donde y
1
 y y

2
 forman un conjunto fundamental de soluciones en I de la forma homogénea 

asociada de (1). Usando la regla del producto para derivar dos veces a y
p
, se obtiene

  

 y p u1y1 y1u1 y1u1 u1y1 u2y 2 y2u2 y2u 2 u2y2.

yp u1y1 y1u1 u2y2 y2u2

 

Sustituyendo la ecuación (3) y las derivadas anteriores en (2) y agrupando términos 
se obtiene

  (4)

Como se busca determinar dos funciones desconocidas u
1
 y u

2
, la razón impone que son 

necesarias dos ecuaciones. Estas ecuaciones se obtienen con la suposición adicional 
de que las funciones u

1
 y u

2
 satisfacen y1u1 y2u2 0.  Esta suposición en azul no se 

presenta por sorpresa, sino que es resultado de los dos primeros términos de (4) puesto 
que si se requiere que y1u1 y2u2 0 , entonces (4) se reduce a y1u1 y2u2 f (x). 
Ahora tenemos nuestras dos ecuaciones deseadas, a pesar de que sean dos ecuaciones 
para determinar las derivadas u�

1
 y u�

2 
. Por la regla de Cramer, la solución del sistema

  

 y1u1 y2u2 f (x)

y1u1 y2u2 0

 

puede expresarse en términos de determinantes:

 u1
W1

W

y2 f (x)

W
    y   u2

W2

W

y1 f (x)

W
, (5)

donde .W
y1

y1

y2

y2
,    W1

0

f (x)

y2

y2
,    W2

y1

y1

0

f (x)
 (6)

Las funciones u
1
 y u

2
 se encuentran integrando los resultados de (5). El determinante 

W se reconoce como el Wronskiano de y
1
 y y

2.
 Por la independencia lineal de y

1
 y y

2
 en 

I, se sabe que W(y
1
(x), y

2
(x)) � 0 para toda x en el intervalo.

RESUMEN DEL MÉTODO  Normalmente, no es buena idea memorizar fórmulas 
en lugar de entender un procedimiento. Sin embargo, el procedimiento anterior es de-
masiado largo y complicado para usarse cada vez que se desee resolver una ecuación 
diferencial. En este caso resulta más efi caz usar simplemente las fórmulas de (5). Así 
que para resolver a

2
y� � a

1
y� � a

0
y � g(x), primero se encuentra la función comple-

mentaria y
c
 � c

1
y

1
 � c

2
y

2
 y luego se calcula el Wronskiano W(y

1
(x), y

2
(x)). Dividiendo 

entre a
2
, se escribe la ecuación en la forma estándar y� � Py� � Qy � f(x) para deter-

minar f(x). Se encuentra u
1
 y u

2
 integrando u�

1
 � W

1
�W y u�

2 
� W

2
�W, donde W

1
 y W

2
 se 

defi nen como en (6). Una solución particular es y
p
 � u

1
y

1
 � u

2
y

2
. Entonces la solución 

general de la ecuación es y � y
c
 � y

p
.

orecorec

d

dx
 [y1u1 y2u2] P[y1u1 y2u2] y1u1 y2u2 f (x).

d

dx
 [y1u1]

d

dx
 [y2u2] P[y1u1 y2u2] y1u1 y2u2

y2u2 u2y2 P[y1u1 y2u2] y1u1 y2u2

yp P(x)yp Q(x)yp u1[y 1 Py1 Qy1] u2[y2 Py2 Qy2] y1u 1 u1y1
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EJEMPLO 1  Solución general usando variación de parámetros

Resuelva y� � 4y� � 4y � (x � 1)e2x.

SOLUCIÓN  De la ecuación auxiliar m2 � 4m � 4 � (m � 2)2 � 0 se tiene y
c
 � c

1
e2x 

� c
2
xe2x. Con las identifi caciones y

1
 � e2x y y

2
 � xe2x, a continuación se calcula el 

Wronskiano:

 W(e2x, xe2x)
e2x

2e2x

xe2x

2xe2x e2x e4x.  

Puesto que la ecuación diferencial dada ya está en la forma (2) (es decir, el coefi ciente 
de y� es 1), identifi camos f(x) � (x � l)e2x. De (6), obtenemos

W1
         0

(x 1)e2x

xe2x

2xe2x e2x (x 1)xe4x,    W2
e2x

2e2x

  0

(x 1)e2x (x 1)e4x,

y así de (5)

 u1
(x 1)xe4x

e4x x2 x,    u2
(x 1)e4x

e4x x 1.  

Se tiene que u1
1
3 x3 1

2 x2  y u2
1
2 x2 x . Por tanto

 yp

1

3
x3 1

2
x2 e2x 1

2
x2 x xe2x 1

6
x3e2x 1

2
x2e2x  

y y yc yp c1e2x c2xe2x 1

6
x3e2x 1

2
x2e2x. 

EJEMPLO 2  Solución general usando variación de parámetros

Resuelva 4y� � 36y � csc 3x.

SOLUCIÓN  Primero se escribe la ecuación en la forma estándar (2) dividiendo entre 4:

 y 9y
1

4
 csc 3x. 

Debido a que las raíces de la ecuación auxiliar m2 � 9 � 0 son m
1
 � 3i y m

2
 � �3i, la 

función complementaria es y
c
 � c

1
 cos 3x � c

2 
sen 3x. Usando y

1
 � cos 3x, y

2
 � sen 3x, 

y f (x) 1
4 csc 3x , obtenemos

 W(cos 3x, sen 3x)
cos 3x

3 sen 3x
sen 3x

3 cos 3x
3, 

 W1
0

1
4 csc 3x

   sen 3x

3 cos 3x

1

4
,    W2

      cos 3x

3 sen 3x

0
1
4 csc 3x

1

4

cos 3x

sen 3x
.  

Integrando u1
W1

W

1

12
      y     u2

W2

W

1

12

cos 3x

sen 3x
 

Se obtiene u1
1
12 x  y u2

1
36 ln�sen 3x �. Así una solución particular es

 
yp

1

12
x cos 3x

1

36
 (sen 3x) ln sen 3x .

 

La solución general de la ecuación es

y yc yp c1 cos 3x c2 sen 3x
1

12
x cos 3x

1

36
 (sen 3x) ln sen 3x .   (7)
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160 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

La ecuación (7) representa la solución general de la ecuación diferencial en, diga-
mos, el intervalo (0, p�6).

CONSTANTES DE INTEGRACIÓN  Cuando se calculan las integrales indefi nidas 
de u�

1 
 y u�

2 
, no es necesario introducir algunas constantes. Esto es porque

  

  

 
C1y1 C2y2 u1y1 u2y2.

(c1 a1)y1 (c2 b1)y2 u1y1 u2y2

y yc yp c1y1 c2y2 (u1 a1)y1 (u2 b1)y2

 

EJEMPLO 3  Solución general usando variación de parámetros

Resuelva y y
1

x
.

SOLUCIÓN  La ecuación auxiliar m2 � 1 � 0 produce m
1
 � � 1 y m

2
 � 1. Por tanto 

y
c
 � c

1
ex � c

2
e�x. Ahora W(ex, e�x) � �2, y

  

 u2
ex(1>x)

2
, u2

1

2

x

x0

et

t
dt.

u1
e x(1>x)

2
,    u1

1

2

x

x0

e t

t
dt,

 

Puesto que las integrales anteriores son no elementales, nos vemos obligados a escribir

  

y por tanto  y yc yp c1ex c2e x 1

2
ex

x

x0

e t

t
dt

1

2
e x

x

x0

et

t
dt.

yp

1

2
ex

x

x0

e t

t
dt

1

2
e x

x

x0

et

t
dt,

 (8)   

En el ejemplo 3 se puede integrar en algún intervalo [x
0
, x] que no contenga al 

origen.

ECUACIONES DE ORDEN SUPERIOR  El método que se describió para ecuacio-
nes diferenciales no homogéneas de segundo orden se puede generalizar a ecuaciones 
lineales de n-ésimo orden que se han escrito en forma estándar 

 y(n) Pn 1(x)y(n 1) P1(x)y P0(x)y f (x). (9)

Si y
c
 � c

1
y

1
 � c

2
y

2
 � � � � � c

n
y

n
 es la función complementaria para (9), entonces una 

solución particular es

 yp u1(x)y1(x) u2(x)y2(x) un(x)yn(x),  

donde los  u�
k 
 , k � 1, 2, . . . , n se determinan por las n ecuaciones

  

  

   (10)

 y1
(n 1)u1 y2

(n 1)u2 yn
(n 1)un f (x).

y1u1 y2u2 ynun 0

y1u1 y2u2 ynun 0
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Las primeras n � 1 ecuaciones de este sistema, al igual que y1u1 y2u2 0 en (4), 
son suposiciones que se hacen para simplifi car la ecuación resultante después de que 
y

p
 � u

1
(x)y

1
(x) � � � � � u

n
(x)y

n
(x) se sustituye en (9). En este caso usando la regla de 

Cramer se obtiene

 uk

Wk

W
, k 1, 2, . . . , n,  

donde W es el Wronskiano de y
1
, y

2
,  . . .  , y

n
 y W

k
 es el determinante que se obtiene 

al remplazar la k-ésima columna del Wronskiano por la columna formada por el lado 
derecho de (10), es decir, la columna que consta de (0, 0,  . . .  , f(x)). Cuando n � 2, se 
obtiene la ecuación (5). Cuando n � 3, la solución particular y

p
 � u

1
y

1
 � u

2
y

2
 � u

3
y

3
, 

donde y
1
, y

2
 y y

3
 constituyen un conjunto linealmente independiente de soluciones de 

la ED homogénea asociada y u
1
, u

2
 y u

3
 se determinan a partir de

 u1
W1

W
,    u2

W2

W
,    u3

W3

W
,  (11)

W1 p
0

0

f (x)

y2

y2

y2

y3

y3

y3

p ,  W2 p
y1

y1

y 1

0

0

f (x)

y3

y3

y3

p ,  W3 p
y1

y1

y 1

y2

y2

y 2

0

0

f (x)
p ,    W p

y1

y1

y 1

y2

y2

y 2

y3

y3

y3

p .

Véanse los problemas 25 y 26 de los ejercicios 4.6.

COMENTARIOS

i) La variación de parámetros tiene una ventaja particular sobre el método de 
coefi cientes indeterminados en cuanto a que siempre produce una solución par-
ticular y

p
 , siempre y cuando se pueda resolver la ecuación homogénea asociada. 

Este método no se limita a una función f (x) que es una combinación de las cua-
tro clases que se listan en la página 141. Como se verá en la siguiente sección, 
la variación de parámetros, a diferencia de los coefi cientes indeterminados, es 
aplicable a ED lineales con coefi cientes variables.

ii) En los problemas siguientes, no dude en simplifi car la forma de y
p
. Dependiendo 

de cómo se encuentren las antiderivadas de u�
1 
 y u�

2 
, es posible que no se obtenga 

la misma y
p
 que se da en la sección de respuestas. Por ejemplo, en el problema 3 de 

los ejercicios 4.6 tanto yp sen x x cos x1
2

1
2  como sen x x cos x1

2yp
1
4  

son respuestas válidas. En cualquier caso la solución general y � y
c
 � y

p
 se sim-

plifi ca a y c1 cos x c2 senx x cos x1
2

. ¿Por qué?

EJERCICIOS 4.6  Las respuestas a los problemas con número impar comienzan en la página RES-5.

En los problemas 1 a 18 resuelva cada ecuación diferencial 
por medio de variación de parámetros.

 1. y� � y � sec x  2. y� � y � tan x

 3. y� � y � sen x  4. y� � y � sec u tan u

 5. y� � y � cos2x  6. y� � y � sec2x

 7. y� � y � cosh x  8. y� � y � senh 2x

 9. y 4y
e2x

x
 10. y 9y

9x

e3x

11. y 3y 2y
1

1 ex

12. y 2y y
ex

1 x2

13. y� � 3y� � 2y � sen ex

14. y� � 2y� � y � et arctan t

15. y� � 2y� � y � e�t ln t 16. 2y 2y y 41x

17. 3y� � 6y� � 6y � ex sec x

18. 4y 4y y ex/211 x2
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162 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

En los problemas 19 a 22 resuelva cada ecuación diferencial 
mediante variación de parámetros, sujeta a las condiciones 
iniciales y(0) � 1, y�(0) � 0.

19. 4y� � y � xex/2 

20. 2y� � y� � y � x � 1

21. y� � 2y� � 8y � 2e�2x � e�x

22. y� � 4y� � 4y � (12x2 � 6x)e2x

En los problemas 23 y 24 las funciones que se indican son 
soluciones linealmente independientes de la ecuación dife-
rencial homogénea asociada en (0, �). Determine la solución 
general de la ecuación homogénea.

23. ;x2y xy (x2 1
4)y x3/2

  y
1
 � x�1/2 cos x, y

2
 � x�1/2 sen x

24. x2y� � xy� � y � sec(ln x);

  y
1
 � cos(ln x), y

2
 � sen(ln x)

En los problemas 25 y 26 resuelva la ecuación diferencial de 
tercer orden usando variación de parámetros.

25. y� � y� � tan x 26. y� � 4y� � sec 2x

Problemas para analizar

En los problemas 27 y 28 analice cómo pueden combinarse 
los métodos de coefi cientes indeterminados y variación de pa-
rámetros para resolver la ecuación diferencial. Lleve a cabo 
sus ideas.

27. 3y� � 6y� � 30y � 15 sen x � ex tan 3x

28. y� � 2y� � y � 4x2 � 3 � x�1ex

29. ¿Cuáles son los intervalos de defi nición de las soluciones 
generales en los problemas 1, 7, 9 y 18? Analice por qué 
el intervalo de defi nición de la solución del problema 24 
no es (0, �).

30. Encuentre la solución general de x4y� � x3y� � 4x2y � 1 
dado que y

1
 � x2 es una solución de la ecuación homogé-

nea asociada.

31. Suponga que y
p
(x) � u

1
(x)y

1
(x) � u

2
(x)y

2
(x), donde u

1
 y 

u
2
 están defi nidas por (5) es una solución particular de 

(2) en un intervalo I para el que P, Q y f son continuas. 
Demuestre que y

p
 se puede escribir como

 yp(x)
x

x0

G(x, t) f (t) dt,  (12)

 donde x y x
0
 están en I,

 G(x, t)
y1(t)y2(x) y1(x)y2(t)

W(t)
,  (13)

 y W(t) � W(y
1
(t), y

2
(t)) es el Wronskiano. La función G(x, 

t) en (13) se llama la función de Green para la ecuación 
diferencial (2).

32. Use (13) para construir la función de Green para la ecuación 
diferencial del ejemplo 3. Exprese la solución general dada 
en (8) en términos de la solución particular (12).

33. Compruebe que (12) es una solución del problema con 
valores iniciales

 
d 2y

dx2 P
dy

dx
Qy f (x),  y(x0) 0,  y (x0) 0

 en el intervalo I. [Sugerencia: Busque la regla de Leibniz 
para derivar bajo un signo de integral.]

34. Use los resultados de los problemas 31 y 33 y la función 
de Green encontrada del problema 32 para encontrar una 
solución del problema con valores iniciales

y y e2x,  y(0) 0,  y (0) 0

 usando (12). Evalúe la integral.

ECUACIÓN DE CAUCHY-EULER

REPASO DE MATERIAL
● Repase el concepto de la ecuación auxiliar en la sección 4.3.

INTRODUCCIÓN  La relativa facilidad con que pudimos encontrar soluciones explícitas de 
ecuaciones lineales de orden superior con coefi cientes constantes en las secciones anteriores, en 
general no se realiza en ecuaciones lineales con coefi cientes variables. En el capítulo 6 veremos que 
cuando una ED lineal tiene coefi cientes variables, lo mejor que podemos esperar, usualmente, es 
encontrar una solución en forma de serie infi nita. Sin embargo, el tipo de ecuación diferencial que 
consideramos en esta sección es una excepción a esta regla; esta es una ecuación lineal con coefi -
cientes variables cuya solución general siempre se puede expresar en términos de potencias de x, 
senos, cosenos y funciones logarítmicas. Además este método de solución es bastante similar al de 
las ecuaciones con coefi cientes constantes en los que se debe resolver una ecuación auxiliar.

4.7
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ECUACIÓN DE CAUCHY-EULER  Una ecuación diferencial lineal de la forma

 anxn dny

dxn an 1xn 1 dn 1y

dxn 1 a1x
dy

dx
a0y g(x),  

donde los coefi cientes a
n
, a

n�1
,  . . .  , a

0
 son constantes, se conoce como ecuación de 

Cauchy-Euler. La característica observable de este tipo de ecuación es que el grado 
k � n, n � 1,  . . .  , 1, 0 de los coefi cientes monomiales xk coincide con el orden k de 
la derivación dky�dxk:

 
anxn � an�1xn�1 � . . . .

dny
––––
dxn

dn�1y
––––––
dxn�1

mismo mismo

 

Al igual que en la sección 4.3, iniciamos el análisis con un examen detallado de 
las formas de las soluciones generales de la ecuación homogénea de segundo orden

 .ax2 d 2y

dx2 bx
dy

dx
cy 0  

La solución de ecuaciones de orden superior se deduce de manera análoga. También, 
podemos resolver la ecuación no homogénea ax2y� � bxy� � cy � g(x) por variación 
de parámetros, una vez que se ha determinado la función complementaria y

c
.

NOTA  El coefi ciente ax2 de y� es cero en x � 0. Por lo que, para garantizar  que los 
resultados fundamentales del teorema 4.1.1 sean aplicables a la ecuación de Cauchy-
Euler, centramos nuestra atención en encontrar soluciones generales defi nidas en el 
intervalo (0, �). Las soluciones en el intervalo (��, 0) se obtienen al sustituir t � �x 
en la ecuación diferencial. Véanse los problemas 37 y 38 de los ejercicios 4.7.

MÉTODO DE SOLUCIÓN  Se prueba una solución de la forma y � xm, donde m es 
un valor que se debe determinar. Análogo a lo que sucede cuando se sustituye emx en una 
ecuación lineal con coefi cientes constantes, cuando se sustituye xm, cada término de 
una ecuación de Cauchy-Euler se convierte en un polinomio en m veces xm, puesto que

akxk dky

dxk akxkm(m 1)(m 2) (m k 1)xm k akm(m 1)(m 2) (m k 1)xm.

Por ejemplo, cuando sustituimos y � xm, la ecuación de segundo orden se transforma en

ax2 d 2y

dx2 bx
dy

dx
cy am(m 1)xm bmxm cxm (am(m 1) bm c)xm.

Así y � xm es una solución de la ecuación diferencial siempre que m sea una solución 
de la ecuación auxiliar

 am(m 1) bm c 0    o   am2 (b a)m c 0.  (1)

Hay tres casos distintos a considerar que dependen de si las raíces de esta ecuación 
cuadrática son reales y distintas, reales e iguales o complejas. En el último caso las 
raíces aparecen como un par conjugado.

CASO I: RAÍCES REALES Y DISTINTAS  Sean m
1
 y m

2
 las raíces reales de (1), 

tales que m
1
 � m

2
. Entonces y1 xm1  y y2 xm2  forman un conjunto fundamental de 

soluciones. Por tanto, la solución general es

 y c1xm1 c2xm2.  (2)
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164 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

EJEMPLO 1  Raíces distintas

Resuelva x2 d 2y

dx2 2x
dy

dx
4y 0.

SOLUCIÓN  En lugar de memorizar la ecuación (1), algunas veces es preferible su-
poner y � xm como la solución para entender el origen y la diferencia entre esta nueva 
forma de ecuación auxiliar y la obtenida en la sección 4.3. Derive dos veces,

 
dy

dx
mxm 1,    

d 2y

dx2 m(m 1)xm 2, 

y sustituyendo esto en la ecuación diferencial

  

 xm(m(m 1) 2m 4) xm(m2 3m 4) 0

x2 d 2y

dx2 2x
dy

dx
4y x2 m(m 1)xm 2 2x mxm 1 4xm

 

si m2 � 3m � 4 � 0. Ahora (m � 1)(m � 4) � 0 implica que m
1
 � �1, m

2
 � 4, así 

que y � c
1
x�1 � c

2
x4. 

CASO II: RAÍCES REALES REPETIDAS  Si las raíces de (l) son repetidas (es decir, 
m

1
 � m

2
), entonces se obtiene sólo una solución particular, y � xm1. Cuando las raíces 

de la ecuación cuadrática am2 � (b � a)m � c � 0 son iguales, el discriminante de los 
coefi cientes necesariamente es cero. De la fórmula cuadrática se deduce que las raíces 
deben ser m

1
 � �(b � a)�2a.

Ahora se puede construir una segunda solución y
2
, con la ecuación (5) de la sec-

ción 4.2. Primero se escribe la ecuación de Cauchy-Euler en la forma estándar

 
d 2y

dx2

b

ax

dy

dx

c

ax2 y 0 

y haciendo las identifi caciones P(x) � b�ax y (b ax) dx (b a) ln x . Así

  

   

   

                                     xm1
dx

x
xm1 ln x.

; 2m1 (b a)/axm1 x b /a x(b a)/adx

; e (b / a)ln x eln x b / a
x b / axm1 x b /a x 2m1 dx

y2 xm1
e (b /a)ln x

x2m1
dx

 

La solución general es entonces

 y c1xm1 c2xm1 ln x.  (3)

EJEMPLO 2  Raíces repetidas

Resuelva 4x2 d 2y

dx2 8x
dy

dx
y 0.

SOLUCIÓN  Sustituyendo y � xm se obtiene

 4x2 d 2y

dx2 8x
dy

dx
y xm(4m(m 1) 8m 1) xm(4m2 4m 1) 0  
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donde 4m2 � 4m � 1 � 0 o (2m � 1)2 � 0. Puesto que m1
1
2 , la solución general 

es y � c
1
x�1/2 � c

2
x�1/2 ln x. 

Para ecuaciones de orden superior, si m
1
 es una raíz de multiplicidad k, entonces 

se puede demostrar que

 xm1,  xm1 ln x,  xm1(ln x)2, . . . ,  xm1(ln x)k 1  

son k soluciones linealmente independientes. En correspondencia, la solución general de 
la ecuación diferencial debe contener una combinación lineal de estas k soluciones.

CASO III: RAÍCES COMPLEJAS CONJUGADAS  Si las raíces de (1) son el par conju-
gado m

1
 � a � ib, m

2
 � a � ib, donde a y b 	 0 son reales, entonces una solución es

 y C1x i C2x i .  

Pero cuando las raíces de la ecuación auxiliar son complejas, como en el caso de las 
ecuaciones con coefi cientes constantes, se desea escribir la solución sólo en términos 
de funciones reales. Observemos la identidad

 xi (eln x)i ei  ln x,  

que, por la fórmula de Euler, es lo mismo que

  xib � cos(b ln x) � i sen(b ln x). 

De forma similar, x�ib � cos(b ln x) � i sen(b ln x). 

Si se suman y restan los dos últimos resultados, se obtiene

 xib � x�ib � 2 cos(b ln x)    y    xib � x�ib � 2i sen(b ln x), 

respectivamente. Del hecho de que y � C
1
xa�ib � C

2
xa�ib es una solución para cual-

quier valor de las constantes, note, a su vez, para C
1
 � C

2
 � 1 y C

1
 � 1, C

2
 � �1 

que

 y  

o  y1 2x  cos(  ln x) 

 y1 x (xi x i ) 

   y  y2 2ix  sen(  ln x)

y2 x (xi x i )

 

también son soluciones. Como W(xa cos(b ln x), xa sen(b ln x)) � bx2a�1 � 0, b 	 0 
en el intervalo (0, �), se concluye que

 y1 x  cos(  ln x)      y     y2 x  sen(  ln x) 

constituyen un conjunto fundamental de soluciones reales de la ecuación diferencial. 
Así la solución general es

 y x [c1 cos(  ln x) c2 sen(  ln x)]. (4)

EJEMPLO 3  Problema con valores iniciales

Resuelva 4x2y 17y 0, y(1) 1, y (1) 1
2.

SOLUCIÓN  El término y� falta en la ecuación de Cauchy-Euler; sin embargo, la sus-
titución y � xm produce

 4x2y 17y xm(4m(m 1) 17) xm(4m2 4m 17) 0  

donde 4m2 � 4m � 17 � 0. De la fórmula cuadrática se encuentra que las raíces son 
m

1
 � 1

2
 � 2i y m

2
 � 1

2
 � 2i. Con las identifi caciones a � 1

2
 y b � 2 se ve de (4) que la 

solución general de la ecuación diferencial es 

 y x1/2[c1 cos(2 ln x) c2 sen(2 ln x)].  

Aplicando las condiciones iniciales y(l) � �1,
 y (1) 1

2  
la solución anterior y 

usando ln 1 � 0, se obtiene, a su vez, que c
1
 � �1 y c

2
 � 0. Así la solución del problema 

x

y

_1

0

1

1

x 

y

25 50 75

10

5

100

a)  solución para 0 
 �x 1. 

b) solución para 0 
 �x 100. 

FIGURA 4.7.1  Curva solución del 
PVI del ejemplo 3.
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166 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

con valores iniciales es y � �x1/2 cos(2 ln x). En la fi gura 4.7.1 se presenta la gráfi ca de 
esta función que se obtuvo con ayuda de un paquete de cómputo. Se observa que la solu-
ción particular es oscilatoria y no acotada conforme x : �.                    

En el ejemplo siguiente se ilustra la solución de una ecuación de Cauchy-Euler 
de tercer orden.

EJEMPLO 4  Ecuación de tercer orden

Resuelva x3 d 3y

dx3 5x2 d 2y

dx2 7x
dy

dx
8y 0.

SOLUCIÓN  Las tres primeras derivadas de y � xm son

 dy

dx
mxm 1,    

d 2y

dx2 m(m 1)xm 2,    
d 3y

dx3 m(m 1)(m 2)xm 3,  

así la ecuación diferencial dada se convierte en

 

 xm(m3 2m2 4m 8) xm(m 2)(m2 4) 0.

xm(m(m 1)(m 2) 5m(m 1) 7m 8)

x3 d 3y

dx3 5x2 d 2y

dx2 7x
dy

dx
8y x3m(m 1)(m 2)xm 3 5x2m(m 1)xm 2 7xmxm 1 8xm

En este caso veremos que y � xm es una solución de la ecuación diferencial para m
1
 � 

� 2, m
2
 � 2i y m

3
 � � 2i. Por tanto, la solución general es y � c

1
x�2 � c

2
 cos(2 ln x)

 � c
3
 sen(2 ln x). 

El método de coefi cientes indeterminados que se describió en las secciones 4.5 y 4.6 
no se aplica, en general, a las ecuaciones diferenciales lineales con coefi cientes varia-
bles. Por tanto en el siguiente ejemplo se emplea el método de variación de parámetros.

EJEMPLO 5  Variación de parámetros

Resuelva x2y� � 3xy� � 3y � 2x4ex.

SOLUCIÓN  Puesto que la ecuación es no homogénea, primero se resuelve la ecuación 
homogénea asociada. De la ecuación auxiliar (m � l)(m � 3) � 0 se encuentra y

c
 � 

c
1
x � c

2
x3. Ahora, antes de usar la variación de parámetros para encontrar una solución 

particular y
p
 � u

1
y

1
 � u

2
y

2
, recuerde que las fórmulas u1 W1>W  y u2 W2>W , 

donde W
1
, W

2 
y W, son los determinantes defi nidos en la página 158, que se dedujeron 

bajo la suposición de que la ecuación diferencial se escribió en la forma estándar  y� � 
P(x)y� � Q(x)y � f(x). Por tanto, dividiendo entre x2 la ecuación dada,

 y
3

x
y

3

x2 y 2x2ex  

hacemos la identifi cación f(x) � 2x2ex. Ahora con y
1
 � x, y

2
 � x3, y

 
W

x

1

x3

3x2 2x3,  W1
0

2x2ex

x3

3x2 2x5ex,  W2
x

1

0

2x2ex 2x3ex,

encontramos u1
2x5ex

2x3 x2ex      y     u2
2x3ex

2x3 ex.
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La integral de la última función es inmediata, pero en el caso de u�
1 
 se integra por 

partes dos veces. Los resultados son u
1
 � �x2ex � 2xex � 2ex y u

2
 � ex. Por tanto 

y
p
 � u

1
y

1
 � u

2
y

2
 es

 yp ( x2ex 2xex 2ex)x exx3 2x2ex 2xex.  

Finalmente, y yc yp c1x c2x3 2x2ex 2xex. 

REDUCCIÓN A COEFICIENTES CONSTANTES  Las similitudes entre las formas 
de soluciones de ecuaciones de Cauchy-Euler y soluciones de ecuaciones lineales con 
coefi cientes constantes no sólo son una coincidencia. Por ejemplo, cuando las raíces 
de las ecuaciones auxiliares para ay� � by� � cy � 0 y ax2y� � bxy� � cy � 0 son 
distintas y reales, las soluciones generales respectivas son

 y c1em1 x c2em2 x      y     y c1xm1 c2xm2, x 0. (5)

Usando la identidad e ln x � x, x 	 0, la segunda solución dada en (5) puede expresarse 
en la misma forma que la primera solución:

 y c1em1 ln x c2em2 ln x c1em1t c2em2 t, 

donde t � ln x. Este último resultado ilustra el hecho de que cualquier ecuación de 
Cauchy-Euler siempre se puede escribir de nuevo como una ecuación diferencial lineal 
con coefi cientes constantes sustituyendo x � et. La idea es resolver la nueva ecuación 
diferencial en términos de la variable t, usando los métodos de las secciones anteriores y 
una vez obtenida la solución general, sustituir nuevamente t � ln x. Este método, que se 
ilustró en el último ejemplo, requiere el uso de la regla de la cadena de la derivación.

EJEMPLO 6  Cambio a coefi cientes constantes

Resuelva x2y� � xy� � y � ln x.

SOLUCIÓN  Sustituyendo x � et o t � ln x, se tiene que

  

  

 

1

x

d 2y

dt2

1

x

dy

dt

1

x2

1

x2

d 2y

dt2

dy

dt
.

; Regla del producto y regla de la cadena
d 2y

dx2

1

x

d

dx

dy

dt

dy

dt

1

x2

; Regla de la cadena
dy

dx

dy

dt

dt

dx

1

x

dy

dt

Sustituyendo en la ecuación diferencial dada y simplifi cando se obtiene

 
d 2y

dt2 2
dy

dt
y t.  

Como esta última ecuación tiene coefi cientes constantes, su ecuación auxiliar es m2 � 
2m � 1 � 0, o (m � 1)2 � 0. Así se obtiene y

c
 � c

1
et � c

2
tet.

Usando coefi cientes indeterminados se prueba una solución particular de la forma 
y

p
 � A � Bt. Esta suposición conduce a �2B � A � Bt � t, por tanto A � 2 y B � 1. 

Usando y � y
c
 � y

p
, se obtiene

 y c1et c2 tet 2 t,  

así la solución general de la ecuación diferencial original en el intervalo (0, �) es 
y � c

1
x � c

2
x ln x � 2 � ln x. 
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168 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

EJERCICIOS 4.7  Las respuestas a los problemas con número impar comienzan en la página RES-5.

En los problemas 1 a 18 resuelva la ecuación diferencial dada.

 1. x2y� � 2y � 0  2. 4x2y� � y � 0

 3. xy� � y� � 0  4. xy� � 3y� � 0

 5. x2y� � xy� � 4y � 0  6. x2y� � 5xy� � 3y � 0

 7. x2y� � 3xy� � 2y � 0  8. x2y� � 3xy� � 4y � 0

 9. 25x2y� � 25xy� � y � 0 10. 4x2y� � 4xy� � y � 0

11. x2y� � 5xy� � 4y � 0 12. x2y� � 8xy� � 6y � 0

13. 3x2y� � 6xy� � y � 0 14. x2y� � 7xy� � 41y � 0

15. x3y� � 6y � 0 16. x3y� � xy� � y � 0

17. xy(4) � 6y� � 0

18. x4y(4) � 6x3y� � 9x2y� � 3xy� � y � 0

En los problemas 19 a 24 resuelva la ecuación diferencial 
dada por variación de parámetros.

19. xy� � 4y� � x4

20. 2x 2y� � 5xy� � y � x2 � x

21. x2y� � xy� � y � 2x 22. x2y� � 2xy� � 2y � x4ex

23. x2y� � xy� � y � ln x 24. x2y xy y
1

x 1

En los problemas 25 a 30 resuelva el problema con valores 
iniciales. Use una aplicación para grafi car y obtenga la gráfi ca 
de la curva solución.

25. x2y� � 3xy� � 0,  y(1) � 0, y�(1) � 4

26. x2y� � 5xy� � 8y � 0,  y(2) � 32, y�(2) � 0

27. x2y� � xy� � y � 0,  y (1) � 1, y�(1) � 2

28. x2y� � 3xy� � 4y � 0,  y(1) � 5, y�(1) � 3

29. xy y x, y(1) 1, y (1) 1
2

30. x2y 5xy 8y 8x6, y 1
2 0, y 1

2 0

En los problemas 31 a 36 use la sustitución x � et para con-
vertir la ecuación de Cauchy-Euler a una ecuación diferencial 
con coefi cientes constantes. Resuelva la ecuación original al 
resolver la nueva ecuación usando los procedimientos de las 
secciones 4.3 a 4.5.

31. x2y� � 9xy� � 20y � 0

32. x2y� � 9xy� � 25y � 0

33. x2y� � 10xy� � 8y � x2

34. x2y� � 4xy� � 6y � ln x2

35. x2y� � 3xy� � 13y � 4 � 3x

36. x3y� � 3x2y� � 6xy� � 6y � 3 � ln x3

En los problemas 37 y 38 resuelva el problema con valores 
iniciales dado en el intervalo (��, 0).

37. 4x2y� � y � 0,  y(�1) � 2, y�(�1) � 4

38. x2y� � 4xy� � 6y � 0,  y(�2) � 8, y�(�2) � 0

Problemas para analizar

39. ¿Cómo podría utilizar el método de esta sección para re-
solver

(x 2)2y (x 2)y y 0?

Lleve a cabo sus ideas. Exprese un intervalo en el cual 
esté defi nida la solución.

40. ¿Es posible encontrar una ecuación diferencial de Cauchy-
Euler de orden mínimo con coefi cientes reales si se sabe 
que 2 y 1 � i son raíces de su ecuación auxiliar? Lleve a 
cabo sus ideas.

41. Las condiciones iniciales y(0) � y
0
, y�(0) � y

1
 se aplican 

a cada una de las siguientes ecuaciones diferenciales:

 x2y� � 0,

x2y� � 2xy� � 2y � 0,

x2y� � 4xy� � 6y � 0.

  ¿Para qué valores de y
0
 y y

1
 cada problema con valores 

iniciales tiene una solución?

42. ¿Cuáles son las intersecciones con el eje x de la curva 
solución que se muestra en la fi gura 4.7.1? ¿Cuántas in-

tersecciones con el eje x hay en ?0 x 1
2

Tarea para el laboratorio de computación

En los problemas 43 al 46 resuelva la ecuación diferencial 
dada usando un SAC para encontrar las raíces (aproximadas) 
de la ecuación auxiliar.

43. 2x3y� � 10.98x2y� � 8.5xy� � 1.3y � 0

44. x3y� � 4x2y� � 5xy� � 9y � 0

45. x4y(4) � 6x3y� � 3x2y� � 3xy� � 4y � 0

46. x4y(4) � 6x3y� � 33x2y� � 105xy� � 169y � 0

47. Resuelva x3y� � x2y� � 2xy� � 6y � x2 por variación 
de parámetros. Use un SAC como ayuda para calcular las 
raíces de la ecuación auxiliar y los determinantes dados 
en (10) de la sección 4.6.
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ELIMINACIÓN SISTEMÁTICA  La eliminación de una incógnita en un sistema de 
ecuaciones diferenciales lineales se facilita al rescribir cada ecuación del sistema en no-
tación de operador diferencial. Recuerde de la sección 4.1 que una sola ecuación lineal

 any(n) an 1y
(n 1) a1y a0y g(t), 

donde las a
i
, i � 0, 1,  . . .  , n son constantes, puede escribirse como

 (anDn an 1D(n 1) a1D a0)y g(t).  

Si el operador diferencial de n-ésimo orden anDn an 1D(n 1) a1D a0  
se factoriza en operadores diferenciales de menor orden, entonces los factores conmu-
tan. Ahora, por ejemplo, para rescribir el sistema

  

 x y 4x 2y e t

x 2x y x 3y sen t

 

en términos del operador D, primero se escriben los términos con variables dependien-
tes en un miembro y se agrupan las mismas variables.

SOLUCIÓN DE SISTEMAS DE ED LINEALES POR ELIMINACIÓN

REPASO DE MATERIAL
● Puesto que el método de eliminación sistemática desacopla un sistema en distintas EDO 

lineales en cada variable dependiente, esta sección le brinda la oportunidad de practicar lo que 
aprendió en las secciones 4.3, 4.4 (o 4.5) y 4.6.

INTRODUCCIÓN  Las ecuaciones diferenciales ordinarias simultáneas tienen que ver con dos o 
más ecuaciones que contienen derivadas de dos o más variables dependientes (las funciones des-
conocidas) respecto a una sola variable independiente. El método de eliminación sistemática para 
resolver sistemas de ecuaciones diferenciales con coefi cientes constantes se basa en el principio al-
gebraico de eliminación de variables. Veremos que la operación análoga de multiplicar una ecuación 
algebraica por una constante es operar en una EDO con cierta combinación de derivadas.

4.8

x 2x x y 3y sen t

  x 4x y 2y e t  
 
es lo mismo que

 

(D2 2D 1)x (D2 3)y sent

    (D 4)x (D 2)y e t.

SOLUCIÓN DE UN SISTEMA  Una solución de un sistema de ecuaciones dife-
renciales es un conjunto de funciones sufi cientemente derivables x � f

1
(t), y � f

2
(t), 

z � f
3
(t), etcétera, que satisface cada ecuación del sistema en algún intervalo común I.

MÉTODO DE SOLUCIÓN  Considere el sistema simple de ecuaciones lineales de 
primer orden

                          

dx

dt
3y

dy

dt
2x

  o, equivalentemente Dx 3y 0

2x Dy 0. 
(1)

Operando con D la primera ecuación de (1) en tanto que la segunda se multiplica por � 3 
y después se suma para eliminar y del sistema, se obtiene D2x � 6x � 0. Puesto que las 
raíces de la ecuación auxiliar de la última ED son m1 16  y m2 16 , se obtiene

 x(t) c1e 16t c2e16t.  (2)
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170 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

Multiplicando la primera ecuación en (1) por 2 mientras que se opera la segunda 
con D y después restando, se obtiene la ecuación diferencial para y, D2y � 6y � 0. 
Inmediatamente se tiene que

 y(t) c3e 16t c4e16t.  (3)

Ahora (2) y (3) no satisfacen el sistema (1) para toda elección de c
1
, c

2
, c

3
 y c

4
 

porque el sistema en sí pone una restricción al número de parámetros en una solución 
que se puede elegir en forma arbitraria. Para ver esto, observe que sustituyendo x(t) y 
y(t) en la primera ecuación del sistema original (1), después de simplifi car, se obtiene

 16c1 3c3 e 16 t 16c2 3c4 e16 t 0.  

Puesto que la última expresión es cero para todos los valores de t, debemos tener 
16c1 3c3 0 y 16c2 3c4 0.  Estas dos ecuaciones nos permiten escribir 

c
3
 como un múltiplo de c

1
 y c

4
 como un múltiplo de c

2
:

 c3
16

3
c1    y      c4

16

3
c2 . (4)

Por tanto se concluye que una solución del sistema debe ser

 x(t) c1e 16t c2e16 t,    y(t)
16

3
c1e 16 t 16

3
c2e16 t. 

Se recomienda sustituir (2) y (3) en la segunda ecuación de (1) y comprobar que 
se cumple la misma relación (4) entre las constantes.

EJEMPLO 1  Solución por eliminación

Resuelva  

 (D 3)x   2y 0.

Dx  (D ) 2 y 0

 (5)

SOLUCIÓN  Operando con D – 3 la primera ecuación y la segunda con D y luego 
restándolas se elimina x del sistema. Se deduce que la ecuación diferencial para y es

 [(D 3)(D 2) 2D]y 0      o     (D2 D 6)y 0.  

Puesto que la ecuación característica de esta última ecuación diferencial es m2 � m � 
6 � (m � 2)(m � 3) � 0, se obtiene la solución

 y(t) c1e2t c2e 3 t.  (6)

Eliminando y de modo similar, se obtiene (D2 � D � 6)x � 0, a partir de lo cual se 
encuentra que

 x(t) c3e2t c4e 3t.  (7)

Como se observó en la descripción anterior, una solución de (5) no contiene cuatro cons-
tantes independientes. Sustituyendo (6) y (7) en la primera ecuación de (5) se obtiene

 (4c1 2c3)e2t ( c2 3c4)e 3t 0. 

De 4c
1
 � 2c

3
 � 0 y �c

2
 � 3c

4
 � 0 se obtiene c

3
 � �2c

1
 y c4

1
3 c2. Por tanto una 

solución del sistema es

 x(t) 2c1e2t 1

3
c2e 3t,    y(t) c1e

2t c2e 3t. 

Ya que sólo se podría despejar fácilmente a c
3
 y c

4
 en términos de c

1
 y c

2
, la solu-

ción del ejemplo 1 se escribe en la forma alternativa

 x(t) c3e2t c4e 3t,    y(t)
1

2
c3e2t 3c4e 3t. 
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En ocasiones da resultado mantener los ojos abiertos cuando se resuelven siste-
mas. Si en el primer ejemplo se hubiera resuelto para x, entonces se podría encontrar 
y, junto con la relación entre las constantes, usando la última ecuación del sistema 
(5). Usted debe comprobar que la sustitución de x(t) en y 1

2 (Dx 3x) produce
y 1

2 c3e2t 3c4e 3t.  Observe también en la descripción inicial que la relación que 
se proporciona en (4) y la solución y(t) de (1) se podría haber obtenido al usar x(t) en 
(2) y la primera ecuación de (1) en la forma

 y 1
3 Dx 1

3 26c1e 16t 1
3 26c2e16t.  

EJEMPLO 2  Solución por eliminación

Resuelva  
 x x y 0.

x 4x y t2

 
(8)

SOLUCIÓN  Primero se escribe el sistema en notación de operador diferencial:

  
 (D 1)x Dy 0.

(D 4)x D2y t2

 
(9)

Entonces, eliminando a x, obtenemos

  

o  (D3 4D)y t2 2t.

([ D 1)D2 (D 4)D]y (D 1)t2 (D 4)0

 

Puesto que las raíces de la ecuación auxiliar m(m2 � 4) � 0 son m
1
 � 0, m

2
 � 2i y m

3
 

� �2i, la función complementaria es y
c
 � c

1
 � c

2
 cos 2t � c

3
 sen 2t. Para determinar 

la solución particular y
p
, se usan coefi cientes indeterminados suponiendo que y

p
 � At3 

� Bt2 � Ct. Por tanto yp 3At2 2Bt C, yp 6At 2B, yp 6A,

 yp 4yp 12At2 8Bt 6A 4C t2 2t. 

La última igualdad indica que 12A � 1, 8B � 2 y 6A � 4C � 0; por tanto A 1
12, B 1

4
,

y C 1
8

. Así

 y yc yp c1 c2 cos 2t c3sen 2 t
1

12
t3 1

4
t2 1

8
t.  (10)

Eliminando y del sistema (9), se obtiene

 [(D 4) D(D 1)]x t2      o     (D2 4)x t2.  

Debe ser obvio que x
c
 � c

4
 cos 2t � c

5
 sen 2t y que se pueden aplicar coefi cientes in-

determinados para obtener una solución particular de la forma x
p
 � At2 � Bt � C. En

este caso usando derivadas y álgebra usuales se obtiene xp
1
4 t2 1

8,  y así

 x xc xp c4 cos 2t c5 sen 2 t
1

4
t2 1

8
.  (11)

Ahora se expresan c
4
 y c

5
 en términos de c

2
 y c

3
 sustituyendo (10) y (11) en cual-

quier ecuación de (8). Utilizando la segunda ecuación, se encuentra, después de com-
binar términos,

 (c5 2c4 2c2) sen 2 t (2c5 c4 2c3) cos 2t 0,  

así c
5
 � 2c

4
 � 2c

2
 � 0 y 2c

5
 � c

4
 � 2c

3
 � 0. Despejando c

4 
y c

5
 en términos de c

2
 y 

c
3
 se obtiene c

4
 � � 1

5 (4c
2
 � 2c

3
) y c

5
 � 1

5 (2c
2
 � 4c

3
). Por último, se encuentra que 

una solución de (8) es

 
x(t)

1

5
 (4c2 2c3) cos 2t

1

5
 (2c2 4c3) sen 2 t

1

4
t2 1

8
,
 

 y(t) c1 c2 cos 2t c3 sen 2 t
1

12
t3 1

4
t2 1

8
t.  

■ Esto podría 
ahorrarle algo de 
tiempo
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172 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

EJEMPLO 3  Volver a tratar un problema de mezclas

En (3) de la sección 3.3 vimos que el sistema de ecuaciones diferenciales lineales de 
primer orden

  

  
dx2

dt
 
2

25
 x1

2

25
 x2

 
dx1

dt

2

25
 x1

1

50
 x2

 

es un modelo para la cantidad de libras de sal x
1
(t) y x

2
(t) en mezclas de salmuera en los 

tanques A y B, respectivamente, que se muestran en la fi gura 3.3.1. En ese momento 
no podíamos resolver el sistema. Pero ahora, en términos de operadores diferenciales, 
el sistema anterior se puede escribir como

  

   
2

25
  x1 D  

2

25
 x2 0.

 D
2

25
 x1    

1

50
  x2 0

 

Operando con D 2
25  la primera ecuación y multiplicando la segunda ecuación por 1

50, se 
suman y simplifi can, y se obtiene (625D2 � 100D � 3)x

1
 � 0. De la ecuación auxiliar

 625m2 100m 3 (25m 1)(25m 3) 0 

se observa inmediatamente que x
1
(t) � c

1
e�t/25 � c

2
e�3t/25. Ahora se puede obtener x

2
(t) 

usando la primera ED del sistema en la forma 
2

x2 50(D 2
25)x1.  De esta manera se 

encuentra que la solución del sistema es

 x1(t) c1e t / 25 c2e 3t / 25,    x2(t) 2c1e t / 25 2c2e 3t / 25.  

En el análisis original de la página 107 se supuso que las condiciones iniciales eran 
x

1
(0) � 25 y x

2
(0) � 0. Aplicando estas condiciones a la solución se obtiene c

1 
� c

2
 

� 25 y 2c
1
 � 2c

2
 � 0. Resolviendo simultáneamente estas ecuaciones se obtiene 

c1 c2
25
2 .  Por último, una solución del problema con valores iniciales es

 x1(t)
25

2
 e t / 25 25

2
 e 3t / 25,    x2(t) 25e t / 25 25e 3t / 25.  

En la fi gura 4.8.1 se muestran las gráfi cas de ambas ecuaciones. Consistentes con el hecho 
que se bombea agua pura al tanque A en la fi gura vemos que x

1
(t) : 0 y x

2
(t) : 0 con-

forme t : �. 
FIGURA 4.8.1  Libras de sal en los 
tanques A y B.

20

5

10

15

25

20

40

x1(t)

x2(t)

60
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s 
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 s
al

80 1000

EJERCICIOS 4.8  Las respuestas a los problemas con número impar comienzan en la página RES-6.

En los problemas 1 a 20 resuelva el sistema de ecuaciones 
diferenciales dado por eliminación sistemática.

 1.    2. 

   

 3.   4. 

  
dy

dt
x t

dx

dt
y t

dy

dt
x

dx

dt
2x y

 
dy

dt
x 2

dx

dt
4y 1

dy

dt
x 2y

dx

dt
4x 7y

 5. (D2 � 5)x � 2y � 0

 �2x � (D2 � 2)y � 0

 6. (D � 1)x � (D � 1)y � 2
 3x � (D � 2)y � �1

 7.    8. 

  
d 2y

dt2 4x et

d 2x

dt2 4y et

 
dx

dt

dy

dt
x 4y

d 2x

dt2

dy

dt
5x

 9. Dx � D2y  � e3t

 (D � 1)x � (D � 1)y � 4e3t
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10. D2x � Dy  � t
 (D � 3)x � (D � 3)y � 2
11. (D2 � 1)x � y  � 0
 (D � 1)x � Dy � 0
12. (2D2 � D � 1)x � (2D � 1)y � 1
 (D � 1)x � Dy � �1

13. 

  

14. 

  
d2x

dt2 
dx

dt
x y 0

 
dx

dt

dy

dt
 et

 
dx

dt
 x

dy

dt
5et

 2 
dx

dt
5x

dy

dt
et

15. (D � 1)x � (D2 � 1)y � 1
 (D2 � 1)x � (D � 1)y � 2
16. D2x � 2(D2 � D)y � sen t
  x � Dy � 0
17. Dx � y 18. Dx � z � et

 Dy � z (D � 1)x � Dy � Dz � 0
 Dz � x x � 2y � Dz � et

19.    20. 

 

 
dz

dt
x y

dy

dt
x z

dx

dt
6y

 
dz

dt
x y

dy

dt
y z

dx

dt
x z

En los problemas 21 y 22 resuelva el problema con valores 
iniciales. 

21.    22. 

 
dy

dt
4x y

dx

dt
5x y

 
dy

dt
3x 2y

dx

dt
y 1

 x(1) � 0, y(1) � 1 x(0) � 0, y(0) � 0

Modelos matemáticos

23. Movimiento de un proyectil  Un proyectil disparado de 
una pistola tiene un peso w � mg y una velocidad v tangente 
a su trayectoria de movimiento. Ignorando la resistencia 
del aire y las fuerzas que actúan sobre el proyectil excepto 
su peso, determine un sistema de ecuaciones diferenciales 
que describa su trayectoria de movimiento. Véase la fi gura 
4.8.2. Resuelva el sistema. [Sugerencia: Use la segunda ley 
de Newton del movimiento en las direcciones x y y.]

FIGURA 4.8.2  Trayectoria del proyectil del problema 23.

y

x

mg

v

FIGURA 4.8.3  Fuerzas en el problema 24.

k

v

θ

24. Movimiento del proyectil con resistencia del aire  De-
termine un sistema de ecuaciones diferenciales que describa 
la trayectoria de movimiento en el problema 23 si la resis-
tencia del aire es una fuerza retardadora k (de magnitud k) 
que actúa tangente a la trayectoria del proyectil pero opuesta 
a su movimiento. Véase la fi gura 4.8.3. Resuelva el sistema. 
[Sugerencia: k es un múltiplo de velocidad, digamos, cv.]

Problemas para analizar

25. Examine y analice el siguiente sistema:

 
 (D 1)x 2(D 1)y 1.

 Dx  2Dy t2

 

Tarea para el laboratorio de computación

26. Examine de nuevo la fi gura 4.8.1 del ejemplo 3. Luego 
utilice una aplicación para determinar raíces para saber 
cuando el tanque B contiene más sal que el tanque A.

27. a)  Lea nuevamente el problema 8 de los ejercicios 3.3. 
En ese problema se pidió demostrar que el sistema de 
ecuaciones diferenciales

 

 

  
dx3

dt

2

75
 x2

1

25
 x3

 
dx2

dt

1

50
 x1

2

75
 x2

 
dx1

dt
 
1

50
 x1

es un modelo para las cantidades de sal en los tanques 
de mezclado conectados A, B y C que se muestran en 
la fi gura 3.3.7. Resuelva el sistema sujeto a x

1
(0) � 

15, x
2
(t) � 10, x

3
(t) � 5.

  b)  Use un SAC para grafi car x
1
(t), x

2
(t) y x

3
(t) en el 

mismo plano coordenado (como en la fi gura 4.8.1) 
en el intervalo [0, 200].

  c)  Debido a que se bombea agua pura hacia el tanque A, 
es 1ógico que en algún momento la sal salga de los 
tres tanques. Utilice una aplicación de un SAC para 
encontrar raíces para determinar el tiempo cuando la 
cantidad de sal en cada recipiente sea menor o igual 
que 0.5 libras. ¿Cuándo son las cantidades de sal 
x

1
(t), x

2
(t) y x

3
(t) simultáneamente menores o iguales 

que 0.5 libras?

4.8  SOLUCIÓN DE SISTEMAS DE ED LINEALES POR ELIMINACIÓN ● 173

08367_04_ch04_p117-180-ok.indd   17308367_04_ch04_p117-180-ok.indd   173 6/4/09   12:18:32 PM6/4/09   12:18:32 PM



174 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

ALGUNAS DIFERENCIAS  Entre las ecuaciones diferenciales lineales y no lineales hay 
varias diferencias importantes. En la sección 4.1 vimos que las ecuaciones lineales 
homogéneas de orden dos o superior tienen la propiedad de que una combinación lineal 
de soluciones también es una solución (teorema 4.1.2). Las ecuaciones no lineales no 
tienen esta propiedad de superposición. Vea los problemas 1 y 18 de los ejercicios 4.9. 
Podemos encontrar soluciones generales de ED lineales de primer orden y ecuaciones 
de orden superior con coefi cientes constantes. Aun cuando se pueda resolver una ecua-
ción diferencial no lineal de primer orden en la forma de una familia uniparamétrica, 
esta familia no representa, como regla, una solución general. Es decir, las ED no linea-
les de primer orden pueden tener soluciones singulares, en tanto que las ecuaciones 
lineales no. Pero la principal diferencia entre las ecuaciones lineales y no lineales de 
orden dos o superior radica en el área de la solubilidad. Dada una ecuación lineal, hay 
una probabilidad de encontrar alguna forma de solución que se pueda analizar, una 
solución explícita o quizá una solución en la forma de una serie infi nita (vea el capítulo 
6). Por otro lado, las ecuaciones diferenciales no lineales de orden superior desafían vir-
tualmente la solución con métodos analíticos. Aunque esto podría sonar desalentador, 
aún hay cosas que se pueden hacer. Como se señaló al fi nal de la sección 1.3, siempre 
es posible analizar de modo cualitativo y numérico una ED no lineal.

Desde el principio se aclaró que las ecuaciones diferenciales no lineales de orden 
superior son importantes, digamos ¿quizá más que las lineales?, porque a medida que 
se ajusta un modelo matemático, por ejemplo, un sistema físico, se incrementa por 
igual la probabilidad de que este modelo de mayor defi nición sea no lineal.

Empezamos por mostrar un método analítico que en ocasiones permite determi-
nar soluciones explícitas o implícitas de clases especiales de ecuaciones diferenciales 
de segundo orden no lineales.

REDUCCIÓN DE ORDEN  Las ecuaciones diferenciales no lineales de segundo 
orden F(x, y�, y�) � 0, donde falta la variable dependiente y, y F(y, y�, y�) � 0, donde 
falta la variable independiente x, a veces se resuelven usando métodos de primer orden. 
Cada ecuación se reduce a una de primer orden por medio de la sustitución u � y�.

En el ejemplo siguiente se ilustra la técnica de sustitución para una ecuación de 
la forma F(x, y�, y�) � 0. Si u � y�, entonces la ecuación diferencial se convierte en 
F(x, u, u�) � 0. Si podemos resolver esta última ecuación para u, podemos encontrar 
a y por integración. Observe que como se está resolviendo una ecuación de segundo 
orden, su solución contendrá dos constantes arbitrarias.

EJEMPLO 1  Falta la variable dependiente y

Resuelva y� � 2x(y�)2.

ECUACIONES DIFERENCIALES NO LINEALES

REPASO DE MATERIAL
● Secciones 2.2 y 2.5.
● Sección 4.2.
● También se recomienda un repaso de series de Taylor.

INTRODUCCIÓN  A continuación se examinan las difi cultades en torno a las ED no lineales de 
orden superior y los pocos métodos que producen soluciones analíticas. Dos de los métodos de solución 
que se consideran en esta sección emplean un cambio de variable para reducir una ED de segundo orden 
a una de primer orden. En ese sentido los métodos son análogos al material de la sección 4.2.

4.9
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SOLUCIÓN  Si hacemos u � y�, entonces du�dx � y�. Después de sustituir, la se-
gunda ecuación diferencial se reduce a una ecuación de primer orden con variables 
separables; la variable independiente es x y la variable dependiente es u:

  

    

 u 1 x2 c1
2.

u 2 du  2x dx

du

dx
2xu2        

du

u2 2x dx

 

La constante de integración se escribe como c1
2  por conveniencia. La razón debe ser 

obvia en los pocos pasos siguientes. Debido a que u�1 � l�y�, se tiene que

 

dy

dx

1

x2 c1
2
,
 

y así y
dx

x2 c1
2      o     y

1

c1
 tan 1 x

c1
c2. 

A continuación se muestra cómo resolver una ecuación que tiene la forma F(y, y�, 
y�) � 0. Una vez más se hace u � y�, pero debido a que falta la variable independiente 
x, esta sustitución se usa para convertir la ecuación diferencial en una en la que la va-
riable independiente es y y la variable dependiente es u. Entonces utilizamos la regla 
de la cadena para calcular la segunda derivada de y:

 y
du

dx

du

dy
 dy

dx
u

du

dy
.  

En este caso la ecuación de primer orden que debemos resolver es

 F y, u, u
du

dy
0.  

EJEMPLO 2  Falta la variable independiente x

Resuelva yy� � ( y�)2.

SOLUCIÓN  Con ayuda de u � y�, la regla de la cadena que se acaba de mostrar y de 
la separación de variables, la ecuación diferencial se convierte en

 y u
du

dy
u2      o     

du

u

dy

y
.  

Entonces, integrando la última ecuación se obtiene ln�u � � ln�y � � c
1
, que, a su vez, 

da u � c
2
y, donde la constante ec1  se identifi ca como c

2
. Ahora se vuelve a sustituir 

u � dy�dx, se separan de nuevo las variables, se integra y se etiquetan las constantes 
por segunda vez:

 
dy

y
c2 dx      o     ln y c2x c3      o    y c4ec2x.  

USO DE SERIES DE TAYLOR  En algunos casos una solución de un problema con 
valores iniciales no lineales, en el que las condiciones iniciales se específi can en x

0
, se 

puede aproximar mediante una serie de Taylor centrada en x
0
.
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176 ● CAPÍTULO 4  ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

EJEMPLO 3  Series de Taylor de un PVI

Supongamos que existe una solución del problema con valores iniciales

 y x y y2,  y(0) 1,  y (0) 1  (1)

Si además se supone que la solución y(x) del problema es analítica en 0, entonces y(x) 
tiene un desarrollo en serie de Taylor centrado en 0:

y(x) y(0)
y (0)

1!
x

y (0)

2!
x2 y (0)

3!
x3 y(4)(0)

4!
x4 y(5)(0)

5!
x5 .     (2)

Observe que se conocen los valores del primero y segundo términos en la serie (2) 
puesto que esos valores son las condiciones iniciales especifi cadas y(0) � � 1, y�(0) � 
1. Además, la ecuación diferencial por sí misma defi ne el valor de la segunda derivada 
en 0: y�(0) � 0 � y(0) � y(0)2 � 0 � (�1) � (�1)2 � �2. Entonces se pueden encon-
trar expresiones para las derivadas superiores  y�, y(4), . . .   calculando las derivadas 
sucesivas de la ecuación diferencial:

  (3)

  (4)

 y(5)(x)
d

dx
 (y 2yy 2(y )2) y 2yy 6y y ,

y(4)(x)
d

dx
 (1 y 2yy ) y 2yy 2(y )2

y (x)
d

dx
 (x y y2) 1 y 2yy

 (5)

etcétera. Ahora usando y(0) � �1 y y�(0) � 1, se encuentra de (3) que y�(0) � 4. De 
los valores y(0) � �1, y�(0) � 1 y y�(0) � �2 se encuentra y(4)(0) � �8 de (4). Con 
la información adicional de que y�(0) � 4, entonces se ve de (5) que y(5)(0) � 24. 
Por tanto de (2) los primeros seis términos de una solución en serie del problema con 
valores iniciales (1) son

 y(x) 1 x x2 2

3
x3 1

3
x4 1

5
x5 .  

USO DE UN PROGRAMA DE SOLUCIÓN NUMÉRICA  Los métodos numéricos, 
como el de Euler o el de Runge-Kutta, se desarrollaron sólo para ecuaciones diferen-
ciales de primer orden y luego se ampliaron a sistemas de ecuaciones de primer orden. 
Para analizar en forma numérica un problema con valores iniciales de n-ésimo orden, se 
expresa la EDO de n-ésimo orden como un sistema de n ecuaciones de primer orden. En 
resumen, aquí se muestra cómo se hace esto para un problema con valores iniciales de 
segundo orden: primero, se resuelve para y� , es decir, se escribe la ED en la forma nor-
mal y� � f(x, y, y�) y después se hace que y� � u. Por ejemplo, si sustituimos y� � u en

 
d 2y

dx2 f (x, y, y ),  y(x0 ) y0,  y (x0 ) u0,  (6)

entonces y� � u� y y�(x
0
) � u(x

0
), por lo que el problema con valores iniciales (6) se 

convierte en

                          Resuelva:  

                          Sujeto a: y(x0) y0, u(x0) u0.

y u

u f(x, y, u)

 

Sin embargo, se debe observar que un programa de solución numérica podría no re-
querir* que se proporcione el sistema.

*Algunos programas de solución numérica sólo requieren que una ecuación diferencial de segundo orden 
sea expresada en la forma normal y� � f (x, y, y�). La traducción de la única ecuación en un sistema de dos 
ecuaciones se construye en el programa de computadora, ya que la primera ecuación del sistema siempre 
es y� � u y la segunda ecuación es u� � f (x, y, u).
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EJEMPLO 4  Análisis gráfi co del ejemplo 3

Siguiendo el procedimiento anterior, se encuentra que el problema con valores inicia-
les de segundo orden del ejemplo 3 es equivalente a

  

  
du

dx
x y y2

 
dy

dx
u

 

con condiciones iniciales y(0) � �1, u(0) � 1. Con ayuda de un programa de solución nu-
mérica, se obtiene la curva solución en azul en la fi gura 4.9.1. Por comparación, la gráfi ca 
del polinomio de Taylor de quinto grado T5(x) 1 x x2 2

3 x3 1
3 x4 1

5 x5  se 
muestra en rojo. Aunque no se conoce el intervalo de convergencia de la serie de Taylor 
obtenida en el ejemplo 3, la proximidad de las dos curvas en una vecindad del origen indica 
que la serie de potencias podría converger en el intervalo (�1, 1). 

CUESTIONES CUALITATIVAS  La gráfi ca en azul de la fi gura 4.9.1 origina al-
gunas preguntas de naturaleza cualitativa: ¿la solución del problema con valores ini-
ciales original es oscilatoria conforme x : �? La gráfi ca generada con un programa 
de solución numérica en el intervalo más grande, que se muestra en la fi gura 4.9.2 
parecería sugerir que la respuesta es sí. Pero este simple ejemplo o incluso un grupo 
de ejemplos, no responde la pregunta básica en cuanto a si todas las soluciones de la 
ecuación diferencial y� � x � y � y2 son de naturaleza oscilatoria. También, ¿qué 
está sucediendo con la curva solución de la fi gura 4.9.2 conforme x está cerca de �1? 
¿Cuál es el comportamiento de las soluciones de la ecuación diferencial conforme x 
: �? ¿Están acotadas las soluciones conforme x : �? Preguntas como éstas no son 
fáciles de responder, en general, para ecuaciones diferenciales de segundo orden no 
lineales. Pero ciertas clases de ecuaciones de segundo orden se prestan a un análisis 
cualitativo sistemático y éstas, al igual que las ecuaciones de primer orden que se 
obtuvieron en la sección 2.1, son de la clase que no tiene dependencia explícita en la 
variable independiente. Las EDO de segundo orden de la forma 

 F(y, y , y ) 0      o     
d 2y

dx2 f (y, y ),  

ecuaciones libres de la variable independiente x, se llaman autónomas. La ecuación 
diferencial del ejemplo 2 es autónoma y debido a la presencia del término x en su 
miembro derecho, la ecuación del ejemplo 3 es autónoma. Para un tratamiento pro-
fundo del tema de estabilidad de ecuaciones diferenciales autónomas de segundo 
orden y sistemas autónomos de ecuaciones diferenciales, refi érase al capítulo 10 de 
Ecuaciones diferenciales con problemas con valores en la frontera.

EJERCICIOS 4.9  Las respuestas a los problemas con número impar comienzan en la página RES-6.

En los problemas 1 y 2 compruebe que y
1
 y y

2
 son soluciones 

de la ecuación diferencial dada pero que y � c
1
y

1
 � c

2
y

2
 en 

general, no es una solución.

 1. (y�)2 � y2;  y
1
 � ex, y

2
 � cos x

 2. yy
1

2
 ( y )2; y1 1, y2 x2

En los problemas 3 a 8 resuelva la ecuación diferencial usando 
la sustitución u � y�.

 3. y� � ( y�)2 � 1 � 0  4. y� � 1 � ( y�)2

 5. x2y� � ( y�)2 � 0  6. (y � 1)y� � ( y�)2

 7. y� � 2y( y�)3 � 0  8. y2y� � y�

 9. Considere el problema con valores iniciales

y� � yy� � 0,  y(0) � 1, y�(0) � �1.

a)  Use la ED y un programa de solución numérica para 
trazar la curva solución.

b)  Encuentre una solución explícita del PVI. Use un pro-
grama de grafi cación para trazar la solución.

c)  Determine un intervalo de defi nición para la solución 
del inciso b).

FIGURA 4.9.2  Curva solución 
numérica para el PVI en (1).

y

10 20

x

FIGURA 4.9.1  Comparación de dos 
soluciones aproximadas.

y

x

polinomio 
de Taylor

curva solución generada 
mediante un programa 
de solución numérica
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10. Encuentre dos soluciones del problema con valores iniciales

( y )2 ( y )2 1,  y
2

1

2
, y

2

13

2
.

  Use un programa de solución numérica para trazar la grá-
fi ca de las curvas solución.

En los problemas 11 y 12 demuestre que la sustitución u � y� 
conduce a una ecuación de Bernoulli. Resuelva esta ecuación 
(véase la sección 2.5).

11. xy� � y� � ( y�)3        12. xy� � y� � x( y�)2

En los problemas 13 a 16 proceda como en el ejemplo 3 y 
obtenga los primeros seis términos no cero de una solución en 
serie de Taylor, centrada en 0, del problema con valores ini-
ciales. Use un programa de solución numérica para comparar 
la curva solución con la gráfi ca del polinomio de Taylor.

13. y� � x � y2,  y(0) � 1, y�(0) � 1

14. y� � y2 � 1,  y(0) � 2, y�(0) � 3

15. y� � x2 � y2 � 2y�,  y(0) � 1, y�(0) � 1

16. y� � ey,  y(0) � 0, y�(0) � �1

17. En cálculo, la curvatura de una línea que se defi ne por 
medio de una función y � f(x) es

y

[1 ( y )2]3 /2.k

  Encuentre y � f(x) para la cual k � 1. [Sugerencia: Por 
simplicidad, desprecie las constantes de integración.]

Problemas para analizar

18. En el problema 1 vimos que cos x y ex eran soluciones de 
la ecuación no lineal (y�)2 � y2 � 0. Compruebe que sen 
x y e�x también son soluciones. Sin intentar resolver la 
ecuación diferencial, analice cómo se pueden encontrar 
estas soluciones usando su conocimiento acerca de las 
ecuaciones lineales. Sin intentar comprobar, analice por 
qué las combinaciones lineales y � c

1
ex � c

2
e�x � c

3
 cos 

x � c
4
 sen x y y � c

2
e�x � c

4
 sen x no son, en general, so-

luciones, pero las dos combinaciones lineales especiales 
y � c

1
ex � c

2
e�x y y � c

3
 cos x � c

4
 sen x deben satisfa-

cer la ecuación diferencial.

19. Analice cómo se puede aplicar el método de reducción de 
orden considerado en esta sección a la ecuación diferen-
cial de tercer orden y 11 (y )2 . Lleve a cabo sus 
ideas y resuelva la ecuación.

20. Explique cómo encontrar una familia alternativa de solu-
ciones de dos parámetros para la ecuación diferencial no 
lineal y� � 2x( y�)2 en el ejemplo 1. [Sugerencia: Suponga 
que c1

2  se usa como constante de integración en lugar de 
.]c1

2

Modelos matemáticos

21. Movimiento de un campo de fuerza Un modelo mate-
mático para la posición x(t) de un cuerpo con movimiento 
rectilíneo en el eje x en un campo de fuerza inverso del 
cuadrado de x es

d 2x

dt2

k2

x2.

  Suponga que en t � 0 el cuerpo comienza a partir del reposo 
en la posición x � x

0
, x

0
 	 0. Muestre que la velocidad del 

cuerpo en el tiempo t está dada por v2 � 2k2(1�x � 1�x
0
). 

Use la última expresión y un SAC para realizar la integración 
para expresar al tiempo t en términos de x.

22. Un modelo matemático para la posición x(t) de un objeto 
en movimiento es

.
d 2x

dt2 senx 0

  Use un programa de solución numérica para investigar en 
forma gráfi ca las soluciones de la ecuación sujeta a x(0) � 0, 
x�(0) � x

1
, x

1 
� 0. Analice el movimiento del objeto para t � 

0 y para diferentes elecciones de x
1
. Investigue la ecuación

d 2x

dt2

dx

dt
senx 0

  en la misma forma. Proponga una interpretación física 
posible del término dx�dt.

REPASO DEL CAPÍTULO 4
 Las respuestas a los problemas con número impar 

                                                                                                                                         comienzan en la página RES-6.

Conteste los problemas 1 al 4 sin consultar el fi nal del libro. 
Complete el espacio en blanco o conteste falso o verdadero.

 1. La única solución del problema con valores iniciales 
y� � x2y � 0, y(0) � 0, y�(0) � 0 es __________.

 2. Para el método de coefi cientes indeterminados, la forma 
supuesta de la solución particular y

p
 para y� � y � 1 � ex 

es __________.

 3. Un múltiplo constante de una solución de una ecuación 
diferencial lineal es también una solución. __________

 4. Si el conjunto que consiste en dos funciones f
l
 y f

2
 es li-

nealmente independiente en un intervalo I, entonces el 
Wronskiano W(f

l
, f

2
) � 0 para toda x en I. __________

 5. Dé un intervalo en el que el conjunto de dos funciones 
f
l
(x) � x2 y f

2
(x) � x�x� es linealmente independiente. 
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Después indique un intervalo en el que el conjunto for-
mado por f

l
 y f

2
 es linealmente dependiente.

 6. Sin la ayuda del Wronskiano, determine si el conjunto de 
funciones es linealmente independiente o dependiente en 
el intervalo indicado.

a) f
1
(x) � ln x, f

2
(x) � ln x2, (0, �)

b) f
1
(x) � xn, f

2
(x) � xn�1, n � 1, 2, . . . , (��, �)

c) f
1
(x) � x, f

2
(x) � x � 1, (��, �)

d) f1(x) cos x
2

, f2(x) senx, ( , )

e) f
1
(x) � 0, f

2
(x) � x, (�5, 5)

f) f
1
(x) � 2, f

2
(x) � 2x, (��, �)

g) f
1
(x) � x2, f

2
(x) � 1 � x2, f

3
(x) � 2 � x2, (��, �)

h)  f
1
(x) � xex�1, f

2
(x) � (4x � 5)ex,

f
3
(x) � xex, (��, �)

 7. Suponga que m
1
 � 3, m

2
 � �5 y m

3
 � 1 son raíces de 

multiplicidad uno, dos y tres, respectivamente, de una 
ecuación auxiliar. Escriba la solución general de la ED 
lineal homogénea correspondiente si es

a) una ecuación con coefi cientes constantes, 

b) una ecuación de Cauchy-Euler.

 8. Considere la ecuación diferencial ay� � by� � cy � g(x), 
donde a, b y c son constantes. Elija las funciones de en-
trada g(x) para las que es aplicable el método de coefi -
cientes indeterminados y las funciones de entrada para las 
que es aplicable el método de variación de parámetros.

a) g(x) � ex ln x b) g(x) � x3 cos x

c) g(x)
senx

ex  d) g(x) � 2x�2ex

e) g(x) � sen2x f ) g(x)
ex

senx

En los problemas del 9 a 24 use los procedimientos desarrolla-
dos en este capítulo para encontrar la solución general de cada 
ecuación diferencial.

 9. y� � 2y� � 2y � 0

10. 2y� � 2y� � 3y � 0

11. y� � 10y� � 25y� � 0

12. 2y� � 9y� � 12y� � 5y � 0

13. 3y� � 10y� � 15y� � 4y � 0

14. 2y(4) � 3y� � 2y� � 6y� � 4y � 0

15. y� � 3y� � 5y � 4x3 � 2x

16. y� � 2y� � y � x2ex

17. y� � 5y� � 6y� � 8 � 2 sen x

18. y� � y� � 6

19. y� � 2y� � 2y � ex tan x

20. y y
2ex

ex e x

21. 6x2y� � 5xy� � y � 0

22. 2x3y� � 19x2y� � 39xy� � 9y � 0

23. x2y� � 4xy� � 6y � 2x4 � x2

24. x2y� � xy� � y � x3

25. Escriba la forma de la solución general y � y
c
 � y

p
 de la 

ecuación diferencial en los dos casos v � a y v � a. No 
determine los coefi cientes en y

p
.

a) y� � v2y � sen ax    b) y� � v2y � eax

26. a)  Dado que y � sen x es una solución de

y(4) � 2y� � 11y� � 2y� � 10y � 0,

   encuentre la solución general de la ED sin la ayuda de 
una calculadora o computadora.

b)  Encuentre una ecuación diferencial lineal de segundo 
orden con coefi cientes constantes para la cual y

1
 � 1 

y y
2
 � e�x son soluciones de la ecuación homogénea 

asociada y yp
1
2 x2 x  es una solución particular 

de la ecuación homogénea.

27. a)  Escriba completamente la solución general de la ED 
de cuarto orden y(4) � 2y� � y � 0 en términos de 
funciones hiperbólicas.

b)  Escriba la forma de una solución particular de 
y(4) � 2y� � y � senh x.

28. Considere la ecuación diferencial 

x2y� � (x2 � 2x)y� � (x � 2)y � x3.

  Compruebe que y
1
 � x es una solución de la ecuación 

homogénea asociada. Después demuestre que el método 
de reducción de orden analizado en la sección 4.2 con-
duce a una segunda solución y

2
 de la ecuación homogé-

nea así como a una solución particular y
p
 de la ecuación 

no homogénea. Forme la solución general de la ED en el 
intervalo (0, �).

En los problemas 29 a 34 resuelva la ecuación diferencial su-
jeta a las condiciones indicadas.

29. y 2y 2y 0, y
2

0, y( ) 1

30. y� � 2y� � y � 0,  y(�1) � 0, y�(0) � 0

31. y� � y � x � sen x,  y(0) � 2, y�(0) � 3

32. y y sec3x, y(0) 1, y (0)
1

2
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33. y�y� � 4x,  y(1) � 5, y�(1) � 2

34. 2y� � 3y2,  y(0) � 1, y�(0) � 1

35. a)  Use un SAC como ayuda para encontrar las raíces de la 
ecuación auxiliar para

12y(4) � 64y� � 59y� � 23y� � 12y � 0.

   Dé la solución general de la ecuación.

b)  Resuelva la ED del inciso a) sujeta a las condiciones 
iniciales y(0) � �1, y�(0) � 2, y�(0) � 5, y�(0) � 0. 
Use un SAC como ayuda para resolver el sistema re-
sultante de cuatro ecuaciones con cuatro incógnitas.

36. Encuentre un miembro de la familia de soluciones de 
xy y 1x 0  cuya gráfi ca es tangente al eje x en 
x � 1. Use una aplicación para grafi car y obtenga la curva 
solución.

En los problemas 37 a 40 use la eliminación sistemática para 
resolver cada sistema.

37. 

  

38. 

 
 

39. 
  

40. 

   5x (D 3)y cos 2t

(D ) 2 x (D 1)y sen 2t

3x (D  ) 4 y 7et

 (D )2 x y et

dy

dt
3x 4y 4t

dx

dt
2x y t 2

dx

dt
2

dy

dt
y 3

dx

dt

dy

dt
2x 2y 1
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5
5.1 Modelos lineales: Problemas con valores iniciales

5.1.1 Sistemas resorte /masa: Movimiento libre no amortiguado

5.1.2 Sistemas resorte /masa: Movimiento libre amortiguado

5.1.3 Sistemas resorte /masa: Movimiento forzado

5.1.4 Circuito en serie análogo

5.2 Modelos lineales: Problemas con valores en la frontera

5.3 Modelos no lineales

REPASO DEL CAPÍTULO 5

Ya hemos visto que una sola ecuación puede servir como modelo matemático para 

varios sistemas físicos. Por esta razón sólo examinamos una aplicación, el 

movimiento de una masa sujeta a un resorte, que se trata en la sección 5.1. Excepto 

por la terminología y las interpretaciones físicas de los cuatro términos de la ecua-

ción lineal ay� � by� � cy � g(t), las matemáticas de, digamos, un circuito eléc-

trico en serie son idénticas a las de un sistema vibratorio masa /resorte. Las formas 

de esta ED de segundo orden se presentan en el análisis de problemas en diversas 

áreas de la ciencia e ingeniería. En la sección 5.1 se tratan exclusivamente 

problemas con valores iniciales, mientras que en la sección 5.2 examinamos aplica-

ciones descritas por problema con valores en la frontera. También en la sección 5.2 

vemos cómo algunos problemas con valores en la frontera conducen a los impor-

tantes conceptos con eigenvalores y funciones propias (eigenfunciones). La sección 

5.3 inicia con un análisis acerca de las diferencias entre los resortes lineales y no 

lineales; entonces se muestra cómo el péndulo simple y un cable suspendido condu-

cen a modelos matemáticos no lineales.

MODELADO CON ECUACIONES 
DIFERENCIALES DE ORDEN SUPERIOR
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MODELOS LINEALES: PROBLEMAS CON VALORES INICIALES

REPASO DE MATERIAL
● Secciones 4.1, 4.3 y 4.4
● Problemas 29 a 36 de los ejercicios 4.3
● Problemas 27 a 36 de los ejercicios 4.4

INTRODUCCIÓN  En esta sección, se van a considerar varios sistemas dinámicos lineales en los 
que cada modelo matemático es una ecuación diferencial de segundo orden con coefi cientes constan-
tes junto con condiciones iniciales especifi cadas en un tiempo que tomaremos como t = 0:

.a d
2y

dt2 b dy

dt
cy g(t), y(0) y0, y (0) y1

Recuerde que la función g es la entrada, función de conducción o función forzada del sistema. 
Una solución y(t) de la ecuación diferencial en un intervalo I que contiene a t = 0 que satisface las 
condiciones iniciales se llama salida o respuesta del sistema.

5.1

5.1.1   SISTEMAS RESORTE�MASA: 
MOVIMIENTO LIBRE NO AMORTIGUADO

LEY DE HOOKE  Suponga que un resorte se suspende verticalmente de un soporte 
rígido y luego se le fi ja una masa m a su extremo libre. Por supuesto, la cantidad de alar-
gamiento o elongación del resorte depende de la masa; masas con pesos diferentes 
alargan el resorte en cantidades diferentes. Por la ley de Hooke, el resorte mismo ejerce 
una fuerza restauradora F opuesta a la dirección de elongación y proporcional a la canti-
dad de elongación s y es expresada en forma simple como F � ks, donde k es una constan -
te de proporcionalidad llamada constante de resorte. El resorte se caracteriza en esen-
cia por el número k. Por ejemplo, si una masa que pesa 10 libras hace que un resorte se 
alargue 1

2
 pie, entonces 10 k 1

2   implica que k � 20 lb/pie. Entonces necesariamente 
una masa que pesa, digamos, 8 libras alarga el mismo resorte sólo 2

5
 pie.

SEGUNDA LEY DE NEWTON  Después de que se une una masa m a un resorte, ésta 
alarga el resorte una cantidad s y logra una posición de equilibrio en la cual su peso W se 
equilibra mediante la fuerza restauradora ks. Recuerde que el peso se defi ne mediante 
W � mg, donde la masa se mide en slugs, kilogramos o gramos y g � 32 pies/s2, 9.8 m/s2, 
o bien 980 cm /s2, respectivamente. Como se indica en la fi gura 5.1.1b, la condición de 
equilibrio es mg � ks o mg � ks � 0. Si la masa se desplaza por una cantidad x de su po-
sición de equilibrio, la fuerza restauradora del resorte es entonces k(x � s). Suponiendo 
que no hay fuerzas restauradoras que actúan sobre el sistema y suponiendo que la masa 
vibra libre de otras fuerzas externas —movimiento libre— se puede igualar la segunda 
ley de Newton con la fuerza neta o resultante de la fuerza restauradora y el peso.

 

d2x
–––
dt2

� �k(s � x) � mg � � kx � mg � ks � �kx.m

cero
 

(1)

El signo negativo en (1) indica que la fuerza restauradora del resorte actúa opuesta a la 
dirección de movimiento. Además, se adopta la convención de que los desplazamien-
tos medidos abajo de la posición de equilibrio son positivos. Véase la fi gura 5.1.2.

m

a) b) c)

no estirado

movimiento

l

posición de 
equilibrio

mg − ks = 0

m

l
l + s

s

x

FIGURA 5.1.1  Sistema masa�resorte.

m

x = 0

x < 0

x > 0

FIGURA 5.1.2  La dirección hacia 
abajo de la posición de equilibrio es 
positiva.
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ED DE UN MOVIMIENTO LIBRE NO AMORTIGUADO  Dividiendo (1) entre la 
masa m, se obtiene la ecuación diferencial de segundo orden d2x�dt2 � (k�m)x � 0, o 

 
d 2 x 

dt 2 
2 x 0 , (2)

donde v2 � k�m. Se dice que la ecuación (2) describe el movimiento armónico simple 
o movimiento libre no amortiguado. Dos condiciones iniciales obvias relacionadas 
con (2) son x(0) � x

0
 y x�(0) � x

1
, el desplazamiento inicial y la velocidad inicial de la 

masa, respectivamente. Por ejemplo, si x
0
 � 0, x

1
 � 0, la masa parte de un punto abajo 

de la posición de equilibrio con una velocidad impartida hacia arriba. Cuando x�(0) � 
0, se dice que la masa se libera a partir del reposo. Por ejemplo, si x

0
 � 0, x

1
 � 0, la masa 

se libera desde el reposo de un punto �x
0
� unidades arriba de la posición de equilibrio.

ECUACIÓN DE MOVIMIENTO  Para resolver la ecuación (2), se observa que la 
solución de su ecuación auxiliar m2 � v2 � 0 son los números complejos m

l
 � v

i
, 

m
2
 � �v

i
. Así de (8) de la sección 4.3 se encuentra la solución general de (2) es

 x ( t ) c 1 cos t c 2  sen t . (3)

El periodo del movimiento descrito por la ecuación (3) es T � 2p�v. El número T 
representa el tiempo (medido en segundos) que tarda la masa en ejecutar un ciclo 
de movimiento. Un ciclo es una oscilación completa de la masa, es decir, la masa m 
que se mueve, por ejemplo, al punto mínimo abajo de la posición de equilibrio hasta 
el punto más alto arriba de la misma y luego de regreso al punto mínimo. Desde un 
punto de vista gráfi co, T � 2p�v segundos es la longitud del intervalo de tiempo entre 
dos máximos sucesivos (o mínimos) de x(t). Recuerde que un máximo de x(t) es el des -
plazamiento positivo correspondiente a la masa que alcanza su distancia máxima de-
bajo de la posición de equilibrio, mientras que un mínimo de x(t) es el desplazamiento 
negativo correspondiente a la masa que logra su altura máxima arriba de la posición de 
equilibrio. Se hace referencia a cualquier caso como un desplazamiento extremo de la 
masa. La frecuencia de movimiento es f � 1�T � v�2p y es el número de ciclos com-
pletado cada segundo. Por ejemplo, si x(t) � 2 cos 3pt � 4 sen 3pt, entonces el periodo 
es T � 2p�3p � 2�3 s y la frecuencia es f � 3�2 ciclos�s. Desde un punto de vista

esquemático la gráfi ca de x(t) se repite cada 2 
3  de segundo, es decir, x ( t 2 

3 ) x ( t ) , 
y 3 

2 
 ciclos de la gráfi ca se completan cada segundo (o, equivalentemente, tres ciclos de 

la gráfi ca se completan cada dos segundos). El número 1 k >m  (medido en radianes 
por segundo) se llama frecuencia circular del sistema. Dependiendo de qué libro lea, 
tanto f � v�2p como v se conocen como frecuencia natural del sistema. Por último, 
cuando se emplean las condiciones iniciales para determinar las constantes c

1
 y c

2
 en (3), 

se dice que la solución particular resultante o respuesta es la ecuación de movimiento.

EJEMPLO 1  Movimiento libre no amortiguado

Una masa que pesa 2 libras alarga 6 pulgadas un resorte. En t � 0 se libera la masa 
desde un punto que está 8 pulgadas abajo de la posición de equilibrio con una veloci-
dad ascendente de 4 

3  pie�s. Determine la ecuación de movimiento.

SOLUCIÓN  Debido a que se está usando el sistema de unidades de ingeniería, las 
mediciones dadas en términos de pulgadas se deben convertir en pies: 6 pulg � 1 

2  pie; 
8 pulg � 2 

3  pie. Además, se deben convertir las unidades de peso dadas en libras a 
unidades de masa. De m � W�g tenemos que m 2 

32 
1 
16  slug. También, de la ley de 

Hooke, 2 k 1 
2   implica que la constante de resorte es k � 4 lb�pie. Por lo que, de la 

ecuación (1) se obtiene

 
1 

16 

d 2 x 

dt 2 4 x       o     . 
d 2 x 

dt 2 64 x 0  

El desplazamiento inicial y la velocidad inicial son x(0) � 2 
3 , x�(0) � 4 

3 , donde el 
signo negativo en la última condición es una consecuencia del hecho de que a la masa 
se le da una velocidad inicial en la dirección negativa o hacia arriba.
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184 ● CAPÍTULO 5  MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

Ahora  v2 � 64 o v � 8, por lo que la solución general de la ecuación diferencial es

 x ( t ) c 1  cos 8 t c 2  sen 8t . (4)

Aplicando las condiciones iniciales a x(t) y x�(t) se obtiene c 1 
2 
3  y c 2 

1 
6 . Por 

tanto, la ecuación de movimiento es

 x ( t ) 
2 

3 
 cos 8 t 

1 

6 
 sen 8t. (5)  

FORMA ALTERNATIVA DE X(t)  Cuando c
1
 � 0 y c

2
 � 0, la amplitud A de las vi-

braciones libres no es evidente a partir de la inspección de la ecuación (3). Por ejemplo, 
aunque la masa del ejemplo 1 se desplaza inicialmente 2 

3 
 pie más allá de la posición de 

equilibrio, la amplitud de las vibraciones es un número mayor que 2 
3 

. Por tanto, suele 
ser conveniente convertir una solución de la forma (3) en una forma más simple

 x ( t ) A  sen( t ) , (6)

donde A 2 c 1 
2 c 2 

2  y f es un ángulo de fase defi nido por

 
sen 

c 1 

A 

cos  
c 2 

A 

 tan  
c 1 

c 2 

. (7)

Para comprobar esto se desarrolla la ecuación (6) usando la fórmula de suma para la 
función seno:

 A  sen t  cos   cos  t  sen (  sen )cos  t (  cos  )sen t . (8)

Se deduce de la fi gura 5.1.3 que si f está defi nida por 

 , sen 
c 1 

1 c 1   
2 c 2   

2 

c 1 

A 
,    cos  

c 2 

1 c 1   
2 c 2   

2 

c 2 

A 
 

entonces la ecuación (8) se convierte en

 . A   
c 1 

A 
 cos  t A   

c 2 

A 
 sen t c 1  cos  t c 2  sen t x ( t )  

EJEMPLO 2  Forma alternativa de solución (5)

En vista de la descripción anterior, se puede escribir la solución (5) en la forma alter nativa

x(t) � A sen(8t � f). El cálculo de la amplitud es directo, A 2 ( 2 
3 ) 2 ( 1 

6 ) 2 f

2 17 
36 0.69  pies , pero se debe tener cuidado al calcular el ángulo de fase f defi nido

por (7). Con c 1 
2 
3 

 y c 2 
1 
6 

 se encuentra tan f � �4 y, con una calculadora se ob -

tiene tan�1(�4) � �1.326 rad. Este no es el ángulo de fase, puesto que tan�1(�4) se 
localiza en el cuarto cuadrante y por tanto contradice el hecho de que sen f � 0 y 
cos f � 0 porque c

1
 � 0 y c

2
 � 0. Por tanto, se debe considerar que f es un ángulo 

del segundo cuadrante f � p � (�1.326) � 1.816 rad. Así la ecuación (5) es igual a

 x ( t ) 
1 17 

6 
 sen(8t 1.816). (9)

El periodo de esta función es T � 2p�8 � p�4 s. 

En la fi gura 5.1.4a se ilustra la masa del ejemplo 2 que recorre aproximadamente 
dos ciclos completos de movimiento. Leyendo de izquierda a derecha, las primeras 
cinco posiciones (marcadas con puntos negros) corresponden a la posición inicial de 

la masa debajo de la posición de equilibrio ( x 2 
3 ) , la masa que pasa por la posición 

c1

c2

φ

c1  + c2
22

FIGURA 5.1.3  Una relación entre 
c

1
 � 0, c

2
 � 0 y el ángulo de fase f.
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de equilibrio por primera vez en dirección ascendente (x � 0), la masa en su despla-
zamiento extremo arriba de la posición de equilibrio ( x 1 17 6) , la masa en la 
posición de equilibrio para la segunda vez que se dirige hacia arriba (x � 0) y la masa
en su desplazamiento extremo abajo de la posición de equilibrio ( x 1 17 6). Los 
puntos negros sobre la gráfi ca de (9), que se presenta en la fi gura 5.1.4b también con-
cuerdan con las cinco posiciones antes mencionadas. Sin embargo, observe que en la 
fi gura 5.1.4b la dirección positiva en el plano tx es la dirección ascendente usual y por 
tanto, es opuesta a la dirección positiva que se indica en la fi gura 5.1.4a. Por lo que
la gráfi ca sólida azul que representa el movimiento de la masa en la fi gura 5.1.4b es la 
refl exión por el eje t de la curva punteada azul de la fi gura 5.1.4a.

La forma (6) es muy útil porque es fácil encontrar valores de tiempo para los cuales 
la gráfi ca de x(t) cruza el eje t positivo (la recta x � 0). Se observa que sen(vt � f) � 0 
cuando vt � f � np, donde n es un entero no negativo.

SISTEMAS CON CONSTANTES DE RESORTE VARIABLES  En el modelo apenas 
analizado se supuso una situación ideal, una en la que las características físicas del resorte 
no cambian con el tiempo. No obstante, en la situación no ideal, parece razonable esperar 
que cuando un sistema resorte/masa está en movimiento durante un largo tiempo, el re-
sorte se debilita; en otras palabras, varía la “constante de resorte”, de manera más especí-
fi ca, decae con el tiempo. En un modelo para el resorte cada vez más viejo la constante 
de resorte k en (1) se reemplaza con la función decreciente K(t) � ke�at, k � 0, a � 0. 
La ecuación diferencial lineal mx� � ke�at x � 0 no se puede resolver con los métodos 
considerados en el capítulo 4. Sin embargo, es posible obtener dos soluciones linealmente 
independientes con los métodos del capítulo 6. Véase el problema 15 en los ejercicios 5.1, 
el ejemplo 4 de la sección 6.3 y los problemas 33 y 39 de los ejercicios 6.3.

x = −
6
17

x =
6
17

x = 0

2
3

x =

x = 0 x = 0

x negativa

x positiva

a)

b)

x

t

(0, )2
3

periodo
4
π

amplitud

A =
6
17

x = 0

x negativa

x positiva

FIGURA 5.1.4  Movimiento armónico simple.
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186 ● CAPÍTULO 5  MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

Cuando un sistema resorte/masa se somete a un ambiente en el cual la temperatura 
disminuye con rapidez, podría tener sentido reemplazar la constante k con K(t) � kt, k � 0, 
una función que se incrementa con el tiempo. El modelo resultante, mx� � ktx � 0, es una 
forma de la ecuación diferencial de Airy. Al igual que la ecuación para un resorte viejo, la 
ecuación de Airy se resuelve con los métodos del capítulo 6. Véase el problema 16 de los ejer-
cicios 5.1, el ejemplo 4 de la sección 6.1 y los problemas 34, 35 y 40 de los ejercicios 6.3.

5.1.2   SISTEMAS RESORTE/MASA: 
MOVIMIENTO LIBRE AMORTIGUADO

El concepto de movimiento armónico libre es un poco irreal, puesto que el movimiento 
que describe la ecuación (1) supone que no hay fuerzas retardadoras actuando sobre 
la masa en movimiento. A menos que la masa se suspenda en un vacío perfecto, habrá 
por lo menos una fuerza de resistencia debida al medio circundante. Como se muestra 
en la fi gura 5.1.5, la masa podría estar suspendida en un medio viscoso o unida a un 
dispositivo amortiguador.

ED DE UN MOVIMIENTO LIBRE AMORTIGUADO  En el estudio de la mecá-
nica, las fuerzas de amortiguamiento que actúan sobre un cuerpo se consideran propor-
cionales a una potencia de la velocidad instantánea. En particular, en el análisis pos-
terior se supone que esta fuerza está dada por un múltiplo constante de dx�dt. Cuando 
ninguna otra fuerza actúa en el sistema, se tiene de la segunda ley de Newton que

 m d
2x

dt2 kx  dx

dt
, (10)

donde b es una constante de amortiguamiento positiva y el signo negativo es una 
consecuencia del hecho de que la fuerza de amortiguamiento actúa en una dirección 
opuesta al movimiento.

Dividiendo la ecuación (10) entre la masa m, se encuentra que la ecuación diferen-
cial del movimiento libre amortiguado es d 2x�dt2 � (b�m)dx�dt � (k�m)x � 0 o

 
d 2x

dt2 2  
dx

dt
2x 0 , (11)

donde 2
m

,  2 k

m
. (12)

El símbolo 2l se usa sólo por conveniencia algebraica, porque la ecuación auxiliar es 
m2 � 2lm � v2 � 0 y las raíces correspondientes son entonces

 .m1 2 2 2,    m2 2 2 2  

Ahora se pueden distinguir tres casos posibles dependiendo del signo algebraico de 
l2 � v2. Puesto que cada solución contiene el factor de amortiguamiento e�lt, l � 0, los 
desplazamientos de la masa se vuelven despreciables conforme el tiempo t aumenta. 

CASO I: L2 � V2 � 0  En esta situación el sistema está sobreamortiguado porque 
el coefi ciente de amortiguamiento b es grande comparado con la constante del resorte 
k. La solución correspondiente de (11) es x (t) c1em1t c2em2t  o

 x (t) e t (c1e1 2 2t c2e 1 2 2t). (13)

Esta ecuación representa un movimiento uniforme y no oscilatorio. En la fi gura 5.1.6 
se muestran dos gráfi cas posibles de x(t).

t

x

FIGURA 5.1.6  Movimiento de un 
sistema sobreamortiguado.

m

a)

b)

m

FIGURA 5.1.5  Dispositivos de 
amortiguamiento.
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CASO II: L2 � V2 � 0  Este sistema está críticamente amortiguado porque cual-
quier ligera disminución en la fuerza de amortiguamiento daría como resultado un 
movimiento oscilatorio. La solución general de (11) es x ( t ) c 1 e m 1 t c 2 te m 1 t  o

 x ( t ) e t ( c 1 c 2 t ) . (14)

En la fi gura 5.1.7 se presentan algunas gráfi cas típicas de movimiento. Observe que el 
movimiento es bastante similar al de un sistema sobreamortiguado. También es evi-
dente de (14) que la masa puede pasar por la posición de equilibrio a lo más una vez.

CASO III: L2 � V2 � 0  En este caso el sistema está subamortiguado puesto que 
el coefi ciente de amortiguamiento es pequeño comparado con la constante del resorte. 
Las raíces m

1
 y m

2
 ahora son complejas:

 . m 1 1 2 2 i ,      m 2 1 2 2 i  

Así que la ecuación general de la ecuación (11) es

 x ( t ) e t   ( c 1  cos  1 2 2 t c 2  sen 1 2 2 t ) . (15)

Como se indica en la fi gura 5.1.8, el movimiento descrito por la ecuación (15) es oscila-
torio; pero debido al coefi ciente e�lt, las amplitudes de vibración S 0 cuando t S �.

EJEMPLO 3  Movimiento sobreamortiguado

Se comprueba fácilmente que la solución del problema con valores iniciales

 
d 2 x 

dt 2 5   
dx 

dt 
4 x 0,   x (0) 1,   x (0) 1  

es x ( t ) 
5 

3 
  e t 2 

3 
  e 4 t . (16)

El problema se puede interpretar como representativo del movimiento sobreamorti-
guado de una masa sobre un resorte. La masa se libera al inicio de una posición una 
unidad abajo de la posición de equilibrio con velocidad descendente de 1 pie/s.

Para grafi car x(t), se encuentra el valor de t para el cual la función tiene un ex-
tremo, es decir, el valor de tiempo para el cual la primera derivada (velocidad) es cero. 
Derivando la ecuación (16) se obtiene x ( t ) 5 

3 e t 8 
3 e 4 t , así x�(t) � 0 implica 

que e 3 t 8 
5 

 o t 1 
3  ln  8 

5 0.157 . Se tiene de la prueba de la primera derivada, así 
como de la intuición física, que x(0.157) � 1.069 pies es en realidad un máximo. En 
otras palabras, la masa logra un desplazamiento extremo de 1.069 pies abajo de la 
posición de equilibrio.

Se debe comprobar también si la gráfi ca cruza el eje t, es decir, si la masa pasa 
por la posición de equilibrio. En este caso tal cosa no puede suceder, porque la ecua-
ción x(t) � 0, o e 3 t 2 

5 , tiene una solución irrelevante desde el punto de vista físico 
t 1 

3  ln  2 
5 0.305 .

En la fi gura 5.1.9 se presenta la gráfi ca de x(t), junto con algunos otros datos 
pertinentes. 

EJEMPLO 4  Movimiento críticamente amortiguado

Una masa que pesa 8 libras alarga 2 pies un resorte. Suponiendo que una fuerza amor-
tiguada que es igual a dos veces la velocidad instantánea actúa sobre el sistema, de-
termine la ecuación de movimiento si la masa inicial se libera desde la posición de 
equilibrio con una velocidad ascendente de 3 pies/s.

t

x

FIGURA 5.1.7  Movimiento de un 
sistema críticamente amortiguado.

subamortiguado
no amortiguado

t

x

FIGURA 5.1.8  Movimiento de un 
sistema subamortiguado.

1 32 t

x
5
3x = −e−t e−4t2

3

a)

t x(t)

1 0.601
1.5 0.370
2 0.225
2.5 0.137
3 0.083

b)

FIGURA 5.1.9  Sistema 
sobreamortiguado.
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188 ● CAPÍTULO 5  MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

SOLUCIÓN  De la ley de Hooke se ve que 8 � k(2) da k � 4 lb/pie y que W � mg da 
m 8 

32 
1 
4  slug. La ecuación diferencial de movimiento es entonces

 
1 

4 
  
d 2 x 

dt 2 4 x 2   
dx 

dt 
      o     

d 2 x 

dt 2 8   
dx 

dt 
16 x 0 . (17)

La ecuación auxiliar para (17) es m2 � 8m � 16 � (m � 4)2 � 0, así que m
1
 � m

2
 � 

�4. Por tanto el sistema está críticamente amortiguado y

 x ( t ) c 1 e 4 t c 2 te 4 t . (18)

Aplicando las condiciones iniciales x(0) � 0 y x�(0) � �3, se encuentra, a su vez, que 
c

1
 � 0 y c

2
 � �3. Por tanto la ecuación de movimiento es

 x ( t ) 3 te 4 t . (19)

Para grafi car x(t), se procede como en el ejemplo 3. De x�(t) � �3e�4t(1 � 4t) 
vemos que x�(t) � 0 cuando t 1 

4 
. El desplazamiento extremo correspondiente es 

x ( 1 
4 ) 3 ( 1 

4 ) e 1 0.276   pies. Como se muestra en la fi gura 5.1.10, este valor 
se interpreta para indicar que la masa alcanza una altura máxima de 0.276 pies arriba 
de la posición de equilibrio. 

EJEMPLO 5  Movimiento subamortiguado

Una masa que pesa 16 libras se une a un resorte de 5 pies de largo. En equilibrio el resorte 
mide 8.2 pies. Si al inicio la masa se libera desde el reposo en un punto 2 pies arriba de la 
posición de equilibrio, encuentre los desplazamientos x(t) si se sabe además que el medio 
circundante ofrece una resistencia numéricamente igual a la velocidad instantánea.

SOLUCIÓN  La elongación del resorte después que se une la masa es 8.2 � 5 � 3.2 
pies, así que se deduce de la ley de Hooke que 16 � k(3.2) o k � 5 lb/pie. Además, 
m 16 

32 
1 
2  slug, por lo que la ecuación diferencial está dada por

 
1 

2 
  
d 2 x 

dt 2 5 x 
dx 

dt 
     o    

d 2 x 

dt 2 2   
dx 

dt 
10 x 0 . (20)

Procediendo, encontramos que las raíces de m2 � 2m � 10 � 0 son m
1
 � �1 � 3i y 

m
2
 � �1 � 3i, lo que signifi ca que el sistema está subamortiguado y

 x ( t ) e t ( c 1  cos 3 t c 2  sen 3t ) . (21)

Por último, las condiciones iniciales x(0) � �2 y x�(0) � 0 producen c
1
 � �2 y 

c 2 
2 
3 , por lo que la ecuación de movimiento es

 x ( t ) e t   2 cos 3 t 
2 

3 
 sen 3t . (22)  

FORMA ALTERNATIVA DE x(t)  De una manera idéntica al procedimiento usado 
en la página 184, se puede escribir cualquier solución

 x ( t ) e t   ( c 1  cos  1 2 2 t c 2  sen 1 2 2 t )  
en la forma alternativa

 x ( t ) Ae t    sen( 1 2 2 t ) , (23)

donde A 1 c 1   
2 c 2   

2  y el ángulo de fase f se determina de las ecuaciones

 . sen 
c 1 

A 
,    cos  

c 2 

A 
,    tan  

c 1 

c 2 
 

− 0.276

t

x
t = 

              altura 
máxima arriba de la 
posición de equilibrio 

1
4

FIGURA 5.1.10  Sistema críticamente 
amortiguado.
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El coefi ciente Ae�lt en ocasiones se llama amplitud amortiguada de vibraciones. 

Debido a que (23) no es una función periódica, el número 2 1 2 2  se llama 
cuasi periodo y 1 2 2 2  es la cuasi frecuencia. El cuasi periodo es el in-
tervalo de tiempo entre dos máximos sucesivos de x(t). Se debe comprobar, para la

ecuación de movimiento del ejemplo 5, que A 2 1 10 3  y f � 4.391. Por tanto, 
una forma equivalente de (22) es

 . x ( t ) 
2 1 10 

3 
  e t  sen(3t 4.391)  

5.1.3  SISTEMAS RESORTE/MASA: MOVIMIENTO 
FORZADO

ED DE MOVIMIENTO FORZADO CON AMORTIGUAMIENTO  Suponga 
que ahora se toma en consideración una fuerza externa f(t) que actúa sobre una masa 
vibrante en un resorte. Por ejemplo, f(t) podría representar una fuerza motriz que causa 
un movimiento vertical oscilatorio del soporte del resorte. Véase la fi gura 5.1.11. La 
inclusión de f(t) en la formulación de la segunda ley de Newton da la ecuación diferen-
cial de movimiento forzado o dirigido:

 m   
d 2 x 

dt 2 kx  
dx 

dt 
f ( t ) . (24)

Dividiendo la ecuación (24) entre m, se obtiene

 
d 2 x 

dt 2 2   dx 

dt 
2 x F ( t ) , (25)

donde F(t) � f(t)�m y, como en la sección anterior, 2l � b�m, v2 � k�m. Para re-
solver la última ecuación homogénea, se puede usar ya sea el método de coefi cientes 
indeterminados o variación de parámetros.

EJEMPLO 6  Interpretación de un problema con valores iniciales

Interprete y resuelva el problema con valores iniciales

 
1 

5 
  
d 2 x 

dt 2 1.2   
dx 

dt 
2 x 5 cos 4 t ,   x (0) 

1 

2 
,   x (0) 0 . (26)

SOLUCIÓN  Se puede interpretar el problema para representar un sistema vibratorio 
que consiste en una masa (m 1 

5  slug o kilogramo) unida a un resorte (k � 2 lb�pie 
o N�m). La masa se libera inicialmente desde el reposo 1 

2  unidad (pie o metro) abajo 
de la posición de equilibrio. El movimiento es amortiguado (b � 1.2) y está siendo 
impulsado por una fuerza periódica externa (T � p�2 s) comenzando en t � 0. De 
manera intuitiva, se podría esperar que incluso con amortiguamiento el sistema perma-
neciera en movimiento hasta que se “desactive” la función forzada, en cuyo caso dis-
minuirían las amplitudes. Sin embargo, como se plantea en el problema, f (t) � 5 cos 
4t permanecerá “activada” por siempre.

Primero se multiplica la ecuación diferencial en (26) por 5 y se resuelve

 
dx 2 

dt 2 6   
dx 

dt 
10 x 0  

por los métodos usuales. Debido a que m
1
 � �3 � i, m

2
 � �3 � i, se deduce que 

x
c
(t) � e�3t(c

1
 cos t � c

2
 sen t). Con el método de coefi cientes indeterminados, se 

supone una solución particular de la forma x
p
(t) � A cos 4t � B sen 4t. Derivando x

p
(t) 

y sustituyendo en la ED, se obtiene

 . x p 6 x p 10 x p ( 6 A 24 B ) cos 4 t ( 24 A 6 B ) sen 4 t 25 cos 4 t  

m

FIGURA 5.1.11  Movimiento vertical 
oscilatorio del apoyo.
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190 ● CAPÍTULO 5  MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

El sistema de ecuaciones resultante

 6A 24B 25,  24A 6B 0  

se cumple en A 25 
102  y B 50 

51 . Se tiene que

 x ( t ) e 3 t ( c 1  cos  t c 2  sen t ) 
25 

102 
 cos 4 t 

50 

51 
 sen 4 t. (27)

Cuando se hace t � 0 en la ecuación anterior, se obtiene c 1 
38 
51 . Derivando la expre-

sión y haciendo t � 0, se encuentra también que c 2 
86 
51 

51 

. Por tanto, la ecuación de 
movimiento es

 x ( t ) e 3 t   38 

51 
 cos  t 

86 

51 
 sen t 

25 

102 
 cos 4 t 

50 

51 
 sen 4 t. (28)  

TÉRMINOS TRANSITORIO Y DE ESTADO ESTABLE  Cuando F es una función 
periódica, como F(t) � F

0
 sen gt o F(t) � F

0
 cos gt, la solución general de (25) para l 

� 0 es la suma de una función no periódica x
c
(t) y una función periódica x

p
(t). Además 

x
c
(t) se desvanece conforme se incrementa el tiempo, es decir, límt :   x c  ( t ) 0 . Así, 

para valores grandes de tiempo, los desplazamientos de la masa se aproximan mediante 
la solución particular x

p
(t). Se dice que la función complementaria x

c
(t) es un término 

transitorio o solución transitoria y la función x
p
(t), la parte de la solución que per-

manece después de un intervalo de tiempo, se llama término de estado estable o solu-
ción de estado estable. Por tanto, observe que el efecto de las condiciones iniciales en 
un sistema resorte/masa impulsado por F es transitorio. En la solución particular (28),
e 3 t   ( 38 

51  cos  t 86 
51  sen t )  es un término transitorio y x p ( t ) 

25 
102  cos 4 t 50 

51  sen 4 t  es

un término de estado estable. Las gráfi cas de estos dos términos y la solución (28) se 
pre sentan en las fi guras 5.12a y 5.12b, respectivamente.

EJEMPLO 7  Soluciones de estado transitorio y de estado estable

La solución del problema con valores iniciales

 , 
d 2 x 

dt 2 2   
dx 

dt 
2 x 4 cos  t 2 sen t ,   x (0) 0,   x (0) x 1 

 

donde x
1
 es constante, está dada por

 

x ( t )   ( x 1    2)  e t   s en  t    2  s en  t . 

transitorio estado estable  

Las curvas solución para valores seleccionados de la velocidad inicial x
1
 aparecen en 

la fi gura 5.1.13. Las gráfi cas muestran que la infl uencia del término transitorio es des-
preciable para un valor aproximado de t � 3p�2. 

ED DE MOVIMIENTO FORZADO SIN AMORTIGUAMIENTO  Cuando se 
ejerce una fuerza periódica sin fuerza de amortiguamiento, no hay término transitorio 
en la solución de un problema. También se ve que una fuerza periódica con una fre-
cuencia cercana o igual que la frecuencia de las vibraciones libres amortiguadas causa 
un problema grave en un sistema mecánico oscilatorio.

EJEMPLO 8  Movimiento no amortiguado forzado

Resuelva el problema con valor inicial

 d 2 x 

dt 2 
2 x F0  sen t ,   x (0) 0,   x (0) 0 , (29)

donde F
0
 es una constante y g � v.

t

x

estado estable
xp(t)

transitorio
_ 1

1

π /2

a)

b)

t

x
x(t)=transitorio

+ estado estable

_ 1

1

π /2

FIGURA 5.1.12  Gráfi ca de la solución 
dada en (28).

x

2ππ

x1=7
x1=3
x1=0

x1=_3
t

FIGURA 5.1.13  Gráfi ca de la solución 
del ejemplo 7 para diferentes x

1
.
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SOLUCIÓN  La función complementaria es x
c
(t) � c

1
 cos vt � c

2
 sen vt. Para obtener 

una solución particular se supone x
p
(t) � A cos gt � B sen gt, por lo que

 . x p 
2 x p A ( 2 2 ) cos  t B ( 2 2 ) sen t F 0  sen t  

Igualando los coefi cientes se obtiene de inmediato A � 0 y B � F
0
�(v2 � g2). Por tanto,

 . x p ( t ) 
F 0 

2 2  sen t  

Aplicando las condiciones iniciales a la solución general 

 x ( t ) c 1  cos  t c 2  sen t 
F 0 

2 2  sen t  

se obtiene c
1
 � 0 y c

2
 � � gF

0
�v(v2 � g2). Por tanto, la solución es

 x ( t ) 
F 0 

( 2 2 ) 
  (  sen t  sen t ),     (30)  

RESONANCIA PURA  Aunque la ecuación (30) no se defi ne para g � v, es inte-
resante observar que su valor límite conforme g S v se obtiene al aplicar la regla de 
L�Hôpital. Este proceso límite es análogo a “sintonizar” la frecuencia de la fuerza 
impulsora (g�2p) con la frecuencia de vibraciones libres (v�2p). De una manera in-
tuitiva, se espera que en un espacio de tiempo se deban poder incrementar en forma 
sustancial las amplitudes de vibración. Para g � v se defi ne la solución como

 

  (31)

  

   
F 0 

2 2  sen t 
F 0 

2 
  t  cos  t . 

  F 0 
sen t t  cos  t 

2 2 

  F 0  lím
: 

sen t t  cos  t 

2 

  x ( t ) lím
: 

F 0 
       sen t  sen t 

( 2 2 ) 
F 0 lím   

: 

d 

d 
 (  sen t  sen t ) 

d 

d 
 ( 3 2 ) 

 

Como se sospechaba, conforme t S � los desplazamientos se vuelven largos; de 
hecho, �x(t

n
)�S � cuando t

n
 � np�v, n � 1, 2, ... . El fenómeno recién descrito se 

conoce como resonancia pura. La gráfi ca de la fi gura 5.1.14 muestra el movimiento 
característico en este caso.

En conclusión, se debe observar que no hay necesidad real de usar un proceso 
límite en (30) para obtener la solución para g � v. Alternativamente, la ecuación (31) 
se deduce resolviendo el problema con valores iniciales

 
d 2 x 

dt 2 
2 x F 0  sen t ,   x (0) 0,   x (0) 0  

en forma directa por métodos convencionales.
Si realmente una función, como la ecuación (31) describiera los desplazamientos de 

un sistema resorte/masa, el sistema necesariamente fallaría. Las oscilaciones grandes 
de la masa forzarán en algún momento el resorte más allá de su límite elástico. Se podría 
argumentar también que el modelo resonante presentado en la fi gura 5.1.14 es por com-
pleto irreal, porque no se toman en cuenta los efectos retardadores de las fuerzas de amor-
tiguamiento que siempre están presentes. Aunque es verdad que la resonancia pura no 
puede ocurrir cuando se toma en consideración la cantidad pequeña de amortiguamien -
to, las amplitudes de vibración grandes e igualmente destructivas pueden ocurrir (aunque 
acotadas conforme t S �). Véase el problema 43 de los ejercicios 5.1. 

x

t

FIGURA 5.1.14  Resonancia pura.
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192 ● CAPÍTULO 5  MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

5.1.4  CIRCUITO EN SERIE ANÁLOGO

CIRCUITOS LRC EN SERIE  Como se mencionó en la introducción de este capítulo, mu-
chos sistemas físicos diferentes se describen mediante una ecuación diferencial de segundo 
orden similar a la ecuación diferencial de movimiento forzado con amortiguamiento:

 m   
d 2 x 

dt 2     
dx 

dt 
kx f ( t ) . (32)

Si i(t) denota la corriente en el circuito eléctrico en serie LRC que se muestra en la 
fi gura 5.1.15, entonces las caídas de voltaje en el inductor, resistor y capacitor son 
como se muestra en la fi gura 1.3.3. Por la segunda ley de Kirchhoff, la suma de estos 
voltajes es igual al voltaje E(t) aplicado al circuito; es decir,

 L   
di 

dt 
Ri 

1 

C 
q E ( t ) . (33)

Pero la carga q(t) en el capacitor se relaciona con la corriente i(t) con i � dq�dt, así la 
ecuación (33) se convierte en la ecuación diferencial lineal de segundo orden

 L   
d 2 q 

dt 2 R   
dq 

dt 

1 

C 
q E ( t ) . (34)

La nomenclatura usada en el análisis de circuitos es similar a la que se emplea 
para describir sistemas resorte/masa.

Si E(t) � 0, se dice que las vibraciones eléctricas del circuito están libres. Debido a 
que la ecuación auxiliar para (34) es Lm2 � Rm � 1�C � 0, habrá tres formas de solución 
con R � 0, dependiendo del valor del discriminante R2 � 4L�C. Se dice que el circuito es

 sobreamortiguado si R2 � 4L�C � 0. 

 críticamente amortiguado si R2 � 4L�C � 0, 

y subamortiguado si R2 � 4L�C � 0. 

En cada uno de estos tres casos, la solución general de (34) contiene el factor e�Rt�2L, 
así q(t) S 0 conforme t S �. En el caso subamortiguado cuando q(0) � q

0
, la carga 

en el capacitor oscila a medida que ésta disminuye; en otras palabras, el capacitor se 
carga y se descarga conforme t S �. Cuando E(t) � 0 y R � 0, se dice que el circuito 
no está amortiguado y las vibraciones eléctricas no tienden a cero conforme t crece sin 
límite; la respuesta del circuito es armónica simple.

EJEMPLO 9  Circuito en serie subamortiguado

Encuentre la carga q(t) en el capacitor en un circuito LRC cuando L � 0.25 henry (h), 
R � 10 ohms (	), C � 0.001 farad (f), E(t) � 0, q(0) � q

0
 coulombs (C) e i(0) � 0.

SOLUCIÓN  Puesto que 1�C � 1000, la ecuación (34) se convierte en

 
1 

4 
  q 10 q 1000 q 0       o     . q 40 q 4000 q 0  

Resolviendo esta ecuación homogénea de la manera usual, se encuentra que el circuito 
es subamortiguado y q(t) � e�20t(c

1
 cos 60t � c

2
 sen 60t). Aplicando las condiciones 

iniciales, se encuentra c
1
 � q

0
 y c 2   

1 
3   q 0 . Por tanto

 .q ( t ) q 0 e 20 t   cos 60 t 
1 

3 
 sen 60 t  

C

L
E R

FIGURA 5.1.15  Circuito LRC en 
serie.

08367_05_ch05_p181-218.indd   19208367_05_ch05_p181-218.indd   192 6/4/09   12:19:15 PM6/4/09   12:19:15 PM



Usando (23), podemos escribir la solución anterior como

 . q ( t ) 
q 0 10 

3 
e 20 t  sen(60t 1.249) 

1
 

Cuando se aplica un voltaje E(t) al circuito, se dice que las vibraciones eléctricas 
son forzadas. En el caso cuando R � 0, la función complementaria q

c
(t) de (34) se 

llama solución transitoria. Si E(t) es periódica o una constante, entonces la solución 
particular q

p
(t) de (34) es una solución de estado estable.

EJEMPLO 10  Corriente de estado estable

Encuentre la solución de estado estable q
p
(t) y la corriente de estado estable en un 

circuito LRC en serie cuando el voltaje aplicado es E(t) � E
0
 sen gt.

SOLUCIÓN  La solución de estado estable q
p
(t) es una solución particular de la ecua-

ción diferencial

 . L 
d 2 q 

dt 2 R 
dq 

dt 

1 

C 
q E 0  sen t  

Con el método de coefi cientes indeterminados, se supone una solución particular de la 
forma q

p
(t) � A sen gt � B cos gt. Sustituyendo esta expresión en la ecuación diferen-

cial e igualando coefi cientes, se obtiene

 A 

E 0 L 
1 

C 

 L 2 2 2 L 

C 

1 

C 2 2 R 2 

,      B 
E 0 R 

 L 2 2 2 L 

C 

1 

C 2 2 R 2 

.  

Es conveniente expresar A y B en términos de algunos nuevos símbolos.

Si X L 
1 

C 
,   entonces Z 2 L 2 2 2 L 

C 

1 

C 2 2 
. 

Si Z 1 X 2 R 2 ,   entonces Z 2 L 2 2 2 L 

C 

1 

C 2 2 R 2 .  

Por tanto A � E
0
X�(�gZ 2) y B � E

0
R�(�gZ 2), así que la carga de estado estable es

 . q p ( t ) 
E 0 X 

Z 2  sen t 
E 0 R 

Z 2  cos  t  

Ahora la corriente de estado estable está dada por i p ( t ) q p ( t ) :

 i p ( t ) 
E 0 

Z 

R 

Z 
 sen t 

X 

Z 
 cos  t . (35)  

Las cantidades X � Lg � 1�Cg y Z 1 X 2 R 2  defi nidas en el ejemplo 11 se 
llaman reactancia e impedancia del circuito, respectivamente. Tanto la reactancia 
como la impedancia se miden en ohms.
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EJERCICIOS 5.1  Las respuestas a los problemas con número impar comienzan en la página RES-7.

5.1.1   SISTEMAS RESORTE/MASA: 
MOVIMIENTO LIBRE NO AMORTIGUADO

 1. Una masa que pesa 4 libras se une a un resorte cuya cons-
tante es 16 lb/pie. ¿Cuál es el periodo del movimiento 
armónico simple?

 2. Una masa de 20 kilogramos se une a un resorte. Si la fre-
cuencia del movimiento armónico simple es 2�p ciclos/s, 
¿cuál es la constante de resorte k? ¿Cuál es la frecuencia 
del movimiento armónico simple si la masa original se 
reemplaza con una masa de 80 kilogramos?

 3. Una masa que pesa 24 libras, unida al extremo de un re-
sorte, lo alarga 4 pulgadas. Al inicio, la masa se libera 
desde el reposo en un punto 3 pulgadas arriba de la posi-
ción de equilibrio. Encuentre la ecuación de movimiento.

 4. Determine la ecuación de movimiento si la masa del pro-
blema 3 se libera al inicio desde la posición de equilibrio 
con una velocidad descendente de 2 pies/s.

 5. Una masa que pesa 20 libras alarga 6 pulgadas un resorte. 
La masa se libera al inicio desde el reposo en un punto 
6 pulgadas abajo de la posición de equilibrio.

a)  Encuentre la posición de la masa en los tiempos t � 
p�12, p�8, p�6, p�4 y 9p�32 s.

b)  ¿Cuál es la velocidad de la masa cuando t � 3p�16 s? 
¿En qué dirección se dirige la masa en este instante?

c)  ¿En qué tiempos la masa pasa por la posición de equi-
librio?

 6. Una fuerza de 400 newtons alarga 2 metros un resorte. 
Una masa de 50 kilogramos se une al extremo del resorte 
y se libera inicialmente desde la posición de equilibrio 
con una velocidad ascendente de 10 m/s. Encuentre la 
ecuación de movimiento.

 7. Otro resorte cuya constante es 20 N/m se suspende del 
mismo soporte, pero paralelo al sistema resorte/masa 
del problema 6. Al segundo resorte se le coloca una 
masa de 20 kilogramos y ambas masas se liberan al ini-
cio desde la posición de equilibrio con una velocidad 
ascendente de 10 m/s.

a)  ¿Cuál masa presenta la mayor amplitud de movi-
miento?

b)  ¿Cuál masa se mueve más rápido en t � p�4 s? ¿En 
p�2 s?

c)  ¿En qué instantes las dos masas están en la misma 
posición? ¿Dónde están las masas en estos instantes? 
¿En qué direcciones se están moviendo las masas?

 8. Una masa que pesa 32 libras alarga 2 pies un resorte. 
Determine la amplitud y el periodo de movimiento si la 
masa se libera inicialmente desde un punto situado 1 pie 

arriba de la posición de equilibrio con una velocidad as-
cendente de 2 pies/s. ¿Cuántos ciclos enteros habrá com-
pletado la masa al fi nal de 4p segundos?

 9. Una masa que pesa 8 libras se une a un resorte. Cuando se 
pone en movimiento, el sistema resorte/masa exhibe mo- 
vimiento armónico simple. Determine la ecuación de 
movimiento si la constante de resorte es 1 lb/pie y la masa 
se libera inicialmente desde un punto 6 pulgadas abajo de 
la posición de equilibrio, con una velocidad descendente 
de 3

2  pie/s. Exprese la ecuación de movimiento en la 
forma dada en (6).

10. Una masa que pesa 10 libras alarga un resorte 1
4  pie. Esta 

masa se retira y se coloca una de 1.6 slugs, que se libera 
desde un punto situado a 1

3  pie arriba de la posición de 
equilibrio, con una velocidad descendente de 5

4  pie/s. Ex-
prese la ecuación de movimiento en la forma dada en (6). 
¿En qué tiempos la masa logra un desplazamiento debajo 
de la posición de equilibrio numéricamente igual a 1

2  de 
la amplitud? 

11. Una masa que pesa 64 libras alarga 0.32 pies un resorte. 
Al inicio la masa se libera desde un punto que está 8 pul-
gadas arriba de la posición de equilibrio con una veloci-
dad descendente de 5 pies/s.

a) Encuentre la ecuación de movimiento.

b) ¿Cuáles son la amplitud y el periodo del movimiento?

c)  ¿Cuántos ciclos completos habrá realizado la masa al 
fi nal de 3p segundos?

d)  ¿En qué momento la masa pasa por la posición de 
equilibrio con dirección hacia abajo por segunda vez?

e)  ¿En qué instantes la masa alcanza sus desplazamientos 
extremos en cualquier lado de la posición de equilibrio?

f )  ¿Cuál es la posición de la masa en t � 3 s?

g) ¿Cuál es la velocidad instantánea en t � 3 s?

h) ¿Cuál es la aceleración en t � 3 s?

i)  ¿Cuál es la velocidad instantánea en los instantes 
cuando la masa pasa por la posición de equilibrio?

j)  ¿En qué instantes la masa está 5 pulgadas abajo de la 
posición de equilibrio?

k)  ¿En qué instantes la masa está 5 pulgadas abajo de la 
posición de equilibrio apuntando en dirección hacia 
arriba?

12. Una masa de 1 slug se suspende de un resorte cuya cons-
tante es de 9 lb�pie. Inicialmente la masa se libera desde 
un punto que está 1 pie arriba de la posición de equilibrio 
con una velocidad ascendente de 13  pies/s. Determine 
los instantes en los que la masa se dirige hacia abajo a una 
velocidad de 3 pies/s.
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13. Bajo algunas circunstancias, cuando dos resortes para-
lelos, con constantes k

1
 y k

2
, soportan una sola masa, la 

constante de resorte efectiva del sistema se expresa 
como k � 4k

1
k

2
�(k

1
 � k

2
). Una masa que pesa 20 libras 

estira 6 pulgadas un resorte y 2 pulgadas otro resorte. Los 
resortes se unen a un soporte rígido común y luego a una 
placa metálica. Como se muestra en la fi gura 5.1.16, la 
masa se une al centro de la placa en la confi guración de 
resorte doble. Determine la constante de resorte efectiva 
de este sistema. Encuentre la ecuación de movimiento si 
la masa se libera inicialmente desde la posición de equili-
brio con una velocidad descendente de 2 pies/s.

14. Una cierta masa alarga un resorte 1
3  pie y otro resorte 1

2  
pie. Los dos resortes se unen a un soporte rígido común 
en la manera descrita en el problema 13 y en la fi gura 
5.1.16. Se quita la primera masa y se coloca una que pesa 
8 libras en la confi guración de resorte doble y se pone en 
movimiento el sistema. Si el periodo de movimiento es 
p�15 segundos, determine cuánto pesa la primera masa. 

15. Un modelo de un sistema de resorte/masa es 4x� � e�0.1tx 
� 0. Por inspección de la ecuación diferencial solamente, 
describa el comportamiento del sistema durante un pe-
riodo largo.

16. El modelo de un sistema de resorte/masa es 4x� � tx � 0. 
Por inspección de la ecuación diferencial solamente, des-
criba el comportamiento del sistema durante un periodo 
largo.

5.1.2   SISTEMAS RESORTE/MASA: 
MOVIMIENTO LIBRE AMORTIGUADO

En los problemas 17 a 20, la fi gura representa la gráfi ca de una 
ecuación de movimiento para un sistema resorte/masa amorti-
guado. Use la gráfi ca para determinar:

 a)  si el desplazamiento inicial está arriba o abajo de la posi-
ción de equilibrio y

 b)  si la masa se libera inicialmente desde el reposo, con di-
rección descendente o ascendente.

17.

20 lb

k1 2k

FIGURA 5.1.16  Sistema de resorte doble del 
problema 13.

t

x

FIGURA 5.1.17  Gráfi ca del problema 17.

t

x

FIGURA 5.1.18  Gráfi ca del problema 18.

18.

t

x

FIGURA 5.1.20  Gráfi ca del problema 20.

20.

21. Una masa que pesa 4 libras se une a un resorte cuya cons-
tante es 2 lb/pie. El medio ofrece una fuerza de amor-
tiguamiento que es numéricamente igual a la velocidad 
instantánea. La masa se libera desde un punto situado 
1 pie arriba de la posición de equilibrio con una veloci-
dad descendente de 8 pies/s. Determine el tiempo en el 
que la masa pasa por la posición de equilibrio. Encuentre 
el tiempo en el que la masa alcanza su desplazamiento 
extremo desde la posición de equilibrio. ¿Cuál es la posi-
ción de la masa en este instante?

t

x

FIGURA 5.1.19  Gráfi ca del problema 19.

19.
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196 ● CAPÍTULO 5  MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

22. Un resorte de 4 pies mide 8 pies de largo después de col-
garle una masa que pesa 8 libras. El medio por el que se 
mueve la masa ofrece una fuerza de amortiguamiento igual 
a 1 2  veces la velocidad instantánea. Encuentre la ecua-
ción de movimiento si la masa se libera inicialmente desde 
la posición de equilibrio con una velocidad descendente 
de 5 pies/s. Calcule el tiempo en que la masa alcanza su 
desplazamiento extremo desde la posición de equilibrio. 
¿Cuál  es la posición de la masa en ese instante?

23. Una masa de 1 kilogramo se fi ja a un resorte cuya cons-
tante es 16 N/m y luego el sistema completo se sumerge 
en un líquido que imparte una fuerza amortiguadora igual 
a 10 veces la velocidad instantánea. Determine las ecua-
ciones de movimiento si:

a)  al inicio la masa se libera desde un punto situado 
1 metro abajo de la posición de equilibrio, y luego 

b)  la masa se libera inicialmente desde un punto 1 me tro 
abajo de la posición de equilibrio con una velocidad 
ascendente de 12 m/s.

24. En los incisos a) y b) del problema 23, determine si la 
masa pasa por la posición de equilibrio. En cada caso, 
calcule el tiempo en que la masa alcanza su desplaza-
miento extremo desde la posición de equilibrio. ¿Cuál es 
la posición de la masa en este instante?

25. Una fuerza de 2 libras alarga 1 pie un resorte. Una masa 
que pesa 3.2 libras se une al resorte y luego se sumerge el 
sistema en un medio que ofrece una fuerza de amortigua-
miento igual a 0.4 veces la velocidad instantánea.

a)  Encuentre la ecuación de movimiento si inicialmente 
se libera la masa desde el reposo en un punto situado 
a 1 pie por encima de la posición de equilibrio.

b)  Exprese la ecuación de movimiento en la forma dada 
en (23).

c)  Encuentre la primera vez en que la masa pasa a través 
de la posición de equilibrio en dirección hacia arriba.

26. Después de que una masa de 10 libras se sujeta a un re-
sorte de 5 pies, éste llega a medir 7 pies. Se retira la masa 
y se sustituye con una de 8 libras. Luego se coloca al 
sistema en un medio que ofrece una fuerza de amortigua-
miento igual a la velocidad instantánea.

a)  Encuentre la ecuación de movimiento si la masa se li-
bera inicialmente desde el reposo de un punto situado 
1 pie arriba de la posición de equilibrio.

b)  Exprese la ecuación de movimiento en la forma dada 
en (23).

c)  Calcule los tiempos en los que la masa pasa por la 
posición de equilibrio con dirección hacia abajo.

d) Trace la gráfi ca de la ecuación de movimiento.

27. Una masa que pesa 10 libras produce un alargamiento de 
2 pies en un resorte. La masa se une a un dispositivo amor-
tiguador que ofrece una fuerza de amortiguamiento igual 
a b (b � 0) veces la velocidad instantánea. Determine 

los valores de la constante de amortiguamiento b por lo 
que el movimiento posterior sea a) sobreamortiguado, 
b) críticamente amortiguado y c) subamortiguado.

28. Una masa que pesa 24 libras alarga 4 pies un resorte. El 
movimiento posterior toma lugar en un medio que ofrece 
una fuerza de amortiguamiento igual a b (b � 0) veces la 
velocidad instantánea. Si al inicio la masa se libera desde 
la posición de equilibrio con una velocidad ascendente 
de 2 pies/s, muestre que cuando 3 1 2  la ecuación de 
movimiento es

. x ( t ) 
3 

1 2 18 
e 2 t /3  senh 

2 

3 
1 2 18 t 

5.1.3   SISTEMAS RESORTE/MASA: 
MOVIMIENTO FORZADO

29. Una masa que pesa 16 libras alarga 8 
3  pie un resorte. La 

masa se libera inicialmente desde el reposo desde un punto 
2 pies abajo de la posición de equilibrio y el movimiento 
posterior ocurre en un medio que ofrece una fuerza de 
amortiguamiento igual a 1 

2  de la velocidad instantánea. 
Encuentre la ecuación de movimiento si se aplica a la 
masa una fuerza externa igual a f(t) � 10 cos 3t.

30. Una masa de 1 slug está unida a un resorte cuya cons-
tante es 5 lb/pie. Al inicio la masa se libera 1 pie abajo de 
la posición de equilibrio con una velocidad descendente 
de 5 pies/s y el movimiento posterior toma lugar en un 
medio que ofrece una fuerza de amortiguamiento igual a 
dos veces la velocidad instantánea.

a)  Encuentre la ecuación de movimiento si una fuerza 
externa igual a f (t) � 12 cos 2t � 3 sen 2t actúa 
sobre la masa.

b)  Trace la gráfi ca de las soluciones transitorias y de es-
tado estable en los mismos ejes de coordenadas.

c) Trace la gráfi ca de la ecuación de movimiento.

31. Una masa de 1 slug, cuando se une a un resorte, causa en 
éste un alargamiento de 2 pies y luego llega al punto de 
reposo en la posición de equilibrio. Empezando en t � 0, 
una fuerza externa igual a f(t) � 8 sen 4t se aplica al sis-
tema. Encuentre la ecuación de movimiento si el medio 
circundante ofrece una fuerza de amortiguamiento igual a 
8 veces la velocidad instantánea.

32. En el problema 31 determine la ecuación de movimiento 
si la fuerza externa es f(t) � e�t sen 4t. Analice el despla-
zamiento para t S �.

33. Cuando una masa de 2 kilogramos se une a un resorte cuya 
constante es 32 N�m, éste llega al reposo en la posición de 
equilibrio. Comenzando en t � 0, una fuerza igual a f(t) � 
68e�2t cos 4t se aplica al sistema. Determine la ecuación de 
movimiento en ausencia de amortiguamiento.

34. En el problema 33, escriba la ecuación de movimiento en 
la forma x(t) � Asen(vt � f) � Be�2tsen(4t � u). ¿Cuál 
es la amplitud de las vibraciones después de un tiempo 
muy largo?
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35. Una masa m está unida al extremo de un resorte cuya 
constante es k. Después de que la masa alcanza el equili-
brio, su soporte empieza a oscilar verticalmente respecto 
a una recta horizontal L de acuerdo con una fórmula h(t). 
El valor de h representa la distancia en pies medida desde 
L. Véase la fi gura 5.1.21.

a)  Determine la ecuación diferencial de movimiento si 
el sistema entero se mueve en un medio que ofrece 
una fuerza de amortiguamiento igual a b(dx�dt).

b)  Resuelva la ecuación diferencial del inciso a) si el re-
sorte se alarga 4 pies con una masa que pesa 16 libras 
y b � 2, h(t) � 5 cos t, x(0) � x�(0) � 0.

b) Evalúe lím
: 

 F0
2 2

 (cos t cos t) .

40. Compare el resultado obtenido en el inciso b) del pro-
blema 39 con la solución obtenida usando la variación de 
parámetros cuando la fuerza externa es F

0
 cos vt.

41. a)  Muestre que x(t) dada en el inciso a) del problema 39 
se puede escribir en la forma

.x(t)
2F0

2 2 sen 
1

2
 ( )t sen 

1

2
 ( )t

  b)  Si se defi ne 1
2 ( ), muestre que cuando e es 

pequeña una solución aproximada es

.x(t)
F0

2
 sen t sen t

   Cuando e es pequeña, la frecuencia g�2p de la fuerza apli-
cada es cercana a la frecuencia v�2p de vibraciones libres. 
Cuando esto ocurre, el movimiento es como se indica en la 
fi gura 5.1.22. Las oscilaciones de esta clase se llaman pulsa-
ciones y se deben al hecho de que la frecuencia de sen et  es 
bastante pequeña en comparación con la frecuencia de sen 
gt. Las curvas punteadas o envoltura de la gráfi ca de x(t), se 
obtienen de las gráfi cas de 
(F

0
�2eg) sen et. Use un pro-

grama de grafi cación para trazar gráfi cas con varios valores 
de F

0
, e, y g para comprobar la gráfi ca de la fi gura 5.1.22. 

36. Una masa de 100 gramos se fi ja a un resorte cuya cons-
tante es 1600 dinas/cm. Después de que la masa alcanza el 
equilibrio, su apoyo oscila de acuerdo con la fórmula h(t) � 
sen 8t, donde h representa el desplazamiento desde su posi-
ción original. Véanse el problema 35 y la fi gura 5.1.21.
a)  En ausencia de amortiguamiento, determine la ecua-

ción de movimiento si la masa parte del reposo desde 
la posición de equilibrio.

b)  ¿En qué instantes la masa pasa por la posición de 
equilibrio?

c)  ¿En qué tiempos la masa alcanza sus desplazamien-
tos extremos?

d)  ¿Cuáles son los desplazamientos máximo y mínimo?
e) Trace la gráfi ca de la ecuación de movimiento.

En los problemas 37 y 38, resuelva el problema con valores 
iniciales.

37. 

  

38. 
d 2x

dt2 9x 5 sen 3t,  x(0) 2, x (0) 0

x(0) 1, x (0) 1

d 2x

dt2 4x 5 sen 2 t 3 cos 2t,

39. a)  Muestre que la solución del problema con valores ini-
ciales

d 2x

dt2
2x F0 cos t, x(0) 0, x (0) 0

es x(t)
F0

2 2 (cos t cos t) . 

L

soporte

h(t)

FIGURA 5.1.21  Soporte oscilante del problema 35.

t

x

FIGURA 5.1.22  Fenómeno de pulsaciones del problema 41.

Tarea para el laboratorio de computación

42. ¿Puede haber pulsaciones cuando se agrega una fuerza 
de amortiguamiento al modelo del inciso a) del problema 
39? Defi enda su posición con las gráfi cas obtenidas ya 
sea de la solución explícita del problema

d2x

dt2 2
dx

dt
2x F0cos t, x(0) 0, x (0) 0

  o de curvas solución obtenidas usando un programa de 
solución numérica.

43. a) Muestre que la solución general de

d 2x

dt2 2  dx

dt
2x F0 sen t
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198 ● CAPÍTULO 5  MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

 es

x(t) Ae lt sen 2v2 l2t f

      
F0

1( 2 2)2 4 2 2
 sen( t ),

  donde A 1c1
2 c2

2  y los ángulos de fase f y u 
están, respectivamente, defi nidos por sen f � c

1
�A, 

cos f � c
2
�A y

,sen 
2

1( 2 2)2 4 2 2

.cos 
2 2

1( 2 2)2 4 2 2

b)  La solución del inciso a) tiene la forma x(t) � x
c
(t) � 

x
p
(t). La inspección muestra que x

c
(t) es transitoria y 

por tanto para valores grandes de tiempo, la solución 
se aproxima mediante x

p
(t) � g(g) sen(gt � u), donde

.g( )
F0

1( 2 2)2 4 2 2

  Aunque la amplitud g(g) de x
p
(t) está acotada con-

forme t S �, demuestre que las oscilaciones máxi-
mas ocurrirán en el valor 1 1 2 2 2 . ¿Cuál es 
el valor máximo de g? El número 1 2 2 2/2  se 
dice que es la frecuencia de resonancia del sistema.

c)  Cuando F
0
 � 2, m � 1 y k � 4, g se convierte en

.g( )
2

1(4 2)2 2 2

  Construya una tabla de valores de g
1
 y g(g

1
) que 

corresponden a los coefi cientes de amortiguamien-
to b � 2, b � 1, 3

4,
1
2
, y 1

4
. Usando 

un programa de grafi cación para trazar obtenga las
gráfi cas de g que corresponden a estos coefi cientes de 
amortiguamiento. Use los mismos ejes de coordenadas. 
Esta familia de gráfi cas se llama curva de resonancia 
o curva de respuesta de frecuencia del sistema. ¿A 
qué valor se aproxima g

1
 conforme b S 0? ¿Qué su-

cede con la curva de resonancia conforme b S 0? 

44. Considere un sistema resorte/masa no amortiguado des-
crito por el problema con valores iniciales

.
d 2x

dt2
2x F0 senn t, x(0) 0, x (0) 0

a)  Para n � 2, explique por qué hay una sola frecuencia 
g

1
�2p en la que el sistema está en resonancia pura.

b)  Para n � 3, analice por qué hay dos frecuencias g
1
�2p 

y g
2
�2p en las que el sistema está en resonancia pura.

c)  Suponga que v � 1 y F
0
 � 1. Use un programa de so-

lución numérica para obtener la gráfi ca de la solución 
del problema con valores iniciales para n � 2 y g � 
g

1
 en el inciso a). Obtenga la gráfi ca de la solución del 

problema con valores iniciales para n � 3 que corres-
ponde, a su vez, a g � g

1
 y g � g

2
 en el inciso b).

5.1.4  CIRCUITO EN SERIE ANÁLOGO

45. Encuentre la carga en el capacitor de un circuito en serie 
LRC en t � 0.01 s cuando L � 0.05 h, R � 2 	, C � 
0.01 f, E(t) � 0 V, q(0) � 5 C e i(0) � 0 A. Determine la 
primera vez en que la carga del capacitor es igual a cero.

46. Calcule la carga del capacitor en un circuito LRC en serie 
cuando L 1

4 h, R � 20 	, , C 1
300 f  E(t) � 0 V, q(0) 

� 4 C e i(0) � 0 A. ¿Alguna vez la carga en el capacitor 
es igual a cero? 

En los problemas 47 y 48 encuentre la carga en el capacitor 
y la corriente en el circuito LRC. Determine la carga máxima 
en el capacitor.

47. ,L 5
3 h  R � 10 	, , C 1

30 f  E(t) � 300 V, q(0) � 0 C, 
i(0) � 0 A

48. L � 1 h, R � 100 	, C � 0.0004 f, E(t) � 30 V, 
q(0) � 0 C, i(0) � 2 A

49. Encuentre la carga y la corriente de estado estable en un 
circuito LRC en serie cuando L � 1 h, R � 2 	, C � 0.25 
f y E(t) � 50 cos t V.

50. Demuestre que la amplitud de la corriente de estado esta-
ble en el circuito LRC en serie del ejemplo 10 está dada 
por E

0
�Z, donde Z es la impedancia del circuito.

51. Use el problema 50 para demostrar que la corriente de es-
tado estable en un circuito LRC en serie cuando L 1

2 h , 
R � 20 	, C � 0.001 f, y E(t) � 100 sen 60t V, está dada 
por i

p
(t) � 4.160 sen(60t � 0.588).

52. Encuentre la corriente de estado estable en un circuito 
LRC cuando L 1

2 h , R � 20 	, C � 0.001 f y E(t) � 
100 sen 60t � 200 cos 40t V.

53. Encuentre la carga en el capacitor de un circuito 
LRC en serie cuando L 1

2 h , R � 10 	, C � 0.01 f, 
E(t) � 150 V, q(0) � 1 C e i(0) � 0 A. ¿Cuál es la carga 
en el capacitor después de un largo tiempo?

54. Demuestre que si L, R, C y E
0
 son constantes, entonces la 

amplitud de la corriente de estado estable del ejemplo 10 
es un máximo cuando 1>1LC . ¿Cuál es la ampli-
tud máxima? 

55. Demuestre que si L, R, E
0
 y g son constantes, entonces la 

amplitud de la corriente de estado estable en el ejemplo 
10 es un máximo cuando la capacitancia es C � 1�Lg2.

56. Calcule la carga en el capacitor y la corriente en un cir-
cuito LC cuando L � 0.1 h, C � 0.1 f, E(t) � 100 sen gt 
V, q(0) � 0 C e i(0) � 0 A.

57. Calcule la carga del capacitor y la corriente en un circuito 
LC cuando E(t) � E

0
 cos gt V, q(0) � q

0
 C e i(0) � i

0
 A.

58. En el problema 57, determine la corriente cuando el cir-
cuito está en resonancia.
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MODELOS LINEALES: PROBLEMAS CON VALORES EN LA FRONTERA

REPASO DE MATERIAL
● Problemas 37 a 40 de los ejercicios 4.3
● Problemas 37 a 40 de los ejercicios 4.4

INTRODUCCIÓN  La sección anterior se dedicó a sistemas en los que un modelo matemático de 
segundo orden va acompañado de condiciones iniciales. Es decir, condiciones suplementarias que se 
especifi can en la función desconocida y su primera derivada es un solo punto. Pero con frecuencia la 
descripción matemática de un sistema físico requiere resolver una ecuación diferencial lineal homo-
génea sujeta a condiciones en la frontera, es decir, condiciones específi cas de la función desconocida 
o en una de sus derivadas o incluso una combinación lineal de la función desconocida y una de sus 
derivadas en dos (o más) puntos diferentes.

5.2

DEFLEXIÓN DE UNA VIGA  Muchas estructuras se construyen usando trabes o 
vigas y estas vigas se fl exionan o deforman bajo su propio peso o por la infl uencia de 
alguna fuerza externa. Como veremos a continuación, esta defl exión y(x) está gober-
nada por una ecuación diferencial lineal de cuarto orden relativamente simple. 

Para empezar, supongamos que una viga de longitud L es homogénea y tiene 
secciones transversales uniformes a lo largo de su longitud. En ausencia de carga en 
la viga (incluyendo su peso), una curva que une los centroides de todas sus secciones 
transversales es una recta conocida como eje de simetría. Véase la fi gura 5.2.1a. Si se 
aplica una carga a la viga en un plano vertical que contiene al eje de simetría, la viga, 
como se muestra en la fi gura 5.2.1b, experimenta una distorsión y la curva que conecta 
los centroides de las secciones transversales se llama curva de defl exión o curva 
elástica. La curva de defl exión se aproxima a la forma de una viga. Ahora suponga que 
el eje x coincide con el eje de simetría y que la defl exión y(x), medida desde este eje, 
es positiva si es hacia abajo. En la teoría de elasticidad se muestra que el momento de 
fl exión M(x) en un punto x a lo largo de la viga se relaciona con la carga por unidad 
de longitud w(x) mediante la ecuación

 
d2M

dx2 w(x) . (1)

Además, el momento de fl exión M(x) es proporcional a la curvatura k de la curva elástica

 M(x) EI , (2)

donde E e I son constantes; E es el módulo de Young de elasticidad del material de la 
viga e I es el momento de inercia de una sección transversal de la viga (respecto a un eje 
conocido como el eje neutro). El producto EI se llama rigidez f1exional de la viga.

Ahora, del cálculo, la curvatura está dada por k � y��[1 � (y�)2]3�2. Cuando la 
defl exión y(x) es pequeña, la pendiente y� � 0, y por tanto [1 � (y�)2]3�2 � 1. Si se 
permite que k � y�, la ecuación (2) se convierte en M � EI y�. La segunda derivada 
de esta última expresión es

 
d 2M

dx2 EI 
d 2

dx2 y EI 
d 4y

dx4
. (3)

Si se utiliza el resultado en (1) para reemplazar d2M�dx2 en (3), se ve que la defl exión 
y(x) satisface la ecuación diferencial de cuarto orden

 EI
 
 
d 4y

dx4 w(x). (4)

eje de simetría

curva de deflexión

a)

b)

FIGURA 5.2.1  Defl exión de una viga 
homogénea.
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200 ● CAPÍTULO 5  MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

Las condiciones de frontera asociadas con la ecuación (4) dependen de cómo estén 
apoyados los extremos de la viga. Una viga en voladizo está empotrada o fi ja en un 
extremo y libre en el otro. Un trampolín, un brazo extendido, un ala de avión y un balcón 
son ejemplos comunes de tales vigas, pero incluso árboles, astas de banderas, rascacielos 
y monumentos, actúan como vigas en voladizo, debido a que están empotrados en un 
extremo y sujetos a la fuerza de fl exión del viento. Para una viga en voladizo la defl exión 
y(x) debe satisfacer las siguientes dos condiciones en el extremo fi jo x � 0:

• y(0) � 0 porque no hay fl exión y
• y�(0) � 0 porque la curva de defl exión es tangente al eje x (en otras palabras, 

la pendiente de la curva de defl exión es cero en este punto).

En x � L las condiciones de extremo libre son

• y�(L) � 0 porque el momento de fl exión es cero y
• y��(L) � 0 porque la fuerza de corte es cero.

La función F(x) � dM�dx � EI d3y�dx3 se llama fuerza de corte. Si un extremo de la viga 
está apoyado simplemente o abisagrado (a lo que también se conoce como apoyo con 
perno o fulcro) entonces se debe tener y � 0 y y� � 0 en ese extremo. En la tabla 5.1 se 
resumen las condiciones en la frontera que se relacionan con (4). Véase la fi gura 5.2.2.

EJEMPLO 1  Una viga empotrada

Una viga de longitud L está empotrada en ambos extremos. Encuentre la defl exión 
de la viga si una carga constante w

0 
está uniformemente distribuida a lo largo de su 

longitud, es decir, w(x) � w
0
, 0 � x � L.

SOLUCIÓN  De (4) vemos que la defl exión y(x) satisface 

 .EI  d
4y

dx4 w0  

Debido a que la viga está empotrada tanto en su extremo izquierdo (x � 0) como en su 
extremo derecho (x � L), no hay defl exión vertical y la recta de defl exión es horizontal 
en estos puntos. Así, las condiciones en la frontera son

 .y(0) 0,    y (0) 0,  y(L) 0,    y (L) 0  

Se puede resolver la ecuación diferencial no homogénea de la manera usual (determi-
nar y

c
 observando que m � 0 es raíz de multiplicidad cuatro de la ecuación auxiliar m4 

� 0 y luego encontrar una solución particular y
p
 por coefi cientes indeterminados) o 

simplemente se integra la ecuación d4y�dx4 � w
0
�EI sucesivamente cuatro veces. De 

cualquier modo, se encuentra la solución general de la ecuación y � y
c
 � y

p
 que es

 .y(x) c1 c2x c3x2 c4x3 w0

24EI
x4

 

Ahora las condiciones y(0) � 0 y y�(0) � 0 dan, a su vez, c
1
 � 0 y c

2
 � 0, mientras que

las condiciones restantes y(L) � 0 y y�(L) � 0 aplicadas a y(x) c3x2 c4x3 w0

24EI
 x4

 producen las ecuaciones simultáneas 

  

  2c3 L 3c4 L2 w0

6EI
  
L3 0.

 c3 L2 c4 L3 w0

24EI
  
L4 0

 

x = 0 x = L

a) empotrada en ambos extremos

b) viga en voladizo: empotrada en 
el extremo izquierdo, libre en el 
extremo derecho

c) apoyada simplemente en ambos 
extremos

x = 0 x = L

x = 0 x = L

FIGURA 5.2.2  Vigas con varias 
condiciones de extremo.

TABLA 5.1

Extremos de la viga Condiciones frontera

empotrados y � 0,   y� � 0
libres y� � 0,  y�� � 0
apoyados simplemente
o abisagrados y � 0,   y� � 0
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Resolviendo este sistema se obtiene c
3
 � w

0
L2�24EI y c

4
 � �w

0
L�12EI. Así que la 

defl exión es

 y(x)
w0L2

24EI
x2 w0L

12EI
x3 w0

24EI
x4

 

o y(x)
w0

24EI
 x2 (x L)2 . Eligiendo w

0
 � 24EI, y L � 1, obtenemos la curva de 

defl exión de la fi gura 5.2.3. 

EIGENVALORES Y FUNCIONES PROPIAS  Muchos problemas de aplicación re-
quieren que se resuelva un problema con valores en la frontera en dos puntos (PVF) 
en los que interviene una ecuación diferencial lineal que contiene un parámetro l. Se 
buscan los valores de l para los que el problema con valores en la frontera tiene solu-
ciones no triviales, es decir, no nulas.

EJEMPLO 2  Soluciones no triviales de un PVF

Resuelva el problema con valores en la frontera

 .y y 0, y(0) 0,  y(L) 0  

SOLUCIÓN  Consideraremos tres casos: l � 0, l � 0 y l � 0.

CASO I:  Para l � 0 la solución de y� � 0 es y � c
1
x � c

2
. Las condiciones y(0) � 0 y 

y(L) � 0 aplicadas a esta solución implican, a su vez, c
2
 � 0 y c

1
 � 0. Por tanto, para l � 

0 la única solución del problema con valores en la frontera es la solución trivial y � 0.

CASO II:  Para l � 0 es conveniente escribir l � �a2, donde a denota un número 
positivo. Con esta notación las raíces de la ecuación auxiliar m2 � a2 � 0 son m

l
 � a y 

m
2
 � � a. Puesto que el intervalo en el que se está trabajando es fi nito, se elige escribir 

la solución general de y� � a2y � 0 como y � c
1
 cosh ax � c

2
 senh ax. Ahora y(0) es 

 ,y(0) c1 cosh 0 c2 senh 0 c1 1 c2 0 c1  

y por tanto, y(0) � 0 signifi ca que c
1
 � 0. Así y � c

2
 senh ax. La segunda condición y(L) 

� 0 requiere que c
2
 senh aL � 0. Para a � 0, senh aL � 0; en consecuencia, se está 

forzado a elegir c
2
 � 0. De nuevo la solución del PVF es la solución trivial y � 0.

CASO III:  Para l � 0 se escribe l � a2, donde a es un número positivo. Debido a 
que la ecuación auxiliar m2 � a2 � 0 tiene raíces complejas m

l
 � ia y m

2
 � �ia, la 

solución general de y� � a2y � 0 es y � c
1
 cos ax � c

2
 sen ax. Como antes, y(0) � 0 

produce c
1
 � 0 y por tanto y � c

2
 sen ax. Ahora la última condición y(L) � 0, o

 ,c2 sen L 0  

se satisface al elegir c
2
 � 0. Pero esto signifi ca que y � 0. Si se requiere c

2
 � 0, enton-

ces sen aL � 0 se satisface siempre que aL sea un múltiplo entero de p. 

 .L n  o   
n

L
 o   n n

2 n

L

2

,  n 1, 2, 3, . . .  

Por tanto, para cualquier número real c
2
 distinto de cero, y � c

2 
sen(npx�L) es una solu-

ción del problema para cada n. Debido a que la ecuación diferencial es homogénea, cual-
quier múltiplo constante de una solución también es una solución, así que si se desea se 
podría simplemente tomar c

2
 � 1. En otras palabras, para cada número de la sucesión 

 1

2

L2, 2
4 2

L2 , 3
9 2

L2 ,    ,  

x

y

1

0.5

FIGURA 5.2.3  Curva de defl exión 
para el ejemplo 1.

■ Observe que 
aquí se emplean 
funciones 
hiperbólicas. 
Vuelva a leer “Dos 
ecuaciones que 
merecen conocerse” 
de la página 135.
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202 ● CAPÍTULO 5  MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

la función correspondiente en la sucesión

 y1 sen
L

 x, y2 sen
2

L
 x, y3 sen

3

L
 x,  ,  

es una solución no trivial del problema original. 

Los números l
n
 � n2p 2�L2, n � 1, 2, 3, . . . para los cuales el problema con va-

lores en la frontera del ejemplo 2 tiene soluciones no triviales que se conocen como 
eigenvalores (valores propios). Las soluciones no triviales que dependen de estos va-
lores de l

n
, y

n
 � c

2
 sen(npx�L) o simplemente y

n
 � sen(npx�L), se llaman funciones 

propias (eigenfunciones).

PANDEO DE UNA COLUMNA VERTICAL DELGADA  En el siglo xviii, 
Leonhard Euler fue uno de los primeros matemáticos en estudiar un problema con 
eigenvalores y analizar cómo se pandea una columna elástica delgada bajo una fuerza 
axial compresiva.

Considere una columna vertical larga y delgada de sección transversal uniforme y 
longitud L. Sea y(x) la defl exión de la columna cuando se aplica en la parte superior una 
fuerza compresiva vertical constante, una carga P, como se muestra en la fi gura 5.2.4. Al 
comparar los momentos de fl exión en algún punto a lo largo de la columna, se obtiene

 EI  
d 2y

dx2 Py      o     EI  
d 2y

dx2 Py 0 , (5)

donde E es el módulo de Young para la elasticidad e I es el momento de inercia de una 
sección transversal respecto a una recta vertical por su centroide.

EJEMPLO 3  La carga de Euler

Encuentre la defl exión de una columna homogénea vertical y delgada de longitud L su-
jeta a una carga axial constante P si la columna se fi ja con bisagras en ambos extremos.

SOLUCIÓN  El problema con valores en la frontera por resolver es 

 .EI  
d 2y

dx2 Py 0, y(0) 0, y(L) 0  

Primero observe que y � 0 es una solución muy buena de este problema. Esta solución 
tiene una simple interpretación intuitiva: Si la carga P no es sufi cientemente grande, 
no hay defl exión. Entonces la pregunta es ésta: ¿para qué valores de P se dobla la co-
lumna? En términos matemáticos: ¿para qué valores de P el problema con valores en 
la frontera tiene soluciones no triviales?

Al escribir l � P�EI, vemos que

 y y 0,  y(0) 0, y(L)  0 

es idéntico al problema del ejemplo 2. Del caso III de esa descripción se ve que las de-
fl exiones son y

n
(x) � c

2
 sen(npx�L) que corresponden a los eigenvalores l

n
 � P

n-

�EI � n2p 2�L2, n � 1, 2, 3, . . .  Desde el punto de vista físico, esto signifi ca que la co-
lumna experimenta fl exión sólo cuando la fuerza compresiva es uno de los valores 
P

n
 � n2p 2EI�L2, n � 1, 2, 3, . . .  Estas fuerzas diferentes se llaman cargas críticas. La 

defl exión correspondiente a la carga crítica más pequeña P
1
 � p 2EI�L2, llamada carga 

de Euler, es y
1
(x) � c

2
 sen(px�L) y se conoce como primer modo de pandeo. 

Las curvas de defl exión del ejemplo 3 que corresponden a n � 1, n � 2 y n 
� 3 se muestran en la fi gura 5.2.5. Observe que si la columna original tiene alguna 
clase de restricción física en x � L�2, entonces la carga crítica más pequeña será 
P

2
 � 4p 2EI�L2, y la curva de defl exión será como se muestra en la fi gura 5.2.5b. Si 

se ponen restricciones a la columna en x � L�3 y en x � 2L�3, entonces la columna 

L

a) b)

P

x = 0

x

y

x = L

FIGURA 5.2.4  Pandeo de una 
columna elástica bajo una fuerza 
compresiva.

L L

x

b)

y

x

c)

y

x

L

a)

y

FIGURA 5.2.5  Curvas de defl exión 
que corresponden a las fuerzas 
compresivas P

1
, P

2
, P

3
.
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no se pandea hasta que se aplica la carga crítica P
3
 � 9p 2EI�L2 y la curva de defl exión 

será como se muestra en la fi gura 5.2.5c. Véase el problema 23 de los ejercicios 5.2.

CUERDA ROTANDO  La ecuación diferencial lineal de segundo orden

 y y 0  (6)

se presenta una y otra vez como un modelo matemático. En la sección 5.1 vimos que 
la ecuación (6) en las formas d2x�dt2 � (k�m)x � 0 y d2q�dt2 � (1�LC)q � 0 son mo-
delos para el movimiento armónico simple de un sistema resorte/masa y la respuesta 
armónica simple de un circuito en serie, respectivamente. Es evidente cuando el modelo 
para la defl exión de una columna delgada en (5) se escribe como d2y�dx2 � (P�EI)y � 0 
que es lo mismo que (6). Se encuentra la ecuación básica (6) una vez más en esta sección: 
como un modelo que defi ne la curva de defl exión o la forma y(x) que adopta una cuerda 
rotatoria. La situación física es similar a cuando dos personas sostienen una cuerda para 
saltar y la hacen girar de una manera sincronizada. Véase la fi gura 5.2.6a y 5.2.6b.

Suponga que una cuerda de longitud L con densidad lineal constante r (masa por 
unidad de longitud) se estira a lo largo del eje x y se fi ja en x � 0 y x � L. Suponga que 
la cuerda se hace girar respecto al eje a una velocidad angular constante v. Considere 
una porción de la cuerda en el intervalo [x, x � �x], donde �x es pequeña. Si la mag-
nitud T de la tensión T que actúa tangencial a la cuerda, es constante a lo largo de 
ésta, entonces la ecuación diferencial deseada se obtiene al igualar dos formulaciones 
distintas de la fuerza neta que actúa en la cuerda en el intervalo [x, x � �x]. Primero, 
vemos en la fi gura 5.2.6c se ve que la fuerza vertical neta es

 F T sen 
2 T sen 

1 . (7)

Cuando los ángulos u
1
 y u

2
 (medidos en radianes) son pequeños, se tiene sen u

2
 � tan 

u
2
 y sen u

1
 � tan u

1
. Además, puesto que tan u

2
 y tan u

1
, son, a su vez, pendientes de 

las rectas que contienen los vectores T
2
 y T

1
 también se puede escribir

 tan 
2 y (x x)      y     .tan 

1 y (x)  

Por tanto, la ecuación (7) se convierte en

 F T [ y (x x) y (x)] . (8)

Segundo, se puede obtener una forma diferente de esta misma fuerza neta usando 
la segunda ley de Newton, F � ma. Aquí la masa del resorte en el intervalo es 
m � r �x; la aceleración centrípeta de un cuerpo que gira con velocidad angular v en 
un círculo de radio r es a � rv2. Con �x pequeña se toma r � y. Así la fuerza vertical 
neta es también aproximadamente igual a

 F (  x)y 2 , (9)

donde el signo menos viene del hecho de que la aceleración apunta en la dirección 
opuesta a la dirección y positiva. Ahora, al igualar (8) y (9), se tiene

a)

b)

c)

ω

x = 0 x = L

y(x)

xx x + ∆x

1θ 2θ

T2

T1

FIGURA 5.2.6  Cuerda rotatoria y 
fuerzas que actúan sobre ella.

y�(x � �x) � y�(x)
–––––––––––––––––

�x
T[y�(x � �x) � y�(x)] � �(r�x)yv2 T � rv2y � 0.o

cociente de diferencias

  (10)

Para �x cercana a cero el cociente de diferencias en (10) es aproximadamente la se-
gunda derivada d2y�dx2. Por último, se llega al modelo

 T d
2y

dx2
2y 0. (11)

Puesto que la cuerda está anclada en sus extremos en x � 0 y x � L, esperamos que 
la solución y(x) de la ecuación (11) satisfaga también las condiciones frontera y(0) � 
0 y y(L) � 0.
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204 ● CAPÍTULO 5  MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

COMENTARIOS

i) Los eigenvalores no siempre son fáciles de encontrar, como sucedió en el 
ejemplo 2; es posible que se tengan que aproximar las raíces de ecuaciones 
como tan x � �x o cos x cosh x � 1. Véanse los problemas 34 a 38 en los 
ejercicios 5.2.

ii) Las condiciones de frontera aplicadas a una solución general de una ecua-
ción diferencial dan lugar a un sistema algebraico homogéneo de ecuaciones 
lineales en las que las incógnitas son los coefi cientes c

i
 de la solución general. 

Un sistema algebraico homogéneo de ecuaciones lineales es siempre consis-
tente porque por lo menos tiene una solución trivial. Pero un sistema homogé-
neo de n ecuaciones lineales con n incógnitas tiene una solución no trivial si y 
sólo si el determinante de los coefi cientes es igual a cero. Podría ser necesario 
usar este último hecho en los problemas 19 y 20 de los ejercicios 5.2.

EJERCICIOS 5.2  Las respuestas a los problemas con número impar comienzan en la página RES-8.

Defl exión de una viga

En los problemas 1 a 5 resuelva la ecuación (4) sujeta a las 
condiciones de frontera adecuadas. La viga es de longitud L y 
w

0
 es una constante.

 1. a)  La viga está empotrada en su extremo izquierdo y 
libre en su extremo derecho y w(x) � w

0
, 0 � x � L.

b)  Use un programa de grafi cación para trazar la curva 
de defl exión cuando w

0
 � 24EI y L � 1.

 2. a)  La viga está apoyada simplemente en ambos extre-
mos, y w(x) � w

0
, 0 � x � L.

b)  Use un programa de grafi cación para trazar la curva 
de defl exión cuando w

0
 � 24EI y L � 1.

 3. a)  La viga está empotrada en su extremo izquierdo y 
apoyada simplemente en su extremo derecho, y w(x) 
� w

0
, 0 � x � L.

b)  Use un programa de grafi cación para trazar la curva 
de defl exión cuando w

0
 � 48EI y L � 1.

 4. a)  La viga está empotrada en su extremo izquierdo y 
apoyada simplemente en su extremo derecho, y w(x) 
� w

0
 sen(px�L), 0 � x � L.

b)  Utilice un programa de grafi cación para trazar la 
curva de defl exión cuando w

0
 � 2 p3EI y L � 1.

c)  Usando un programa de grafi cación para encontrar 
raíces (o de una calculadora gráfi ca) aproxime el 
punto en la gráfi ca del inciso b) en el que ocurre la 
máxima defl exión. ¿Cuál es la máxima defl exión?

 5. a)  La viga está simplemente soportada en ambos extre-
mos y w(x) � w

0
x, 0 � x � L.

b)  Utilice un programa de grafi cación para trazar la 
curva de defl exión cuando w

0
 � 36EI y L � 1.

c)  Usando un programa de grafi cación para encontrar 
raíces (o de una calculadora gráfi ca) aproxime el 

punto en la gráfi ca del inciso b) en el que ocurre la 
máxima defl exión. ¿Cuál es la máxima defl exión?

 6. a)  Calcule la defl exión máxima de la viga en voladizo 
del problema 1.

b)  ¿Cómo se compara con el valor del inciso a) con la 
defl exión máxima de una viga que tiene la mitad de 
largo?

c)  Encuentre la defl exión máxima de la viga apoyada 
del problema 2.

d)  ¿Cómo se compara la defl exión máxima de la viga 
con apoyos simples del inciso c) con el valor de la de-
fl exión máxima de la viga empotrada del ejemplo 1?

 7. Una viga en voladizo de longitud L está empotrada en su 
extremo derecho y se aplica una fuerza de P libras en su ex -
tremo izquierdo libre. Cuando el origen se toma como 
su extremo libre, como se ilustra en la fi gura 5.2.7, se 
puede demostrar que la defl exión y(x) de la viga satisface 
la ecuación diferencial

.EIy Py w(x)
x

2

  Encuentre la defl exión de la viga en voladizo si w(x) � 
w

0
x, 0 � x � L y y(0) � 0, y�(L) � 0.

xO
P

y
L

x

w0x

FIGURA 5.2.7  Defl exión de la viga en voladizo del problema 7.
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 8. Cuando se aplica una fuerza compresiva en lugar de una 
fuerza de tensión en el extremo libre de la viga del pro-
blema 7, la ecuación diferencial de la defl exión es

.EIy Py w(x)
x

2

  Resuelva esta ecuación si w(x) � w
0
x, 0 � x � L, y y(0) 

� 0, y�(L) � 0.

Eigenvalores y funciones propias

En los problemas 9 a 18 determine los eigenvalores y las fun-
ciones propias del problema con valores en la frontera dado.

 9. y� � ly � 0,  y(0) � 0,  y(p) � 0

10. y� � ly � 0,  y(0) � 0,  y(p�4) � 0

11. y� � ly � 0,  y�(0) � 0,  y(L) � 0

12. y� � ly � 0,  y(0) � 0,  y�(p�2) � 0

13. y� � ly � 0,  y�(0) � 0,  y�(p) � 0

14. y� � ly � 0,  y(�p) � 0,  y(p) � 0

15. y� � 2y� � (l � 1)y � 0,  y(0) � 0,  y(5) � 0

16. y� � (l � 1)y � 0,  y�(0) � 0,  y�(1) � 0

17. x2y� � xy� � ly � 0,  y(1) � 0,  y(ep) � 0

18. x2y� � xy� � ly � 0,  y�(e�1) � 0,  y(1) � 0

En los problemas 19 y 20 determine los eigenvalores y las 
funciones propias del problema con valores en la frontera 
dado. Considere sólo el caso l � a4,  a � 0.

19. y(4) � ly � 0,  y(0) � 0,  y�(0) � 0,  y(1) � 0, 
y�(1) � 0

20. y(4) � ly � 0,  y�(0) � 0,  y��(0) � 0,  y(p) � 0, 
y�(p) � 0

Pandeo de una columna delgada

21. Considere la fi gura 5.2.5.  ¿Dónde se deben colocar en la 
columna las restricciones físicas si se quiere que la carga 
crítica sea P

4
? Dibuje la curva de defl exión correspon-

diente a esta carga.

22.  Las cargas críticas de columnas delgadas dependen de las 
condiciones de extremo de la columna. El valor de la carga 
de Euler P

1
 en el ejemplo 3 se obtuvo bajo la suposición de 

que la columna estaba abisagrada por ambos extremos. Su-
ponga que una columna vertical homogénea delgada está em-
potrada en su base (x � 0) y libre en su parte superior (x � L) 
y que se aplica una carga axial constante P en su extremo 
libre. Esta carga causa una defl exión pequeña d como se 
muestra en la fi gura 5.2.8 o no causa tal defl exión. En cual-
quier caso la ecuación diferencial para la defl exión y(x) es

.EI d
2y

dx2 Py P

a) ¿Cuál es la defl exión predicha cuando d � 0?

b)  Cuando d � 0, demuestre que la carga de Euler para 
esta columna es un cuarto de la carga de Euler para la 
columna que está abisagrada del ejemplo 3.

23. Como se mencionó en el problema 22, la ecuación dife-
rencial (5) que gobierna la defl exión y(x) de una columna 
elástica delgada sujeta a una fuerza axial compresiva cons-
tante P es válida sólo cuando los extremos de la columna 
están abisagrados. En general, la ecuación diferencial que 
gobierna la defl exión de la columna está dada por

.
d2

dx2
 EI d

2y

dx2 P  d
2y

dx2 0

  Suponga que la columna es uniforme (EI es una constante) 
y que los extremos de la columna están abisagrados. Mues-
tre que la solución de esta ecuación diferencial de cuarto 
orden sujeta a las condiciones límite y(0) � 0, y�(0) � 0, 
y(L) � 0, y�(L) � 0 es equivalente al análisis del ejemplo 3.

24. Suponga que una columna elástica delgada y uniforme 
está abisagrada en el extremo x � 0 y empotrada en el 
extremo x � L.

a)  Use la ecuación diferencial de cuarto orden del pro-
blema 23 para encontrar los valores propios l

n
, las 

cargas críticas P
n
, la carga de Euler P

1
 y las defl exio-

nes y
n
(x).

b)  Use un programa de grafi cación para trazar la gráfi ca 
del primer modo de pandeo.

Cuerda rotando

25. Considere el problema con valores en la frontera presen-
tado en la construcción del modelo matemático para la 
forma de una cuerda rotatoria: 

.T d
2y

dx2
2y 0,  y(0) 0, y(L) 0

  Para T y r constantes, defi na las velocidades críticas de la 
rotación angular v

n
 como los valores de v para los cuales 

el problema con valores en la frontera tiene soluciones 
no triviales. Determine las rapideces críticas v

n
 y las de-

fl exiones correspondientes y
n
(x).

y
x =  0

x =  L
P

δ

x

FIGURA 5.2.8  Defl exión de la columna vertical del 
problema 22.
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206 ● CAPÍTULO 5  MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

26. Cuando la magnitud de la tensión T no es constante, en-
tonces un modelo para la curva de defl exión o forma y(x) 
que toma una cuerda rotatoria está dado por

.
d

dx
 

T (x) dy

dx
2y 0

  Suponga que 1 � x � e y que T(x) � x2. 

a)  Si y(l) � 0, y(e) � 0 y rv2 � 0.25, demuestre que 
las velocidades críticas de rotación angular son

  n
1
2

 
2 (4n2 2 1)>  y  las defl exiones corres-

pondientes son

y
n
(x) � c

2
x�1�2 sen(np ln x),  n � 1, 2, 3, . . . .

b)  Utilice un programa de grafi cación para trazar las 
curvas de defl exión en el intervalo [1, e] para n � 1, 
2, 3. Elija c

2
 � 1.

Diferentes problemas con valores en la frontera

27. Temperatura en una esfera  Considere dos esferas 
concéntricas de radio r � a y r � b, a � b. Véase la fi gura 
5.2.9. La temperatura u(r) en la región entre las esferas se 
determina del problema con valores en la frontera

,r  
d2u

dr2 2  
du

dr
0,  u(a) u0, u(b) u1

  donde u
0
 y u

1
 son constantes. Resuelva para u(r).

  donde u
0
 y u

1
 son constantes. Demuestre que

.u(r)
u0 ln(r>b) u1 ln(r>a)

ln(a>b)

Problemas para analizar

29. Movimiento armónico simple  El modelo mx� � kx � 0 
para el movimiento armónico simple, que se analizó en 
la sección 5.1, se puede relacionar con el ejemplo 2 de 
esta sección.

Considere un sistema resorte/masa libre no amorti-
guado para el cual la constante de resorte es, digamos, k 
� 10 lb/pie. Determine las masas m

n
 que se pueden unir al 

resorte para que cuando se libere cada masa en la posición 
de equilibrio en t � 0 con una velocidad v

0
 diferente de 

cero, pase por la posición de equilibrio en t � 1 segundo. 
¿Cuántas veces pasa cada masa m

n
 por la posición de 

equilibrio en el intervalo de tiempo 0 � t � 1? 

30. Movimiento amortiguado  Suponga que el modelo para 
el sistema resorte/masa del problema 29 se reemplaza por 
mx� � 2x�� kx � 0. En otras palabras el sistema es libre 
pero está sujeto a amortiguamiento numéricamente igual a 
dos veces la velocidad instantánea. Con las mismas condi-
ciones iniciales y la constante de resorte del problema 29, 
investigue si es posible encontrar una masa m que pase por 
la posición de equilibrio en t � 1 segundo.

En los problemas 31 y 32, determine si es posible encontrar 
valores y

0
 y y

1
 (problema 31) y valores de L � 0 (problema 32) 

tal que el problema con valores iniciales tenga a) exactamente 
una solución no trivial, b) más de una solución, c) ninguna 
solución, d) la solución trivial.

31. y� � 16y � 0,  y(0) � y
0
, y(p�2) � y

1

32. y� � 16y � 0,  y(0) � 1, y(L) � 1

33. Considere el problema con valores en la frontera

y y 0,  y( ) y( ),  y ( ) y ( ).

a)  Al tipo de condiciones en la frontera especifi cadas se 
le llaman condiciones frontera periódicas. Dé una 
interpretación geométrica de estas condiciones.

b)  Determine los eigenvalores y las funciones propias 
del problema.

c)  Usando un programa de grafi cación para trazar algu-
nas de las funciones propias. Compruebe su interpre-
tación geométrica de las condiciones frontera dadas 
en el inciso a).

34. Muestre que los eigenvalores y las funciones propias del 
problema con valores en la frontera

y y 0,  y(0) 0,  y(1) y (1) 0

  son n
2
n  y y

n
 � sen a

n
x, respectivamente, donde a

n
, 

n � 1, 2, 3, ... son las raíces positivas consecutivas de la 
ecuación tan a � � a.

u = u1

u = u0

FIGURA 5.2.9  Esferas concéntricas del problema 27.

28. Temperatura en un anillo  La temperatura u(r) en el 
anillo circular mostrado en la fi gura 5.2.10 se determina a 
partir del problema con valores en la frontera

,r d
2u

dr2

du

dr
0,  u(a) u0, u(b) u1

FIGURA 5.2.10  Anillo circular del problema 28.

a

u = u1

u = u0

b
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Tarea para el laboratorio de computación

35. Use un SAC para trazar las gráfi cas que lo convenzan 
de que la ecuación tan a � �a del problema 34 tiene 
un número infi nito de raíces. Explique por qué se pueden 
despreciar las raíces negativas de la ecuación. Explique 
por qué l � 0 no es un eigenvalor aun cuando a � 0 es 
una solución obvia de la ecuación tan a � �a.

36. Usando un programa para determinar raíces de un SAC 
aproxime los primeros cuatro valores propios l

1
, l

2
, l

3
 y 

l
4
 para el PVF del problema 34.

En los problemas 37 y 38, determine los eigenvalores y las 
funciones propias del problema con valores en la frontera. 
Use un SAC para aproximar los primeros cuatro valores pro-
pios l

1
, l

2
, l

3
 y l

4
.

37. y y 0, y(0) 0, y(1) 1
2 y (1) 0

38. y(4) � ly � 0, y(0) � 0, y�(0) � 0, y(1) � 0, y�(1) � 0 
[Sugerencia: considere sólo l � a4, a � 0.]

MODELOS NO LINEALES

REPASO DE MATERIAL 
● Sección 4.9

INTRODUCCIÓN  En esta sección se examinan algunos modelos matemáticos no lineales de 
orden superior. Algunos de estos modelos se pueden resolver usando el método de sustitución (lo 
que conduce a la reducción de orden de la ED) presentado en la página 174. En algunos casos donde 
no se puede resolver el modelo, se muestra cómo se reemplaza la ED no lineal por una ED lineal 
mediante un proceso conocido como linealización.

5.3

RESORTES NO LINEALES  El modelo matemático en (1) de la sección 5.1 tiene la 
forma

 m
d 2x

dt2 F(x) 0 , (1)

donde F(x) � kx. Debido a que x denota el desplazamiento de la masa desde su posición 
de equilibrio, F(x) � kx es la ley de Hooke, es decir, la fuerza ejercida por el resorte 
que tiende a restaurar la masa a la posición de equilibrio. Un resorte que actúa bajo una 
fuerza restauradora lineal F(x) � kx se llama resorte lineal. Pero los resortes pocas 
veces son lineales. Dependiendo de cómo esté construido y del material utilizado, un 
resorte puede variar desde “fl exible” o suave, hasta “rígido” o duro, por lo que su fuerza 
restauradora puede variar respecto a la ley lineal. En el caso de movimiento libre, si se 
supone que un resorte en buen estado tiene algunas características no lineales, entonces 
podría ser razonable suponer que la fuerza restauradora de un resorte, es decir, F(x) en 
la ecuación (1), es proporcional al cubo del desplazamiento x de la masa más allá de su 
posición de equilibrio o que F(x) es una combinación lineal de potencias del desplaza-
miento como el que se determina mediante la función no lineal F(x) � kx � k

1
x3. Un 

resorte cuyo modelo matemático incorpora una fuerza restauradora no lineal, como

 m
d 2x

dt2 kx3 0      o     m
d 2x

dt2 kx k1x3 0, (2)

se llama resorte no lineal. Además, se examinan modelos matemáticos en los que el 
amortiguamiento impartido al movimiento era proporcional a la velocidad instantánea 
dx�dt y la fuerza restauradora de un resorte está dada por la función lineal F(x) � kx. 
Pero estas fueron suposiciones muy simples; en situaciones más reales, el amortigua-
miento podría ser proporcional a alguna potencia de la velocidad instantánea dx�dt. La 
ecuación diferencial no lineal

 m
d 2x

dt2

dx

dt

dx

dt
kx 0  (3)

5.3  MODELOS NO LINEALES ● 207
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208 ● CAPÍTULO 5  MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

es un modelo de un sistema libre resorte/masa en el que la fuerza de amortiguamien -
to es proporcional al cuadrado de la velocidad. Así que es posible imaginar otras clases 
de modelos: amortiguamiento lineal y fuerza restauradora no lineal, amortiguamiento 
no lineal y fuerza restauradora no lineal, etcétera. El punto es que las características no 
lineales de un sistema físico dan lugar a un modelo matemático que es no lineal.

Observe en (2) que tanto F(x) � kx3 como F(x) � kx � k
1
x3 son funciones impares 

de x. Para ver por qué una función polinomial que contiene sólo potencias impares de 
x proporciona un modelo razonable para la fuerza restauradora, se expresa a F como 
una serie de potencias centrada en la posición de equilibrio x � 0:

 F (x) c0 c1x c2x2 c3x3 .  

Cuando los desplazamientos x son pequeños, los valores de x
n
 son insignifi cantes para 

n sufi cientemente grande. Si se trunca la serie de potencias, por ejemplo, en el cuarto 
término, entonces F(x) � c

0
 � c

1
x � c

2
x2 � c

3
x3. Para la fuerza en x � 0, 

 ,F (x) c0 c1x c2x2 c3x3  

y para que la fuerza en �x � 0,

 F( x) c0 c1x c2x2 c3x3  

tenga la misma magnitud pero actúe en dirección contraria, se debe tener F(�x) � 
�F(x). Debido a que esto signifi ca que F es una función impar, se debe tener c

0
 � 0 y c

2
 

� 0 y por tanto, F(x) � c
1
x � c

3
x3. Si se hubieran usado sólo los primeros dos términos 

de la serie, el mismo argumento produce la función lineal F(x) � c
1
x. Se dice que una 

fuerza restauradora con potencias mixtas, como F(x) � c
1
x � c

2
x2 y las vibraciones 

correspondientes, son asimétricas. En el análisis siguiente se escribe c
1
 � k y c

3
 � k

1
. 

RESORTES DUROS Y SUAVES  Analicemos con más detalle la ecuación (1) para 
el caso en que la fuerza restauradora está dada por F(x) � kx � k

l
x3, k � 0. Se dice 

que el resorte es duro si k
l
 � 0 y suave si k

l
 � 0. Las gráfi cas de tres tipos de fuer-

zas restauradoras se muestran en la fi gura 5.3.1. En el ejemplo siguiente se ilustran 
estos dos casos especiales de la ecuación diferencial m d2x�dt2 � kx � k

1
x3 � 0, 

m � 0, k � 0.

EJEMPLO 1  Comparación de resortes duros y suaves

Las ecuaciones diferenciales

  (4)

y 
d 2x

dt2 x x3 0

d 2x

dt2 x x3 0

 (5)

son casos especiales de la segunda ecuación en (2) y son modelos de un resorte duro y 
uno suave, respectivamente. En la fi gura 5.3.2a se muestran dos soluciones de (4) y en 
la fi gura 5.3.2b dos soluciones de (5) obtenidas de un programa de solución numérica. 
Las curvas mostradas en rojo son soluciones que satisfacen las condiciones iniciales 
x(0) � 2, x�(0) � �3; las dos curvas en rojo son soluciones que satisfacen x(0) � 2, 
x�(0) � 0. Desde luego estas curvas solución indican que el movimiento de una masa 
en el resorte duro es oscilatorio, mientras que el movimiento de una masa en el resorte 
fl exible al parecer es no oscilatorio. Pero se debe tener cuidado respecto a sacar con-
clusiones con base en un par de curvas de solución numérica. Un cuadro más complejo 
de la naturaleza de las soluciones de ambas ecuaciones, se obtiene del análisis cualita-
tivo descrito en el capítulo 10.  

F
resorte lineal

resorte 
duro

resorte suave

x

FIGURA 5.3.1  Resortes duros y suaves.

a) resorte duro

b) resorte suave

x

  

  x(0)= 2,
x'(0)= _3

t

  x(0)= 2,
x'(0)= _3

t

x

  x(0)= 2,
x'(0)= 0

  x(0)= 2,
x'(0)= 0

FIGURA 5.3.2  Curvas de solución 
numérica.
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PÉNDULO NO LINEAL  Cualquier objeto que oscila de un lado a otro se llama 
péndulo físico. El péndulo simple es un caso especial del péndulo físico y consiste 
en una varilla de longitud l a la que se fi ja una masa m en un extremo. Al describir 
el movimiento de un péndulo simple en un plano vertical, se hacen las suposiciones 
de simplifi cación de que la masa de la varilla es despreciable y que ninguna fuerza 
externa de amortiguamiento o motriz actúa sobre el sistema. El ángulo de desplaza-
miento u del péndulo, medido desde la vertical, como se ilustra en la fi gura 5.3.3, se 
considera positivo cuando se mide a la derecha de OP y negativo a la izquierda de OP. 
Ahora recuerde que el arco s de un círculo de radio l se relaciona con el ángulo central 
u por la fórmula s � lu. Por tanto, la aceleración angular es

 .a
d 2s

dt2 l  
d 2

dt2
 

De la segunda ley de Newton tenemos que

 .F ma ml  
d 2

dt2
 

De la fi gura 5.3.3 se ve que la magnitud de la componente tangencial de la fuerza 
debida al peso W es mg sen u. En cuanto a dirección esta fuerza es �mg sen u porque 
apunta a la izquierda para u � 0 y a la derecha para u � 0. Se igualan las dos versiones 
distintas de la fuerza tangencial para obtener ml d2u�dt2 � �mg sen u, o

 
d 2

dt2

g

l
 sen 0 . (6)

LINEALIZACIÓN  Como resultado de la presencia de sen u, el modelo en (6) es no 
lineal. En un intento por entender el comportamiento de las soluciones de ecuaciones 
diferenciales no lineales de orden superior, en ocasiones se trata de simplifi car el pro-
blema sustituyendo términos no lineales por ciertas aproximaciones. Por ejemplo, la 
serie de Maclaurin para sen u, está dada por

 sen 
3

3!

5

5!
. . .  

así que si se usa la aproximación sen u � u � u 3�6, la ecuación (6) se convierte en 
d 2u�dt 2 � (g�l)u � (g�6l)u 3 � 0. Observe que esta última ecuación es la misma que 
la segunda ecuación lineal en (2) con m � 1, k � g�l y k

1
 � �g�6l. Sin embargo, si se 

supone que los desplazamientos u son sufi cientemente pequeños para justifi car el uso 
de la sustitución sen u � u, entonces la ecuación (6) se convierte en

 
d 2

dt2

g

l
 0. (7)

Vea el problema 22 en los ejercicios 5.3. Si se hace v2 � g�l, se reconoce a (7) como la 
ecuación diferencial (2) de la sección 5.1 que es un modelo para las vibraciones libres 
no amortiguadas de un sistema lineal resorte/masa. En otras palabras, (7) es de nuevo 
la ecuación lineal básica y� � ly � 0 analizada en la página 201 de la sección 5.2. 
Como consecuencia se dice que la ecuación (7) es una linealización de la ecuación (6). 
Debido a que la solución general de (7) es u(t) � c

1
 cos vt � c

2
 sen vt, esta linealiza-

ción indica que para condiciones iniciales correspondientes a oscilaciones pequeñas el 
movimiento del péndulo descrito por (6) es periódico.

EJEMPLO 2  Dos problemas con valores iniciales

Las gráfi cas de la fi gura 5.3.4a se obtuvieron con ayuda de un programa de solución nu-
mérica y representan curvas solución de la ecuación (6) cuando v2 � 1. La curva azul 
ilustra la solución de (6) que satisface las condiciones iniciales (0) 1

2, (0) 1
2 ,

mientras que la curva roja es la solución de (6) que satisface u (0) 2(0) 1
2, . La 

O

θ

θ
P

W = mg

mg cos

θmg sen 

θ

l

FIGURA 5.3.3  Péndulo simple.

t

2��

(0) =   , (0)  = 2

(0)  =   , (0) = 

a)

b) (0) � ,
�(0) �

c) (0) � ,

















�


�


�
 (0) � 2

1
2

1
2

1
2

1
2

1
2

1
2

FIGURA 5.3.4  Péndulo oscilante en 
b); péndulo giratorio en c).
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210 ● CAPÍTULO 5  MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

curva azul representa una solución periódica, el péndulo que oscila en vaivén como 
se muestra en la fi gura 5.3.4b con una amplitud aparente A � 1. La curva roja mues-
tra que u crece sin límite cuando aumenta el tiempo, el péndulo comenzando desde 
el mismo desplazamiento inicial recibe una velocidad inicial de magnitud sufi cien-
temente grande para enviarlo hasta arriba; en otras palabras, el péndulo gira respecto 
a su pivote como se ilustra en la fi gura 5.3.4c. En ausencia de amortiguamiento, el 
movimiento en cada caso continúa de forma indefi nida. 

CABLES TELEFÓNICOS  La ecuación diferencial de primer orden dy�dx � W�T
1
 

es la ecuación (17) de la sección 1.3. Esta ecuación diferencial, establecida con la 
ayuda de la fi gura 1.3.7 en la página 25, sirve como modelo matemático para la forma 
de un cable fl exible suspendido entre dos soportes verticales cuando el cable lleva 
una carga vertical. En la sección 2.2 se resuelve esta ED simple bajo la suposición 
de que la carga vertical que soportan los cables de un puente suspendido era el peso de 
la carpeta asfáltica distribuida de modo uniforme a lo largo del eje x. Con W � rx, r 
el peso por unidad de longitud de la carpeta asfáltica, la forma de cada cable entre los 
apoyos verticales resultó ser parabólica. Ahora se está en condiciones de determinar 
la forma de un cable fl exible uniforme que cuelga sólo bajo su propio peso, como un 
cable suspendido entre dos postes telefónicos. Ahora la carga vertical es el cable y por 
tanto, si r es la densidad lineal del alambre (medido, por ejemplo, en libras por pie) y s 
es la longitud del segmento P

1
P

2
 en la fi gura 1.3.7, entonces W � rs. Por tanto, 

 
dy

dx

s

1
. (8)

Puesto que la longitud de arco entre los puntos P
1
 y P

2
 está dada por

 s
x

0 B 
1

dy

dx

2

dx , (9)

del teorema fundamental del cálculo se tiene que la derivada de (9) es

 
ds

dx B 
1

dy

dx

2

. (10)

Derivando la ecuación (8) respecto a x y usando la ecuación (10) se obtiene la ecuación 
de segundo orden 

 
d 2y

dx2 T1

ds

dx
      o     

d 2y

dx2 T1
1

dy

dx

2

B
. (11)

En el ejemplo siguiente se resuelve la ecuación (11) y se muestra que la curva del 
cable suspendido es una catenaria. Antes de proceder, observe que la ecuación diferen-
cial no lineal de segundo orden (11) es una de las ecuaciones que tienen la forma F(x, 
y�, y�) � 0 analizadas en la sección 4.9. Recuerde que hay posibilidades de resolver una 
ecuación de este tipo al reducir el orden de la ecuación usando la sustitución u � y�.

EJEMPLO 3  Un problema con valores iniciales

De la posición del eje y en la fi gura 1.3.7 es evidente que las condiciones iniciales 
relacionadas con la segunda ecuación diferencial en (11) son y(0) � a y y�(0) � 0. 

Si se sustituye u � y�, entonces la ecuación en (11) se convierte en 
du

dx 1
1 1 u2 .

Separando las variables se encuentra que

 
du

1 1 u2 T1
dx      se obtiene     .senh 1u

T1
x c1  
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Ahora, y�(0) � 0 es equivalente a u(0) � 0. Puesto que senh�1 0 � 0, c
1
 � 0 y por 

tanto, u � senh (rx�T
1
). Por último, integrando ambos lados de

 
dy

dx
senh

T1
x,      obtenemos     .y

T1 cosh 
T1

 x c2  

Con y(0) � a, cosh 0 � 1, se deduce de la última ecuación que c
2
 � a � T

1
�r. Por tanto 

vemos que la forma del cable que cuelga está dada por y (T1> ) cosh( x> T1)
.a T1>  

Si en el ejemplo 3 hemos sabido escoger desde el principio a � T
1
�r, entonces 

la solución del problema habría sido simplemente el coseno hiperbólico y � (T
1
�r) 

cosh (rx�T
1
).

MOVIMIENTO DE UN COHETE  En la sección 1.3 se vio que la ecuación diferencial 
de un cuerpo de masa m en caída libre cerca de la superfi cie de la Tierra está dada por

 m d
2s

dt2 mg,      o simplemente    ,
d 2s

dt2 g  

donde s representa la distancia desde la superfi cie de la Tierra hasta el objeto y se 
considera que la dirección positiva es hacia arriba. Dicho de otra forma, la suposición 
básica en este caso es que la distancia s al objeto es pequeña cuando se compara con 
el radio R de la Tierra; en otras palabras, la distancia y desde el centro de la Tierra al 
objeto es aproximadamente la misma que R. Si, por otro lado, la distancia y al objeto, 
por ejemplo un cohete o una sonda espacial, es grande comparada con R, entonces se 
combina la segunda ley de Newton del movimiento y su ley de gravitación universal 
para obtener una ecuación diferencial en la variable y.

Suponga que se lanza verticalmente hacia arriba un cohete desde el suelo como se 
ilustra en la fi gura 5.3.5. Si la dirección positiva es hacia arriba y se desprecia la resis-
tencia del aire, entonces la ecuación diferencial de movimiento después de consumir 
el combustible es

 m d
2y

dt2 k Mm

y2       o     
d 2y

dt2 k M

y2 , (12)

donde k es una constante de proporcionalidad, y es la distancia desde el centro de la 
Tierra al cohete, M es la masa de la Tierra y m es la masa del cohete. Para determinar 
la constante k, se usa el hecho de que cuando y � R, kMm�R2 � mg o k � gR2�M. Así 
que la última ecuación en (12) se convierte en

  
d 2y

dt2 g R
2

y2
. (13)

Véase el problema 14 en los ejercicios 5.3.

MASA VARIABLE  Observe en la explicación anterior que se describe el movimiento 
del cohete después de que ha quemado todo su combustible, cuando supuestamente su 
masa m es constante. Por supuesto, durante su ascenso la masa total del cohete propul-
sado varía a medida que se consume el combustible. La segunda ley del movimiento, 
como la adelantó Newton en un principio, establece que cuando un cuerpo de masa m 
se mueve por un campo de fuerza con velocidad v, la rapidez de cambio respecto al 
tiempo de la cantidad de movimiento mv del cuerpo es igual a la fuerza aplicada o neta 
F que actúa sobre el cuerpo:

 F
d

dt
(mv) . (14)

Si m es constante, entonces la ecuación (14) produce la forma más familiar F � m dv�dt 
� ma, donde a es la aceleración. En el siguiente ejemplo se usa la forma de la segunda 
ley de Newton dada en la ecuación (14), en la que la masa m del cuerpo es variable.

v0

y

centro de 
la Tierra

R

FIGURA 5.3.5  La distancia al cohete 
es grande comparada con R.
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212 ● CAPÍTULO 5  MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

EJEMPLO 4  Cadena jalada hacia arriba por una fuerza constante

Una cadena uniforme de 10 pies de largo se enrolla sin tensión sobre el piso. Un ex-
tremo de la cadena se jala verticalmente hacia arriba usando una fuerza constante de 
5 libras. La cadena pesa 1 libra por pie. Determine la altura del extremo sobre el nivel 
de suelo al tiempo t. Véase la fi gura 5.3.6.

SOLUCIÓN  Supongamos que x � x(t) denota la altura del extremo de la cadena en el 
aire al tiempo t, v � dx�dt y que la dirección positiva es hacia arriba. Para la porción de 
la cadena que está en el aire en el tiempo t se tienen las siguientes cantidades variables:

                      peso:  

                      masa:  

                      fuerza neta: F  5 W 5 x.

 m W>g x>32,

 W (x pie) (1 lb/pie) x,

 

Así de la ecuación (14) se tiene

 

regla del producto

� v �  160 � 32x.x(     v) � 5 � x o
x

–––
32

d
–––
dt

dv
–––
dt

dx
–––
dt  

(15)

Debido a que v � dx�dt, la última ecuación se convierte en

 x  
d 2x

dt2

dx

dt

2

32x 160. (16)

La segunda ecuación diferencial no lineal de segundo orden (16) tiene la forma F(x, x�, 
x�) � 0, que es la segunda de las dos formas consideradas en la sección 4.9 que posi-
blemente se pueden resolver por reducción de orden. Para resolver la ecuación (16), se 

vuelve a (15) y se usa v � x� junto con la regla de la cadena. De 
dv

dt

dv

dx

dx

dt
v 

dv

dxla segunda ecuación en (15) se puede escribir como

 xv 
dv

dx
v2 160 32x . (17)

Al inspeccionar la ecuación (17) podría parecer de difícil solución, puesto que no se 
puede caracterizar como alguna de las ecuaciones de primer orden resueltas en el capí-
tulo 2. Sin embargo, si se reescribe la ecuación (17) en la forma diferencial M(x, v)dx 
� N(x, v)dv � 0, se observa que, aunque la ecuación

 (v2 32x 160)dx xv dv 0 (18)

no es exacta, se puede transformar en una ecuación exacta al multiplicarla por un 
factor integrante. De (M

y
 � N

x
)�N � l�x se ve de (13) de la sección 2.4 que un factor 

integrante es e dx/x eln x x.  Cuando la ecuación (18) se multiplica por m(x) � x, la 
ecuación resultante es exacta (compruebe). Identifi cando � f ��x � xv2 � 32x2 � 160
x, � f ��v � x2v y procediendo después como en la sección 2.4, se obtiene

 
1

2
 x2v2 32

3
x3 80x2 c1. (19)

Puesto que se supuso que al principio toda la cadena está sobre el piso, se tiene x(0) 
� 0. Esta última condición aplicada a la ecuación (19) produce c

1
 � 0. Resolviendo 

la ecuación algebraica 1
2 x

2v2 32
3  x

3 80x2 0  para v � dx�dt � 0, se obtiene otra 
ecuación diferencial de primer orden,

 .
dx

dt B 
160

64
3

 x  

x(t)

5 lb
fuerza 
hacia
arriba 

FIGURA 5.3.6  Cadena jalada hacia 
arriba por una fuerza constante.
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La última ecuación se puede resolver por separación de variables. Se debe comprobar que

 
3

32
 160

64

3
 x

1/2

t c2 . (20)

Esta vez la condición inicial x(0) � 0 indica que c2 3110 8. Por último, elevando 
al cuadrado ambos lados de (20) y despejando x, llegamos al resultado deseado,

 x(t)
15

2

15

2
1

4110

15
t

2

.  (21)

La gráfi ca de la ecuación 21 que se presenta en la fi gura 5.3.7 no se debe, con bases 
físicas, aceptar tal cual. Véase el problema 15 de los ejercicios 5.3. 

0.5

1

8
7
6
5
4
3
2

1
t

x

1.5 2 2.50

FIGURA 5.3.7  Gráfi ca de (21) para 
x(t) � 0.

EJERCICIOS 5.3  Las respuestas a los problemas con número impar comienzan en la página RES-8.

Al profesor  Además de los problemas 24 y 25, todos o 
parte de los problemas 1 a 6, 8 a 13, 15, 20 y 21 podrían servir 
como tareas del laboratorio de computación. 

Resortes no lineales
En los problemas 1 al 4, la ecuación diferencial dada es mo-
delo de un sistema resorte/masa no amortiguado en el que la 
fuerza restauradora F(x) en (1) es no lineal. Para cada ecua-
ción utilice un programa de solución numérica para trazar las 
curvas solución que satisfacen las condiciones iniciales del 
problema. Si al parecer las soluciones son periódicas, use la 
curva solución para estimar el periodo T de las oscilaciones.

 1. 

  

 2. 

  

 3. 

  

 4. 

  x(0) 1, x (0) 1; x(0) 3, x (0) 1

d 2x

dt2 xe0.01x 0,

x(0) 1, x (0) 1; x(0) 3
2, x (0) 1

d 2x

dt2 2x x2 0,

x(0) 1, x (0) 1; x(0) 2, x (0) 2

d 2x

dt2 4x 16x3 0,

x(0) 1, x (0) 1; x(0) 1
2, x (0) 1

d 2x

dt2 x3 0,

 5. En el problema 3, suponga que la masa se libera desde la 
posición inicial x(0) � 1 con una velocidad inicial x�(0) 
� x

1
. Use un programa de solución numérica para estimar 

el valor más pequeño de �x
1
� en el que el movimiento de la 

masa es no periódico.

 6. En el problema 3, suponga que la masa se libera desde una 
posición inicial x(0) � x

0
 con velocidad inicial x�(0) � 1. 

Usando un programa de solución numérica estime un inter-
valo a � x

0
 � b para el cual el movimiento sea oscilatorio.

 7. Determine una linealización de la ecuación diferencial 
del problema 4.

 8. Considere el modelo de un sistema resorte/masa no lineal 
sin amortiguamiento dado por x� � 8x � 6x3 � x5 � 0. 
Use un programa de solución numérica para analizar la 
naturaleza de las oscilaciones del sistema que correspon-
den a las condiciones iniciales:

 

 

  x(0) 2, x (0) 0;   x(0) 12, x (0) 1.

 x(0) 12, x (0) 1;   x(0) 2, x (0) 1
2;

 x(0) 1, x (0) 1;  x(0) 2, x (0) 1
2;

En los problemas 9 y 10 la ecuación diferencial dada es un 
modelo de un sistema resorte/masa no lineal amortiguado. Pre-
diga el comportamiento de cada sistema cuando t S �. Para 
cada ecuación use un programa de solución numérica para ob-
tener las curvas solución que satisfacen las condiciones inicia-
les del problema dadas.

 9. 

  

10. 

   x(0) 0, x (0) 3
2; x(0) 1, x (0) 1

d 2x

dt2

dx

dt
x x3 0,

x(0) 3, x (0) 4; x(0) 0, x (0) 8

d 2x

dt2

dx

dt
x x3 0, 

11.  El modelo mx� � kx � k
1
x3 � F

0
 cos vt de un sistema no 

amortiguado resorte/masa forzado en forma periódica se 
llama ecuación diferencial de Duffi ng. Considere el pro-
blema con valores iniciales x� � x � k

1
x3 � 5 cos t, x(0) � 

1, x�(0) � 0. Use un programa de solución numérica para in-
vestigar el comportamiento del sistema para valores de k

1
 � 0 

que van de k
1
 � 0.01 a k

1
 � 100. Exprese sus conclusiones.

12. a)  Encuentre los valores de k
1
 � 0 para los cuales el 

sistema del problema 11 es oscilatorio.

b)  Considere el problema con valores iniciales

x� � x � k
1
x3 � ,cos 32 t   x(0) � 0,  x�(0) � 0.

    Encuentre valores para k
1
 � 0 para los cuales el sis-

tema es oscilatorio.
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Péndulo no lineal
13. Considere el modelo del péndulo no lineal amortiguado 

libre dado por

.
d 2

dt2 2  
d

dt
2 sen 0

  Use un programa de solución numérica para inves-
tigar si el movimiento en los dos casos l2 � v2 � 0 y 
l2 � v2 � 0 corresponde, respectivamente, a los casos 
sobreamortiguado y subamortiguado analizados en la 
sección 5.1 para sistemas resorte/masa. Elija las condi-
ciones iniciales apropiadas y los valores de l y v.

Movimiento de un cohete

14. a)  Use la sustitución v � dy�dt para despejar de la ecua-
ción (13) a v en términos de y. Suponiendo que la 
velocidad del cohete cuando se agota el combustible 
es v � v

0
 y y � R en ese instante, demuestre que el 

valor aproximado de la constante c de integración es 

c gR 1
2

 v0 

2 .
b)  Use la solución para v del inciso a) con el fi n de de-

mostrar que la velocidad de escape de un cohete está 
dada por v0 1 2gR . [Sugerencia: Tome y S � y 
suponga que v � 0 para todo tiempo t.]

c)  El resultado del inciso b) se cumple para cualquier cuerpo 
del sistema solar. Use los valores g � 32 pies/s2 y R � 
4000 millas para demostrar que la velocidad de escape de 
la Tierra es (aproximadamente) v

0
 � 25 000 mi/h.

d)  Determine la velocidad de escape en la Luna si la acelera-
ción debida a la gravedad es 0.165g y R � 1080 millas.

Masa variable

15. a)  En el ejemplo 4, ¿qué longitud de la cadena se es-
peraría, por intuición, que pudiera levantar la fuerza 
constante de 5 libras?

b) ¿Cuál es la velocidad inicial de la cadena?

c)  ¿Por qué el intervalo de tiempo que corresponde a 
x(t) � 0 ilustrado en la fi gura 5.3.7, no es el inter-
valo I de defi nición de la solución (21)? Determine 
el intervalo I. ¿Qué longitud de la cadena se levanta 
en realidad? Explique cualquier diferencia entre esta 
respuesta y la predicción del inciso a).

d)  ¿Por qué esperaría que x(t) fuese una solución perió-
dica?

16. Una cadena uniforme de longitud L, medida en pies, se man-
tiene verticalmente por lo que el extremo inferior apenas 
toca el piso. La cadena pesa 2 lb�pie. El extremo superior 
que está sujeto se libera desde el reposo en t � 0 y la cadena 
cae recta. Si x(t) denota la longitud de la cadena en el piso al 
tiempo t, se desprecia la resistencia del aire y se determina 
que la dirección positiva es hacia abajo, entonces

.(L x)
d 2x

dt2

dx

dt

2

Lg

  a)  Resuelva v en términos de x. Determine x en térmi-
nos de t. Exprese v en términos de t.

b)  Determine cuánto tarda en caer toda la cadena al suelo.

c)  ¿Qué velocidad predice el modelo del inciso a) para el 
extremo superior de la cadena cuando toca el suelo?

Diferentes modelos matemáticos
17. Curva de persecución  En un ejercicio naval, un barco S

1
 

es perseguido por un submarino S
2
 como se muestra en la 

fi gura 5.3.8. El barco S
1
 parte del punto (0, 0) en t � 0 y se 

mueve a lo largo de un curso en línea recta (el eje y) a una 
rapidez constante v

1
. El submarino S

2
 mantiene al barco S

1
 

en contacto visual, indicado por la línea punteada L en la 
fi gura mientras que viaja con una rapidez constante v

2
 a lo 

largo de la curva C. Suponga que el barco S
2
 comienza en el 

punto (a, 0), a � 0, en t � 0 y que L es tangente a C. 
a)  Determine un modelo matemático que describe la 

curva C. 
b)  Encuentre una solución explícita de la ecuación dife-

rencial. Por conveniencia defi na r � v
1
�v

2
. 

c)  Determine si las trayectorias de S
1
 y S

2
 alguna vez se in-

terceptarían al considerar los casos r � 1, r � 1 y r � 1.

  [Sugerencia: 
dt

dx

dt

ds
 
ds

dx
, donde s es la longitud de 

 arco medida a lo largo de C.]

S2

x

y

S1

L

C

FIGURA 5.3.8  Curva de persecución del problema 17.

18. Curva de persecución  En otro ejercicio naval, un des-
tructor S

1
 persigue a un submarino S

2
. Suponga que S

1
 en 

(9, 0) en el eje x detecta a S
2
 en (0, 0) y que al mismo tiempo 

S
2
 detecta a S

1
. El capitán del destructor S

1
 supone que el 

submarino emprenderá una acción evasiva inmediata y es-
pecula que su nuevo curso probable es la recta indicada en 
la fi gura 5.3.9. Cuando S

1
 está en (3, 0), cambia de su curso 

en línea recta hacia el origen a una curva de persecución 
C. Suponga que la velocidad del destructor es, en todo mo-
mento, una constante de 30 millas�h y que la rapidez del 
submarino es constante de 15 millas�h.
a)  Explique por qué el capitán espera hasta que S

1
 llegue 

a (3, 0) antes de ordenar un cambio de curso a C.
b)  Usando coordenadas polares, encuentre una ecuación 

r � f (u) para la curva C.
c)  Sea que T denote el tiempo, medido desde la detec-

ción inicial, en que el destructor intercepta al subma-
rino. Determine un límite superior para T.
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Problemas para analizar
19. Analice por qué el término de amortiguamiento de la 

ecuación (3) se escribe como

dx

dt
 
dx

dt
    en lugar de   .  

dx

dt

2

20. a)  Experimente con una calculadora para encontrar un in-
tervalo 0 � u � u

1
, donde u se mide en radianes, para 

el cual se considera que sen u � u es una estimación 
bastante buena. Luego, use un programa de grafi ca-
ción para trazar las gráfi cas de y � x y y � sen x en el 
mismo eje de coordenadas para 0 � x � p�2. ¿Las grá-
fi cas confi rman sus observaciones con la calculadora?

b)  Utilice un programa de solución numérica para trazar 
las curvas solución de los problemas de valor inicial.

 

y 
d 2

dt2 0,     (0) 0,  (0) 0

d 2

dt2 sen 0,  (0) 0,  (0) 0

  para varios valores de u
0
 en el intervalo 0 � u � u

1
 de-

terminado en el inciso a). Luego, trace la gráfi ca cur-
vas de solución de los problemas con valores iniciales 
para varios valores de u

0
 para los cuales u

0
 � u

1
.

21. a)  Considere el péndulo no lineal cuyas oscilaciones se 
defi nen por la ecuación (6). Use un programa de solu-
ción numérica como ayuda para determinar si un pén-
dulo de longitud l oscilará más rápido en la Tierra o 
en la Luna. Use las mismas condiciones iniciales, pero 
elíjalas de tal modo que el péndulo oscile en vaivén.

b)  ¿Para qué lugar del inciso a) el péndulo tiene mayor 
amplitud?

c)  ¿Las conclusiones de los incisos a) y b) son las mis-
mas cuando se emplea el modelo lineal (7)?

Tarea para el laboratorio de computación
22. Considere el problema con valores iniciales

d 2

dt2 sen 0,  (0)
12

, (0)
1

3

  para un péndulo no lineal. Puesto que no se puede resol-
ver la ecuación diferencial, no es posible encontrar una 

solución explícita de este problema. Pero suponga que se 
desea determinar la primer t

l
 � 0 para la cual el péndulo 

de la fi gura 5.3.3, comenzando desde su posición inicial 
a la derecha, alcanza la posición OP, es decir, la primera 
raíz positiva de u(t) � 0. En este problema y el siguiente, 
se examinan varias formas de cómo proceder.

a)  Aproxime t
1
 resolviendo el problema lineal 

d 2u�dt 2 � u � 0, u (0) � p�12, (0) 1
3.

b)  Use el método ilustrado en el ejemplo 3 de la sección 
4.9 para encontrar los primeros cuatro términos no 
nulos de una solución en serie de Taylor u(t) centrada 
en 0 para el problema con valores iniciales no lineal. 
Dé los valores exactos de los coefi cientes.

c)  Use los dos primeros términos de la serie de Taylor 
del inciso b) para aproximar t

1
.

d)  Emplee los tres primeros términos de la serie de 
Taylor del inciso b) para aproximar t

1
.

e)  Utilice una aplicación de un SAC (o una calculadora grá-
fi ca) para encontrar raíces y los primeros cuatro términos 
de la serie de Taylor del inciso b) para aproximar t

1
.

f)  En esta parte del problema se proporcionan las ins-
trucciones de Mathematica que permiten aproximar 
la raíz t

1
. El procedimiento se modifi ca con facilidad 

por lo que se puede aproximar cualquier raíz de u(t) � 
0. (Si no tiene Mathematica, adapte el procedimiento 
mediante la sintaxis correspondiente para el SAC que 
tiene.) Reproduzca con precisión y luego, a su vez, eje-
cute cada línea de la secuencia dada de instrucciones.

sol � NDSolve [{y�[t] � Sin[y[t]] �� 0, 
y[0] �� Pi�12, y�[0] �� �1�3}, 
y, {t, 0, 5}]��Flatten

Solución � y[t]�.sol
Clear[y]
y[t_]: � Evaluate[Solución]
y[t]
gr1 � Plot[y[t], {t, 0, 5}]
root � FindRoot[y[t] �� 0, {t, 1}]

g)  Modifi que de manera apropiada la sintaxis del inciso f) y 
determine las siguientes dos raíces positivas de u(t) � 0.

23.  Considere un péndulo que se libera desde el reposo con un 
desplazamiento inicial de u

0
 radianes. Resolviendo el modelo 

lineal (7) sujeto a las condiciones iniciales u(0) � u
0
, u�(0) � 

0 se obtiene (t) 0 cos 1 g/l t . El periodo de oscilaciones 
que se predice con este modelo, se determina mediante la co-
nocida fórmula T 2 1 g/l 2  1 l/g . Lo interesante 
de esta fórmula para T es que no depende de la magnitud del 
desplazamiento inicial u

0
. En otras palabras, el modelo lineal 

predice que el tiempo que tardaría el péndulo en oscilar desde 
un desplazamiento inicial de, digamos, u

0
 � p�2 (� 90°) a 

�p�2 y de regreso otra vez, sería exactamente el mismo que 
tardaría en completar el ciclo de, digamos, u

0
 � p�360 (� 

0.5°) a �p�360. Esto es ilógico desde el punto de vista in-
tuitivo ya que el periodo real debe depender de u

0
.

S2

L

x

y

S1

C

θ

(3, 0) (9, 0)

FIGURA 5.3.9  Curva de persecución del problema 18.

5.3  MODELOS NO LINEALES ● 215
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216 ● CAPÍTULO 5  MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

Si se supone que g � 32 pies/s2 y l � 32 pies, enton-
ces el periodo de oscilación del modelo lineal es T � 2p 
s. Compare este último número con el periodo predicho 
mediante el modelo no lineal cuando u

0 
� p�4. Usando 

un programa de solución numérica que sea capaz de gene-
rar datos concretos y reales, aproxime la solución de

d 2

dt2 sen 0,  (0)
4

, (0) 0

  en el intervalo a 0 � t � 2. Como en el problema 22, si t
1
 

denota la primera vez que el péndulo alcanza la posición 
OP en la fi gura 5.3.3, entonces el periodo del péndulo no 
lineal es 4t

1
. Aquí está otra forma de resolver la ecuación 

u(t) � 0. Experimente con tamaños de paso y haga avan-
zar el tiempo, comenzando en t � 0 y terminando en t � 
2. De sus datos concretos, observe el tiempo t

1
 cuando 

u(t) cambia, por primera vez de positiva a negativa. Use 
el valor t

1
 para determinar el valor verdadero del periodo 

del péndulo no lineal. Calcule el error relativo porcentual 
en el periodo estimado por T � 2p.

Problema aportado

24. El péndulo balístico  His-
tóricamente para mantener el 
control de calidad sobre las 
municiones (balas) producidas por una línea de montaje, el 
fabricante usaría un péndulo balístico para determinar la 
velocidad de la boca de un arma, es decir, la velocidad de una 
bala cuando deja el barril. El péndulo balístico (inventado en 
1742) es simplemente un péndulo plano que consiste en una 
varilla de masa despreciable que está unida a un bloque de 
madera de masa m

w
. El sistema se pone en movimiento por el 

impacto de una bala que se está moviendo horizontalmente 
con una velocidad desconocida v

b
; al momento del impacto, 

que se toma como t � 0, la masa combinada es m
w
 � m

b
, 

donde m
b
 es la masa de la bala incrustada en la madera. En 

(7) vimos que en el caso de pequeñas oscilaciones, el des-
plazamiento angular u(t) del péndulo plano que se mues-
tra en la fi gura 5.3.3 está dado por la ED lineal u� � (g�l)u 
� 0, donde u � 0 corresponde al movimiento a la dere-
cha de la vertical. La velocidad v

b
 se puede encontrar mi -

diendo la altura h de la masa m
w
 � m

b
 en el ángulo de despla-

zamiento máximo u
máx

 que se muestra en la fi gura 5.3.10.

   Intuitivamente, la velocidad horizontal V de la masa 
combinada (madera más bala) después del impacto es 
sólo una fracción de la velocidad v

b
 de la bala, es decir,

  V
mb

mw mb

vb.

  Ahora, recuerde que una distancia s que viaja por una partí-
cula que se mueve a lo largo de una trayectoria circular está 
relacionada con el radio l y el ángulo central u por la fórmula 
s � lu. Derivando la última fórmula respecto al tiempo t, se 
tiene que la velocidad angular v de la masa y su velocidad 
lineal v está relacionada por v � lv. Por tanto, la veloci-
dad angular v

0
 en el tiempo t para el que la bala impacta el 

bloque de madera está relacionada con V por V � lv
0
 o

v0
mb

mw mb

 
vb

l
.

a) Resuelva el problema con valores iniciales

  
d 2u

dt2

g

l
 u 0,  u(0) 0,  u (0) v0.

b) Use el resultado del inciso a) para demostrar que

vb

mw mb

mb

2 lg umáx.

c)  Use la fi gura 5.3.10 para expresar cos u
máx

 en tér -
minos de l y de h. Después utilice los primeros dos 
térmi nos de la serie de Maclaurin para cos u para ex-
presar u

máx
 en términos de l y de h. Por último, de-

muestre que v
b
 está dado (aproximadamente) por

vb

mw mb

mb

2 2gh.

d)  Use el resultado del inciso c) para encontrar v
b
 cuando 

m
b
 � 5 g, m

w
 � 1 kg y h � 6 cm.

Warren S. Wright 
Profesor del Departamento 
de Matemáticas, Universidad 
Loyola Marymount

V

h

l

mb vb

h

máx

mw

m b
�

m w




FIGURA 5.3.10  Péndulo balístico.

REPASO DEL CAPÍTULO 5
                                                          Las respuestas a los problemas con número impar 

                                                                                                                                       comienzan en la página RES-8.

Conteste los problemas 1 al 8 sin consultar el texto. Complete 
el espacio en blanco o conteste verdadero o falso.

 1. Si una masa que pesa 10 libras alarga 2.5 pies un resorte, 
una masa que pesa 32 libras lo alarga  pies.

 2. El periodo del movimiento armónico simple de una masa 
que pesa 8 libras, unida a un resorte cuya constante es 
6.25 lb�pie es de  segundos.

 3. La ecuación diferencial de un sistema resorte/masa es x� 
� 16x � 0. Si la masa se libera inicialmente desde un 
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punto que está 1 metro arriba de la posición de equilibrio 
con una velocidad hacia abajo de 3 m/s, la amplitud de las 
vibraciones es de  metros.

 4. La resonancia pura no tiene lugar en presencia de una 
fuerza de amortiguamiento. 

 5. En presencia de una fuerza de amortiguamiento, los des-
plazamientos de una masa en un resorte siempre tienden 
a cero cuando t S �. 

 6. Una masa en un resorte cuyo movimiento está crítica-
mente amortiguado tiene posibilidades de pasar por la 
posición de equilibrio dos veces. 

 7. En amortiguamiento crítico cualquier aumento de amorti-
guamiento dará como resultado un sistema .

 8. Si el movimiento armónico simple se describe mediante 

x (22  2)sen(2t f), cuando las condiciones inicia-
les son x(0) � � 1

2  y x�(0) � 1. 

En los problemas 9 y 10 los eigenvalores y las funciones pro-
pias del problema con valores en la frontera y� � ly � 0, y�(0) 
� 0, y�(p) � 0 son l

n
 � n2, n � 0, 1, 2, ... , y y � cos nx, 

respectivamente. Llene los espacios en blanco.

 9. Una solución del PVF cuando l � 8 es y �  
 porque .

10. Una solución del PVF cuando l � 36 es y � 
 porque .

11. Un sistema resorte/masa libre no amortiguado oscila con 
un periodo de 3 segundos. Cuando se eliminan 8 libras 
del resorte, el sistema tiene un periodo de 2 segundos. 
¿Cuál era el peso de la masa original en el resorte?

12.  Una masa que pesa 12 libras alarga 2 pies un resorte. Al 
inicio la masa se libera desde un punto 1 pie abajo de la posi-
ción de equilibrio con una velocidad ascendente de 4 pies/s.

a) Determine la ecuación de movimiento. 

b)  ¿Cuáles son la amplitud, periodo y frecuencia del 
movimiento armónico simple?

c)  ¿En qué instantes la masa vuelve al punto situado a 1 
pie abajo de la posición de equilibrio?

d)  ¿En qué instantes la masa pasa por la posición de 
equilibrio en dirección hacia arriba? ¿En dirección 
hacia abajo?

e) ¿Cuál es la velocidad de la masa en t � 3p�16 s?

f ) ¿En qué instantes la velocidad es cero?

13. Una fuerza de 2 libras estira 1 pie un resorte. Con un ex-
tremo fi jo, se une al otro extremo una masa que pesa 8 libras. 
El sistema yace sobre una mesa que imparte una fuerza de 
fricción numéricamente igual a 2

3  veces la velocidad instan-
tánea. Al inicio, la masa se desplaza 4 pulgadas arriba de la 
posición de equilibrio y se libera desde el reposo. Encuentre 
la ecuación de movimiento si el movimiento tiene lugar a lo 
largo de la recta horizontal que se toma como el eje x.

14.  Una masa que pesa 32 libras alarga 6 pulgadas un resorte. La 
masa se mueve en un medio que ofrece una fuerza de amor-
tiguamiento que es numéricamente igual a b veces la velo-
cidad instantánea. Determine los valores de b � 0 para los 
que el sistema resorte/masa exhibe movimiento oscilatorio.

15. Un resorte con constante k � 2 se suspende en un líquido 
que ofrece una fuerza de amortiguamiento numéricamente 
igual a 4 veces la velocidad instantánea. Si una masa m se 
suspende del resorte, determine los valores de m para que 
el movimiento libre posterior sea no oscilatorio.

16. El movimiento vertical de una masa sujeta a un resorte se 
describe mediante el PVI 1

4
 x x x 0,  x(0) � 4, 

x�(0) � 2. Determine el desplazamiento vertical máximo 
de la masa.

17. Una masa que pesa 4 libras estira 18 pulgadas un re-
sorte. Se aplica al sistema una fuerza periódica igual a 
f(t) � cos gt � sen gt comenzando en t � 0. En ausencia 
de una fuerza de amortiguamiento, ¿para qué valor de g 
el sistema está en un estado de resonancia pura?

18. Encuentre una solución particular para x� � 2lx� � v2x 
� A, donde A es una fuerza constante.

19. Una masa que pesa 4 libras se suspende de un resorte cuya 
constante es 3 lb/pie. Todo el sistema se sumerge en un 
líquido que ofrece una fuerza de amortiguamiento numé-
ricamente igual a la velocidad instantánea. Comenzando 
en t � 0, se aplica al sistema una fuerza externa igual f(t) 
� e�t. Determine la ecuación de movimiento si la masa se 
libera al inicio desde el reposo en un punto que está 2 pies 
abajo de la posición de equilibrio.

20. a)  Dos resortes se unen en serie como se muestra en la 
fi gura 5.R.1. Si se desprecia la masa de cada resorte, 
muestre que la constante de resorte efectiva k del sis-
tema se defi ne mediante 1�k � 1�k

1
 � 1�k

2
.

b)  Una masa que pesa W libras produce un alargamiento 
de 1

2  pie en un resorte y uno de 1
4

 pie en otro resorte. Se 
unen los dos resortes y después se fi ja la masa al resor -
te doble como se ilustra en la fi gura 5.R.1. Suponga que 
el movimiento es libre y que no hay fuerza de amor -
tiguamiento presente. Determine la ecuación de movi-
miento si la masa se libera al inicio en un punto situado 
1 pie abajo de la posición de equilibrio con una veloci-
dad de descenso de 2

3  pie/s.

c)  Demuestre que la velocidad máxima de la masa es 
2
3

 23g 1.

k2

k1

FIGURA 5.R.1  Resortes unidos del problema 20.

REPASO DEL CAPÍTULO 5 ● 217
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218 ● CAPÍTULO 5  MODELADO CON ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

21. Un circuito en serie contiene una inductancia de L � 1 
h, una capacitancia de C � 10�4 f y una fuerza electro-
motriz de E(t) � 100 sen 50t V. Al inicio, la carga q y la 
corriente i son cero. 

a) Determine la carga q(t).

b) Determine la corriente i(t).

c)  Calcule los tiempos para los que la carga en el capa-
citor es cero.

22. a)  Demuestre que la corriente i(t) en un circuito en serie 

 LRC satisface la ecuación L  
d 2i

dt2 R  
di

dt

1

C
 i E (t),

 donde E�(t) denota la derivada de E(t).

b)  Se pueden especifi car dos condiciones iniciales i(0) e 
i�(0) para la ED del inciso a). Si i(0) � i

0
 y q(0) � q

0
, 

¿cuál es i�(0)?

23. Considere el problema con valores en la frontera

.y y 0,  y(0) y(2 ),  y (0) y (2 )

  Demuestre que excepto para el caso l � 0, hay dos fun-
ciones propias independientes que corresponden a cada 
valor propio.

24. Una cuenta está restringida a deslizarse a lo largo de una 
varilla sin fricción de longitud L. La varilla gira en un 
plano vertical con velocidad angular constante v respecto 
a un pivote P fi jo en el punto medio de la varilla, pero el 
diseño del pivote permite que la cuenta se mueva a lo 
largo de toda la varilla. Sea r(t) la posición de la cuenta 
respecto a este sistema de coordenadas giratorio según se 
ilustra en la fi gura 5.R.2. Con el fi n de aplicar la segunda 
ley de Newton del movimiento a este marco de referencia 
rotatorio, es necesario usar el hecho de que la fuerza neta 
que actúa en la cuenta es la suma de las fuerzas reales (en 
este caso, la fuerza debida a la gravedad) y las fuerzas 
inerciales (coriolis, transversal y centrífuga). Las mate-
máticas del caso son un poco complicadas, así que sólo 
se da la ecuación diferencial resultante para r:

.m d
2r

dt2 m 2r mg sen t

a)  Resuelva la ED anterior sujeta a las condiciones ini-
ciales r(0) � r

0
, r�(0) � v

0
.

b)  Determine las condiciones iniciales para las cuales la 
cuenta exhibe movimiento armónico simple. ¿Cuál es 
la longitud mínima L de la varilla para la cual puede ésta 
acomodar el movimiento armónico simple de la cuenta?

c)  Para las condiciones iniciales distintas de las obtenidas en 
el inciso b), la cuenta en algún momento debe salir de la 
varilla. Explique usando la solución r(t) del inciso a).

d)  Suponga que v � 1 rad�s. Use una aplicación grafi -
cadora para trazar la solución r(t) para las condicio-
nes iniciales r(0) � 0, r�(0) � v

0
, donde v

0
 es 0, 10, 

15, 16, 16.1 y 17.

e)  Suponga que la longitud de la varilla es L � 40 pies. 
Para cada par de condiciones iniciales del inciso d), 
use una aplicación para encontrar raíces para calcular 
el tiempo total que la cuenta permanece en la varilla.

cuenta

P

r (
t)

tω

FIGURA 5.R.2  Varilla rotando del problema 24.

apoyo 
rígido

superficie sin fricción:

x = 0

x(t) < 0 x(t) > 0

m

m

a) equilibrio

b) movimiento

FIGURA 5.R.3  Sistema deslizante resorte/masa del 
problema 25.

25. Suponga que una masa m que permanece sobre una super-
fi cie plana, seca y sin fricción está unida al extremo libre de 
un resorte cuya constante es k. En la fi gura 5.R.3a la masa 
se muestra en la posición de equilibrio x � 0, es decir, el 
resorte no está ni estirado ni comprimido. Como se ilustra 
en la fi gura 5.R.3b, el desplazamiento x(t) de la masa a la 
derecha de la posición de equilibrio es positivo y negativo a 
la izquierda. Obtenga una ecuación diferencial para el mo-
vimiento (deslizante) horizontal libre de la masa. Describa 
la diferencia entre la obtención de esta ED y el análisis que 
da lugar a la ecuación (1) de la sección 5.1. 

26. ¿Cuál es la ecuación diferencial de movimiento en el 
problema 25 si la fricción cinética (pero ninguna otra 
fuerza de amortiguamiento) actúa en la masa deslizante? 
[Sugerencia: Suponga que la magnitud de la fuerza de 
fricción cinética es f

k
 � mmg, donde mg es el peso de la 

masa y la constante m � 0 es el coefi ciente de fricción 
cinética. Luego considere dos casos, x� � 0 y x� � 0. 
Interprete estos casos desde un punto de vista físico.]
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6 SOLUCIONES EN SERIES 
DE ECUACIONES LINEALES

6.1 Soluciones respecto a puntos ordinarios

6.1.1 Repaso de series de potencias

6.1.2 Soluciones en series de potencias

6.2 Soluciones en torno a puntos singulares

6.3 Funciones especiales

6.3.1 Ecuación de Bessel

6.3.2 Ecuación de Legendre

REPASO DEL CAPÍTULO 6

Hasta ahora se han resuelto principalmente ecuaciones diferenciales de orden 

dos o superior cuando la ecuación tiene coefi cientes constantes. La única 

excepción fue la ecuación de Cauchy-Euler que se estudió en la sección 4.7. En 

aplicaciones, las ecuaciones lineales de orden superior con coefi cientes variables 

son tan importantes o quizá más que las ecuaciones diferenciales con coefi cientes 

constantes. Como se indicó en la sección 4.7, aun una ecuación simple lineal 

de segundo orden con coefi cientes variables tales como y� � xy � 0 no tiene 

soluciones que sean funciones elementales. Pero podemos encontrar dos soluciones 

linealmente independientes de y� � xy � 0; veremos en las secciones 6.1 y 6.3 que 

las soluciones de esta ecuación están defi nidas por series infi nitas.

En este capítulo estudiaremos dos métodos de series infi nitas para encontrar 

soluciones de ED lineales homogéneas de segundo orden a
2
(x)y� � a

1
(x)y� � 

a
0
(x)y � 0 donde los coefi cientes variables a

2
(x), a

1
(x) y a

0
(x) son, la mayoría de las 

veces, simples polinomios.
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220 ● CAPÍTULO 6  SOLUCIONES EN SERIES DE ECUACIONES LINEALES

SOLUCIONES RESPECTO A PUNTOS ORDINARIOS

REPASO DE MATERIAL
● Series de potencias (véase cualquier libro de cálculo)

INTRODUCCIÓN  En la sección 4.3 vimos que resolver una ED lineal homogénea con coefi cientes 
constantes era en esencia un problema de álgebra. Encontrando las raíces de la ecuación auxiliar es po-
sible escribir una solución general de la ED como una combinación lineal de funciones elementales xk, 
xkeax,  xkeax cos bx y xkeax sen bx, donde k es un entero no negativo. Pero como se indicó en la introduc-
ción de la sección 4.7, la mayoría de las ED lineales de orden superior con coefi cientes variables no 
se resuelven en términos de funciones elementales. Una estrategia usual para ecuaciones de esta clase 
es suponer una solución en la forma de series infi nitas y proceder de manera similar al método de 
coefi cientes indeterminados (sección 4.4). En esta sección se consideran ED lineales de segundo 
orden con coefi cientes variables que tienen soluciones de la forma de series de potencias.

Comenzamos con un repaso breve de algunos hechos importantes acerca de las series de poten-
cias. Para un mejor tratamiento del tema consulte un libro de cálculo. 

6.1

6.1.1  REPASO DE SERIES DE POTENCIAS

Recuerde de su curso de cálculo que una serie de potencias en x � a es una serie infi -
nita de la forma

 
n 0

 cn(x a)n c0 c1(x a) c2(x a)2 .  

Se dice que esta serie es una serie de potencias centrada en a. Por ejemplo, la serie 
de potencias n 0 (x 1)n  está centrada en a � �1. En esta sección tratamos princi-
palmente con las series de potencias en x, en otras palabras, series de potencias como 

n 1 2n 1xn x 2x2 4x3  que están centradas en a � 0. La siguiente lista 
resume algunos hechos importantes acerca de las series de potencias. 

• Convergencia  Una serie de potencias n 0 cn(x a)n es convergente en un 
valor especifi cado de x si su sucesión de sumas parciales {S

N
(x)} converge, es 

decir, si el lím
N : 

 SN (x) lím
N : 

 N
n 0  cn(x a)n  existe. Si el límite no existe 

en x, entonces se dice que la serie es divergente. 
• Intervalo de convergencia  Toda serie de potencias tiene un intervalo de 

convergencia. El intervalo de convergencia es el conjunto de todos los números 
reales x para los que converge la serie.

• Radio de convergencia  Toda serie de potencias tiene un radio de convergencia 
R. Si R � 0, entonces la serie de potencias n 0 cn(x a)n  converge para � x 
– a � � R y diverge para � x – a � � R. Si la serie converge sólo en su centro 
a, entonces R � 0. Si la serie converge para toda x, entonces se escribe R � 
�. Recuerde que la desigualdad de valor absoluto � x – a � � R es equivalente a 
la desigualdad simultánea a � R � x � a � R. Una serie de potencias podría 
converger o no en los puntos extremos a � R y a � R de este intervalo.

• Convergencia absoluta  Dentro de su intervalo de convergencia, una serie 
de potencias converge absolutamente. En otras palabras, si x es un número en 
el intervalo de convergencia y no es un extremo del intervalo, entonces la serie 
de valores absolutos n 0 cn(x a)n  converge. Véase la fi gura 6.1.1.

• Prueba de la razón  La convergencia de una serie de potencias suele determi-
narse mediante el criterio de la razón. Suponga que c

n
 	 0 para toda n y que

 lím
n: 

 cn 1(x a)n 1 

cn(x a)n x a  lím
n: 

 cn 1
 

cn
L.

x
a a + Ra − R

divergenciadivergencia
convergencia 

absoluta

la serie podría 
converger o divergir 

en los puntos extremos

FIGURA 6.1.1  Convergencia absoluta 
dentro del intervalo de convergencia y 
divergencia fuera de este intervalo.
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 Si L � 1, la serie converge absolutamente; si L � 1, la serie diverge, y si 
L � 1, el criterio no es concluyente. Por ejemplo, para la serie de potencias 

n 1(x 3)n>2nn  el criterio de la razón da

 

lím
n: 

(x 3)n 1

2n 1(n 1)

(x 3)n

2nn

x 3   lím
n: 

n

2(n 1)

1

2
x 3 ;

 la serie converge absolutamente para 1
2 x 3 1 o x 3 2  o 

1 x 5 . Esta última desigualdad defi ne el intervalo abierto de convergencia. 
La serie diverge para x 3 2 , es decir, para x � 5 o x � 1. En el extremo 
izquierdo x � 1 del intervalo abierto de convergencia, la serie de constantes 

n 1 (( 1)n n)�  es convergente por la prueba de series alternantes. En el extremo 
derecho x � 5, la serie n 1 (1>n) es la serie armónica divergente. El intervalo 
de convergencia de la serie es [1, 5) y el radio de convergencia es R � 2.

• Una serie de potencias defi ne una función  Una serie de potencias defi ne una 
función f (x) n 0 cn(x a)n  cuyo dominio es el intervalo de convergencia 
de la serie. Si el radio de convergencia es R � 0, entonces f es continua, 
derivable e integrable en el intervalo (a � R, a � R). Además, f �(x) y f (x)dx  
se encuentran derivando e integrando término a término. La convergencia 
en un extremo se podría perder por derivación o ganar por integración. Si 
y n 0 cnxn  es una serie de potencias en x, entonces las primeras dos 
derivadas son y n 0 nxn 1 y y n 0 n(n 1)xn 2.  Observe que el 
primer término en la primera derivada y los dos primeros términos de la segunda 
derivada son cero. Se omiten estos términos cero y se escribe 

 y
n 1

cnnxn 1      y     y
n 2

cnn(n 1)xn 2.  (1)

 Estos resultados son importantes y se usan en breve.
• Propiedad de identidad  Si n 0 cn(x a)n 0, R 0 , para los 

números x en el intervalo de convergencia, entonces c
n
 � 0 para toda n.

• Analítica en un punto  Una función f es analítica en un punto a si se puede 
representar mediante una serie de potencias en x � a con un radio positivo o 
infi nito de convergencia. En cálculo se ve que las funciones como ex, cos x, 
sen x, ln(1 � x), etcétera, se pueden representar mediante series de Taylor. 
Recuerde, por ejemplo que

ex 1
x

1!

x2

2!
. . .,     senx x

x3

3!

x5

5!
. . .,     cos x 1

x2

2!

x4

4!

x6

6!
. . .

  
(2)

 para � x � � �. Estas series de Taylor centradas en 0, llamadas series de 
Maclaurin, muestran que ex, sen x y cos x son analíticas en x � 0.

• Aritmética de series de potencias  Las series de potencias se combinan 
mediante operaciones de suma, multiplicación y división. Los procedimientos 
para las series de potencias son similares a los que se usan para sumar, 
multiplicar y dividir dos polinomios, es decir, se suman los coefi cientes de 
potencias iguales de x, se usa la ley distributiva y se reúnen términos semejantes 
y se realiza la división larga. Por ejemplo, usando las series de (2), tenemos que

  
x x2 x3

3

x5

30
.

(1)x (1)x2 1

6

1

2
x3 1

6

1

6
x4 1

120

1

12

1

24
x5

exsenx 1 x
x2

2

x3

6

x4

24
x

x3

6

x5

120

x7

5040
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222 ● CAPÍTULO 6  SOLUCIONES EN SERIES DE ECUACIONES LINEALES

EJEMPLO 1  Suma de dos series de potencias

Escriba n 2 n(n 1)cnxn 2
n 0 cnxn 1  como una sola serie de potencias cuyo 

término general implica a xk. 

SOLUCIÓN  Para sumar las dos series es necesario que ambos índices de las sumas 
comiencen con el mismo número y las potencias de x en cada caso estén “en fase”; es 
decir, si una serie comienza con un múltiplo de, por ejemplo, x a la primera potencia, 
entonces se quiere que la otra serie comience con la misma potencia. Observe que en 
el problema la primera serie empieza con x0, mientras que la segunda comienza con x1. 
Si se escribe el primer término de la primera serie fuera de la notación de suma,

serie comienza
con x
para n � 3

serie comienza 
con x
para n � 0

� n(n � 1)cnxn�2 � � cnxn�1 � 2 
 1c2x0 � � n(n � 1)cnxn�2 � � cnxn�1,
n�2

�

n�0

�

n�3

�

n�0

�

vemos que ambas series del lado derecho empiezan con la misma potencia de x, en 
particular x1. Ahora, para obtener el mismo índice de la suma, se toman como guía 
los exponentes de x; se establece k � n � 2 en la primera serie y al mismo tiempo 
k � n � 1 en la segunda serie. El lado derecho se convierte en

 

igual

igual

2c2 � � (k � 2)(k � 1)ck�2xk � � ck�1xk.
k�1

�

k�1

�

 

(3)

Recuerde que el índice de la suma es una variable “muda”; el hecho de que k � n � 
1 en un caso y k � n � 1 en el otro no debe causar confusión si se considera que lo 
importante es el valor del índice de suma. En ambos casos k toma los mismos valores 
sucesivos k � 1, 2, 3, ... cuando n toma los valores n � 2, 3, 4, ... para k � n � 1 y n � 
0, 1, 2, ... para k � n � 1. Ahora es posible sumar las series de (3) término a término:

n 2
n(n 1)cnxn 2

n 0
cnxn 1 2c2

k 1
[(k 2)(k 1)ck 2 ck 1]xk.       (4)  

Si no está convencido del resultado en (4), entonces escriba algunos términos de 
ambos lados de la igualdad.

 Puesto que las series de potencias para ex y sen x convergen para � x � � �, la 
serie de productos converge en el mismo intervalo. Los problemas relaciona-
dos con multiplicación o división de series de potencias se resuelven mejor 
usando un SAC.

CORRIMIENTO DEL ÍNDICE DE LA SUMA  Para el resto de esta sección, así 
como este capítulo, es importante que se acostumbre a simplifi car la suma de dos 
o más series de potencias, cada una expresada en notación de suma (sigma), en una 
expresión con una sola .  Como se muestra en el ejemplo siguiente, la combina-
ción de dos o más sumas en una sola suele requerir que se vuelva a indizar la serie, 
es decir, que se realice un cambio en el índice de la suma.
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6.1.2  SOLUCIONES EN SERIES DE POTENCIAS

UNA DEFINICIÓN  Suponga que la ecuación diferencial lineal de segundo orden

 a2(x)y a1(x)y a0(x)y 0  (5)

se escribe en forma estándar

 y P(x)y Q(x)y 0  (6)

dividiendo entre el coefi ciente principal a
2
(x). Se tiene la defi nición siguiente.

DEFINICIÓN 6.1.1  Puntos ordinarios y singulares

Se dice que un punto x
0
 es un punto ordinario de la ecuación diferencial (5) si 

tanto P(x) como Q(x) en la forma estándar (6) son analíticas en x
0
. Se dice que 

un punto que no es punto ordinario es un punto singular de la ecuación.

Cada valor fi nito de x es un punto ordinario de la ecuación diferencial y� � (ex)y� � 
(sen x)y � 0. En particular, x � 0 es un punto ordinario porque, como ya se vio en (2), 
tanto ex como sen x son analíticas en este punto. La negación en el segundo enunciado 
de la defi nición 6.1.1 establece que si por lo menos una de las funciones P(x) y Q(x) en 
(6) no es analítica en x

0
, entonces x

0
 es un punto singular. Observe que x � 0 es un punto 

singular de la ecuación diferencial y� � (ex)y� � (ln x)y � 0 porque Q(x) � ln x es dis-
continua en x � 0 y, por tanto, no se puede representar con una serie de potencias en x.

COEFICIENTES POLINOMIALES  Se pone atención sobre todo al caso cuando (5) 
tiene coefi cientes polinomiales. Un polinomio es analítico en cualquier valor x y una 
función racional es analítica excepto en los puntos donde su denominador es cero. Por 
tanto si a

2
(x), a

1
(x) y a

0
(x) son polinomios sin factores comunes, entonces ambas fun-

ciones racionales P(x) � a
1
(x)�a

2
(x) y Q(x) � a

0
(x)�a

2
(x) son analíticas excepto donde 

a
2
(x) � 0. Entonces, se tiene que

x � x
0
 es un punto ordinario de (5) si a

2
(x

0
) 	 0 mientras que x � x

0
 es un punto 

singular de (5) si a
2
(x

0
) � 0. 

Por ejemplo, los únicos puntos singulares de la ecuación (x2 � l)y� � 2xy� � 6y � 0 
son soluciones de x2 � 1 � 0 o x � � l. Todos los otros valores fi nitos* de x son pun-
tos ordinarios. La inspección de la ecuación de Cauchy-Euler ax2y� � bxy� � cy � 0 
muestra que tiene un punto singular en x � 0. Los puntos singulares no necesitan ser 
números reales. La ecuación (x2 � l)y� � xy� � y � 0 tiene puntos singulares en las 
soluciones x2 � 1 � 0, en particular, x � � i. Los otros valores de x, reales o comple-
jos, son puntos ordinarios. 

Establecemos el siguiente teorema acerca de la existencia de soluciones en series 
de potencias sin demostración.

TEOREMA 6.1.1 Existencia de soluciones en series de potencias

Si x � x
0
 es un punto ordinario de la ecuación diferencial (5), siempre es po-

sible encontrar dos soluciones linealmente independientes en la forma de una 
serie de potencias centrada en x

0
, es decir, y n 0 cn(x x0)n . Una solu-

ción en serie converge por lo menos en un intervalo defi nido por � x � x
0 
� � R, 

donde R es la distancia desde x
0
 al punto singular más cercano.

*Para nuestros propósitos, los puntos ordinarios y puntos singulares siempre serán puntos fi nitos. Es 
posible que una EDO tenga un punto singular en el infi nito.
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224 ● CAPÍTULO 6  SOLUCIONES EN SERIES DE ECUACIONES LINEALES

Se dice que una solución de la forma y n 0 cn(x x0)n  es una solución res-
pecto a un punto ordinario x0. La distancia R en el teorema 6.1.1 es el valor mínimo 
o límite inferior del radio de convergencia de las soluciones en serie de la ecuación 
diferencial respecto a x

0
. 

En el ejemplo siguiente, se usa el hecho de que en el plano complejo, la distancia 
entre dos números complejos a � bi y c � di es exactamente la distancia entre los 
puntos (a, b) y (c, d).

EJEMPLO 2  Límite inferior para el radio de convergencia

Los números complejos 1 � 2i son puntos singulares de la ecuación diferencial (x2 � 
2x � 5)y� � xy� � y � 0. Ya que x � 0 es un punto ordinario de la ecuación, el teorema 
6.1.1 garantiza que es posible encontrar dos soluciones en serie de potencias centradas 
en 0, es decir, soluciones que se parecen a y n 0 cnxn.  Sin realmente encontrar 
estas soluciones, se sabe que cada serie debe converger al menos para x 15  por-
que R 15 es la distancia en el plano complejo desde 0 (el punto (0, 0)) a cualquiera 
de los números 1 � 2i (el punto (1, 2)) o 1 � 2i (el punto (1, �2)). Sin embargo, una de 
estas dos soluciones es válida en un intervalo mucho mayor que 15 x 15;  
de hecho, esta solución es válida en (��, �) porque se puede demostrar que una de las 
dos soluciones en serie de potencias respecto a 0 se reduce a un polinomio. Por tanto 
también se dice que 15  es el límite inferior para el radio de convergencia de solucio-
nes en serie de la ecuación diferencial respecto a 0. 

Si se buscan soluciones de la ED dada respecto a un punto ordinario diferente, por 
ejemplo, x � �1, entonces cada serie y n 0 cn(x 1)n  converge al menos para 

x 212  porque la distancia de �1 a 1 � 2i o a 1 � 2i es R 18 212.      

NOTA  En los ejemplos que siguen, así como en los ejercicios 6.1, por razones de 
simplicidad, encontraremos soluciones en serie de potencias sólo respecto al punto or-
dinario x � 0. Si es necesario encontrar una solución en serie de potencias de una ED 
lineal respecto a un punto ordinario x

0
 	 0, simplemente se hace el cambio de variable 

t � x � x
0
 en la ecuación (esto traduce x � x

0
 en t � 0), para encontrar las soluciones de 

la nueva ecuación de la forma y n 0 cnt n y después volver a sustituir t � x � x
0
.

DETERMINACIÓN DE UNA SOLUCIÓN EN SERIES DE POTENCIAS  La determi-
nación real de una solución en serie de potencias de una ED lineal homogénea de segundo 
orden es bastante similar a lo que se hizo en la sección 4.4 para encontrar soluciones par-
ticulares de ED no homogéneas con el método de coefi cientes indeterminados. De hecho, 
el método de serie de potencias para resolver una ED lineal con coefi cientes variables 
con frecuencia se describe como “método de coefi cientes indeterminados de series”. En 
resumen, la idea es la siguiente: sustituimos y n 0 cnxn  en la ecuación diferencial, 
se combina la serie como se hizo en el ejemplo 1 y luego se igualan los coefi cientes del 
miembro derecho de la ecuación para determinar los coefi cientes c

n
. Pero como el miem-

bro derecho es cero, el último paso requiere, por la propiedad de identidad en la lista de 
propiedades anterior, que todos los coefi cientes de x se deban igualar a cero. Esto no 
signifi ca que los coefi cientes son cero; esto no tendría sentido después de todo; el teorema 
6.1.1 garantiza que se pueden encontrar dos soluciones. En el ejemplo 3 se ilustra cómo la 
sola suposición de y n 0 cnxn c0 c1x c2x2  conduce a dos conjuntos 
de coefi cientes, por lo que se tienen dos series de potencias distintas y

1
(x) y y

2
(x), ambas 

desarrolladas respecto al punto ordinario x � 0. La solución general de la ecuación dife-
rencial es y � C

1
y

1
(x) � C

2
y

2
(x); de hecho, se puede demostrar que C

1
 � c

0
 y C

2
 � c

1
.

EJEMPLO 3  Soluciones en series de potencias

Resuelva y� � xy � 0.

SOLUCIÓN  Puesto que no hay puntos singulares fi nitos el teorema 6.1.1 garantiza 
dos soluciones en serie de potencias centradas en 0, convergentes para � x � � �. 
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Sustituyendo y n 0 cnxn  y la segunda derivada y n 2 n(n 1)cnxn 2  (véase 
(1)) en la ecuación diferencial, se obtiene

y xy
n 2

cnn(n 1)xn 2 x
n 0

cnxn

n 2
cnn(n 1)xn 2

n 0
cnxn 1.  (7)

En el ejemplo 1 ya se sumaron las dos últimas series en el miembro derecho de la 
igualdad en (7) corriendo el índice de la suma. Del resultado dado en (4),

 y xy 2c2
k 1

[(k 1)(k 2)ck 2 ck 1]xk 0.  (8)

En este punto se invoca la propiedad de identidad. Puesto que (8) es idénticamente cero, 
es necesario que el coefi ciente de cada potencia de x se iguale a cero, es decir, 2c

2
 � 0

(es el coefi ciente de x0) y

 (k 1)(k 2)ck 2 ck 1 0,     k 1, 2, 3, . . .  (9)

Ahora 2c
2
 � 0 obviamente dice que c

2
 � 0. Pero la expresión en (9), llamada relación 

de recurrencia, determina la c
k
 de tal manera que se puede elegir que cierto subcon-

junto del conjunto de coefi cientes sea diferente de cero. Puesto que (k � 1)(k � 2) 
	 0 para los valores de k, se puede resolver (9) para c

k � 2
 en términos de c

k � 1
:

 ck 2
ck 1

(k 1)(k 2)
 ,     k 1, 2, 3, . . .  (10)

Esta relación genera coefi cientes consecutivos de la solución supuesta, una vez que k 
toma los enteros sucesivos indicados en (10):

  

  

   

  

  

  

  

  

 
; c8 es cerok 9,     c11

c8

10 11
0

k 8,     c10
c7

9 10

1

3 4 6 7 9 10
c1

k 7,     c9
c6

8 9

1

2 3 5 6 8 9
c0

; c5 es cerok 6,     c8
c5

7 8
0

k 5,     c7
c4

6 7

1

3 4 6 7
c1

k 4,     c6
c3

5 6

1

2 3 5 6
c0

; c2 es cerok 3,     c5
c2

4 5
0

k 2,     c4
c1

3 4

k 1,     c3
c0

2 3

 

etcétera. Ahora sustituyendo los coefi cientes obtenidos en la suposición original

y c0 c1x c2x2 c3x3 c4x4 c5x5 c6x6 c7x7 c8x8 c9x9 c10x10 c11x11 ,

6.1  SOLUCIONES RESPECTO A PUNTOS ORDINARIOS ● 225

08367_06_ch06_p219-254.indd   22508367_06_ch06_p219-254.indd   225 6/4/09   12:20:24 PM6/4/09   12:20:24 PM



226 ● CAPÍTULO 6  SOLUCIONES EN SERIES DE ECUACIONES LINEALES

  

c1

3 4 6 7
x7 0

c0

2 3 5 6 8 9
x9 c1

3 4 6 7 9 10
x10 0 .

y c0 c1x 0
c0

2 3
x3 c1

3 4
x4 0

c0

2 3 5 6
x6

obtenemos

Después de agrupar los términos que contienen c
0
 y los que contienen c

1
, se obtiene 

y � c
0 
y

l
(x) � c

1
y

2
(x), donde

 
y2(x) x

1

3 4
x4 1

3 4 6 7
x7 1

3 4 6 7 9 10
x10 x

k 1

( 1)k

3 4  (3k)(3k 1)
x3k 1.

y1(x) 1
1

2 3
x3 1

2 3 5 6
x6 1

2 3 5 6 8 9
x9 1

k 1

( 1)k

2 3  (3k 1)(3k)
x3k

Debido a que el uso recursivo de (10) deja a c
0
 y a c

1
 completamente indeterminadas, 

se pueden elegir en forma arbitraria. Como ya se mencionó antes de este ejemplo, la com-
binación lineal y � c

0 
y

l
(x) � c

1
y

2
(x) representa en realidad la solución general de la ecua-

ción diferencial. Aunque se sabe del teorema 6.1.1 que cada solución en serie converge 
para � x � � �, este hecho también se puede comprobar con el criterio de la razón. 

La ecuación diferencial del ejemplo 3 se llama ecuación de Airy y se encuentra 
en el estudio de la difracción de la luz, la difracción de ondas de radio alrededor de 
la superfi cie de la Tierra, la aerodinámica y la defl exión de una columna vertical del-
gada uniforme que se curva bajo su propio peso. Otras formas comunes de la ecuación 
de Airy son y� � xy � 0 y y� � a2xy � 0. Véase el problema 41 de los ejercicios 6.3 
para una aplicación de la última ecuación.

EJEMPLO 4  Solución con series de potencias

Resuelva (x2 � 1)y� � xy� � y � 0.

SOLUCIÓN  Como se vio en la página 223, la ecuación diferencial dada tiene puntos 
singulares en x � � i y, por tanto, una solución en serie de potencias centrada en 0 que 
converge al menos para � x � � 1, donde 1 es la distancia en el plano complejo desde 0 a i 
o �i. La suposición y n 0 cnxn  y sus primeras dos derivadas (véase (1)) conducen a 

(x2 � 1) � n(n � 1)cnxn�2 � x � ncnxn�1 � � cnxn

n�2

�

n�1

�

n�0

�

� � n(n � 1)cnxn � � n(n � 1)cnxn�2 � � ncnxn � � cnxn

n�2

�

n�2

�

n�1

�

n�0

�

� 2c2 � c0 � 6c3x � � [k(k � 1)ck � (k � 2)(k � 1)ck�2 � kck � ck]xk 
k�2

�

� 2c2 � c0 � 6c3x � � [(k � 1)(k � 1)ck � (k � 2)(k � 1)ck�2]xk � 0.
k�2

�

� � n(n � 1)cnxn�2 � � ncnxn � � cnxn

n�4

�

n�2

�

n�2

�

� 2c2x0 � c0x0 � 6c3x � c1x � c1x � � n(n � 1)cnxn

n�2

�

k�n

k�n�2 k�n k�n
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De esta identidad se concluye que 2c
2
 – c

0
 � 0, 6c

3
 � 0, y

 (k 1)(k 1)ck (k 2)(k 1)ck 2 0.

Por tanto, 

 

 ck 2
1 k

k 2
ck ,     k 2, 3, 4, .  .  . 

c3 0

c2
1

2
c0

Sustituyendo k � 2, 3, 4, . . .  en la última fórmula se obtiene

 

 

 

 

 

 

 c10
7

10
c8

3 5 7

2 4 6 8 10
c0

1 3 5 7

255!
c0,

; c7 es ceroc9
6

9
c7 0,

c8
5

8
c6

3 5

2 4 6 8
c0

1 3 5

244!
c0

; c5 es ceroc7
4

7
c5 0

c6
3

6
c4

3

2 4 6
c0

1 3

233!
c0

; c3 es ceroc5
2

5
c3 0

c4
1

4
c2

1

2 4
c0

1

222!
c0

etcétera. Por tanto, 

  c0y1(x) c1y2(x).

c0 1
1

2
x2 1

222!
x4 1 3

233!
x6 1 3 5

244!
x8 1 3 5 7

255!
x10 c1x

y c0 c1x c2x2 c3x3 c4x4 c5x5 c6x6 c7x7 c8x8 c9x9 c10 x10

Las soluciones son el polinomio y
2
(x) � x y la serie de potencias 

 y1(x) 1
1

2
x2

n 2
( 1)n 11 3 5 2n 3

2nn!
x2n ,     x 1.  

EJEMPLO 5  Relación de recurrencia de tres términos

Si se busca una solución en serie de potencias y n 0 cnxn  para la ecuación diferencial

 y (1 x)y 0,  

se obtiene c2
1
2 c0  y la relación de recurrencia de tres términos

 ck 2
ck ck 1

(k 1)(k 2)
,     k 1, 2, 3, . . .  

Se deduce a partir de estos dos resultados que los coefi cientes c
n
, para n � 3, se ex-

presan en términos de c
0
 y c

1
. Para simplifi car, se puede elegir primero c

0 
	 0, c

1
 � 0; 
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228 ● CAPÍTULO 6  SOLUCIONES EN SERIES DE ECUACIONES LINEALES

esto conduce a coefi cientes para una solución expresada por completo en términos de 
c

0
. A continuación, si elegimos c

0
 � 0, c

1
 	 0, entonces los coefi cientes para la otra 

solución se expresan en términos de c
1
. Usando c2

1
2 c0  en ambos casos, la relación 

de recurrencia para k � 1, 2, 3, ... se obtiene 

etcétera. Por último, vemos que la solución general de la ecuación es y � c
0 
y

l
(x) � 

c
1
y

2
(x), donde

  

y y2(x) x
1

6
x3 1

12
x4 1

120
x5 .

y1(x) 1
1

2
x2 1

6
x3 1

24
x4 1

30
x5

 

Cada serie converge para todos los valores fi nitos de x. 

COEFICIENTES NO POLINOMIALES  En el siguiente ejemplo se muestra cómo 
encontrar una solución en serie de potencias respecto a un punto ordinario x

0
 � 0 de 

una ecuación diferencial cuando sus coefi cientes no son polinomios. En este ejemplo 
vemos una aplicación de la multiplicación de dos series de potencias.

EJEMPLO 6  ED con coefi cientes no polinomiales

Resuelva y� � (cos x)y � 0.

SOLUCIÓN  Vemos que x � 0 es un punto ordinario de la ecuación porque, como ya 
hemos visto, cos x es analítica en ese punto. Usando la serie de Maclaurin para cos x dada 
en (2), junto con la suposición usual y n 0 cnxn  y los resultados de (1), se encuentra

 2c2 c0 (6c3 c1)x 12c4 c2
1

2
c0 x2 20c5 c3

1

2
c1 x3 0.

 2c2 6c3x 12c4x2 20c5x3 1
x2

2!

x4

4!
(c0 c1x c2x2 c3x3 )

y (cos x)y
n 2

n(n 1)cnxn 2 1
x2

2!

x4

4!

x6

6! n 0
cnxn

Se tiene que

 
2c2 c0 0,    6c3 c1 0,    12c4 c2

1

2
c0 0,    20c5 c3

1

2
c1 0,

c5
c3 c2

4 5

c0

4 5

1

6

1

2

c0

30

c4
c2 c1

3 4

c0

2 3 4

c0

24

c3
c1 c0

2 3

c0

2 3

c0

6

c2
1

2
c0

c0 0, c1 0

c5
c3 c2

4 5

c1

4 5 6

c1

120

c4
c2 c1

3 4

c1

3 4

c1

12

c3
c1 c0

2 3

c1

2 3

c1

6

c2
1

2
c0 0

c0 0, c1 0
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etcétera. Esto da c5
1
30 c1, . . . .c4

1
12 c0,c3

1
6 c1,c2

1
2 c0,   Agrupando 

términos se llega a la solución general y � c
0 
y

l
(x) � c

1
y

2
(x), donde

 y1(x) 1
1

2
 x2 1

12
 x4       y     y2(x) x

1

6
 x3 1

30
 x5 .

Debido a que la ecuación diferencial no tiene puntos singulares fi nitos, ambas series 
de potencias convergen para � x � � �. 

CURVAS SOLUCIÓN  La gráfi ca aproximada de una solución en serie de potencias 
y(x) n 0 cnxn  se puede obtener de varias maneras. Siempre se puede recurrir a 
trazar la gráfi ca de los términos en la sucesión de sumas parciales de la serie; en otras 
palabras, las gráfi cas de los polinomios SN (x) N

n 0 cnxn.  Para valores grandes de N, 
S

N
(x) debe darnos una indicación del comportamiento de y(x) cerca del punto ordinario 

x � 0. También se puede obtener una curva solución aproximada o numérica usando 
un programa, como se hizo en la sección 4.9. Por ejemplo, si se examinan cuidado-
samente las soluciones en serie de la ecuación de Airy del ejemplo 3, se debe ver que 
y

1
(x) y y

2
(x) son, a su vez, las soluciones de los problemas de valores iniciales 

  

  y xy 0,  y(0) 0, y (0) 1.

 y xy 0,  y(0) 1, y (0) 0,

 
(11)

Las condiciones iniciales especifi cadas “seleccionan” las soluciones y
l
(x) y y

2
(x) de 

y � c
0 
y

l
(x) � c

1
y

2
(x), puesto que debe ser evidente de la suposición básica de series 

y n 0 cnxn   que y(0) � c
0
 y y�(0) � c

1
. Ahora, si el programa de solución numérica 

requiere un sistema de ecuaciones, la sustitución y� � u en y� � xy � 0 produce y� � 
u� � � xy y, por consiguiente, un sistema de dos ecuaciones de primer orden equiva-
lente a la ecuación de Airy es 

  

  u xy.

 y u

 
(12)

Las condiciones iniciales para el sistema en (12) son los dos conjuntos de condiciones 
iniciales en (11) reescritas como y(0) � 1, u(0) � 0 y y(0) � 0, u(0) � 1. Las gráfi cas 
de y

l
(x) y y

2
(x) que se muestran en la fi gura 6.1.2 se obtuvieron con la ayuda de un pro-

grama de solución numérica. El hecho de que las curvas solución numéricas parezcan 
oscilatorias es consistente con el hecho de que la ecuación de Airy se presentó en la 
sección 5.1 (página 186) en la forma mx� � ktx � 0 como el modelo de un resorte cuya 
“constante de resorte” K(t) � kt se incrementa con el tiempo.

COMENTARIOS

i) En los problemas que siguen no espere poder escribir una solución en términos 
de la notación de suma en cada caso. Aun cuando se puedan generar tantos térmi-
nos como se desee en una solución en serie y n 0 cnxn ya sea usando una rela-
ción de recurrencia o como en el ejemplo 6, por multiplicación, podría no ser posible 
deducir ningún término general para los coefi cientes c

n
. Podríamos tener que confor-

marnos, como se hizo en los ejemplos 5 y 6, con los primeros términos de la serie.

ii) Un punto x
0
 es un punto ordinario de una ED lineal no homogénea de se-

gundo orden y� � P(x)y� � Q(x)y � f(x) si P(x), Q(x) y f(x) son analíticas en x
0
. 

Además, el teorema 6.1.1 se amplía a esta clase de ED; en otras palabras, po-
demos encontrar soluciones en serie de potencias y n 0 cn (x x0)n  de ED 
lineales no homogéneas de la misma manera que en los ejemplos 3 a 6. Véase el 
problema 36 de los ejercicios 6.1.

_2 2 4 6 108

1

2

3

x

y1

_2

_ 1

_2

_3
2 4 6 108

1

x

y2

a)  Gráfica de y1(x) contra x

b)  Gráfica de y2(x) contra x

FIGURA 6.1.2  Curvas de solución 
numérica para la ED de Airy.
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230 ● CAPÍTULO 6  SOLUCIONES EN SERIES DE ECUACIONES LINEALES

EJERCICIOS 6.1  Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-8.

6.1.1  REPASO DE SERIES DE POTENCIAS

En los problemas 1 a 4, determine el radio de convergencia y 
el intervalo de convergencia para las series de potencias.

 1.  2. 

 3. 
k 1

( 1)k

10k (x 5)k

n 1

2n

n
xn

 4. 
k 0

k!(x 1)k

n 0

(100)n

n!
(x 7)n

En los problemas 5 y 6 la función dada es analítica en x � 0. 
Encuentre los primeros cuatro términos de una serie de po-
tencias en x. Efectúe la multiplicación a mano o use un SAC, 
como se indica.

 5. senx cos x  6. e x cos x

En los problemas 7 y 8, la función dada es analítica en x � 0. 
Encuentre los primeros cuatro términos de una serie de po-
tencias en x. Efectúe a mano la división larga o use un SAC, 
como se indica. Dé un intervalo abierto de convergencia.

 7. 
1

cos x
 8. 

1 x

2 x

En los problemas 9 y 10, reescriba la serie de potencias de 
modo que en su término general tenga xk.

 9. 
n 1

ncnxn 2  10. 
n 3

(2n 1)cnxn 3

En los problemas 11 y 12, reescriba la expresión dada como 
una sola serie de potencias en cuyo término general tenga xk. 

 11. 

 12. 
n 2

n(n 1)cnxn 2
n 2

n(n 1)cnxn 2 3
n 1

ncnxn

n 1
2ncnxn 1

n 0
6cnxn 1

En los problemas 13 y 14, compruebe por sustitución directa 
que la serie de potencias dada es una solución particular de la 
ecuación diferencial dada.

 
13. 

 14. y
n 0

( 1)n

22n(n!)2x2n,  xy y xy 0

y
n 1

( 1)n 1

n
xn,  (x 1)y y 0

6.1.2  SOLUCIONES EN SERIES DE POTENCIAS

En los problemas 15 y 16, sin realmente resolver la ecuación 
diferencial dada, encuentre un límite inferior para el radio de 
convergencia de las soluciones en serie de potencias respecto 
al punto ordinario x � 0. Respecto al punto ordinario x � 1.

 15. (x2 � 25)y� � 2xy� � y � 0

 16. (x2 � 2x � 10)y� � xy� � 4y � 0

En los problemas 17 a 28, encuentre dos series de potencias de 
la ecuación diferencial dada respecto al punto ordinario x � 0.

 17. y� � xy � 0 18. y� � x2y � 0

 19. y� � 2xy� � y � 0 20. y� � xy� � 2y � 0

 21. y� � x2y� � xy � 0 22. y� � 2xy� � 2y � 0

 23. (x � 1)y� � y� � 0 24. (x � 2)y� � xy� � y � 0

 25. y� � (x � 1)y� � y � 0

 26. (x2 � 1)y� � 6y � 0

 27. (x2 � 2)y� � 3xy� � y � 0

 28. (x2 � 1)y� � xy� � y � 0

En los problemas 29 a 32, use el método de series de potencias 
para resolver el problema con valores iniciales.

29. (x � 1)y� � xy� � y � 0,  y(0) � �2, y�(0) � 6

30. (x � 1)y� � (2 � x)y� � y � 0,  y(0) � 2, y�(0) � �1

31. y� � 2xy� � 8y � 0,  y(0) � 3, y�(0) � 0

32. (x2 � 1)y� � 2xy� � 0,  y(0) � 0, y�(0) � 1

En los problemas 33 y 34, use el procedimiento del ejemplo 6 
para encontrar dos soluciones en serie de potencias de la ecua-
ción diferencial respecto al punto ordinario x � 0.

33. y� � (sen x)y � 0 34. y� � e xy� � y � 0

Problemas para analizar

35. Sin resolver en su totalidad la ecuación diferencial (cos 
x)y� � y� � 5y � 0, encuentre un límite inferior para el 
radio de convergencia de las soluciones en serie de poten-
cias respecto a x � 0. Respecto a x � 1.

36. ¿Cómo se puede usar el método descrito en esta sección 
para encontrar una solución en serie de potencias de la 
ecuación no homogénea y� � xy � 1 respecto al punto 
ordinario x � 0? ¿De y� � 4xy� � 4y � ex? Lleve a cabo 
sus ideas al resolver ambas ED.

37. ¿Es x � 0 un punto ordinario o singular de la ecuación di-
ferencial xy� � (sen x)y � 0? Defi enda su respuesta con 
matemáticas convincentes.

38. Para propósitos de este problema ignore las gráfi cas pre-
sentadas en la fi gura 6.1.2. Si la ED de Airy se escribe como 
y� � � xy, ¿qué se puede decir respecto a la forma de una 
curva solución si x � 0 y y � 0? ¿Si x � 0 y y � 0?

Tarea para el laboratorio de computación

39. a)  Determine dos soluciones en serie de potencias para 
y� � xy� � y � 0 y exprese las soluciones y

1
(x) y y

2
(x) 

en términos de la notación de suma.
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b)  Use un SAC para grafi car las sumas parciales S
N
(x) 

para y
1
(x). Use N � 2, 3, 5, 6, 8, 10. Repita con las 

sumas parciales S
N
(x) para y

2
(x).

c)  Compare las gráfi cas obtenidas en el inciso b) con 
la curva obtenida por medio de un programa de 
solución numérica. Use las condiciones iniciales 
y

1
(0) � 1, y�

1
(0) � 0 y y

2
(0) � 0, y�

2
(0) � 1.

d)  Reexamine la solución y
1
(x) del inciso a). Exprese 

esta serie como una función elemental. Después use 
la ecuación (5) de la sección 4.2 para encontrar una 
segunda solución de la ecuación. Compruebe que 
esta segunda solución es la misma que la solución en 
serie de potencias y

2
(x).

40. a)  Encuentre un término diferente de cero para cada una 
de las soluciones y

1
(x) y y

2
(x) del ejemplo 6.

b)  Determine una solución en serie y(x) del problema de 
valor inicial y� � (cos x)y � 0, y(0) � 1, y�(0) � 1.

c)  Use un SAC para trazar las gráfi cas de las sumas par-
ciales  S

N
(x) para la solución y(x) del inciso b). Use 

N � 2, 3, 4, 5, 6, 7.

d)   Compare las gráfi cas obtenidas en el inciso c) con 
la curva obtenida usando un programa de solución 
numérica para el problema con valores iniciales del 
inciso b).

6.2 SOLUCIONES EN TORNO A PUNTOS SINGULARES

REPASO DE MATERIAL
● Sección 4.2 (especialmente (5) de esa sección)

INTRODUCCIÓN  Las dos ecuaciones diferenciales

 y� � xy � 0    y    xy� � y � 0 

son similares sólo en que son ejemplos de ED lineales simples de segundo orden con coefi cientes 
variables. Eso es todo lo que tienen en común. Debido a que x � 0 es un punto ordinario de y� � 
xy � 0, vimos en la sección anterior que no hubo problema en encontrar dos soluciones en serie de 
potencias distintas centradas en ese punto. En contraste, debido a que x � 0 es un punto singular 
de xy� � y � 0, encontrar dos soluciones en series infi nitas —observe que no se dijo series de po-
tencias—, de la ecuación diferencial respecto a ese punto se vuelve una tarea más difícil. 

El método de solución analizado en esta sección, no siempre produce dos soluciones en series 
infi nitas. Cuando sólo se encuentra una solución, se puede usar la fórmula dada en (5) de la sección 
4.2 para encontrar una segunda solución.

UNA DEFINICIÓN  Un punto singular x
0
 de una ecuación diferencial lineal

 a2(x)y a1(x)y a0(x)y 0  (1)

se clasifi ca más bien como regular o irregular. La clasifi cación de nuevo depende de 
las funciones P y Q en la forma estándar

 y P(x)y Q(x)y 0.  (2)

DEFINICIÓN 6.2.1  Puntos singulares regulares e irregulares

Se dice que un punto singular x
0
 es un punto singular regular de la ecuación 

diferencial (l) si las funciones p(x) � (x – x
0
) P(x) y q(x) � (x � x

0
)2 Q(x) son 

analíticas en x
0
. Un punto singular que no es regular es un punto singular 

irregular de la ecuación.

El segundo enunciado en la defi nición 6.2.1 indica que si una o ambas funciones 
p(x) � (x � x

0
) P (x) y q(x) � (x � x

0
)2  Q(x) no son analíticas en x

0
, entonces x

0
 es un 

punto singular irregular.
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232 ● CAPÍTULO 6  SOLUCIONES EN SERIES DE ECUACIONES LINEALES

COEFICIENTES POLINOMIALES  Como en la sección 6.1, estamos principalmente 
interesados en ecuaciones lineales (1) donde los coefi cientes a

2
(x), a

l
(x) y a

0
(x) son po-

linomios sin factores comunes. Ya se ha visto que si a
2
(x

0
) � 0, entonces x � x

0
 es un 

punto singular de (1), ya que al menos una de las funciones racionales P(x) � a
l
(x)�a

2
(x) 

y Q(x) � a
0
(x)�a

2
(x) en la forma estándar (2) no es analítica en ese punto. Pero como 

a
2
(x) es un polinomio y x

0
 es una de sus raíces, se deduce del teorema del factor del 

álgebra que x � x
0
 es un factor de a

2
(x). Esto signifi ca que después de que a

l
(x)�a

2
(x) 

y a
0
(x)�a

2
(x) se reducen a términos mínimos, el factor x � x

0
 debe permanecer, para 

alguna potencia entera positiva, en uno o en ambos denominadores. Ahora suponga que 
x � x

0
 es un punto singular de (1) pero ambas funciones defi nidas por los productos 

p(x) � (x � x
0
) P(x) y q(x) � (x � x

0
)2 Q(x) son analíticas en x

0
. Llegamos a la conclu-

sión de que multiplicar P(x) por x � x
0
 y Q(x) por (x � x

0
)2 tiene el efecto (por elimina-

ción) de que x � x
0
 ya no aparezca en ninguno de los denominadores. Ahora se puede 

determinar si x
0
 es regular con una comprobación visual rápida de los denominadores:

Si x � x
0
 aparece a lo más a la primera potencia en el denominador de P(x) y a lo 

más a la segunda potencia en el denominador de Q(x), entonces x � x
0
 es un punto 

singular regular.

Además, observe que si x � x
0
 es un punto singular regular y se multiplica la ecuación 

(2) por (x � x
0
)2, entonces la ED original se puede escribir en la forma

 (x x0)2y (x x0)p(x)y q(x)y 0,  (3)

donde p y q son analíticas en x � x
0
.

EJEMPLO 1  Clasifi cación de puntos singulares

Se debe aclarar que x � 2 y x � � 2 son puntos singulares de

 (x2 4)2y 3(x 2)y 5y 0. 

Después de dividir la ecuación entre (x2 � 4)2 � (x � 2)2(x � 2)2 y de reducir los co-
efi cientes a los términos mínimos, se encuentra que

 P(x)
3

(x 2)(x 2)2      y     Q(x)
5

(x 2)2(x 2)2.  

Ahora se prueba P(x) y Q(x) en cada punto singular.
Para que x � 2 sea un punto singular regular, el factor x � 2 puede aparecer  elevado 

a la primera potencia en el denominador de P(x) y a lo más a la segunda potencia en el de-
nominador de Q(x). Una comprobación de los denominadores de P(x) y Q(x) muestra que 
ambas condiciones se satisfacen, por lo que x � 2 es un punto singular regular. En forma 
alternativa, llegamos a la misma conclusión al notar que ambas funciones racionales

 p(x) (x 2)P(x)
3

(x 2)2      y     q(x) (x 2)2Q(x)
5

(x 2)2
 

son analíticas en x � 2.
Ahora, puesto que el factor x � (�2) � x � 2 aparece a la segunda potencia en 

el denominador de P(x), se concluye de inmediato que x � �2 es un punto singular 
irregular de la ecuación. Esto también se deduce del hecho de que

 p(x) (x 2)P(x)
3

(x 2)(x 2)
 

es no analítica en x � �2. 
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En el ejemplo 1, observe que como x � 2 es un punto singular regular, la ecuación 
original se puede escribir como 

 
(x � 2)2y� � (x � 2) y� � y � 0.

p(x) analítica 
en x � 2

q(x) analítica
en x � 2

3
––––––––
(x � 2)2

5
––––––––
(x � 2)2

 

Como otro ejemplo, se puede ver que x � 0 es punto singular irregular de x3y�  
�2xy� � 8y � 0 por inspección de los denominadores de P(x) � �2�x2 y Q(x) � 
8�x3. Por otro lado, x � 0 es un punto singular regular de xy� � 2xy� � 8y � 0, puesto 
que x � 0 y (x � 0)2 incluso no aparecen en los denominadores respectivos de P(x) � 
�2 y Q(x) � 8�x. Para un punto singular x � x

0
, cualquier potencia no negativa de 

x � x
0
 menor que uno (en particular, cero) y cualquier potencia no negativa menor que 

dos (en particular, cero y uno) en los denominadores de P(x) y Q(x), respectivamente, 
indican que x

0
 es un punto singular irregular. Un punto singular puede ser un número 

complejo. Se debe comprobar que x � 3i y que x � � 3i son dos puntos singulares 
regulares de (x2 � 9)y� – 3xy� � (l � x)y � 0.

Cualquier ecuación de Cauchy-Euler de segundo orden ax2y� � bxy� � cy � 0, 
donde a, b y c son constantes reales, tiene un punto singular regular en x � 0. Se 
debe comprobar que dos soluciones de la ecuación de Cauchy-Euler x2y� � 3xy� � 
4y � 0 en el intervalo (0,�) son y

1
 � x2 y y

2
 � x2 ln x. Si se intenta encontrar una 

solución en serie de potencias respecto al punto singular regular x � 0 (en particular, 
y n 0 cnxn), se tendría éxito en obtener sólo la solución polinomial y

1
 � x2. El 

hecho de que no se obtuviera la segunda solución no es sorprendente porque ln x (y en 
consecuencia y

2
 � x2 ln x) no es analítica en x � 0, es decir, y

2
 no tiene un desarrollo 

en serie de Taylor centrado en x � 0.

MÉTODO DE FROBENIUS  Para resolver una ecuación diferencial (1) respecto a 
un punto singular regular, se emplea el siguiente teorema debido a Frobenius.

TEOREMA 6.2.1  Teorema de Frobenius

Si x � x
0
 es un punto singular regular de la ecuación diferencial (1), entonces 

existe al menos una solución de la forma

 y (x x0) r

n 0
cn(x x0)n

n 0
cn(x x0)n r,  (4)

donde el número r es una constante por determinar. La serie converge por lo 
menos en algún intervalo 0 � x – x

0
 � R.

Observe las palabras al menos en el primer enunciado del teorema 6.2.1. Esto signifi ca 
que en contraste con el teorema 6.1.1 el teorema 6.2.1 no garantiza que sea posible en-
contrar dos soluciones en serie del tipo indicado en (4). El método de Frobenius, para 
encontrar soluciones en serie respecto a un punto singular regular x

0
, es similar al método 

de coefi cientes indeterminados de series de la sección anterior en la que se sustituye 
y n 0 cn(x x0)n r  en la ecuación diferencial dada y se determinan los coefi cientes 
desconocidos c

n
 con una relación de recurrencia. Sin embargo, se tiene una tarea más en 

este procedimiento: antes de determinar los coefi cientes, se debe encontrar el exponente 
desconocido r. Si se encuentra que r es un número que no es un entero negativo, enton-
ces la solución correspondiente y n 0 cn(x x0)n r  no es una serie de potencias.

Como se hizo en el análisis de soluciones respecto a puntos ordinarios siempre 
supondremos, por razones de simplicidad al resolver ecuaciones diferenciales, que el 
punto singular regular es x � 0.
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234 ● CAPÍTULO 6  SOLUCIONES EN SERIES DE ECUACIONES LINEALES

EJEMPLO 2  Dos soluciones en series

Debido a que x � 0 es un punto singular regular de la ecuación diferencial

 3xy y y 0,  (5)

tratamos de encontrar una solución de la forma y n 0 cnxn r.  Ahora

 y
n 0

(n r)cnxn r 1     y     y
n 0

(n r)(n r 1)cnxn r 2,  

por lo que

 
 xr r (3r 2)c0x 1

k 0
[(k r 1)(3k 3r 1)ck 1 ck]xk 0,

1444442444443 123
k n 1 k n

x r r (3r 2)c0x 1

n 1
 (n r)(3n 3r 2)cnxn 1

n 0
cnxn

n 0
(n r)(3n 3r 2)cnxn r 1

n 0
cnxn r

 3xy y y 3
n 0

(n r)(n r 1)cn xn r 1

n 0
(n r)cnxn r 1

n 0
cnxn r

lo que implica que r (3r � 2)c
0
 � 0 

y (k r 1)(3k 3r 1)ck 1 ck 0,    k 0, 1, 2, . . .  

Ya que no se ha ganado nada al hacer c
0
 � 0, entonces debemos tener

 r (3r 2) 0  (6)

y ck 1
ck

(k r 1)(3k 3r 1)
,    k 0, 1, 2, . . .  (7)

Cuando se sustituye en (7), los dos valores de r que satisfacen la ecuación cuadrática 
(6), r1

2
3  y r

2
 � 0, se obtienen dos relaciones de recurrencia diferentes:

   (8)

 r2 0,    ck 1
ck

(k 1)(3k 1)
,    k 0, 1, 2, . . . .

r1
2
3,    ck 1

ck

(3k 5)(k 1)
,    k 0, 1, 2, . . .

 (9)

De (8) encontramos De (9) encontramos

cn

c0

n!5 8 11  (3n 2)
.

c4
c3

14 4

c0

4!5 8 11 14

c3
c2

11 3

c0

3!5 8 11

c2
c1

8 2

c0

2!5 8

c1
c0

5 1

cn

c0

n!1 4 7  (3n 2)
.

c4
c3

4 10

c0

4!1 4 7 10

c3
c2

3 7

c0

3!1 4 7

c2
c1

2 4

c0

2!1 4

c1
c0

1 1
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Aquí se encuentra algo que no ocurrió cuando se obtuvieron soluciones respecto a un 
punto ordinario; se tiene lo que parecen ser dos conjuntos de coefi cientes diferentes, 
pero cada conjunto contiene el mismo múltiplo c

0
. Si se omite este término, las solu-

ciones en serie son

  (10)

 y2(x) x0 1
n 1

1

n!1 4 7 (3n 2)
xn .

y1(x) x2/3 1
n 1

1

n!5 8 11  (3n 2)
xn

 (11)

Con el criterio de la razón se puede demostrar que (10) y (11) convergen para todos los 
valores de x; es decir, � x � � �. También debe ser evidente de la forma de estas solu-
ciones que ninguna serie es un múltiplo constante de la otra y, por tanto y

1
(x) y y

2
(x) 

son linealmente independientes en todo el eje x. Así, por el principio de superposición, 
y � C

1
y

1
(x) � C

2
y

2
(x) es otra solución de (5). En cualquier intervalo que no contenga 

al origen, tal como (0,�), esta combinación lineal representa la solución general de la 
ecuación diferencial. 

ECUACIÓN INDICIAL  La ecuación (6) se llama ecuación indicial del problema y 

los valores r1
2
3  y r

2
 � 0 se llaman raíces indiciales, o exponentes, de la singularidad 

x � 0. En general, después de sustituir y n 0 cnxn r  en la ecuación diferencial dada 
y simplifi cando, la ecuación indicial es una ecuación cuadrática en r que resulta de igua-
lar a cero el coefi ciente total de la potencia mínima de x. Se encuentran los dos valores 
de r y se sustituyen en una relación de recurrencia como (7). El teorema 6.2.1 garantiza 
que al menos se puede encontrar una solución de la supuesta forma en serie.

Es posible obtener la ecuación indicial antes de sustituir y n 0 cnxn r  en la ecua-
ción diferencial. Si x � 0 es un punto singular regular de (1), entonces por la defi nición 
6.2.1 ambas funciones p(x) � xP(x) y q(x) � x2 Q(x), donde P y Q se defi nen por la forma 
estándar (2), son analíticas en x � 0; es decir, los desarrollos en serie de potencias

p(x) xP(x) a0 a1x a2x2         y       q(x) x2Q(x) b0 b1x b2x2  (12)

son válidas en intervalos que tienen un radio de convergencia positivo. Multiplicando 
(2) por x2, se obtiene la forma dada en (3):

 x2y x[xP(x)]y [x2Q(x)]y 0.  (13)

Después de sustituir y n 0 cnxn r  y las dos series en las ecuaciones (12) y (13) y 
realizando la multiplicación de la serie, se encuentra que la ecuación indicial general 
es

 r (r 1) a0r b0 0,  (14)

donde a
0
 y b

0
 son como se defi ne en (12). Véanse los problemas 13 y 14 de los ejerci-

cios 6.2.

EJEMPLO 3  Dos soluciones en series

Resuelva 2xy� � (1 � x)y� � y � 0.

SOLUCIÓN  Sustituyendo y n 0 cnxn r  se obtiene

6.2  SOLUCIONES EN TORNO A PUNTOS SINGULARES ● 235
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236 ● CAPÍTULO 6  SOLUCIONES EN SERIES DE ECUACIONES LINEALES

cn

( 1)nc0

2nn!
 .

c4
c3

2 4

c0

24 4!

c3
c2

2 3

c0

23 3!

c2
c1

2  2

c0

22 2!

c1
c0

2 1

cn

( 1)nc0

1 3 5 7  (2n 1)
 .

c4
c3

7

c0

1 3 5 7

c3
c2

5

c0

1 3 5

c2
c1

3

c0

1 3

c1
c0

1

lo que implica que r (2r 1) 0  (15)

y (k r 1)(2k 2r 1)ck 1 (k r 1)ck 0,  (16)

k � 0, 1, 2, . . . De (15) vemos que las raíces indiciales son r1
1
2  y r

2
 � 0.

Para r1
1
2  se puede dividir entre k 3

2  en (16) para obtener

 ck 1
ck

2(k 1)
,    k 0, 1, 2, . . . ,  (17)

mientras que para r
2
 � 0, (16) se convierte en

 ck 1
ck

2k 1
,    k 0, 1, 2, . . . .  (18)

De (17) encontramos    De (18) encontramos

Por lo que para la raíz indicial r1
1
2 se obtiene la solución

 y1(x) x1/2 1
n 1

( 1)n

2nn!
xn

n 0

( 1)n

2nn!
xn 1/2 ,  

donde de nuevo se omitió c
0
. Esta serie converge para x � 0; como se ha dado, la serie 

no está defi nida para valores negativos de x debido a la presencia de x1�2. Para r
2
 � 0, 

una segunda solución es

 y2(x) 1
n 1

( 1)n

1 3 5 7  (2n 1)
xn ,    x .  

En el intervalo (0,�) la solución general es y � C
1
y

1
(x) � C

2
y

2
(x). 

2xy � � (1 � x)y� � y � 2 � (n � r)(n � r � 1)cnxn�r�1 � � (n � r )cnxn�r�1

n�0

�

n�0

�

� � (n � r)(2n � 2r � 1)cnxn�r�1 � � (n � r � 1)cnxn�r

n�0

�

n�0

�

� xr [r(2r � 1)c0x�1 �  � [(k � r � 1)(2k � 2r � 1)ck�1 � (k � r � 1)ck]xk],
k�0

�

� � (n � r)cnxn�r � � cnxn�r

n�0

�

n�0

�

� xr [r(2r � 1)c0x�1 � � (n � r)(2n � 2r � 1)cnxn�1 � � (n � r � 1)cnxn]
n�1

�

n�0

�

k�n�1 k�n
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EJEMPLO 4  Sólo una solución en serie

Resuelva xy� � y � 0.

SOLUCIÓN  De xP(x) � 0, x2Q(x) � x y el hecho de que 0 y x son sus propias series 
de potencias centradas en 0, se concluye que a

0
 � 0 y b

0
 � 0, por tanto, de la ecuación 

(14) la ecuación indicial es r (r � 1) � 0. Se debe comprobar que las dos relaciones de 
recurrencia correspondientes a las raíces indiciales r

1
 � 1 y r

2
 � 0 producen exacta-

mente el mismo conjunto de coefi cientes. En otras palabras, en este caso el método de 
Frobenius produce sólo una solución en serie

 y1(x)
n 0

( 1)n

n!(n 1)!
xn 1 x

1

2
x2 1

12
x3 1

144
x4 . 

TRES CASOS  Por razones de análisis, de nuevo se supone que x � 0 es un punto sin-
gular regular de la ecuación (1) y que las raíces indiciales r

1
 y r

2
 de la singularidad son 

reales. Cuando usamos el método de Frobenius, se distinguen tres casos que correspon-
den a la naturaleza de las raíces indiciales r

1
 y r

2
. En los dos primeros casos el símbolo r

1
 

denota la más grande de dos raíces distintas, es decir, r
1
 � r

2
. En el último caso r

1
 � r

2
.

CASO I:  Si r
1
 y r

2
 son distintas y la diferencia r

1
 – r

2
 no es un entero positivo, enton-

ces existen dos soluciones linealmente independientes de la ecuación (1) de la forma

 y1(x)
n 0

cn xn r1,  c0 0,    y2(x)
n 0

bn xn r2,  b0 0.  

Este es el caso que se ilustra en los ejemplos 2 y 3.

A continuación suponemos que la diferencia de las raíces es N, donde N es un 
entero positivo. En este caso la segunda solución podría contener un logaritmo.

CASO II:  Si r
1
 y r

2
 son distintas y la diferencia r

1
 – r

2
 es un entero positivo, entonces 

existen dos soluciones de la ecuación (1) linealmente independientes de la forma

  (19)

 y2(x) Cy1(x) ln x
n 0

bnxn r2,    b0 0,

y1(x)
n 0

cnxn r1,    c0 0,

 (20)

donde C es una constante que podría ser cero.

Finalmente, en el último caso, el caso cuando r
1
 � r

2
, una segunda solución 

siempre tiene un logaritmo. La situación es similar a la solución de la ecuación de 
Cauchy-Euler cuando las raíces de la ecuación auxiliar son iguales.

CASO III:  Si r
1
 y r

2
 son iguales, entonces existen dos soluciones linealmente inde-

pendientes de la ecuación (1) de la forma

  (21)

 y2(x) y1(x) ln x
n 1

bnxn r1.

y1(x)
n 0

cnxn r1,    c0 0,

 (22)

DETERMINACIÓN DE UNA SEGUNDA SOLUCIÓN  Cuando la diferencia r
1
 – r

2
 

es un entero positivo (caso II), se podría o no encontrar dos soluciones de la forma 
y n 0 cnxn r . Esto es algo que no se sabe con anticipación, pero se determina des-
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238 ● CAPÍTULO 6  SOLUCIONES EN SERIES DE ECUACIONES LINEALES

pués de haber encontrado las raíces indiciales y haber examinado con cuidado la relación 
de recurrencia que defi nen los coefi cientes c

n
. Se podría tener la fortuna de encontrar dos 

soluciones que impliquen sólo potencias de x, es decir, y1(x) n 0 cnxn r1  (ecuación 
(l9)) y y2(x) n 0 bnxn r2  (ecuación (20) con C � 0). Véase el problema 31 de los 
ejercicios 6.2. Por otro lado, en el ejemplo 4 se ve que la diferencia de las raíces indiciales 
es un entero positivo (r

1
 – r

2
 � 1) y el método de Frobenius falla en obtener una segunda 

solución en serie. En esta situación, la ecuación (20), con C 	 0, indica que la segun-
da solución se parece. Por último, cuando la diferencia r

1
 – r

2
 es un cero (caso III), el mé-

todo de Frobenius no da una solución en serie; la segunda solución (22) siempre contiene 
un logaritmo y se puede demostrar que es equivalente a (20) con C � 1. Una forma de 
obtener la segunda solución con el término logarítmico es usar el hecho de que

 y2(x) y1(x)
e P(x)dx

y2
1(x)

dx  (23)

también es una solución de y� � P(x)y� � Q(x)y � 0, siempre y cuando y
1
(x) sea una 

solución conocida. En el ejemplo siguiente, se ilustra cómo usar la ecuación (23).

EJEMPLO 5  Volver a analizar el ejemplo 4 usando un SAC

Encuentre la solución general de xy� � y � 0.

SOLUCIÓN  De la conocida solución dada del ejemplo 4,

 y1(x) x
1

2
x2 1

12
x3 1

144
x4 ,  

se puede construir una segunda solución y
2
(x) usando la fórmula (23). Quienes tengan 

tiempo, energía y paciencia pueden realizar el aburrido trabajo de elevar al cuadrado una 
serie, la división larga y la integración del cociente a mano. Pero todas estas operacio-
nes se realizan con relativa facilidad con la ayuda un SAC. Se obtienen los resultados:

 y2(x) y1(x)
e ∫0dx

[y1(x)]2 dx y1(x)
dx

x
1

2
x2 1

12
x3 1

144
x4

2

  

 
 

 
 

 
 

o y2(x) y1(x) ln x 1
1

2
x

1

2
x2 .

y1(x) ln x y1(x)
1

x

7

12
x

19

144
x2 ,

y1(x)
1

x
ln x

7

12
x

19

144
x2

y1(x)
1

x2

1

x

7

12

19

72
x dx

y1(x)
dx

x2 x3 5

12
x4 7

72
x5

; 

En el intervalo (0,�) la solución general es y � C
1
y

1
(x) � C

2
y

2
(x), 

Observe que la forma fi nal de y
2
 en el ejemplo 5 corresponde a (20) con C � 1; la 

serie entre paréntesis corresponde a la suma en (20) con r
2
 � 0.

; después de la división larga

; después de multiplicar

; después de integrar

; después de elevar al cuadrado
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COMENTARIOS 

i) Las tres formas distintas de una ecuación diferencial lineal de segundo orden 
en (1), (2) y (3) se usaron para analizar varios conceptos teóricos. Pero a nivel 
práctico, cuando se tiene que resolver una ecuación diferencial con el método 
de Frobenius, se recomienda trabajar con la forma de la ED dada en (1).

ii) Cuando la diferencia de las raíces indiciales r
1
 – r

2
 es un entero positivo 

(r
1
 � r

2
), a veces da resultado iterar la relación de recurrencia usando primero 

la raíz r
2
 más pequeña. Véanse los problemas 31 y 32 en los ejercicios 6.2.

iii) Debido a que una raíz indicial r es una solución de una ecuación cuadrática, 
ésta podría ser compleja. Sin embargo, este caso no se analiza. 

iv) Si x � 0 es punto singular irregular, entonces es posible que no se encuentre 
ninguna solución de la ED de la forma y n 0 cnxn r.

EJERCICIOS 6.2  Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-9.

En los problemas 1 a 10, determine los puntos singulares de 
la ecuación diferencial dada. Clasifi que cada punto singular 
como regular o irregular.

 1. x3y� � 4x2y� � 3y � 0

 2. x(x � 3)2y� � y � 0

 3. (x2 � 9)2y� � (x � 3)y� � 2y � 0

 4. y
1

x
y

1

(x 1)3 y 0

 5. (x3 � 4x)y� � 2xy� � 6y � 0

 6. x2(x � 5)2y� � 4xy� � (x2 � 25)y � 0

 7. (x2 � x � 6)y� � (x � 3)y� � (x � 2)y � 0

 8. x(x2 � 1)2y� � y � 0

 9. x3(x2 � 25)(x � 2)2y� � 3x(x � 2)y� � 7(x � 5)y � 0

 10. (x3 � 2x2 � 3x)2y� � x(x � 3)2y� � (x � 1)y � 0

En los problemas 11 y 12 escriba la ecuación diferencial dada 
en la forma (3) para cada punto singular regular de la ecua-
ción. Identifi que las funciones p(x) y q(x).

 11. (x2 � 1)y� � 5(x � 1)y� � (x2 � x)y � 0

 12. xy� � (x � 3)y� � 7x2y � 0

En los problemas 13 y 14, x � 0 es un punto singular regular 
de la ecuación diferencial dada. Use la forma general de la 
ecuación indicial en (14) para encontrar las raíces indiciales 
de la singularidad. Sin resolver, indique el número de solu-

ciones en serie que se esperaría encontrar usando el método 
de Frobenius.

 13. x2y (5
3 x x2)y 1

3 y 0

 14. xy� � y� � 10y � 0

En los problemas 15 a 24, x � 0 es un punto singular regular de 
la ecuación diferencial. Muestre que las raíces indiciales de la 
singularidad no difi eren por un entero. Use el método de Frobe-
nius para obtener dos soluciones en serie linealmente indepen-
dientes respecto a x � 0. Forme la solución general en (0, �).

 15. 2xy� � y� � 2y � 0

 16. 2xy� � 5y� � xy � 0

 17. 4xy 1
2 y y 0

 18. 2x2y� � xy� � (x2 � 1)y � 0

 19. 3xy� � (2 � x)y� � y � 0

 20. x2y (x 2
9)y 0

 21. 2xy� � (3 � 2x)y� � y � 0

 22. x2y xy (x2 4
9)y 0

 23. 9x2y� � 9x2y� � 2y � 0

 24. 2x2y� � 3xy� � (2x � 1)y � 0

En los problemas 25 a 30, x � 0 es un punto singular regular 
de la ecuación diferencial dada. Demuestre que las raíces indi-
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240 ● CAPÍTULO 6  SOLUCIONES EN SERIES DE ECUACIONES LINEALES

ciales de la singularidad difi eren por un entero. Use el método 
de Frobenius para obtener al menos una solución en serie res-
pecto a x � 0. Use la ecuación (23) donde sea necesario y un 
SAC, como se indica, para encontrar una segunda solución. 
Forme la solución general en (0,�). 

 25. xy� � 2y� � xy � 0

 26. x2y xy (x2 1
4)y 0

 27. xy� � xy� � y � 0 28. y
3

x
y 2y 0

 29. xy� � (1 � x)y� � y � 0 30. xy� � y� � y � 0

En los problemas 31 y 32, x � 0 es un punto singular regular 
de la ecuación diferencial dada. Demuestre que las raíces indi-
ciales de la singularidad difi eren por un entero. Use la relación 
de recurrencia encontrada por el método de Frobenius primero 
con la raíz más grande r

1
. ¿Cuántas soluciones encontró? A 

continuación use la relación de recurrencia con la raíz más 
pequeña r

2
. ¿Cuántas soluciones encontró?

 31. xy� � (x � 6)y� � 3y � 0

 32. x(x � 1)y� � 3y� � 2y � 0

 33. a)  La ecuación diferencial x 4y� � ly � 0 tiene un punto 
singular irregular en x � 0. Demuestre que la sustitu-
ción t � l�x produce la ED

d 2y

dt2

2

t
 
dy

dt
y 0,

 que ahora tiene un punto singular regular en t � 0.

b)  Use el método de esta sección para encontrar dos so-
luciones en serie de la segunda ecuación del inciso a) 
respecto a un punto singular regular t � 0.

c)  Exprese cada solución en serie de la ecuación original 
en términos de funciones elementales.

Modelo matemático

 34. Pandeo de una columna cónica  En el ejemplo 3 de 
la sección 5.2, vimos que cuando una fuerza compresiva 
vertical constante o carga P se aplica a una columna del-
gada de sección transversal uniforme, la defl exión y(x) 
fue una solución del problema con valores en la frontera

 
EI 

d 2y

dx2 Py 0,  y(0) 0,  y(L) 0. (24)

   La suposición aquí es que la columna está abisagrada en 
ambos extremos. La columna se pandea sólo cuando la 
fuerza compresiva es una carga crítica P

n
.

  a)  En este problema se supone que la columna es de 
longitud L, está abisagrada en ambos extremos, tiene 
secciones transversales circulares y es cónica como se 
muestra en la fi gura 6.2.1a. Si la columna, un cono 

truncado, tiene un afi lamiento lineal y � cx, como se 
muestra en la sección transversal de la fi gura 6.2.1b, 
el momento de inercia de una sección transversal res-
pecto a un eje perpendicular al plano xy es I 1

4 r4 , 
donde r � y y y � cx. Por tanto, escribimos I(x) � 
I

0
(x�b)4, donde I0 I(b) 1

4 (cb)4  Sustituyendo 
I(x) en la ecuación diferencial en (24), vemos que la 
defl exión en este caso se determina del PVF

x4 
d 2y

dx2 y 0,  y(a) 0,  y(b) 0,

  donde l � Pb4�EI
0
. Use los resultados del pro-

blema 33 para encontrar las cargas críticas P
n
 para la 

columna cónica. Use una identidad apropiada para 
expresar los modos de pandeo y

n
(x) como una sola 

función.

b)  Use un SAC para trazar la gráfi ca del primer modo de 
pandeo y

1
(x) correspondiente a la carga de Euler P

1
 

cuando b � 11 y a � 1.

x = a

y

P

x = b

y = cx
b − a = L

L

a) b)

x

FIGURA 6.2.1  Columna cónica del problema 34.

Problemas para analizar

 35. Analice cómo defi niría un punto singular regular para la 
ecuación diferencial lineal de primer orden

a3(x)y a2(x)y a1(x)y a0(x)y 0.

 36. Cada una de las ecuaciones diferenciales

 
x3y y 0      y     x2y (3x 1)y y 0

  tiene un punto singular irregular en x � 0. Determine si 
el método de Frobenius produce una solución en serie de 
cada ecuación diferencial respecto a x � 0. Analice y ex-
plique sus hallazgos.

 37. Se ha visto que x � 0 es un punto singular regular de 
cualquier ecuación de Cauchy-Euler ax2y� � bxy� � cy � 
0. ¿Están relacionadas la ecuación indicial (14) para 
una ecuación de Cauchy-Euler y su ecuación auxiliar? 
Analice.
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6.3.1  ECUACIÓN DE BESSEL

LAS SOLUCIÓN  Debido a que x � 0 es un punto singular regular de la ecuación 
de Bessel, se sabe que existe al menos una solución de la forma y n 0 cnxn r. 
Sustituyendo la última expresión en (1), se obtiene

FUNCIONES ESPECIALES

REPASO DE MATERIAL
● Secciones 6.1 y 6.2

INTRODUCCIÓN  Las dos ecuaciones diferenciales

  (1)

   (1 x2)y 2xy n(n 1)y 0

x2y xy (x2 2)y 0

 (2)

se presentan en estudios avanzados de matemáticas aplicadas, física e ingeniería. Se llaman ecuación 
de Bessel de orden v y ecuación de Legendre de orden n, respectivamente. Cuando resolvemos la 
ecuación (1) se supone que � � 0, mientras que en (2) sólo consideraremos el caso cuando n es un 
entero no negativo.

6.3

   c0(r2 2)xr xr

n 1
cn[(n r)2 2]xn xr

n 0
cnxn 2.

   c0(r2 r r 2)xr xr

n 1
cn[(n r)(n r 1) (n r) 2]xn xr

n 0
cnxn 2

x2y xy (x2 2)y
n 0

cn(n r)(n r 1)xn r

n 0
cn(n r)xn r

n 0
cnxn r 2  2

n 0
cnxn r

(3)

De (3) se ve que la ecuación indicial es r2 � �2 � 0, de modo que las raíces indiciales 
son r

1
 � � y r

2
 � ��. Cuando r

1
 � �, la ecuación (3) se convierte en

Por tanto, por el argumento usual podemos escribir (1 � 2�)c
1
 � 0 y

  

o ck 2
ck

(k 2)(k 2 2 )
,    k 0, 1, 2, . . . 

 (k 2)(k 2 2 )ck 2 ck 0

 (4)

La elección c
1
 � 0 en (4) implica que c3 c5 c7 0,  por lo que para 

k � 0, 2, 4, . . .  se encuentra, después de establecer k � 2 � 2n, n � 1, 2, 3, . . . , que

 
c2n

c2n 2

22n(n )
.

 (5)

xn  cnn(n  2n)xn xn cnxn 2

n 1 n 0

xn [(1  2n)c1x  [(k  2)(k  2  2n)ck 2 ck]xk 2]  0.
k 0

xn [(1  2n)c1x  cnn(n  2n)xn  cnxn 2]
n 2 n 0

k n 2 k n

6.3  FUNCIONES ESPECIALES ● 241
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242 ● CAPÍTULO 6  SOLUCIONES EN SERIES DE ECUACIONES LINEALES

Por lo que  

     c2n

( 1)nc0

22nn!(1 )(2 ) (n )
,    n 1, 2, 3, . . . .

c6
c4

22 3(3 )

c0

26 1  2 3(1 )(2 )(3 )

c4
c2

22 2(2 )

c0

24 1 2(1 )(2 )

c2
c0

22 1 (1 )

 (6)

En la práctica se acostumbra elegir a c
0
 como

 
c0

1

2 (1 )
,
 

donde 
(1 � �) es la función gamma. Véase el apéndice I. Puesto que esta última fun-
ción posee la propiedad conveniente 
(1 � a) � a
(a), se puede reducir el producto 
indicado en el denominador de (6) a un término. Por ejemplo,

 (1 2) (2 ) (2 ) (2 )(1 ) (1 ).

(1 1) (1 ) (1 )

 

Por tanto, se puede escribir (6) como

 
c2n

( 1)n

22n  n!(1 )(2 ) (n ) (1 )

( 1)n

22n  n! (1 n)  

para n � 0, 1, 2, . . . 

FUNCIONES DE BESSEL DE PRIMERA CLASE  Si se usan los coefi cientes c
2n

 ape-
nas obtenidos y r � �, una solución en serie de la ecuación (1) es y n 0 c2n x2n .  
Esta solución usualmente se denota por J

�
(x):

 
 J (x)

n 0

( 1)n

n! (1 n)

x

2

2n

 (7)

Si � � 0, la serie converge al menos en el intervalo [0, �). También, para el segundo 
exponente r

2
 � �� se obtiene exactamente de la misma manera,

 
J (x)

n 0

( 1)n

n! (1 n)

x

2

2n

 (8)

Las funciones J
�
(x) y J

��
(x) se llaman funciones de Bessel de primera clase de orden 

� y ��, respectivamente. Dependiendo del valor de �, (8) puede contener potencias 
negativas de x y, por tanto, converger en (0, �).*

Ahora se debe tener cuidado al escribir la solución general de (1). Cuando � � 0, 
es evidente que (7) y (8) son las mismas. Si � � 0 y r

1
 � r

2
 � � � (��) � 2� no es un 

entero positivo, se tiene del caso I de la sección 6.2 que J
�
(x) y J

��
(x) son soluciones 

linealmente independientes de (1) en (0, �) y, por tanto, la solución general del inter-
valo es y � c

1
J

�
(x) � c

2
J

��
(x). Pero se sabe que del caso II de la sección 6.2 que cuando 

r
1
 � r

2
 � 2� es un entero positivo, podría existir una segunda solución en serie de 

(1). En este segundo caso se distinguen dos posibilidades. Cuando � � m � entero 
positivo, J

�m
(x) defi nida por (8) y J

m
(x) no son soluciones linealmente independientes. 

Se puede demostrar que J
�m

 es un múltiplo constante de J
m
 (véase la propiedad i) en la 

página 245). Además, r
1
 � r

2
 � 2� puede ser un entero positivo cuando � es la mitad de 

*Cuando reemplazamos x por � x �, las series dadas en (7) y en (8) convergen para 0 � � x � � �.
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un entero positivo impar. En este último caso se puede demostrar que J
�
(x) y J

��
(x) son 

linealmente independientes. En otras palabras, la solución general de (1) en (0, �) es

 y c1J (x) c2J (x),     entero.  (9)

En la fi gura 6.3.1 se presentan las gráfi cas de y � J
0
(x) y y � J

1
(x).

EJEMPLO 1  Ecuaciones de Bessel de orden 1
2

Al identifi car 2 1
4  y 1

2, se puede ver de la ecuación (9) que la solución general 

de la ecuación x2y xy (x2 1
4)y 0  en (0, �) es y � c

1
J

1�2
(x) � c

2
J

�1�2
(x). 

FUNCIONES DE BESSEL DE SEGUNDA CLASE  Si � 	 entero, la función defi -
nida por la combinación lineal

 Y (x)
cos J (x) J (x)

 sen 
 (10)

y la función J
�
(x) son soluciones linealmente independientes de (1), por lo que otra forma 

de la solución general de (1) es y � c
1
J

�
(x) � c

2
Y

�
(x) siempre que � 	 entero. Conforme 

� S m con m entero (10) tiene la forma indeterminada 0�0. Sin embargo, se puede de-
mostrar por la regla de L�Hôpital que el lím : m Y (x) existe. Además, la función

 
Ym(x) lím

: m
 Y (x)

 
y J

m
(x) son soluciones linealmente independientes de x2y� � xy� � (x2 � m2)y � 0. Por tanto, 

para cualquier valor de � la solución general de (1) en (0, �) se puede escribir como

 y c1J (x) c2Y (x).  (11)

Y
�
(x) se llama función de Bessel de segunda clase de orden �. La fi gura 6.3.2 muestra 

las gráfi cas de Y
0
(x) y Y

1
(x).

EJEMPLO 2  Ecuación de Bessel de orden 3

Identifi cando �2 � 9 y � � 3 vemos de la ecuación (11) que la solución general de la 
ecuación x2y� � xy� � (x2 � 9)y � 0 en (0, �) es y � c

1
J

3
(x) � c

2
Y

3
(x). 

ED RESOLUBLES EN TÉRMINOS DE FUNCIONES DE BESSEL  Algunas veces 
es posible convertir una ecuación diferencial en la ecuación (1) por medio de un cam-
bio de variable. Podemos entonces expresar la solución de la ecuación original en 
términos de funciones de Bessel. Por ejemplo, si se establece que t � ax, a � 0, en

 x2y xy (a2x2 2)y 0,  (12)

entonces por la regla de la cadena,

dy

dx

dy

dt
 
dt

dx
  dy

dt
   y  

d 2y

dx2

d

dt
 dy

dx

 dt

dx
2 

d 2y

dt2 .

Por lo que (12) se convierte en

2 4 6 8
_ 0.4

0.2
0.4
0.6
0.8

1

_ 0.2
x

y

J1

J0

FIGURA 6.3.1  Funciones de Bessel 
de primera clase para n � 0, 1, 2, 3, 4.

2 4 6 8

1

_3
_2.5

_2
_ 1.5

_ 1
_ 0.5

0.5
x

y
Y0 Y1

FIGURA 6.3.2  Funciones de Bessel 
de segunda clase para n � 0, 1, 2, 3, 4. 

t 2
2  d

2y

dt 2

t   dy

dt
(t2 2)y 0  o t2  d

2y

dt2 t  
dy

dt
(t2 2)y 0.

La última ecuación es la ecuación de Bessel de orden � cuya solución es y � c
1
J

�
(t) � 

c
2
Y

�
(t).Volviendo a sustituir t � ax en la última expresión, se encuentra que la solu-

ción general de (12) es

 y c1J ( x) c2Y ( x).  (13)

6.3  FUNCIONES ESPECIALES ● 243
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244 ● CAPÍTULO 6  SOLUCIONES EN SERIES DE ECUACIONES LINEALES

La ecuación (12), que se llama ecuación paramétrica de Bessel de orden � y su solu-
ción general (13) son muy importantes en el estudio de ciertos problemas con valores 
en la frontera relacionados con ecuaciones diferenciales parciales que se expresan en 
coordenadas cilíndricas.

Otra ecuación semejante a (1) es la ecuación modifi cada de Bessel de orden �,

 x2y xy (x2 2)y 0.  (14)

Esta ED se puede resolver en la forma que se acaba de ilustrar para (12). Esta vez si 
hacemos que t � ix, donde i2 � �1, entonces (14) se convierte en

 t2 d 2y

dt2 t
dy

dt
(t2 2)y 0. 

Debido a que las soluciones de la ultima ED son J
�
(t) y Y

�
(t), las soluciones de valores 

complejos de la ecuación (14) son J
�
(ix) y Y

�
(ix). Una solución de valores reales, que 

se llama función modifi cada de Bessel de primera clase de orden �, está defi nida en 
términos de J

�
(ix):

 I (x) i J (ix).  (15)

Véase el problema 21 en los ejercicios 6.3. Análogamente a (10), la función modifi -
cada de Bessel de segunda clase de orden � 	 entero, se defi ne como

 K (x)
2

I (x) I (x)

sen
,  (16)

y para � � n entero,

 Kn(x) lím
: n

K (x).  

Debido a que I
�
 y K

�
 son linealmente independientes en el intervalo (0, �) para cual-

quier valor de �, la solución general de (14) es

 y c1I (x) c2K (x).  (17)

Pero otra ecuación, importante debido a que muchas ED se ajustan a su forma 
mediante elecciones apropiadas de los parámetros, es

 y
1 2a

x
y b2c2x2c 2 a2 p2c2

x2 y 0,     p 0.  (18)

Aunque no se dan los detalles, la solución general de (18),

 y xa c1Jp(bxc) c2Yp(bxc) ,  (19)

se puede encontrar haciendo un cambio de las variables independiente y depen-

diente: z bxc, y(x)
z

b

a/c

w(z).  Si r no es un entero, entonces Y
p
 en (19) se pue -

de reemplazar por J
�p

.

EJEMPLO 3  Usando (18)

Encuentre la solución general xy� � 3y� � 9y � 0 en (0, �).

SOLUCIÓN  Escribiendo la ED como

 y
3

x
y

9

x
y 0, 

podemos hacer las siguientes identifi caciones con (18):

1 2a 3,     b2c2 9,     2c 2 1 y a2 p2c2 0.

Las ecuaciones primera y tercera implican que a � �1 y c 1
2. Con estos va-

lores las ecuaciones segunda y cuarta se satisfacen haciendo b � 6 y p � 2. 
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De (19) se encuentra que la solución general de la ED en el intervalo (0, �) es
y x 1[c1J2(6x1/2) c2Y2(6x1/2)].  

EJEMPLO 4  Volver a revisar el problema del resorte envejecido

Recuerde que en la sección 5.1 vimos que mx� � ke�atx � 0, a � 0 es un mo-
delo matemático para el movimiento amortiguado libre de una masa en un re-
sorte envejecido. Ahora se está en posición de encontrar la solución general 
de la ecuación. Se deja como problema demostrar que el cambio de variables 

s
2

B 

k

m
e t / 2  transforma la ecuación diferencial del resorte envejecido en

 
s2 d 2x

ds2 s
dx

ds
s2x 0.

 

La última ecuación se reconoce como (1) con � � 0 y donde los símbolos x y s juegan 
los papeles de y y x, respectivamente. La solución general de la nueva ecuación es 
x � c

1
J

0
(s) � c

2
Y

0
(s). Si se sustituye nuevamente s, entonces se ve que la solución 

general de mx� � ke�atx � 0 es

 x(t) c1J0
2

B 

k

m
e t / 2 c2Y0

2

B 

k

m
e t / 2 .  

Véanse los problemas 33 y 39 de los ejercicios 6.3. 

El otro modelo analizado en la sección 5.1 de un resorte cuyas características 
cambian con el tiempo fue mx� � ktx � 0. Si se divide entre m, vemos que la ecuación 

x
k

m
tx 0  es la ecuación de Airy y� � a2xy � 0. Véase el ejemplo 3 en la sección 6.1.

La solución general de la ecuación diferencial de Airy también se puede escribir en 
términos de funciones de Bessel. Véanse los problemas 34, 35 y 40 de los ejercicios 6.3.

PROPIEDADES  Se listan a continuación algunas de las propiedades más útiles de 
las funciones de Bessel de orden m, m � 0, 1, 2, . . .:

i) J m(x) ( 1)mJm(x),     ii) Jm( x) ( 1)mJm(x),

iii) Jm(0)
0,

1,

m 0

m 0,
    iv) lím

x: 0
Ym (x) .

Observe que la propiedad ii) indica que J
m
(x) es una función par si m es un entero par 

y una función impar si m es un entero impar. Las gráfi cas de Y
0
(x) y Y

1
(x) en la fi gura 

6.3.2 muestran la propiedad iv), en particular, Y
m
(x) no está acotada en el origen. Este 

último hecho no es obvio a partir de la ecuación (10). Las soluciones de la ecuación 
de Bessel de orden 0 se obtienen por medio de las soluciones y

1
(x) en (21) y y

2
(x) en 

(22) de la sección 6.2. Se puede demostrar que la ecuación (21) de la sección 6.2 es 
y

1
(x) � J

0
(x), mientras que la ecuación (22) de esa sección es

 y2(x) J0(x)ln x
k 1

( 1)k

(k!)2 1
1

2

1

k

x

2

2k

.  

Entonces, la función de Bessel de segunda clase de orden 0, Y
0
(x) se defi ne como la 

combinación lineal Y0(x)
2

  ( ln 2)y1(x)
2

y2(x)  para x � 0. Es decir,

 Y0(x)
2

J0(x)   ln
x

2

2

k 1

( 1)k

(k!)2 1
1

2

1

k

x

2

2k

, 

donde  g � 0.57721566 ... es la constante de Euler. Debido a la presencia del término 
logarítmico, es evidente que Y

0
(x) es discontinua en x � 0.
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246 ● CAPÍTULO 6  SOLUCIONES EN SERIES DE ECUACIONES LINEALES

VALORES NUMÉRICOS  En la tabla 6.1 se presentan las primeras cinco raíces no 
negativas de J

0
(x), J

1
(x), Y

0
(x) y Y

1
(x). En la tabla 6.2 se presentan algunos otros valo-

res de la función de estas cuatro funciones.

TABLA 6.2  Valores numéricos de J
0
, J

1
, Y

0
, y Y

1
.

 x J
0
(x) J

1
(x) Y

0
(x) Y

1
(x)

 0    1.0000   0.0000 — —
 1    0.7652   0.4401   0.0883 �0.7812
 2    0.2239   0.5767   0.5104 �0.1070
 3  �0.2601   0.3391   0.3769   0.3247
 4  �0.3971 �0.0660 �0.0169   0.3979
 5  �0.1776 �0.3276 �0.3085   0.1479
 6    0.1506 �0.2767 �0.2882 �0.1750
 7    0.3001 �0.0047 �0.0259 �0.3027
 8    0.1717   0.2346   0.2235 �0.1581
 9  �0.0903   0.2453   0.2499   0.1043
10  �0.2459   0.0435   0.0557   0.2490
11  �0.1712 �0.1768 �0.1688   0.1637
12    0.0477 �0.2234 �0.2252 �0.0571
13   0.2069 �0.0703 �0.0782 �0.2101
14   0.1711   0.1334   0.1272 �0.1666
15  �0.0142   0.2051   0.2055   0.0211

TABLA 6.1  Raíces no negativas de J
0
, J

1
, Y

0
, y Y

1
.

  J
0
(x) J

1
(x) Y

0
(x) Y

1
(x)

 2.4048  0.0000  0.8936  2.1971
 5.5201  3.8317  3.9577  5.4297
 8.6537  7.0156  7.0861  8.5960
11.7915 10.1735 10.2223 11.7492
14.9309 13.3237 13.3611 14.8974

RELACIÓN DE RECURRENCIA DIFERENCIAL  Las fórmulas de recurrencia que 
relacionan las funciones de Bessel de diferentes órdenes son importantes en la teoría 
y en las aplicaciones. En el ejemplo siguiente se deduce una relación de recurrencia 
diferencial.

EJEMPLO 5  Deducción usando la defi nición de serie

Deduzca la fórmula xJ (x) J (x) xJ 1(x).

SOLUCIÓN  De la ecuación (7) se tiene que

xJv(x) � �  (  )2n�v
�

n�0

�

k � n � 1

(�1)n(2n � �)
–––––––––––––––
n! (1 � v � n)

x
–
2

L

� �J�(x) � x �  (  )2n���1

n�1

� (�1)n

–––––––––––––––––––––
(n � 1)! (1 � � � n)

x
–
2

L

� � �  (  )2n�v

n�0

� (�1)n

–––––––––––––––
n! (1 � � � n)

x
–
2

L � 2 �  (  )2n�v

n�0

� (�1)nn
–––––––––––––––
n! (1 � � � n)

x
–
2

L

� �J�(x) � x  � � �J�(x) � xJ��1(x).  (  )2k���1

k�0

� (�1)k

–––––––––––––––
k! (2 � � � k)

x
–
2

L  

El resultado del ejemplo 5 se puede escribir en una forma alternativa. Dividiendo 
xJ (x) J (x) xJ 1(x) entre x, se obtiene

 
J (x)

x
J (x) J 1(x).
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Esta última expresión se reconoce como una ecuación diferencial lineal de primer 
orden en J

�
(x). Multiplicando ambos lados de la igualdad por el factor integrante x��, 

se obtiene

 
d

dx
[x J (x)] x J 1(x).  (20)

Se puede demostrar de manera similar que

 
d

dx
[x J (x)] x J 1(x).  (21)

Véase el problema 27 en los ejercicios 6.3. Las relaciones de recurrencia diferencia-
les (20) y (21) también son válidas para la función de Bessel de segunda clase Y

�
(x). 

Observe que cuando � � 0 se deduce de (20) que

 J0(x) J1(x)      y      Y 0(x) Y1(x).  (22)

En el problema 39 de los ejercicios 6.3 se presenta una aplicación de estos resultados.

FUNCIONES DE BESSEL ESFÉRICAS  Cuando el orden � es la mitad de un en-
tero impar, es decir, 1

2,
3
2,

5
2, . . . ,  las funciones de Bessel de primera clase J

�
(x) 

se pueden expresar en términos de las funciones elementales sen x, cos x y poten-
cias de x. Este tipo de funciones de Bessel se llaman funciones esféricas de Bessel. 
Consideraremos el caso cuando 1

2.  De (7),

 J1/2(x)
n 0

( 1)n

n! (1 1
2 n)

x

2

2n 1/2

. 

En vista de la propiedad 
(1 � a) � a
(a) y del hecho de que (1
2) 1  los 

valores de (1 1
2 n) para n � 0, n � 1, n � 2 y n � 3 son, respectivamente,

  

  

  

  
( 9

2) (1 7
2) 7

2 ( 7
2)

7 5

26 2!
1 

7 6 5!

26 6 2!
1 

7!

273!
1 .

( 7
2) (1 5

2) 5
2 ( 5

2)
5 3

23 1 
5 4 3 2 1

234 2
1 

5!

252!
1 

( 5
2) (1 3

2) 3
2 ( 3

2)
3

22 1 

(3
2) (1 1

2) 1
2 ( 1

2) 1
2 1 

En general, 1
1

2
n

(2n 1)!

22n 1n!
1 .  

Por lo que      J1/2(x)
n 0

( 1)n

n!
(2n 1)!

22n 1n!
1 

x

2

2n 1/2

B 

2

x n 0

( 1)n

(2n 1)!
x2n 1.

Puesto que la serie infi nita en la última línea es la serie de Maclaurin para sen x, se ha 
demostrado que

 J1/2(x)
B 

2

x
senx.  (23)

Se deja como ejercicio demostrar que

 J 1/2(x)
B 

2

x
cos x.  (24)

Véanse los problemas 31 y 32 de los ejercicios 6.3.
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248 ● CAPÍTULO 6  SOLUCIONES EN SERIES DE ECUACIONES LINEALES

6.3.2  ECUACIÓN DE LEGENDRE

SOLUCIÓN  Puesto que x � 0 es un punto ordinario de la ecuación de Legendre (2), 
sustituyendo la serie y k 0 ckxk , corriendo los índices de la suma y combinando 
la serie se obtiene

j 2
 [( j 2)( j 1)cj 2 (n j)(n j 1)cj]x j 0

 (1 x2)y 2xy n(n 1)y [n(n 1)c0 2c2] [(n 1)(n 2)c1  6c3]x

lo que implica que  

  

 
 ( j 2)( j 1)cj 2 (n j)(n j 1)cj 0

 (n 1)(n 2)c1 6c3 0

n(n 1)c0 2c2 0

 

o  

  

 cj 2
(n j)(n j 1)

( j 2)( j 1)
cj ,    j 2, 3, 4, . . .

c3
(n 1)(n 2)

3!
c1

c2
n(n 1)

2!
c0

 (25)

Si se deja que j tome los valores 2, 3, 4, . . . , la relación de recurrencia (25) produce

  

  

  

 
c7

(n 5)(n 6)

7 6
c5

(n 5)(n 3)(n 1)(n 2)(n 4)(n 6)

7!
c1

c6
(n 4)(n 5)

6 5
c4

(n 4)(n 2)n(n 1)(n 3)(n 5)

6!
c0

c5
(n 3)(n 4)

5 4
c3

(n 3)(n 1)(n 2)(n 4)

5!
c1

c4
(n 2)(n 3)

4 3
c2

(n 2)n(n 1)(n 3)

4!
c0

 

etcétera. Entonces para al menos � x � � 1, se obtienen dos soluciones en serie de poten-
cias linealmente independientes:

  

  

  

(26)

 

(n 5)(n 3)(n 1)(n 2)(n 4)(n 6)

7!
x7 .

y2(x) c1 x
(n 1)(n 2)

3!
x3 (n 3)(n 1)(n 2)(n 4)

5!
x5

(n 4)(n 2)n(n 1)(n 3)(n 5)

6!
x6

y1(x) c0 1
n(n 1)

2!
x2 (n 2)n(n 1)(n 3)

4!
x4

 
Observe que si n es un entero par, la primera serie termina, mientras que y

2
(x) es 

una serie infi nita. Por ejemplo, si n � 4, entonces

 y1(x) c0 1
4 5

2!
x2 2 4 5 7

4!
x4 c0 1 10x2 35

3
x4 .  

De manera similar, cuando n es un entero impar, la serie para y
2
(x) termina con xn; es 

decir, cuando n es un entero no negativo, obtenemos una solución polinomial de grado 
n de la ecuación de Legendre.
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Debido a que se sabe que un múltiplo constante de una solución de la ecuación de 
Legendre también es una solución, se acostumbra elegir valores específi cos para c

0
 y 

c
1
, dependiendo de si n es un entero positivo par o impar, respectivamente. Para n � 0 

elegimos c
0
 � 1, y para n � 2, 4, 6, . . .

 c0 ( 1)n /2 1  3 (n 1)

2  4 n
,

mientras que para n � 1 se elige c
1
 � 1 y para n � 3, 5, 7, . . .

 c1 ( 1)(n 1) /2 1 3 n

2 4 (n 1)
. 

Por ejemplo, cuando n � 4, se tiene

 y1(x) ( 1)4 /2 1 3

2 4
 1 10x2 35

3
 x4 1

8
 (35x4 30x2 3).  

POLINOMIOS DE LEGENDRE  Estas soluciones polinomiales específi cas de 
n-ésimo grado se llaman polinomios de Legendre y se denotan mediante P

n
(x). De 

las series para y
1
(x) y y

2
(x) y de las opciones anteriores de c

0
 y c

1
 se encuentra que los 

primeros polinomios de Legendre son

 

P0(x) 1,           P1(x) x,

P2(x)
1

2
 (3x2 1),         P3(x)

1

2
 (5x3 3x),

P4(x)
1

8
 (35x4 30x2 3),    P5(x)

1

8
 (63x5 70x3 15x).

 (27)

Recuerde que P
0
(x), P

1
(x), P

2
(x), P

3
(x), . . . son, a su vez, soluciones particulares de las 

ecuaciones diferenciales

 n 0:

n 1:

n 2:

n 3:

  (1 x2)y 2xy 0,

 (1 x2)y 2xy 2y 0,

 (1 x2)y 2xy 6y 0,

 (1 x2)y 2xy 12y 0,

 (28)

En la fi gura 6.3.3 se presentan las gráfi cas en el intervalo [�1,1], de los seis poli-
nomios de Legendre en (27).

PROPIEDADES  Se recomienda que compruebe las siguientes propiedades usando 
los polinomios de Legendre en (27).

 i) Pn( x) ( 1)nPn(x)

  ii)  Pn(1) 1 iii) Pn( 1) ( 1)n

 iv)  Pn(0) 0,  n   impar,    v) Pn(0) 0,  n  par

La propiedad i) indica, como es evidente en la fi gura 6.3.3, que P
n
(x) es una función 

par o impar concordantemente con la condición de si n es par o impar.

RELACIÓN DE RECURRENCIA  Las relaciones de recurrencia que vinculan poli-
nomios de Legendre de diferentes grados también son importantes en algunos aspectos 
de sus aplicaciones. Se establece, sin comprobación, la relación de recurrencia de tres 
términos

 (k 1)Pk 1(x) (2k 1)xPk(x) kPk 1(x) 0, (29)

que es válida para k � 1, 2, 3, .... En (27) se listan los primeros seis polinomios de 
Legendre. Si decimos que se desea encontrar P

6
(x), se puede usar la ecuación (29) con 

k � 5. Esta relación expresa P
6
(x) en términos de los conocidos P

4
(x) y P

5
(x). Véase el 

problema 45 de los ejercicios 6.3.

x

y

1-1
-1

-0.5

0.5

1

-0.5 0.5

P 1 

P 0 

P 2 

FIGURA 6.3.3  Polinomios de 
Legendre para n � 0, 1, 2, 3, 4, 5.
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250 ● CAPÍTULO 6  SOLUCIONES EN SERIES DE ECUACIONES LINEALES

Otra fórmula, que aunque no es una relación de recurrencia, puede generar 
los polinomios de Legendre por derivación, es la fórmula de Rodrigues que, para 
estos polinomios es

 Pn(x)
1

2nn!

dn

dxn  (x2 1)n,    n 0, 1, 2, . . . . (30)

Véase el problema 48 de los ejercicios 6.3.

COMENTARIOS

i) Aunque se ha supuesto que el parámetro n en la ecuación diferencial de 
Legendre (1 � x2)y� � 2xy� � n(n � 1)y � 0, representa un entero no negativo, 
en una forma más general n puede representar cualquier número real. Cualquier 
solución de la ecuación de Legendre se llama función de Legendre. Si n no es 
un entero no negativo, entonces ambas funciones de Legendre y

1
(x) y y

2
(x) dadas 

en (26) son series infi nitas convergentes en el intervalo abierto (�1, 1) y diver-
gentes (sin límite) en x � � l. Si n es un entero no negativo, entonces, como 
se ha visto, una de las funciones de Legendre en (26) es un polinomio y la 
otra es una serie infi nita convergente para �1 � x � 1. Se debe tener presente 
que la ecuación de Legendre tiene soluciones que están acotadas en el intervalo 
cerrado [�1, 1] sólo en el caso cuando n � 0, 1, 2, . . . Más concretamente, 
las únicas funciones de Legendre que están acotadas en el intervalo cerrado 
[�1, 1] son los polinomios de Legendre P

n
(x) o múltiplos constantes de estos 

polinomios. Véase el problema 47 de los ejercicios 6.3 y el problema 24 en el 
Repaso del capítulo 6.

ii) En los Comentarios al fi nal de la sección 2.3 se mencionó la rama de la mate-
mática llamada funciones especiales. Quizá una mejor denominación para esta 
área de las matemáticas aplicadas podría ser funciones nombradas, puesto que 
muchas de las funciones estudiadas llevan nombres propios: funciones de Bessel, 
funciones de Legendre, funciones de Airy, polinomios de Chebyshev, función 
hipergeométrica de Gauss, polinomios de Hermite, polinomios de Jacobi, po-
linomios de Laguerre, funciones de Mathieu, funciones de Weber, etcétera. 
Históricamente, las funciones especiales fueron subproducto de la necesidad; 
alguien necesitaba una solución de una ecuación diferencial muy especializada 
que surgió de un intento por resolver un problema físico.

EJERCICIOS 6.3    Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-10.

6.3.1  ECUACIÓN DE BESSEL

En los problemas 1 a 6 use la ecuación (1) para encontrar la so-
lución general de la ecuación diferencial en el intervalo (0, �).

 1. x2y xy x2 1
9 y 0

 2. x2y� � xy� � (x2 � 1)y � 0

 3. 4x2y� � 4xy� � (4x2 � 25)y � 0

 4. 16x2y� � 16xy� � (16x2 � 1)y � 0

 5. xy� � y� � xy � 0

 6. 
d

dx
 [xy ] x

4

x
y 0

En los problemas 7 a 10, use la ecuación (12) para encontrar la 
solución general de la ecuación diferencial dada en (0, �).

 7. x2y� � xy� � (9x2 � 4)y � 0

 8. 

 9. x2y xy 25x2 4
9 y 0

x2y xy 36x2 1
4 y 0

 10. x2y� � xy� � (2x2 � 64)y � 0

En los problemas 11 y 12 use el cambio de variable indicado 
para determinar la solución general de la ecuación diferencial 
en (0, �).

 11. x2y� � 2xy� � a2x2y � 0;  y � x �1�2v(x)

 12. x2y ( 2x2 2 1
4)y 0;  y 1x v(x)
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En los problemas 13 a 20 use la ecuación (18) para encontrar 
la solución general de la ecuación diferencial en (0, �).

 13. xy� � 2y� � 4y � 0 14. xy� � 3y� � xy � 0

 15. xy� � y� � xy � 0 16. xy� � 5y� � xy � 0

 17. x2y� � (x2 � 2)y � 0 

 18. 4x2y� � (16x2 � 1)y � 0

 19. xy� � 3y� � x3y � 0

 20. 9x2y� � 9xy� � (x6 � 36)y � 0

 21. Use la serie en (7) para comprobar que I
�
(x) � i��J

�
(ix) es 

una función real.

 22. Suponga que b en la ecuación (18) puede ser un número 
imaginario puro, es decir, b � bi, b � 0, i2 � �1. Use 
esta suposición para expresar la solución general de la 
ecuación diferencial en términos de las funciones modifi -
cadas de Bessel I

n
 y K

n
.

a) y� � x2y � 0 b) xy� � y� � 7x3y � 0

En los problemas 23 a 26, use primero la ecuación (18) para 
expresar la solución general de la ecuación diferencial en térmi-
nos de funciones de Bessel. Luego use (23) y (24) para expresar 
la solución general en términos de funciones elementales.

 23. y� � y � 0

 24. x2y� � 4xy� � (x2 � 2)y � 0

 25. 16x2y� � 32xy� � (x4 � 12)y � 0

 26. 4x2y� � 4xy� � (16x2 � 3)y � 0

 27. a)  Proceda como en el ejemplo 5 para demostrar que

xJ�
n
(x) � �nJ

n
(x) � xJ

n�1
(x).

  [Sugerencia: Escriba 2n � n � 2(n � n) � n.]

  b) Utilice el resultado del inciso a) para deducir (21).

 28. Utilice la fórmula del ejemplo 5 junto con el inciso a) del 
problema 27 para deducir la relación de recurrencia.

2nJ
n
(x) � xJ

n�1
(x) � xJ

n�1
(x).

En los problemas 29 y 30 use la ecuación (20) o (21) para 
obtener el resultado dado.

 29. 
x

0
rJ0(r)dr xJ1(x)    30. J�

0
(x) � J

�1
(x) � �J

1
(x)

 31. Proceda como en la página 247 para deducir la forma ele-
mental de J

�1�2
(x) dada en (24).

 32. a)  Use la relación de recurrencia del problema 28 junto 
con (23) y (24) para expresar J

3�2
(x), J

�3�2
(x) y J

5�2
(x) 

en términos de sen x, cos x y potencias de x.

  b)  Use un programa de grafi cación para trazar J
1�2

(x), 
J

�1�2
(x), J

3�2
(x), J

�3�2
(x) y J

5�2
(x).

 33. Use el cambio de variables s
2

B 

k

m
e t / 2  para de-

  mostrar que la ecuación diferencial del resorte envejecido 
mx� � ke�atx � 0, a � 0, se convierte en

s2 d 2x

ds2 s
dx

ds
s2x 0.

 34. Demuestre que y x1 /2w(2
3 x3 /2) es una solución de la

   ecuación diferencial de Airy y� � a2xy � 0, x � 0, siem-
pre que w sea una solución de la ecuación de Bessel de 
orden 1

3
, es decir, t2w tw (t2 1

9)w 0,  t � 0. 
[Sugerencia: Después de derivar, sustituir y simplifi car, 
entonces se hace ]t 2

3 x3 /2.

 35. a)  Use el resultado del problema 34 para expresar la 
solución general de la ecuación diferencial de Airy 
para x � 0 en términos de funciones de Bessel.

  b)  Compruebe los resultados del inciso a) usando la 
ecuación (18).

 36. Use la tabla 6.1 para encontrar los primeros tres valores 
propios positivos y las funciones propias correspondien-
tes del problema de valores en la frontera.

  xy y xy 0,

  y(x), y�(x) acotada conforme x S 0�, y(2) � 0.

 [Sugerencia: Identifi cando l � a2, la ED es la ecuación 
de Bessel paramétrica de orden cero.]

 37. a)  Use la ecuación (18) para demostrar que la solución 
general de la ecuación diferencial xy� � ly � 0 en el 
intervalo (0,�) es

y c1 xJ1(2 x) c2 xY1(2 x).1 1 1 1

  b)  Compruebe por sustitución directa que y 1xJ1

    1 (2 x ) es una solución particular de la ED en el caso 
l � 1.

Tarea para el laboratorio de computación

 38. Use un SAC para trazar las gráfi cas de las funciones mo-
difi cadas de Bessel I

0
(x), I

1
(x), I

2
(x) y K

0
(x), K

1
(x), K

2
(x). 

Compare estas gráfi cas con las que se muestran en las fi -
guras 6.3.1 y 6.3.2. ¿Qué diferencia principal es evidente 
entre las funciones de Bessel y las funciones modifi cadas 
de Bessel?

 39. a)  Use la solución general dada en el ejemplo 4 para 
resolver el PVI

   4x e 0.1tx 0,   x(0) 1,   x (0) 1
2.

      También use J0(x) J1(x) y Y0(x) Y1(x) junto 
con la tabla 6.1 o un SAC para evaluar los coefi cientes. 

  b)  Use un SAC para trazar la gráfi ca de la solución ob-
tenida en el inciso a) en el intervalo 0 � t � �.
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252 ● CAPÍTULO 6  SOLUCIONES EN SERIES DE ECUACIONES LINEALES

 40. a)  Use la solución general obtenida en el problema 35 
para resolver el PVI

   4x tx 0,   x(0.1) 1,   x (0.1) 1
2.

   Use un SAC para evaluar los coefi cientes.

  b)  Use un SAC para trazar la gráfi ca de la solución ob-
tenida en el inciso a) en el intervalo 0 � t � 200.

 41. Columna doblada bajo su propio peso  Una columna 
delgada uniforme de longitud L, colocada verticalmente 
con un extremo insertado en el suelo, se curva desde la 
vertical bajo la infl uencia de su propio peso cuando su 
longitud o altura excede un cierto valor crítico. Se puede 
demostrar que la defl exión angular u(x) de la columna 
desde la vertical en un punto P(x) es una solución del 
problema con valores en la frontera:

  EI  d
2

dx2 g(L x) 0,   (0) 0,  (L) 0,

  donde E es el módulo de Young, I es el momento de iner-
cia de sección transversal, d es la densidad lineal cons-
tante y x es la distancia a lo largo de la columna medida 
desde su base. Véase la fi gura 6.3.4. La columna se dobla 
sólo para aquellos valores de L para los que el problema 
con valores en la frontera tiene una solución no trivial.

  a)  Establezca de nuevo el problema con valores en la 
frontera haciendo el cambio de variables t � L � x. 
Luego utilice los resultados del problema anterior en 
este conjunto de ejercicios para expresar la solución 
general de la ecuación diferencial en términos de 
funciones de Bessel.

  b)  Use la solución general encontrada en el inciso a) para 
encontrar una solución del PVF y una ecuación que de-
fi na la longitud crítica L, es decir, el valor más pequeño 
de L para la que se comience a doblar la columna.

  c)  Con ayuda de un SAC, encuentre la longitud L de 
una varilla de acero sólida de radio r � 0.05 pulg, dg 
� 0.28 A lb�pulg, E � 2.6  � 107 lb�pulg2, A � pr2 
e I 1

4 r4.

una columna delgada de sección transversal uniforme y 
abisagrada en ambos extremos, la defl exión y(x) es una 
solución del PVF:

  EI  d
2y

dx2 Py 0,   y(0) 0,   y(L) 0.

  a)  Si el factor de rigidez a la fl exión EI es proporcional 
a x, entonces EI(x) � kx, donde k es una constante de 
proporcionalidad. Si EI(L) � kL � M es el factor de 
rigidez máxima entonces k � M�L y, por tanto, EI(x) 
� Mx�L. Use la información del problema 37 para 
encontrar una solución de

   M x

L
 
d 2y

dx2 Py 0,   y(0) 0,   y(L) 0

    si se sabe que 1 xY1(21 x) no es cero en x � 0. 

  b)  Use la tabla 6.1 para encontrar la carga de Euler P
1
 

para la columna.

  c)  Use un SAC para grafi car el primer modo de pandeo 
y

1
(x) correspondiente a la carga de Euler P

1
. Por sim-

plicidad suponga que c
1
 � 1 y L � 1.

 43. Péndulo de longitud variable  Para el péndulo simple 
descrito en la página 209 de la sección 5.3, suponga que la 
varilla que sostiene la masa m en un extremo se sustituye 
por un alambre fl exible o cuerda y que el alambre pasa por 
una polea en el punto de apoyo O en la fi gura 5.3.3. De 
esta manera, mientras está en movimiento en el plano 
vertical la masa m puede subir o bajar. En otras palabras, 
la longitud l(t) del péndulo varía con el tiempo. Bajo las 
mismas suposiciones que conducen a la ecuación (6) en la 
sección 5.3, se puede demostrar* que la ecuación diferen-
cial para el ángulo de desplazamiento u ahora es

 l 2l g sen 0.
  a)  Si l aumenta a una razón constante v y si l(0) � l

0
, de-

muestre que una linealización de la ED anterior es

             (l0 vt) 2v g 0. (31)

  b)  Realice el cambio de variables x � (l
0
 � vt)�v y de-

muestre que la ecuación (31) se convierte en

d 2

dx 2

2

x
 
d

dx

g

vx
0.

  c)  Use el inciso b) y la ecuación (18) para expresar la 
solución general de la ecuación (31) en términos de 
funciones de Bessel.

  d)  Use la solución general del inciso c) para resolver 
el problema con valores iniciales que consiste en 
la ecuación (31) y las condiciones iniciales u(0) 
� u

0
, u�(0) � 0. [Sugerencias: para simplifi car 

los cálculos, use un cambio de variable adicional 

   u
2

v
 1 g(l0 vt) 2

B 

g

v
 x1/ 2.

* Véase Mathematical Methods in Physical Sciences, Mary Boas, John Wiley 
& Sons, Inc., 1966. También vea el artículo de Borelli, Coleman and Hobson 
en Mathematicas Magazine, vol. 58, núm. 2, marzo de 1985.

x = 0

x

θ

P(x)

suelo

FIGURA 6.3.4  Viga del problema 41.

 42. Pandeo de una columna vertical delgada  En el 
ejemplo 3 de la sección 5.2 vimos que cuando se aplica 
una fuerza compresiva vertical constante o carga P a 
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    Además, recuerde que la ecuación (20) vale para 
J

1
(u) y Y

1
(u). Por último, la identidad

 
2

u
J1(u)Y2(u) J2(u)Y1(u)  será muy útil].

  e)  Use un SAC para trazar la gráfi ca de la solución 
u(t) del PVI del inciso d) cuando l

0
 � 1 pie, u

0
 � 

1
10  radián y v 1

60  pie�s. Experimente con la gráfi ca 
usando diferentes intervalos de tiempo, como [0, 10], 
[0, 30], etcétera. 

  f)  ¿Qué indican las gráfi cas acerca del ángulo de des-
plazamiento u(t) cuando la longitud l del alambre se 
incrementa con el tiempo?

6.3.2  ECUACIÓN DE LEGENDRE

 44. a)  Use las soluciones explícitas y
1
(x) y y

2
(x) de la ecua-

ción de Legendre dada en (26) y la elección apro-
piada de c

0
 y c

1
 para encontrar los polinomios de 

Legendre P
6
(x) y P

7
(x).

  b)  Escriba las ecuaciones diferenciales para las cuales 
P

6
(x) y P

7
(x) son soluciones particulares.

 45. Use la relación de recurrencia (29) y P
0
(x) � 1, P

1
(x) � x, 

para generar los siguientes seis polinomios de Legendre.

 46. Demuestre que la ecuación diferencial

 sen
d 2y

d 2 cos
dy

d
n(n 1)(sen )y 0

  puede convertirse en la ecuación de Legendre por medio 
de la sustitución x � cos u.

 47. Encuentre los primeros tres valores positivos de l para 
los cuales el problema

 (1 x2)y 2xy y 0,

     y(0) � 0,  y(x), y�(x) está acotada en [�1,1]

  tiene soluciones no triviales.

Tarea para el laboratorio de computación

 48. En la realización de este problema, ignore la lista de 
polinomios de Legendre que se presenta en la página 
249 y las gráfi cas de la fi gura 6.3.3. Use la fórmula de 
Rodrigues (30) para generar los polinomios de Legendre 
P

1
(x), P

2
(x), . . . , P

7
(x). Use un SAC para realizar las de-

rivadas y las simplifi caciones.

 49. Use un SAC para trazar las gráfi cas de P
1
(x), P

2
(x), . . . , 

P
7
(x) en el intervalo [�1, 1].

 50. Use un programa de cálculo de raíces para determinar las 
raíces de P

1
(x), P

2
(x), . . . , P

7
(x). Si los polinomios de 

Legendre son funciones incorporadas en su SAC, encuen-
tre los polinomios de Legendre de grado superior. Haga 
una suposición acerca de la localización de las raíces de 
algún polinomio de Legendre P

n
(x) y luego investigue si 

es verdad.

REPASO DEL CAPÍTULO 6
                              Las respuestas a los problemas seleccionados con número impar 

comienzan en la página RES-10.

En los problemas 1 y 2 conteste falso o verdadero sin consul-
tar de nuevo el texto.

 1. La solución general de x2y� � xy� � (x2 � 1)y � 0 es 
y � c

1
J

1
(x) � c

2
J

�1
(x). 

 2. Debido a que x � 0 es un punto singular irregular de 
x3y� � xy� � y � 0, la ED no tiene solución que sea ana-
lítica en x � 0. 

 3. ¿En cuál de los siguientes intervalos se garantiza que 
convergen para toda x ambas soluciones en serie de po-
tencias de y� � ln(x � 1)y� � y � 0 centradas en el punto 
ordinario x � 0?

a) (��, �) b) (�1, �)

c) [ 1
2,

1
2] d) [�1, 1]

 4. x � 0 es un punto ordinario de cierta ecuación diferen-
cial lineal. Después que se sustituye la solución supuesta 

y n 0 cnxn  en la ED, se obtiene el siguiente sistema 
algebraico cuando los coefi cientes de x0, x1, x2 y x3 se 
igualan a cero:

 20c5 8c4 c3
2
3 c2 0.

 12c4 6c3 c2
1
3 c1 0

 6c3 4c2 c1 0

 2c2 2c1 c0 0

 Teniendo en mente que c
0
 y c

1
 son constantes arbitrarias, 

escriba los primeros cinco términos de dos series de po-
tencias que son solución de la ecuación diferencial.

 5. Suponga que se sabe que la serie de potencias 

k 0 ck(x 4)k converge en �2 y diverge en 13. Analice 
si la serie converge en �7, 0, 7, 10 y 11. Las respuestas 
posibles son si, no, podría.

REPASO DEL CAPÍTULO 6 ● 253
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254 ● CAPÍTULO 6  SOLUCIONES EN SERIES DE ECUACIONES LINEALES

 6. Use la serie de Maclaurin para sen x y cos x junto con la 
división larga para encontrar los primeros tres términos 
diferentes de cero de una serie de potencias en x para la

  función f (x)
senx

cos x
.

En los problemas 7 y 8 construya una ecuación diferencial 
lineal de segundo orden que tenga las propiedades dadas.

 7. Un punto singular regular en x � 1 y un punto singular 
irregular en x � 0.

 8. Puntos singulares regulares en x � 1 y en x � � 3.

En los problemas 9 a 14 use un método de series infi nitas 
apropiado respecto a x � 0 para encontrar dos soluciones de 
la ecuación diferencial dada.

 9. 2xy� � y� � y � 0       10. y� � xy� � y � 0

 11. (x � 1)y� � 3y � 0      12. y� � x2y� � xy � 0

 13. xy� � (x � 2)y� � 2y � 0   14. (cos x)y� � y � 0

En los problemas 15 y 16, resuelva el problema con valores 
iniciales dado.

 15. y� � xy� � 2y � 0,  y(0) � 3, y�(0) � �2

 16. (x � 2)y� � 3y � 0,  y(0) � 0, y�(0) � 1

 17. Sin realmente resolver la ecuación diferencial (1 � 2 sen 
x)y� � xy � 0, encuentre un límite inferior para el radio 
de convergencia de las soluciones en serie de potencias 
respecto al punto ordinario x � 0.

 18. Aunque x � 0 es un punto ordinario de la ecuación dife-
rencial, explique por qué no es una buena idea tratar de 
encontrar una solución del PVI

y xy y 0,   y(1) 6,   y (1) 3

  de la forma y n 0 cnxn.  Por medio de series de poten-
cias, determine una mejor forma de resolver el problema.

En los problemas 19 y 20, investigue si x � 0 es un punto ordina-
rio, singular o singular irregular de la ecuación diferencial dada. 
[Sugerencia: Recuerde la serie de Maclaurin para cos x y ex.]

 19. xy� � (1 � cos x)y� � x2y � 0

 20. (ex � 1 � x)y� � xy � 0

 21. Observe que x � 0 es un punto ordinario de la ecuación 
diferencial y� � x2y� � 2xy � 5 � 2x � 10x3. Use la 
suposición y n 0 cnxn  para encontrar la solución ge-
neral y � y

c
 � y

p
 que consiste en tres series de potencias 

centradas en x � 0.

 22. La ecuación diferencial de primer orden dy�dx � x2 � y2 
no se puede resolver en términos de funciones elementa-
les. Sin embargo, una solución se puede expresar en tér-
minos de funciones de Bessel.

 a)  Demuestre que la sustitución y
1

u

du

dx
 conduce

  a la ecuación u� � x2u � 0.

 b)  Use la ecuación (18) de la sección 6.3 para encontrar 
la solución general de u� � x2u � 0.

 c)  Use las ecuaciones (20) y (21) de la sección 6.3 en las 
formas

 
y
   

J (x)
x

J (x) J 1(x)

J (x)
x

J (x) J 1(x)

   como ayuda para demostrar que una familia unipara-
métrica de soluciones de dy�dx � x2 � y2 está dada por

y x
J3 /4( 1

2 x2) cJ 3 /4( 1
2 x2)

cJ1/4( 1
2 x2) J 1/4( 1

2 x2).

 23. a)  Use las ecuaciones (23) y (24) de la sección 6.3 para 
demostrar que

Y1/2(x)
B 

2

x
 cos x.

  b)  Use la ecuación (15) de la sección 6.3 para demostrar 
que 

 
I1/2(x)

B 

2

x
senhx      y     I 1/2(x)

B 

2

x
 cosh x.

  c) Use el inciso b) para demostrar que

K1/2(x)
2x

e x.
B

 24. a)  De las ecuaciones (27) y (28) de la sección 6.3 se sabe 
que cuando n � 0, la ecuación diferencial de Legendre 
(1 � x2)y� � 2xy� � 0 tiene la solución polinomial 
y � P

0
(x) � 1. Use la ecuación (5) de la sección 4.2 

para demostrar que una segunda función de Legendre 
que satisface la ED en el intervalo � 1 � x � 1 es

y
1

2
 ln

1 x

1 x
.

  b)  También sabemos de las ecuaciones (27) y (28) de la 
sección 6.3 que cuando n � 1 la ecuación diferencial 
de Legendre (1 � x2)y� � 2xy� � 2y � 0 tiene la 
solución polinomial y � P

1
(x) � x. Use la ecuación 

(5) de la sección 4.2 para demostrar que una segunda 
función de Legendre que satisface la ED en el inter-
valo �1 � x � 1 es

y
x

2
 ln

1 x

1 x
1.

  c)  Use un programa de grafi cación para trazar las funciones 
de Legendre logarítmicas dadas en los incisos a) y b).

25. a) Use series binomiales para mostrar formalmente que

(1 2xt t2) 1/2

n 0
Pn(x)tn.

  b)  Use el resultado obtenido en el inciso a) para demos-
trar que P

n
(1) � 1 y P

n
(�1) � (�1)n. Véanse las 

propiedades ii) y iii) de la página 249.
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En los modelos matemáticos lineales para sistemas físicos tales como un sistema 

resorte/masa o un circuito eléctrico en serie, el miembro del lado derecho o entrada, 

de las ecuaciones diferenciales

m
d 2x

dt2 b
dx

dt
kx f(t)     L

d 2q

dt2 R
dq

dt

1

C
q E(t)o

es una función de conducción y representa ya sea una fuerza externa f (t) o un voltaje 

aplicado E(t). En la sección 5.1 consideramos problemas en los que las funciones 

f y E eran continuas. Sin embargo, las funciones de conducción discontinuas son 

comunes. Por ejemplo, el voltaje aplicado a un circuito podría ser continuo en tramos 

y periódico tal como la función “diente de sierra” que se muestra arriba. En este 

caso, resolver la ecuación diferencial del circuito es difícil usando las técnicas del 

capítulo 4. La transformada de Laplace que se estudia en este capítulo es una valiosa 

herramienta que simplifi ca la solución de problemas como éste.

255

7.1 Defi nición de la transformada de Laplace

7.2 Transformadas inversas y transformadas de derivadas

7.2.1 Transformadas inversas

7.2.2 Transformadas de derivadas

7.3 Propiedades operacionales I

7.3.1 Traslación en el eje s

7.3.2 Traslación en el eje t

7.4 Propiedades operacionales II

7.4.1 Derivadas de una transformada

7.4.2 Transformadas de integrales

7.4.3 Transformada de una función periódica

7.5 La función delta de Dirac

7.6 Sistemas de ecuaciones diferenciales lineales

REPASO DEL CAPÍTULO 7

LA TRANSFORMADA DE LAPLACE7
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256 ● CAPÍTULO 7  LA TRANSFORMADA DE LAPLACE

DEFINICIÓN DE LA TRANSFORMADA DE LAPLACE

REPASO DE MATERIAL
● Integrales impropias con límites de integración infi nitos.
● Descomposición en fracciones parciales.

INTRODUCCIÓN  En cálculo elemental aprendió que la derivación y la integración son trans-
formadas; esto signifi ca, a grandes rasgos, que estas operaciones transforman una función en otra. 
Por ejemplo, la función f(x) � x2 se transforma, a su vez, en una función lineal y en una familia de 
funciones polinomiales cúbicas con las operaciones de derivación e integración:

d

dx
x2 2x     y    x2 dx

1

3
x3 c.

Además, estas dos transformadas tienen la propiedad de linealidad tal que la transformada de una com-
binación lineal de funciones es una combinación lineal de las transformadas. Para  a y b constantes

 
d

dx
 [ f (x)   g(x)] f (x)   g (x)

y [ f (x)   g(x)] dx f (x) dx g(x) dx  

siempre que cada derivada e integral exista. En esta sección se examina un tipo especial de trans-
formada integral llamada transformada de Laplace. Además de tener la propiedad de linealidad, 
la transformada de Laplace tiene muchas otras propiedades interesantes que la hacen muy útil para 
resolver problemas lineales con valores iniciales.

7.1

TRANSFORMADA INTEGRAL  Si f(x, y) es una función de dos variables, entonces 
una integral defi nida de f respecto a una de las variables conduce a una función de la 
otra variable. Por ejemplo, si se conserva y constante, se ve que 2

1 2xy2 dx 3y2. De 
igual modo, una integral defi nida como b

a K(s, t) f (t) dt  transforma una función f de 
la variable t en una función F de la variable s. Tenemos en particular interés en una 
transformada integral, donde el intervalo de integración es el intervalo no acotado [0, 
�). Si f (t) se defi ne para t � 0, entonces la integral impropia 0 K(s, t) f (t) dt  se defi ne 
como un límite:

 
0

K(s, t) f (t) dt lím
b : 

b

0
K(s, t) f (t) dt . (1)

Si existe el límite en (1), entonces se dice que la integral existe o es convergente; si 
no existe el límite, la integral no existe y es divergente. En general, el límite en (1) 
existirá sólo para ciertos valores de la variable s.

UNA DEFINICIÓN  La función K(s, t) en (1) se llama kernel o núcleo de la trans-
formada. La elección de K(s, t) � e�st como el núcleo nos proporciona una transfor-
mada integral especialmente importante.

DEFINICIÓN 7.1.1  Transformada de Laplace

Sea f una función defi nida para t � 0. Entonces se dice que la integral

 { f (t)}
0

e st f (t) dt  (2)

es la transformada de Laplace de f, siempre que la integral converja.
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Cuando la integral de la defi nición (2) converge, el resultado es una función de s. En 
el análisis general se usa una letra minúscula para denotar la función que se transforma y 
la letra mayúscula correspondiente para denotar su transformada de Laplace, por ejemplo,

 .{ f (t)} F(s),     {g(t)} G(s),     {y(t)} Y(s)

EJEMPLO 1  Aplicando la defi nición 7.1.1

Evalúe .{1}

SOLUCIÓN  De (2),

 
 

 
lím
b : 

e st

s 0

b
lím
b : 

e sb 1

s

1

s

{1}
0

e st(1) dt lím
b : 

b

0
e st dt

 
siempre que s � 0. En otras palabras, cuando s � 0, el exponente �sb es negativo y 
e�sb : 0 conforme b : �. La integral diverge para s � 0. 

El uso del signo de límite se vuelve un poco tedioso, por lo que se adopta la no-
tación 0  como abreviatura para escribir límb: ( ) b

0. Por ejemplo,

 .{1}
0

e st (1) dt
e st

s 0

1

s
,     s 0  

En el límite superior, se sobreentiende lo que signifi ca e�st : 0 conforme t : � para s � 0.

EJEMPLO 2  Aplicando la defi nición 7.1.1

Evalúe {t}.

SOLUCIÓN  De la defi nición 7.1.1 se tiene {t} 0 e st t dt . Al integrar por partes 
y usando slím

t : 
te st 0, 0, junto con el resultado del ejemplo 1, se obtiene

 
.{t}

te st

s 0

1

s 0
e st dt

1

s
{1}

1

s

1

s

1

s2
 

EJEMPLO 3  Aplicando la defi nición 7.1.1

Evalúe {e 3t}.

SOLUCIÓN  De la defi nición 7.1.1 se tiene

  

  

 

1

s 3
,  s 3.

e (s 3)t

s 3 0

{e 3t}
0

e st e 3t dt
0

e (s 3)t dt

 

El resultado se deduce del hecho de que lím
t : � 

e�(s�3)t � 0 para s � 3 � 0 o
s � �3. 
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258 ● CAPÍTULO 7  LA TRANSFORMADA DE LAPLACE

EJEMPLO 4  Aplicando la defi nición 7.1.1

Evalúe {sen 2t}.

SOLUCIÓN  De la defi nición 7.1.1 e integrando por partes se tiene que

 

lím e st cos 2t  0, s  0
t: 

Transformada de Laplace de sen 2t

e st sen 2t
––––––––––––

s
2
–s

2
–s

{sen 2t}    e st sen 2t dt

{sen 2t}.

    e st cos 2t dt
0 0 0

e st cos 2t
––––––––––––

s
2
–s

2
–s

2
––
s2

4
––
s2

[     e st sen 2t dt]0 0

    e st cos 2t dt,        s  0
0

 

En este punto se tiene una ecuación con {sen 2t} en ambos lados de la igualdad. Si 
se despeja esa cantidad el resultado es

 .{sen 2t}
2

s2 4
,     s 0  

� ES UNA TRANSFORMACIÓN LINEAL  Para una combinación lineal de funcio-
nes pode mos escribir

 0
e st [ f (t) g(t)] dt

0
e st f (t) dt   

0
e st g(t) dt

siempre que ambas integrales converjan para s � c. Por lo que se tiene que

 { f (t) g(t)} { f (t)} {g(t)} F(s) G(s) . (3)

Como resultado de la propiedad dada en (3), se dice que � es una transformación 
li neal. Por ejemplo, de los ejemplos 1 y 2

 
,{1 5t} {1} 5 {t}

1

s

5

s2  
y de los ejemplos 3 y 4

 
.{4e 3t 10 sen 2t} 4 {e 3t} 10 {sen 2t}

4

s 3

20

s2 4
Se establece la generalización de algunos ejemplos anteriores por medio del si-

guiente teorema. A partir de este momento se deja de expresar cualquier restricción en 
s; se sobreentiende que s está lo sufi cientemente restringida para garantizar la conver-
gencia de la adecuada transformada de Laplace.

TEOREMA 7.1.1  Transformada de algunas funciones básicas

a) {1}
1

s

b) {tn}
n!

sn 1,   n 1, 2, 3, . . .  c) {eat}
1

s a

d) {sen kt}
k

s2 k2
 e) {cos kt}

s

s2 k2

f ) {senh kt}
k

s2 k2  g) {cosh kt}
s

s2 k2
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t

f(t)

bt1 t3t2a

FIGURA 7.1.1  Función continua por 
tramos.

FIGURA 7.1.2  f es de orden 
exponencial c.

f ( t ) 

tT

Me ct  ( c  > 0)f(t)

e t 
2 

t

f(t)

c

e ct 

FIGURA 7.1.4  et2  no es de orden 
exponencial.

CONDICIONES SUFICIENTES PARA LA EXISTENCIA DE �{f(t)}  La integral 
que defi ne la transformada de Laplace no tiene que converger. Por ejemplo, no existe 

{1> t} ni {et2
}. Las condiciones sufi cientes que garantizan la existencia de { f (t)} 

son que f sea continua por tramos en [0,�) y que f sea de orden exponencial para t � 
T. Recuerde que la función es continua por tramos en [0,�) si, en cualquier intervalo 
0 � a � t � b, hay un número fi nito de puntos t

k
, k � 1, 2, . . . , n (t

k�l
 � t

k
) en los que 

f tiene discontinuidades fi nitas y es continua en cada intervalo abierto (t
k�l

, t
k
). Vea la 

fi gura 7.1.1. El concepto de orden exponencial se defi ne de la siguiente manera.

t 

e −t 

2 cos  t 

e t 

a) b) c)

t

e t 

t

2 e t 
f (t) f (t)

f (t)

t

FIGURA 7.1.3  Tres funciones de orden exponencial c � 1.

Una función como f (t) et2

 no es de orden exponencial puesto que, como se 
muestra en la fi gura 7.1.4, su gráfi ca crece más rápido que cualquier potencia lineal 
positiva de e para t � c � 0.

Un exponente entero positivo de t siempre es de orden exponencial puesto que, 
para c � 0,

 

tn Me            oct      tn

ect M  para t T

 
es equivalente a demostrar que el límt :  tn>ect es fi nito para n � 1, 2, 3, . . . El resul-
tado se deduce con n aplicaciones de la regla de L�Hôpital.

TEOREMA 7.1.2 Condiciones sufi cientes para la existencia

Si f es una función continua por tramos en [0,�) y de orden exponencial c, 
entonces { f (t)} existe para s � c.

DEFINICIÓN 7.1.2  Orden exponencial

Se dice que f es de orden exponencial c si existen constantes c, M � 0 y T � 
0 tales que �  f (t) � � Mect para toda t � T.

Si f es una función creciente, entonces la condición � f (t)� � Mect,  t � T, simple-
mente establece que la gráfi ca de f en el intervalo (T, �) no crece más rápido que la 
gráfi ca de la función exponencial Mect, donde c es una constante positiva. Vea la fi gura 
7.1.2. Las funciones f (t) � t, f (t) � e�t y f (t) � 2 cos t son de orden exponencial c � 
1 para t � 0 puesto que se tiene, respectivamente,

 
.t et,  e t et,          y          2 cos t 2et

 

Una comparación de las gráfi cas en el intervalo (0, �) se muestra en la fi gura 7.1.3.
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260 ● CAPÍTULO 7  LA TRANSFORMADA DE LAPLACE

DEMOSTRACIÓN  Por la propiedad aditiva del intervalo de integrales defi nidas po-
demos escribir

.{ f (t)}
T

0
 e st  

f (t) dt
T

 e st 
f (t) dt I1 I2

La integral I
1
 existe ya que se puede escribir como la suma de integrales en los intervalos 

en los que e�s t f (t) es continua. Ahora puesto que f es de orden exponencial, existen cons-
tantes c, M � 0, T � 0 tales que � f (t)� � Mect para t � T. Entonces podemos escribir

I2
T

 e st 

f (t)  dt M 
T

e stect 
dt M 

T
e (s c)t 

dt M e
(s c)T

s c

para  s � c. Puesto que T Me (s c)t dt  converge, la integral T  e st f (t)  dt  converge por 
la prueba de comparación para integrales impropias. Esto, a su vez, signifi ca que I

2
 existe 

para s � c. La existencia de I
1
 e I

2
 implica que existe { f (t)} 0  e st f (t) dt  para s � c.

 

EJEMPLO 5  Transformada de una función continua por tramos

Evalúe �{ f (t)} donde f (t)
0,   0 t 3

2,   t 3.

SOLUCIÓN  La función que se muestra en la fi gura 7.1.5, es continua por tramos y de 
orden exponencial para t � 0. Puesto que f se defi ne en dos tramos, �{ f (t)} se expresa 
como la suma de dos integrales:

  

  

 
 

2e 3s

s
,     s 0.

 0
2e st

s 3

 { f (t)}
0

 e st f (t) dt
3

0
 e st (0) dt

3
 e st (2) dt

 

Se concluye esta sección con un poco más de teoría relacionada con los tipos de 
funciones de s con las que en general se estará trabajando. El siguiente teorema indica 
que no toda función arbitraria de s es una transformada de Laplace de una función 
continua por tramos de orden exponencial.

t

y

3

2

FIGURA 7.1.5  Función continua por 
tramos.

TEOREMA 7.1.3  Comportamiento de F(s) conforme s : � 

Si f es continua por partes en (0, �) y de orden exponencial y F(s) � �{ f (t)}, 
entonces el lím

s:� 
F(s) � 0.

DEMOSTRACIÓN  Puesto que f es de orden exponencial, existen constantes g, M
1
 

� 0 y T � 0 tales que � f (t)� � M
1
eg t para t � T. También, puesto que f es continua 

por tramos en el intervalo 0 � t � T, está necesariamente acotada en el intervalo; es 
decir, � f (t)� � M

2
 � M

2
e0t Si M denota el máximo del conjunto {M

1
, M

2
} y c denota el 

máximo de {0, g}, entonces

F(s)
0

 e st f (t)  dt M 
0

 e stect dt M 
0

 e (s c)t dt
M

s c

para s � c. Conforme s : �, se tiene �F(s)� : 0 y por tanto F(s) � �{ f (t)} : 0.
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EJERCICIOS 7.1 Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-10.

En los problemas l a 18 use la defi nición 7.1 para encontrar 
�{ f (t)}.

 1.  

 2. 

 3. 

 4. 

 5. 

 6. f (t)
0,

cos t,

0 t >2

        t 2

f (t)
sen t,

0,     

0 t

t

f (t)
2t 1,

0,         

0 t 1

t 1

f (t)
t,

1,

0 t 1

t 1

f (t)
4,

0,

0 t 2

t 2

f (t)
1,

1,

0 t 1

t 1

 7.

t

f (t)
(2, 2)

1

1

FIGURA 7.1.6  Gráfi ca para el problema 7.

 9.

FIGURA 7.1.8  Gráfi ca para el problema 9.

t

f (t)

1

1

FIGURA 7.1.7  Gráfi ca para el problema 8.

t

f(t)
(2, 2)

1

1

 8.

FIGURA 7.1.9  Gráfi ca para el problema 10.

f (t)

a

c

b t

10.

11. f (t) � et�7 12. f (t) � e�2t�5

13. f (t) � te4t 14. f (t) � t2e�2t

15. f (t) � e�t sen t 16. f (t) � et cos t

17. f (t) � t cos t 18. f (t) � t sen t

En los problemas 19 a 36 use el teorema 7.1.1 para encontrar 
�{ f (t)}.

19. f (t) � 2t4 20. f (t) � t5

21. f (t) � 4t � 10 22. f (t) � 7t � 3

23. f (t) � t2 � 6t � 3 24. f (t) � �4t2 � 16t � 9

25. f (t) � (t � 1)3 26. f (t) � (2t � 1)3

27. f (t) � 1 � e4t 28. f (t) � t2 � e�9t � 5

29. f (t) � (1 � e2t)2 30. f (t) � (et � e�t)2

31. f (t) � 4t2 � 5 sen 3t 32. f (t) � cos 5t � sen 2t

33. f (t) � senh kt 34. f (t) � cosh kt

35. f (t) � et senh t 36. f (t) � e�t cosh t

En los problemas 37 a 40 encuentre �{ f (t)} usando primero 
una identidad trigonométrica.

37. f (t) � sen 2t cos 2t 38. f (t) � cos2t

39. f (t) � sen(4t � 5) 40. f (t) 10 cos t
6

41. Una defi nición de la función gamma está dada por la in-
tegral impropia ( ) 0  t 1e t dt,   0.

COMENTARIOS

i) En este capítulo nos dedicaremos principalmente a funciones que son continuas 
por tramos y de orden exponencial. Sin embargo, se observa que estas dos condi-
ciones son sufi cientes pero no necesarias para la existencia de la transformada de 
Laplace. La función f (t) � t�1/2 no es continua por tramos en el intervalo [0, �), 
pero existe su transformada de Laplace. Vea el problema 42 en los ejercicios 7.1.

ii) Como consecuencia del teorema 7.1.3 se puede decir que las funciones de 
s como F

1
(s) � 1 y F

2
(s) � s � (s � 1) no son las transformadas de Laplace 

de fun cio nes continuas por tramos de orden exponencial, puesto que F1(s) 0 : /  
y F2(s) 0 : /  conforme s : �. Pero no se debe concluir de esto que F

1
(s) y F

2
(s) 

no son transformadas de Laplace. Hay otras clases de funciones.
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262 ● CAPÍTULO 7  LA TRANSFORMADA DE LAPLACE

 a) Demuestre que �(a � 1) � a�(a).

 b) Demuestre que {t }
( 1)

s 1 ,  1.

42. Use el hecho de que (1
2) 1  y el problema 41 para 

encontrar la transformada de Laplace de

 a) f (t) � t�1/2 b) f (t) � t1/2 c) f (t) � t3/2.

Problemas para analizar

43. Construya una función F(t) que sea de orden exponen-
cial pero donde f(t) � F�(t) no sea de orden exponencial. 
Construya una función f que no sea de orden exponen-
cial, pero cuya transformada de Laplace exista.

44. Suponga que { f1(t)} F1(s) para s c1 y que 
{ f2(t)} F2(s) para s � c

2
. ¿Cuándo 

  {f1(t) f2(t)} F1(s) F2(s)?

45. La fi gura 7.1.4 indica, pero no demuestra, que la función 
f (t) et 2

 no es de orden exponencial. ¿Cómo demuestra 

la observación de que t2 � ln M � ct, para M � 0 y t sufi -
cientemente grande, que et 2

Mect  para cualquier c?

46. Utilice el inciso c) del teorema 7.1.1 para demostrar que

 �{e(a�ib)t} � 
s a ib

(s a)2 b2 , donde a y b son reales

 e i2 � �1. Demuestre cómo se puede usar la fórmula de 
Euler (página 134) para deducir los resultados

.{eat sen bt}
b

(s a)2 b2

{eat cos bt}
s a

(s a)2 b2

47. ¿Bajo qué condiciones es una función lineal f(x) � mx � 
b, m � 0, una transformada lineal? 

48. La demostración del inciso b) del teorema 7.1.1 requiere 
el uso de la inducción matemática. Demuestre que si se 
su po ne que �{t n�1} � (n � 1)!�sn es cierta, entonces 
se de du ce que �{t n} � n!�sn�1.

TRANSFORMADAS INVERSAS Y TRANSFORMADAS 

DE DERIVADAS

REPASO DE MATERIAL
● Descomposición en fracciones parciales

INTRODUCCIÓN  En esta sección se dan algunos pasos hacia un estudio de cómo se puede usar 
la transformada de Laplace para resolver ciertos tipos de ecuaciones para una función desconocida. 
Se empieza el análisis con el concepto de transformada de Laplace inversa o, más exactamente, la 
inversa de una transformada de Laplace F(s). Después de algunos antecedentes preliminares im-
portantes sobre la transformada de Laplace de derivadas f �(t), f ��(t), . . . , se ilustra cómo entran en 
juego la transformada de Laplace y la transformada de Laplace inversa para resolver ciertas ecua-
ciones diferenciales ordinarias sencillas. 

7.2

7.2.1  TRANSFORMADAS INVERSAS

EL PROBLEMA INVERSO  Si F(s) representa la transformada de Laplace de una 
función f (t), es decir, { f (t)} F(s), se dice entonces que f (t) es la transformada 
de Laplace inversa de F(s) y se escribe f (t) 1{F(s)}. En el caso  de los ejem-
plos 1, 2 y 3 de la sección 7.1 tenemos, respectivamente

Transformada Transformada inversa

 

 

{e 3t}
1

s 3

{t}
1

s2

{1}
1

s

 
e 3t 1 1

s 3

t 1 1

s2

1 1 1

s
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Pronto veremos que en la aplicación de la transformada de Laplace a ecuaciones no se 
puede determinar de manera directa una función desconocida f (t); más bien, se puede 
despejar la transformada de Laplace F(s) o f (t); pero a partir de ese conocimiento, se 
determina f calculando f (t) 1{F(s)}. La idea es simplemente esta: suponga que 

F(s)
2s 6

s2 4  
es una transformada de Laplace; encuentre una función f (t) tal que 

{ f (t)} F (s). En el ejemplo 2 se muestra cómo resolver este último problema.
Para futuras referencias el análogo del teorema 7.1.1 para la transformada inversa 

se presenta como nuestro siguiente teorema.

TEOREMA 7.2.1  Algunas transformadas inversas

a) 1 1 1

s

b)  c) 

d)  e) 

f ) senh kt 1 k

s2 k2

sen kt 1 k

s2 k2

tn 1 n!

sn 1 ,   n 1, 2, 3, . . .

 g) cosh kt 1 s

s2 k2

cos kt 1 s

s2 k2

eat 1 1

s a

Al evaluar las transformadas inversas, suele suceder que una función de s que 
estamos considerando no concuerda exactamente con la forma de una transformada 
de Laplace F(s) que se presenta en la tabla. Es posible que sea necesario “arreglar” la 
función de s multiplicando y dividiendo entre una constante apropiada.

EJEMPLO 1  Aplicando el teorema 7.2.1

Evalúe    a) 1 1

s5
    b) .1 1

s2 7

SOLUCIÓN  a) Para hacer coincidir la forma dada en el inciso b) del teorema 7.2.1, 
se identifi ca n � 1 � 5 o n � 4 y luego se multiplica y divide entre 4!:

 .1 1

s5

1

4!
1 4!

s5

1

24
t4  

b) Para que coincida con la forma dada en el inciso d) del teorema 7.2.1, identifi camos k2 
� 7 y, por tanto, k 1 7 . Se arregla la expresión multiplicando y dividiendo entre 1 7 :

 .1 1

s2 7

1

1 7
1 1 7

s2 7

1

1 7
 sen1 7t  

� �1 ES UNA TRANSFORMADA LINEAL  La transformada de Laplace inversa es 
también una transformada lineal para las constantes a y b 

 
1{ F(s) G(s)} 1{F(s)} 1{G(s)}, (1)

donde F y G son las transformadas de algunas funciones f y g. Como en la ecuación 
(2) de la sección 7.1, la ecuación 1 se extiende a cualquier combinación lineal fi nita de 
transformadas de Laplace.
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264 ● CAPÍTULO 7  LA TRANSFORMADA DE LAPLACE

división de cada uno de los términos 
entre el denominador

incisos e) y d) del 
teorema 7.2.1 con k � 2

linealidad y arreglo de 
las constantes

�2s � 6
–––––––––
s2 � 4

6
–
2

��1{ } � ��1{
� �2 cos 2t � 3 sen 2t.

} � �2 ��1{ ��1{} ��2s
–––––––
s2 � 4

6
–––––––
s2 � 4 }2

–––––––
s2 � 4

s
–––––––
s2 � 4

�

  

(2)

FRACCIONES PARCIALES  Las fracciones parciales juegan un papel importante en la 
determinación de transformadas de Laplace inversas. La descomposición de una expresión 
racional en las fracciones componentes se puede hacer rápidamente usando una sola ins-
trucción en la mayoría de los sistemas algebraicos de computadora. De hecho, algunos SAC 
tienen paquetes implementados de transformada de Laplace y transformada de Laplace 
inversa. Pero para quienes no cuentan con este tipo de software, en esta sección y en las 
subsecuentes revisaremos un poco de álgebra básica en los casos importantes donde el de-
nominador de una transformada de Laplace F(s) contiene factores lineales distintos, factores 
lineales repetidos y polinomios cuadráticos sin factores reales. Aunque examinaremos cada 
uno de estos casos conforme se desarrolla este capítulo, podría ser buena idea que consulta-
ra un libro de cálculo o uno de precálculo para una revisión más completa de esta teoría.

En el siguiente ejemplo se muestra la descomposición en fracciones parciales en el 
caso en que el denominador de F(s) se puede descomponer en diferentes factores lineales.

EJEMPLO 2  División término a término y linealidad

Evalúe 1 2s 6

s2 4
.

SOLUCIÓN  Primero se reescribe la función dada de s como dos expresiones divi-
diendo cada uno de los términos del numerador entre el denominador y después se usa 
la ecuación (1):

EJEMPLO 3  Fracciones parciales: diferentes factores lineales

Evalúe 1 s2 6s 9

(s 1)(s 2)(s 4)
.

SOLUCIÓN  Existen constantes reales A, B y C, por lo que

  

 

A(s 2)(s 4) B(s 1)(s 4) C(s 1)(s 2)

(s 1)(s 2)(s 4)
.

s2 6s 9

(s 1)(s 2)(s 4)

A

s 1

B

s 2

C

s 4

Puesto que los denominadores son idénticos, los numeradores son idénticos:

 .s2 6s 9 A(s 2)(s 4) B(s 1)(s 4) C(s 1)(s 2)        (3)

Comparando los coefi cientes de las potencias de s en ambos lados de la igualdad, sabe-
mos que (3) es equivalente a un sistema de tres ecuaciones con tres incógnitas A, B y C. 
Sin embargo, hay un atajo para determinar estas incógnitas. Si se hace s � 1, s � 2 y s 
� �4 en (3) se obtiene, respectivamente,

 16 A( 1)(5),  25 B(1)(6)     y     ,1 C( 5)( 6)  

y así, B 25
6A 16

5
, , y C 1

30 . Por lo que la descomposición en fracciones par-
ciales es

 
s2 6s 9

(s 1)(s 2)(s 4)

16 5

s 1

25 6

s 2

1 30

s 4

> > >
, (4)
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y, por tanto, de la linealidad de � �1 y del inciso c) del teorema 7.2.1,

1 s2 6s 9

(s 1)(s 2)(s 4)

16

5
1 1

s 1

25

6
1 1

s 2

1

30
1 1

s 4  

 
16

5
et 25

6
e2t 1

30
e 4t . (5)  

7.2.2  TRANSFORMADAS DE DERIVADAS

TRANSFORMADA DE UNA DERIVADA  Como se indicó en la introducción de este 
capítulo, el objetivo inmediato es usar la transformada de Laplace para resolver ecuaciones 
diferenciales. Para tal fi n, es necesario evaluar cantidades como {dy>dt} y {d2y>dt2}.
Por ejemplo, si f � es continua para t � 0, entonces integrando por partes se obtiene

  

  

o { f (t)} sF(s) f (0).

f (0) s { f (t)}

{ f (t)}
0

e st f (t) dt e st f (t)
0

s
0

e st f (t) dt

 (6)

Aquí hemos supuesto que e�stf (t) : 0 conforme t : �. De manera similar, con la 
ayuda de la ecuación (6),

  

  

  

o { f (t)} s2F(s) sf (0) f (0).

; de (6)s[sF(s) f (0)] f (0)

f (0) s { f (t)}

{ f (t)}
0

e st f (t) dt e st f (t)
0

s
0

e st f (t) dt

 (7)

De igual manera se puede demostrar que

 { f (t)} s3F(s) s2f (0) sf (0) f (0).  (8)

La naturaleza recursiva de la transformada de Laplace de las derivadas de una función 
f es evidente de los resultados en (6), (7) y (8). El siguiente teorema da la transformada 
de Laplace de la n-ésima derivada de f. Se omite la demostración.

TEOREMA 7.2.2  Transformada de una derivada

Si f, f �, . . . ,  f (n�1) son continuas en [0, �) y son de orden exponencial y si 
f (n)(t) es continua por tramos en [0, �), entonces

{ f (n)(t)} snF(s) sn 1f (0) sn 2f (0) f (n 1)(0),

donde F(s) { f (t)}.

SOLUCIÓN DE EDO LINEALES  Es evidente del resultado general dado en el teo-
rema 7.2.2 que {dny>dtn} depende de Y(s) {y(t)} y las n � 1 derivadas de y(t) 
evaluadas en t � 0. Esta propiedad hace que la transformada de Laplace sea adecuada 
para resolver problemas lineales con valores iniciales en los que la ecuación diferen-
cial tiene coefi cientes constantes. Este tipo de ecuación diferencial es simplemente una 
combinación lineal de términos y, y�, y	, . . . , y(n):

 y(0) y0, y (0) y1, . . . , y(n 1)(0) yn 1,

an

dny

dtn an 1
dn 1y

dtn 1 a0y g(t),
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266 ● CAPÍTULO 7  LA TRANSFORMADA DE LAPLACE

donde las a
i
, i � 0, 1, . . . , n y y

0
, y

1
, . . . , y

n�1
 son constantes. Por la propiedad de li nea-

li dad la transformada de Laplace de esta combinación lineal es una combinación lineal 
de transformadas de Laplace:

 an

dny

dtn an 1
d n 1y

dtn 1 a0 {y} {g(t)}. (9)

Del teorema 7.2.2, la ecuación (9) se convierte en

,  an 1[sn 1Y(s) sn 2y(0) y(n 2)(0)] a0Y(s) G(s)

an [snY(s) sn 1y(0) y(n 1)(0)]

   
(10)

donde {y(t)} Y(s)  y {g(t)} � G(s). En otras palabras, la transformada de 
Laplace de una ecuación diferencial lineal con coefi cientes constantes se convierte en 
una ecuación algebraica en Y(s). Si se resuelve la ecuación transformada general (10) 
para el símbolo Y(s), primero se obtiene P(s)Y(s) � Q(s) � G(s) y después se escribe

 
Y(s)

Q(s)

P(s)

G(s)

P(s)
,
 

(11)

donde P(s) � a
n
sn � a

n�1
sn�1 � . . . � a

0
, Q(s) es un polinomio en s de grado menor o 

igual a n � 1 que consiste en varios productos de los coefi cientes a
i
, i � 1, . . . , n y las 

condiciones iniciales prescritas y
0
, y

1
, . . . , y

n�1
 y G(s) es la transformada de Laplace de 

g(t).* Normalmente se escriben los dos términos de la ecuación (11) sobre el mínimo 
común denominador y después se descompone la expresión en dos o más fracciones 
parciales. Por último, la solución y(t) del problema con valores iniciales original es y(t) 
� � �1{Y(s)}, donde la transformada inversa se hace término a término.

El procedimiento se resume en el siguiente diagrama.

Encuentre la y(t) 
desconocida que 

satisface la ED y las 
condiciones iniciales

La ED transformada 
se convierte en una 
ecuación algebraica 

en Y(s)

Resuelva la ecuación 
transformada para 

Y(s)

Solución y(t) 
del PVI original

Aplique la transformada 
de Laplace

Aplique la transformada 
inversa de Laplace −1

En el ejemplo siguiente se ilustra el método anterior para resolver ED, así como 
la descomposición en fracciones parciales para el caso en que el denominador de Y(s) 
contenga un polinomio cuadrático sin factores reales.

*El polinomio P(s) es igual al polinomio auxiliar de n-ésimo grado en la ecuación (12) de la sección 4.3 
donde el símbolo m usual se sustituye por s.

EJEMPLO 4   Solución de un PVI de primer orden

Use la transformada de Laplace para resolver el problema con valores iniciales

 .
dy

dt
3y 13 sen 2 t,   y (0) 6  

SOLUCIÓN  Primero se toma la transformada de cada miembro de la ecuación dife-
rencial.

 

dy

dt
3 {y} 13 {sen 2t}.

 (12)
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De (6), {dy>dt} sY(s) y (0) sY(s) 6 , y del inciso d) del teorema 7.1.1, 
{sen 2t} 2>(s2 4)

y>
, por lo que la ecuación (12) es igual que

 sY(s) 6 3Y(s)
26

s2 4
      o     .(s 3)Y(s) 6

26

s2 4
 

Resolviendo la última ecuación para Y(s), obtenemos

 Y(s)
6

s 3

26

(s 3)(s2 4)

6s2 50

(s 3)(s2 4)
. (13)

Puesto que el polinomio cuadrático s2 � 4 no se factoriza usando números reales, se supone 
que el numerador en la descomposición de fracciones parciales es un polinomio lineal en s:

 .
6s2 50

(s 3)(s2 4)

A

s 3

Bs C

s2 4
 

Poniendo el lado derecho de la igualdad sobre un común denominador e igualando los 
numeradores, se obtiene 6s2 � 50 � A(s2 � 4) � (Bs � C)(s � 3). Haciendo s � �3 
se obtiene inmediatamente que A � 8. Puesto que el denominador no tiene más raíces 
reales, se igualan los coefi cientes de s2 y s: 6 � A � B y 0 � 3B � C. Si en la primera 
ecuación se usa el valor de A se encuentra que B � �2, y con este valor aplicado a la 
segunda ecuación, se obtiene C � 6. Por lo que,

 .Y(s)
6s2 50

(s 3)(s2 4)

8

s 3

2s 6

s2 4
 

Aún no se termina porque la última expresión racional se tiene que escribir como dos 
fracciones. Esto se hizo con la división término a término entre el denominador del 
ejemplo 2. De (2) de ese ejemplo,

 .y(t) 8 1 1

s 3
2 1 s

s2 4
3 1 2

s2 4
 

Se deduce de los incisos c), d) y e) del teorema 7.2.1, que la solución del problema con 
valores iniciales es y(t) � 8e�3t � 2 cos 2t � 3 sen 2t. 

EJEMPLO 5  Solución de un PVI de segundo orden

Resuelva y	 � 3y� � 2y � e�4t,  y(0) � 1,  y�(0) � 5.

SOLUCIÓN  Procediendo como en el ejemplo 4, se transforma la ED. Se toma la suma 
de las transformadas de cada término, se usan las ecuaciones (6) y (7), las condiciones 
iniciales dadas, el inciso c) del teorema 7.2.1 y entonces se resuelve para Y(s):

  

  

  

 .Y(s)
s 2

s2 3s 2

1

(s2 3s 2)(s 4)

s2 6s 9

(s 1)(s 2)(s 4)

 (s2 3s 2)Y(s) s 2
1

s 4

s2Y(s) sy (0) y (0) 3[sY(s) y (0)] 2Y(s)
1

s 4

d 2y

dt 2 3
dy

dt
2 {y} {e 4t}

 (14)

Los detalles de la descomposición en fracciones parciales de Y(s) ya se presentaron en 
el ejemplo 3. En vista de los resultados en (3) y (4), se tiene la solución del problema 
con valores iniciales

 .y (t) 1{Y(s)}
16

5
et 25

6
e2t 1

30
e 4t  
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268 ● CAPÍTULO 7  LA TRANSFORMADA DE LAPLACE

En los ejemplos 4 y 5, se ilustra el procedimiento básico de cómo usar la transfor-
mada de Laplace para resolver un problema lineal con valores iniciales, pero podría 
parecer que estos ejemplos demuestran un método que no es mucho mejor que el apli-
cado a los problemas descritos en las secciones 2.3 y 4.3 a 4.6. No saque conclusiones 
negativas de sólo dos ejemplos. Sí, hay una gran cantidad de álgebra inherente al uso 
de la transformada de Laplace, pero observe que no se tiene que usar la variación de 
parámetros o preocuparse acerca de los casos y el álgebra en el método de coefi cien-
tes indeterminados. Además, puesto que el método incorpora las condiciones iniciales 
prescritas directamente en la solución, no se requiere la operación separada de aplicar 
las condiciones iniciales a la solución general y � c

1
y

1
 � c

2
y

2
 � � � � � c

n
y

n
 � y

p
 de la 

ED para determinar constantes específi cas en una solución particular del PVI. 
La transformada de Laplace tiene muchas propiedades operacionales. En las sec-

ciones que siguen se examinan algunas de estas propiedades y se ve cómo permiten 
resolver problemas de mayor complejidad.

COMENTARIOS

i) La transformada de Laplace inversa de una función F(s) podría no ser única; 
en otras palabras, es posible que { f1(t)} { f2(t)} y sin embargo f

1
 � f

2
. Para 

nuestros propósitos, esto no es algo que nos deba preocupar. Si f
1
 y f

2
 son conti-

nuas por tramos en [0, �) y de orden exponencial, entonces f
1
 y f

2
 son esencial-

mente iguales. Véase el problema 44 en los ejercicios 7.2. Sin embargo, si f
1
 y f

2
 

son continuas en [0, �) y { f1(t)} { f2(t)}, entonces f
1
 � f

2
 en el intervalo.

ii) Este comentario es para quienes tengan la necesidad de hacer a mano des-
composiciones en fracciones parciales. Hay otra forma de determinar los coefi -
cientes en una descomposición de fracciones parciales en el caso especial cuando 

{ f (t)} F(s) es una función racional de s y el denominador de F es un pro-
ducto de distintos factores lineales. Esto se ilustra al analizar de nuevo el ejemplo 
3. Suponga que se multiplican ambos lados de la supuesta descomposición

 

s2 6s 9

(s 1)(s 2)(s 4)

A

s 1

B

s 2

C

s 4  
(15)

digamos, por s � 1, se simplifi ca y entonces se hace s � 1. Puesto que los coefi -
cientes de B y C en el lado derecho de la igualdad son cero, se obtiene

s2 6s 9

(s 2)(s 4) s 1
A     o    .A

16

5

Escrita de otra forma,

,
s2 6s 9

(s 1) (s 2)(s 4) s 1

16

5
A

donde se ha sombreado o cubierto, el factor que se elimina cuando el lado iz-
quierdo se multiplica por s � 1. Ahora, para obtener B y C, simplemente se 
evalúa el lado izquierdo de (15) mientras se cubre, a su vez, s � 2 y s � 4:

 
s2 � 6s � 9

––––––––––––––––––––––
(s � 1)(s � 2)(s � 4)

25–––
6

�
s�2

 � � B

 
s2 � 6s � 9

––––––––––––––––––––––
(s � 1)(s � 2)(s � 4)

1–––
30

�
s��4

 � � C.y
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La descomposición deseada (15) se da en (4). Esta técnica especial para determi-
nar coefi cientes se conoce desde luego como método de cubrimiento.

iii) En este comentario continuamos con la introducción a la terminología de sis-
temas dinámicos. Como resultado de las ecuaciones (9) y (10) la transformada de 
Laplace se adapta bien a sistemas dinámicos lineales. El polinomio P(s) � a

n
sn � 

a
n�1

sn�1 � 
 
 
 � a
0
 en (11) es el coefi ciente total de Y(s) en (10) y es simplemente el 

lado izquierdo de la ED en donde las derivadas d ky�dt k se sustituyen por potencias sk, 
k � 0, 1, . . . , n. Es común llamar al recíproco de P(s), en particular W(s) � 1�P(s), 
función de transferencia del sistema y escribir la ecuación (11) como

 Y(s) W(s)Q(s) W(s)G(s) . (16)

De esta manera se han separado, en un sentido aditivo, los efectos de la respuesta 
debidos a las condiciones iniciales (es decir, W(s)Q(s)) de los causados por la 
función de entrada g (es decir, W(s)G(s)). Vea (13) y (14). Por tanto la respuesta 
y(t) del sistema es una superposición de dos respuestas:

.y (t) 1{W(s)Q(s)} 1{W(s)G(s)} y0(t) y1(t) .

Si la entrada es g(t) � 0, entonces la solución del problema es y0(t) 1{W(s)
Q(s)}. Esta solución se llama respuesta de entrada cero del sistema. Por otro 
lado, la función y1(t) 1{W(s)G(s)} es la salida debida a la entrada g(t). 
Entonces, si la condición inicial del sistema es el estado cero (todas las condiciones 
iniciales son cero), entonces Q(s) � 0 y por tanto, la única solución del problema con 
valores iniciales es y

1
(t). La última solución se llama respuesta de estado cero del 

sistema. Tanto y
0
(t) como y

1
(t) son soluciones particulares: y

0
(t) es una solución 

del PVI que consiste en la ecuación homogénea relacionada con las condiciones 
iniciales dadas y y

1
(t) es una solución del PVI que consiste en la ecuación no ho-

mogénea con condiciones iniciales cero. En el ejemplo 5 se ve de (14) que la fun-
ción de transferencia es W(s) � 1�(s2 � 3s � 2), la respuesta de entrada cero es

,y0(t) 1 s 2

(s 1)(s 2)
3et 4e2t

y la respuesta de estado cero es

.y1(t) 1 1

(s 1)(s 2)(s 4)

1

5
et 1

6
e2t 1

30
e 4t

Compruebe que la suma de y
0
(t) y y

1
(t) es la solución de y(t) en el ejemplo 5 y 

que y0(0) 1,  y0(0) 5, mientras que y1(0) 0, .y1(0) 0

EJERCICIOS 7.2      Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-10.

7.2.1  TRANSFORMADAS INVERSAS

En los problemas 1 a 30 use el álgebra apropiada y el teorema 
7.2.1 para encontrar la transformada inversa de Laplace dada.

 1.    2. 

 3.    4. 

 5. 1 (s 1)3

s4

1 1

s2

48

s5

1 1

s3

  6. 1 (s 2)2

s3

1 2

s

1

s3

2

1 1

s4

 7.    8. 

 9.   10. 

11.   12. 

13.  
 

14. 

15. 1 2s 6

s2 9

1 4s

4s2 1

1 5

s2 49

1 1

4s 1

1 1

s2

1

s

1

s 2

 16. 1 s 1

s2 2

1 1

4s2 1

1 10s

s2 16

1 1

5s 2

1 4

s

6

s5

1

s 8
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270 ● CAPÍTULO 7  LA TRANSFORMADA DE LAPLACE

17.   18. 

19.   20. 

21.  

22. 

23. 

24. 

25.   26. 

27.   28. 1 1

s4 9

1 s

(s 2)(s2 4)

1 1

s2 s 20

1 s 1

s2 4s

29. 

18.

20.

26.

28.

30.1 1

(s2 1)(s2 4)

1 2s 4

(s2 s)(s2 1)

1 1

s3 5s

1 s2 1

s(s 1)(s 1)(s 2)

1 s

(s 2)(s 3)(s 6)

1 s 3

s 1 3 s 1 3

1 0.9s

(s 0.1)(s 0.2)

1 s

s2 2s 3

1 1

s2 3s

7.2.2  TRANSFORMADAS DE DERIVADAS

En los problemas 31 a 40, use la transformada de Laplace para 
resolver el problema con valores iniciales.

31. 

32. 2
dy

dt
y 0,   y (0) 3

dy

dt
y 1,   y (0) 0

33. y� � 6y � e4t,  y(0) � 2

34. y� � y � 2 cos 5t,  y(0) � 0

35. y	 � 5y� � 4y � 0,  y(0) � 1,  y�(0) � 0

36. y	 � 4y� � 6e3t � 3e�t,  y(0) � 1,  y�(0) � �1

37. y y 2 2 sen2 2t,   y(0) 10,   y (0) 0
38. y	 � 9y � et,  y(0) � 0,  y�(0) � 0

39. 2y � � 3y	 � 3y� � 2y � e�t,  y(0) � 0,  y�(0) � 0, 
y	(0) � 1

40. y � � 2y	 � y� � 2y � sen 3t,  y(0) � 0,  y�(0) � 0, 
y	(0) � 1

Las formas inversas de los resultados del problema 46 en los 
ejercicios 7.1 son

  

 1 b

(s a)2 b2 eat  sen bt.

1 s a

(s a)2 b2 eat cos bt

 

En los problemas 41 y 42 use la transformada de Laplace y estas 
inversas para resolver el problema con valores iniciales dado.

41. y� � y � e�3t cos 2t,  y(0) � 0

42. y	 � 2y� � 5y � 0,  y(0) � 1,  y�(0) � 3

Problemas para analizar

43. a)  Con un ligero cambio de notación la transformada en 
(6) es igual a

{ f (t)} s { f (t)} f (0).

  Con f (t) � teat, analice cómo se puede usar este re-
sultado junto con c) del teorema 7.1.1 para evaluar 

{teat}.

 b)  Proceda como en el inciso a), pero esta vez examine 
cómo usar (7) con f (t) � t sen kt junto con d) y e) del 
teorema 7.1.1 para evaluar {t sen kt}.

44. Construya dos funciones f
1
 y f

2
 que tengan la misma trans-

formada de Laplace. No considere ideas profundas.

45. Lea de nuevo el Comentario iii) de la página 269. 
Encuentre la respuesta de entrada cero y la respuesta de 
estado cero para el PVI del problema 36.

46. Suponga que f (t) es una función para la que f �(t) es conti-
nua por tramos y de orden exponencial c. Use los resulta-
dos de esta sección y la sección 7.1 para justifi car

,f (0) lím
s: 

sF(s)

 donde F(s) � �{ f (t)}. Compruebe este resultado con 
f (t) � cos kt.

PROPIEDADES OPERACIONALES I

REPASO DE MATERIAL
● Continúe practicando la descomposición en fracciones parciales.
● Completar el cuadrado.

INTRODUCCIÓN  No es conveniente usar la defi nición 7.1 cada vez que se desea encontrar la 
transformada de Laplace de una función f (t). Por ejemplo, la integración por partes requerida para 
evaluar �{ett2 sen 3t} es formidable en pocas palabras. En esta sección y la que sigue se presentan 
varias propiedades operacionales de la transformada de Laplace que ahorran trabajo y permiten cons-
truir una lista más extensa de transformadas (vea la tabla del apéndice III) sin tener que recurrir a la 
defi nición básica y a la integración.

7.3

30. 1 6s 3

s4 5s2 4
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7.3.1  TRASLACIÓN EN EL EJE s

UNA TRASLACION  Evaluar transformadas tales como {e5tt 3} y {e 2t cos 4t} 
es directo siempre que se conozca (y así es) {t 3} y {cos 4t} . En general, si se co-
noce la transformada de Laplace de una función f, { f (t)} F(s), es posible calcular 
la transformada de Laplace de un múltiplo exponencial de f, es decir, {eat f (t)}, sin 
ningún esfuerzo adicional que no sea trasladar o desplazar, la transformada F(s) a 
F(s � a). Este resultado se conoce como primer teorema de traslación o primer 
teorema de desplazamiento.

TEOREMA 7.3.1  Primer teorema de traslación

Si { f (t)} F(s) y a es cualquier número real, entonces

.{eat f (t)} F(s a)

PRUEBA  La demostración es inmediata, ya que por la defi nición 7.1.1

 .{eat 
f (t)}

0
e steat  

f (t) dt
0

e (s a)t 
f (t) dt F(s a)  

Si se considera s una variable real, entonces la gráfi ca de F(s � a) es la gráfi ca de 
F(s) desplazada en el eje s por la cantidad � a �. Si a � 0, la gráfi ca de F(s) se desplaza 
a unidades a la derecha, mientras que si a � 0, la gráfi ca se desplaza � a � unidades a la 
izquierda. Véase la fi gura 7.3.1.

Para enfatizar, a veces es útil usar el simbolismo

,{eat 
f (t)} { f (t)} s:s a 

donde s : s � a signifi ca que en la transformada de Laplace F(s) de f (t) siempre que 
aparezca el símbolo s se reemplaza por s � a.

s

F ( s ) 

s = a , a > 0

F

F( s − a)

FIGURA 7.3.1  Desplazamiento en el 
eje s.

EJEMPLO 1  Usando el primer teorema de traslación

Evalúe  a) {e5tt 3}     b) .{e 2t cos 4t}

SOLUCIÓN  Los siguientes resultados se deducen de los teoremas 7.1.1 y 7.3.1.

a) 

b) {e 2t cos 4t} {cos 4t} s:s ( 2)
s

s2 16
 

s:s 2

s 2

(s 2)2 16

{e5tt3} {t3} s: s 5
3!

s4 
s:s 5

6

(s 5)4

 

FORMA INVERSA DEL TEOREMA 7.3.1  Para calcular la inversa de F(s � a), 
se debe reconocer F(s), para encontrar f (t) obteniendo la transformada de Laplace 
inversa de F(s) y después multiplicar f (t) por la función exponencial eat. Este procedi-
miento se resume con símbolos de la siguiente manera:

 1{F(s a)} 1{F(s) s:s a} eat 
f (t) , (1)

donde f (t) 1{F(s)}.
En la primera parte del ejemplo siguiente se ilustra la descomposición en fracciones 

parciales en el caso cuando el denominador de Y(s) contiene factores lineales repetidos.
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272 ● CAPÍTULO 7  LA TRANSFORMADA DE LAPLACE

EJEMPLO 2  Fracciones parciales: factores lineales repetidos

Evalúe  a) 1 2s 5

(s 3)2     b) .1 s>2 5>3

s2 4s 6

SOLUCIÓN  a) Un factor lineal repetido es un término (s � a)n, donde a es un nú-
mero real y n es un entero positivo � 2. Recuerde que si (s � a)n aparece en el denomi-
nador de una expresión racional, entonces se supone que la descomposición contiene n 
fracciones parciales con numeradores y denominadores constantes s � a, (s � a)2, . . . ,
 (s � a)n. Por tanto, con a � 3 y n � 2 se escribe

 .
2s 5

(s 3)2

A

s 3

B

(s 3)2  

Colocando los dos términos del lado derecho con un denominador común, se obtiene 
el numerador 2s � 5 � A(s � 3) � B y esta identidad produce A � 2 y B � 11. Por 
tanto,

  (2)

y 1 2s 5

(s 3)2 2 1 1

s 3
11 1 1

(s 3)2 .

2s 5

(s 3)2

2

s 3

11

(s 3)2

 (3)

Ahora 1�(s � 3)2 es F(s) � 1�s2 desplazada tres unidades a la derecha. Ya que 
1{1>s2} t , se tiene de (1) que

  .1 1

(s 3)2
1 1

s2 s: s 3
e3tt

 

Por último, (3) es 1 2s 5

(s 3)2 2e3t 11e3tt .
 

(4)

b) Para empezar, observe que el polinomio cuadrático s2 � 4s � 6 no tiene raíces reales y 
por tanto no tiene factores lineales reales. En esta situación completamos el cuadrado:

 
s>2 5>3

s2 4s 6

s>2 5>3

(s 2)2 2
. (5)

El objetivo aquí es reconocer la expresión del lado derecho como alguna transformada 
de Laplace F(s) en la cual se ha reemplazado s por s � 2. Lo que se trata de hacer es simi-
lar a trabajar hacia atrás del inciso b) del ejemplo 1. El denominador en (5) ya está en la 
forma correcta, es decir, s2 � 2 con s � 2 en lugar de s. Sin embargo, se debe arreglar el 
numerador manipulando las constantes: .1

2s
5
3

1
2 (s 2) 5

3
2
2

1
2 (s 2) 2

3
Ahora mediante la división entre el denominador de cada término, la linealidad de 

��1, los incisos e) y d) del teorema 7.2.1 y por último (1),

  

  

  (6)

 
1

2
e 2t cos 1 2 t

1 2

3
e 2t sen 1 2t.

1

2
1 s

s2 2 s: s 2

2

31 2
1 1 2

s2 2 s: s 2

1 s>2 5> 3

s2 4s 6

1

2
1 s 2

(s 2)2 2

2

3
1 1

(s 2)2 2

s>2 5> 3

(s 2)2 2

1
2 (s 2) 2

3

(s 2)2 2

1

2

s 2

(s 2)2 2

2

3

1

(s 2)2 2

 (7)   
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EJEMPLO 3  Un problema con valores iniciales

Resuelva y	 � 6y� � 9y � t2e3t,  y(0) � 2,  y�(0) � 17.

SOLUCIÓN  Antes de transformar la ED, observe que su lado derecho es similar a la 
función del inciso a) del ejemplo 1. Después de usar la linealidad, el teorema 7.3.1 y 
las condiciones iniciales, se simplifi ca y luego se resuelve para Y(s) { f (t)}:

  

  

  

  

 .Y(s)
2s 5

(s 3)2

2

(s 3)5

 (s 3)2Y(s) 2s 5
2

(s 3)3

 (s2 6s 9)Y(s) 2s 5
2

(s 3)3

s2Y(s) sy(0) y (0) 6[sY(s) y (0)] 9Y(s)
2

(s 3)3

{y } 6 {y } 9 {y} {t2e3t}

 

El primer término del lado derecho ya se ha descompuesto en fracciones parciales en 
(2) del inciso a) del ejemplo (2).

  

Por lo que    

.

y(t) 2 1 1

s 3
11 1 1

(s 3)2

2

4!
1 4!

(s 3)5

Y(s)
2

s 3

11

(s 3)2

2

(s 3)5

. (8)

De la forma inversa (1) del teorema 7.3.1, los dos últimos términos de (8) son

 1 1

s2 s:s 3
te3t      y     .1 4!

s5 s:s 3
t 4e3t  

Por lo que (8) es y(t) 2e3t 11te3t 1
12t 4e3t .                               

EJEMPLO 4  Un problema con valores iniciales

Resuelva y	 � 4y� � 6y � 1 � e�t,  y(0) � 0,  y�(0) � 0.

SOLUCIÓN             

  

  

 Y(s)
2s 1

s(s 1)(s2 4s 6)

 (s2 4s 6)Y(s)
2s 1

s(s 1)

s2Y(s) sy(0) y (0) 4[sY(s) y (0)] 6Y(s)
1

s

1

s 1

{y } 4 {y } 6 {y} {1} {e t}

 

Puesto que el término cuadrático en el denominador no se factoriza en factores lineales 
reales, se encuentra que la descomposición en fracciones parciales para Y(s) es

 .Y(s)
1>6

s

1>3

s 1

s> 2 5> 3

s2 4s 6
 

Además, en la preparación para tomar la transformada inversa, ya se manejó el último 
término en la forma necesaria del inciso b) del ejemplo 2. Por lo que en vista de los 
resultados en (6) y (7), se tiene la solución
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. 
1

6

1

3
 e t 1

2
 e 2t cos 1 2t

1 2

3
 e 2t sen 12t

 y(t)
1

6
 1 1

s

1

3
 1 1

s 1

1

2
 1 s 2

(s 2)2 2

2

31 2
 1 1 2

(s 2)2 2

7.3.2  TRASLACIÓN EN EL EJE t

FUNCIÓN ESCALÓN UNITARIO  En ingeniería es común encontrar funciones que 
están ya sea “desactivadas” o “activadas”. Por ejemplo, una fuerza externa que actúa en 
un sistema mecánico, o un voltaje aplicado a un circuito, se puede desactivar después de 
cierto tiempo. Es conveniente entonces defi nir una función especial que es el número 0 
(desactivada) hasta un cierto tiempo t � a y entonces el número 1 (activada) después de 
ese tiempo. La función se llama función escalón unitario o función de Heaviside.

DEFINICIÓN 7.3.1  Función escalón unitario

La función escalón unitario (t a) se defi ne como

(t a)
0,

1,

  0 t a

    t a.

Observe que se defi ne (t a)  sólo en el eje t no negativo, puesto que esto es 
todo lo que interesa en el estudio de la transformada de Laplace. En un sentido más am-
plio, (t a)  � 0 para t � a. En la fi gura 7.3.2, se muestra la gráfi ca de (t a) .

Cuando una función f defi nida para t � 0 se multiplica por (t a), la función 
escalón unitario “desactiva” una parte de la gráfi ca de esa función. Por ejemplo, con-
sidere la función f (t) � 2t � 3. Para “desactivar” la parte de la gráfi ca de f para 0 � t 
� 1, simplemente formamos el producto (2 t 3) (t 1). Véase la fi gura 7.3.3. En 
general, la gráfi ca de f (t) (t a)  es 0 (desactivada) para 0 � t � a y es la parte de 
la gráfi ca de f (activada) para t � a.

La función escalón unitario también se puede usar para escribir funciones defi -
nidas por tramos en una forma compacta. Por ejemplo, si consideramos 0 � t � 2 , 
2 � t � 3, y t � 3 y los valores correspondientes de (t 2)  y (t 3) , debe ser 
evidente que la función defi nida por tramos que se muestra en la fi gura 7.3.4 es igual 
que f (t) 2 3 (t 2) (t 3). También, una función general defi nida por 
tramos del tipo 

 
f (t)

g(t),

h(t),

  0 t a

      t a  (9)

es la misma que:

 f(t) g(t) g(t) (t a) h(t) (t a) . (10)

Análogamente, una función del tipo

 f (t)

0,

g(t),

0,

  0 t a

  a t b

      t b

 (11)

puede ser escrita como

 f (t) g(t)[ (t a) (t b)].  (12)

FIGURA 7.3.2  Gráfi ca de la función 
escalón unitario.

t

1

a

FIGURA 7.3.3  La función es 

f(t) (2t 3) (t 1).

1

y

t

FIGURA 7.3.4  La función es 
f (t) 2 3 (t 2) (t 3).

−1

2

t

f(t)
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EJEMPLO 5  Una función defi nida por tramos

Exprese f (t)
20t,

0,

0 t 5

    t 5
 en términos de funciones escalón unitario. Trace 

la gráfi ca.

SOLUCIÓN  En la fi gura 7.3.5 se muestra la gráfi ca de f. Ahora, de (9) y (10) con a � 
5, g(t) � 20t y h(t) � 0, se obtiene f (t) 20t 20t  (t 5).           

Considere una función general y � f (t) defi nida para t � 0. La función defi nida 
por tramos

 f (t a) (t a)
0,

f (t a),

0 t a

    t a
 (13)

juega un papel importante en la explicación que sigue. Como se muestra en la fi gura 
7.3.6, para a � 0 la gráfi ca de la función y  f (t a) (t a) coincide con la grá-
fi ca de y � f (t � a) para t � a (que es la gráfi ca completa de y � f (t), t � 0 desplazada 
a unidades a la derecha en el eje t), pero es idénticamente cero para 0 � t � a.

Vimos en el teorema 7.3.1 que un múltiplo exponencial de f (t) da como resul-
tado una traslación de la transformada F(s) en el eje s. Como una consecuencia del 
siguiente teorema, se ve que siempre que F(s) se multiplica por una función expo-
nencial e�as, a � 0, la transformada inversa del producto e�as F(s) es la función f 
desplazada a lo largo del eje t en la manera que se muestra en la fi gura 7.3.6b. Este 
resultado, presentado a continuación en su versión de transformada directa, se llama 
segundo teorema de traslación o segundo teorema de desplazamiento.

FIGURA 7.3.5  La función es 
f (t) 20t 20t (t 5) .

100

5

f (t)

t

FIGURA 7.3.6  Desplazamiento en el 
eje t.

a) f (t), t � 0

b) f (t � a) (t � a)

t

f(t)

t

f(t)

a

cero para
0 � t � a

uno para
t � a

�{f (t � a) (t � a)} �� e�stf (t � a) (t � a) dt �� e�stf (t � a) (t � a) dt �� e�stf (t � a) dt.� � �
a

0

�

a

�

a

Ahora si hacemos v � t � a, dv � dt en la última integral, entonces

TEOREMA 7.3.2  Segundo teorema de traslación

Si F(s) { f (t)} y a � 0, entonces

.{ f (t a) (t a)} e asF(s)

DEMOSTRACIÓN  Por la propiedad de intervalo aditivo de integrales,

(t a) dt
0

 e st f (t a)

se puede escribir como dos integrales:

.{ f (t a) (t a)}
0

e s(v a) f (v) dv e as

0
e sv f (v) dv e as { f (t)}

  
Con frecuencia se desea encontrar la transformada de Laplace de sólo una función 

escalón unitario. Esto puede ser de la defi nición 7.1.1 o teorema 7.3.2. Si se identifi ca 
f (t) � 1 en el teorema 7.3.2, entonces f (t � a) � 1, F(s) {1} 1>s y por tanto,

 { (t a)}
e as

s
. (14)

Por ejemplo, si se usa la ecuación (14), la transformada de Laplace de la función de la 
fi gura 7.3.4 es

  

  2
1

s
3

e 2s

s

e 3s

s
.

 { f (t)} 2 {1} 3 { (t 2)} { (t 3)}
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276 ● CAPÍTULO 7  LA TRANSFORMADA DE LAPLACE

FORMA INVERSA DEL TEOREMA 7.3.2  Si f (t) � ��1{F(s)}, la forma inversa 
del teorema 7.3.2 a � 0, es

 1{e asF(s)} f (t a) (t a). (15)

EJEMPLO 6  Uso de la fórmula (15)

Evalúe  b)   1 s

s2 9
e s/2a)   1 1

s 4
e 2s .

SOLUCIÓN  a) De acuerdo con las identidades a � 2, F(s) � 1�(s � 4) y  
��1{F(s)} � e4t, se tiene de (15)

.1 1

s 4
e 2s e4(t 2) (t 2)

b) Con a � p�2, F(s) � s�(s2 � 9) y 1{F(s)} cos 3t , de la ecuación (15) se ob-
tiene

.1 s

s2 9
e s/2 cos 3 t

2
t

2

La última expresión se puede simplifi car un poco con la fórmula adicional para el 

coseno. Compruebe que el resultado es igual a sen 3t t
2

.              

FORMA ALTERNATIVA DEL TEOREMA 7.3.2  Con frecuencia nos enfrentamos 
con el problema de encontrar la transformada de Laplace de un producto de una función g 
y una función escalón unitario (t a)  donde la función g no tiene la forma precisa de 
desplazamiento f (t � a) del teorema 7.3.2. Para encontrar la transformada de Laplace 
de g(t) (t a), es posible arreglar g(t) en la forma requerida f (t � a) usando álgebra. 
Por ejemplo, si se quiere usar el teorema 7.3.2 para determinar la transformada de Laplace 
de t2 (t 2), se tendría que forzar g(t) � t2 a la forma f (t � 2). Se debe trabajar alge-
braicamente y comprobar que t 2 � (t � 2)2 � 4(t � 2) � 4 es una identidad. Por tanto,

 {t 2 (t 2)} {(t 2)2 (t 2) 4(t 2) (t 2) 4 (t 2)},  

donde ahora cada término del lado derecho se puede evaluar con el teorema 7.3.2. Pero 
como estas operaciones son tardadas y con frecuencia no obvias, es más simple dise-
ñar una forma alternativa del teorema 7.3.2. Usando la defi nición 7.1.1, la defi nición 
de (t a), y la sustitución u � t � a, se obtiene

 .{g(t) (t a)}
a

e st g(t) dt
0

e s(u a) g(u a) du  

Es decir, {g(t) (t a)} e as {g(t a)}. (16)

EJEMPLO 7  Segundo teorema de traslación: forma alternativa

Evalúe {cos t (t )}.

SOLUCIÓN  Con g(t) � cos t y a � p, entonces g(t � p) � cos (t � p) � �cos t por 
la fórmula de adicción para la función coseno. Por tanto, por la ecuación (16),

 
{cos t (t )} e s {cos t}

s

s2 1
e s.

 

08367_07_ch07_p255-302.indd   27608367_07_ch07_p255-302.indd   276 6/4/09   12:21:19 PM6/4/09   12:21:19 PM



EJEMPLO 8  Un problema con valores iniciales

Resuelva y� � y � f (t), y(0) � 5, donde f (t)
0,

3 cos t,

0 t

    t .      

SOLUCIÓN  La función f se puede escribir como f (t) � 3 cos t �(t � p), y entonces por 
linealidad, por los resultados del ejemplo 7 y por las fracciones parciales usuales, se tiene

  

  

  

 Y(s)
5

s 1

3

2
 

1

s 1
 e s 1

s2 1
 e s s

s2 1
 e s

 (s 1)Y(s) 5
3s

s2 1
 e s

 sY(s) y(0) Y(s) 3 s

s2 1
 e s

 {y } {y} 3 {cos t (t )}

. (17)

Ahora procediendo como se hizo en el ejemplo 6, se tiene de (15) con a � p que los 
inversos de los términos dentro del paréntesis son

FIGURA 7.3.7  Gráfi ca de la función 
en (18).

_2

1
2
3
4
5

_ 1
t

y

2π π 3π

1 1

s 1
 e s e (t ) 

(t ),     1 1

s2 1
 e s sen(t ) (t ),

 y 1 s

s2 1
 e s cos(t ) (t ).  

 Por lo que el inverso de (17) es

 

 

 
 

5e t,

5e t 3

2
  e (t ) 3

2
  sen t

3

2
  cos t,

 0 t

              t .

; identidades trigonométricas 5e t 3

2
 [e (t ) sen t cos t] (t )

 y(t) 5e t 3

2
 e (t ) (t )

3

2
 sen(t ) (t )

3

2
  cos(t ) (t )

 (18)

Usando un programa de grafi cación hemos obtenido la gráfi ca de (18) que se muestra 
en la fi gura 7.3.7.             

VIGAS  En la sección 5.2 vimos que la defl exión estática y(x) de una viga uniforme 
de longitud L con carga w(x) por unidad de longitud se determina a partir de la ecua-
ción diferencial lineal de cuarto orden

 EI  d
4y

dx4 w(x),  (19)

donde E es el módulo de Young de elasticidad e I es un momento de inercia de una 
sección transversal de la viga. La transformada de Laplace es particularmente útil para 
resolver la ecuación (19) cuando w(x) se defi ne por tramos. Sin embargo, para usar la 
transformada de Laplace se debe suponer de manera tácita que y(x) y w(x) están defi ni-
das en (0, �) y no en (0, L). Observe, también, que el siguiente ejemplo es un problema 
con valores en la frontera más que un problema con valores iniciales.

EJEMPLO 9  Un problema con valores en la frontera

Una viga de longitud L se empotra en ambos extremos, como se muestra en la fi gura 
7.3.8. Determine la defl exión de la viga cuando la carga está dada por

 
w(x)

w0 1
2

L
 x ,

0,

      0 x L>2

  L>2 x L.
 

FIGURA 7.3.8  Viga empotrada con 
carga variable.

pared

x

y

L

w(x)
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278 ● CAPÍTULO 7  LA TRANSFORMADA DE LAPLACE

SOLUCIÓN  Recuerde que debido a que la viga esta empotrada en ambos extremos, 
las condiciones de frontera son y(0) � 0, y�(0) � 0, y(L) � 0, y�(L) � 0. Ahora usando 
(10) se puede expresar w(x) en términos de la función escalón unitario:

  

 
2w0

L

L

2
x x

L

2
x

L

2
.

w(x) w0 1
2

L
x w0 1

2

L
x x

L

2

 

Transformando la ecuación (19) respecto a la variable x, se obtiene

  

o  s4Y(s) sy (0) y (0)
2w0

EIL

L>2

s

1

s2

1

s2 e Ls/2 .

EI s4Y(s) s3y(0) s2y (0) sy (0) y (0)
2w0

L

L>2

s

1

s2

1

s2 e Ls/2

 

Si hacemos c
1
 � y	(0) y c

2
 � y	� (0), entonces

 ,Y(s)
c1

s3

c2

s4

2w0

EIL

L>2

s5

1

s6

1

s6e Ls/2  

y en consecuencia

c1

2
x2 c2

6
x3 w0

60 EIL

5L

2
x4 x5 x

L

2

5

x
L

2
.

y(x)
c1

2!
1 2!

s3

c2

3!
1 3!

s4

2w0

EIL

L>2

4!
1 4!

s5

1

5!
1 5!

s6

1

5!
1 5!

s6 e Ls/ 2

Aplicando las condiciones y(L) � 0 y y�(L) � 0 al último resultado, se obtiene un 
sistema de ecuaciones para c

1
 y c

2
:

  

 c1 L c2
L2

2

85w0L3

960EI
0.

c1
L2

2
c2

L3

6

49w0L
4

1920EI
0

 

Resolviendo se encuentra que c
1
 � 23w

0
L2�(960El) y c

2
 � �9w

0
L�(40EI). Por lo que 

la defl exión está dada por

y(x)
23w0L2

1920EI
x2 3w0L

80EI
x3 w0

60EIL

5L

2
x4 x5 x

L

2

5

x
L

2
.
  

EJERCICIOS 7.3     Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-11.

7.3.1  TRASLACIÓN EN EL EJE s

En los problemas 1 a 20 encuentre F(s) o f (t), como se indica.

 1.     2. 

 3.     4. 

 5.     6. 

 7.     8. {e 2t cos 4t}

{e2t(t 1)2}

{t10e 7t}

{te 6t}

 9. 

10. e3t 9 4t 10 sen 
t

2

{(1 et 3e 4t) cos 5t}

{etsen 3t}

{t(et e2t)2}

{t3e 2t}

{te10t}

11.    12. 

13.    14. 

15.    16. 

17.    18. 

19. 1 2s 1

s2(s 1)3

1 s

(s 1)2

1 s

s2 4s 5

1 1

s2 6s 10

1 1

(s 2)3

 20. 1 (s 1)2

(s 2)4

1 5s

(s 2)2

1 2s 5

s2 6s 34

1 1

s2 2s 5

1 1

(s 1)4
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En los problemas 21 a 30, use la transformada de Laplace para 
resolver el problema con valores iniciales.

21. y� � 4y � e�4t,  y(0) � 2

22. y� � y � 1 � tet,  y(0) � 0

23. y	 � 2y� � y � 0,  y(0) � 1, y�(0) � 1

24. y	 � 4y� � 4y � t3e2t,  y(0) � 0, y�(0) � 0

25. y	 � 6y� � 9y � t,  y(0) � 0, y�(0) � 1

26. y	 � 4y� � 4y � t3,  y(0) � 1, y�(0) � 0

27. y	 � 6y� � 13y � 0,  y(0) � 0, y�(0) � �3

28. 2y	 � 20y� � 51y � 0,  y(0) � 2, y�(0) � 0

29. y	 � y� � et cos t,  y(0) � 0, y�(0) � 0

30. y	 � 2y� � 5y � 1 � t,  y(0) � 0, y�(0) � 4

En los problemas 31 y 32, use la transformada de Laplace 
y el procedimiento descrito en el ejemplo 9 para resolver el 
problema con valores en la frontera dado.

31. y	 � 2y� � y � 0,  y�(0) � 2, y(1) � 2

32. y	 � 8y� � 20y � 0,  y(0) � 0, y�(p) � 0

33. Un peso de 4 lb estira un resorte 2 pies. El peso se libera a 
partir del reposo 18 pulgadas arriba de la posición de equili-
brio y el movimiento resultante tiene lugar en un medio que 
ofrece una fuerza de amortiguamiento numéricamente igual 
a 7

8
 veces la velocidad instantánea. Use la transformada de 

Laplace para encontrar la ecuación de movimiento x(t).

34. Recuerde que la ecuación diferencial para la carga instan-
tánea q(t) en el capacitor en un circuito RCL en serie está 
dada por 

 
.L 

d 2q

dt2 R
 
 
dq

dt

1

C
 q E(t)

 (20)

 Véase la sección 5.1. Use la transformada de Laplace para 
encontrar q(t) cuando L � 1 h, R � 20 �, C � 0.005 f, 
E(t) � 150 V, t � 0, q(0) � 0 e i(0) � 0. ¿Cuál es la co-
rriente i(t)?

35. Considere una batería de voltaje constante E
0
 que carga el 

capacitor que se muestra en la fi gura 7.3.9. Divida la ecua-
ción (20) entre L y defi na 2l � R�L y v2 � 1�LC. Use la 
transformada de Laplace para demostrar que la solución q(t) 
de q	 � 2lq� � v2q � E

0
�L sujeta a q(0) � 0, i(0) � 0 es

q(t)

E0C 1 e t (cosh 1 2 2t

  
1 2 2

 senh 1 2 2t) , ,

E0C[1 e t 
(1 t)],        ,

E0C 1 e t (cos 1 2 2t

  
1 2 2

 
sen 1 2 2t) ,

   .

36. Use la transformada de Laplace para encontrar la carga q(t) 
en un circuito RC en serie cuando q(0) � 0 y E(t) � E

0
e�kt, 

k � 0. Considere dos casos: k � 1�RC y k � 1�RC.

7.3.2  TRASLACIÓN EN EL EJE t

En los problemas 37 a 48 encuentre F(s) o f (t), como se indica.

37. 38. 

39. 40. 

41. 42. 

43. 44. 

45. 46. 

47. 48. 

En los problemas 49 a 54, compare la gráfi ca dada con una de 
las funciones de los incisos a) a f). La gráfi ca de f (t) se pre-
senta en la fi gura 7.3.10.

 a) 

 b) 

 c) 

 d) 

 e) 

 f ) f (t a) (t a) f (t a) (t b)

f (t) (t a) f (t) (t b)

f (t) f (t) (t b)

f (t) (t a)

f (t b) (t b)

f (t) f (t) (t a)

FIGURA 7.3.9  Circuito en serie del problema 35.

E0 R

C

L

FIGURA 7.3.10  Gráfi ca para los problemas 49 a 54.

t

f (t)

a b

49. 

FIGURA 7.3.11  Gráfi ca para el problema 49.

t

f (t)

a b

7.3  PROPIEDADES OPERACIONALES I ● 279

1 e s

s(s 1)

1 e s

s2 1

1 e 2s

s3

{cos 2t (t )}

{t (t 2)}

{(t 1) (t 1)}

1 e 2s

s2(s 1)

1 se s/2

s2 4

1 (1 e 2s)2

s 2

sen t t
2

{(3t 1) (t 1)}

{e2 t 
(t 2)}
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280 ● CAPÍTULO 7  LA TRANSFORMADA DE LAPLACE

FIGURA 7.3.12  Gráfi ca para el problema 50.

t

f (t)

a b

50. 

FIGURA 7.3.13  Gráfi ca para el problema 51.

t

f (t)

a b

51. 

FIGURA 7.3.14  Gráfi ca para el problema 52.

t

f (t)

a b

52. 

FIGURA 7.3.15  Gráfi ca para el problema 53.

t

f (t)

a b

53. 

FIGURA 7.3.16  Gráfi ca para el problema 54.

t

f (t)

a b

54. 

En los problemas 55 a 62, escriba cada función en términos 
de funciones escalón unitario. Encuentre la transformada de 
Laplace de la función dada.

55. 

56. 

57. f (t)
0,

t2,

 0 t 1

         t 1

f (t)

1,

0,

1,

 0 t 4

 4 t 5

         t 5

f (t)
2,

2,

 0 t 3

         t 3

58. 

59. 

60. f (t)
sen t,

0,     

0 t 2

        t 2

f (t)
t,

0,

0 t 2

        t 2

f (t)
0,

sen t,

 0 t 3 >2

         t 3 >2

62. 

FIGURA 7.3.18  Gráfi ca para el problema 62.

3

2

1

función escalera

t

f(t)

1 2 3 4

61. 

FIGURA 7.3.17  Gráfi ca para el problema 61.

1

pulso rectangular

tba

f(t)

En los problemas 63 a 70, use la transformada de Laplace para 
resolver el problema con valores iniciales.

63. y� � y � f (t),  y(0) � 0, donde f (t) � 
0,

5,

0 t 1

        t 1

64. y� � y � f (t),  y(0) � 0, donde

f (t)
1,

1,

0 t 1

        t 1

65. y� � 2y � f (t),  y(0) � 0, donde

 f (t)
t,

0,

0 t 1

        t 1

66. donde

 f (t)
1,

0,

0 t 1

        t 1

y 4y f (t), y(0) 0, y (0) 1,

67. 

68. 

69. 

, y(0) 1, y (0) 0

, y(0) 0, y (0) 1

donde

 f (t)

0,

1,

0,

0 t

t 2

              t 2

y y f (t), y(0) 0, y (0) 1,

y 5y 6y (t 1)

y 4y sen t (t 2 )

70. y	 � 4y� � 3y � 1 � �(t � 2) � �(t � 4) � �(t � 6),
 y(0) � 0, y�(0) � 0
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71. Suponga que un peso de 32 libras estira un resorte 2 pies. 
Si el peso se libera a partir del reposo en la posición de 
equilibrio, determine la ecuación de movimiento x(t) si 
una fuerza f (t) � 20t actúa en el sistema para 0 � t � 5 y 
luego se retira (véase el ejemplo 5). Desprecie cualquier 
fuerza de amortiguamiento. Use un programa de grafi ca-
ción para trazar x(t) en el intervalo [0, 10].

72. Resuelva el problema 71 si la fuerza aplicada f (t) � sen t 
actúa en el sistema para 0 � t � 2p y después se retira.

En los problemas 73 y 74 use la transformada de Laplace para 
encontrar la carga q(t) en el capacitor en un circuito RC en 
serie sujeto a las condiciones indicadas.

73. q(0) � 0, R � 2.5 �, C � 0.08 f, E(t) dada en la fi gura 
7.3.19.

t

E(t)

3

5

FIGURA 7.3.19  E(t) en el problema 73.

t

E(t)

1.5

30

30et

FIGURA 7.3.20  E(t) en el problema 74.

74. q(0) � q
0
, R � 10 �, C � 0.1 f, E(t) dada en la fi gura 

7.3.20.

75. a)  Use la transformada de Laplace para encontrar la co-
rriente i(t) en un circuito LR en serie de una sola malla 
cuando i(0) � 0, L � 1 h, R � 10 � y E(t) es como se 
ilustra en 1a fi gura 7.3.21.

b)  Use un programa de computadora para grafi car y di-
buje i(t) en el intervalo 0 � t � 6. Use la gráfi ca para 
estimar i

máx
 e i

mín
, los valores máximo y mínimo de la 

corriente.

FIGURA 7.3.21  E(t) en el problema 75.

/2

1

−1

t

E(t)

3 /2π

sen t, 0 ≤ t < 3 /2

π π

π

FIGURA 7.3.22  E(t) en el problema 76.

t31

E(t)

E0

76. a)  Use 1a transformada de Laplace para determinar 1a 
carga q(t) en el capacitor en un circuito RC en serie 
cuando q(0) � 0, R � 50 �, C � 0.01 f y E(t) es 
como se muestra en la fi gura 7.3.22.

b)  Suponga que E
0
 � 100 V. Use un programa de compu-

tadora para grafi car y dibuje q(t) para 0 � t � 6. Use la 
gráfi ca para estimar q

máx
 el valor máximo de 1a carga.

77. Una viga en voladizo está empotrada en su extremo iz-
quierdo y libre en su extremo derecho. Use 1a transfor-
mada de Laplace para determinar la defl exión y(x) cuando 
la carga está dada por

  w(x)
w0,

0,  

0 x L> 2

 L>2 x L.
 

78. Resuelva el problema 77 cuando la carga está dada por

 w(x)

0,  

w0,

0,  

   0 x L>3

 L>3 x 2L>3

  2L 3 x L.>

79. Encuentre la defl exión y (x) de una viga en voladizo empo-
trada en su extremo izquierdo y libre en su extremo dere-
cho cuando la carga total es como se da en el ejemplo 9.

80. Una viga está empotrada en su extremo izquierdo y apo-
yada simplemente en el extremo derecho. Encuentre la 
defl exión y (x) cuando la carga es como la que se da en el 
problema 77.

Modelo matemático

81. Pastel dentro de un horno Lea de nuevo el ejemplo 4 en 
la sección 3.1 acerca del enfriamiento de un pastel que se 
saca de un horno.

a)  Diseñe un modelo matemático para la temperatura de 
un pastel mientras está dentro del horno con base en 
las siguientes suposiciones: en t � 0 la mezcla de pas-
tel está a temperatura ambiente de 70°; el horno no se 
precalienta por lo que en t � 0, cuando la mezcla de 
pastel se coloca dentro del horno, la temperatura den-
tro del horno también es 70°; la temperatura del horno 
aumenta linealmente hasta t � 4 minutos, cuando se 
alcanza la temperatura deseada de 300°; la temperatura 
del horno se mantiene constante en 300° para t � 4.

b)  Use la transformada de Laplace para resolver el pro-
blema con valores iniciales del inciso a).

7.3  PROPIEDADES OPERACIONALES I ● 281
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282 ● CAPÍTULO 7  LA TRANSFORMADA DE LAPLACE

Problemas para analizar

82. Analice cómo se podría arreglar cada una de las siguien-
tes funciones, de tal forma que el teorema 7.3.2 se pu-
diera usar directamente para encontrar la transformada de 
Laplace dada. Compruebe sus respuestas con la ecuación 
(16) de esta sección.

 a)  b) 

 c) {cos t (t )}

{(2t 1) (t 1)}

 d) {(t2 3t) (t 2)}

{et (t 5)}

83. a)  Suponga que el teorema 7.3.1 se cumple cuando el 
símbolo a se reemplaza por ki, donde k es un número 

real e i2 � �1. Demuestre que {tekti} se puede 
usar para deducir 

    

 {t sen kt}
2ks

(s2 k2)2.

{t cos kt}
s2 k2

(s2 k2)2

b)  Ahora use la transformada de Laplace para resolver 
el problema con valores iniciales x	 � v2x � cos vt, 
x(0) � 0, x� (0) � 0.

PROPIEDADES OPERACIONALES II

REPASO DE MATERIAL
● Defi nición 7.1.1
● Teoremas 7.3.1 y 7.3.2

INTRODUCCIÓN  En esta sección se desarrollan varias propiedades operacionales más de la transfor-
mada de Laplace. En especial, veremos cómo encontrar la transformada de una función f (t) que se multi-
plica por un monomio t n, la transformada de un tipo especial de integral y la transformada de una función 
periódica. Las dos últimas propiedades de transformada permiten resolver ecuaciones que no se han en-
contrado hasta este punto: ecuaciones integrales de Volterra, ecuaciones integrodiferenciales y ecuaciones 
diferenciales ordinarias en las que la función de entrada es una función periódica defi nida por tramos.

7.4

7.4.1  DERIVADAS DE UNA TRANSFORMADA

MULTIPLICACIÓN DE UNA FUNCIÓN POR tn  La transformada de Laplace del 
producto de una función f (t) con t se puede encontrar derivando la transformada de 
Laplace de f (t). Para motivar este resultado, se supone que F(s) { f (t)} existe y 
que es posible intercambiar el orden de la derivada y de la integral. Entonces 

;
d

ds
F(s)

d

ds 0
e st f (t) dt

0 s
[e st f (t)] dt

0
e st t f (t) dt {t f (t)}

es decir, {t f (t)}
d

ds
{ f (t)}. 

Se puede usar el último resultado para encontrar la transformada de Laplace de t2f (t):

.{t2 f (t)} {t t f (t)}
d

ds
{t f (t)}

d

ds

d

ds
{ f (t)}

d 2

ds2 { f (t)}

Los dos casos anteriores sugieren el resultado general para {tn f (t)} .

TEOREMA 7.4.1  Derivadas de transformadas

Si F(s) { f (t)} y n � 1, 2, 3, . . . , entonces

.{tn f (t)} ( 1)n dn

dsn F(s)
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EJEMPLO 1  Uso del teorema 7.4.1

Evalúe {t sen kt}.

SOLUCIÓN  Con f (t) � sen kt, F(s) � k�(s2 � k2) y n � 1, el teorema 7.4.1 da

 .{t sen kt}
d

ds
{sen kt}

d

ds

k

s2 k2

2ks

(s2 k2)2
 

Si se quiere evaluar {t 2 sen kt} y {t 3 sen kt}, todo lo que se necesita hacer, a 
su vez, es tomar el negativo de la derivada respecto a s del resultado del ejemplo 1 y 
después tomar el negativo de la derivada respecto a s de {t 2 sen kt}.

NOTA  Para encontrar transformadas de funciones t ne at, se puede usar el teorema 
7.3.1 o el teorema 7.4.1. Por ejemplo,

Teorema 7.3.1:  {te3t} {t}s :s 3
1

s2 s:s 3

1

(s 3)2 .

Teorema 7.4.1:  {te3t}
d

ds
{e3t}

d

ds

1

s 3
(s 3) 2 1

(s 3)2 .

EJEMPLO 2  Un problema con valores iniciales

Resuelva x	 � 16x � cos 4t,  x(0) � 0,  x�(0) � 1.

SOLUCIÓN  El problema con valores iniciales podría describir el movimiento forzado, 
no amortiguado y en resonancia de una masa en un resorte. La masa comienza con una 
velocidad inicial de 1 pie/s en dirección hacia abajo desde la posición de equilibrio.

Transformando la ecuación diferencial, se obtiene

 (s2 16) X(s) 1
s

s2 16
      o     .X(s)

1

s2 16

s

(s2 16)2  

Ahora bien, en el ejemplo 1 se vio que

 1 2ks

(s2 k2)2 t sen kt  (1)

y por tanto, identifi cando k � 4 en (1) y en el inciso d) del teorema 7.2.1, se obtiene

  

 
1

4
 sen 4 t

1

8
t sen 4t

x(t)
1

4
1 4

s2 16

1

8
1 8s

(s2 16)2

 

7.4.2  TRANSFORMADAS DE INTEGRALES

CONVOLUCIÓN  Si las funciones f y g son continuas por tramos en [0, �), enton-
ces un producto especial, denotado por f * g, se defi ne mediante la integral

 f g
t

0
f ( ) g(t ) d  (2)

y se llama convolución de f y g. La convolución de f * g es una función de t. Por ejemplo,

 et  sen t
t

0
e

 

sen (t ) d
1

2
( sen t cos t et). (3)

7.4  PROPIEDADES OPERACIONALES II ● 283
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284 ● CAPÍTULO 7  LA TRANSFORMADA DE LAPLACE

Se deja como ejercicio demostrar que

 
t

0
 f ( ) g(t ) d

t

0
 f (t ) g( ) d ; 

es decir, f  ∗ g � g ∗ f. Esto signifi ca que la convolución de dos funciones es conmutativa.
No es cierto que la integral de un producto de funciones sea el producto de las in-

tegrales. Sin embargo, es cierto que la transformada de Laplace del producto especial 
(2), es el producto de la transformada de Laplace de f y g. Esto signifi ca que es posible 
determinar la transformada de Laplace de la convolución de dos funciones sin evaluar 
en realidad la integral como se hizo en (3). El resultado que sigue se conoce como 
teorema de convolución.

TEOREMA 7.4.2  Teorema de convolución

Si f (t) y g (t) son funciones continuas por tramos en [0, �) y de orden expo-
nencial, entonces

.{ f g} { f (t)} {g(t)} F(s)G(s)

DEMOSTRACIÓN  Sea  F(s) { f (t)}
0

e s  
f ( ) d

y  G(s) {g(t)}
0

e s g( ) d .

Procediendo formalmente, tenemos

 
0

f ( ) d
0

 e s( )g( ) d .

 
0 0

 e s( ) 
f ( )g( ) d  d

 F(s)G(s)
0

 e s   

f ( ) d
  

0
 e s   

g( ) d

Conservando t fi ja, hacemos t � t � b, dt � db, por lo que

F(s)G(s)
0

f ( ) d e stg(t ) dt.

En el plano tt se realiza la integración en la región sombreada de la fi gura 7.4.1. Puesto 
que f y g son continuas por tramos en [0,�) y de orden exponencial, es posible inter-
cambiar el orden de integración:

F(s) G(s)
0

 e st dt 
t

0
 f ( )g(t ) d

0
 e st 

t

0
 f ( ) g(t ) d dt { f g}.   

EJEMPLO 3  Transformada de una convolución

Evalúe 
t

0
 e

  

sen(t ) d .

SOLUCIÓN  Con f (t) � et y g(t) � sen t, el teorema de convolución establece que la 
transformada de Laplace de la convolución de f y g es el producto de sus transformadas 
de Laplace:

.
t

0
 e

  

sen(t ) d {et} {sen t}
1

s 1

1

s2 1

1

(s 1)(s2 1)   

FIGURA 7.4.1  Cambio del orden de 
integración de primero t a primero t.

t

τ

τ

τ = t

: 0 to t

t:  to ∞

τ
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INVERSA DEL TEOREMA 7.4.2  El teorema de convolución en ocasiones es útil 
para encontrar la transformada de Laplace inversa del producto de dos transformadas 
de Laplace. Del teorema 7.4.2, se tiene

 1{F(s)G(s)} f g.  (4)

Muchos de los resultados de la tabla de transformadas de Laplace en el apéndice III, se 
pueden obtener usando la ecuación (4). En el ejemplo siguiente, se obtiene el elemento 
25 de la tabla:

 {sen kt kt cos kt}
2k3

(s2 k2 )2
. (5)

EJEMPLO 4  Transformada inversa como una convolución

Evalúe 1 1

(s2 k2)2
.

SOLUCIÓN  Sea F(s) G(s)
1

s2 k2  por lo que

 .f (t) g(t)
1

k
1 k

s2 k2

1

k
 sen kt

En este caso la ecuación (4) da

 1 1

(s2 k2)2

1

k2

t

0
sen k  sen k(t ) d . (6)

Con la ayuda de la identidad trigonométrica

 sen A cos B
1

2
[cos(A B) cos(A B)]  

y las sustituciones A � kt y B � k(t � t) se puede realizar la integración en (6):

  

  

 sen kt kt cos kt

2k3 .

1

2k2

1

2k
 sen k(2 t)  cos kt

t

0

1 1

(s2 k2)2

1

2k2

t

0
[cos k(2 t) cos kt] d

 

Multiplicando ambos lados por 2k3, se obtiene la forma inversa de (5). 

TRANSFORMADA DE UNA INTEGRAL  Cuando g(t) � 1 y {g(t)} G(s) 1�s, 
el teorema de convolución implica que la transformada de Laplace de la integral de f es

 
t

0
f ( ) d

F(s)

s
. (7)

La forma inversa de (7),

 
t

0
f ( ) d 1 F(s)

s
, (8)

se puede usar en lugar de las fracciones parciales cuando sn es un factor del denomina-
dor y f(t) 1{F(s)} es fácil de integrar. Por ejemplo, se sabe para f (t) � sen t que 
F(s) � 1�(s2 � 1) y por tanto usando la ecuación (8)

  

 1 1

s2(s2 1)

t

0
(1 cos   ) d t sen t

1 1

s(s2 1)

t

0
sen   d 1 cos t
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286 ● CAPÍTULO 7  LA TRANSFORMADA DE LAPLACE

 
 1 1

s3(s2 1)

t

0
 ( sen   ) d

1

2
 t2 1 cos t

 

etcétera.

ECUACIÓN INTEGRAL DE VOLTERRA  El teorema de convolución y el resultado 
en (7) son útiles para resolver otros tipos de ecuaciones en las que una función des-
conocida aparece bajo un signo de integral. En el ejemplo siguiente se resuelve una 
ecuación integral de Volterra para f (t),

 f (t) g(t)
t

0
 f ( ) h(t ) d . (9)

Las funciones g(t) y h(t) son conocidas. Observe que la integral en (9) tiene la forma 
de convolución (2) con el símbolo h jugando el papel de g.

EJEMPLO 5  Una ecuación integral

Resuelva .f (t) 3t2 e t
t

0
 f ( ) et   d     para f (t).

SOLUCIÓN  En la integral se identifi ca h(t � t) � et �t por lo que h(t) � et. Se toma la 
transformada de Laplace de cada término; en particular, por el teorema 7.4.2 la trans-
formada de Laplace es el producto de { f (t)} F(s) y {et} 1> (s 1).

 .F(s) 3
2

s3

1

s 1
F(s)

1

s 1
 

Después de resolver la última ecuación para F(s) y realizar la descomposición en frac-
ciones parciales, se encuentra

 .F(s)
6

s3

6

s4

1

s

2

s 1
 

La transformada inversa entonces da

  

  3t2 t3 1 2e t.

 f (t) 3 1 2!

s3
1 3!

s4
1 1

s
2 1 1

s 1

 

CIRCUITOS EN SERIE  En una sola malla o circuito en serie, la segunda ley de 
Kirchhoff establece que la suma de las caídas de voltaje en un inductor, resistor y ca-
pacitor es igual al voltaje aplicado E(t). Ahora se sabe que las caídas de voltaje en un 
inductor, resistor y capacitor son, respectivamente, 

 L  
di

dt
,  Ri(t),     y     ,

1

C
 

t

0
 i( ) d  

donde i(t) es la corriente y L, R y C son constantes. Se deduce que la corriente en un 
circuito, como el que se muestra en la fi gura 7.4.2, está gobernada por la ecuación 
integrodiferencial

 L  
di

dt
Ri(t)

1

C
 

t

0
 i( ) d E(t) . (10)

FIGURA 7.4.2  Circuito RCL en serie.

C

L
E R
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EJEMPLO 6  Una ecuación integrodiferencial

Determine la corriente i(t) en un circuito RCL de un sola malla cuando L � 0.1 h, R � 
2 �, C � 0.1 f, i(0) � 0 y el voltaje aplicado es

 .E(t) 120t 120t (t 1) . 

SOLUCIÓN  Con los datos dados, la ecuación (10) se convierte en

 
0.1 di

dt
2i 10

t

0
i( )  d 120t 120t (t 1).

 

Ahora usando (7), I(s) s{ t
0 i( ) d } , donde I(s) {i(t)}. Por lo que la trans-

formada de Laplace de la ecuación integrodiferencial es

.0.1sI(s) 2I(s) 10 I(s)

s
120 1

s2

1

s2
 e s 1

s
 e s   ; por (16) de la sección 7.3

Multiplicando esta ecuación por l0s, usando s2 � 20s � 100 � (s � 10)2 y después al 
despejar I(s), se obtiene

 .I(s) 1200 1

s(s 10)2

1

s(s 10)2
 e s 1

(s 10)2
 e s  

Usando fracciones parciales,

  

 1>100

s 10
 e s 1>10

(s 10)2
 e s 1

(s 10)2

 
e s .

I(s) 1200 1>100

s

1>100

s 10

1>10

(s 10)2

1>100

s
 e s

 

De la forma inversa del segundo teorema de traslación (15) de la sección 7.3, fi nal-
mente se obtiene

  

 120te 10t 1080(t 1)e 10(t 1) 
(t 1).

i(t) 12[1 (t 1)] 12[e 10t e 10(t 1) (t 1)]

 

Escrita como una función defi nida por tramos, la corriente es

i(t)
12 12e 10t 120te 10t,

12e 10t 12e 10(t 1) 120te 10t 1080(t 1)e 10(t 1),

 0 t 1

         t 1.

Con esta última expresión y un SAC, se traza la gráfi ca i(t) en cada uno de los dos interva-
los y después se combinan las gráfi cas. Observe en la fi gura 7.4.3 que aun cuando la fun-
ción de entrada E(t) es discontinua, la salida o respuesta i(t) es una función continua. 

7.4.3   TRANSFORMADA DE UNA FUNCIÓN 
PERIÓDICA

FUNCIÓN PERIÓDICA  Si una función periódica tiene periodo T, T � 0, entonces 
f (t � T) � f (t). El siguiente teorema muestra que la transformada de Laplace de una 
función periódica se obtiene integrando sobre un periodo.

FIGURA 7.4.3  Gráfi ca de corriente 
i(t) del ejemplo 6.

10.5 21.5 2.5

20
10

_30
_20
_ 10

t

i 

TEOREMA 7.4.3  Transformada de una función periódica

Si f (t) es continua por tramos en [0, �), de orden exponencial y periódica con 
periodo T, entonces

{ f (t)}
1

1 e sT 
T

0
e st 

f (t) dt.
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288 ● CAPÍTULO 7  LA TRANSFORMADA DE LAPLACE

DEMOSTRACIÓN  Escriba la transformada de Laplace de f como dos integrales:

.{ f (t)}
T

0
 e st 

f (t) dt
T

 e st 
f (t) dt

Cuando se hace t � u � T, la última integral se convierte en

 .
T

 e st  
f (t) dt

0
 e s(u T )  

f (u T ) du e sT 
0

 e su  
f (u) du e sT 

{ f (t)}

Por tanto, { f (t)}
T

0
 e st 

f (t) dt e sT 
{ f (t)}.

 

Resolviendo la ecuación de la última línea para { f (t)} se demuestra el teorema.     

EJEMPLO 7  Aplicación de un voltaje periódico

Encuentre la transformada de Laplace de la función periódica que se muestra en la 
fi gura 7.4.4.

SOLUCIÓN  La función E(t) se llama de onda cuadrada y tiene periodo T � 2. En el 
intervalo 0 � t � 2, E(t) se puede defi nir por

 E(t)
1,

0,

 0 t 1

 1 t 2
 

y fuera del intervalo por f (t � 2) � f (t). Ahora del teorema 7.4.3

  

; 1 e 2s (1 e s)(1 e s)
1

1 e 2s 
1 e s

s

 {E(t)}
1

1 e 2s
  

2

0
 e st 

E(t) dt
1

1 e 2s
 

1

0
 e st 1dt

2

1
 e st 0 dt

 1

s (1 e s)
. (11)  

EJEMPLO 8  Aplicación de un voltaje periódico

La ecuación diferencial para la corriente i(t) en un circuito RL en serie de una sola 
malla es

 L  
di

dt
Ri E(t). (12)

Determine la corriente i(t) cuando i(0) � 0 y E(t) es la función de onda cuadrada que 
se muestra en la fi gura 7.4.4.

SOLUCIÓN  Si se usa el resultado de (11) del ejemplo anterior, la transformada de 
Laplace de la ED es

 LsI(s) RI(s)
1

s(1 e s)
      o     .I(s)

1 L

s(s R L)

1

1 e s

>

>
 (13)

Para encontrar la transformada de Laplace inversa de la última función, primero se 
hace uso de la serie geométrica. Con la identifi cación x � e�s, s � 0, la serie geomé-
trica

1

1 x
1 x x2 x3    se convierte en  

1

1 e s 1 e s e 2s e 3s .

t

E(t)

1

4321

FIGURA 7.4.4  Onda cuadrada.
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De 
1

s(s R>L)

L>R

s

L>R

s R>L  

se puede reescribir la ecuación (13) como
 

 
. 

1

R
 1

s

e s

s

e 2s

s

e 3s

s

1

R
 1

s R>L

1

s R>L
  e s e 2s

s R>L

e 3s

s R>L

 I(s)
1

R
 

1

s

1

s R>L
(1 e s e 2s e 3s )

Aplicando la forma del segundo teorema de traslación a cada término de ambas series, 
se obtiene

1

R
 (e Rt/L e R(t 1)/L  (t 1) e R(t 2)/L  (t 2) e R(t 3)/L  (t 3) ) 

i(t)
1

R
 (1 (t 1) (t 2) (t 3) )

o, de forma equivalente

 i(t)
1

R
 (1 e Rt/L)

1

R
 

n 1
( 1)n  

(1 e R(t n)/L) (t n).  

Para interpretar la solución, se supone por razones de ejemplifi cación que R � 1, L � 
1 y 0 � t � 4. En este caso

;i(t) 1 e t (1 et 1) (t 1) (1 e (t 2)) (t 2) (1 e (t 3)) (t 3)

en otras palabras,

 
i(t)

1 e t,

e t e (t 1),

1 e t e (t 1) e (t 2),

e t e (t 1) e (t 2) e (t 3),

 0 t 1

 1 t 2

 2 t 3

 3 t 4.

 

La gráfi ca de i(t) en el intervalo 0 � t � 4, que se muestra en la fi gura 7.4.5, se obtuvo 
con la ayuda de un SAC. 

21 3 4

2
1.5

1
0.5

t

i

FIGURA 7.4.5  Gráfi ca de la corriente 
i(t) en ejemplo 8.

EJERCICIOS 7.4   Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-11.

7.4.1  DERIVADAS DE UNA TRANSFORMADA

En los problemas 1 a 8 use el teorema 7.4.1 para evaluar cada 
una de las transformadas de Laplace.

 1.  2. 

 3.  4. 

 5.  6. 

 7. {te2t sen 6 t}

{t2 senh t}

{t cos 2t}

{te 10t}

 8. {te 3t cos 3t}

{t2 cos t}

{t senh 3t}

{t3et}

En los problemas 9 a 14, use la transformada de Laplace para 
resolver el problema con valores iniciales dado. Use la tabla de 
transformadas de Laplace del apéndice III cuando sea necesario.

 9. y� � y � t sen t,  y(0) � 0

10. y� � y � tet sen t,  y(0) � 0

11. y	 � 9y � cos 3t,  y(0) � 2,  y�(0) � 5

12. y	 � y � sen t,  y(0) � 1,  y�(0) � �1

13. y	 � 16y � f (t),  y(0) � 0,  y�(0) � 1, donde

 f (t)
cos 4t,

0,

  0 t

 t

14. y	 � y � f (t),  y(0) � 1,  y�(0) � 0, donde

 f (t)
1,

sen t,

 0 t >2

 t >2

En los problemas 15 y 16, use un programa de grafi cación 
para trazar la gráfi ca de la solución indicada.

15. y(t) del problema 13 en el intervalo 0 � t � 2p

16. y(t) del problema 14 en el intervalo 0 � t � 3p
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290 ● CAPÍTULO 7  LA TRANSFORMADA DE LAPLACE

En algunos casos, la transformada de Laplace se puede usar 
para resolver ecuaciones diferenciales lineales con coefi -
cientes monomiales variables. En los problemas 17 y 18, use 
el teorema 7.4.1 para reducir la ecuación diferencial dada a 
una ED lineal de primer orden en la función transformada. 
Resuelva la ED de primer orden para Y(s) {y(t)} y des-
pués encuentre y(t) 1{Y(s)}

y
.

17. ty	 � y� � 2t2,  y(0) � 0

18.  2y	 � ty� � 2y � 10,  y(0) � y�(0) � 0

7.4.2  TRANSFORMADAS DE INTEGRALES

En los problemas 19 a 30, use el teorema 7.4.2 para evaluar 
cada una de las transformadas de Laplace. No evalúe la inte-
gral antes de transformar.

19.  20. 

21.  22. 

23.  24. 

25.  26. 

27.  28. 

29. t 
t

0
 sen  d

t

0
  et  d

t

0
 e   cos  d

t

0
 e  d

{e t et cos t}

{1 t3}

 30. t 
t

0
  e  d

t

0
 sen  cos (t ) d

t

0
  sen  d

t

0
 cos  d

{e2t sen t}

{t2 tet}

En los problemas 31 a 34, use (8) para evaluar cada transfor-
mada inversa.

31.  32. 

33. 1 1

s3(s 1)

1 1

s(s 1)

 34. 1 1

s(s a)2

1 1

s2(s 1)

35. La tabla del apéndice III no contiene un elemento para

.1 8k3s

(s2 k2)3

a)  Use (4) junto con los resultados de (5) para evaluar 
esta transformada inversa. Utilice un SAC como 
ayuda para evaluar la integral de convolución.

b)  Vuelva a analizar su respuesta del inciso a). ¿Podría 
haber obtenido el resultado en una forma diferente?

36. Emplee la transformada de Laplace y los resultados del pro-
blema 35 para resolver el problema con valores iniciales

.y y sen t t sen t,  y(0) 0, y (0) 0

  Use un programa de grafi cación para trazar la solución.

En los problemas 37 a 46, use la transformada de Laplace para 
resolver la ecuación integral o la ecuación integrodiferencial.

37. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

45. 

46. 
dy

dt
6y(t) 9 

t

0
 y( ) d 1, y(0) 0

y (t) 1 sen t
t

0
 y( ) d , y(0) 0

t 2 f (t)
t

0
 (e e )  f (t ) d

f (t) 1 t
8

3
 

t

0
 ( t)3 f ( ) d

f (t) cos t
t

0
 e

    

f (t ) d

f (t)
t

0
 f ( ) d 1

f (t) 2 
t

0
 f ( ) cos (t ) d 4e t sen t

f (t) tet
t

0
 f (t ) d

f (t) 2t 4 
t

0
 sen   f (t ) d

f (t)
t

0
 (t ) f ( ) d t

En los problemas 47 y 48, resuelva la ecuación (10) sujeta a 
i(0) � 0 con L, R, C y E(t) como se dan para cada problema. 
Use un programa de grafi cación para trazar la solución en el 
intervalo 0 � t � 3.

47. L � 0.1 h, R � 3 �, C � 0.05 f,
  E(t) 100[ (t 1) (t 2)]

48. L � 0.005 h, R � 1 �, C � 0.02 f,
  E(t) 100[t (t 1) (t 1)]

7.4.3   TRANSFORMADA DE UNA FUNCIÓN 
PERIÓDICA

En los problemas 49 a 54 use el teorema 7.4.3 para determi-
nar la transformada de Laplace de cada una de las funciones 
periódicas.

49.

FIGURA 7.4.6  Gráfi ca para el problema 49.

1

función serpenteante

t2aa

f (t)

3a 4a

1
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57. , b 1, k 5, fm 1
2  es la función serpenteante del 

problema 49 con amplitud 10, y a � p, 0 � t � 2p.

58. m � 1, b � 2, k � 1, f es la función de onda cuadrada del 
problema 50 con amplitud 5, y a � p, 0 � t � 4p. 

Problemas para analizar

59. Examine cómo se puede usar el teorema 7.4.1 para en-
contrar

.1 ln 
s 3

s 1

60. En la sección 6.3 vimos que ty	 � y� � ty � 0 es la ecua-
ción de Bessel de orden v � 0. En vista de (22) de esta 
sección y de la tabla 6.1, una solución del problema con 
valores iniciales ty	 � y� � ty � 0, y(0) � 1, y�(0) � 0, es 
y � J

0
(t). Use este resultado y el procedimiento descrito 

en las instrucciones de los problemas 17 y 18 para demos-
trar que

.{J0(t)}
1

1 s2 1

  [Sugerencia: Podría ser necesario usar el problema 46 de 
los ejercicios 7.2]. 

61. a)  Se sabe que la ecuación diferencial de Laguerre

ty	 � (1 � t)y� � ny � 0 

    tiene soluciones polinomiales cuando n es un entero 
no negativo. Estas soluciones naturalmente se lla-
man polinomios de Laguerre y se denotan por L

n
(t). 

Determine y � L
n
(t), para n � 0, 1, 2, 3, 4 si se sabe 

que L
n
(0) � 1.

b) Demuestre que

,
et

n!
 
dn

dtn
 tne t Y(s)

  donde Y(s) {y} y y � L
n
(t) es una solución poli-

nomial de la ED del inciso a). Concluya que

.Ln(t)
et

n!
 
dn

dtn
 tne t,    n 0, 1, 2, . . .

  Esta última relación para generar los polinomios de 
Laguerre es el análogo de la fórmula de Rodrigues 
para los polinomios de Legendre. Véase (30) en la 
sección 6.3.

Tarea para el laboratorio de computación

62. En este problema se indican las instrucciones de Mathema-
tica que permiten obtener la transformada de Laplace sim-
bólica de una ecuación diferencial y la solución del problema 
de valores iniciales al encontrar la transformada inversa. En 
Mathematica la transformada de Laplace de una función 
y(t) se obtiene usando LaplaceTransform [y[t], t, s]. En el 
renglón dos de la sintaxis se reemplaza LaplaceTransform 
[y[t], t, s] por el símbolo Y. (Si no tiene Mathematica, en-
tonces adapte el procedimiento dado encontrando la sin-
taxis correspondiente para el SAC que tenga a la mano.)

FIGURA 7.4.7  Gráfi ca para el problema 50.

1

función de onda cuadrada

t2aa

f(t)

3a 4a

50.

FIGURA 7.4.8  Gráfi ca para el problema 51.

función diente de sierra

t2bb

a

f (t)

3b 4b

51.

FIGURA 7.4.9  Gráfi ca para el problema 52.

1

función triangular

t2

f(t)

3 41

52.

FIGURA 7.4.10  Gráfi ca para el problema 53.

1

rectificación de onda completa de sen t

t

f(t)

432π π π π

53.

FIGURA 7.4.11  Gráfi ca para el problema 54.

432π π π π

1

rectificación de media onda de sen t

t

f(t)54.

En los problemas 55 y 56 resuelva la ecuación (12) sujeta a 
i(0) � 0 con E(t) como se indica. Use un programa de gra-
fi cación para trazar la solución en el intervalo 0 � t � 4 en el 
caso cuando L � I y R � 1.

55. E(t) es la función serpenteante del problema 49 con am-
plitud 1 y a � 1.

56. E(t) es la función diente de sierra del problema 51 con 
amplitud 1 y b � l.

En los problemas 57 y 58 resuelva el modelo para un sistema 
forzado resorte/masa con amortiguamiento

m d
2x

dt2
 dx

dt
kx f (t),  x(0) 0, x (0) 0,

donde la función forzada f es como se especifi ca. Utilice un pro-
grama de grafi cación para trazar x(t) en los valores indicados de t.
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292 ● CAPÍTULO 7  LA TRANSFORMADA DE LAPLACE

   Considere el problema con valores iniciales

.y 6y 9y t sen t,  y(0) 2, y (0) 1

  Cargue el paquete de transformada de Laplace. Re pro-
duz ca con precisión y después, a su vez, ejecute cada ren-
glón de la siguiente secuencia de instrucciones. Copie los 
resultados a mano o imprímalo.

diffequat � y � [t] � 6y�[t] � 9y[t] �� t Sin[t]
transformdeq � LaplaceTransform [diffequat, t, s] /.
  {y[0] � � 2, y�[0] � � �1,
  LaplaceTransform [y[t], t, s] � � Y}
soln � Solve[transformdeq, Y]//Flatten
Y � Y/.soln
InverseLaplaceTransform[Y, s, t]

63. Modifi que de forma apropiada el procedimiento del pro-
blema 62 para encontrar una solución de

 
.y(0) 0, y (0) 0, y (0) 1

y 3y 4y 0,

64. La carga q(t) en un capacitor en un circuito CL en serie 
está dada por

 .q(0) 0, q (0) 0

d 2q

dt2 q 1 4 (t ) 6 (t 3 ),

  Modifi que de forma apropiada el procedimiento del problema 
62 para determinar q(t). Trace la gráfi ca de su solución.

LA FUNCIÓN DELTA DE DIRAC

INTRODUCCIÓN  En el último párrafo de la página 261, se indicó que como una consecuencia 
inmediata del teorema 7.1.3, F(s) � 1 no puede ser la transformada de Laplace de una función f que 
es continua por tramos en [0,�) y de orden exponencial. En el análisis siguiente se introduce una 
función que es muy diferente de las que ha estudiado en cursos anteriores. Más tarde veremos que 
de hecho existe una función o más precisamente, una función generalizada, cuya transformada de 
Laplace es F(s) � 1.

7.5

IMPULSO UNITARIO  Los sistemas mecánicos suelen ser afectados por una fuerza ex-
terna (o fuerza electromotriz en un circuito eléctrico) de gran magnitud que actúa sólo por 
un periodo muy corto. Por ejemplo, podría caer un rayo en el ala vibrante de un avión, un 
martillo de bola podría golpear con precisión una masa en un resorte, una bola (de beisbol, 
golf, tenis) podría ser enviada por el aire al ser golpeada de modo violento con un bate, 
palo de golf o raqueta. Vea la fi gura 7.5.1. La gráfi ca de la función defi nida por partes

 a(t t0)

0,

1

2a
,

0,

0 t t0 a

  t0 a t t0 a

t t0 a,

 (1)

a � 0, t
0
 � 0, que se muestra en la fi gura 7.5.2a, podría servir como modelo para tal fuerza. 

Para un valor pequeño de a, d
a
(t � t

0
) es en esencia una función constante de gran mag-

nitud que está “activada” sólo durante un periodo muy corto, alrededor de t
0
. El compor-

tamiento de d
a
(t � t

0
) conforme a : 0 se ilustra en la fi gura 7.5.2b. La función d

a
(t � t

0
) se 

llama impulso unitario porque tiene la propiedad de integración 0 a(t t0 ) dt 1 .

LA FUNCION DELTA DE DIRAC  En la práctica es conveniente trabajar con otro tipo 
de impulso unitario, una “función” que aproxima a d

a
(t � t

0
) y se defi ne por el límite

 (t t0) lím
a : 0

a(t t0 ). (2)

FIGURA 7.5.1  Un palo de golf aplica 
una fuerza de gran magnitud en la bola 
durante un periodo muy corto.
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La última expresión, que no es una función en absoluto, se puede caracterizar por las 
dos propiedades

 
.i ) (t t0)

,

0,

t t0 t t0
    y     ii)

0
(t t0) dt 1

 

El impulso unitario d(t � t
0
) se llama función delta de Dirac.

Es posible obtener la transformada de Laplace de la función delta de Dirac por la 
suposición formal de que { (t t0)} líma : 0 { a(t t0)} .

TEOREMA 7.5.1  Transformada de la función delta de Dirac

Para t
0
 � 0, { (t t0)} e st0.  (3)

DEMOSTRACIÓN  Para empezar se puede escribir d
a
(t � t

0
) en términos de la función 

escalón unitario en virtud de (11) y (12) de la sección 7.3:

a(t t0)
1

2a
 [ (t (t0 a)) (t (t0 a))].

Por linealidad y (14) de la sección 7.3 la transformada de Laplace de esta última ex-
presión es

 { a(t t0)}
1

2a
 e s(t0 a)

s

e s(t0 a)

s
e st0 

esa e sa

2sa
. (4)

Puesto que (4) tiene la forma indeterminada 0�0 conforme a : 0 se aplica la regla de 
L'Hôpital: 

 .{ (t t0)} lím
a : 0

 { a(t t0)} e st0 lím
a : 0

 

esa e sa

2sa
e st0  

Ahora cuando t
0
 � 0, se puede concluir de (3) que

.{ (t)} 1

El último resultado enfatiza el hecho de que d(t) no es el tipo usual de función que 
se ha estado considerando, puesto que se espera del teorema 7.1.3 que �{ f (t)} : 0 
conforme s : �.

EJEMPLO 1  Dos problemas con valores iniciales

Resuelva y 	 � y � 4d(t � 2p) sujeta a

a) y(0) � 1,  y�(0) � 0  b) y(0) � 0,  y�(0) � 0.

Dos problemas con valores iniciales podrían servir como modelos para describir el 
movimiento de una masa en un resorte que se mueve en un medio en el cual el amor-
tiguamiento es despreciable. En t � 2p la masa recibe un golpe preciso. En a) la masa 
se libera a partir del reposo una unidad abajo de la posición de equilibrio. En b) la 
masa está en reposo en la posición de equilibrio.

SOLUCIÓN  a) De (3) la transformada de Laplace de la ecuación diferencial es

 s2Y(s) s Y(s) 4e 2 s      o     .Y(s)
s

s2 1

4e 2 s

s2 1
 

Con la forma inversa del segundo teorema de traslación, se encuentra

 .y(t) cos t 4 sen (t 2 ) (t 2 )  

Puesto que sen(t � 2p) � sen t, la solución anterior se puede escribir como

 y(t)
cos t,      0 t 2

cos t 4 sen t,   t 2 .
 (5)

FIGURA 7.5.2  Impulso unitario.

b) comportamiento de �a

conforme a → 0

tt0

y

tt0 − a

2a
1�2a

t0

y

t0 + a

a) gráfica de �a(t � t0)

7.5  LA FUNCIÓN DELTA DE DIRAC ● 293
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294 ● CAPÍTULO 7  LA TRANSFORMADA DE LAPLACE

FIGURA 7.5.3  La masa es golpeada en 
t � 2p.

t

y

1

−1 2 4π π

FIGURA 7.5.4  Ningún movimiento 
hasta que la masa es golpeada en t � 2p.

t

y

1

−1 2 4π π

En la fi gura 7.5.3 se ve de la gráfi ca de (5) que la masa presenta movimiento armónico 
simple hasta que es golpeada en t � 2p. La infl uencia del impulso unitario es incre-
mentar la amplitud de vibración a 1 17  para t � 2p.

b) En este caso la transformada de la ecuación es simplemente

 
 

y así y(t) 4 sen (t 2 ) (t 2 )

Y(s)
4e 2 s

s2 1
,

 

 
0,   0 t 2

4 sen t,  t 2 .  (6)

La gráfi ca de (6) de la fi gura 7.5.4 muestra, como se esperaría de las condiciones ini-
ciales, que la masa no exhibe movimiento hasta que es golpeada en t � 2p. 

COMENTARIOS

i) Si d(t – t
0
) fuera una función en el sentido usual, entonces la propiedad i) en 

la página 293 implicaría 0  (t t0) dt 0  en vez de 0  (t t0) dt 1. De-
bi do a que la función delta de Dirac no se “comporta” como una función ordinaria, 
aun cuando sus usuarios produjeron resultados correctos, al inicio los matemáticos 
la recibieron con gran desprecio. Sin embargo, en 1940 la controversial función 
de Dirac fue puesta en un fundamento riguroso por el matemático francés Laurent 
Schwartz en su libro La Théorie de distribution y esto, a su vez, condujo una rama 
completamente nueva de la matemática conocida como la teoría de las distribu-
ciones o funciones  generalizadas. En esta teoría (2) no es una defi nición acep-
tada de d(t – t

0
), ni se habla de una función cuyos valores son � o 0. Aunque se deja 

en paz este tema, basta decir que la función delta de Dirac se caracteriza mejor por 
su efecto en otras funciones. Si f es una función continua, entonces

 
0

 f (t) (t t0) dt  f (t0)  (7)

se puede tomar como la defi nición de d(t – t
0
). Este resultado se conoce como 

propiedad de cribado, puesto que d(t – t
0
) tiene el efecto de separar el valor 

f (t
0
) del conjunto de valores de f en [0,�). Note que la propiedad ii) (con f(t) � 

1) y (3) (con f (t) � e�sf  ) son consistentes con (7). 

ii) Los Comentarios en la sección 7.2 indicaron que la función de transferencia 
de una ecuación diferencial lineal general de n-ésimo orden con coefi cientes 
constantes es W(s) � 1�(P(s), donde P(s) � a

n
sn � a

n�1
sn�1 � . . . � a

0
. La fun-

ción de transferencia es la transformada de Laplace de la función w(t), conocida 
como función peso de un sistema lineal. Pero w(t) también se puede caracterizar 
en términos del análisis en cuestión. Por simplicidad se considera un sistema 
lineal de segundo orden en el que la entrada es un impulso unitario en t � 0:

.a2y a1y a0y (t), y(0) 0, y (0) 0

Aplicando la transformada de Laplace y usando { (t)} 1  se muestra que la 
transformada de la respuesta y en este caso es la función de transferencia

Y(s)
1

a2s2 a1s a0

1

P(s)
W(s) 

    
 y así

    
.y 1 1

P(s)
w(t)

De esto se puede ver, en general, que la función peso y � w(t) de un sistema lineal 
de n-ésimo orden es la respuesta de estado cero del sistema a un impulso unitario. 
Por esta razón w(t) también se llama respuesta de impulso del sistema.
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RESORTES ACOPLADOS  Dos masas m
1
 y m

2
 están conectadas a dos resortes A y 

B de masa despreciable con constantes de resorte k
1
 y k

2
 respectivamente. A su vez, 

los dos resortes están unidos como se muestra en la fi gura 7.6.1. Sean x
1
(t) y x

2
(t) los 

desplazamientos verticales de las masas desde sus posiciones de equilibrio. Cuando 
el sistema está en movimiento, el resorte B está sujeto a elongación y compresión; 
por lo que su elongación neta es x

2
 – x

1
. Por  tanto, se deduce de la ley de Hooke que 

los resortes A y B ejercen fuerzas �k
1
x

1
 y k

2
(x

2 
� x

1
) respectivamente, en m

1
. Si nin-

guna fuerza externa se aplica al sistema y si ninguna fuerza de amortiguamiento está 
presente, entonces la fuerza neta en m

1
 es �k

1
x

1
 � k

2
(x

2 
� x

1
). Por la segunda ley de 

Newton se puede escribir 

 
.m1

 d
2x1

dt2 k1x1 k2(x2 x1)
 

EJERCICIOS 7.5     Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-12.

En los problemas 1 a 12, use la transformada de Laplace para 
resolver el problema con valores iniciales.

 1. y� � 3y � d(t � 2),  y(0) � 0

 2. y� � y � d(t � 1),  y(0) � 2

 3. y	 � y � d(t � 2p),  y(0) � 0, y�(0) � 1

 4. y	 � 16y � d(t � 2p),  y(0) � 0, y�(0) � 0

 5. 

  y(0) 0, y (0) 0

y y (t 1
2 ) (t 3

2 ),

 6. y	 � y � d(t � 2p) � d(t � 4p),  y(0) � 1, y�(0) � 0

 7. y	 � 2y� � d(t � 1),  y(0) � 0, y�(0) � 1

 8. y	 � 2y� � 1 � d(t � 2),  y(0) � 0, y�(0) � 1

 9. y	 � 4y� � 5y � d(t � 2p),  y(0) � 0, y�(0) � 0

10. y	 � 2y� � y � d(t � 1),  y(0) � 0, y�(0) � 0

11. y	 � 4y� � 13y � d(t � p) � d(t � 3p),
  y(0) � 1, y�(0) � 0

12. y	 � 7y� � 6y � et � d(t � 2) � d(t � 4),
  y(0) � 0, y�(0) � 0

13. Una viga uniforme de longitud L soporta una carga concen-
trada w

0
 en x 1

2L . La viga está empotrada en su extremo 

izquierdo y libre en su extremo derecho. Use la transfor-
mada de Laplace para determinar la defl exión y(x) de

EI d
4y

dx4 w0 x 1
2 L ,

  donde y(0) � 0, y�(0) � 0, y	(L) � 0, y y� (L) � 0.

14. Resuelva la ecuación diferencial del problema 13 sujeta a 
y(0) � 0, y�(0) � 0, y(L) � 0, y�(L) � 0. En este caso la viga 
está empotrada en ambos extremos. Véase la fi gura 7.5.5.

FIGURA 7.5.5  Viga en el problema 14.

x

y

L

w0

Problemas para analizar

15. Alguien afi rma que las soluciones de dos PVI

y 2y 10y 0,

y 2y 10y (t),

   y(0) 0,  y (0) 1

   y(0) 0,  y (0) 0

  son exactamente lo mismo. ¿Está de acuerdo o no? 
Justifi que su respuesta.

SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES

REPASO DE MATERIAL
● Solución de sistemas de dos ecuaciones con dos incógnitas.

INTRODUCCIÓN  Cuando se especifi can las condiciones iniciales, la transformada de Laplace 
de cada ecuación en un sistema de ecuaciones diferenciales lineales con coefi cientes constantes 
reduce el sistema de ED a un conjunto de ecuaciones algebraicas simultáneas en las funciones trans-
formadas. Se resuelve el sistema de ecuaciones algebraicas para cada una de las funciones transfor-
madas y luego se determinan las transformadas de Laplace inversas en la manera usual.

7.6

7.6  SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES ● 295
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296 ● CAPÍTULO 7  LA TRANSFORMADA DE LAPLACE

52.5 107.5 1512.5
_ 0.4

0.2
0.4

_ 0.2

t

x1

a) gráfica de x1(t) vs. t

b) gráfica de x2(t) vs. t

52.5 107.5 1512.5
_ 0.4

0.2
0.4

_ 0.2

t

x2

FIGURA 7.6.2  Desplazamientos de las 
dos masas.

De igual manera, la fuerza neta ejercida en la masa m
2
 se debe sólo a la elongación 

neta de B; es decir, � k
2
(x

2 
� x

1
). Por tanto, se tiene

 
.m2

 d
2x2

dt2 k2(x2 x1)  

En otras palabras, el movimiento del sistema acoplado se representa por el sistema 
de ecuaciones diferenciales simultáneas de segundo orden

  

  m2x 2 k2(x2 x1).

 m1x1 k1x1 k2(x2 x1)

 
(1)

En el ejemplo siguiente se resuelve (1) bajo las suposiciones de que k
1
 � 6, k

2
 � 4, 

m
1
 � 1, m

2
 � 1 y que las masas comienzan desde sus posiciones de equilibrio con 

velocidades unitarias opuestas.

EJEMPLO 1  Resortes acoplados

Resuelva  

  
(2)

sujeta a x1(0) 0, x1(0) 1, x2(0) 0, x2(0) 1.

  4x1 x 2 4x2 0

x1 10x1  4x2 0

SOLUCIÓN  La transformada de Laplace de cada ecuación es

  

  4X1(s) s2X2(s) sx2(0) x2(0) 4X2(s) 0,

 s2X1(s) sx1(0) x1(0) 10X1(s) 4X2(s) 0

 

donde X1(s) {x1(t)}  y X2(s) {x2(t)}. El sistema anterior es igual a

  

  4 X1(s) (s2 4) X2(s) 1.

 (s2 10) X1(s)  4X2(s) 1

 
(3)

Resolviendo (3) para X
1
(s) y usando fracciones parciales en el resultado, se obtiene

 X1(s)
s2

(s2 2)(s2 12)

1>5

s2 2

6>5

s2 12
,  

y por tanto

  

  
1 2

10
 sen 1 2t

1 3

5
 sen 21 3t.

 x1(t)
1

51 2
 1 1 2

s2 2

6

51 12
 1 1 12

s2 12

 

Sustituyendo la expresión para X
1
(s) en la primera ecuación de (3), se obtiene

  

y  

  
1 2

5
 sen 1 2t

1 3

10
 sen 21 3t.

 x2(t)
2

51 2
 1 1 2

s2 2

3

51 12
 1 1 12

s2 12

 X2(s)
s2 6

(s2 2)(s2 12)

2>5

s2 2

3>5

s2 12

 

m2

k1

k2

k1

k (x2 − x1)2

k (x2 − x1)2

x2

x1 = 0

x2 = 0

x1

x1

A

m1

B m1

m2m2

a) equilibrio b) movimiento c) fuerzas

m1

FIGURA 7.6.1  Sistema resorte/masa 
acoplado.
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Por último, la solución del sistema (2) es

 
 

 x2(t)
1 2

5
 sen 1 2t

1 3

10
 sen 21 3t.

x1(t)
2

10
 sen 1 2t

3

5
 sen 21 3t

1 1

 

(4)

Las gráfi cas de x
1
 y x

2
 de la fi gura 7.6.2 revelan el complicado movimiento oscilatorio 

de cada masa. 

REDES  En (18) de la sección 3.3 vimos que las corrientes i
l
(t) e i

2
(t) de la red que se 

muestra en la fi gura 7.6.3 con un inductor, un resistor y un capacitor, estaban goberna-
das por el sistema de ecuaciones diferenciales de primer orden

 
 

  RC 
di2

dt
i2 i1 0.

 L 
di1

dt
Ri2 E(t)

 

(5)

Resolvemos este sistema con la transformada de Laplace en el siguiente ejemplo.

EJEMPLO 2  Una red eléctrica

Resuelva el sistema en (5) bajo las condiciones E(t) � 60 V, L � 1 h, R � 50 �, C � 
10�4 f y al inicio las corrientes i

1
 e i

2
 son cero.

SOLUCIÓN  Debemos resolver

  

 
 50(10 4) 

di2

dt
i2 i1 0

 
di1

dt
50i2 60

 

sujeta a i
1
(0) � 0, i

2
(0) � 0.

Aplicando la transformada de Laplace a cada ecuación del sistema y simplifi -
cando, se obtiene

  

 
 200I1(s) (s 200)I2(s) 0,

 sI1(s)  50I2(s)
60

s

 

donde I1(s) {i1(t)} e I2(s) {i2(t)}. Resolviendo el sistema para I
1
 e I

2
 y des-

componiendo los resultados en fracciones parciales, se obtiene

  

 
 I2(s)

12 000

s(s 100)2  
6>5

s

6>5

s 100

120

(s 100)2.

 I1(s)
60s 12 000

s(s 100)2

6>5

s

6>5

s 100

60

(s 100)2

 

Tomando la transformada inversa de Laplace, encontramos que las corrientes son

  

 i2(t) 
6

5

6

5
 e 100t 120te 100t.

 i1(t)
6

5

6

5
 e 100t 60te 100t

 

FIGURA 7.6.3  Red eléctrica.

R

i1 L i2
i3

CE
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298 ● CAPÍTULO 7  LA TRANSFORMADA DE LAPLACE

Observe que tanto i
1
(t) como i

2
(t) del ejemplo 2 tienden hacia el valor E>R 6

5  
conforme t : �. Además, puesto que la corriente a través del capacitor es i

3
(t) � i

1
(t) 

� i
2
(t) � 60te�100t, se observa que i

3
(t) : 0 conforme t : �.

PÉNDULO DOBLE  Considere el sistema de péndulo doble que consiste en un pén-
dulo unido a otro como se muestra en la fi gura 7.6.4. Se supone que el sistema oscila 
en un plano vertical bajo la infl uencia de la gravedad, que la masa de cada varilla es 
despreciable y que ninguna fuerza de amortiguamiento actúa sobre el sistema. En la 
fi gura 7.6.4 también se muestra que el ángulo de desplazamiento u

1
 se mide (en radia-

nes) desde una línea vertical que se extiende hacia abajo desde el pivote del sistema 
y que u

2
 se mide desde una línea vertical que se extiende desde el centro de masa m

1
. 

La dirección positiva es a la derecha; la dirección negativa es a la izquierda. Como 
se esperaría del análisis que condujo a la ecuación (6) de la sección 5.3, el sistema de 
ecuaciones diferenciales que describe el movimiento es no lineal:

FIGURA 7.6.4  Péndulo doble.

1θ

2θ

l1

m1

m2

l2

 

 m2l2
2

2 m2l1l2 1 cos ( 1 2) m2l1l2( 1)2 sen ( 1 2) m2l2g sen 2 0.

 (m1 m2)l1
2

1 m2l1l2 2 cos ( 1 2) m2l1l2( 2)2 sen ( 1 2) (m1 m2)l1g sen 1 0

  
(6)

Pero si se supone que los desplazamientos u
1
(t) y u

2
(t) son pequeños, entonces las 

aproximaciones cos(u
1 
� u

2
) � 1, sen(u

1 
� u

2
) � 0, sen u

1 
� u

1
, sen u

2 
� u

2
 nos permi-

ten reemplazar el sistema (6) por la linealización

  

  m2l2
2

2 m2l1l2 1 m2l2g 2 0.

 (m1 m2)l1
2

1 m2l1l2 2 (m1 m2)l1g 1 0

 
(7)

EJEMPLO 3  Doble péndulo

Se deja como ejercicio completar los detalles de usar la transformada de Laplace para 
resolver el sistema (7) cuando m1 3, m2 1, l1 l2 16, u1(0) 1, u2(0)  

1, 1(0) 0 y 2(0) 0 . Debe encontrar que

  

 2(t)
1

2
 cos 

2

1 3
 t

3

2
 cos 2t.

1(t)
1

4
 cos 

2

1 3
 t

3

4
 cos 2t

 

(8)

En la fi gura 7.6.5 se muestran con la ayuda de un SAC las posiciones de las dos masas 
en t � 0 y en tiempos posteriores. Véase el problema 21 en los ejercicios 7.6.

a) t � 0 b) t � 1.4 c) t � 2.5 d ) t � 8.5

FIGURA 7.6.5  Posiciones de masas del péndulo doble en diferentes tiempos. 
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EJERCICIOS 7.6     Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-12.

En los problemas 1 a 12, use la transformada de Laplace para 
resolver el sistema dado de ecuaciones diferenciales.

 1.   2. 

 
dy

dt
  2x

dx

dt
  x y

 
dy

dt
  8x t

dx

dt
  2y et

 x(0) � 0,  y(0) � 1 x(0) � 1,  y(0) � 1

 3.   4. 

x(0) 0, y(0) 0

dx

dt
  x

dy

dt
y  

 
 et

dx

dt
3x

dy

dt
        1

 

dy

dt
5x y

dx

dt
x 2y

 

 x(0) � �1,  y(0) � 2

 5. 

   
dx

dt

dy

dt
3x 3y 2

2 
dx

dt

dy

dt
2x         1

 x(0) � 0,  y(0) � 0

 6. 

 
dx

dt
    

dy

dt
2y 0

dx

dt
x

dy

dt
  y 0

 x(0) � 0,  y(0) � 1

 7.  8. 

 
d 2y

dt2 y x 0

d 2x

dt2 x y 0

 
d 2y

dt2

dy

dt
4 

dx

dt
0

d 2x

dt2

dx

dt
   

dy

dt
0

 x(0) � 0,  x�(0) � �2, x(0) � 1,  x�(0) � 0,

 y(0) � 0,  y�(0) � 1 y(0) � �1,  y�(0) � 5

 9.  10. 

  
d 2x

dt2

d 2y

dt2 4t

 
d 2x

dt2

d 2y

dt2 t2

 
dx

dt
2x 2 

d 3y

dt3 0

dx

dt
4x    

d 3y

dt3 6 sen t

 x(0) � 8,  x�(0) � 0, x(0) � 0,  y(0) � 0,

 y(0) � 0,  y�(0) � 0 y�(0) � 0,  y	(0) � 0

11. 

 d 2x

dt2  3y te t

 
d 2x

dt2 3 
dy

dt
3y 0

 x(0) � 0,  x�(0) � 2,  y(0) � 0

12. 

 

 x(0) 0,  y(0) 1
2

dy

dt
3x  y   (t 1)

dx

dt
4x 2y 2 (t 1)

13. Resuelva el sistema (1) cuando k
1
 � 3, k

2
 � 2, m

1
 � 1, 

m
2
 � 1 y x

1
(0) � 0, , x2(0) 1, .x2(0) 0x1(0) 1

14.  Construya el sistema de ecuaciones diferenciales que 
describe el movimiento vertical en línea recta de los 
resortes acoplados que se muestran en la fi gura 7.6.6. 
Use la transformada de Laplace para resolver el sistema 
cuando k

1
 � 1, k

2
 � 1, k

3
 � 1, m

1
 � 1, m

2
 � 1 y x

1
(0) � 0, 

, x2(0) 0, .x2(0) 1x1(0) 1

k

m2

k2

3

x2 = 0

m1

k1

x1 = 0

FIGURA 7.6.6  Resortes acoplados del problema 14.

15. a)  Demuestre que el sistema de ecuaciones diferenciales 
para las corrientes i

2
(t) e i

3
(t) en la red eléctrica que se 

muestra en la fi gura 7.6.7 es

 L2 
di3

dt
Ri2 Ri3 E(t).

 L1 
di2

dt
Ri2 Ri3 E(t)

b)  Resuelva el sistema del inciso a) si R � 5 �, L
1
 � 0.01 

h, L
2
 � 0.0125 h, E � 100 V, i

2
(0) � 0 e i

3
(0) � 0.

c) Determine la corriente i
1
(t).

FIGURA 7.6.7  Red del problema 15.

L1

R

E

i1 i2
i3

L2

16. a)  En el problema 12 de los ejercicios 3.3 se pide demos-
trar que las corrientes i

2
(t) e i

1
(t) de la red eléctrica que 

se muestra en la fi gura 7.6.8 satisface

 R1 
di2

dt
R2 

di3

dt

1

C
 i3 0.

 L 
di2

dt
L 

di3

dt
R1i2 E(t)

7.6  SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES ● 299
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300 ● CAPÍTULO 7  LA TRANSFORMADA DE LAPLACE

  Resuelva el sistema si R
1
 � 10 �, R

2
 � 5 �, L � 1 h, 

C � 0.2 f.

E(t)
120,

0,

0 t 2

t 2,

 i
2
(0) � 0, e i

3
(0) � 0.

b) Determine la corriente i
1
(t).

Tarea para el laboratorio de computación

21. a)  Use la transformada de Laplace y la información 
dada en el ejemplo 3 para obtener la solución (8) del 
sistema que se presenta en (7).

b)  Use un programa de grafi cación para trazar u
1
(t) y 

u
2
(t) en el plano tu. ¿Cuál masa tiene desplazamien-

tos extremos de mayor magnitud? Use las gráfi cas 
para estimar la primera vez que cada masa pasa por 
su posición de equilibrio. Analice si el movimiento 
del péndulo es periódico.

c)  Trace la gráfi ca de u
1
(t) y u

2
(t) en el plano u

1
u

2
 como 

ecuaciones paramétricas. La curva que defi nen estas 
ecuaciones paramétricas se llama curva de Lissajous.

d)  En la fi gura 7.6.5a se presentan las posiciones de las 
masas en t � 0. Observe que se ha usado 1 radián 
� 57.3°. Use una calculadora o una tabla de aplicación 
de un SAC para construir una tabla de valores de los 
ángulos u

1
 y u

2
 para t � 1, 2, . . . , 10 s. Después dibuje 

las posiciones de las dos masas en esos tiempos.

e)  Use un SAC para encontrar la primera vez que u
1
(t) � 

u
2
(t) y calcule el correspondiente valor angular. Dibuje 

las posiciones de las dos masas en esos tiempos.

f)  Utilice un SAC para dibujar las rectas apropiadas para 
simular las varillas de los péndulos, como se muestra 
en la fi gura 7.6.5. Use la utilidad de animación de 
su SAC para hacer un “video” del movimiento del 
péndulo doble desde t � 0 hasta t � 10 usando un 
incremento de 0.1. [Sugerencia: Exprese las coorde-
nadas (x

1
(t), y

1
(t)) y (x

2
(t), y

2
(t)) de las masas m

1
 y m

2
 

respectivamente, en términos de u
1
(t) y u

2
(t).]

FIGURA 7.6.8  Red del problema 16.

R1E

i1 L i2
i3

C

R2

17.  Resuelva el sistema dado en (17) de la sección 3.3 cuando 
R

1
 � 6 �, R

2
 � 5 �, L

1
 � 1 h, L

2
 � 1 h, E(t) � 50 sen t 

V, i
2
(0) � 0 e i

3
(0) � 0.

18.  Resuelva (5) cuando E � 60 V, L 1
2 h , R � 50 �, C � 

10�4 f, i
1
(0) � 0 e i

2
(0) � 0.

19.  Resuelva (5) cuando E � 60 V, L � 2 h, R � 50 �, C � 
10�4 f, i

1
(0) � 0 e i

2
(0) � 0.

20. a)  Demuestre que el sistema de ecuaciones diferenciales 
para la carga en el capacitor q(t) y la corriente i

3
(t) en 

la red eléctrica que se muestra en la fi gura 7.6.9 es

 L 
di3

dt
R2i3

1

C
 q 0.

 R1 
dq

dt

1

C
 q R1i3 E(t)

 

b)  Determine la carga en el capacitor cuando L � 1 h, R
1
 

� 1 �, R
2
 � 1 �, C � I f.

E(t)
0,

50e t,

0 t 1

t 1,

 i
3
(0) � 0 y q(0) � 0.

FIGURA 7.6.9  Red del problema 20.

R1

E

i1 i2

i3

LC

R2

 REPASO DEL CAPÍTULO 7
   Las respuestas a los problemas seleccionados con número impar 

comienzan en la página RES-12

En los problemas 1 y 2 utilice la defi nición de la transformada 
de Laplace para encontrar { f (t)}. 

 1. 

 2. f (t)

0,

1,

0,

 0 t 2

 2 t 4

 t 4

f (t)
t,

2 t,

 0 t 1

 t 1

En los problemas 3 a 24 complete los espacios en blanco o 
conteste verdadero o falso.

 3. Si f no es continua por tramos en [0, �), entonces { f (t)} 
no existirá. _______

 4. La función f (t) (et)10  no es de orden exponencial. ____

 5. F(s) � s2�(s2 � 4) no es la transformada de Laplace de 
una función que es continua por tramos y de orden expo-
nencial. _______
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 6. Si { f (t)} F(s)  y {g(t)} G(s), entonces 

  . _______1{F(s)G(s)}  f (t)g(t)

 7.     8. 

 9. 

_______

_______{sen 2t}

{e 7t}

 10. 

_______

_______{e 3t sen 2t}

{te 7t}

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

_______

_______

_______

_______

_______

_______

_______

_______

_______

_______1 1

L2s2 n2 2

 1 s

s2 2 e
s

 1 e 5s

s2

 1 s

s2 10s 29

 1 1

s2 5

1 1

(s 5)3

 1 1

3s 1

1 20

s6

{sen 2t (t )}

{t sen 2t}

21. {e 5t} existe para s � _______.

22. Si  { f (t)}  F(s), entonces _______.{te8t f (t)}
23. Si  { f (t)}  F(s)  y k � 0, entonces 

  _______.{eat f (t k) (t k)}

24. _______ { t
0
 ea f ( ) d }  mientras que 

  _______.{eat t
0
  f ( ) d }

En los problemas 25 a 28, use la función escalón unitario para 
determinar una ecuación para cada gráfi ca en términos de la 
función y � f (t), cuya gráfi ca se presenta en la fi gura 7.R.1.

En los problemas 29 a 32 exprese f en términos de funciones 
escalón unitario. Encuentre { f (t)} y {et f (t)}.

t0
t

y

y = f(t)

FIGURA 7.R.1  Gráfi ca para los problemas 25 a 28.

FIGURA 7.R.2  Gráfi ca para el problema 25.

t0
t

y25.

FIGURA 7.R.3  Gráfi ca para el problema 26.

t0
t

y26.

FIGURA 7.R.4  Gráfi ca para el problema 27.

t0
t

y27.

FIGURA 7.R.5  Gráfi ca para el problema 28.

t0
t

y

t1

28.

29.

FIGURA 7.R.6  Gráfi ca para el problema 29.

1

1

2 3 4 t

f (t)

30.

FIGURA 7.R.7  Gráfi ca para el problema 30.

2

1

−1
t

f (t)

π π π3

π πy = sen 3 t,  ≤ t ≤

31.

FIGURA 7.R.8  Gráfi ca para el problema 31.

1 2 3

2

1

t

f (t)
(3, 3)

32.

FIGURA 7.R.9  Gráfi ca para el problema 32.

1 2

1

t

f (t)

REPASO DEL CAPÍTULO 7 ● 301
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302 ● CAPÍTULO 7  LA TRANSFORMADA DE LAPLACE

En los problemas 33 a 38, use la transformada de Laplace para 
resolver la ecuación dada.

33. y	 � 2y� � y � et,  y(0) � 0, y�(0) � 5

34. y	 � 8y� � 20y � tet,  y(0) � 0, y�(0) � 0

35. y	 � 6y� � 5y � t � t �(t � 2),  y(0) � 1, y�(0) � 0

36. y� � 5y � f (t), donde 

f (t)
t2,

0,

0 t 1

t 1
, y(0) 1

37. 

38. 
t

0
 f ( ) f (t ) d 6t3

y (t) cos t
t

0
 y( ) cos(t ) d , y(0) 1

En los problemas 39 y 40, use la transformada de Laplace para 
resolver cada sistema.

39.  x� � y � t 40. x	 � y	 � e2t

 4x � y� � 0 2x� � y	 � �e2t

 x(0) � 1,  y(0) � 2 x(0) � 0,  y(0) � 0,
   x�(0) � 0,  y�(0) � 0

41. La corriente i(t) en un circuito RC en serie se puede deter-
minar de la ecuación integral

,Ri
1

C
 

t

0
 i( ) d E(t)

   donde E(t) es el voltaje aplicado. Determine i(t) cuando R 
� 10 �, C � 0.5 f y E(t) � 2(t2 � t).

42. Un circuito en serie contiene un inductor, un resistor y un 
capacitor para el cual L 1

2 h , R � 10 � y C � 0.01 f, 
respectivamente. El voltaje

E(t)
10,

0,

0 t 5

  t 5

 se aplica al circuito. Determine la carga instantánea q(t) 
en el capacitor para t � 0 si q(0) � 0 y q�(0) � 0.

43. Una viga en voladizo uniforme de longitud L está em-
potrada en su extremo izquierdo (x � 0) y libre en su 
extremo derecho. Encuentre la defl exión y(x) si la carga 
por unidad de longitud se determina por 

.w(x)
2w0

L
 

L

2
x x

L

2
 x

L

2

44. Cuando una viga uniforme se apoya mediante una base 
elástica, la ecuación diferencial para su defl exión y(x) es

,EI 
d 4y

dx4 ky w(x)

   donde k es el módulo de la base y � ky es la fuerza res-
tauradora de la base que actúa en dirección opuesta a la 
de la carga w(x). Vea la fi gura 7.R.10. Por conveniencia 

algebraica suponga que la ecuación diferencial se escribe 
como

,
d 4y

dx4 4a4y
w(x)

EI

donde a � (k�4EI)1/4. Suponga que L � p y a � 1. 
Encuentre la defl exión y(x) de una viga que está apoyada 
en una base elástica cuando
a)  la viga está apoyada simplemente en ambos extremos 

y una carga constante w
0
 se distribuye uniformemente 

a lo largo de su longitud,
b)  la viga está empotrada en ambos extremos y w(x) es 

una carga concentrada w
0
 aplicada en x � p�2.

 [Sugerencia: En ambas partes de este problema, use los 
elementos 35 y 36 de la tabla de transformadas de Laplace 
del apéndice III].

FIGURA 7.R.10  Viga sobre la base elástica del problema 44.

0 x

y

L

w(x)

base elástica

FIGURA 7.R.11  Péndulos acoplados del problema 45.

1θ
θ2

m

ll

m

45. a)  Suponga que dos péndulos idénticos están acoplados 
por medio de un resorte con k constante. Véase la fi -
gura 7.R.11. Bajo las mismas suposiciones hechas en el 
análisis anterior al ejemplo 3 de la sección 7.6, se puede 
demostrar que cuando los ángulos de desplazamiento 
u

1
(t) y u

2
(t) son pequeños, el sistema de ecuaciones di-

ferenciales lineales que describen el movimiento es

  2
g

l 2
k

m
 ( 1 2).

1
g

l 1
k

m
 ( 1 2)

  Utilice la transformada de Laplace para resolver el 
sistema cuando u

1
(0) � u

0
, u

1
�(0) � 0, u

2
(0) � c

0
, 

u
2
�(0) � 0, donde u

0
 y c

0
 son constantes. Por conve-

niencia, sea v2 � g�l, K � k�m.

b)  Use la solución del inciso a) para analizar el movimiento 
de los péndulos acoplados en el caso especial cuando 
las condiciones iniciales son u

1
(0) � u

0
,  u

1
�(0) � 0, 

u
2
(0) � u

0
, u

2
�(0) � 0. Cuando las condiciones iniciales 

son u
1
(0) � u

0
, u

1
�(0) � 0, u

2
(0) � �u

0
, u

2
�(0) � 0.
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SISTEMAS DE ECUACIONES 
DIFERENCIALES LINEALES 
DE PRIMER ORDEN

8.1 Teoría preliminar: Sistemas lineales

8.2 Sistemas lineales homogéneos

8.2.1 Eigenvalores reales distintos

8.2.2 Eigenvalores repetidos

8.2.3 Eigenvalores complejos

8.3 Sistemas lineales no homogéneos

8.3.1 Coefi cientes indeterminados

8.3.2 Variación de parámetros

8.4 Matriz exponencial

REPASO DEL CAPÍTULO 8

En las secciones 3.3, 4.8 y 7.6 tratamos con sistemas de ecuaciones diferenciales y 

pudimos resolver algunos de estos sistemas mediante eliminación sistemática o con 

transformada de Laplace. En este capítulo nos vamos a dedicar sólo a sistemas de 

ecuaciones lineales diferenciales de primer orden. Aunque la mayor parte de los 

sistemas que se consideran se podrían resolver usando eliminación o transformada 

de Laplace, vamos a desarrollar una teoría general para estos tipos de sistemas y en 

el caso de sistemas con coefi cientes constantes, un método de solución que utiliza 

algunos conceptos básicos del álgebra de matrices. Veremos que esta teoría general 

y el procedimiento de solución son similares a los de las ecuaciones de cálculo 

diferencial de orden superior lineales consideradas en el capítulo 4. Este material es 

fundamental para analizar ecuaciones no lineales de primer orden.

8
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304 ● CAPÍTULO 8  SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN

8.1

SISTEMAS LINEALES  Cuando cada una de las funciones g
1
, g

2
, . . . , g

n
 en (2) es 

lineal en las variables dependientes x
1
, x

2
, . . . , x

n
, se obtiene la forma normal de un 

sistema de ecuaciones lineales de primer orden.

 

� a11(t)x1 � a12(t)x2 � . . .  � a1n(t)xn � f1(t)

� a21(t)x1 � a22(t)x2 � . . .  � a2n(t)xn � f2(t)

� an1(t)x1 � an2(t)x2 � . . .  � ann(t)xn � fn(t).

dx1–––
dt

dx2–––
dt

dxn–––
dt

.

.

.
.
.
.

 

Nos referimos a un sistema de la forma dada en (3) simplemente como un sistema 
lineal. Se supone que los coefi cientes a

ij
 así como las funciones f

i
 son continuas en un 

intervalo común I. Cuando f
i
(t) � 0, i � 1, 2, . . . ,  n, se dice que el sistema lineal (3) 

es homogéneo; de otro modo es no homogéneo.

FORMA MATRICIAL DE UN SISTEMA LINEAL  Si X, A(t), y F(t) denotan ma-
trices respectivas

 

x1(t)

x2(t)

xn(t)

 X �
 (  

 
 ) ,

a11(t)

a21(t)

an1(t)

a1n(t)

a2n(t)

ann(t)

a12(t)

a22(t)

an2(t)

. . .

. . .

. . .

 A(t) �
 (   ) ,

f1(t)

f2(t)

fn(t)

 F(t) �
 (  ) ,.

.

.
.
.
.

.

.

.
.
.
.

TEORÍA PRELIMINAR: SISTEMAS LINEALES

REPASO DE MATERIAL
● En este capítulo se usará la notación matricial y sus propiedades se usarán con mucha frecuencia 

a lo largo del mismo. Es indispensable que repase el apéndice II o un texto de álgebra lineal si no 
está familiarizado con estos conceptos.

INTRODUCCIÓN  Recuerde que en la sección 4.8 se ilustró cómo resolver sistemas de n ecuacio-
nes diferenciales lineales con n incógnitas de la forma

 

P11(D)x1 � P12(D)x2 � . . .  � P1n(D)xn � b1(t)

P21(D)x1 � P22(D)x2 � . . .  � P2n(D)xn � b2(t)
                                                               

Pn1(D)x1 � Pn2(D)x2 � . . .  � Pnn(D)xn � bn(t),

.

.

.
.
.
.

 

(1)

donde las P
ij
 eran polinomios de diferentes grados en el operador diferencial D. Este capítulo se dedica al es-

tudio de sistemas de ED de primer orden que son casos especiales de sistemas que tienen la forma normal

 

� g1(t,x1,x2, . . . ,xn)

� g2(t,x1,x2, . . . ,xn)

� gn(t,x1,x2, . . . ,xn).

dx1–––
dt

dx2–––
dt

dxn–––
dt

.

.

.
.
.
.

 

Un sistema tal como (2) de n ecuaciones diferenciales de primer orden se llama sistema de primer orden.

(2)

(3)
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entonces el sistema de ecuaciones diferenciales lineales de primer orden (3) se puede 
escribir como

 

  (d
––
dt

x1

x2

xn

 )
a11(t)

a21(t)

an1(t)

a1n(t)

a2n(t)

ann(t)

a12(t)

a22(t)

an2(t)

. . .

. . .

. . .

� (   (
x1

x2

xn

 ) � ( )
f1(t)

f2(t)

fn(t)

 ).
.
.

.

.

.
.
.
.

.

.

.
.
.
.

 

o simplemente X AX F. (4)

Si el sistema es homogéneo, su forma matricial es entonces

 X AX. (5)

EJEMPLO 1  Sistema escrito en notación matricial

a) Si X
x

y
, entonces la forma matricial del sistema homogéneo

 

dx

dt
3x 4y

dy

dt
5x 7y

es  X
3

5

4

7
X. 

b) Si X
x

y

z

, entonces la forma matricial del sistema homogéneo

 

dx

dt
6x y z t

dy

dt
8x 7y z 10t

dz

dt
2x 9y z  6t

es X
6

8

2

1

7

9

1

1

1

X
t

10t

6t

.

 

DEFINICIÓN 8.1.1  Vector solución

Un vector solución en un intervalo I es cualquier matriz columna

 

x1(t)

x2(t)

xn(t)

 X �
 (  

 ).
.
.

 

cuyos elementos son funciones derivables que satisfacen el sistema (4) en el 
intervalo.

Un vector solución de (4) es, por supuesto, equivalente a n ecuaciones escalares x
1
 � 

f
1
(t), x

2
 � f

2
(t), . . . ,  x

n
 � f

n
(t) y se puede interpretar desde el punto de vista geométrico 

como un conjunto de ecuaciones paramétricas de una curva en el espacio. En el caso 
importante n � 2, las ecuaciones x

1
 � f

1
(t), x

2
 � f

2
(t) representan una curva en el plano 

x
1
x

2
. Es práctica común llamar trayectoria a una curva en el plano y llamar plano fase al 

plano x
1
x

2
. Regresaremos a estos conceptos y se ilustrarán en la siguiente sección.
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306 ● CAPÍTULO 8  SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN

EJEMPLO 2  Comprobación de soluciones

Compruebe que en el intervalo (��, �)

 X 1 
1 

1 
e 2 t e 2 t 

e 2 t      y      X 2 
3 

5 
e 6 t 3 e 6 t 

5 e 6 t 
 

son soluciones de   X 
1 

5 

3 

3 
X . (6)

SOLUCIÓN  De X 1 
2 e 2 t 

2 e 2 t 
  y  X 2 

18 e 6 t 

30 e 6 t 
 vemos que

  

y AX 2 
1 

5 

3 

3 

3 e 6 t 

5 e 6 t 

3 e 6 t 15 e 6 t 

15 e 6 t 15 e 6 t 

18 e 6 t 

30 e 6 t X 2 . 

AX 1 
1 

5 

3 

3 

e 2 t 

e 2 t 

e 2 t 3 e 2 t 

5 e 2 t 3 e 2 t 

2 e 2 t 

2 e 2 t X 1 , 

 

Gran parte de la teoría de sistemas de n ecuaciones diferenciales de primer orden 
es similar a la de las ecuaciones diferenciales de n�ésimo orden.

PROBLEMA CON VALORES INICIALES  Sea t
0
 que denota un punto en un inter-

valo I y

 

x1(t0)

x2(t0)

xn(t0)

X(t0) � ( y )
�1

�2

�n

 X0 � (  ),.
.
.

.

.

.

 
donde las g

i
, i � 1, 2, . . . , n son las constantes dadas. Entonces el problema

 Resolver:   

 Sujeto a:  X ( t 0 ) X 0 

X A ( t ) X F ( t ) 

 
(7)

es un problema con valores iniciales en el intervalo.

TEOREMA 8.1.1  Existencia de una solución única

Sean los elementos de las matrices A(t) y F(t) funciones continuas en un inter-
valo común I que contiene al punto t

0
. Entonces existe una solución única del 

problema con valores iniciales (7) en el intervalo.

SISTEMAS HOMOGÉNEOS  En las siguientes defi niciones y teoremas se conside-
ran sólo sistemas homogéneos. Sin afi rmarlo, siempre se supondrá que las a

ij
 y las f

i
 

son funciones continuas de t en algún intervalo común I.

PRINCIPIO DE SUPERPOSICIÓN  El siguiente resultado es un principio de super-
posición para soluciones de sistemas lineales.

TEOREMA 8.1.2  Principio de superposición

Sea X
1
, X

2
, . . . ,  X

k
 un conjunto de vectores solución del sistema homogéneo 

(5) en un intervalo I. Entonces la combinación lineal

 X c 1 X 1 c 2 X 2 c k X k ,  

donde las c
i
, i � 1, 2, . . . ,  k son constantes arbitrarias, es también una solución 

en el intervalo.
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Se deduce del teorema 8.1.2 que un múltiplo constante de cualquier vector solu-
ción de un sistema homogéneo de ecuaciones diferenciales lineales de primer orden es 
también una solución.

EJEMPLO 3  Usando el principio de superposición

Debería practicar comprobando que los dos vectores

 X 1 

cos t 
1 
2 cos t 1 

2  sen  t 

cos t sen t

 
     

y

     

X 2 

0 

e t 

0 
 

son soluciones del sistema

 X 
1 

1 

2 

0 

1 

0 

1 

0 

1 

X .  (8)

Por el principio de superposición la combinación lineal

 X c 1 X 1 c 2 X 2 c 1 

cos t 
1 
2  cos  t 1 

2 sen t 

cos t sen t 

c 2 

0 

e t 

0 

 

es otra solución del sistema. 

DEPENDENCIA LINEAL E INDEPENDENCIA LINEAL  Estamos interesados 
principalmente en soluciones linealmente independientes del sistema homogéneo (5).

DEFINICIÓN 8.1.2  Dependencia/independencia lineal

Sea X
1
, X

2
, . . . ,  X

k
 un conjunto de vectores solución del sistema homogéneo 

(5) en un intervalo I. Se dice que el conjunto es linealmente dependiente en el 
intervalo si existen constantes c

1
, c

2
, . . . ,  c

k
, no todas cero, tales que

 c 1 X 1 c 2 X 2 c k X k 0  

para toda t en el intervalo. Si el conjunto de vectores no es linealmente depen-
diente en el intervalo, se dice que es linealmente independiente.

El caso cuando k � 2 debe ser claro; dos vectores solución X
1 
y X

2 
son linealmente 

dependientes si uno es un múltiplo constante del otro y a la inversa. Para k � 2 un 
conjunto de vectores solución es linealmente dependiente si se puede expresar por lo 
menos un vector solución como una combinación lineal de los otros vectores.

WRONSKIANO  En la consideración anterior de la teoría de una sola ecuación dife-
rencial ordinaria se puede introducir el concepto del determinante Wronskiano como 
prueba para la independencia lineal. Se expresa el siguiente teorema sin prueba.

TEOREMA 8.1.3  Criterio para las soluciones linealmente independientes

Sean 
 X1 �

 
 (

x11

x21

xn1

x12

x22

xn2

 ) , X2�
 ( . . . , ) , 

x1n

x2n

xnn

Xn�
 (  ).

.

.
.
.
.

.

.

.  
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308 ● CAPÍTULO 8  SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN

n vectores solución del sistema homogéneo (5) en un intervalo I. Entonces el 
conjunto de vectores solución es linealmente independiente en I si y sólo si 
el Wronskiano

 

W(X1,X2, . . . ,Xn) �
 �  � � 0

x11

x21

xn1

x1n

x2n

xnn

x12

x22

xn2

. . .

. . .

. . .

.

.

.
.
.
.

 

(9)

para toda t en el intervalo.

Se puede demostrar que si X
1
, X

2
, . . . ,  X

n
 son vectores solución de (5), entonces 

para toda t en I ya sea W(X
1
, X

2
, . . . ,  X

n
) � 0 o W(X

1
, X

2
, . . . ,  X

n
) � 0. Por tanto, si 

se puede demostrar que W � 0 para alguna t
0
 en I, entonces W � 0 para toda t y, por 

tanto, las soluciones son linealmente independientes en el intervalo.
Observe que, a diferencia de la defi nición de Wronskiano en la sección 4, aquí la 

defi nición del determinante (9) no implica derivación.

EJEMPLO 4  Soluciones linealmente independientes

En el ejemplo 2 vimos que X1
1

1
e 2t  y X2

3

5
e6t  son soluciones del 

sistema (6). Es evidente que X
1 
y X

2
 son linealmente independientes en el intervalo 

(��, �) puesto que ningún vector es un múltiplo constante del otro. Además, se tiene

 W(X1, X2)
e 2t

e 2t

3e6t

5e6t 8e4t 0  

para todos los valores reales de t. 

DEFINICIÓN 8.1.3  Conjunto fundamental de soluciones

Cualquier conjunto X
1
, X

2
, . . . , X

n
 de n vectores solución linealmente inde-

pendientes del sistema homogéneo (5) en un intervalo I se dice que es un con-
junto fundamental de soluciones en el intervalo.

TEOREMA 8.1.4  Existencia de un conjunto fundamental

Existe un conjunto fundamental de soluciones para el sistema homogéneo (5) 
en un intervalo I.

Los dos teoremas siguientes son equivalentes a los teoremas 4.1.5 y 4.1.6 para 
sistemas lineales.

TEOREMA 8.1.5  Solución general, sistemas homogéneos

Sea X
1
, X

2
, . . . , X

n
 un conjunto fundamental de soluciones del sistema ho-

mogéneo (5) en un intervalo I. Entonces la solución general del sistema en el 
intervalo es

 X c1X1 c2X2 cnXn , 

donde las c
i
, i � 1, 2, . . . , n son constantes arbitrarias.
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EJEMPLO 5  Solución general del sistema (6)

Del ejemplo 2 sabemos que X 1 
1 

1 
e 2 t  y X 2 

3 

5 
e 6 t  son soluciones lineal-

mente independientes de (6) en (��, �). Por tanto X
1 
y X

2
 son un conjunto fundamental 

de soluciones en el intervalo. La solución general del sistema en el intervalo entonces es

 X c 1 X 1 c 2 X 2 c 1 
1 

1 
e 2 t c 2 

3 

5 
e 6 t .  (10)  

EJEMPLO 6  Solución general del sistema (8)

Los vectores

 X 1 

cos t 
1 
2 cos t 1 

2 sen t 

cos t sen t 

,    X 2 

0 

1 

0 

e t ,    X 3 

sen t
1 
2 sen t 1 

2 cos t 

sen t cos t 
 

son soluciones del sistema (8) en el ejemplo 3 (vea el problema 16 en los ejercicios 
8.1). Ahora,

 W ( X 1 , X 2 , X 3 ) p
cos t 

1 
2 cos t 1 

2 sen t 

cos t sen t 

0 

e t 

0 

sen t 
1 
2 sen t 1 

2 cos t 

sen t cos t 
p e t 0  

para todos los valores reales de t. Se concluye que X
1
, X

2
 y X

3
 forman un conjunto 

fundamental de soluciones en (��, �). Por lo que la solución general del sistema en el 
intervalo es la combinación lineal X � c

1
X

1
 � c

2
X

2
 � c

3
X

3
; es decir,

 X c 1 

cos t 
1 
2 cos t 1 

2 sen t 

cos t sen t 

c 2 

0 

1 

0 

e t c 3 

sen t 
1 
2 sen t 1 

2 cos t 

sen t cos t 

.  

SISTEMAS NO HOMOGÉNEOS  Para sistemas no homogéneos una solución par-
ticular X

p
 en el intervalo I es cualquier vector libre de parámetros arbitrarios, cuyos 

elementos son funciones que satisfacen el sistema (4).

TEOREMA 8.1.6  Solución general: sistemas no homogéneos

Sea X
p
 una solución dada del sistema no homogéneo (4) en un intervalo I y 

sea

 X c c 1 X 1 c 2 X 2 c n X n  

que denota la solución general en el mismo intervalo del sistema homogéneo 
asociado (5). Entonces la solución general del sistema no homogéneo en el 
intervalo es

 X X c X p .  

La solución general X
c
 del sistema homogéneo relacionado (5) se llama 

función complementaria del sistema no homogéneo (4).
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310 ● CAPÍTULO 8  SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN

EJEMPLO 7  Solución general: sistema no homogéneo

El vector Xp

3t 4

5t 6
 es una solución particular del sistema no homogéneo

 X
1

5

3

3
X

12t 11

3
 (11)

en el intervalo (��, �). (Compruebe esto.) La función complementaria de (11) en el

mismo intervalo o la solución general de X
1

5

3

3
X , como vimos en (10) del

ejemplo 5 que Xc c1
1

1
e 2t c2

3

5
e6t . Por tanto, por el teorema 8.1.6

 
X Xc Xp c1

1

1
e 2t c2

3

5
e6t 3t 4

5t 6  

es la solución general de (11) en (��, �). 

En los problemas l a 6 escriba el sistema lineal en forma ma-
tricial.

 1.    2. 

     

 3.   
 

4. 

   
  

   
  

dz

dt
x z

dy

dt
x 2z

dx

dt
x y

dy

dt
5x

dx

dt
4x 7y

 5. 

  

  

 6. 

  

  

2.

4.

dz

dt
y 6z e t

dy

dt
5x 9z 4e tcos 2t

dx

dt
3x 4y e tsen 2t

dz

dt
x y z t2 t 2

dy

dt
2x y z 3t2

dx

dt
x y z t 1

dz

dt

dz

dt
10x 4y 3z

dy

dt

dy

dt
6x y

dx

dt

dx

dt
3x 4y 9z

dy

dt

dy

dt
4x 8y

dx

dt

dx

dt
3x 5y

En los problemas 7 a 10, reescriba el sistema dado sin el uso 
de matrices.

 7. X
4

1

2

3
X

1

1
et

 8. 

 9. 

10. 
d

dt

x

y

3

1

7

1

x

y

4

8
sen t

t 4

2t 1
e4t

d

dt

x

y

z

1

3

2

1

4

5

2

1

6

x

y

z

1

2

2

e t

3

1

1

t

X
7

4

0

5

1

2

9

1

3

X
0

2

1

e5t

8

0

3

e 2t

En los problemas 11 a 16, compruebe que el vector X es una 
solución del sistema dado.

11. 

  

12. 

  

13. 

14. X
2

1

1

0
X; X

1

3
et 4

4
tet

X
1

1

1
4

1
X; X

1

2
e 3t/2

dy

dt
2x 4y; X

5 cos t

3 cos t sen t
et

dx

dt
2x 5y

dy

dt
4x 7y; X

1

2
e 5t

dx

dt
3x 4y

EJERCICIOS 8.1   Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-13.
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15. 

16. X
1

1

2

0

1

0

1

0

1

X; X
sen t

1
2 sen t 1

2 cos t

sen t cos t

X
1

6

1

2

1

2

1

0

1

X; X
1

6

13

En los problemas 17 a 20, los vectores dados son soluciones 
de un sistema X� � AX. Determine si los vectores forman un 
conjunto fundamental en (��, �).

17. 

18. 

19. 

 

 

20. X1

1

6

13

, X2

1

2

1

e 4t, X3

2

3

2

e3t

X3

3

6

12

t

2

4

4

 X1

1

2

4

t

1

2

2

, X2

1

2

4

,

X1
1

1
et, X2

2

6
et 8

8
tet

X1
1

1
e 2t, X2

1

1
e 6t

En los problemas 21 a 24 compruebe que el vector X
p
 es una 

solución particular del sistema dado.

21. 

  
dy

dt
3x 2y 4t 18; Xp

2

1
t

5

1

dx

dt
x 4y 2t 7

22. 

23. 

24. X
1

4

6

2

2

1

3

0

0

X
1

4

3

sen 3t; Xp

sen 3t

0

cos 3t

X
2

3

1

4
X

1

7
et; Xp

1

1
et 1

1
tet

X
2

1

1

1
X

5

2
; Xp

1

3

25. Demuestre que la solución general de

X
0

1

1

6

0

1

0

1

0

X

  en el intervalo (��, �) es

X c1

6

1

5

e t c2

3

1

1

e 2t c3

2

1

1

e3t.

26. Demuestre que la solución general de

X
1

1

1

1
X

1

1
t2 4

6
t

1

5

  en el intervalo (��, �) es

X c1
1

1 12
e12t c2

1

1 12
e 12t

 
1

0
t2 2

4
t

1

0
.

SISTEMAS LINEALES HOMOGÉNEOS

REPASO DE MATERIAL
● Sección II.3 del apéndice II

INTRODUCCIÓN  Vimos en el ejemplo 5 de la sección 8.1 que la solución general del sistema 

homogéneo X
1

5

3

3
X es

.X c1X1 c2X2 c1
1

1
e 2t c2

3

5
e6t

Ya que los vectores solución X
1 
y X

2 
tienen la forma 

,Xi

k1

k2
e it     i � 1, 2, 

8.2

8.2  SISTEMAS LINEALES HOMOGÉNEOS ● 311
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312 ● CAPÍTULO 8  SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN

donde k
1
, k

2
, l

1
 y l

2
 son constantes, nos inquieta preguntar si siempre es posible hallar una solución 

de la forma

 

X �
 (

k1

k2

kn

)elt � Kelt.
.
.

 

(1)

para la solución del sistema lineal homogéneo general de primer orden

 X AX, (2)

donde A es una matriz n 	 n de constantes.

EIGENVALORES Y EIGENVECTORES  Si (1) es un vector solución del sistema 
homogéneo lineal (2), entonces X� � Klelt, por lo que el sistema se convierte en 
Klelt � AKelt. Después de dividir entre elt y reacomodando, obtenemos AK � lK o 
AK � lK � 0. Ya que K � IK, la última ecuación es igual a

 l(A I)K 0. (3)

La ecuación matricial (3) es equivalente a las ecuaciones algebraicas simultáneas

 

(a11 � l)k1 � a12k2 � . . . � a1nkn � 0

a2nkn � 0a21k1 � (a22 � l)k2 � . . . �

                      

an1k1 �            an2k2 � . . . � (ann � l)kn � 0.

.

.

.
.
.
.

 

Por lo que para encontrar soluciones X de (2), necesitamos primero encontrar una 
solución no trivial del sistema anterior; en otras palabras, debemos encontrar un vector 
no trivial K que satisfaga a (3). Pero para que (3) tenga soluciones que no sean la so-
lución obvia k

1
 � k

2
 � 
 
 
 � k

n
 � 0, se debe tener

 det(A I) 0.  

Esta ecuación polinomial en l se llama ecuación característica de la matriz A. Sus 
soluciones son los eigenvalores de A. Una solución K � 0 de (3) correspondiente a 
un eigenvalor l se llama eigenvector de A. Entonces una solución del sistema homo-
géneo (2) es X � Kelt.

En el siguiente análisis se examinan tres casos: eigenvalores reales y distintos (es 
decir, los eigenvalores no son iguales), eigenvalores repetidos y, por último, eigenva-
lores complejos.

8.2.1  EIGENVALORES REALES DISTINTOS

Cuando la matriz A n 	 n tiene n eigenvalores reales y distintos l
1
, l

2
, . . . ,  l

n
 en-

tonces siempre se puede encontrar un conjunto de n eigenvectores linealmente inde-
pendientes K

1
, K

2
, . . . ,  K

n
 y

 X1 K1e 1t,    X2 K2e 2t,    . . . ,    Xn Kne nt  

es un conjunto fundamental de soluciones de (2) en el intervalo (��, �).

TEOREMA 8.2.1  Solución general: Sistemas homogéneos

Sean l
1
, l

2
, . . . ,  l

n
 n eigenvalores reales y distintos de la matriz de coefi cientes 

A del sistema homogéneo (2) y sean K
1
, K

2
, . . . ,  K

n
 los eigenvectores correspon-

dientes. Entonces la solución general de (2) en el intervalo (��, �) está dada por

 X c1K1e 1t c2K2e 2t cnKne nt. 
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EJEMPLO 1  Eigenvalores distintos

Resuelva 
 

  
dy

dt
2x  y.

 
dx

dt
2x 3y

 

(4)

SOLUCIÓN  Primero determine los eigenvalores y eigenvectores de la matriz de 
coefi cientes.

De la ecuación característica

 det(A I)
2

2

3

1
2 3 4 ( 1)( 4) 0  

vemos que los eigenvalores son l
1
 � �1 y l

2
 � 4.

Ahora para l
1
 � �1, (3) es equivalente a

  

  2k1 2k2 0.

 3k1 3k2 0

 

Por lo que k
1
 � � k

2
. Cuando k

2 
� �1, el eigenvector correspondiente es

  

Para l
2
 � 4 tenemos  

  2k1 3k2 0

2k1 3k2 0

K1
1

1
.

 

por lo que k1
3
2 k2; por tanto con k

2
 � 2 el eigenvector correspondiente es

 K2
3

2
.  

Puesto que la matriz de coefi cientes A es una matriz 2 	 2 y como hemos encontrado 
dos soluciones linealmente independientes de (4),

 X1
1

1
e t      y     X2

3

2
e4 t,  

Se concluye que la solución general del sistema es

 X c1X1 c2X2 c1
1

1
e t c2

3

2
e4t.  (5)  

DIAGRAMA DE FASE  Debe considerar que escribir una solución de un sistema de 
ecuaciones en términos de matrices es simplemente una alternativa al método que se 
empleó en la sección 4.8, es decir, enumerar cada una de las funciones y la relación 
entre las constantes. Si sumamos los vectores en el lado derecho de (5) y después igua-
lamos las entradas con las entradas correspondientes en el vector en el lado izquierdo, 
se obtiene la expresión familiar

 x c1e
t 3c2e

4t,    y c1e
t 2c2e

4t.  

Como se indicó en la sección 8.1, se pueden interpretar estas ecuaciones como ecuacio-
nes paramétricas de curvas en el plano xy o plano fase. Cada curva, que corresponde 
a elecciones específi cas de c

1
 y c

2
, se llama trayectoria. Para la elección de constantes 

c
1
 � c

2 
� 1 en la solución (5) vemos en la fi gura 8.2.1, la gráfi ca de x(t) en el plano 

tx, la gráfi ca de y(t) en el plano ty y la trayectoria que consiste en los puntos (x(t), y(t)) 

_ 1_2_3 2 31

_ 1_2_3 2 31

1
2
3
4
5
6

t

x

a) gráfica de x � e�t � 3e4t

b) gráfica de y � �e�t � 2e4t

c) trayectoria definida por
x � e�t � 3e4t, y � �e�t � 2e4t

en el plano fase

_2
_ 4
_ 6

2
4
6

t

y

_2
_ 4
_ 6
_8

_ 10
12.5 15105 7.52.5

2
4

x

y

FIGURA 8.2.1  Una solución particular 
de (5) produce tres curvas diferentes en 
tres planos diferentes.
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314 ● CAPÍTULO 8  SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN

en el plano fase. Al conjunto de trayectorias representativas en el plano fase, como se 
muestra en la fi gura 8.2.2 se le llama diagrama fase para un sistema lineal dado. Lo 
que parecen dos rectas rojas en la fi gura 8.2.2 son en realidad cuatro semirrectas defi -
nidas paramétricamente en el primero, segundo, tercero y cuarto cuadrantes con las so-
luciones X

2
, �X

1
, �X

2
 y X

1
, respectivamente. Por ejemplo, las ecuaciones cartesianas 

y 2 
3 

  x ,  x 0  y y � �x, x � 0, de las semirrectas en el primer y cuarto cuadrantes se 
obtuvieron eliminando el parámetro t en las soluciones x � 3e4t, y � 2e4t y x � e�t, y � 
�e�t, respectivamente. Además, cada eigenvector se puede visualizar como un vector 
bidimensional que se encuentra a lo largo de una de estas semirrectas. El eigenvector

K 2 
3 

2 
 se encuentra junto con y 2 

3 
  x  en el primer cuadrante y K 1 

1 

1 
 

se encuentra junto con y � �x en el cuarto cuadrante. Cada vector comienza en el 
origen; K

2
 termina en el punto (2, 3) y K

1
 termina en (1, �1).

El origen no es sólo una solución constante x � 0, y � 0 de todo sistema lineal 
homogéneo 2 	 2, X� � AX, sino también es un punto importante en el estudio cua-
litativo de dichos sistemas. Si pensamos en términos físicos, las puntas de fl echa de 
cada trayectoria en el tiempo t se mueven conforme aumenta el tiempo. Si imaginamos 
que el tiempo va de �� a �, entonces examinando la solución x � c

1
e�t � 3c

2
e4t, 

y � �c
1
e�t � 2c

2
e4t, c

1
 � 0, c

2
 � 0 muestra que una trayectoria o partícula en mo-

vimiento “comienza” asintótica a una de las semirrectas defi nidas por X
1
 o �X

1
 (ya 

que e4t es despreciable para t S ��) y “termina” asintótica a una de las semirrectas 
defi nidas por X

2
 y � X

2 
(ya que e�t es despreciable para t S �).

Observe que la fi gura 8.2.2 representa un diagrama de fase que es característico 
de todos los sistemas lineales homogéneos 2 	 2 X� � AX con eigenvalores reales de 
signos opuestos. Véase el problema 17 de los ejercicios 8.2. Además, los diagramas 
de fase en los dos casos cuando los eigenvalores reales y distintos tienen el mismo 
signo son característicos de esos sistemas 2 	 2; la única diferencia es que las puntas 
de fl echa indican que una partícula se aleja del origen en cualquier trayectoria cuando 
l

1
 y l

2
 son positivas y se mueve hacia el origen en cualquier trayectoria cuando l

1
 y 

l
2
 son negativas. Por lo que al origen se le llama repulsor en el caso l

1
 � 0, l

2
 � 0 

y atractor en el caso l
1
 � 0, l

2
 � 0. Véase el problema 18 en los ejercicios 8.2. El 

origen en la fi gura 8.2.2 no es repulsor ni atractor. La investigación del caso restante 
cuando l � 0 es un eigenvalor de un sistema lineal homogéneo de 2 	 2 se deja como 
ejercicio. Véase el problema 49 de los ejercicios 8.2.

EJEMPLO 2  Eigenvalores distintos

Resuelva  

  (6)

 
  
dz 

dt 
  y   3  z . 

  
dy 

dt 
    x 5  y     z 

  
dx 

dt 
4 x   y   z 

 

SOLUCIÓN  Usando los cofactores del tercer renglón, se encuentra

det   (A I ) p
4 

1 

0 

1 

5 

1 

   1 

1 

3 
p ( 3)( 4)( 5) 0,  

y así los eigenvalores son l
1
 � �3, l

2
 � �4 y l

3
 � 5.

x

y

X1
X2

FIGURA 8.2.2  Un diagrama de fase 
del sistema (4).
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Para l
1
 � �3, con la eliminación de Gauss-Jordan, se obtiene

 

(A � 3I�0) � ( ��1

1

0

1

�1

0

0

0

0

1

8

1

 ) ( �1

0

0

�1

0

0

0

0

0

0

1

0

 )operaciones 
entre renglones

 

Por tanto k
1
 � k

3
 y k

2
 � 0. La elección k

3
 � 1 da un eigenvector y el vector solución 

correspondiente

 K1

1

0

1

,    X1

1

0

1

e 3t.  (7)

De igual manera, para l
2 
� �4

 

(A � 4I�0) � ( �0

1

0

1

�1

1

0

0

0

1

9

1

 )  ( �1

0

0

�10

1

0

0

0

0

0

1

0

 )operaciones 
entre renglones

 

implica que k
1
 � 10k

3
 y k

2
 � �k

3
. Al elegir k

3
 � 1, se obtiene un segundo eigenvector 

y el vector solución

 K2

10

1

1

,    X2

10

1

1

e 4t.  (8)

Por último, cuando  l
3 
� 5, las matrices aumentadas

 

(A � 5I�0) � ( ��9

1

0

1

�1

�8

0

0

0

1

0

1

 ) ( �1

0

0

�1

�8

0

0

0

0

0

1

0

 )operaciones 
entre renglones

 

producen     K3

1

8

1

,    X3

1

8

1

e5t. (9)

La solución general de (6) es una combinación lineal de los vectores solución en 
(7), (8) y (9):

 X c1

1

0

1

e 3t c2

10

1

1

e 4t c3

1

8

1

e5t. 

USO DE COMPUTADORAS  Los paquetes de software como MATLAB, 
Mathematica, Maple y DERIVE, ahorran tiempo en la determinación de eigenvalores 
y eigenvectores de una matriz A.

8.2.2  EIGENVALORES REPETIDOS

Por supuesto, no todos los n eigenvalores l
1
, l

2
, . . . , l

n
 de una matriz A de n 	 n 

deben ser distintos, es decir, algunos de los eigenvalores podrían ser repetidos. Por 
ejemplo, la ecuación característica de la matriz de coefi cientes en el sistema

 X
3

2

18

9
X  (10)
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316 ● CAPÍTULO 8  SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN

se demuestra fácilmente que es (l � 3)2 � 0, y por tanto, l
1
 � l

2
 � �3 es una raíz de 

multiplicidad dos. Para este valor se encuentra el único eigenvector

 K1
3

1
,      por lo que     X1

3

1
e 3t  (11)

es una solución de (10). Pero como es obvio que tenemos  interés en formar la solución 
general del sistema, se necesita continuar con la pregunta de encontrar una segunda 
solución.

En general, si m es un entero positivo y (l � l
1
)m es un factor de la ecuación 

característica, mientras que (l � l
1
)m�1 no es un factor, entonces se dice que l

1
 es un 

eigenvalor de multiplicidad m. En los tres ejemplos que se dan a continuación se 
ilustran los casos siguientes:

i) Para algunas matrices A de n 	 n sería posible encontrar m eigenvectores 
linealmente independientes K

1
, K

2
, . . . ,  K

m
, correspondientes a un 

eigenvalor l
1
, de multiplicidad m � n. En este caso la solución general del 

sistema contiene la combinación lineal

c1K1e 1t c2K2e 1t cmKme 1t.

ii) Si sólo hay un eigenvector propio que corresponde al eingenvalor l
1
 de 

multiplicidad m, entonces siempre se pueden encontrar m soluciones 
linealmente independientes de la forma

 

X1 � K11el1t

X2 � K21tel1t � K22el1t

               
Xm � Km1                       el1t � Km2                        el1t � . . . � Kmmel1t, 

tm�1
––––––––
(m � 1)!

tm�2
––––––––
(m � 2)!

.

.

.

 

 donde las K
ij
 son vectores columna.

EIGENVALORES DE MULTIPLICIDAD DOS  Se comienza por considerar eigenva-
lores de multiplicidad dos. En el primer ejemplo se ilustra una matriz para la que podemos 
encontrar dos eigenvectores distintos que corresponden a un doble eigenvalor.

EJEMPLO 3  Eigenvalores repetidos

Resuelva X
1

2

2

2

1

2

2

2

1

X.

SOLUCIÓN  Desarrollando el determinante en la ecuación característica

 det(A I) p
1

2

   2

2

1

2

   2

2

1
p 0 

se obtiene �(l � l)2(l � 5) � 0. Se ve que l
1
 � l

2
 � �1 y l

3
 � 5.

Para l
1
 � �1, con la eliminación de Gauss-Jordan se obtiene de inmediato

 

(A � I�0) � ( �2

�2

2

2

�2

2

0

0

0

�2

2

�2

 ) ( �1

0

0

�1

1

0

0

0

0

0

1

0

 ).operaciones 
entre renglones
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El primer renglón de la última matriz indica que k
1
 – k

2
 � k

3
 � 0 o k

1
 � k

2
 – k

3
. Las 

elecciones k
2
 � 1, k

3
 � 0 y k

2
 � 1, k

3 
 � 1 producen, a su vez, k

1
 � 1 y k

1
 � 0. Por lo 

que dos eigenvectores correspondientes a l
1
 � �1 son

 K 1 

1 

1 

0 

      y     K 2 

0 

1 

1 

.  

Puesto que ningún eigenvector es un múltiplo constante del otro, se han encontrado 
dos soluciones linealmente independientes,

 X 1 

1 

1 

0 

e t       y     X 2 

0 

1 

1 

e t ,  

que corresponden al mismo eigenvalor. Por último, para l
3
 �5 la reducción

 

(A � 5I�0) � ( ��4

�2

2

2

�2

�4

0

0

0

�2

�4

�2

 ) ( �1

0

0

�1

1

0

0

0

0

0

1

0

 )operaciones 
entre renglones

 

implica que k
1
 � k

3
 y k

2
 � � k

3
. Al seleccionar k

3
 � 1, se obtiene k

1
 � 1, k

2
 � �1; por 

lo que el tercer eigenvector es

 K 3 

1 

1 

1 

.  

Concluimos que la solución general del sistema es

 X c 1 

1 

1 

0 

e t c 2 

0 

1 

1 

e t c 3 

1 

1 

1 

e 5 t .  

La matriz de coefi cientes A del ejemplo 3 es un tipo especial de matriz conocida 
como matriz simétrica. Se dice que una matriz A de n 	 n es simétrica si su trans-
puesta AT (donde se intercambian renglones y columnas) es igual que A, es decir, si AT 
� A. Se puede demostrar que si la matriz A del sistema X� � AX es simétrica y tiene 
elementos reales, entonces siempre es posible encontrar n eigenvectores linealmente 
independientes K

1
, K

2
, . . . ,  K

n
, y la solución general de ese sistema es como se mues-

tra en el teorema 8.2.1. Como se muestra en el ejemplo 3, este resultado se cumple aun 
cuando estén repetidos algunos de los eigenvalores.

SEGUNDA SOLUCIÓN  Suponga que l
1
 es un valor propio de multiplicidad dos y 

que sólo hay un eigenvector asociado con este valor. Se puede encontrar una segunda 
solución de la forma

 ,X 2 K te 1 t P e 1 t  (12)

donde

 

y )K �
 (

k1

k2

kn

 ).P �
 (

p1

p2

pn

.

.

.
.
.
.
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318 ● CAPÍTULO 8  SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN

Para ver esto sustituya (12) en el sistema X� � AX y simplifi que:

 ( AK 1 K ) te 1 t ( AP 1 P K ) e 1 t 0 .  

Puesto que la última ecuación es válida para todos los valores de t, debemos tener

  (13)

y ( A  1 I ) P K .

( A  1 I ) K 0 

 (14)

La ecuación (13) simplemente establece que K debe ser un vector característico de A 
asociado con l

1
. Al resolver (13), se encuentra una solución X 1 K e 1 t . Para encon-

trar la segunda solución X
2
, sólo se necesita resolver el sistema adicional (14) para 

obtener el vector P.

EJEMPLO 4  Eigenvalores repetidos

Encuentre la solución general del sistema dado en (10).

SOLUCIÓN  De (11) se sabe que l
1
 � �3 y que una solución es . X 1 

3 

1 
e 3 t  

Identifi cando K 
3 

1 
 y ,P 

p 1 

p 2 

 encontramos de (14) que ahora debemos re-
solver

 
. 

( A 3 I ) P K      o      
6 p 1 18 p 2 3 

2 p 1     6 p 2 1 
 

Puesto que resulta obvio que este sistema es equivalente a una ecuación, se tiene un 
número infi nito de elecciones de p

1
 y p

2
. Por ejemplo, al elegir p

1
 � 1 se encuentra que 

p 2 
1 
6 . Sin embargo, por simplicidad elegimos p 1 

1 
2  por lo que p

2
 � 0. Entonces 

 P 
1 
2 

0 
. Así de (12) se encuentra que X 2 

3 

1 
te 3 t 

1 
2 

0 
e 3 t . La solución gene-

ral de (10) es X � c
1
X

1
 � c

2
X

2
, o 

 X c 1 
3 

1 
e 3 t c 2 

3 

1 
te 3 t 

1 
2 

0 
e 3 t .  

Al asignar diversos valores a c
1
 y c

2
 en la solución del ejemplo 4, se pueden 

trazar las trayectorias del sistema en (10). En la fi gura 8.2.3 se presenta un diagrama 
fase de (10). Las soluciones X

1
 y �X

1
 determinan dos semirrectas y 1 

3 x ,  x 0  
y y 1 

3 x ,  x 0  respectivamente, mostradas en rojo en la fi gura. Debido a que el 
único eigenvalor es negativo y e�3t S 0 conforme t S � en cada trayectoria, se 
tiene (x(t), y(t)) S (0, 0) conforme t S �. Esta es la razón por la que las puntas 
de las fl echas de la fi gura 8.2.3 indican que una partícula en cualquier trayectoria 
se mueve hacia el origen conforme aumenta el tiempo y la razón de que en este 
caso el origen sea un atractor. Además, una partícula en movimiento o trayectoria 

y c 1 e 3 t c 2 te 3 t ,  c 2 0 x 3 c 1 e 3 t c 2 (3 te 3 t 1 
2 e 3 t ),  tiende a (0, 0) tangen-

cialmente a una de las semirrectas conforme t S �. En contraste, cuando el eigenvalor 
repetido es positivo, la situación se invierte y el origen es un repulsor. Véase el pro-
blema 21 de los ejercicios 8.2. Similar a la fi gura 8.2.2, la fi gura 8.2.3 es característica 
de todos los sistemas lineales homogéneos X� � AX, 2 	 2 que tienen dos eigenvalo-
res negativos repetidos. Véase el problema 32 en los ejercicios 8.2.

EIGENVALOR DE MULTIPLICIDAD TRES  Cuando la matriz de coefi cientes A 
tiene sólo un eigenvector asociado con un eigenvalor l

1
 de multiplicidad tres, podemos 

x

y

X1

FIGURA 8.2.3  Diagrama de fase del 
sistema (l0).
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encontrar una segunda solución de la forma (12) y una tercera solución de la forma

 ,X3 K
t2

2
e 1t Pte 1t Qe 1t  (15)

donde

 

y ),K �
 (

k1

k2

kn

.

.

.

 ),P �
 (

p1

p2

pn

.

.

.

 ).Q �
 (

q1

q2

qn

.

.

.

 

Al sustituir (15) en el sistema X� � AX, se encuentra que los vectores columna K, P 
y Q deben satisfacer

  (16)

  (17)

y  (A 1I)Q P.

 (A 1I)P K

 (A 1I)K 0

 (18)

Por supuesto, las soluciones (16) y (17) se pueden usar para formar las soluciones X
1
 y X

2
.

EJEMPLO 5  Eigenvalores repetidos

Resuelva X
2

0

0

1

2

0

6

5

2

X .

SOLUCIÓN  La ecuación característica (l � 2)3 � 0 demuestra que l
1
 � 2 es un eigenva-

lor de multiplicidad tres. Al resolver (A � 2I)K � 0, se encuentra el único eigenvector

 K
1

0

0

. 

A continuación se resuelven primero el sistema (A � 2I)P � K y después el sistema 
(A � 2I)Q � P y se encuentra que

 P
0

1

0

 

     

y

     

Q
0
6
5
1
5

. 

Usando (12) y (15), vemos que la solución general del sistema es

 .X c1

1

0

0

e2t c2

1

0

0

te2t

0

1

0

e2t c3

1

0

0

t2

2
e2t

0

1

0

te2t

0
6
5
1
5

e2t   

COMENTARIOS

Cuando un eigenvalor l
1
 tiene multiplicidad m, se pueden determinar m eigen-

vectores linealmente independientes o el número de eigenvectores correspon-
dientes es menor que m. Por tanto, los dos casos listados en la página 316 no 
son todas las posibilidades bajo las que puede ocurrir un eigenvalor repetido. 
Puede suceder, por ejemplo, que una matriz de 5 	 5 tenga un eigenvalor de 
multiplicidad cinco y existan tres eigenvectores correspondientes linealmente 
independientes. Véanse los problemas 31 y 50 de los ejercicios 8.2. 
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8.2.3  EIGENVALORES COMPLEJOS

Si l
1
 � a � bi y l

2
 � a � bi, b � 0, i2 � �1 son eigenvalores complejos de la matriz 

de coefi cientes A, entonces se puede esperar de hecho que sus eigenvectores corres-
pondientes también tengan entradas complejas.*

Por ejemplo, la ecuación característica del sistema

 

dx

dt
6x y

dy

dt
5x 4y

 (19)

es det(A I)
6

5

1

4
2 10 29 0.  

De la fórmula cuadrática se encuentra l
1
 � 5 � 2i, l

2
 � 5 � 2i.

Ahora para l
1
 � 5 � 2i se debe resolver

  

  5k1 (1 2i)k2 0.

 (1 2i)k1  k2 0

 

Puesto que k
2
 � (1 � 2i)k

1
,† la elección k

1
 � 1 da el siguiente eigenvector y el vector 

solución correspondiente:

 K1
1

1 2i
,    X1

1

1 2i
e(5 2i)t.  

De manera similar, para l
2
 � 5 � 2i encontramos

 K2
1

1 2i
,    X2

1

1 2i
e(5 2i)t. 

Podemos comprobar por medio del Wronskiano que estos vectores solución son li-
nealmente independientes y por tanto la solución general de (19) es

 X c1
1

1 2i
e(5 2i )t c2

1

1 2i
e(5 2i )t.  (20)

Observe que las entradas en K
2
 correspondientes a l

2
 son los conjugados de las 

entradas en K
1
 correspondientes a l

1
. El conjugado de l

1
 es, por supuesto, l

2
. Esto se 

escribe como 2 1 y K2 K1. Hemos ilustrado el siguiente resultado general.

TEOREMA 8.2.2   Soluciones correspondientes a un eigenvalor complejo

Sea A una matriz de coefi cientes que tiene entradas reales del sistema homogé-
neo (2) y sea K

1
 un eigenvector correspondiente al eigenvalor complejo l

1
 � 

a � bi, a y b reales. Entonces

 K1e 1t      y     K1e 1t 

son soluciones de (2).

*Cuando la ecuación característica tiene coefi cientes reales, los eigenvalores complejos siempre aparecen 
en pares conjugados.
†Note que la segunda ecuación es simplemente (1 � 2i) veces la primera.
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Es deseable y relativamente fácil reescribir una solución tal como (20) en términos 
de funciones reales. Con este fi n primero usamos la fórmula de Euler para escribir

  

  e(5 2i )t e5te 2ti e5t(cos 2t i sen 2t).

 e(5 2i )t e5te2ti e5t(cos 2t i sen 2t)

 

Entonces, multiplicando los números complejos, agrupando términos y reemplazando 
c

1
 � c

2
 por C

1
 y (c

1
 � c

2
)i por C

2
, (20) se convierte en

  (21)

donde  

y X2
0

2
cos 2t

1

1
sen 2t e5t.

X1
1

1
cos 2t

0

2
sen 2t e5t

X C1X1 C2X2 ,

 

Ahora es importante entender que los vectores X
1 
y X

2 
en (21) constituyen un conjunto 

linealmente independiente de soluciones reales del sistema original. Estamos justi-
fi cados para despreciar la relación entre C

1
, C

2 
y c

1
,
 
c

2, 
y

  
podemos considerar C

1 
y C

2 

como totalmente arbitrarias y reales. En otras palabras, la combinación lineal (21) es 
una solución general alternativa de (19). Además, con la forma real dada en (21) pode-
mos obtener un diagrama de fase del sistema dado en (19). A partir de (21) podemos 
encontrar que x(t) y y(t) son

  

  y (C1 2C2)e5t cos 2t (2C1 C2)e5t sen 2t.

 x C1e5t cos 2t C2e5t sen 2t

 

Al grafi car las trayectorias (x(t), y(t)) para diferentes valores de C
1
 y C

2
, se obtiene el 

diagrama de fase de (19) que se muestra en la fi gura 8.2.4. Ya que la parte real de l
1
 

es 5 � 0, e5t S � conforme t S �. Es por esto que las puntas de fl echa de la fi gura 
8.2.4 apuntan alejándose del origen; una partícula en cualquier trayectoria se mueve en 
espiral alejándose del origen conforme t S �. El origen es un repulsor.

El proceso con el que se obtuvieron las soluciones reales en (21) se puede ge-
neralizar. Sea K

1
 un eigenvector característico de la matriz de coefi cientes A (con 

elementos reales) que corresponden al eigenvalor complejo l
1
 � a � ib. Entonces los 

vectores solución del teorema 8.2.2 se pueden escribir como

  

  K1e 1t K1e te i t K1e t(cos t i sen t).

 K1e 1t K1e
tei t K1e

t(cos t i sen t)

 

Por el principio de superposición, teorema 8.1.2, los siguientes vectores también son 
soluciones:

  

  X2
i

2
( K1e 1t K1e 1t )

i

2
( K1 K1)e t cos t 

1

2
(K1 K1)e t sen t.

 X1
1

2
(K1e 1t K1e 1t )

1

2
(K1 K1)e t cos t 

i

2
( K1 K1)e t sen t

 

Tanto 12 (z z) a  como 12 i ( z z ) b  son números reales para cualquier número 
complejo z � a � ib. Por tanto, los elementos de los vectores columna 1

2(K1 K1) y 
1
2 i( K1 K1) son números reales. Defi nir

 B1
1

2
 (K1 K1)      y     B2

i

2
 ( K1 K1), (22)

conduce al siguiente teorema.

FIGURA 8.2.4  Un diagrama de fase 
del sistema (19).

x

y
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322 ● CAPÍTULO 8  SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN

TEOREMA 8.2.3   Soluciones reales que corresponden a un eigenvalor

  complejo

Sea l
1
 � a � ib un eigenvalor complejo de la matriz de coefi cientes A en el 

sistema homogéneo (2) y sean B
1
 y B

2
 los vectores columna defi nidos en (22). 

Entonces

  

 X2 [B2 cos t B1 sen t]e t

X1 [B1 cos t B2 sen t]e t

 
(23)

son soluciones linealmente independientes de (2) en (��, �).

Las matrices B
1
 y B

2
 en (22) con frecuencia se denotan por

 B1 Re(K1)      y     B2 Im(K1) (24)

ya que estos vectores son, respectivamente, las partes real e imaginaria del eigenvec-
tor K

1
. Por ejemplo, (21) se deduce de (23) con

 K1
1

1 2i

1

1
i

0

2
,  

 B1 Re(K1)
1

1
      y     B2 Im(K1)

0

2
. 

EJEMPLO 6  Eigenvalores complejos

Resuelva el problema con valores iniciales

 X
2

1

8

2
X,  X(0)

2

1
.  (25)

SOLUCIÓN  Primero se obtienen los eigenvalores a partir de

 det(A I)
2

1

8

2
2 4 0.  

los eigenvalores son  l
l
 � 2i y 2 1 2i. Para l

l
 el sistema

  

    k1 ( 2 2i )k2 0

(2 2i ) k1   8k2 0

 

da k
1
 � �(2 � 2i)k

2
. Eligiendo k

2
 � �1, se obtiene

 K1
2 2i

1

2

1
i

2

0
. 

Ahora de (24) formamos

 B1 Re(K1)
2

1
      y     B2 Im(K1)

2

0
.  

Puesto que a � 0, se tiene a partir de (23) que la solución general del sistema es

  

 c1
2 cos 2t 2 sen 2t

cos 2t
c2

2 cos 2t 2 sen 2t

sen 2t
.

X c1
2

1
cos 2t

2

0
sen 2t c2

2

0
cos 2t

2

1
sen 2t

 (26)
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Algunas gráfi cas de las curvas o trayectorias defi nidas por la solución (26) del sis-
tema se ilustran en el diagrama de fase de la fi gura 8.2.5. Ahora la condición inicial 

X(0)
2

1
, de forma equivalente x(0) � 2 y y(0) � �1 produce el sistema

algebraico 2c
1
 � 2c

2
 � 2, � c

1
 � �1, cuya solución es c

1
 � 1, c

2
 � 0. Así la solución

para el problema es X
2 cos 2t 2 sen 2t

cos 2t
. La trayectoria específi ca defi nida 

paramétricamente por la solución particular x � 2 cos 2t � 2 sen 2t, y � �cos 2t es la 
curva en rojo de la fi gura 8.2.5. Observe que esta curva pasa por (2,�1). 

COMENTARIOS

En esta sección hemos examinado solamente sistemas homogéneos de ecuacio-
nes lineales de primer orden en forma normal X� � AX. Pero con frecuencia el 
modelo matemático de un sistema dinámico físico es un sistema homogéneo de 
segundo orden cuya forma normal es X
 � AX. Por ejemplo, el modelo para los 
resortes acoplados en (1) de la sección 7.6.

  

  
(27)

se puede escribir como MX KX,

 m2x 2 k2(x2 x1),

 m1x 1 k1x1 k2(x2 x1)

donde

 M
m1

0

0

m2
,    K

k1 k2

k2

   k2

k2
,      y     X

x1(t)

x2(t)
.  

Puesto que M es no singular, se puede resolver X
 como X
 � AX, donde A � 
M�1K. Por lo que (27) es equivalente a

 X

k1

m1

k2

m1

     
k2

m2

   
k2

m1

k2

m2

X. (28)

Los métodos de esta sección se pueden usar para resolver este sistema en dos 
formas:

• Primero, el sistema original (27) se puede transformar en un sistema de 
primer orden por medio de sustituciones. Si se hace x1 x3 y x2 x4 , 
entonces x3 x1  y x4 x 2  por tanto (27) es equivalente a un sistema de 
cuatro ED lineales de primer orden.

 o

x4 
k2

m2
 x1

k2

m2
 x2

x3
k1

m1

k2

m1
x1

k2

m1
 x2

x2 x 4

x1 x 3

X X. (29)

   0

   0

k1

m1

k2

m1

   
k2

m2

 0

 0

   
k2

m1

k2

m2

1

0

0

0

0

1

0

0

 Al encontrar los eigenvalores y los eigenvectores de la matriz de coefi cientes 
A en (29), vemos que la solución de este sistema de primer orden proporciona 
el estado completo del sistema físico, las posiciones de las masas respecto a 
las posiciones de equilibrio (x

1
 y x

2
) así como también las velocidades de las 

masas (x
3
 y x

4
) en el tiempo t. Véase el problema 48a en los ejercicios 8.2.

FIGURA 8.2.5  Un diagrama de fase 
del sistema (25).

x

y

(2, _1)
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324 ● CAPÍTULO 8  SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN

• Segundo, debido a que (27) describe el movimiento libre no amortiguado, 
se puede argumentar que las soluciones de valores reales del sistema de se-
gundo orden (28) tendrán la forma

 X V cos t     y    ,X V sen t  (30)

 donde V es una matriz columna de constantes. Sustituyendo cualquiera de 
las funciones de (30) en X
 � AX se obtiene (A � v2I)V � 0. (Comprobar.) 
Identifi cando con (3) de esta sección se concluye que l � � v2 representa 
un eigenvalor y V un eigenvector correspondiente de A. Se puede demostrar 
que los eigenvalores , i 1, 2 i i

2  de A son negativos y por  tanto 
i 1 i  es un número real y representa una frecuencia de vibración 

(circular) (véase (4) de la sección 7.6). Con superposición de soluciones, la 
solución general de (28) es entonces

  

 (c1 cos 1t c2 sen 1t)V1 (c3 cos 2t c4 sen 2t)V2,

X c1V1 cos 1t c2V1 sen 1t c3V2 cos 2t c4V2 sen 2t

 
(31)

 donde V
1
 y V

2
 son, a su vez, eigenvectores reales de A correspondientes a 

l
1
 y l

2
.

 El resultado dado en (31) se generaliza. Si 1
2, 2

2, . . . , n
2  son 

eigenvalores negativos y distintos y V
1
, V

2
, . . . ,  V

n
 son los eigenvectores 

correspondientes reales de la matriz n 	 n de coefi cientes A, entonces el 
sistema homogéneo de segundo orden X
 � AX tiene la solución general 

 X
n

i 1
(ai cos i t bi sen i t)Vi ,  (32)

  donde a
i
 y b

i
 representan constantes arbitrarias. Véase el problema 48b en 

los ejercicios 8.2.

EJERCICIOS 8.2   Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-13.

8.2.1  EIGENVALORES REALES DISTINTOS

En los problemas l a 12 determine la solución general del sis-
tema dado.

 1.   
  

2. 

      

 3.     4. 

     

 5.     6. 

 7.     8. 

     

 
dz

dt
y z

dy

dt
2y

dx

dt
x y z

X
10

8

5

12
X

dy

dt

5

2
x 2y

dx

dt
4x 2y

dy

dt
4x 3y

dx

dt
x 2y

  
dz

dt
5y 2z

dy

dt
5x 10y 4z

dx

dt
2x 7y

X
6

3

2

1
X

dy

dt

3

4
x 2y

dx

dt

5

2
x 2y

dy

dt
x 3y

dx

dt
2x 2y

 9. 

10. 

11. 

12. X
1

4

0

4

1

0

2

2

6

X

X
1
3
4
1
8

1
3
2
1
4

0

3
1
2

X

X
1

0

1

0

1

0

1

0

1

X

X
1

1

0

1

2

3

0

1

1

X

En los problemas 13 y 14, resuelva el problema con valores 
iniciales.

13. 

14. X
1

0

1

1

2

1

4

0

1

X, X(0)

1

3

0

X
1
2

1

0
1
2

X, X(0)
3

5
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Tarea para el laboratorio de computación

En los problemas 15 y 16, use un SAC o software de álgebra 
lineal como ayuda para determinar la solución general del sis-
tema dado.

15. 

16. X

 1

 0

 1

 0

2.8

0

5.1

2

1

0

  2

  0

3

3.1

  0

1.8

1

 0

 4

 1.5

0

3

0

0

1

X

X
0.9

0.7

1.1

2.1

6.5

1.7

3.2

4.2

3.4

X

17. a)  Utilice software para obtener el diagrama de fase del 
sistema en el problema 5. Si es posible, incluya puntas 
de fl echa como en la fi gura 8.2.2. También incluya 
cuatro semirrectas en el diagrama de fase.

b)  Obtenga las ecuaciones cartesianas de cada una de las 
cuatro semirrectas del inciso a). 

c)  Dibuje los eigenvectores en el diagrama de fase del 
sistema.

18. Encuentre los diagramas de fase para los sistemas de los pro-
blemas 2 y 4. Para cada sistema determine las trayectorias de 
semirrecta e incluya estas rectas en el diagrama de fase.

8.2.2  EIGENVALORES REPETIDOS

En los problemas 19 a 28 encuentre la solución general del sis-
tema.

19.    20. 

     

21.    22. 

23.    24. 

     

     

25.    26. 

27. X
1

2

0

0

2

1

0

1

0

X

X
5

1

0

4

0

2

0

2

5

X

dz

dt
x y z

dy

dt
x y z

dx

dt
3x y z

X
1

3

3

5
X

dy

dt
9x 3y

dx

dt
3x y

 28. X
4

0

0

1

4

0

0

1

4

X

X
1

0

0

0

3

1

0

1

1

X

dz

dt
4x 2y 3z

dy

dt
2x 2z

dx

dt
3x 2y 4z

X
12

4

9

0
X

dy

dt
5x 4y

dx

dt
6x 5y

En los problemas 29 y 30, resuelva el problema de valores ini-
ciales

29. 

30. X
0

0

1

0

1

0

1

0

0

X, X(0)

1

2

5

X
2

1

4

6
X, X(0)

1

6

31. Demuestre que la matriz de 5 	 5

A

2

0

0

0

0

1

2

0

0

0

0

0

2

0

0

0

0

0

2

0

0

0

0

1

2

  tiene un eigenvalor l
1
 de multiplicidad 5. Demuestre que 

se pueden determinar tres eigenvectores linealmente in-
dependientes correspondientes a l

1
.

Tarea para el laboratorio de computación

32. Determine los diagramas de fase para los sistemas de los 
problemas 20 y 21. Para cada sistema determine cual-
quier trayectoria de semirrecta e incluya estas líneas en el 
diagrama de fase.

8.2.3  EIGENVALORES COMPLEJOS

En los problemas 33 a 44, determine la solución general del 
sistema dado.

33.    34. 

     

35.    36. 

     

37.    38. 

39.    40. 

     

     

41. X
1

1

1

1

1

0

2

0

1

X

dz

dt
y

dy

dt
z

dx

dt
z

X
4

5

5

4
X

dy

dt
2x 3y

dx

dt
5x y

dy

dt
5x 2y

dx

dt
6x y

 42. X
4

0

4

0

6

0

1

0

4

X

dz

dt
4x 3z

dy

dt
3x 6z

dx

dt
2x y 2z

X
1

1

8

3
X

dy

dt
2x 6y

dx

dt
4x 5y

dy

dt
2x y

dx

dt
x y
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43. X
2

5

0

5

6

0

1

4

2

X 44. X
2

1

1

4

2

0

4

0

2

X

En los problemas 45 y 46, resuelva el problema con valores 
iniciales.

45. 

46. X
6

5

1

4
X, X(0)

2

8

X
1

1

1

12

2

1

14

3

2

X, X(0)

4

6

7

Tarea para el laboratorio de computación

47. Determine los diagramas de fase para los sistemas de los 
problemas 36, 37 y 38.

48. a)  Resuelva (2) de la sección 7.6 usando el primer método 
descrito en los Comentarios (página 323), es decir, ex-
prese (2) de la sección 7.6 como un sistema de cuatro 
ecuaciones lineales de primer orden. Use un SAC o 
software de álgebra lineal como ayuda para determinar 
los eigenvalores y los eigenvectores de una matriz de 4 
	 4. Luego aplique las condiciones iniciales a su solu-
ción general para obtener (4) de la sección 7.6.

b)  Resuelva (2) de la sección 7.6 usando el segundo mé-
todo descrito en los Comentarios, es decir, exprese (2) 
de la sección 7.6 como un sistema de dos ecuaciones 

lineales de segundo orden. Suponga soluciones de la 
forma X � V sen vt y X � V cos vt. Encuentre los 
eigenvalores y eigenvectores de una matriz de 2 	 2. 
Como en el inciso a), obtenga (4) de la sección 7.6.

Problemas para analizar

49. Resuelva cada uno de los siguientes sistemas.

 a) X
1

1

1

1
X b) X

1

1

1

1
X

  Encuentre un diagrama de fase de cada sistema. ¿Cuál 
es la importancia geométrica de la recta y � �x en cada 
diagrama?

50. Considere la matriz de 5 	 5 dada en el problema 31. 
Resuelva el sistema X� � AX sin la ayuda de métodos 
matriciales, pero escriba la solución general usando nota-
ción matricial. Use la solución general como base para un 
análisis de cómo se puede resolver el sistema usando mé-
todos matriciales de esta sección. Lleve a cabo sus ideas.

51. Obtenga una ecuación cartesiana de la curva defi nida pa-
ramétricamente por la solución del sistema lineal en el 
ejemplo 6. Identifi que la curva que pasa por (2, �1) en la 
fi gura 8.2.5. [Sugerencia: Calcule x2, y2 y xy.]

52. Examine sus diagramas de fase del problema 47. ¿En 
qué condiciones el diagrama de fase de un sistema lineal 
homogéneo de 2 	 2 con eigenvalores complejos está 
compuesto de una familia de curvas cerradas? ¿De una 
familia de espirales? ¿En qué condiciones el origen (0, 0) 
es un repulsor? ¿Un atractor?

SISTEMAS LINEALES NO HOMOGÉNEOS

REPASO DE MATERIAL
● Sección 4.4 (Coefi cientes indeterminados)
● Sección 4.6 (Variación de parámetros)

INTRODUCCIÓN  En la sección 8.1 vimos que la solución general de un sistema lineal no homo-
géneo X� � AX � F(t) en un intervalo I es X � X

c
 � X

p
, donde X

c
 � c

1
X

1
 � c

2
X

2
 � 
 
 
 � c

n
X

n
 es la 

función complementaria o solución general del sistema lineal homogéneo asociado X� � AX y X
p
 

es cualquier solución particular del sistema no homogéneo. En la sección 8.2 vimos cómo obtener 
X

c
 cuando la matriz de coefi cientes A era una matriz de constantes n 	 n. En esta sección considera-

remos dos métodos para obtener X
p
.

Los métodos de coefi cientes indeterminados y variación de parámetros empleados en el ca-
pítulo 4 para determinar soluciones particulares de EDO lineales no homogéneas, se pueden adaptar 
a la solución de sistemas lineales no homogéneos X� � AX � F(t). De los dos métodos, variación 
de parámetros es la técnica más poderosa. Sin embargo, hay casos en que el método de coefi cientes 
indeterminados provee un medio rápido para encontrar una solución particular.

8.3

8.3.1  COEFICIENTES INDETERMINADOS

LAS SUPOSICIONES  Como en la sección 4.4, el método de coefi cientes indetermi-
nados consiste en hacer una suposición bien informada acerca de la forma de un vector 
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solución particular X
p
; la suposición es originada por los tipos de funciones que constitu-

yen los elementos de la matriz columna F(t). No es de sorprender que la versión matricial 
de los coefi cientes indeterminados sea aplicable a X� � AX � F(t) sólo cuando los ele-
mentos de A son constantes y los elementos de F(t) son constantes, polinomios, funcio-
nes exponenciales, senos y cosenos o sumas y productos fi nitos de estas funciones.

EJEMPLO 1  Coefi cientes indeterminados

Resuelva el sistema X 
1 

1 

2 

1 
X 

8 

3 
 en (��, �).

SOLUCIÓN  Primero resolvemos el sistema homogéneo asociado

 X 
1 

1 

2 

1 
X .  

La ecuación característica de la matriz de coefi cientes A.

  det (A I ) 
1 

1 

2 

1 
2 1 0,  

produce los eigenvalores complejos l
1
 � i y .2 1 i  Con los procedimientos 

de la sección 8.2, se encuentra que

 X c c 1 
cos t sen t 

cos t 
c 2 

cos t sen t 

sen t 
. 

Ahora, puesto que F(t) es un vector constante, se supone un vector solución particular

constante X p 

a 1 

b 1 
. Sustituyendo esta última suposición en el sistema original e

 igualando las entradas se tiene que

  

  0 a 1 b 1 3.

 0 a 1 2 b 1 8 

 

Al resolver este sistema algebraico se obtiene a
1
 � 14 y b

1
 � 11 y así, una solución

particular X p 

14 

11 
. La solución general del sistema original de ED en el intervalo

(��, �) es entonces X � X
c
 � X

p
 o

 X c 1 
cos t sen t 

cos t 
c 2 

cos t sen t 

sen t 

14 

11 
.  

EJEMPLO 2  Coefi cientes indeterminados

Resuelva el sistema X 
6 

4 

1 

3 
X 

6 t 

10 t 4 
 en (��, �).

SOLUCIÓN  Se determina que los eigenvalores y los eigenvectores del sistema

homogéneo asociado X 
6 

4 

1 

3 
X  son l

1
 � 2, l

2
 � 7, , K 1 

1 

4  
y K 2 

1 

1 
.

Por tanto la función complementaria es

 
X c c 1 

1 

4 
e 2 t c 2 

1 

1 
e 7 t . 
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Ahora bien, debido a que F(t) se puede escribir como F(t)
6

10
t

0

4
, se

tratará de encontrar una solución particular del sistema que tenga la misma forma:

 Xp

a2

b2
t

a1

b1
.  

Sustituyendo esta última suposición en el sistema dado se obtiene

  

o 
0

0

(6a2 b2 6)t 6a1 b1 a2

(4a2 3b2 10)t 4a1 3b1 b2 4
.

a2

b2

6

4

1

3

a2

b2
t

a1

b1

6

10
t

0

4

 

De la última identidad se obtienen cuatro ecuaciones algebraicas con cuatro incógnitas

 
6a2  b2  6 0

4a2 3b2 10 0
      y     

6a1  b1 a2  0

4a1 3b1 b2 4 0.
 

Resolviendo de forma simultánea las primeras dos ecuaciones se obtiene a
2
 � �2 y 

b
2
 � 6. Después, se sustituyen estos valores en las dos últimas ecuaciones y se despeja 

para a
1
 y b

1
. Los resultados son a1

4
7, b1

10
7 . Por tanto, se tiene que un vector 

solución particular es

 .Xp

2

6
t

4
7

10
7

 

la solución general del sistema en (��, �) es X � X
c
 � X

p
 o

 .X c1
   1

4
e2t c2

1

1
e7t 2

6
t

4
7

10
7

 

EJEMPLO 3  Forma de X
p

Determine la forma de un vector solución particular X
p
 para el sistema

  

 dy

dt
x y e t 5t 7.

dx

dt
5x 3y 2e t 1

 

SOLUCIÓN  Ya que F(t) se puede escribir en términos matriciales como

 F(t)
2

1
e t 0

5
t

1

7
 

una suposición natural para una solución particular sería

 Xp

a3

b3
e t a2

b2
t

a1

b1
. 
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COMENTARIOS

El método de coefi cientes indeterminados para sistemas lineales no es tan 
directo como parecerían indicar los últimos tres ejemplos. En la sección 
4.4 la forma de una solución particular y

p
 se predijo con base en el cono-

cimiento previo de la función complementaria y
c
. Lo mismo se cumple para 

la formación de X
p
. Pero hay otras difi cultades: las reglas que gobiernan la 

forma de y
p
 en la sección 4.4 no conducen a la formación de X

p
. Por ejem-

plo, si F(t) es un vector constante como en el ejemplo 1 y l � 0 es un eigen-
valor de multiplicidad uno, entonces X

c
 contiene un vector constante. Bajo 

la regla de multiplicación de la página 146 se trataría comúnmente de una 

solución particular de la forma Xp

a1

b1
t . Esta no es la suposición apropiada

para sistemas lineales, la cual debe ser Xp

a2

b2
t

a1

b1

. De igual manera, en 

el ejemplo 3, si se reemplaza e�t en F(t) por e2t (l � 2 es un eigenvalor), enton-
ces la forma correcta del vector solución particular es

 Xp

a4

b4
te2t a3

b3
e2t a2

b2
t

a1

b1
.  

En vez de ahondar en estas difi cultades, se vuelve al método de variación de 
parámetros.

8.3.2  VARIACIÓN DE PARÁMETROS

UNA MATRIZ FUNDAMENTAL  Si X
1
, X

2
 . . . , X

n
 es un conjunto fundamental de 

soluciones del sistema homogéneo X� � AX en el intervalo I, entonces su solución 
general en el intervalo es la combinación lineal X � c

1
X

1
 � c

2
X

2
 � 
 
 
 � c

n
X

n
 o 

  

x11

x21

xn1

x12

x22

xn2

x1n

x2n

xnn

c1x11 � c2x12 � . . . � cnx1n

c1x21 � c2x22 � . . . � cnx2n

c1xn1 � c2xn2 � . . . � cnxnn

X � c1( ) � c2( ) � . . .  � cn( ) � ( ) ..
.
.

.

.

.
.
.
.

.

.

.
   (1)

La última matriz en (1) se reconoce como el producto de una matriz n 	 n con una matriz 
n 	 1. En otras palabras, la solución general (1) se puede escribir como el producto

 ,X (t)C  (2)

donde C es un vector columna de n 	 1 constantes arbitrarias c
1
, c

2
, . . . ,  c

n
 y la matriz 

n 	 n, cuyas columnas consisten en los elementos de los vectores solución del sistema 
X� � AX,

 

x11

x21

xn1

�(t) � (  ),
x1n

x2n

xnn

x12

x22

xn2

. . .

. . .

. . .

.

.

.
.
.
.

 

se llama matriz fundamental del sistema en el intervalo.
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330 ● CAPÍTULO 8  SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN

En el análisis siguiente se requiere usar dos propiedades de una matriz fundamental:

• Una matriz fundamental �(t) es no singular.
• Si �(t) es una matriz fundamental del sistema X� � AX, entonces

 .( t) A ( t)  (3)

Un nuevo examen de (9) del teorema 8.1.3 muestra que det F(t) es igual al Wrons-
kiano W(X

1
, X

2
, . . ., X

n
). Por tanto, la independencia lineal de las columnas de �(t) 

en el intervalo I garantiza que det �(t) � 0 para toda t en el intervalo. Puesto que 
�(t) es no singular, el inverso multiplicativo ��1(t) existe para todo t en el intervalo. 
El resultado dado en (3) se deduce de inmediato del hecho de que cada columna de 
F(t) es un vector solución de X� � AX.

VARIACIÓN DE PARÁMETROS  Análogamente al procedimiento de la sección 
4.6, nos preguntamos si es posible reemplazar la matriz de constantes C en (2) por una 
matriz columna de funciones

 

u1(t)

u2(t)

un(t)

U(t) � ( Xp � �(t)U(t)por lo que).
.
.

 

(4)

es una solución particular del sistema no homogéneo

 .X AX F( t)  (5)

Por la regla del producto la derivada de la última expresión en (4) es

 .Xp ( t) U ( t) ( t) U( t)  (6)

Observe que el orden de los productos en (6) es muy importante. Puesto que U(t) es una 
matriz columna, los productos U�(t)�(t) y U(t)��(t) no están defi nidos. Sustituyendo 
(4) y (6) en (5), se obtiene

 ( t) U ( t) ( t) U( t) A ( t) U( t) F( t).  (7)

Ahora si usa (3) para reemplazar ��(t), (7) se convierte en

  

o  ( t) U ( t) F( t). 

( t) U ( t) A ( t) U( t) A ( t) U( t) F( t) 

 (8)

Multiplicando ambos lados de la ecuación (8) por ��1(t), se obtiene

 U ( t) 1 ( t) F( t)      por tanto     . U( t) 1 ( t) F( t) dt  

Puesto que X
p
 � �(t)U(t), se concluye que una solución particular de (5) es

 .Xp ( t) 1 ( t) F( t) dt  (9)

Para calcular la integral indefi nida de la matriz columna ��1(t)F(t) en (9), se integra 
cada entrada. Así, la solución general del sistema (5) es X � X

c
 � Xp o

 .X ( t) C ( t) 1 ( t) F( t) dt  (10)

Observe que no es necesario usar una constante de integración en la evaluación de
1 ( t) F( t) dt  por las mismas razones expresadas en la explicación de variación 

de parámetros en la sección 4.6.
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EJEMPLO 4  Variación de parámetros

Resuelva el sistema

 X
3 

2 

1 

4 
X

3 t

e t
 (11)

en (��, �).

SOLUCIÓN  Primero resolvemos el sistema homogéneo asociado

 .X
3 

2 

1 

4 
X  (12)

la ecuación característica de la matriz de coefi cientes es

 , det( A I) 
3 

2 

1 

4 
( 2)( 5) 0  

por lo que los eigenvalores son l
1
 � �2 y l

2
 � �5. Con el método usual se encuentra

que los eigenvectores correspondientes a l
1
 y l

2
 son, respectivamente, K1 

1 

1 
 y

K2 
1 

2 
. Entonces, los vectores solución del sistema (11) son

 X1 
1 

1 
e 2 t e 2 t

e 2 t      y     . X2 
1 

2 
e 5 t e 5 t

2 e 5 t  

Las entradas en X
1
 a partir de la primera columna de �(t) y las entradas en X

2
 a partir 

de la segunda columna de �(t). Por tanto

 ( t) 
e 2 t

e 2 t

e 5 t

2 e 5 t      y     . 1 ( t) 

2 
3 e

2 t

1 
3 e

5 t

1 
3 e

2 t

1 
3 e

5 t
 

A partir de (9) obtenemos

  

  

  

 
6 
5 t

27 
50 

1 
4 e

t

3 
5 t

21 
50 

1 
2 e

t
. 

e 2 t

e 2 t

e 5 t

2 e 5 t

te2 t 1 
2 e

2 t 1 
3 e

t

1 
5 te

5 t 1 
25 e

5 t 1 
12 e

4 t

e 2 t

e 2 t

e 5 t

2 e 5 t

2 te2 t 1 
3 e

t

te5 t 1 
3 e

4 t
dt

Xp ( t) 1 ( t) F( t) dt
e 2 t

e 2 t

e 5 t

2 e 5 t

2 
3 e

2 t

1 
3 e

5 t

1 
3 e

2 t

1 
3 e

5 t

3 t

e t dt

 

Por tanto a partir de (10) la solución de (11) en el intervalo es

  

 . c1 
1 

1 
e 2 t c2 

1 

2 
e 5 t

6 
5 
3 
5 

t
27 
50 
21 
50 

1 
4 
1 
2 

e t

X
e 2 t

e 2 t

e 5 t

2 e 5 t

c1 

c2 

6 
5 t

27 
50 

1 
4 e

t

3 
5 t

21 
50 

1 
2 e

t

 

8.3  SISTEMAS LINEALES NO HOMOGÉNEOS ● 331

08367_08_ch08_p303-338-ok.indd   33108367_08_ch08_p303-338-ok.indd   331 6/4/09   12:22:19 PM6/4/09   12:22:19 PM



332 ● CAPÍTULO 8  SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN

PROBLEMA CON VALORES INICIALES  La solución general de (5) en el inter-
valo se puede escribir en una forma alternativa

 ,X ( t) C ( t)  
t

t0 

1 ( s) F( s)  ds  (13)

donde t y t
0
 son puntos en el intervalo. Esta última forma es útil para resolver (5) sujeta 

a una condición inicial X(t
0
) � X

0
, porque los límites de integración se eligen de tal 

forma que la solución particular sea cero en t � t
0
. Sustituyendo t � t

0
 en (13) se obtiene 

X0 ( t0 ) C a partir de la que se obtiene C 1 ( t0 ) X0 . Sustituyendo este último 
resultado en (13) se obtiene la siguiente solución del problema con valores iniciales:

 .X ( t) 1 ( t0 ) X0 ( t)  
t

t0 

1 ( s) F( s)  ds  (14)

EJERCICIOS 8.3     Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-14.

8.3.1  COEFICIENTES INDETERMINADOS

En los problemas 1 a 8 utilice el método de los coefi cientes 
indeterminados para resolver el sistema dado.

 1. 

 

 2. 

 
dy

dt
x 11 y 6 

dx

dt
5 x 9 y 2 

dy

dt
x 2 y 5 

dx

dt
2 x 3 y 7 

 3. 

 4. 

 5. 

 6. 

 7. 

 8. X
0 

0 

5 

0 

5 

0 

5 

0 

0 

X
5 

10 

40 

X
1 

0 

0 

1 

2 

0 

1 

3 

5 

X
1 

1 

2 

e4 t

X
1 

1 

5 

1 
X

sen t

2 cos  t

X
4 

9 

1 
3 

6 
X

3 

10 
et

X
1 

4 

4 

1 
X

4 t 9 e6 t

t e6 t

X
1 

3 

3 

1 
X

2 t2 

t 5 

 9. Resuelva X
1 

3 

2 

4 
X

3 

3 
 sujeta a

. X(0) 
4 

5 

10. a)  El sistema de ecuaciones diferenciales para las co-
rrientes i

2
(t) e i

3
(t) en la red eléctrica que se muestra 

en la fi gura 8.3.1 es

. 
d

dt

i2 

i3 

R1 >L1 

R1 >L2 

R1 >L1 

( R1 R2 ) >L2 

i2 

i3 

E>L1 

E>L2 

  Use el método de los coefi cientes indeterminados para 
resolver el sistema si R

1
 � 2 �, R

2
 � 3 �, L

1
 � 1 h, 

L
2
 � 1 h, E � 60 V, i

2
(0) � 0, e i

3
(0) � 0.

b) Determine la corriente i
1
(t).

FIGURA 8.3.1  Red del problema 10.

R1 R2

L1 L2

i1
i2

i3

E

8.3.2  VARIACIÓN DE PARÁMETROS

En los problemas 11 a 30 utilice variación de parámetros para 
resolver el sistema dado.

11. 

 

12. 

 

13. X
3 
3 
4 

5 

1 
X

   1 

1 
et/2 

dy

dt
3 x 2 y 4 t

dx

dt
2 x y

dy

dt
2 x 2 y 1 

dx

dt
3 x 3 y 4 
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14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. X 
3 

1 

1 

1 

1 

1 

1 

1 

1 

X 
0 

t 

2 e t 

X 
1 

1 

0 

1 

1 

0 

0 

0 

3 

X 
e t 

e 2 t 

te 3 t 

X 
1 

1 

2 

1 
X 

tan  t 

1 

X 
1 
1 
2 

2 

1 
X 

csc  t 

sec  t 
e t 

X 
0 

1 

1 

0 
X 

1 

cot  t 

X 
0 

1 

1 

0 
X 

0 

sec  t  tan  t 

X 
2 

8 

2 

6 
X 

1 

3 

e 2 t 

t 

X 
1 

1 

1 

1 
X 

cos  t 

sen t 
e t 

X 
1 

1 

1 

1 
X 

3 

3 
e t 

X 
0 

1 

1 

0 
X 

sec  t 

0 

X 
3 

2 

2 

1 
X 

1 

1 

X 
3 

2 

2 

1 
X 

2 e t 

e t 

X 
1 

1 

8 

1 
X 

e t 

te t 

X 
1 

1 

8 

1 
X 

12 

12 
t 

X 
0 

1 

2 

3 
X 

2 

e 3 t 

X 
0 

1 

2 

3 
X 

1 

1 
e t 

X 
2 

4 

1 

2 
X 

sen 2t 

2 cos 2 t 
e 2 t 

En los problemas 31 y 32, use (14) para resolver el problema 
con valores iniciales.

31. 

32. X 
1 

1 

1 

1 
X 

1 >t 

1 >t 
, X (1) 

2 

1 

X 
3 

1 

1 

3 
X 

4 e 2 t 

4 e 4 t , X (0) 
1 

1 

33. El sistema de ecuaciones diferenciales para las corrientes 
i
1
(t) e i

2
(t) en la red eléctrica que se muestra en la fi gura 

8.3.2 es

. 
d 

dt 

i 1 

i 2 

( R 1 R 2 ) >L 2 

R 2 >L 1 

R 2 >L 2 

R 2 >L 1 

i 1 

i 2 

E >L 2 

0 

   Utilice variación de parámetros para resolver el sis-
tema si R

1
 � 8 �, R

2
 � 3 �, L

1
 � 1 h, L

2
 � 1 h,

E(t) � 100 sen t V, i
1
(0) � 0, e i

2
(0) � 0.

FIGURA 8.3.2  Red del problema 33.

i1
i2

i3R1

R2E L1

L2

Problemas para analizar

34. Si y
1
 y y

2
 son soluciones linealmente independientes de las 

ED homogéneas asociadas para y
 � P(x)y� � Q(x)y � 
f(x), demuestre en el caso de una ED lineal no homogénea 
de segundo orden que (9) se reduce a la forma de varia-
ción de parámetros analizada en la sección 4.6.

Tarea para el laboratorio de computación

35. Resolver un sistema lineal no homogéneo X� � AX � 
F(t) usando variación de parámetros cuando A es una ma-
triz 3 	 3 (o más grande) es casi una tarea imposible de 
hacer a mano. Considere el sistema

X 

2 

1 

0 

0 

2 

3 

0 

0 

2 

0 

4 

2 

1 

3 

2 

1 

X 

te t 

e t 

e 2 t 

1 

. 

a)  Use un SAC o software de álgebra lineal para encon-
trar los eigenvalores y los eigenvectores de la matriz 
de coefi cientes.  

b)  Forme una matriz fundamental �(t) y utilice la 
computadora para encontrar ��1(t).

c)  Use la computadora para realizar los cálculos de:

 
1 ( t ) F ( t ), 1(t)F(t) dt, (t) 1(t)F(t) dt, 

( t ) C ,  y ( t ) C 1 ( t ) F ( t )  dt ,  donde C es una 
matriz columna de constantes c

1
, c

2
, c

3
 y c

4
. 

d)  Reescriba el resultado de la computadora para la so-
lución general del sistema en la forma X � X

c
 � X

p
, 

donde X
c
 � c

1
X

1
 � c

2
X

2
 � c

3
X

3
 � c

4
X

4
.
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SISTEMAS HOMOGÉNEOS  Ahora veremos que es posible defi nir una matriz ex-
ponencial eAt tal que

 X e A t C  (1)

es una solución del sistema homogéneo X� � AX. Aquí A es una matriz n 	 n de 
constantes y C es una matriz columna n 	 1 de constantes arbitrarias. Observe en (1) 
que la matriz C se multiplica por la derecha a eAt porque queremos que eAt sea una 
matriz n 	 n. Mientras que el desarrollo completo del signifi cado y teoría de la matriz 
exponencial requeriría un conocimiento completo de álgebra de matrices, una forma 
de defi nir eAt se basa en la representación en serie de potencias de la función exponen-
cial escalar eat:

 .e at 1 at a 2 t 2 

2! 
a k t k 

k ! k 0 
a k t k 

k ! 
 (2)

La serie en (2) converge para toda t. Si se usa esta serie, con la identidad I en vez de 
1 y la constante a se reemplaza por una matriz A n 	 n de constantes, se obtiene una 
defi nición para la matriz n 	 n, eAt.

DEFINICIÓN 8.4.1  Matriz exponencial

Para cualquier matriz A n 	 n,

 .e A t I A t A 2 t 2 

2! 
A k t k 

k ! k 0 
A k t k 

k ! 
 (3)

Se puede demostrar que la serie dada en (3) converge a una matriz n 	 n para todo 
valor de t. También, A2 � AA, A3 � A(A)2, etcétera.

DERIVADA DE eAt  La derivada de la matriz exponencial es similar a la propiedad

de derivación de la exponencial escalar 
d 

dt 
e at ae at . Para justifi car

 ,
d 

dt 
e A t A e A t  (4)

derivamos (3) término por término:

MATRIZ EXPONENCIAL

REPASO DE MATERIAL
● Apéndice II.1 (defi niciones II.10 y II.11)

INTRODUCCIÓN  Las matrices se pueden usar de una manera completamente distinta para resol-
ver un sistema de ecuaciones diferenciales lineales de primer orden. Recuerde que la ecuación dife-
rencial lineal simple de primer orden x� � ax, donde a es constante, tiene la solución general x � ceat, 
donde c es constante. Parece natural preguntar si se puede defi nir una función exponencial matricial 
eAt, donde A es una matriz de constantes por lo que una solución del sistema X� � AX es eAt.

8.4

 

A I A t A 2 t 2 

2! 
A e A t . 

d 

dt 
e A t d 

dt 
I A t A 2 t 2 

2! 
A k t k 

k ! 
A A 2 t 

1 

2! 
A 3 t 2 
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Debido a (4), ahora se puede probar que (1) es una solución de X� � AX para todo 
vector n 	 1 C de constantes:

 
X 

d 

dt 
e A t C A e A t C A ( e A t C ) AX . 

 

eAt ES UNA MATRIZ FUNDAMENTAL  Si se denota la matriz exponencial eAt con 
el símbolo �(t), entonces (4) es equivalente a la ecuación diferencial matricial ��(t) � 
A �(t) (véase (3) de la sección 8.3). Además, se deduce de inmediato de la defi nición 
8.4.1 que �(0) � eA0 � I, y por  tanto det �(0) � 0. Se tiene que estas propiedades son 
sufi cientes para concluir que �(t) es una matriz fundamental del sistema X� � AX.

SISTEMAS NO HOMOGÉNEOS  Se vio en (4) de la sección 2.4 que la solución 
general de la ecuación diferencial lineal única de primer orden x� � ax � f(t), donde a 
es una constante, se puede expresar como

 . x x c x p ce at e at 
t 

t 0 

e as f ( s ) ds  

Para un sistema no homogéneo de ecuaciones diferenciales lineales de primer orden, 
se puede demostrar que la solución general de X� � AX � F(t), donde A es una matriz 
n 	 n de constantes, es

 .X X c X p e A t C e A t 
t 

t 0

e A s F ( s ) ds  (5)

Puesto que la matriz exponencial eAt es una matriz fundamental, siempre es no singular 
y e�As � (eAs)�1. En la práctica, e�As se puede obtener de eAt al reemplazar t por –s.

CÁLCULO DE eAt  La defi nición de eAt dada en (3) siempre se puede usar para calcular 
eAt. Sin embargo, la utilidad práctica de (3) está limitada por el hecho de que los ele-
mentos de eAt son series de potencias en t. Con un deseo natural de trabajar con cosas 
simples y familiares, se trata de reconocer si estas series defi nen una función de forma 
cerrada. Véanse los problemas 1 a 4 de los ejercicios 8.4. Por fortuna, hay muchas for-
mas alternativas de calcular eAt; la siguiente explicación muestra cómo se puede usar 
la transformada de Laplace.

USO DE LA TRANSFORMADA DE LAPLACE  Vimos en (5) que X � eAt es una 
solución de X� � AX. De hecho, puesto que eA0 � I, X � eAt es una solución de pro-
blema con valores iniciales

 .X AX , X (0) I  (6)

Si x ( s ) { X ( t )} { e A t } , entonces la transformada de Laplace de (6) es

 s x ( s ) X (0) Ax ( s )      o     . ( s I A ) x ( s ) I  

Multiplicando la última ecuación por (sI � A)�1 se tiene que x(s) � (sI � A)�1 I � (sI 
� A)�1. En otras palabras, 

( )
{ e A t } ( s I A ) 1 o

 e A t 1 {( s I A ) 1 } .  (7)

EJEMPLO 1  Matriz exponencial

Use la transformada de Laplace para calcular eAt  A 
1 

2 

1 

2 
para .

8.4  MATRIZ EXPONENCIAL ● 335
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336 ● CAPÍTULO 8  SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN

SOLUCIÓN  Primero calcule la matriz sI – A y determine su inversa:

  

  ( s I A) 1 s 1 

2 

1 

s 2 

1 

s 2 

s ( s 1) 

2 

s ( s 1) 

1 

s ( s 1) 

s 1 

s ( s 1) 

. 

s I A 
s 1 

2 

1 

s 2 
, 

 

Entonces, descomponiendo las entradas de la última matriz en fracciones parciales:

 .( s I A ) 1 

2 

s 

1 

s 1 

2 

s 

2 

s 1 

1 

s 

1 

s 1 

1 

s 

2 

s 1 

 (8)

Se deduce de (7) que la transformada de Laplace inversa de (8) proporciona el resul-
tado deseado, 

 . e A t 2 e t 

2 2 e t 

1 e t 

1 2 e t 
 

USO DE COMPUTADORAS  Para quienes por el momento están dispuestos a 
intercambiar la comprensión por la velocidad de solución, eAt se puede calcular con la 
ayuda de software. Véanse los problemas 27 y 28 de los ejercicios 8.4.

EJERCICIOS 8.4   Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-14.

En los problemas l y 2 use (3) para calcular eAt  y e�At.

 1. A 
1 

0 

0 

2  
 2. A 

0 

1 

1 

0 

En los problemas 3 y 4 use (3) para calcular eAt.

 3. A 
1 

1 

2 

1 

1 

2 

1 

1 

2 

  4. A 
0 

3 

5 

0 

0 

1 

0 

0 

0 

En los problemas 5 a 8 use (1) para encontrar la solución ge-
neral del sistema dado.

 5.     6. 

 7. X 
1 

1 

2 

1 

1 

2 

1 

1 

2 

X 

X 
1 

0 

0 

2 
X 

  8. X 
0 

3 

5 

0 

0 

1 

0 

0 

0 

X 

X 
0 

1 

1 

0 
X 

En los problemas 9 a 12 use (5) para encontrar la solución 
general del sistema dado.

 9. X 
1 

0 

0 

2 
X 

3 

1 

10. 

11. 

12. X 
0 

1 

1 

0 
X 

cosh t 

senh t 

X 
0 

1 

1 

0 
X 

1 

1 

X 
1 

0 

0 

2 
X 

t 

e 4 t 

13. Resuelva el sistema en el problema 7 sujeto a la condi-
ción inicial

. X (0) 

1 

4 

6 

14. Resuelva el sistema del problema 9 sujeto a la condición 
inicial

. X (0) 
4 

3 

En los problemas 15 a 18, use el método del ejemplo 1 para 
calcular eAt para la matriz de coefi cientes. Use (1) para encon-
trar la solución general del sistema dado.

15.      16. 

17. X 
5 

1 

9 

1 
X 

X 
4 

4 

3 

4 
X 

 18. X 
0 

2 

1 

2 
X 

X 
4 

1 

2 

1 
X 
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Sea P una matriz cuyas columnas son eigenvectores K
1
, 

K
2
, . . . ,  K

n
 que corresponden a eigenvalores l

1
, l

2
, . . . ,  l

n
 

de una matriz A de n 	 n. Entonces se puede demostrar que A 
� PDP�1, donde D se defi ne por 

   

l1

0

0

D � ( ).
0

0

ln

0

l2

0

. . .

. . .

. . .

.

.

.
.
.
.

 (9)

En los problemas 19 y 20, compruebe el resultado anterior 
para la matriz dada.

19. A
2

3

1

6
 20. A

2

1

1

2

21. Suponga que A � PDP�1, donde D se defi ne como en (9). 
Use (3) para demostrar que eAt � PeDtP�1.

22. Use (3) para demostrar que 

   

el1t

0

0

eDt �( ) ,

0

0

elnt

0

el2t

0

. . .

. . .

. . .

.

.

.
.
.
.  

  donde D se defi ne como en (9).

En los problemas 23 y 24 use los resultados de los problemas 
19 a 22 para resolver el sistema dado.

23. X
2

3

1

6
X  24. X

2

1

1

2
X

Problemas para analizar

25. Vuelva a leer el análisis que lleva al resultado dado en 
(7). ¿La matriz sI � A siempre tiene inversa? Explique.

26. Se dice que una matriz A es nilpotente cuando exis-
te algún entero m tal que Am � 0. Compruebe que

  A
1

1

1

1

0

1

1

1

1

 es nilpotente. Analice porqué es rela- 

  tivamente fácil calcular eAt cuando A es nilpotente. Calcule 
eAt y luego utilice (1) para resolver el sistema X� � AX.

Tarea para el laboratorio de computación

27. a)  Utilice (1) para obtener la solución general de

   X
4

3

2

3
X . Use un SAC para encontrar eAt.  

   Luego emplee la computadora para determinar eigen-
 valores y eigenvectores de la matriz de coefi cientes

 A
4

3

2

3
 y forme la solución general de acuer-

 do con la sección 8.2. Por último, reconcilie las dos 
 formas de la solución general del sistema.

b)  Use (1) para determinar la solución general de

 X
3

2

1

1
X. Use un SAC, para determinar 

  eAt. En el caso de un resultado complejo, utilice el 
software para hacer la simplifi cación; por ejemplo, en 
Mathematica, si m � MatrixExp[A t] tiene elemen-
tos complejos, entonces intente con la instrucción 
Simplify[ComplexExpand[m]].

28. Use (1) para encontrar la solución general de

.X

4

0

1

0

0

5

0

3

6

0

1

0

0

4

0

2

X

  Use MATLAB o un SAC para encontrar eAt.

 
REPASO DEL CAPÍTULO 8

                  Las respuestas a los problemas seleccionados con número impar 
comienzan en la página RES-15.

En los problemas 1 y 2 complete los espacios en blanco.

 1. El vector X k
4

5
 es una solución de

X
1

2

4

1
X

8

1
  para k � __________.

 2. El vector X c1
1

1
e 9t c2

5

3
e7t  es solución del 

  problema con valores iniciales X
1

6

10

3
X, X(0)

2

0
  para c

1
 � __________ y c

2
 � __________.

 3. Considere el sistema lineal X
4

1

1

6

3

4

6

2

3

X .

  Sin intentar resolver el sistema, determine cada uno de los 
vectores

K1

0

1

1

, K2

1

1

1

, K3

3

1

1

, K4

6

2

5

  es un eigenvector de la matriz de coefi cientes. ¿Cuál es la 
solución del sistema correspondiente a este eigenvector?

REPASO DEL CAPÍTULO 8 ● 337
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338 ● CAPÍTULO 8  SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES DE PRIMER ORDEN

 4. Considere un sistema lineal X� � AX de dos ecua-
ciones diferenciales, donde A es una matriz de coefi -
cientes reales. ¿Cuál es la solución general del sis-
tema si se sabe que l

1
 � 1 � 2i es un eigenvalor y

  K 1 
1 

i 
 es un eigenvector correspondiente?

En los problemas 5 a 14 resuelva el sistema lineal dado.

 5.    6. 

    

 7.  
 

 8. 

 9.   10. X 
0 

1 

2 

2 

1 

2 

1 

2 

1 

X 

X 
2 

2 

5 

4 
X 

dy 

dt 
2 x 4 y 

dx 

dt 
4 x 2 y 

11. 

12. 

13. 

6. 

8. 

10. 

X 
1 

2 

1 

1 
X 

1 

cot t 

X 
1 
1 
2 

2 

1 
X 

0 

e t tan t 

X 
2 

0 

8 

4 
X 

2 

16 t 

X 
1 

0 

4 

1 

1 

3 

1 

3 

1 

X 

X 
1 

2 

2 

1 
X 

dy 

dt 
x 

dx 

dt 
2 x y 

14. X 
3 

1 

1 

1 
X 

2 

1 
e 2 t 

15. a)  Considere el sistema lineal X� � AX de tres ecuacio-
nes diferenciales de primer orden, donde la matriz de 
coefi cientes es

 A 
5 

3 

5 

3 

5 

5 

3 

3 

3 
 

  y l � 2 es un eigenvalor conocido de multiplicidad 
dos. Encuentre dos soluciones diferentes del sistema 
correspondiente a este eigenvalor sin usar una fór-
mula especial (como (12) de la sección 8.2)

b)  Use el procedimiento del inciso a) para resolver

 . X 
1 

1 

1 

1 

1 

1 

1 

1 

1 

X 

16. Compruebe que X 
c 1 

c 2 
e t  es una solución del sistema 

lineal

X 
1 

0 

0 

1 
X 

  para constantes arbitrarias c
1
 y c

2
. A mano, trace un dia-

gra ma de fase del sistema.
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SOLUCIONES NUMÉRICAS DE 
ECUACIONES DIFERENCIALES 
ORDINARIAS

9.1 Métodos de Euler y análisis de errores

9.2 Métodos de Runge-Kutta

9.3 Métodos multipasos

9.4 Ecuaciones y sistemas de orden superior

9.5 Problemas con valores en la frontera de segundo orden

REPASO DEL CAPÍTULO 9

Aun cuando se pueda demostrar que la solución de una ecuación diferencial exista, 

no siempre es posible expresarla en forma explícita o implícita. En muchos casos 

tenemos que conformarnos con una aproximación de la solución. Si la solución 

existe, se representa por un conjunto de puntos en el plano cartesiano. En este 

capítulo continuamos investigando la idea básica de la sección 2.6, es decir, 

utilizar la ecuación diferencial para construir un algoritmo para aproximar las 

coordenadas y de los puntos de la curva solución real. Nuestro interés en este 

capítulo son principalmente los PVI dy�dx � f (x, y), y(x
0
) � y

0
. En la sección 4.9 

vimos que los procedimientos numéricos desarrollados para las ED de primer 

orden se generalizan de una manera natural para sistemas de ecuaciones de 

primer orden y por tanto se pueden aproximar soluciones de una ecuación de orden 

superior remodelándola como un sistema de ED de primer orden. El capítulo 9 

concluye con un método para aproximar soluciones de problemas con valores en la 

frontera lineales de segundo orden.

339

9
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340 ● CAPÍTULO 9  SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES ORDINARIAS

UNA COMPARACIÓN  En el problema 4 de los ejercicios 2.6 se pidió usar el mé-
todo de Euler para obtener el valor aproximado de y(1.5) para la solución del problema 
con valores iniciales y� � 2xy, y(1) � 1. Se debe haber obtenido la solución analítica 
y e x 2 1 

 y resultados similares a los que se presentan en las tablas 9.1 y 9.2.

MÉTODOS DE EULER Y ANÁLISIS DE ERRORES

REPASO DE MATERIAL
● Sección 2.6

INTRODUCCIÓN  En el capítulo 2 se examinó uno de los métodos numéricos más simples para 
aproximar soluciones de problemas con valores iniciales de primer orden y� � f (x, y), y(x

0
) � y

0
. 

Recuerde que la estructura del método de Euler fue la fórmula

 y n 1 y n h f ( x n , y n ), (1)

donde f es la función obtenida de la ecuación diferencial y� � f (x, y). El uso recursivo de (1) para 
n � 0, 1, 2, . . . produce las ordenadas y, y

1
, y

2
, y

3
, . . . de puntos en “rectas tangentes” sucesivas res-

pecto a la curva solución en x
1
, x

2
, x

3
, . . . o x

n
 � x

0
 � nh, donde h es una constante y es el tamaño de 

paso entre x
n
 y x

n � 1
. Los valores y

1
, y

2
, y

3
, . . . aproximan los valores de una solución y(x) del PVI en 

x
1
, x

2
, x

3
, . . . Pero sin importar la ventaja que la ecuación (1) tenga en su simplicidad, se pierde en la 

severidad de sus aproximaciones.

9.1

TABLA 9.1  Método de Euler con h � 0.1

   Valor  Valor % de error
 x

n
 y

n
 real absoluto relativo

1.00 1.0000 1.0000 0.0000 0.00
1.10 1.2000 1.2337 0.0337 2.73
1.20 1.4640 1.5527 0.0887 5.71
1.30 1.8154 1.9937 0.1784 8.95
1.40 2.2874 2.6117 0.3244 12.42
1.50 2.9278 3.4903 0.5625 16.12

TABLA 9.2  Método de Euler con h � 0.05

   Valor  Valor % de error
 x

n
 y

n
 real absoluto relativo

1.00 1.0000 1.0000 0.0000 0.00
1.05 1.1000 1.1079 0.0079 0.72
1.10 1.2155 1.2337 0.0182 1.47
1.15 1.3492 1.3806 0.0314 2.27
1.20 1.5044 1.5527 0.0483 3.11
1.25 1.6849 1.7551 0.0702 4.00
1.30 1.8955 1.9937 0.0982 4.93
1.35 2.1419 2.2762 0.1343 5.90
1.40 2.4311 2.6117 0.1806 6.92
1.45 2.7714 3.0117 0.2403 7.98
1.50 3.1733 3.4903 0.3171 9.08

En este caso, con un tamaño de paso h � 0.1, un error relativo de 16% en el 
cálculo de la aproximación a y(1.5) es totalmente inaceptable. A expensas de duplicar 
el número de cálculos, se obtiene cierta mejoría en la precisión al reducir a la mitad el 
tamaño de paso, es decir h � 0.05.

ERRORES EN LOS MÉTODOS NUMÉRICOS  Al elegir y usar un método numé-
rico para la solución de un problema con valores iniciales, se debe estar consciente de 
las distintas fuentes de error. Para ciertas clases de cálculos, la acumulación de errores 
podría reducir la precisión de una aproximación al punto de hacer inútil el cálculo. 
Por otra parte, dependiendo del uso dado a una solución numérica, una precisión ex-
trema podría no compensar el trabajo y la complicación adicionales.

Una fuente de error que siempre está presente en los cálculos es el error de re-
dondeo. Este error es resultado del hecho de que cualquier calculadora o computadora 
puede representar números usando sólo un número fi nito de dígitos. Suponga, por 
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ejemplo, que se tiene una calculadora que usa aritmética base 10 y redondea a cuatro 
dígitos, de modo que 1 

3 
 se representa en la calculadora como 0.3333 y 1 

9  se representa 
como 0.1111. Si con esta calculadora se calcula ( x 2 1 

9 ) ( x 1 
3 ) para x � 0.3334, 

se obtiene

 (0.3334) 2 0.1111 

0.3334 0.3333 

0.1112 0.1111 

0.3334 0.3333 
1. 

Sin embargo, con ayuda de un poco de álgebra, vemos que

 
x 2 1 

9 

x 1 
3 

( x 1 
3 )( x 1 

3 ) 
x 1 

3 

x 
1 

3 
, 

por lo que cuando x 0.3334, ( x 2 1 
9 ) ( x 1 

3 ) 0.3334 0.3333 0.6667. Este 
ejemplo muestra que los efectos del redondeo pueden ser bastante considerables a 
menos que se tenga cierto cuidado. Una manera de reducir el efecto del redondeo es 
reducir el número de cálculos. Otra técnica en una computadora es usar aritmética de 
doble precisión para comprobar los resultados. En general, el error de redondeo es 
impredecible y difícil de analizar y se desprecia en el análisis siguiente, por lo que sólo 
nos dedicaremos a investigar el error introducido al usar una fórmula o algoritmo para 
aproximar los valores de la solución.

ERRORES DE TRUNCAMIENTO PARA EL MÉTODO DE EULER  En la sucesión 
de valores y

1
, y

2
, y

3
, . . . generados de (1), usualmente el valor de y

1
 no concuerda con la 

solución real en x
1
, en particular, y(x

1
), porque el algoritmo sólo da una aproximación de 

línea recta a la solución. Véase la fi gura 2.6.2. El error se llama error de truncamiento 
local, error de fórmula o error de discretización. Este ocurre en cada paso, es decir, 
si se supone que y

n
 es precisa, entonces y

n � 1
 tendrá error de truncamiento local.

Para deducir una fórmula para el error de truncamiento local del método de Euler, 
se usa la fórmula de Taylor con residuo. Si una función y(x) tiene k � 1 derivadas que 
son continuas en un intervalo abierto que contiene a a y a x, entonces

 y ( x ) y ( a ) y ( a ) 
x a 

1! 
y ( k ) ( a ) 

( x a ) k 

k ! 
y ( k 1) ( c ) 

( x a ) k 1 

( k 1)! 
,   

donde c es algún punto entre a y x. Al establecer k � 1, a � x
n
 y x � x

n � 1
 � x

n
 � h, 

se obtiene

 y ( x n 1 ) y ( x n ) y ( x n ) 
h 

1! 
y ( c ) 

h 2 

2!  

o

 yn�1

y(xn�1) � yn � hf (xn, yn) � y �(c) .
h2
––
2!

El método de Euler (1) es la última fórmula sin el último término; por tanto, el error 
de truncamiento local en y

n � 1
 es 

 y ( c ) 
h 2 

2! 
,      donde     x n c x n 1 .

Usualmente se conoce el valor de c (existe desde el punto de vista teórico) y por tanto 
no se puede calcular el error exacto, pero un límite superior en el valor absoluto del 
error es Mh2�2!, donde M máx

x n x x n 1 

y ( x ) . 

Al analizar los errores que surgen del uso de métodos numéricos, es útil usar la nota-
ción O(hn). Para defi nir este concepto, se denota con e(h) el error en un cálculo numérico 
dependiendo de h. Entonces se dice que e(h) es de orden hn, denotado con O(hn), si existe 
una constante C y un entero positivo n tal que � e(h) � � Chn para h sufi cientemente pequeña. 
Por lo que el error de truncamiento local para el método de Euler es O(h2). Se observa que, 
en general, si e(h) en un método numérico es del orden hn y h se reduce a la mitad, el nuevo 
error es más o menos C(h�2)n � Chn�2n; es decir, el error se redujo por un factor de 1�2n.

9.1  MÉTODOS DE EULER Y ANÁLISIS DE ERRORES ● 341
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342 ● CAPÍTULO 9  SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES ORDINARIAS

EJEMPLO 1  Límite para errores de truncamiento local

Determine un límite superior para los errores de truncamiento local del método de 
Euler aplicado a y� � 2xy, y(1) � 1.

SOLUCIÓN  De la solución y e x 2 1  obtenemos y (2 4 x 2 ) e x 2 1 , por lo que el 
error de truncamiento es

 y ( c ) 
h 2 

2 
(2 4 c 2 ) e ( c 2 1) h 2 

2 
,  

donde c está entre x
n
 y x

n
 � h. En particular, para h � 0.1 se puede obtener un límite 

superior en el error de truncamiento local para y
1
 al reemplazar c por 1.1:

 [2 (4)(1.1) 2 ] e ((1.1) 2 1) (0.1) 2 

2 
0.0422.  

De la tabla 9.1 se observa que el error después del primer paso es 0.0337, menor que 
el valor dado por el límite.

De igual forma, se puede obtener un límite para el error de truncamiento local de 
cualquiera de los cinco pasos que se muestran en la tabla 9.1 al reemplazar c por 1.5 
(este valor de c da el valor más grande de y�(c) de cualquiera de los pasos y puede ser 
demasiado generoso para los primeros pasos). Al hacer esto se obtiene

 [2 (4)(1.5) 2 ] e ((1.5) 2 1) (0.1) 2 

2 
0.1920  (2)

como un límite o cota superior para el error de truncamiento local en cada paso. 

Observe que si h se reduce a 0.05 en el ejemplo 1, entonces el límite de error es 
0.0480, casi un cuarto del valor que se muestra en (2). Esto es de esperarse porque el 
error de truncamiento local para el método de Euler es O(h2).

En el análisis anterior se supone que el valor de y
n
 fue exacto en el cálculo de y

n � 1
 

pero no lo es porque contiene errores de truncamiento local de los pasos anteriores. El 
error total en y

n � 1
 es una acumulación de errores en cada uno de los pasos previos. 

Este error total se llama error de truncamiento global. Un análisis completo del error 
de truncamiento global queda fuera del alcance de este libro, pero se puede mostrar 
que el error de truncamiento global para el método de Euler es O(h).

Se espera que para el método de Euler, si el tamaño de paso es la mitad, el error será 
más o menos la mitad. Esto se confi rma en las tablas 9.1 y 9.2 donde el error absoluto en 
x � 1.50 con h � 0.1 es 0.5625 y con h � 0.05 es 0.3171, aproximadamente la mitad.

En general, se puede demostrar que si un método para la solución numérica  de 
una ecuación diferencial tiene error de truncamiento local O(ha � 1), entonces el error 
de truncamiento global es O(ha).

En lo que resta de esta sección y en las siguientes, se estudian métodos mucho más 
precisos que el método de Euler.

MÉTODO DE EULER MEJORADO  El método numérico defi nido por la fórmula

  (3)

donde                        y * n 1 y n h f ( x n , y n ) , 

y n 1 y n h 
f ( x n , y n ) f ( x n 1 , y * n 1 ) 

2 
, 

 (4)

se conoce comúnmente como el método de Euler mejorado. Para calcular y
n � 1

 para 
n � 0, 1, 2, . . . de (3), se debe, en cada paso, usar primero el método de Euler (4) 
para obtener una estimación inicial y * n 1 . Por ejemplo, con n � 0, usando (4) se ob-
tiene , y * 1 y 0 hf ( x 0 , y 0 )  y después, conociendo este valor, se usa (3) para obtener

y 1 y 0 h 
f ( x 0 , y 0 ) f ( x 1 , y * 1 ) 

2 
, donde x

1
 � x

0
 � h. Estas ecuaciones se representan
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con facilidad. En la fi gura 9.1.1 se observa que m
0
 � f (x

0
, y

0
) y m 1 f ( x 1 ,  y * 1 ) son 

pendientes de las rectas trazadas con la línea continua que pasan por los puntos (x
0
, 

y
0
) y ( x 1 ,  y * 1 ), respectivamente. Tomando un promedio de estas pendientes, es decir, 

m prom
f ( x 0 ,  y 0 ) f ( x 1 ,  y 1 * ) 

2 
, se obtiene la pendiente de las rectas paralelas inclinadas.

Con el primer paso, más que avanzar a lo largo de la recta que pasa por (x
0
, y

0
) con pen-

diente f (x
0
, y

0
) al punto con coordenada y y *1  obtenida por el método de Euler, se avanza 

a lo largo de la recta punteada de color rojo que pasa por (x
0
, y

0
) con pendiente m

prom
 

hasta llegar a x
1
. Al examinar la fi gura parece posible que y

1
 sea una mejora de y *1 .

En general, el método de Euler mejorado es un ejemplo de un método de predic-
ción-corrección. El valor de y * n 1  dado por (4) predice un valor de y(x

n
), mientras que 

el valor de y
n � 1

 defi nido por la fórmula (3) corrige esta estimación.

EJEMPLO 2  Método de Euler mejorado

Use el método de Euler mejorado para obtener el valor aproximado de y(1.5) para la 
solución del problema con valores iniciales y� � 2xy, y(1) � 1. Compare los resultados 
para h � 0.1 y h � 0.05.

SOLUCIÓN  Con x
0
 � 1, y

0
 � 1, f(x

n
, y

n
) � 2x

n
y

n
, n � 0 y h � 0.1, primero se calcula 

(4):

 y * 1 y 0 (0.1)(2 x 0 y 0 ) 1 (0.1)2(1)(1) 1.2.  

Se usa este último valor en (3) junto con x
1
 � 1 � h � 1 � 0.1 � 1.1:

 y 1 y 0 (0.1)  
2 x 0 y 0 2 x 1 y * 1 

2 
1 (0.1)  

2(1)(1) 2(1.1)(1.2) 

2 
1.232.  

En las tablas 9.3 y 9.4, se presentan los valores comparativos de los cálculos para h � 
0.1 y h � 0.05, respectivamente.

(x1, y1)

(x1, y*
1)

0

1

mprom

x

y

x0 x1

h

(x0, y0)

(x1, )

(x1, )

m0 = f(x0, y0)

m1 = f(x1, y*
1)

(x1, y(x1))

curva 
solución

f (x0, y0) + f(x1, y*
1)

2mprom =

FIGURA 9.1.1  La pendiente de la 
recta roja punteada es el promedio 
de m

0
 y m

1
.

TABLA 9.4   Método de Euler mejorado con h � 0.05

   Valor  Valor % de error
 x

n
 y

n
 real absoluto relativo

1.00 1.0000 1.0000 0.0000 0.00
1.05 1.1077 1.1079 0.0002 0.02
1.10 1.2332 1.2337 0.0004 0.04
1.15 1.3798 1.3806 0.0008 0.06
1.20 1.5514 1.5527 0.0013 0.08
1.25 1.7531 1.7551 0.0020 0.11
1.30 1.9909 1.9937 0.0029 0.14
1.35 2.2721 2.2762 0.0041 0.18
1.40 2.6060 2.6117 0.0057 0.22
1.45 3.0038 3.0117 0.0079 0.26
1.50 3.4795 3.4904 0.0108 0.31

TABLA 9.3   Método de Euler mejorado con h � 0.1

   Valor  Valor % de error
 x

n
 y

n
 real absoluto relativo

1.00 1.0000 1.0000 0.0000 0.00
1.10 1.2320 1.2337 0.0017 0.14
1.20 1.5479 1.5527 0.0048 0.31
1.30 1.9832 1.9937 0.0106 0.53
1.40 2.5908 2.6117 0.0209 0.80
1.50 3.4509 3.4904 0.0394 1.13

Aquí es importante hacer una advertencia. No se pueden calcular primero todos 
los valores de y *n ; y después sustituir sus valores en la fórmula (3). En otras palabras, 
no se pueden usar los datos de la tabla 9.1 para ayudar a construir los valores de la 
tabla 9.3. ¿Por qué no?

ERRORES DE TRUNCAMIENTO PARA EL MÉTODO DE EULER MEJORADO  
El error de truncamiento local para el método de Euler mejorado es O(h3). La deduc-
ción de este resultado es similar a la deducción del error de truncamiento local para el 

9.1  MÉTODOS DE EULER Y ANÁLISIS DE ERRORES ● 343
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344 ● CAPÍTULO 9  SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES ORDINARIAS

método de Euler. Puesto que el error de truncamiento para el método de Euler mejorado 
es O(h3), el error de truncamiento global es O(h2). Esto se puede ver en el ejemplo 2; 
cuando el tamaño de paso se reduce a la mitad de h � 0.1 a h � 0.05, el error abso-
luto en x � 1.50 se reduce de 0.0394 a 0.0108, una reducción de aproximadamente 

( 1 
2 ) 

2 1 
4 . 

EJERCICIOS 9.1  Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-15.

En los problemas l a 10, use el método de Euler mejorado 
para obtener una aproximación de cuatro decimales del valor 
indicado. Primero use h � 0.1 y después h � 0.05.

 1. y� � 2x � 3y � 1, y(1) � 5;  y(1.5)

 2. y� � 4x � 2y, y(0) � 2;  y(0.5)

 3. y� � 1 � y2, y(0) � 0;  y(0.5)

 4. y� � x2 � y2, y(0) � 1;  y(0.5)

 5. y� � e�y, y(0) � 0;  y(0.5)

 6. y� � x � y2, y(0) � 0;  y(0.5)

 7. y� � (x � y)2, y(0) � 0.5;  y(0.5)

 8. y xy 1 y , y (0) 1;   y (0.5) 

 9. y xy 2 y 

x
, y (1) 1;   y (1.5) 

 10. y� � y � y2, y(0) � 0.5;  y(0.5)

 11. Considere el problema con valores iniciales y� � (x � y �
1)2, y(0) � 2. Use el método de Euler mejorado con h � 
0.1 y h � 0.05 para obtener los valores aproximados de 
la solución en x � 0.5. En cada paso compare el valor 
aproximado con el valor real de la solución analítica. 

 12. Aunque podría no ser evidente de la ecuación diferencial, 
su solución podría tener “un mal comportamiento” cerca 
de un punto x en el que se desea aproximar y(x). Los pro-
cedimientos numéricos podrían dar resultados bastante 
distintos cerca de este punto. Sea y(x) la solución del pro-
blema con valores iniciales y� � x2 � y3, y(1) � 1.

a)  Use un programa de solución numérica para trazar la 
solución en el intervalo [1, 1.4].

b)  Con el tamaño de paso h � 0.1, compare los resul-
tados obtenidos con el método de Euler con los del 
método de Euler mejorado en la aproximación de 
y(1.4).

 13. Considere el problema con valores iniciales y� � 2y, 
y(0) � 1. La solución analítica es y � e2x.

a)  Aproxime y(0.1) con un paso y el método de Euler.

b)  Determine un límite para el error de truncamiento 
local en y

1
.

c)  Compare el error en y
1
 con su límite de error.

d)  Aproxime y(0.1) con dos pasos y el método de 
Euler.

e)  Compruebe que el error de truncamiento global para 
el método de Euler es O(h) al comparar los errores de 
los incisos a) y d).

 14. Repita el problema 13 con el método de Euler mejorado. 
Su error de truncamiento global es O(h2).

 15. Repita el problema 13 con el problema con valores inicia-
les y� � x � 2y, y(0) � 1. La solución analítica es 

y 1 
2 x 1 

4 
5 
4 e 2 x . 

 16. Repita el problema 15 usando el método de Euler mejo-
rado. Su error de truncamiento global es O(h2).

 17. Considere el problema con valores iniciales y� � 2x � 3y 
� 1, y(l) � 5. La solución analítica es

y ( x ) 1 
9 

2 
3 x 38 

9 e 3( x 1) . 

a)  Encuentre una fórmula en la que intervengan c y h 
para el error de truncamiento local en el n-ésimo paso 
si se usa el método de Euler.

b)  Encuentre un límite para el error de truncamiento local 
en cada paso si se usa h � 0.1 para aproximar y(1.5).

c)  Aproxime y(1.5) con h � 0.1 y h � 0.05 con el método 
de Euler. Véase el problema 1 de los ejercicios 2.6.

d)  Calcule los errores del inciso c) y compruebe que el 
error de truncamiento global del método de Euler es 
O(h).

 18. Repita el problema 17 usando el método de Euler mejorado 
que tiene un error de truncamiento global O(h2). Véase el 
problema 1. Podría ser necesario conservar más de cuatro 
decimales para ver el efecto de reducir el orden del error.

 19. Repita el problema 17 para el problema con valores iniciales 
y� � e�y, y(0) � 0. La solución analítica es y(x) � ln(x � 1). 
Aproxime y(0.5). Véase el problema 5 en los ejercicios 2.6.

 20. Repita el problema 19 con el método de Euler mejorado, 
que tiene un error de truncamiento global O(h2). Véase el 
problema 5. Podría ser necesario conservar más de cuatro 
decimales para ver el efecto de reducir el orden de error.

Problemas para analizar

 21. Conteste la pregunta “¿Por qué no?” que sigue a los tres 
enunciados después del ejemplo 2 de la página 343.
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MÉTODOS DE RUNGE-KUTTA  En esencia, los métodos de Runge-Kutta son ge-
neralizaciones de la fórmula básica de Euler (1) de la sección 9.1 en que la función 
pendiente f se reemplaza por un promedio ponderado de pendientes en el intervalo x

n
 

� x � x
n � l

. Es decir,

 

promedio ponderado

yn�1 � yn � h (w1k1 � w2k2 � … � wmkm).  (1)

Aquí los pesos w
i
, i � 1, 2, . . . , m, son constantes que generalmente satisfacen w

1
 � 

w
2
 � . . . � w

m
 � 1, y cada k

i
, i � 1, 2, . . . , m, es la función f evaluada en un punto 

seleccionado (x, y) para el que x
n
 � x � x

n � l
. Veremos que las k

i
 se defi nen recursiva-

mente. El número m se llama el orden del método. Observe que al tomar m � 1, w
1
 � 

1 y k
1
 � f (x

n
, y

n
), se obtiene la conocida fórmula de Euler y

n � 1
 � y

n
 � h f (x

n
, y

n
). Por 

esta razón, se dice que el método de Euler es un método de Runge-Kutta de primer 
orden.

El promedio en (1) no se forma a la fuerza, pero los parámetros se eligen de modo 
que (1) concuerda con un polinomio de Taylor de grado m. Como se vio en la sección 
anterior, si una función y(x) tiene k � 1 derivadas que son continuas en un intervalo 
abierto que contiene a a y a x, entonces se puede escribir

 y ( x ) y ( a ) y ( a ) 
x a 

1! 
y ( a ) 

( x a ) 2 

2! 
y ( k 1) ( c ) 

( x a ) k 1 

( k 1)! 
,  

donde c es algún número entre a y x. Si se reemplaza a por x
n
 y x por x

n � 1
 � x

n
 � h, 

entonces la fórmula anterior se convierte en

 y ( x n 1 ) y ( x n h ) y ( x n ) hy ( x n ) 
h 2 

2! 
y ( x n ) 

h k 1 

( k 1)! 
y ( k 1) ( c ), 

 
donde c es ahora algún número entre x

n
 y x

n � 1
. Cuando y(x) es una solución de y� � 

f (x, y) en el caso k � 1 y el residuo 1 
2 h 2 y ( c ) es pequeño, vemos que un polinomio de 

Taylor y(x
n � 1

) � y(x
n
) � hy�(x

n
) de grado uno concuerda con la fórmula de aproxima-

ción del método de Euler 

 y n 1 y n hy n y n h f ( x n , y n ).  

MÉTODO DE RUNGE-KUTTA DE SEGUNDO ORDEN  Para ilustrar más (1), 
ahora se considera un procedimiento de Runge-Kutta de segundo orden. Éste con-
siste en encontrar constantes o parámetros w

1
, w

2
, a y b tal que la fórmula

 y n 1 y n h ( w 1 k 1 w 2 k 2 ),  (2)

donde k 1 f ( x n , y n )  

 k 2 f ( x n h , y n hk 1 ),  

MÉTODOS DE RUNGE-KUTTA 

REPASO DE MATERIAL
● Sección 2.8 (véase página 78).

INTRODUCCIÓN  Probablemente uno de los procedimientos numéricos más populares, así como 
más preciso, usado para obtener soluciones aproximadas para un problema con valores iniciales y� � 
f(x, y), y(x

0
) � y

0
 es el método de Runge-Kutta de cuarto orden. Como el nombre lo indica, existen 

métodos de Runge-Kutta de diferentes órdenes.

9.2

9.2  MÉTODOS DE RUNGE-KUTTA ● 345
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346 ● CAPÍTULO 9  SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES ORDINARIAS

concuerda con un polinomio de Taylor de grado dos. Para nuestros objetivos es sufi -
ciente decir que esto se puede hacer siempre que las constantes satisfagan

 w 1 w 2 1,      w 2 
1 

2 
     y     w 2 

1 

2 
.  (3)

Este es un sistema algebraico de tres ecuaciones con cuatro incógnitas y tiene un nú-
mero infi nito de soluciones:

 w 1 1 w 2 ,      
1 

2 w 2 
     y     

1 

2 w 2 
,  (4)

donde w
2 
� 0. Por ejemplo, la elección w 2 

1 
2  produce w1 

1 
2 , 1 y 1 y, por 

tanto (2) se convierte en

y n 1 y n 

h 

2 
 ( k 1 k 2 ), 

donde k 1 f ( x n , y n )       y     k 2 f ( x n h , y n hk 1 ).  

Puesto que x
n 
� h � x

n � 1
 y y

n 
� hk

1
 � y

n 
� h f (x

n
, y

n
) se reconoce al resultado anterior 

como el método mejorado de Euler que se resume en (3) y (4) de la sección 9.1. 
En vista de que w

2 
� 0 se puede elegir de modo arbitrario en (4), hay muchos posibles 

métodos de Runge-Kutta de segundo orden. Véase el problema 2 en los ejercicios 9.2.
Se omite cualquier explicación de los métodos de tercer orden para llegar al punto 

principal de análisis en esta sección.

MÉTODO DE RUNGE-KUTTA DE CUARTO ORDEN  Un procedimiento de 
Runge-Kutta de cuarto orden consiste en determinar parámetros de modo que la 
fórmula

  (5)

donde  

  

  

 k 4 f ( x n 3 h , y n 4 hk 1 5 hk 2 6 hk 3 ), 

k 3 f ( x n 2 h , y n 2 hk 1 3 hk 2 ) 

k 2 f ( x n 1 h , y n 1 hk 1 ) 

k 1 f ( x n , y n ) 

y n 1 y n h ( w 1 k 1 w 2 k 2 w 3 k 3 w 4 k 4 ), 

 

concuerda con un polinomio de Taylor de grado cuatro. Esto da como resultado un 
sistema de 11 ecuaciones con 13 incógnitas. El conjunto de valores usado con más 
frecuencia para los parámetros produce el siguiente resultado:

  

  

  (6)

  

 k 4 f  ( x n h , y n hk 3 ) . 

k 3 f ( x n 
1 
2 h , y n 

1 
2 hk 2 ) 

k 2 f ( x n 
1 
2 h , y n 

1 
2 hk 1 ) 

k 1 f  ( x n , y n ) 

y n 1 y n 

h 

6 
 ( k 1 2 k 2 2 k 3 k 4 ) , 

 

Mientras que las otras fórmulas de cuarto orden se deducen con facilidad, el algoritmo 
resumido en (6) que es muy usado y reconocido como una invaluable herramienta de 
cálculo, se denomina el método de Runge-Kutta de cuarto orden o método clásico 
de Runge-Kutta. De aquí en adelante, se debe considerar a (6), cuando se use la abre-
viatura método RK4.

Se le aconseja que tenga cuidado con las fórmulas en (6); observe que k
2
 depende 

de k
1
, k

3
 depende de k

2
 y k

4
 depende de k

3
. También, k

2
 y k

3
 implican aproximaciones a 

la pendiente en el punto medio x n 
1 
2 h  en el intervalo defi nido por x

n
 � x � x

n � l
.
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EJEMPLO 1  Método RK4

Use el método RK4 con h � 0.1 para obtener una aproximación a y(1.5) para la solu-
ción de y� � 2xy, y(1) � 1.

SOLUCIÓN  Para ejemplifi car permítanos calcular el caso cuando n � 0. De (6) se 
encuentra que

  

  

  

  

  

  

 2( x 0 0.1)( y 0 0.234255) 2.715361 

k 4 f ( x 0 (0.1), y 0 (0.1)2.34255) 

2 ( x 0 
1 
2 (0.1) )( y 0 

1 
2 (0.231) ) 2.34255 

k 3 f ( x 0 
1 
2 (0.1), y 0 

1 
2 (0.1)2.31 ) 

2 ( x 0 
1 
2 (0.1) )( y 0 

1 
2 (0.2) ) 2.31 

k 2 f ( x 0 
1 
2 (0.1), y 0 

1 
2 (0.1)2 ) 

k 1 f ( x 0 , y 0 ) 2 x 0 y 0 2 

 
y por tanto

  

 1 
0.1 

6 
 (2 2(2.31) 2(2.34255) 2.715361) 1.23367435. 

y 1 y 0 
0.1 

6 
 ( k 1 2 k 2 2 k 3 k 4 ) 

 

Los cálculos que restan se resumen en la tabla 9.5, cuyas entradas se redondean a 
cuatro decimales.  

Al examinar la tabla 9.5 se encuentra por qué el método de Runge-Kutta de cuarto 
orden es popular. Si todo lo que se desea es una precisión de cuatro decimales, es inne-
cesario usar un tamaño de paso más pequeño. En la tabla 9.6 se comparan los resultados 
de aplicar los métodos de Euler, de Euler mejorado y de Runge-Kutta de cuarto orden al 
problema con valores iniciales y�� 2xy, y (l) � 1. (Véanse las tablas 9.1 y 9.3.)

TABLA 9.5  Método RK4 con h � 0.1

   Valor  Valor % de error
 x

n
 y

n
 real absoluto relativo

1.00 1.0000 1.0000 0.0000 0.00
1.10 1.2337 1.2337 0.0000 0.00
1.20 1.5527 1.5527 0.0000 0.00
1.30 1.9937 1.9937 0.0000 0.00
1.40 2.6116 2.6117 0.0001 0.00
1.50 3.4902 3.4904 0.0001 0.00

TABLA 9.6  y� � 2xy, y(1) � 1

 Comparación de métodos numéricos con h � 0.1 Comparación de métodos numéricos con h � 0.05

   Euler   Valor   Euler  Valor
 x

n
 Euler mejorado RK4 real x

n
 Euler mejorado RK4 real

1.00 1.0000 1.0000 1.0000 1.0000 1.00 1.0000 1.0000 1.0000 1.0000
1.10 1.2000 1.2320 1.2337 1.2337 1.05 1.1000 1.1077 1.1079 1.1079
1.20 1.4640 1.5479 1.5527 1.5527 1.10 1.2155 1.2332 1.2337 1.2337
1.30 1.8154 1.9832 1.9937 1.9937 1.15 1.3492 1.3798 1.3806 1.3806
1.40 2.2874 2.5908 2.6116 2.6117 1.20 1.5044 1.5514 1.5527 1.5527
1.50 2.9278 3.4509 3.4902 3.4904 1.25 1.6849 1.7531 1.7551 1.7551
      1.30 1.8955 1.9909 1.9937 1.9937
      1.35 2.1419 2.2721 2.2762 2.2762
      1.40 2.4311 2.6060 2.6117 2.6117
      1.45 2.7714 3.0038 3.0117 3.0117
      1.50 3.1733 3.4795 3.4903 3.4904

ERRORES DE TRUNCAMIENTO PARA EL MÉTODO RK4  En la sección 9.1 
vimos que los errores de truncamiento globales para el método de Euler y el método de 
Euler mejorado son, respectivamente, O(h) y O(h2). Debido a que la primera ecuación 
en (6) concuerda con un polinomio de Taylor de cuarto grado, el error de truncamiento 
global para este método es y(5)(c) h5�5! o O(h5), y así el error de truncamiento global es 
O(h4). Ahora es evidente por qué el método de Euler, el método de Euler mejorado y 
(6) son métodos de primero, segundo y cuarto orden, respectivamente.

9.2  MÉTODOS DE RUNGE-KUTTA ● 347
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348 ● CAPÍTULO 9  SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES ORDINARIAS

EJEMPLO 2  Límite para errores de truncamiento locales

Determine un límite para los errores de truncamiento local del método RK4 aplicado 
a y� � 2xy, y(l) � 1. 

SOLUCIÓN  Al calcular la quinta derivada de la solución conocida y ( x ) e x 2 1  se 
obtiene

 y (5) ( c ) 
h 5 

5! 
(120 c 160 c 3 32 c 5 ) e c 2 1 h 5 

5! 
.  (7)

Por lo que con c � 1.5, (7) se obtiene un límite de 0.00028 en el error de truncamiento 
local para cada uno de los cinco pasos cuando h � 0.1. Observe que en la tabla 9.5 el 
error en y

1
 es mucho menor que este límite. 

En la tabla 9.7 se presentan las aproximaciones a la solución del problema con 
valores iniciales en x � 1.5 que se obtienen del método RK4. Al calcular el valor de la 
solución analítica en x � 1.5, se puede encontrar el error en estas aproximaciones. 
Debido a que el método es tan preciso, se deben usar muchos decimales en la solución 
numérica para ver el efecto de reducir a la mitad el tamaño de paso. Observe que 
cuando h se reduce a la mitad, de h � 0.1 a h � 0.05, el error se divide entre un factor 
de aproximadamente 24 � 16, como se esperaba. 

MÉTODOS DE ADAPTACIÓN  Se ha visto que la precisión de un método numérico 
para aproximar soluciones de ecuaciones diferenciales mejora al reducir el tamaño de paso 
h. Por supuesto, esta mayor precisión tiene usualmente un costo, en particular, incremento 
en el tiempo de cálculo y mayor posibilidad de error de redondeo. En general, en el intervalo 
de aproximación podría haber subintervalos donde un tamaño de paso relativamente grande 
es sufi ciente y otros subintervalos donde se requiere un tamaño de paso más pequeño para 
mantener el error de truncamiento dentro del límite deseado. Los métodos numéricos en 
los que se usa un tamaño de paso variable se llaman métodos de adaptación. Una de las 
rutinas más populares de adaptación es el método de Runge-Kutta-Fehlberg. Debido a 
que Fehlberg empleó dos métodos de Runge-Kutta de órdenes distintos, uno de cuarto y 
otro de quinto, este algoritmo suele denotarse como método RKF45.* 

TABLA 9.7  Método RK4

h Aproximación Error

0.1 3.49021064 1.32321089 � 10�4

0.05 3.49033382 9.13776090 � 10�6

EJERCICIOS 9.2  Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-15.

 1. Use el método RK4 con h � 0.1 para aproximar y(0.5), 
donde y(x) es la solución del problema de valores ini-
ciales y ( x y 1) 2 ,  y(0) � 2. Compare este valor 
aproximado con el valor real obtenido en el problema 11 
de los ejercicios 9.1.

 2. Suponga que w 2 
3 
4  en (4). Use el método de Runge-Kutta 

de segundo orden resultante para aproximar y(0.5), donde 
y(x) es la solución del problema con valores iniciales en el 
problema 1. Compare este valor aproximado con el valor 
obtenido en el problema 11 en los ejercicios 9.1.

En los problemas 3 a 12, use el método RK4 con h � 0.1 para ob-
tener una aproximación de cuatro decimales del valor indicado.

 3. y� � 2x � 3y � 1, y(1) � 5;  y(1.5)

 4. y� � 4x � 2y, y(0) � 2;  y(0.5)

 5. y� � 1 � y2, y(0) � 0;  y(0.5)

 6. y� � x2 � y2, y(0) � 1;  y(0.5)

 7. y� � e�y, y(0) � 0;  y(0.5)

 8. y� � x � y2, y(0) � 0;  y(0.5)

 9. y� � (x � y)2, y(0) � 0.5;  y(0.5)

 10. 

 11. y xy 2 y 

x 
, y (1) 1;   y (1.5) 

y xy 1 y , y (0) 1;   y (0.5) 

 12. y� � y � y2, y(0) � 0.5;  y(0.5)

 13. Si la resistencia del aire es proporcional al cuadrado de la 
velocidad instantánea, entonces la velocidad v de una masa 
m que se deja caer desde cierta altura se determina de

m 
dv 

dt 
mg kv 2 ,      k 0. 

  Sea v(0) � 0, k � 0.125, m � 5 slugs y g � 32 pies�s2.

*El método de Runga-Kutta de orden cuarto usado en RKF45 no es el mismo que se presenta en (6). 
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a)  Use el método RK4 con h � 1 para aproximar la ve-
locidad v(5).

b)  Utilice un programa de solución numérica para trazar 
la gráfi ca solución del PVI en el intervalo [0, 6].

c)  Utilice la separación de variables para resolver el PVI 
y luego determine el valor real v(5).

 14. Un modelo matemático para el área A (en cm2) que ocupa 
una colonia de bacterias (B. dendroides) está dada por

dA 

dt 
A (2.128 0.0432 A ).* 

  Suponga que el área inicial es 0.24 cm2.

a)  Use el método RK4 con h � 0.5 para completar la 
siguiente tabla:

18. Considere el problema con valores iniciales y� � 2x � 3y 
� 1, y(l) � 5. La solución analítica es

y ( x ) 1 
9 

2 
3 x 38 

9 e 3( x 1) . 

a)  Encuentre una fórmula en la que intervengan c y h 
para el error de truncamiento local en el n-ésimo paso 
si se emplea el método RK4. 

b)  Calcule un límite para el error de truncamiento local en 
cada paso si se emplea h � 0.1 para aproximar y(1.5).

c)  Aproxime y(1.5) con el método RK4 con h � 0.1 y h 
� 0.05. Véase el problema 3. Será necesario conside-
rar más de seis cifras para ver el efecto de reducir el 
tamaño de paso.

19. Repita el problema 18 para el problema con valores ini-
ciales y� � e�y, y(0) � 0. La solución analítica es y(x) � 
ln(x � 1). Aproxime y(0.5). Véase el problema 7.

Problemas para analizar

20. Se utiliza una cuenta del número de evaluaciones de la 
función usada para resolver el problema con valores ini-
ciales y� � f(x, y), y(x

0
) � y

0
 como medida de la compleji-

dad de un método numérico. Determine el número de eva-
luaciones de f requeridas para cada paso de los métodos de 
Euler, de Euler mejorado y RK4. Considerando algunos 
ejemplos, compare la precisión de estos métodos cuando 
se usa con complejidades computacionales comparables.

Tarea para el laboratorio de computación

21. El método RK4 para resolver un problema con valores ini-
ciales en un intervalo [a, b] da como resultado un conjunto 
fi nito de puntos que se supone aproximan puntos en la gráfi ca 
de la solución exacta. Para ampliar este conjunto de puntos 
discretos a una solución aproximada defi nida en los puntos 
en el intervalo [a, b], se puede usar una función de interpo-
lación. Esta es una función incluida en la mayor parte de los 
sistemas de álgebra computarizados, que concuerda de modo 
exacto con los datos y asume una transición uniforme entre 
puntos. Estas funciones de interpolación pueden ser polino-
mios o conjuntos de polinomios que se unen suavemente. 
En Mathematica el comando y � Interpolation[data] se 
usa para obtener una función de interpolación por los puntos 
data � {{x

0
, y

0
}, {x

1
, y

1
}, . . . , {x

n
, y

n
}}. La función de 

interpolación y[x] se puede tratar ahora como cualquier otra 
función integrada en el sistema algebraico computarizado.

a)  Encuentre la solución analítica del problema con va-
lores iniciales y� � �y � 10 sen 3x; y(0) � 0 en el 
intervalo [0, 2]. Trace la gráfi ca de esta solución y 
determine sus raíces positivas.

b)  Use el método RK4 con h � 0.1 para aproximar una 
solución del problema con valores iniciales del inciso 
a). Obtenga una función de interpolación y trace la 
gráfi ca. Encuentre las raíces positivas de la función 
de interpolación del intervalo [0, 2].

t (días) 1 2 3 4 5

A (observado) 2.78 13.53 36.30 47.50 49.40

A (aproximado)

b)  Use un programa de solución numérica para trazar la 
gráfi ca de solución del problema con valores iniciales. 
Calcule los valores A(1), A(2), A(3), A(4) y A(5) de 
la gráfi ca.

c)  Use la separación de variables para resolver el pro-
blema con valores iniciales y calcular los valores rea-
les A(l), A(2), A(3), A(4) y A(5).

 15. Considere el problema con valores iniciales y� � x2 � y3, 
y(1) � 1. Véase el problema 12 de los ejercicios 9.1.

a)  Compare los resultados obtenidos de usar el método 
RK4 en el intervalo [1, 1.4] con tamaños de paso h � 
0.1 y h � 0.05.

b)  Utilice un programa de solución numérica para trazar 
la gráfi ca solución del problema con valores iniciales 
en el intervalo [1, 1.4].

 16. Considere el problema con valores iniciales y� � 2y, 
y(0) � 1. La solución analítica es y(x) � e2x.

a)  Aproxime y(0.1) con un paso y el método RK4.

b)  Determine un límite para el error de truncamiento 
local en y

1
. 

c)  Compare el error en y
1
 con el límite de error.

d)  Aproxime y(0.1) con dos pasos y el método RK4.

e)  Compruebe que el error global de truncamiento para 
el método RK4 es O(h4) comparando los errores en 
los incisos a) y d).

 17. Repita el problema 16 con el problema con valores inicia-
les y� � �2y � x,  y(0) � 1. La solución analítica es

y ( x ) 1 
2 x 1 

4 
5 
4 e 2 x . 

*Véase V. A. Kostitzin, Mathematical Biology (Londond: Harrap, 1939).
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350 ● CAPÍTULO 9  SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES ORDINARIAS

Problema aportado

 22. Un enfoque energético a 
los sistemas resorte/masa 
Considere un sistema que 
consiste en una masa M conectada a un resorte de cons-
tante elástica k. Despreciamos todos los efectos debidos a 
la fricción, suponemos que una fuerza constante F actúa 
sobre la masa. Si el resorte se estira una cantidad x(t), en-
tonces la energía elástica del resorte es E elás

1 
2 x 2 . Esta 

energía elástica se puede convertir a energía cinética 
Ecin

1 
2 M ( dx >dt ) 2 . La energía potencial es E pot Fx . El 

principio de la conservación de la energía implica que E
elás

 
� E

cin
 � E

pot
 � constante, en particular,

 1 

2 
M 

dx 

dt 

2 1 

2 
  kx 2 Fx C , 

  donde C es una constante que denota la energía total en el 
sistema. Véase la fi gura 9.2.2.

a)  Considere el caso de movimiento libre, es decir, haga 
F � 0. Muestre que el movimiento del sistema re-
sorte/masa, para el cual la posición inicial de la masa 
es x � 0 está descrito por el siguiente problema con 
valores iniciales (PVI) de primer orden:

 
dx 

dt 

2 

v2 x 2 C ,    x (0) 0, 

 donde v 1 k >M .

b)  Si se toma la constante del inciso a) igual a C � 1, 
demuestre que si se considera la raíz cuadrada posi-
tiva, el PVI se reduce a

 
dy 

dt 
v2 1 y 2 ,    y (0) 0,  (8)

 donde y � vx.

c)  Resuelva el PVI del inciso b) usando cualquier mé-
todo de Euler o el método RK4. Use los valores nu-
méricos M � 3 kg para la masa y k � 48 N/m para la 
constante del resorte.

d)  Observe que no importa qué tan pequeño haga su ta-
maño de paso h, la solución empieza en el punto (0, 0) y 
aumenta casi linealmente a la solución constante (x, 1). 
Demuestre que la solución numérica está descrita por

y ( t ) 
sen t,  si 0   t p>8,

1,       si t p 8. >

  ¿Esta solución describe en forma real el movimiento 
de la masa?

e)  La ecuación diferencial (8) es separable. Separe las 
variables e integre para obtener una solución analí-
tica. ¿La solución analítica describe en forma real el 
movimiento del resorte?

f)  Esta es otra forma de modelar el problema numéri-
camente. Derivando ambos lados de (8) respecto a t, 
demuestre que se obtiene el PVI de segundo orden 
con coefi cientes constantes

 
d 2 y 

dt 2 v2 y 0,    y (0) 0,    y (0) 1. 

g)  Resuelva el PVI en el inciso f) numéricamente usando 
el método RK4 y compare con la solución analítica.

h)  Repita el análisis anterior para el caso de movimiento 
forzado. Tome F � 10 N.

x

Fk

M

FIGURA 9.2.2  Sistema resorte/masa.

MÉTODOS MULTIPASOS

REPASO DE MATERIAL
● Secciones 9.1 y 9.2.

INTRODUCCIÓN  Los métodos de Euler, de Euler mejorado y de Runge-Kutta son ejemplos de 
métodos de un sólo paso o de inicio. En estos métodos cada valor sucesivo y

n � 1
 se calcula sólo con 

base en la información acerca del valor precedente inmediato y
n
. Por otro lado, los métodos multipa-

sos o continuos usan los valores de los diferentes pasos calculados para obtener el valor de y
n � 1

. Hay 
un gran número de fórmulas de métodos multipasos para aproximar soluciones de ED, pero como no 
se tiene la intención de estudiar el extenso campo de procedimientos numéricos, sólo consideraremos 
uno de estos métodos.

9.3

Layachi Hadji 
Profesor Asociado del 
Departamento de Matemáticas de 
la Universidad de Alabama.
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MÉTODO DE ADAMS-BASHFORTH-MOULTON  El método multipasos que se 
analiza en esta sección se llama método de Adams-Bashforth-Moulton de cuarto 
orden. Al igual que el método de Euler mejorado es un método de predicción-correc-
ción, es decir, se emplea una fórmula para predecir un valor y * n 1, que a su vez se usa 
para obtener un valor corregido y

n�1
. La predicción en este método es la fórmula de 

Adams-Bashforth

 y * n 1 y n 

h 

24 
 (55 y n 59 y n 1 37 y n 2 9 y n 3 ) ,  (1)

 

y n 3 f ( x n 3 , y n 3 ) 

y n 2 f ( x n 2 , y n 2 ) 

y n 1 f ( x n 1 , y n 1 ) 

y n f ( x n , y n )  

  

  

  

para n 	 3. Después se sustituye el valor de y * n 1  en la corrección de 
Adams-Moulton

 y n 1 y n 

h 

24 
(9 y n 1 19 y n 5 y n 1 y n 2 )  

 y n 1 f ( x n 1 , y * n 1 ) .  

(2)

Observe que la fórmula (1) requiere conocer los valores de y
0
, y

1
, y

2
 y y

3
 para obtener 

y
4
. Por supuesto, el valor de y

0
 es la condición inicial dada. El error de truncamiento 

local del método de Adams-Bashforth-Moulton es O(h5), los valores de y
1
, y

2
 y y

3
 se 

calculan generalmente con un método con la misma propiedad de error, tal como el 
método de Runge-Kutta de cuarto orden.

EJEMPLO 1  Método de Adams-Bashforth-Moulton

Use el método de Adams-Bashforth-Moulton con h � 0.2 para obtener una aproxi-
mación a y(0.8) para la solución de

 y x y 1,    y (0) 1.  

SOLUCIÓN  Con un tamaño de paso de h � 0.2, y(0.8) se aproxima por y
4
. En princi-

pio se emplea el método RK4 con x
0
 � 0, y

0
 � 1 y h � 0.2 para obtener

 y 1 1.02140000,      y 2 1.09181796,      y 3 1.22210646.  

Ahora con las identifi caciones x
0
 � 0, x

1
 � 0.2, x

2
 � 0.4, x

3
 � 0.6 y f (x, y) � x � y 

� 1, encontramos

 

y 3 f ( x 3 , y 3 ) (0.6) (1.22210646) 1 0.82210646. 

y 2 f ( x 2 , y 2 ) (0.4) (1.09181796) 1 0.49181796 

y 1 f ( x 1 , y 1 ) (0.2) (1.02140000) 1 0.22140000 

y 0 f ( x 0 , y 0 ) (0) (1) 1 0  

  
  
  

Con los valores anteriores entonces la predicción (1) es

 y * 4 y 3 
0.2 

24 
 (55 y 3 59 y 2 37 y 1 9 y 0 ) 1.42535975.  

Para usar la corrección (2), primero se necesita

 y 4 f ( x 4 , y * 4 ) 0.8 1.42535975 1 1.22535975.  
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Por último, usando (2) se obtiene

 y 4 y 3 
0.2 

24 
 (9 y 4 19 y 3 5 y 2 y 1 ) 1.42552788.  

Se debe comprobar que el valor real de y(0.8) en el ejemplo 1 es y(0.8) � 
1.42554093. Véase el problema 1 en los ejercicios 9.3.

ESTABILIDAD DE LOS MÉTODOS NUMÉRICOS  Una consideración importante 
al usar métodos numéricos para aproximar la solución de un problema con valores 
iniciales es la estabilidad del método. En términos simples, un método numérico es 
estable si cambios pequeños en la condición inicial dan como resultado sólo cambios 
pequeños en la solución calculada. Se dice que un método numérico es inestable si no 
es estable. La razón por la cual las consideraciones de estabilidad son importantes es 
que en cada paso después del primero de una técnica numérica esencialmente se em-
pieza otra vez con un nuevo problema con valores iniciales, donde la condición inicial 
es el valor solución aproximado calculado en el paso anterior. Debido a la presencia 
del error de redondeo, es casi seguro que este valor varíe al menos un poco respecto al 
valor verdadero de la solución. Además del error de redondeo, otra fuente común de 
error ocurre en la condición inicial; en aplicaciones físicas los datos con frecuencia se 
obtienen con mediciones imprecisas.

Un posible método para detectar inestabilidad en la solución numérica de un pro-
blema con valores iniciales específi co es comparar las soluciones aproximadas ob-
tenidas cuando se emplean tamaños de paso reducidos. Si el método es inestable, el 
error puede aumentar en realidad con tamaños de paso más pequeños. Otra forma de 
comprobar la inestabilidad, es observar lo que sucede con las soluciones cuando se 
perturba un poco la condición inicial (por ejemplo, cambiar y(0) � 1 a y(0) � 0.999).

Para un estudio más detallado y preciso de la estabilidad, consulte un libro de 
análisis numérico. En general, los métodos examinados en este capítulo tienen buenas 
características de estabilidad.

VENTAJAS Y DESVENTAJAS DE LOS MÉTODOS MULTIPASOS  Intervienen 
muchas consideraciones en la elección de un método para resolver de forma numérica 
una ecuación diferencial. Los métodos de un sólo paso, en particular el RK4, se eligen 
debido a su precisión y al hecho de que son fáciles de programar. Sin embargo, una 
desventaja importante es que el lado derecho de la ecuación diferencial se debe evaluar 
muchas veces en cada paso. Por ejemplo, el método RK4 requiere cuatro evaluaciones 
de función para cada paso. Por otro lado, si se han calculado y almacenado las eva-
luaciones de función del paso anterior, un método multipasos requiere sólo una nueva 
evaluación de función para cada paso. Esto puede originar grandes ahorros de tiempo 
y reducir costos.

Como ejemplo, resolver en forma numérica y� � f (x, y), y(x
0
) � y

0
 usando n pasos 

con el método de Runge-Kutta de cuarto orden requiere 4n evaluaciones de la función. 
El método multipasos de Adams-Bashforth requiere 16 evaluaciones de la función 
para el iniciador de cuarto orden de Runge-Kutta y n – 4 para los n pasos de Adams-
Bashforth, lo que da un total de n � 12 evaluaciones de la función para este método. 
En general, el método multipasos de Adams-Bashforth requiere poco más de un cuarto 
del número de evaluaciones de función necesarias para el método RK4. Si se complica 
la evaluación de f (x, y), el método multipasos será más efi caz.

Otro asunto relacionado con los métodos multipasos es cuántas veces se debe re-
petir en cada paso la fórmula de corrección de Adams-Moulton. Cada vez que se usa la 
corrección, se hace otra evaluación de la función y por tanto se incrementa la precisión 
a expensas de perder una ventaja del método multipasos. En la práctica, la corrección se 
calcula una vez y si se cambia el valor de y

n � 1
 por una cantidad grande, se reinicia todo 

el problema con un tamaño de paso más pequeño. Esta es con frecuencia la base de los 
métodos de tamaño de paso variable, cuyo análisis está fuera del alcance de este libro.
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ECUACIONES Y SISTEMAS DE ORDEN SUPERIOR

REPASO DE MATERIAL
● Sección 1.1 (forma normal de una ED de segundo orden)
● Sección 4.9 (ED de segundo orden escrita como un sistema de ED de primer orden)

INTRODUCCIÓN  Hasta ahora, nos hemos concentrado en técnicas numéricas que se pueden usar para 
aproximar la solución de un problema con valores iniciales de primer orden y� � f(x, y), y(x

0
) � y

0
. 

Para aproximar la solución de un problema con valores iniciales de segundo orden, se debe expresar una ED 
de segundo orden como un sistema de dos ED de primer orden. Para hacer esto, se empieza por escribir la 
ED de segundo orden en forma normal al despejar y� en términos de x, y y y�.

9.4

PVI DE SEGUNDO ORDEN  Un problema con valores iniciales de segundo orden

 y f ( x , y , y ),    y ( x 0 ) y 0 ,    y ( x 0 ) u 0  (1)

se puede expresar como un problema con valores iniciales para un sistema de ecuacio-
nes diferenciales de primer orden. Si y� � u, la ecuación diferencial en (1) se convierte 
en el sistema

 y u 

 u f ( x , y , u ).  
(2)

Puesto que y�(x
0
) � u(x

0
), las condiciones iniciales correspondientes para (2) son 

y(x
0
) � y

0
, u(x

0
) � u

0
. El sistema (2) se puede resolver de forma numérica mediante la 

simple aplicación de un método numérico a cada ecuación diferencial de primer orden 
en el sistema. Por ejemplo, el método de Euler aplicado al sistema (2) sería

 y n 1 y n hu n  

   u n 1 u n h f ( x n , y n , u n ) ,  
(3)

mientras que el método de Runge-Kutta de cuarto orden o método RK4, sería

 y n 1 y n 

h 

6 
( m 1 2 m 2 2 m 3 m 4 )  

   u n 1 u n 

h 

6 
( k 1 2 k 2 2 k 3 k 4 )  

(4)

 1. Determine la solución analítica del problema con valores ini-
ciales del problema 1. Compare los valores reales de y(0.2), 
y(0.4), y(0.6) y y(0.8) con las aproximaciones y

1
, y

2
, y

3
 y y

4
.

 2. Escriba un programa de computadora para ejecutar el mé-
todo de Adams-Bashforth-Moulton.

En los problemas 3 y 4 use el método Adams-Bashforth-Moul-
ton para aproximar y(0.8), donde y(x) es la solución del problema 
con valores iniciales dado. Use h � 0.2 y el método RK4 para 
calcular y

1
, y

2
 y y

3
.

 3. y� � 2x � 3y � 1,  y(0) � 1

 4. y� � 4x � 2y,  y(0) � 2

EJERCICIOS 9.3  Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-16.

En los problemas 5 a 8, use el método de Adams-Bashforth-
Moulton para aproximar y(1.0), donde y(x) es la solución del 
problema con valores iniciales dado. Primero use h � 0.2 y 
después use h � 0.1. Use el método RK4 para calcular y

1
, y

2
 

y y
3
.

 5. y� � 1 � y2,  y(0) � 0

 6. y� � y � cos x,  y(0) � 1

 7. y� � (x � y)2,  y(0) � 0

 8. y xy 1 y ,    y (0) 1 
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354 ● CAPÍTULO 9  SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES ORDINARIAS

donde  

 

 

 k 4 f ( x n h ,  y n hm 3 ,  u n hk 3 ).m 4 u n hk 3 

k 3 f ( x n 
1 
2 h ,  y n 

1 
2 hm 2 ,  u n 

1 
2 hk 2 ) m 3 u n 

1 
2 hk 2 

k 2 f ( x n 
1 
2 h ,  y n 

1 
2 hm 1 ,  u n 

1 
2 hk 1 ) m 2 u n 

1 
2 hk 1 

k 1 f ( x n ,  y n ,  u n ) m 1 u n 

En general, se puede expresar cada ecuación diferencial de n-ésimo orden y(n) � 
f (x, y, y�, . . . , y(n � 1)) como un sistema de n ecuaciones diferenciales de primer orden 
usando las sustituciones y � u

1
, y� � u

2
, y� � u

3
, . . . , y(n � 1) � un.

EJEMPLO 1  Método de Euler

Use el método de Euler para obtener el valor aproximado de y(0.2), donde y(x) es la 
solución del problema con valores iniciales

 y xy y 0,    y (0) 1,    y (0) 2.  (5)

SOLUCIÓN  En términos de la sustitución y� � u, la ecuación es equivalente para el 
sistema

 

 .   u xu y 

  y u 

Por lo que de (3) se obtiene

 

 
 u n 1 u n h [ x n u n y n ]. 

 y n 1 y n hu n 

Usando el tamaño de paso h � 0.1 y y
0
 � 1, u

0
 � 2, encontramos

  

  

  

    u 2 u 1 (0.1)[ x 1 u 1 y 1 ] 1.9 (0.1)[ (0.1)(1.9) 1.2] 1.761. 

   y 2 y 1 (0.1) u 1 1.2 (0.1)(1.9) 1.39 

   u 1 u 0 (0.1) [ x 0 u 0 y 0 ] 2 (0.1)[ (0)(2) 1] 1.9 

   y 1 y 0 (0.1) u 0 1 (0.1)2 1.2 

 

En otras palabras, y(0.2) � 1.39 y y�(0.2) � 1.761. 

Con ayuda de la aplicación para grafi car de un programa de solución numérica, en la 
fi gura 9.4.1a se compara la curva solución de (5) generada con el método de Euler (h � 
0.1) en el intervalo [0, 3] con la curva solución generada con el método RK4 (h � 0.1). 
De la fi gura 9.4.1b parece que la solución y(x) de (4) tiene la propiedad que y(x) S 0 
conforme x S 
. 

Si se desea, se puede usar el método de la sección 6.1 para obtener dos soluciones 
en serie de potencias de la ecuación diferencial en (5). Pero a menos que este método 
revele que la ED tiene una solución elemental, aún se puede aproximar y(0.2) con una 
suma parcial. Examinando nuevamente las soluciones en serie infi nitas de la ecuación 
diferencial de Airy y� � xy � 0, vistas en la página 226, no muestran el compor-
tamiento oscilatorio que las soluciones y

1
(x) y y

2
(x) presentan en las gráfi cas de la fi -

gura 6.1.2. Esas gráfi cas se obtuvieron con un programa de solución numérica usando 
el método RK4 con tamaño de paso de h � 0.1. 

SISTEMAS REDUCIDOS A SISTEMAS DE PRIMER ORDEN  Usando un procedi-
miento similar al que se acaba de describir para ecuaciones de segundo orden, se reduce un 
sistema de ecuaciones diferenciales de orden superior a un sistema de ecuaciones de primer 
orden, determinando primero la derivada de orden superior de cada variable dependiente y 
después haciendo las sustituciones apropiadas para las derivadas de orden menor.

x

y

21

2

1

0.2

Método de Euler

aproximadamente
y(0.2)

a) Método de Euler (roja) y  
método RK4 (azul)

b) Método RK4

x

y

10 205 15

2

1

Método RK4

FIGURA 9.4.1  Curvas solución 
numérica generadas con diferentes 
métodos.
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EJEMPLO 2  Un sistema reescrito como un sistema de primer orden

Escriba  

 2 x y 2 y 3 t 2 

x x 5 x 2 y e t 

 

como un sistema de ecuaciones diferenciales de primer orden.

SOLUCIÓN  Escriba el sistema como

  

 y 3 t 2 2 x 2 y 

x 2 y e t 5 x x 

 
y después elimine y� multiplicando la segunda ecuación por 2 y restando. Esto da

 . x 9 x 4 y x e t 6 t 2  

Puesto que la segunda ecuación del sistema ya expresa la derivada de y de orden su-
perior en términos de las demás funciones, ahora se tiene la posibilidad de introducir 
nuevas variables. Si se hace x� � u y y� � v, las expresiones para x� y y� respectiva-
mente, se convierten en

  

 v y 2 x 2 y 3 t 2 . 

u x 9 x 4 y u e t 6 t 2 

 
El sistema original se puede escribir en la forma

  

  

  

 v 2 x 2 y 3 t 2 . 

u 9 x 4 y u e t 6 t 2 

y v 

x u 

 

No siempre es posible realizar las reducciones que se muestran en el ejemplo 2.

SOLUCIÓN NUMÉRICA DE UN SISTEMA  La solución de un sistema de la forma

 

� f1(t,x1,x2, . . . ,xn)

� f2(t,x1,x2, . . . ,xn)

� fn(t,x1,x2, . . . ,xn)

.

.

.
.
.
.

dx1–––
dt

dx2–––
dt

dxn–––
dt  

se puede aproximar con una versión del método de Euler, de Runge-Kutta o de Adams-
Bashforth-Moulton adaptada al sistema. Por ejemplo, el método RK4 aplicado al sis-
tema

  

  (6)

 x ( t 0 ) x 0 ,      y ( t 0 ) y 0 , 

y g ( t , x , y ) 

x f ( t , x , y ) 

 

se parece a:

  

 
y n 1 y n 

h 

6 
( k 1 2 k 2 2 k 3 k 4 ) , 

x n 1 x n 

h 

6 
( m 1 2 m 2 2 m 3 m 4 ) 

 

(7)
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356 ● CAPÍTULO 9  SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES ORDINARIAS

 donde

  

  

 
 

(8)

 k 4 g ( t n h , x n hm 3 , y n hk 3 ) . m 4 f ( t n h , x n hm 3 , y n hk 3 ) 

k 3 g ( t n 
1 
2 h , x n 

1 
2 h m 2 , y n 

1 
2 h k 2 ) m 3 f ( t n 

1 
2 h , x n 

1 
2 hm 2 , y n 

1 
2 hk 2 ) 

k 2 g ( t n 
1 
2 h , x n 

1 
2 h m 1 , y n 

1 
2 h k 1 ) m 2 f ( t n 

1 
2 h , x n 

1 
2 hm 1 , y n 

1 
2 hk 1 ) 

k 1 g ( t n , x n , y n ) m 1 f ( t n , x n , y n ) 

EJEMPLO 3  Método RK4

Considere el problema con valores iniciales

  

  

 
x (0) 1,      y (0) 6. 

y x 6 y 

x 2 x 4 y 

 

Use el método RK4 para aproximar x(0.6) y y(0.6). Compare los resultados para 
h � 0.2 y h � 0.1.

SOLUCIÓN  Se muestran los cálculos de x
1
 y y

1
 con tamaño de paso h � 0.2. Con las 

identifi caciones f (t, x, y) � 2x � 4y, g(t, x, y) � �x � 6y, t
0
 � 0, x

0
 � �1 y y

0
 � 6, 

se ve de (8) que

  

  

  

  

  

  

  

 k 4 g ( t 0 h , x 0 hm 3 , y 0 hk 3 ) g (0.2, 9.608, 19.416) 106.888. 

m 4 f ( t 0 h , x 0 hm 3 , y 0 hk 3 ) f (0.2, 9.608, 19.416) 96.88 

k 3 g ( t 0 
1 
2 h , x 0 

1 
2 hm 2 , y 0 

1 
2 hk 2 ) g (0.1, 3.12, 11.7) 67.08 

m 3 f ( t 0 
1 
2 h , x 0 

1 
2 hm 2 , y 0 

1 
2 hk 2 ) f (0.1, 3.12, 11.7) 53.04 

k 2 g ( t 0 
1 
2 h , x 0 

1 
2 hm 1 , y 0 

1 
2 hk 1 ) g (0.1, 1.2, 9.7) 57 

m 2 f ( t 0 
1 
2 h , x 0 

1 
2 hm 1 , y 0 

1 
2 hk 1 ) f (0.1, 1.2, 9.7) 41.2 

k 1 g ( t 0 , x 0 , y 0 ) g (0, 1, 6) 1( 1) 6(6) 37 

m 1 f ( t 0 , x 0 , y 0 ) f (0, 1, 6) 2( 1) 4(6) 22 

 

Por tanto de (7) se obtiene

  

  

  

 
6 

0.2 

6 
 (37 2(57) 2(67.08) 106.888) 19.0683, 

y 1 y 0 
0.2 

6 
 ( k 1 2 k 2 2 k 3 k 4 ) 

1 
0.2 

6 
 (22 2(41.2) 2(53.04) 96.88) 9.2453 

x 1 x 0 
0.2 

6 
 ( m 1 2 m 2 2 m 3 m 4 ) 

 

TABLA 9.8  h � 0.2

 t
n
 x

n
 y

n

0.00 �1.0000 6.0000
0.20 9.2453 19.0683
0.40 46.0327 55.1203
0.60 158.9430 150.8192

TABLA 9.9  h � 0.1

 t
n
 x

n
 y

n

0.00 �1.0000 6.0000
0.10 2.3840 10.8883
0.20 9.3379 19.1332
0.30 22.5541 32.8539
0.40 46.5103 55.4420
0.50 88.5729 93.3006
0.60 160.7563 152.0025
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donde, como es usual, los valores calculados de x
1
 y y

1
 están redondeados a cuatro lu-

gares decimales. Estos números nos dan la aproximación x
1
 � x(0.2) y y

1
 � y(0.2). Los 

valores subsecuentes, obtenidos con la ayuda de una computadora, se resumen en las 
tablas 9.8 y 9.9. 

Se debe comprobar que la solución del problema con valores iniciales del ejemplo 
3 está dada por x(t) � (26t � 1)e4t, y(t) � (13t � 6)e4t. De estas ecuaciones vemos 
que los valores reales x(0.6) � 160.9384 y y(0.6) � 152.1198 se comparan favora-
blemente con las entradas del último renglón de la tabla 9.9. La gráfi ca de la solución 
en una vecindad de t � 0 que se muestra en la fi gura 9.4.2; la gráfi ca se obtuvo de un 
programa de solución numérico usando el método RK4 con h � 0.1.

En conclusión, establacemos el método de Euler para el sistema general (6):

  

   y n 1 y n hg ( t n ,  x n ,  y n ) . 

  x n 1 x n h f ( t n ,  x n ,  y n ) 

 

EJERCICIOS 9.4     Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-16.

 1. Use el método de Euler para aproximar y(0.2), donde y(x) 
es la solución del problema con valores iniciales

y 4 y 4 y 0,    y (0) 2,    y (0) 1. 

  Use h � 0.1. Encuentre la solución analítica del problema 
y compare el valor real de y(0.2) con y

2
· 

 2. Use el método de Euler para aproximar y(1.2), donde y(x) 
es la solución del problema con valores iniciales

x 2 y 2 xy 2 y 0,    y (1) 4,    y (1) 9, 

  donde x � 0. Use h � 0.1. Encuentre la solución analítica 
del problema y compare el valor real de y(1.2) con y

2
.

En los problemas 3 y 4 repita el problema indicado con el mé-
todo RK4. Primero utilice h � 0.2 y después h � 0.1.

 3. Problema 1

 4. Problema 2

 5. Use el método RK4 para aproximar y(0.2), donde y(x) es 
la solución del problema con valores iniciales.

y 2 y 2 y e t   cos  t ,    y (0) 1,    y (0) 2. 

  Primero use h � 0.2 y después h � 0.1.

 6. Cuando E � 100 V, R � 10 � y L � 1 h, el sistema de 
ecuaciones diferenciales para las corrientes i

1
(t) e i

3
(t) en 

la red eléctrica dada en la fi gura 9.4.3 es

  
di 3 

dt 
10 i 1 20 i 3 , 

  
di 1 

dt 
20 i 1 10 i 3 100 

  donde i
1
(0) � 0 e i

3
(0) � 0. Use el método RK4 para 

aproximar i
1
(t) e i

3
(t) en t � 0.1, 0.2, 0.3, 0.4 y 0.5. Use

 h � 0.1. Mediante un programa de solución numérica 
obtenga la gráfi ca de la solución en el intervalo 0 � t � 5. 
Use las gráfi cas para predecir el comportamiento de i

1
(t) e 

i
3
(t) conforme t S �.

FIGURA 9.4.3  Red del problema 6.

i1 i2

i3R

R

L L

RE

t

x, y

_ 1

1 y(t)

x(t)

FIGURA 9.4.2  Curvas solución 
numérica para el PVI del ejemplo 3.

En los problemas 7 a 12, use el método de Runge-Kutta para 
aproximar x(0.2) y y(0.2). Primero use h � 0.2 y después h 
� 0.1. Use un programa de solución numérica y h � 0.1 para 
trazar la gráfi ca de la solución en una vecindad de t � 0.

 7.  x� � 2x � y 8. x� � x � 2y
y� � x  y� � 4x � 3y
x(0) � 6,  y(0) � 2  x(0) � 1,  y(0) � 1

 9.  x� � �y � t 10. x� � 6x � y � 6t
y� � x � t  y� � 4x � 3y � 10t � 4
x(0) � �3,  y(0) � 5  x(0) � 0.5,  y(0) � 0.2

11.  x� � 4x � y� � 7t 12.  x�� y�� 4t
x� � y� � 2y � 3t  �x� � y� � y � 6t2 � 10
x(0) � 1,  y(0) � �2  x(0) � 3,  y(0) � �1
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PROBLEMAS CON VALORES EN LA FRONTERA DE SEGUNDO ORDEN

REPASO DE MATERIAL
● Sección 4.1 (página 119)
● Ejercicios 4.3 (Problemas 37-40)
● Ejercicios 4.4 (Problemas 37-40)
● Sección 5.2 

INTRODUCCIÓN  En la sección 9.4 vimos cómo aproximar la solución de un problema con valores 
iniciales de segundo orden 

y� � f (x, y, y�),  y(x
0
) � y

0
,  y�(x

0
) � u

0
.

En esta sección se tratan dos métodos para encontrar una solución aproximada de un problema con 
valores en la frontera de segundo orden

y� � f (x, y, y�),  y(a) � a,  y(b) � b.

A diferencia del procedimiento utilizado en los problemas con valores iniciales de segundo orden, en 
los métodos para los problemas con valores en la frontera de segundo orden no se requiere escribir la 
ED de segundo orden como un sistema de ED de primer orden.

9.5

APROXIMACIONES POR DIFERENCIAS FINITAS  El desarrollo en serie de 
Taylor centrado en el punto a, de una función y(x) es

 
y ( x ) y ( a ) y ( a ) 

x a 

1! 
y ( a ) 

( x a ) 2 

2! 
y ( a ) 

( x a ) 3 

3! 
. 

 

Si se hace h � x � a, entonces el renglón anterior es igual a

 
y ( x ) y ( a ) y ( a ) 

h 

1! 
y ( a ) 

h 2 

2! 
y ( a ) 

h 3 

3! 
. 
 

Para el análisis posterior es conveniente volver a escribir la última expresión en las dos 
formas alternativas:

  (1)

y y ( x h ) y ( x ) y ( x ) h y ( x ) 
h 2 

2 
y ( x ) 

h 3 

6 
. 

y ( x h ) y ( x ) y ( x ) h y ( x ) 
h 2 

2 
y ( x ) 

h 3 

6 

 (2)

Si h es pequeña, podemos despreciar los términos que implican a h4, h5, . . . puesto que 
estos valores son despreciables. En realidad, si se ignoran todos los términos con h2 y 
superiores, y resolviendo (1) y (2), respectivamente, para y�(x) se obtienen las aproxi-
maciones siguientes para la primera derivada:

  (3)

 y ( x ) 
1 

h 
 [ y ( x ) y ( x h )]. 

y ( x ) 
1 

h 
 [ y ( x h ) y ( x )] 

 (4)

Restando (1) y (2) también se obtiene

 y ( x ) 
1 

2 h 
 [ y ( x h ) y ( x h )].  (5)
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Por otro lado, si se ignoran los términos con h3 y superiores, entonces al sumar (1) y 
(2) se obtiene una aproximación de la segunda derivada y�(x):

 y ( x ) 
1 

h 2  [ y ( x h ) 2 y ( x ) y ( x h )].  (6)

Los lados derechos de (3), (4), (5) y (6) se llaman cocientes de diferencias. Las ex-
presiones

  

y y ( x h ) 2 y ( x ) y ( x h ) 

y ( x h ) y ( x ),   y ( x ) y ( x h ),   y ( x h ) y ( x h ), 

 

se llaman diferencias fi nitas. En particular, y(x � h) � y(x) recibe el nombre de dife-
rencia hacia adelante, y(x) � y(x � h) es una diferencia hacia atrás y tanto y(x � h) 
� y(x � h) como y(x � h) � 2y(x) � y(x � h) se llaman diferencias centrales. Los 
resultados que se presentan en (5) y (6) se llaman aproximaciones por diferencias 
centrales de las derivadas y� y y�.

MÉTODO DE DIFERENCIAS FINITAS  Ahora considere un problema lineal con 
valores en la frontera de segundo orden

 y P ( x ) y Q ( x ) y f ( x ) ,      y ( a ) ,    y ( b ) .  (7)

Suponga que a � x
0
 
 x

1
 
 x

2
 
 . . . 
 x

n � 1
 
 x

n
 � b representa una partición regular 

del intervalo [a, b], es decir, x
i
 � a � ih, donde i � 0, 1, 2, . . . , n y h � (b � a)�n. 

Los puntos

 x 1 a h ,      x 2 a 2 h , . . . ,      x n 1 a ( n 1) h  

se llaman puntos de malla interiores del intervalo [a, b]. Si hacemos

 y i y ( x i ),      P i P ( x i ),      Q i Q ( x i )      y      f i f ( x i )  

y si y� y y� en (7) se reemplazan por las aproximaciones de diferencias centrales (5) y 
(6), se obtiene

 
y i 1 2 y i y i 1 

h 2 P i 
y i 1 y i 1 

2 h 
Q i y i f i  

o después de simplifi car

 1 
h 

2 
P i y i 1 ( 2 h 2 Q i ) y i 1 

h 

2 
P i y i 1 h 2 f i .  (8)

La ultima ecuación se conoce como ecuación de diferencias fi nitas y es una aproxi-
mación a la ecuación diferencial. Permite aproximar la solución y(x) de (7) en los 
puntos de malla interiores x

1
, x

2
, . . . , x

n � 1
 del intervalo [a, b]. Si i toma los valores 

1, 2, . . . , n � 1 en (8), se obtienen n � 1 ecuaciones con n � 1 incógnitas y
1
, y

2
, . . . , 

y
n – 1

. Considere que se conocen y
0
 y y

n
 porque son las condiciones prescritas en la 

frontera y
0
 � y(x

0
) � y(a) � a y y

n
 � y(x

n
) � y(b) � b.

En el ejemplo 1 se considera un problema con valores en la frontera para el que 
se pueden comparar los valores aproximados con los valores reales de una solución 
explícita.

EJEMPLO 1  Uso del método de diferencias fi nitas

Use la ecuación de diferencias (8) con n � 4 para aproximar la solución del problema 
con valores en la frontera y� � 4y � 0, y(0) � 0, y(1) � 5.

9.5  PROBLEMAS CON VALORES EN LA FRONTERA DE SEGUNDO ORDEN ● 359
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360 ● CAPÍTULO 9  SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES ORDINARIAS

SOLUCIÓN  Para usar (8), se identifi ca P(x) � 0, Q(x) � �4, f(x) � 0 y  
h (1 0) >4 1 

4 . De donde la ecuación de diferencia es

 y i 1 2.25 y i y i 1 0.  (9)

Ahora, los puntos interiores son x 1 0 1 
4 , x 2 0 2 

4 , x 3 0 3 
4 , por lo que para i 

� 1, 2 y 3, la ecuación (9) genera el sistema siguiente para las correspondientes y
1
, y

2
 y y

3

  

  

 y 4 2.25 y 3 y 2 0. 

y 3 2.25 y 2 y 1 0 

y 2 2.25 y 1 y 0 0 

 

Con las condiciones en la frontera y
0
 � 0 y y

4
 � 5 el sistema anterior se convierte en

 �2.25y
1
 � y

2
 � 0

 y
1
 � 2.25y

2
 � y

3
 � 0 

 y
2
 � 2.25y

3
 � �5. 

La solución del sistema es y
1
 � 0.7256, y

2
 � 1.6327 y y

3
 � 2.9479.

Ahora la solución general de la ecuación diferencial dada es y � c
1
 cosh 2x � c

2
 

senh 2x. La condición y(0) � 0 signifi ca que c
1
 � 0. La otra condición en la frontera 

da c
2
. De este modo se ve que una solución del problema con valores en la frontera es 

y(x) � (5 senh 2x)�senh 2. Por tanto, los valores reales (redondeados a cuatro decima-
les) de esta solución en los puntos interiores son los siguientes: y(0.25) � 0.7184, 
y(0.5) � 1.6201 y y(0.75) � 2.9354. 

La precisión de las aproximaciones en el ejemplo 1 se puede mejorar usando un 
valor más pequeño de h. Por supuesto, usar un valor más pequeño de h requiere resol-
ver un sistema más grande de ecuaciones. Se deja como ejercicio demostrar que con 
h 1 

8 , las aproximaciones a y(0.25), y(0.5) y y(0.75) son 0.7202, 1.6233 y 2.9386, 
respectivamente. Véase el problema 11 en los ejercicios 9.5.

EJEMPLO 2  Usando el método de diferencias fi nitas

Use la ecuación diferencial (8) con n � 10 para aproximar la solución de

 
y 3 y 2 y 4 x 2 ,      y (1) 1,    y (2) 6. 

 

SOLUCIÓN  En este caso se identifi ca P(x) � 3, Q(x) � 2, f(x) � 4x2 y h � (2 � 
1)�10 � 0.1, y así (8) se convierte en

 1.15 y i 1 1.98 y i 0.85 y i 1 0.04 x i 2 .  (10)

Ahora los puntos interiores son x
1
 � 1.1, x

2
 � 1.2, x

3
 � 1.3, x

4
 � 1.4, x

5
 � 1.5, x

6
 � 

1.6, x
7
 � 1.7, x

8
 � 1.8 y x

9
 � 1.9. Para i � 1, 2, . . . , 9 y y

0
 � 1, y

10
 � 6, la ecuación 

(10) da un sistema de nueve ecuaciones y nueve incógnitas:

  

  

  

  

  

 1.15 y 7 1.98 y 6 0.85 y 5 0.1024 

1.15 y 6 1.98 y 5 0.85 y 4 0.0900 

1.15 y 5 1.98 y 4 0.85 y 3 0.0784 

1.15 y 4 1.98 y 3 0.85 y 2 0.0676 

1.15 y 3 1.98 y 2 0.85 y 1 0.0576 

1.15 y 2 1.98 y 1 0.8016 
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En los problemas l a 10 use el método de diferencias fi nitas y 
el valor indicado de n para aproximar la solución de los pro-
blemas con valores en la frontera.

 1. y� � 9y � 0,  y(0) � 4, y(2) � 1;  n � 4

 2. y� � y � x2,  y(0) � 0, y(1) � 0;  n � 4

 3. y� � 2y� � y � 5x,  y(0) � 0, y(1) � 0;  n � 5

 4. y� � 10y� � 25y � 1,  y(0) � 1, y(1) � 0;  n � 5

 5. y� � 4y� � 4y � (x � 1)e2x,
y(0) � 3, y(1) � 0;  n � 6

 6. y 5 y 4 1 x ,   y (1) 1,   y (2) 1;   n 6 

 7. x2y� � 3xy� � 3y � 0,  y(1) � 5, y(2) � 0;  n � 8

 8. x2y� � xy� � y � ln x,  y(1) � 0, y(2) � �2;  n � 8

 9. y� � (1 � x)y� � xy � x,  y(0) � 0, y(1) � 2;  n � 10

 10. y� � xy� � y � x,  y(0) � 1, y(1) � 0;  n � 10

 11. Resuelva de nuevo el ejemplo 1 usando n � 8.

 12. El potencial electrostático u entre dos esferas concéntri-
cas de radio r � 1 y r � 4 se determina a partir de

d 2 u 

dr 2 

2 

r 

du 

dr 
0,    u (1) 50,    u (4) 100.

  Use el método de esta sección con n � 6 para aproximar 
la solución de este problema con valores en la frontera.

EJERCICIOS 9.5  Las respuestas a los problemas seleccionados con número impar comienzan en la página RES-16.

  

  

 1.98 y 9 0.85 y 8 6.7556. 

1.15 y 9 1.98 y 8 0.85 y 7 0.1296 

1.15 y 8 1.98 y 7 0.85 y 6 0.1156 

 

Se puede resolver este grande sistema usando eliminación de Gauss o, con relativa 
facilidad, por medio de un sistema algebraico computarizado. El resultado que se en-
cuentra es y

1
 � 2.4047, y

2
 � 3.4432, y

3
 � 4.2010, y

4
 � 4.7469, y

5
 � 5.1359, y

6
 � 

5.4124, y
7
 � 5.6117, y

8
 � 5.7620 y y

9
 � 5.8855. 

MÉTODO DE TANTEOS  Otro modo de aproximar una solución de un problema 
con valores en la frontera y� � f(x, y, y�), y(a) � a, y(b) � b se denomina método de 
tanteos. El punto de partida de este método es reemplazar el problema con valores en 
la frontera por un problema con valores iniciales 

 y f ( x , y , y ),    y ( a ) a, y ( a ) m 1 .  (11)

El número m
1
 en (11) es simplemente una suposición de la pendiente desconocida de 

la curva solución en el punto conocido (a, y(a)). Se puede aplicar entonces una de las 
técnicas numéricas paso a paso a la ecuación de segundo orden en (11) para encontrar 
una aproximación b

1
 del valor de y(b). Si b

1
 concuerda con el valor dado y(b) � b den-

tro de alguna tolerancia asignada antes, se detiene el cálculo; de otro modo se repiten 
los cálculos, empezando con una suposición distinta y�(a) � m

2
 para obtener una se-

gunda aproximación b
2
 para y(b). Se puede continuar con este método usando prueba 

y error o las pendientes siguientes m
3
, m

4
, . . . se ajustan de alguna manera sistemática. 

La interpolación lineal proporciona, en especial, resultados satisfactorios cuando la 
ecuación diferencial en (11) es lineal. El procedimiento es similar al tiro al blanco (el 
objetivo es elegir la pendiente inicial), se dispara hacia una objetivo ojo de buey y(b) 
hasta que se acierta. Véase el problema 14 en los ejercicios 9.5.

Por supuesto, lo que subyace en el uso de estos métodos numéricos es la suposi-
ción de que existe una solución para el problema con valores en la frontera, la que se 
sabe, no está siempre garantizada.

COMENTARIOS

El método de aproximación con diferencias fi nitas se puede generalizar a proble-
mas con valores en la frontera en los que la primera derivada se especifi ca en una 
frontera, por ejemplo, un problema del tipo y� � f (x, y, y�), y�(a) � a, y(b) � b. 
Véase el problema 13 de los ejercicios 9.5.

9.5  PROBLEMAS CON VALORES EN LA FRONTERA DE SEGUNDO ORDEN ● 361
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362 ● CAPÍTULO 9  SOLUCIONES NUMÉRICAS DE ECUACIONES DIFERENCIALES ORDINARIAS

 13. Considere el problema con valores en la frontera y� � xy 
� 0, y�(0) � 1, y(1) � �1.

a)  Encuentre la ecuación en diferencias correspondiente 
a la ecuación diferencial. Demuestre que para i � 0, 
1, 2, . . . , n � 1 la ecuación en diferencias produce 
n con n � 1 incógnitas y

�1
, y

0
, y

1
, y

2
, . . . , y

n – 1
. Aquí 

y
�1 

y y
0 
son incógnitas, puesto que y

�1
 representa una 

aproximación a y al punto exterior x � �h y y
0
 no 

está especifi cada en x � 0.

b)  Use la aproximación de diferencias centrales (5) para 
demostrar que y

1 
� y

�2
 � 2h. Utilice esta ecuación 

para eliminar y
�1

 del sistema en el inciso a).

c)  Use n � 5 y el sistema de ecuaciones encontradas 
en los incisos a) y b) para aproximar la solución del 
problema con valores en la frontera original.

Tarea para el laboratorio de computación

 14. Considere el problema con valores en la frontera y� � y� 
– sen (xy), y(0) � 1, y(1) � 1.5. Use el método de tanteos 
para aproximar la solución de este problema. (La aproxi-
mación se puede obtener usando una técnica numérica, 
digamos, el método RK4 con h � 0.1; o, aún mejor, si 
tiene acceso a un SAC tal como Mathematica o Maple, 
puede usar la función NDSolve).

 REPASO DEL CAPÍTULO 9                                        Las respuestas a los problemas seleccionados con número impar 
comienzan en la página RES-16.

En los problemas 1 a 4 construya una tabla para comparar 
los valores indicados de y(x) mediante el método de Euler, 
el método de Euler mejorado y el método RK4. Calcule re-
dondeando a cuatro cifras decimales. Primero use h � 0.1 y 
después h � 0.05.

 1. y� � 2 ln xy,  y(1) � 2;
  y(1.1), y(1.2), y(1.3), y(1.4), y(1.5)

 2. y� � sen x2 � cos y2,  y(0) � 0;
  y(0.1), y(0.2), y(0.3), y(0.4), y(0.5)

 3. y 1 x y ,   y (0.5) 0.5; 
  y(0.6), y(0.7), y(0.8), y(0.9), y(1.0)

 4. y� � xy � y2,  y(1) � 1;
  y(1.1), y(1.2), y(1.3), y(1.4), y(1.5)

 5. Aplique el método de Euler para aproximar y(0.2), donde 
y(x) es la solución del problema con valores iniciales y� 
– (2x � 1)y � 1, y(0) � 3, y�(0) � 1. Primero use un 
paso con h � 0.2 y después repita los cálculos usando dos 
pasos con h � 0.1.

 6. Utilice el método de Adams-Bashforth-Moulton para 
aproximar y(0.4), donde y(x) es la solución del problema 
con valores iniciales y� � 4x � 2y, y(0) � 2. Use h � 0.1 
y el método de RK4 para calcular y

1
, y

2
, y y

3
.

 7. Utilice el método de Euler para aproximar x(0.2) y y(0.2), 
donde x(t), y(t) es la solución del problema con valores 
iniciales.

 

  

 
x (0) 1,      y (0) 2. 

y x y 

x x y 

 8. Use el método de las diferencias fi nitas con n � 10, 
aproxime la solución del problema con valores en la fron-
tera y� � 6.55(1 � x)y � 1, y(0) � 0, y(1) � 0.
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La defi nición integral de Euler de la función gamma es

 (x)
0

tx 1e t dt.  (1)

La convergencia de la integral requiere que x � 1 � �l o x � 0. La relación de 
recurrencia

 (x 1) x (x),  (2)

como vimos en la sección 6.3, se puede obtener de (1) al integrar por partes. Ahora 
cuando x 1, (1) 0  e t dt 1, y por tanto de la ecuación (2) da se obtiene

  

  

  (4) 3 (3) 3 2 1

 (3) 2 (2) 2 1

 (2) 1 (1) 1

 

y así sucesivamente. Así de esta manera vemos que cuando n es un entero positivo, 
�(n � 1) � n!. Por esto a la función gamma se le llama con frecuencia función fac-
torial generalizada.

Aunque la forma integral (1) no converge cuando x � 0, se puede demostrar por 
medio de defi niciones alternativas, que la función gamma está defi nida para todos 
los números reales y complejos, excepto x � �n, n � 0, 1, 2, . . . . Como una conse-
cuencia, la ecuación (2) solo es válida para x � �n. La gráfi ca de �(x), considerada 
como una función de una variable real x, se presenta en la fi gura 1.1. Observe que los 
enteros no positivos corresponden a las asíntotas verticales de la gráfi ca.

En los problemas 31 y 32 de los ejercicios 6.3 hemos usado el hecho de que 
(1

2) 1 . Este resultado se puede deducir a partir de (1) y haciendo x 1
2 :

 (1
2)

0
t 1/2e t dt.  (3)

Cuando se hace t � u2, la ecuación (3) se puede escribir como (1
2) 2 0  e u2

 du. 
Pero 0  e u2

 du 0  e v2
 dv,  por lo que

 [ (1
2)]

2
2

0
e u2

 du 2
0

e v2
 dv 4

0 0
e (u2 v2) du dv. 

El cambiar a coordenadas polares, u � r cos u, v � r sen u nos permite evaluar la 
integral doble:

  

Por tanto [ (1
2)]

2   o   (1
2) 1 .

4
0 0

e (u2 v2 ) du dv 4
/2

0 0
e r 2

 r dr d .

 (4)

APÉNDICE I

FUNCIÓN GAMMA

APE-1

FIGURA I.1  Gráfi ca de �(x) para x 
distinto de cero y que sea un entero no 
negativo.

Γ(x)

x
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APÉ-2 ● APÉNDICE I  FUNCIÓN GAMMA

EJEMPLO 1  Valor de ( 1
2)

Evalúe ( 1
2).

SOLUCIÓN  Usando las ecuaciones (2) y (4), con x 1
2,

  

Por tanto ( 1
2) 2 (1

2) 21 .

(1
2) 1

2 ( 1
2).

 

EJERCICIOS PARA EL APÉNDICE I     Las respuestas a los problemas seleccionados con número 
impar comienzan en la página RES-29.

 1. Evalúe.

a) �(5) b) �(7)

c) ( 3
2�  d) ( 5

2)�

 2. Utilice la ecuación (1) y el hecho de que (6
5) 0.92  para

  evaluar 
0

x5e x 5
dx.  [Sugerencia: Haga t � x 5.]

 3. Utilice la ecuación (1) y el hecho de que (5
3) 0.89  

para evaluar 
0

x4e x3
dx.

 4. Evalúe 
1

0
x3 ln

1

x

3

dx [Sugerencia: Haga t � �ln x.]

 5. Utilice el hecho de que (x)
1

0
t x 1e t dt  para demos-

trar que �(x) no está acotada cuando x S 0�.

 6. Utilice (1) para deducir (2) cuando x � 0.
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II.1  DEFINICIONES BÁSICAS Y TEORÍA

DEFINICIÓN II.1  Matriz

Una matriz A es cualquier arreglo rectangular de números o funciones:

 

a11

a21

am1

a1n

a2n

amn

a12

a22

am2

. . .

. . .

. . .

A �
 ( .).

.

.
.
.
.

 

(1)

Si una matriz tiene m renglones y n columnas, se dice que su tamaño es m por n 
(se escribe como m � n). Una matriz n � n se llama matriz cuadrada de orden n.

El elemento, o entrada del i-ésimo renglón y la j-ésima columna de una matriz 
A m � n se representa por a

ij
. Una matriz A m � n se representa en la forma A � 

(a
ij
)

m � n
 o simplemente A � (a

ij
). Una matriz 1 � 1 es sólo una constante o función.

DEFINICIÓN II.2  Igualdad de matrices

Dos matrices m � n A y B son iguales si a
ij
 � b

ij
 para toda i y j.

DEFINICIÓN II.3  Matriz columna

Una matriz columna X es cualquier matriz que tenga n renglones y una 
columna:

 

b11

b21

bn1

 X �
 ( )  � (bi1)n�1..

.

.

 

Una matriz columna también se llama vector columna o simplemente vector.

DEFINICIÓN II.4  Múltiplos de matrices

Un múltiplo de una matriz A se defi ne como

 

ka11

ka21

kam1

ka1n

ka2n

kamn

ka12

ka22

kam2

. . .

. . .

. . .

kA �
 ( )  � (kaij)m�n,.

.

.
.
.
.

 

donde k es una constante o una función.

APÉNDICE II

MATRICES

APE-3
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APE-4 ● APÉNDICE II  MATRICES

EJEMPLO 1  Múltiplos de matrices

a) 5

2

4
1
5

3

1

6

10

20

1

15

5

30

 b) et

1

2

4

et

2et

4et

 

Observamos que para toda matriz A el producto kA es igual al producto Ak. Por 
ejemplo,

 e 3t 2

5

2e 3t

5e 3t

2

5
e 3t.  

DEFINICIÓN II.5  Suma de matrices

La suma de dos matrices A y B m � n se defi ne como la matriz

 A B (ai j bi j)m n.  

En otras palabras, cuando se suman dos matrices del mismo tamaño, se suman los 
elementos correspondientes.

EJEMPLO 2  Suma de matrices

La suma de A
2 1 3

0 4 6

6 10 5
 y B

4 7 8

9 3 5

1 1 2

 es

 

A B
   2 4 1 7    3 ( 8)

   0 9    4 3    6 5

6 1  10 ( 1) 5 2

   6 6 5

   9 7 11

5 9 3

.

 

EJEMPLO 3  Una matriz escrita como una suma de matrices columna

La matriz sola 
3t2 2et

t2 7t

5t

 se puede escribir como la suma de tres vectores columna:

 3t2 2et

t2 7t

5t

3t2

t2

0

0

7t

5t

2et

0

0

3

1

0

t 2

0

7

5

t

2

0

0

et.
 

La diferencia de dos matrices m � n se defi ne en la forma usual: A – B � A � 
(�B), donde –B � (�1)B.
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APÉNDICE II  MATRICES ● APE-5

DEFINICIÓN II.6  Multiplicación de matrices

Sea A una matriz con m renglones y n columnas y B una matriz con n renglo-
nes y p columnas. El producto AB se defi ne como la matriz m � p

       

a11

a21

am1

a1n

a2n

amn

a12

a22

am2

. . .

. . .

. . .

AB �
 ( ) ( ).

.

.
.
.
.

b11

b21

bn1

b1p

b2p

bnp

b12

b22

bn2

. . .

. . .

. . .

.

.

.
.
.
.

 

          

a11b11 � a12b21 �

a21b11 � a22b21 �

am1b11 � am2b21 �

� a1nbn1

� a2nbn1 

� amnbn1

�
 ( ).

.

.

. . .

. . .

. . .

a11b1p � a12b2p �

a21b1p � a22b2p �

am1b1p � am2b2p �

� a1nbnp

� a2nbnp 

� amnbnp

.

.

.

. . .

. . .

. . .

. . .

. . .

. . .
 

       
� ( � aikbkj)

m�p
.

k�1

n

 

Observe con cuidado en la defi nición II.6, que el producto AB � C está defi nido 
sólo cuando el número de columnas en la matriz A es igual al número de renglones en 
B. El tamaño del producto se determina de

 Am nBn p Cm p.
q q

 

También, reconocerá que los elementos en, digamos, el i-ésimo renglón de la matriz 
producto AB se forman aplicando la defi nición en componentes del producto interior, 
o punto, del i-ésimo renglón de A con cada una de las columnas de B.

EJEMPLO 4  Multiplicación de matrices

a) Para y B
9 2

6 8
,A

4 7

3 5

 AB
4 9 7 6 4 ( 2) 7 8

3 9 5 6 3 ( 2) 5 8

78 48

57 34
. 

b) Para B
4 3

2 0
,A

5 8

1 0

2 7
y 

 AB
5 ( 4) 8 2 5 ( 3) 8 0

1 ( 4) 0 2 1 ( 3) 0 0

2 ( 4) 7 2 2 ( 3) 7 0

4 15

4 3

6 6

.

 

En general, la multiplicación de matrices no es conmutativa; es decir, AB � BA.

 Observe en el inciso a) del ejemplo 4, que BA
30 53

48 82
, mientras que en el inciso 

b) el producto BA no está defi nido, porque en la defi nición II.6 se requiere que la 
primera matriz, en este caso B, tenga el mismo número de columnas como renglones 
tenga de la segunda.

Nos interesa en particular el producto de una matriz cuadrada por un vector co-
lumna.
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EJEMPLO 5  Multiplicación de matrices

a) 

b) 
4 2

3 8

x

y

4x 2y

3x 8y

2 1 3

0 4 5

1 7 9

3

6

4

2 ( 3) ( 1) 6 3 4

0 ( 3)  4 6 5 4

1 ( 3) ( 7) 6 9 4

0

44

9

 

IDENTIDAD MULTIPLICATIVA  Para un entero positivo n, la matriz n � n

 

1

0

0

0

1

0

0

0

0

. . .

. . .

. . .

I �
 ( ).

.

.

0

0

1

.

.

.

 
se llama matriz identidad multiplicativa. Por la defi nición II.6, para toda matriz 
A n � n.

 AI IA A. 

También se comprueba con facilidad que si X es una matriz columna n � 1, entonces 
IX � X.

MATRIZ CERO  Una matriz formada sólo por elementos cero se conoce como ma-
triz cero y se representa por 0. Por ejemplo,

 0
0

0
,    0

0 0

0 0
,    0

0 0

0 0

0 0

,  

y así sucesivamente. Si A y 0 son matrices m � n, entonces

 A 0 0 A A. 

LEY ASOCIATIVA  Aunque no lo demostraremos, la multiplicación de matrices es aso-
ciativa. Si A es una matriz m � p, B una matriz p � r y C una matriz r � n, entonces

 A(BC) (AB)C 

es una matriz m � n.

LEY DISTRIBUTIVA  Si todos los productos están defi nidos, la multiplicación es 
distributiva respecto de la suma:

 A(B C) AB AC    y     (B C)A BA CA. 

DETERMINANTE DE UNA MATRIZ  Asociado a toda matriz cuadrada A de cons-
tantes hay un número llamado determinante de la matriz, que se denota por det A.

EJEMPLO 6  Determinante de una matriz cuadrada

Para A
3 6 2

2 5 1

1 2 4
 desarrollamos det A por cofactores del primer renglón:

 

 3(20 2) 6(8 1) 2(4 5) 18.

A p
3  6  2

2  5  1

1  2  4
p  3

5 1

2 4
6

2 1

1 4
2

2 5

1 2  
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APÉNDICE II  MATRICES ● APE-7

Se puede demostrar que un determinante, det A se puede desarrollar por cofactores 
usando cualquier renglón o cualquier columna. Si det A tiene un renglón (o una co-
lumna) con muchos elementos cero, el sentido común aconseja desarrollar el determi-
nante por ese renglón (o columna).

DEFINICIÓN II.7  Transpuesta de una matriz

La transpuesta de la matriz (1) m � n es la matriz AT de n � m dada por

 

a11

a12

a1n

am1

am2

amn

a21

a22

a2n

. . .

. . .

. . .

AT �
 ( .).

.

.
.
.
.

 

Es decir, los renglones de una matriz A se convierten en las columnas de su 
transpuesta AT.

EJEMPLO 7  Transpuesta de una matriz

a) La transpuesta de es AT

3 2 1

6 5 2

2 1 4

.A
3 6 2

2 5 1

1 2 4

b) Si X
5

0

3

, entonces XT � (5   0   3). 

DEFINICIÓN II.8  Inversa multiplicativa de una matriz

Sea A una matriz n � n. Si existe una matriz B n � n tal que

 AB BA I,  

en donde I es la identidad multiplicativa, se dice que B es la inversa multipli-
cativa de A y se denota por B � A�1.

DEFINICIÓN II.9  Matrices no singular/singular

Sea A una matriz n � n. Si det A � 0, entonces se dice que A es no singular. 
Si det A � 0, entonces A es singular.

El siguiente teorema especifi ca una condición necesaria y sufi ciente para que una 
matriz cuadrada tenga inversa multiplicativa.

TEOREMA II.1  La no singularidad implica que A tiene una inversa

Una matriz A n � n tiene una inversa multiplicativa A�1 si y sólo si A es no 
singular.

El siguiente teorema describe un método para determinar la inversa multiplicativa 
de una matriz no singular.
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TEOREMA II.2  Una fórmula para la inversa de una matriz

Sea A una matriz no singular n � n y sea C
ij
 � (�l)i�j M

ij
, donde M

ij
 es el de-

terminante de la matriz de (n � 1) � (n � 1) obtenido al eliminar el i-ésimo 
renglón y la j-ésima columna de A, entonces

 A 1 1

det A
 (Cij)T. (2)

Cada C
ij
 en el teorema II.2, es simplemente el cofactor (el menor con signo) del ele-

mento a
ij
 en A. Observe que en la fórmula (2) se utiliza la transpuesta.

Para futuras referencias observe que en el caso de una matriz no singular 2 � 2

 A
a11 a12

a 21 a 22
 

que C
11

 � a
22

, C
12

 � �a
21

, C
21

 � �a
12

, y C
22

 � a
11

. Por tanto

 A 1 1

det A
a 22 a 21

a12 a11

T 1

det A
a 22 a12

a 21 a11
. (3)

Para una matriz no singular 3 � 3

  

 C11
a 22 a 23

a32 a33
,    C12

a 21 a 23

a31 a33
,    C13

a 21 a 22

a31 a32
,

A
a11 a12 a13

a 21 a 22 a 23

a31 a32 a33

,

 

y así sucesivamente. Al realizar la transposición se obtiene

 A 1 1

det A

C11 C21 C31

C12 C22 C32

C13 C23 C33

. (4)

EJEMPLO 8  Inversa de una matriz 2 � 2

Encuentre la inversa multiplicativa de A
1 4

2 10
.

SOLUCIÓN  Puesto que det A � 10 � 8 � 2 � 0, A es no singular. De acuerdo con 
el teorema II.1, A�1 existe. Utilizando la ecuación (3) encontramos que

 A 1 1

2

10 4

2 1

5 2

1 1
2

. 

No toda matriz cuadrada tiene inversa multiplicativa. La matriz A
2 2

3 3es singular, porque det A � 0. Por tanto, A�1 no existe.

EJEMPLO 9  Inversa de una matriz 3 � 3

Encuentre la inversa multiplicativa de A
2 2 0

2 1 1

3 0 1

.
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APÉNDICE II  MATRICES ● APE-9

SOLUCIÓN  Puesto que det A � 12 � 0, la matriz dada es no singular. Los cofactores 
correspondientes a los elementos de cada renglón de det A son

  

  

 C31
2 0

1 1
2 C32

2 0

2 1
2   C33

2 2

2 1
6.

C21
2 0

0 1
2   C22

2 0

3 1
2 C23

2 2

3 0
6

C11
1 1

0 1
1 C12

2 1

3 1
5 C13

2 1

3 0
3

 

Utilizando la ecuación (4) se tiene que

 A 1 1

12

1 2 2

5 2 2

3 6 6

1
12

1
6

1
6

5
12

1
6

1
6

1
4

1
2

1
2

. 

Le pedimos que compruebe que A�1A � AA�1 � I.  
La fórmula (2) presenta difi cultades obvias cuando las matrices no singulares son 

mayores de 3 � 3. Por ejemplo, para aplicarla a una matriz 4 � 4 necesitaríamos calcular 
dieciséis determinantes 3 � 3.* Para una matriz grande, hay métodos más efi cientes para 
calcular A�1. El lector interesado puede consultar cualquier libro de álgebra lineal.

Puesto que  nuestra meta es aplicar el concepto de una matriz a sistemas de ecuacio-
nes diferenciales lineales de primer orden, necesitaremos las defi niciones siguientes:

DEFINICIÓN II.10  Derivada de una matriz de funciones

Si A(t) � (a
ij
(t))

m � n
 es una matriz cuyos elementos son funciones derivables en 

un intervalo común, entonces

 
dA
dt

d

dt
ai j

m n

. 

DEFINICIÓN II.11  Integral de una matriz de funciones

Si A(t) � (a
ij
(t))

m � n
 es una matriz cuyos elementos son funciones continuas en 

un intervalo que contiene a t y t
0
, entonces

 
t

t 0

A(s) ds
t

t 0

ai j (s) ds
m n

. 

Para derivar o integrar una matriz de funciones, sólo se deriva o integra cada uno 
de sus elementos. La derivada de una matriz también se denota por A�(t). 

EJEMPLO 10  Derivada/integral de una matriz

Si        X(t)

sen 2t

e3t

8t 1

,         entonces        X (t)

d

dt
 sen 2t

d

dt
e3t

d

dt
(8t 1)

2 cos 2t

3e3t

8

 

*Estrictamente hablando, un determinante es un número, pero a veces conviene manejarlo como si fuera 
un arreglo.
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y 
t

0
X(s) ds

t
0 sen2s ds

t
0 e3s ds

t
0 (8s 1) ds

1
2 cos 2t 1

2
1
3 e3t 1

3

4t2 t

. 

II.2   ELIMINACIÓN GAUSSIANA Y DE GAUSS-JORDAN

Las matrices son una ayuda insustituible para resolver sistemas algebraicos de n ecua-
ciones lineales con n incógnitas

 

a11x1 a12x2 a1n xn b1

a21x1 a22x2 a2nxn b2

M                  M

an1x1 an2x2 annxn bn.

 (5)

Si A denota a la matriz de los coefi cientes en (5), sabemos que es posible usar la regla de 
Cramer para resolver el sistema, siempre que det A � O. Sin embargo, para seguir esa 
regla se necesita realizar un gran trabajo si A es mayor de 3 � 3. El procedimiento que 
describiremos a continuación tiene la particular ventaja de no sólo ser un método efi ciente 
para manejar sistemas grandes, sino también una forma de resolver sistemas consistentes 
(5), en los que det A � 0 y para resolver m ecuaciones lineales con n incógnitas.

DEFINICIÓN II.12  Matriz aumentada

La matriz aumentada del sistema (5) es la matriz n � (n � 1)

 

a11

a21

an1

a1n

a2n

ann

a12

a22

an2 

. . .

. . .

. . .
( .

.

.

b1

b2

bn

) ..
.
.

�
 

Si B es la matriz columna de las b
i
, i � 1, 2, . . . , n, la matriz aumentada de (5) 

se denota por (A�B).

OPERACIONES ELEMENTALES DE RENGLÓN  Recuerde de álgebra que pode-
mos transformar un sistema algebraico de ecuaciones en un sistema equivalente (es 
decir, un sistema que tenga la misma solución) multiplicando una ecuación por una 
constante distinta de cero, intercambiando el orden de dos ecuaciones cualesquiera del 
sistema y sumando un múltiplo constante de una ecuación a otra. A estas operaciones, 
sobre un sistema de ecuaciones, se les defi ne como operaciones elementales de ren-
glón en una matriz aumentada:

i) Multiplicar un renglón por una constante distinta de cero.

ii) Intercambiar dos renglones cualesquiera.

iii) Sumar un múltiplo constante, distinto de cero, de un renglón a cualquier 
otro renglón.

MÉTODOS DE ELIMINACIÓN  Para resolver un sistema como el (5), con una matriz 
aumentada, se emplea la eliminación de Gauss o el método de eliminación de Gauss-
Jordan. En el primero de los métodos se realiza una secuencia de operaciones elementa-
les de renglón hasta llegar a una matriz aumentada que tenga la forma renglón escalón.

i) El primer elemento distinto de cero en un renglón distinto de cero es 1.

ii) En los renglones consecutivos distintos de cero el primer elemento 1, en el 
renglón inferior, aparece a la derecha del primer 1 en el renglón superior.

iii) Los renglones formados únicamente con ceros están en la parte inferior de 
la matriz.
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En el método de Gauss-Jordan se continúa con las operaciones de renglón hasta obtener 
una matriz aumentada que este en la forma escalonada reducida. Una matriz escalo-
nada reducida presenta las mismas tres propiedades de arriba, además de la siguiente:

iv)  Una columna que contiene un primer elemento 1 tiene ceros en todos sus 
demás lugares.

EJEMPLO 11  Formas escalonada/escalonada reducida

a) Las matrices aumentadas

1

0

0

5

1

0

0

0

0

2

p  1

0

   y   
0

0

0

0

1

0

6

0

2

1

2

4

están en su forma escalonada. Debe comprobar que se satisfacen los tres criterios.

b) Las matrices aumentadas

1

0

0

0

1

0

0

0

0

7

p  1

0

   y   
0

0

0

0

1

0

6

0

0

1

6

4

están en su forma escalonada reducida. Observe que los elementos restantes en las co-
lumnas contienen un 1 como entrada principal y que los elementos son iguales a 0. 

Observe en la eliminación de Gauss que nos detenemos una vez obtenida una matriz 
aumentada en su forma escalonada. En otras palabras, al usar operaciones consecutivas 
de renglón llegaremos a formas escalonadas distintas. Este método requiere entonces del 
uso de sustitución regresiva. En la eliminación de Gauss-Jordan nos detenemos cuando 
se ha llegado a la matriz aumentada en su forma escalonada reducida. Cualquier orden 
de operaciones de renglón conduce a la misma matriz aumentada en su forma escalo-
nada reducida. Este método no necesita sustitución regresiva; la solución del sistema se 
conocerá examinando la matriz fi nal. En términos de las ecuaciones del sistema original, 
nuestra meta con ambos métodos es simplemente hacer el coefi ciente de x

1
 en la primera 

ecuación* igual a 1 y después utilizar múltiplos de esa ecuación para eliminar x
1
 de las 

otras ecuaciones. El proceso se repite con las otras variables.
Para mantener el registro de las operaciones de renglón, que se llevaron a cabo en 

una matriz aumentada, se utilizará la siguiente notación:

 

Símbolo Signifi cado

R
ij
 Intercambio de los renglones i y j 

cR
i
  Multiplicación del i-ésimo renglón por la constante c, distinta 

de cero
cR

i
 � R

j
  Multiplicación del i-ésimo renglón por c y suma del 

resultado al j-ésimo renglón

EJEMPLO 12  Solución por eliminación

Resuelva  

  

 5x1 7x2 4x3 9

x1 2x2 x3 1

2x1 6x2 x3 7

 

utilizando a) eliminación de Gauss y b) eliminación de Gauss-Jordan.

*Siempre se pueden intercambiar ecuaciones de tal forma que la primera ecuación contenga a la variable x
1
.
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SOLUCIÓN  a) Usando operaciones de renglón en la matriz aumentada del sistema, 
obtenemos

 

( �2

1

5

1

�1

�4

7

�1

9

6

2

7

 ) ( �1

2

5

�1

1

�4

2

6

7

R12

�1

7

9

 ) ( �1

0

0

�1

3

1

2

2

�3

�1

9

14

 )�2R1 � R2
�5R1 � R3

( �1

0

0

�1

1

�1

14

2

1

�3

 ) ( �1

0

0

�12

1

0

3R2 � R3

�1

 ) ( �1

0

0

�1

1

2

1

0

�1

5

 ). R2  R3
1_
2

2__
113_

2
9_
2

3_
2

11__
2

55__
2

9_
2

3_
2

9_
2

La última matriz está en la forma escalonada y representa al sistema

  

  

 x3 5.

x2
3

2
x3

9

2

x1 2x2 x3 1

 

Sustituyendo x
3
 � 5 en la segunda ecuación se obtiene x

2
 � � 3. Sustituyendo ambos 

valores en la primera ecuación fi nalmente se obtiene x
1
 � 10.

b) Comenzamos con la última de las matrices anteriores. Como los primeros elemen-
tos en el segundo y tercer renglones son 1, debemos hacer que los elementos restantes 
en las columnas dos y tres sean iguales a 0:

( �1

0

0

�1

1

�1

5

2

1

0

 ) ( �1

0

0

�4

1

0

1

0

�2R2 � R1

�10

5
) ( �1

0

0

0

0

1

0

1

0

10

�3

5

 ).    4R3 � R1
� R3 � R2

3_
23_

2
9_
2

3_
2

9_
2

La última matriz ya se encuentra en su forma escalonada reducida. Debido al signifi -
cado de esta matriz, en términos de las ecuaciones que representa, se ve que la solu-
ción del sistema es x

1
 � 10, x

2
 � �3, x

3
 � 5. 

EJEMPLO 13  Eliminación de Gauss-Jordan

Resuelva  

  

 2 x 5y 7z 19.

4 x y 3z 5

x 3y 2z 7

 

SOLUCIÓN  Resolveremos este sistema con la eliminación Gauss-Jordan:

 

�  R2

�  R3
1__
11

1__
11

( �1

4

2

�2

3

7

�7

5

19

3

1

�5

 ) ( �1

0

0

�2

11

11

3

�11

�11

�7

33

33

 )�4R1 � R2
�2R1 � R3

( �1

0

0

�2

�1

�1

�7

�3

�3

3

1

1

 ) ( �1

0

0

1

�1

0

0

1

0

�3R2 � R1
�R2 � R3

1

�3

0

 ).
 

En este caso, la última matriz, en su forma escalonada reducida, implica que el sistema 
original de tres ecuaciones con tres incógnitas es equivalente, en realidad, a dos ecua-
ciones con tres incógnitas. Puesto que sólo z es común a ambas ecuaciones (los renglo-
nes distintos de cero), le podemos asignar valores arbitrarios. Si hacemos z � t, donde 
t representa cualquier número real, veremos que el sistema tiene una cantidad infi nita 
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APÉNDICE II  MATRICES ● APE-13

de soluciones: x � 2 � t, y � � 3 � t, z � t. Geométricamente, esas ecuaciones son 
las ecuaciones paramétricas de la recta de intersección de los planos x � 0y � z � 2 y 
0x � y � z � 3. 

USO DE OPERACIONES DE RENGLÓN PARA ENCONTRAR UNA INVERSA  
Debido a la cantidad de determinantes que hay que evaluar, casi no se usa la fórmula 
(2) del teorema II.2 para determinar la inversa cuando la matriz A es grande. En el caso 
de matrices de 3 � 3 o mayores, el método que se describe en el siguiente teorema es 
particularmente efi ciente para determinar A�1. 

TEOREMA II.3   Determinación de A�1 usando las operaciones elementales 
de renglón

Si una matriz A n � n se puede transformar en la matriz identidad I n � n 
con una secuencia de operaciones elementales de renglón, entonces A es no 
singular. La misma secuencia de operaciones que transforma A en la identidad 
I también transforma a I en A�1.

Es conveniente realizar estas operaciones de renglón en forma simultánea en A 
y en I, mediante una matriz n � 2n obtenida aumentando A con la identidad I, como 
aquí se muestra:

 

(A � I) � (
a11

a21

an1

a1n

a2n

ann

a12

a22

an2 

. . .

. . .

. . .

. . .

. . .

. . .

.

.

.

1

1

0

0

0

0

.

.

.
.
.
.

0

0

1

.

.

. ).�
 

En el diagrama siguiente se indica el procedimiento para encontrar A�1:

 

( A �  I  )  (I � A�1). 

Realice las operaciones de renglón 
en A hasta que obtenga I. Esto 
significa que A es no singular.

Simultáneamente aplique las 
mismas operaciones sobre I, 
para obtener A�1.  

EJEMPLO 14  Inversa por operaciones elementales de renglón

Determine la inversa multiplicativa de A
2 0 1

2 3 4

5 5 6

.

SOLUCIÓN  Usaremos la misma notación que cuando redujimos una matriz aumen-
tada a la forma escalonada:

 
( �2

�2

�5

1

4

6

0

3

5

1

0

0

0

1

0

0

0

1

 ) ( �1

�2

�5

4

6

0

3

5

0

0

0

1

0

0

0

1

 )R1

2R1 � R2
5R1 � R3

1_
2

1_
2

1_
2 ( �1

0

0

5

0

3

5

1

0

1

0

0

0

1

 )
1_
2

1_
2

17__
2

5_
2
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( �1

0

0

0

1

1

0

0

0

0 )R2

R3 �R2 � R3
1_
5

1_
3

1_
2

1_
2

5_
3
17__
10

1_
3
1_
2

1_
3

1_
5

0

�

0

0 )
1_
2

1_
3
1_
3

1_
5

( �1

0

0

0

1

0

1_
2

5_
3

1_
3

1__
30

1_
6

 
( �1

0

0 1

0

1

0 5

0

�10

0

0

6

 )30R3

� R3 � R1

� R3 � R2

1_
2

1_
3

1_
3

1_
2

5_
3 ( �1

0

0

0

0

1

0

1

0

�2

�8

5

5

17

�10

�3

�10

6

 ).5_
3

1_
3

Puesto que I se presenta a la izquierda de la recta vertical, concluimos que la matriz a 
la derecha de la recta es

 A 1

2 5 3

8 17 10

5 10 6

.

 

Si la reducción de renglones (A�I) conduce a la situación

 (A � I) (B � C),

Operaciones entre 
renglones

 

donde la matriz B contiene un renglón de ceros, entonces A es necesariamente singu-
lar. Como una reducción adicional de B siempre produce otra matriz con un renglón 
de ceros, nunca se transformará A en I.

II.3  EL PROBLEMA DE EIGENVALORES

La eliminación Gauss-Jordan se puede emplear para determinar los eigenvectores 
(vectores propios) de una matriz cuadrada.

DEFINICIÓN II.13  Eigenvalores y eigenvectores

Sea A una matriz n � n. Se dice que un número l es un eigenvalor de A si 
existe un vector solución K distinto de cero del sistema lineal

 AK K.  (6)

El vector solución K es un eigenvector que corresponde al eigenvalor l.

La palabra eigenvalor es una combinación de alemán y español adaptada de la 
palabra alemana eigenwert que, traducida literalmente, es “valor propio”. A los eigen-
valores y eigenvectores se les llama también valores característicos y vectores carac-
terísticos, respectivamente.

EJEMPLO 15  Eigenvector de una matriz

Compruebe que K
1

1

1

 es un eigenvector de la matriz

 A
0 1 3

2 3 3

2 1 1

.  
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APÉNDICE II  MATRICES ● APE-15

SOLUCIÓN  Al realizar la multiplicación AK vemos que

 

AK � ( 0

2

�2

1

�1

1

�3

3

1

�1

3

1

1

�1

1

�2

2

�2
) ( ) � ( ) � (�2) ( ) � (�2)K.

eigenvalor

 

Vemos de la defi nición II.3 y del renglón anterior que l � � 2 es un eigenvalor de A. 

Usando las propiedades del álgebra matricial, podemos expresar la ecuación (6) 
en la forma alternativa

 (A I)K 0,  (7)

donde I es la identidad multiplicativa. Si hacemos

 K

k1

k2

M

kn

, 

entonces (7) es igual que

 

(a11 � l)k1 �

a21k1 �

an1k1 �

a12k2 �

(a22 � l)k2 �

an2k2 �

�

�

� (ann � l)kn � 0.

a1nkn � 0

a2nkn � 0.
.
.

.

.

.

. . .

. . .

. . .
 

(8)

Aunque una solución obvia de la ecuación (8) es k
1
 � 0, k

2
 � 0, . . . , k

n
 � 0, sólo nos inte-

resan las soluciones no triviales. Se sabe que un sistema homogéneo de n ecuaciones linea-
les con n incógnitas (esto es, b

i
 � 0, i � 1, 2, . . . , n en la ecuación (5)) tiene una solución 

no trivial si y sólo si el determinante de la matriz de coefi cientes es igual a cero. Por tanto, 
para determinar una solución K distinta de cero de la ecuación (7) se debe tener que

 det(A I) 0.  (9)

Examinando la ecuación (8) se ve que el desarrollo del det(A � lI) por cofactores 
da como resultado un polinomio en l de grado n. La ecuación (9) se llama ecuación 
característica de A. Por lo que, los eigenvalores de A son las raíces de la ecuación 
característica. Para encontrar un eigenvector que corresponde a un eigenvalor l, sólo 
se resuelve el sistema de ecuaciones (A � lI)K � 0 aplicando la eliminación Gauss-
Jordan a la matriz aumentada (A � lI�0).

EJEMPLO 16  Eigenvalores/eigenvectores

Determinar los eigenvalores y los eigenvectores de A
1 2 1

6 1 0

1 2 1

.

SOLUCIÓN  Para desarrollar el determinante y formar la ecuación característica usa-
remos los cofactores del segundo renglón:

 det(A I) p
1 2 1

6 1 0

1 2 1
p 3 2 12 0.  

Puesto que  �l3 � l2 � 12l � �l(l � 4)(l � 3) � 0 vemos que los eigenvalores 
son l

1
 � 0, l

2
 � �4 y l

3
 � 3. Para determinar los eigenvectores debemos reducir 

tres veces (A � lI�0), que corresponden a los tres diferentes eigenvalores.
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Para l
1
 � 0 tenemos

 

6__
13

6__
13

1__
13

�6R1 � R2

R1 � R3

� R2
1__

13

(A � 0I � 0) � ( 1

6

�1

2

�1

�2

1

0

�1

0

0

0

 ) ( �� 1

0

0

1

�6

0

0

0

0

2

�13

0

 )
�2R2 � R1( �1

0

0

2

1

0

1

0

0

0

0

 ) ( �1

0

0 0

0

0

0

0

1

0

 ).
 

Por lo que vemos que k1
1
13 k3  y k2

6
13 k3. Eligiendo k

3
 � �13, obtenemos el 

eigenvector*

 K1

1

6

13

. 

Para l
2
 � �4,

 

�R3  
R31

� R2

� R3

(A � 4I � 0) � ( �5

6

�1

2

3

�2

1

0

3

0

0

0

 ) ( �1

6

5

�3

0

1

0

0

0

2

3

2

 )
�2R2 � R1
�R2 � R3( �1

0

0

2

1

1

�3

�2

�2

0

0

0

 ) ( �1

0

0

1

�2

0

0

0

0

0

1

0

 )�6R1 � R2
�5R1 � R3 ( �1

0

0

�3

18

16

0

0

0

2

�9

�8

 )
1_
9
1_
8

lo que implica que k
1
 � �k

3
 y k

2
 � 2k

3
. Eligiendo k

3
 � 1 se obtiene el segundo 

eigenvector

 K2

1

2

1

. 

Finalmente, para l
3
 � 3 con la eliminación de Gauss se obtiene

 

(A � 3I � 0) � ( ��2

6

�1

1

0

�4

0

0

0

2

�4

�2

 ) ( �1

0

0

1

0

0

0

0

0

1

0

 ),operación 
entre renglones 3_

2

 

por lo que k
1
 � �k

3
 y k2

3
2 k3. La elección de k

3
 � �2 conduce al tercer eigen-

vector:

 

K3

2

3

2

.

 

Cuando una matriz A n � n tiene n eigenvalores distintos l
1
, l

2
, . . . , l

n
, se 

puede demostrar que es posible determinar un conjunto de n eigenvectores lineal-
mente independientes† K

1
, K

2
, . . . , K

n
. Sin embargo, cuando la ecuación caracte-

rística tiene raíces repetidas, tal vez no se pueda determinar n eigenvectores de A 
linealmente independientes.

*Por supuesto k
3
 pudo ser cualquier número distinto de cero. En otras palabras, un múltiplo constante distinto 

de cero de un eigenvector también es un eigenvector.
†La independencia lineal de los vectores columna se defi ne igual que la de las funciones.
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EJEMPLO 17  Eigenvalores/eigenvectores

Determine los eigenvalores y los eigenvectores de A
3 4

1 7
.

SOLUCIÓN  De la ecuación característica

 det(A I)
3 4

1 7
( 5)2 0  

vemos que l
1
 � l

2
 � 5 es un eigenvalor de multiplicidad dos. En el caso de una matriz 

de 2 � 2 no se necesita usar la eliminación Gauss-Jordan. Para determinar los eigen-
vectores que corresponden a l

1
 � 5, recurriremos al sistema (A – 5I�0) en su forma 

equivalente

  

 k1 2k2 0.

2k1 4k2 0

 

En este sistema se ve que k
1
 � 2k

2
. Por lo que si elegimos k

2
 � 1, encontraremos un 

solo eigenvector:

 K1
2

1
.  

EJEMPLO 18  Eigenvalores/eigenvectores

Determine los eigenvalores y eigenvectores de A
9 1 1

1 9 1

1 1 9
.

SOLUCIÓN  La ecuación característica

 det(A I ) p
9 1 1

1 9 1

1 1 9
p ( 11)( 8)2 0 

muestra que l
1
 � 11 y que l

2
 � l

3
 � 8 es un eigenvalor de multiplicidad dos.

Para l
1
 � 11, usando eliminación Gauss-Jordan se obtiene

 

(A � 11I � 0) � ( ��2

1

1

1

1

�2

0

0

0

1

�2

1

 ) ( �1

0

0

�1

�1

0

0

0

0

0

1

0

 ).operaciones 
entre renglones

 

Por tanto, k
1
 � k

2
 y k

2
 � k

3
. Si k

3
 � 1, entonces

 K1

1

1

1

. 

Ahora para l
2
 � 8 tenemos que

 

(A � 8I � 0) � ( �1

1

1

1

1

1

0

0

0

1

1

1

 ) ( �1

0

0

1

0

0

0

0

0

1

0

0

 ).operaciones 
entre renglones
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En la ecuación k
1
 � k

2
 � k

3
 � 0 seleccionamos libremente dos de las variables. 

Eligiendo, por un lado que k
2
 � 1, k

3
 � 0 y, por otro, k

2
 � 0, k

3
 � 1, obtendremos dos 

eigenvectores linealmente independientes:

 K2

1

1

0

    y    K3

1

0

1

.  

EJERCICIOS DEL APÉNDICE II        Las respuestas a los problemas seleccionados con número impar 
comienzan en la página RES-29.

II.1  DEFINICIONES BÁSICAS Y TEORÍA

 1. Si A
4 5

6 9
 y B

2 6

8 10
, determine

 a) A � B    b) B � A    c) 2A � 3B

 2. Si A
2 0

4 1

7 3
 y B

3 1

0 2

4 2

, determine

 a) A � B    b) B � A    c) 2(A � B)

 3. Si A
2 3

5 4
 y B

1 6

3 2
, determine

 a) AB   b) BA   c) A2 � AA   d) B2 � BB

 4. Si A
1 4

5 10

8 12

 y B
4 6 3

1 3 2
, determine

 a) AB    b) BA

 5. Si A
1 2

2 4
, B

6 3

2 1
, y C

0 2

3 4
, de-

termine

 a) BC b) A(BC) c) C(BA) d) A(B � C)

 6. Si A (5 6 7), B
3

4

1

, y

  C
1 2 4

0 1 1

3 2 1

, determine

  a) AB    b) BA    c) (BA)C    d) (AB)C

 7. Si A
4

8

10
 y B (2 4 5), determine

  a) ATA    b) BTB    c) A � BT

 8. Si A
1 2

2 4
 y B

2 3

5 7
,  determine

  a) A � BT    b) 2AT � BT    c) AT(A � B)

 9. Si A
3 4

8 1
 y B

5 10

2 5
,  determine

  a) (AB)T b) BTAT

10. Si A
5 9

4 6
 y A

5 9

4 6
 determine

  a) AT � BT    b) (A � B)T

En los problemas 11 a 14 escriba la suma en forma de una sola 
matriz columna:

11. 

12. 

13. 

14. 
1 3 4

2 5 1

0 4 2

t

2t 1

t

t

1

4

2

8

6

2 3

1 4

2

5

1 6

2 3

7

2

3t

2

t

1

(t 1)

1

t

3

2

3t

4

5t

4
1

2
2

2

8
3

2

3

En los problemas 15 a 22 determine si la matriz dada es sin-
gular o no singular. Si es no singular, determine  A�1 usando 
el teorema II.2:

15.  16. 

17.  18. 

19. A
2 1 0

1 2 1

1 2 1

A
4 8

3 5

A
3 6

2 4

 20. A
3 2 1

4 1 0

2 5 1

A
7 10

2 2

A
2 5

1 4
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21. A
2 1 1

1 2 3

3 2 4

 22. A
4 1 1

6 2 3

2 1 2

En los problemas 23 y 24 demuestre que la matriz dada es 
no singular para todo valor real de t. Encuentre A�l(t) con el 
teorema II.2:

23. 

24. A(t)
2et sen t 2et cos t

et cos t et sen t

A(t)
2e t e4t

4e t 3e4t

En los problemas 25 a 28 determine dX�dt.

25. X
5e t

2e t

7e t

    26. X
1
2 sen 2t 4 cos 2t

3 sen 2t 5 cos 2t

27. X 2
1

1
e2t 4

2

1
e 3t     28. X

5te2t

t sen 3t

29. Sea A(t)
e4t cos t

2t 3t2 1
. Determine

  a) 
dA
dt

    b) 
2

0
A(t) dt     c) 

t

0
A(s) ds

30. Sea A(t)

1

t2 1
3t

t2 t
 y B(t)

6t 2

1> t 4t
. 

Determine

 a)  b) 

 c)  d) 

 e)  f) 
d

dt
A(t)B(t)

2

1
B(t) dt

dB
dt

 g) 

A(t)B(t)

t

1
A(s)B(s) ds

1

0
A(t) dt

dA
dt

II.2   ELIMINACIÓN DE GAUSS Y DE 
GAUSS-JORDAN

En los problemas 31 a 38 resuelva el correspondiente sistema 
de ecuaciones, por eliminación de Gauss o por eliminación de 
Gauss-Jordan.

31. x �  y � 2z � 14 32. 5x � 2y � 4z � 10
 2x �  y �  z � 0   x � y � z � 9
 6x � 3y � 4z � 1  4x � 3y � 3z � 1

33. y � z � �5 34. 3x �  y � z � 4
 5x � 4y � 16z � �10  4x � 2y � z � 7
 x � y � 5z � 7   x � y � 3z � 6

35. 2x �  y � z � 4 36.   x �         2z � 8
 10x � 2y � 2z � �1   x � 2y � 2z � 4
 6x  � 2y � 4z � 8  2x � 5y � 6z � 6

37.  x
1
 � x

2
 �  x

3
 � x

4
 � �1 38. 2x

1
 �  x

2
 �  x

3
 � 0

  x
1
 � x

2
 �  x

3
 � x

4
 � 3  x

1
 � 3x

2
 �  x

3
 � 0

  x
1
 � x

2
 �  x

3
 � x

4
 � 3  7x

1
 �  x

2
 � 3x

3
 � 0

 4x
1
 � x

2
 � 2x

3
 � x

4
 � 0

En los problemas 39 y 40 utilice la eliminación de Gauss-
Jordan para demostrar que el sistema dado de ecuaciones no 
tiene solución.

39.  x � 2y � 4z � 2 40.  x
1
 �  x

2
 �  x

3
 � 3x

4
 � 1

 2x � 4y � 3z � 1        x
2
 �  x

3
 � 4x

4
 � 0

  x � 2y �  z � 7   x
1
 � 2x

2
 � 2x

3
 �  x

4
 � 6

     4x
1
 � 7x

2
 � 7x

3
       � 9

En los problemas 41 a 46 aplique el teorema 11.3 para deter-
minar A�1 para la matriz dada o demuestre que no existe la 
inversa.

41.    42. 

43.    44. 

45. A

1 2 3 1

1 0 2 1

2 1 3 0

1 1 2 1

A
1 3 0

1 2 1

0 1 2

A
4 2 3

2 1 0

1 2 0

 46. A

1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

A
1 2 3

0 1 4

0 0 8

A
2 4 2

4 2 2

8 10 6

11.3  EL PROBLEMA DE LOS EIGENVALORES

En los problemas 47 a 54 encuentre los eigenvalores y los 
eigenvectores de la matriz dada.

47.  48. 

49.  50. 

51.  52. 

53. 
0 4 0

1 4 0

0 0 2

5 1 0

0 5 9

5 1 0

8 1

16 0

1 2

7 8

 54. 
1 6 0

0 2 1

0 1 2

3 0 0

0 2 0

4 0 1

1 1
1
4 1

2 1

2 1

08243_11_appendixII.indd   1908243_11_appendixII.indd   19 6/4/09   12:36:50 PM6/4/09   12:36:50 PM



APE-20 ● APÉNDICE II  MATRICES

En los problemas 55 y 56 compruebe que cada matriz tiene 
eigenvalores complejos. Encuentre los eigenvectores respec-
tivos de la matriz:

55. 
1 2

5 1
 56. 

2 1 0

5 2 4

0 1 2

Problemas diversos

57. Si A(t) es una matriz de 2 � 2 de funciones derivables y 
X(t) es una matriz columna de 2 � 1 de funciones deriva-
bles, demuestre la regla de la derivada de un producto

d

dt
 [A(t)X(t)] A(t)X (t) A (t)X(t).

58. Demuestre la fórmula (3). [Sugerencia: Encuentre una 
matriz

B
b11 b12

b21 b22

  para la que AB � I. Despeje b
11

, b
12

, b
21

 y b
22

. Después 
demuestre que BA � I].

59. Si A es no singular y AB � AC, compruebe que B � C.

60. Si A y B son no singulares, demuestre que (AB)�1 � 
B�1A�1.

61. Sean A y B matrices n � n. En general, ¿es

(A B)2 A2 2AB B2?

62. Se dice que una matriz cuadrada es una matriz diagonal 
si todos sus elementos fuera de la diagonal principal son 
cero, esto es, a

ij
 � 0, i � j. Los elementos a

ii
 en la dia-

gonal principal pueden ser cero o no. La matriz identidad 
multiplicativa I es un ejemplo de matriz diagonal.

a) Determine la inversa de la matriz diagonal de 2 � 2

A
a11 0

0 a22

 usando a
11

 � 0, a
22

 � 0.

b)  Encuentre la inversa de una matriz diagonal A de 3 � 3 
cuyos elementos a

ii
 en la diagonal principal son todos 

distintos de cero.

c)  En general, ¿cuál es la inversa de una matriz diagonal 
A de n � n cuyos elementos de la diagonal principal a

ii
 

son distintos de cero?
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APE-21

APÉNDICE III

TRANSFORMADAS DE LAPLACE

  

 

  

 

  

  

 

  

  

  

 

 

 

 

 

 

 

   

f (t)

1. 1

2. t

3. tn n un entero positivo

4. t 1/2

5. t1/2

6. ta

7. senkt

8. cos kt

9. sen2 kt

10. cos2 kt

11. eat

12. senh  kt

13. cosh kt

14. senh2kt

15. cosh2kt

16. teat

17. tn eat n un entero positivo
n!

(s a)n 1 ,

1

(s a)2

s2 2k2

s(s2 4k2)

2k2

s(s2 4k2)

s

s2 k2

k

s2 k2

1

s a

s2 2k2

s(s2 4k2)

2k2

s(s2 4k2)

s

s2 k2

k

s2 k2

( 1)

s 1 , a 1

1

2s3/2

B s

n!

sn 1 ,

1

s2

1

s

{ f (t)} F(s)
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APE-22 APÉNDICE III  TRANSFORMADAS DE LAPLACE

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f (t)

18. eat senkt

19. eat cos kt

20. eat senhkt

21. eat cosh kt

22. t senkt

23. t cos kt

24. senkt kt cos kt

25. senkt kt cos kt

26. t senhkt

27. t cosh kt

28.

29.

30. 1 cos kt

31. kt senkt

32.

33.

34. senkt senhkt

35. senkt cosh kt

36. cos kt senhkt

37. cos kt cosh kt
s3

s4 4k4

k(s2 2k2)

s4 4k4

k(s2 2k2)

s4 4k4

2k2s

s4 4k4

s

(s2 a2)(s2 b2)

cos bt cos at

a2 b2

1

(s2 a2)(s2 b2)

a sen bt b sen at

ab (a2 b2)

k3

s2(s2 k2)

k2

s(s2 k2)

s

(s a)(s b)

aeat bebt

a b

1

(s a)(s b)

eat ebt

a b

s2 k2

(s2 k2)2

2ks

(s2 k2)2

2k3

(s2 k2)2

2ks2

(s2 k2)2

s2 k2

(s2 k2)2

2ks

(s2 k2)2

s a

(s a)2 k2

k

(s a)2 k2

s a

(s a)2 k2

k

(s a)2 k2

{ f (t)} F(s)
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f (t)

38. J0(kt)

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50. eat f (t) F(s a)

51.

52. e asF(s)

53. e as

54. f (n)(t)

55. tn f (t)

56. F(s)G(s)

57. d(t 1)

58. d(t t0) e st0

t

0
f ( )g(t ) d

( 1)n
dn

dsn
F(s)

snF(s) s(n 1) f (0) f (n 1)(0)

{ g(t a)}g(t) (t a)

f (t a) (t a)

e as

s
(t a)

erfc
a

21t

be a1s

s(1s b)
eabeb

2 terfc b1t
a

21t

e a1s

1s(1s b)
eabeb

2t erfc b1t
a

21t

e a1s

s1s
2
B

t
e a2/4t a erfc

a

21t

e a1s

s
erfc

a

21t

e a1sa

21 t3
e a2/4t

e a1s

1s

1

1 t
e a2 /4t

1

2
 arctan 

a b

s

1

2
 arctan 

a b

s

senat cos bt

t

arctan
a

s

senat

t

ln
s2 k2

s2

2(1 cosh kt)

t

ln
s2 k2

s2

2(1 cos kt)

t

ln
s a

s b

ebt eat

t

1

1s2 k2

{ f (t)} F(s)
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RE
SP

U
ES

TA
S 

A
 L

O
S 

PR
O

BL
EM

A
S 

SE
LE

C
C

IO
N

A
D

O
S 

C
O

N
 N

U
M

ER
A

C
IÓ

N
 IM

PA
R 

 •
  C

A
PÍ

TU
LO

 2

RESPUESTAS A LOS PROBLEMAS 
SELECCIONADOS CON NUMERACIÓN IMPAR

EJERCICIOS 1.1 (PÁGINA 10)
 1. lineal, segundo orden  3. lineal, cuarto orden
 5. no lineal, segundo orden  7. lineal, tercer orden
 9. lineal en x pero no lineal en y
15. el dominio de la función es [�2, �); el intervalo más 

grande de defi nición para la solución es (�2, �)
17. el dominio de la función es el conjunto de números 

reales excepto en x � 2 y x � �2; los intervalos de 
defi nición más grandes para la solución son (��, �2), 
(�2, 2), o (2, �)

19. X
et 1

et 2
 defi nición en (��, ln 2) o en (ln 2, �)

27. m � �2    29. m � 2, m � 3    31. m � 0, m � �1
33. y � 2    35. ninguna solución es constante

EJERCICIOS 1.2 (PÁGINA 17)
 1. y � 1�(1 � 4e�x) 
 3. y � 1�(x2 � 1); (1, �)
 5. y � 1�(x2 � 1); (��, �)
 7. x � �cos t � 8 sen t

 9. x 13
4  cos t 1

4 sen t  11. y 3
2 ex 1

2 e x
.

13. y � 5e�x�1 15. y � 0, y � x3

17. semiplanos defi nidos por y � 0 o y � 0
19. semiplanos defi nidos por x � 0 o x � 0
21. las regiones defi nidas por y � 2, y � �2, o 

�2 � y � 2
23. cualquier región que no contenga (0, 0)
25. si
27. no
29. a) y � cx

b) cualquier región rectangular que no toque el eje y
c) No, la función no es derivable en, x � 0.

31. b)  y � 1�(1 � x) en (��, 1);
y � �1�(x � 1) en (�1, �);

 c) y � 0 en (��, �)

EJERCICIOS 1.3 (PÁGINA 27)

 1. 

 3. 

 7. 

 9. 

11. 31
dA

dt

7

600 t
A 6

dA

dt

1

100
A 0; A(0) 50

dx

dt
kx (1000 x)

dP

dt
k1P k2P2

dP

dt
kP r;

dP

dt
kP r

 13. 
dh

dt

c

450
1h

15.  17. 

19.    21. 

23.    25. 
dx

dt
kx r, k 0

d 2r

dt2

gR2

r 2 0

m
dv

dt
mg kv2

27. 
dy

dx

x 1x2 y2

y

dA

dt
k(M A), k 0

m
d 2x

dt2 kx

L
di

dt
Ri E(t)

REPASO DEL CAPÍTULO 1 (PÁGINA 32)

 1. 
dy

dx
10y   3. y� � k2y � 0

 5. y� � 2y� � y � 0  7. a), d)
 9. b)  11. b)
13. y � c

1
 y, y � c

2
e x, c

1
 y, c

2
 constantes,

15. y� � x 2 � y2

17. a) El dominio es el conjunto de todos los números reales.
 b) ya sea, (��, 0) o (0, �)
19. Para x

0
 � �1 el intervalo es (��, 0), y para x

0
 � 2 el 

intervalo es (0, �).

21. c) 23. ( , )y
x2,

x2,

x 0

x 0
 

25. (0, �) 27. y 1
2 e3x 1

2 e x 2x

29. y 3
2 e3x 3 9

2 e x 1 2x.

31. y
0
 � �3, y

1
 � 0

33. 
dP

dt
k(P 200 10t)

EJERCICIOS 2.1 (PÁGINA 41)

21. 0 es asintóticamente estable (atractor); 3 es inestable 
(repulsor).

23. 2 es semiestable.
25. �2 es inestable (repulsor); 0 es semiestable; 2 es 

asintóticamente estable (atractor).
27. �1 es asintóticamente estable (atractor); 0 es inestable 

(repulsor).
39. 0 � P

0
 � h�k

41. 1mg>k

EJERCICIOS 2.2 (PÁGINA 50)

 1. y 1
5 cos 5x c  3. y 1

3 e 3x c

 5. y � cx4  7. �3e�2y � 2e3x � c

 9. 
1
3 x3 ln x 1

9 x3 1
2 y2 2y ln y c
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RES-2 ● RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NUMERACIÓN IMPAR

11. 4 cos y � 2x � sen 2x � c
13. (ex � 1)�2 � 2(e y � 1)�1 � c

15. S � cekr 17. P
cet

1 cet

19. ( y � 3)5 ex � c(x � 4)5 e y 21. y sen(1
2 x2 c)

23. x tan (4t 3
4 ) 25. y

e (1 1/x)

x

27. y 1
2 x 13

2 11 x2  29. y e
x
4 e-t2

dt

31. a) y 2, y 2, y 2
3 e4x 1

3 e4x 1

33. y � �1 y y � 1 son soluciones singulares del problema 
21; y � 0 del problema 22

35. y � 1

37. y 1 1
10 tan ( 1

10 x)
41. a) y 1x2 x 1 c) ( , 1

2
1
2 15)

49. y(x) � (4h�L2)x2 � a

EJERCICIOS 2.3 (PÁGINA 60)

 1. y � ce5x, (��, �)

 3. ; ce xy 1
4 e3x ce x, ( , )  es transitoria

 5. ; ce x3
y 1

3 ce x3
, ( , )  es transitoria

 7. y � x�1 ln x � cx�1, (0, �); la solución es transitoria
 9. y � cx � x cos x, (0, �)

11. ; cx 4y 1
7 x3 1

5 x cx 4, (0, )  es transitoria

13. ; cx 2e xy 1
2 x 2ex cx 2e x, (0, )  es transitoria

15. x � 2y6 � cy4, (0, �)
17. y � sen x � c cos x, (�p�2, p�2)
19. (x � 1)exy � x 2 � c, (�1, �); la solución es transitoria
21. (sec u � tan u)r � u � cos u � c, (�p�2, p�2)
23. y � e�3x � cx�1e�3x, (0, �); la solución es transitoria
25. y � x�1ex � (2 � e)x�1, (0, �)

27. i
E

R
i0

E

R
e Rt /L , ( , )

29. (x � 1)y � x ln x � x � 21, (0, �)

31. 

33. 

35. 

37. y ex2 1 1
2 1 ex2

 (erf(x) erf(1))

y
2x 1 4e 2x,

4x2 ln x (1 4e 2)x2,

0 x 1

x 1

y
1
2

3
2 e x2

,

(1
2 e 3

2)e x2
,

0 x 1

x 1

y
1
2 (1 e 2x),
1
2 (e6 1)e 2x,

0 x 3

x 3

47. E(t) � E
0
e�(t�4)/RC

EJERCICIOS 2.4 (PÁGINA 68)

 1. x2 x 3
2 y2 7y c  3. 5

2 x2  4xy 2y4 c

 5. x2y2 � 3x � 4y � c  7. no exacta

 9. xy3 y2 cos x 1
2 x2 c

11. no exacta
13. xy � 2xex � 2ex � 2x 3 � c
15. x3y3 � tan�1 3x � c

17. ln cos x cos x sen y c

19. t 4y � 5t 3 � ty � y3 � c

21. 1
3 x3 x2y xy2 y 4

3

23. 4ty � t2 � 5t � 3y2 � y � 8
25. y 2 sen x � x3y � x2 � y ln y � y � 0
27. k � 10 29. x2y2 cos x � c
31. x2y2 � x3 � c 33. 3x2y3 � y4 � c

35. 

37. ey 2
(x2 4) 20

2ye3x 10
3 e3x x c

39. c) 

   y2(x) x2 1x4 x3 4

y1(x) x2 1x4 x3 4

45. a) v(x) 8
B

x

3

9

x2     b) 12.7 pies/s

EJERCICIOS 2.5 (PÁGINA 74)

 1. 

 3. 

 5. x y ln x cy

(x y)ln x y y c(x y)

y x ln x cx

 7. ln(x2 � y2) � 2 tan�1( y�x) � c
 9. 4x � y(ln�y �  � c)2 11. y3 � 3x3 ln�x � � 8x3

13. ln�x �  � e y/x � 1 15. y3 � 1 � cx�3

17.    19. et/y � ct

21. y 3 9
5 x 1 49

5 x 6

y 3 x 1
3 ce3x

23. y � �x � 1 � tan(x � c)
25. 2y � 2x � sen 2(x � y) � c
27. 4( y � 2x � 3) � (x � c)2

29. cot(x y) csc(x y) x 12 1

35. b) y
2

x
( 1

4 x cx 3) 1

EJERCICIOS 2.6 (PÁGINA 79)

 1. y
2
 � 2.9800,  y

4
 � 3.1151

 3. y
10

 � 2.5937,  y
20

 � 2.6533; y � ex

 5. y
5
 � 0.4198,  y

10
 � 0.4124

 7. y
5
 � 0.5639,  y

10
 � 0.5565

 9. y
5
 � 1.2194,  y

10
 � 1.2696

13. Euler: y
10

 � 3.8191,  y
20

 � 5.9363
  RK4: y

10
 � 42.9931,  y

20
 � 84.0132
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RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NUMERACIÓN IMPAR ● RES-3

REPASO DEL CAPÍTULO 2 (PÁGINA 80)

 1. �A�k, un repulsor para k � 0, un repulsor para k � 0
 3. verdadero

 5. 
dy

dx
( y 1)2 ( y 3)3

 7. semiestable para n par e inestable para n impar; 
semiestable para n par y asintóticamente estable para n 
impar.

11. 2x � sen 2x � 2 ln( y2 � 1) � c
13. (6x � 1)y3 � �3x3 � c

15. 

17. y 1
4 c(x2 4) 4

Q ct 1 1
25 t4 ( 1 5 ln t )

19. y � csc x, (p, 2p)

21. b) y 1
4 (x 2 1y0 x0)

2, (x0 2 1y0, )

EJERCICIOS 3.1 (PÁGINA 89)

 1. 7.9 años; 10 años
 3. 760; aproximadamente 11 personas/año
 5. 11 h 
 7. 136.5 h
 9. I(15) � 0.00098I

0
 o aproximadamente 0.1% de I

0

11. 15 600 años
13. T(1) � 36.67° F; aproximadamente 3.06 min
15. aproximadamente 82.1 s; aproximadamente 145.7 s
17. 390°
19. aproximadamente 1.6 horas antes de descubierto el 

cuerpo
21. A(t) � 200 � 170e�t/50

23. A(t) � 1000 � 1000e�t/100

25. 
( )

A(t) 1000 10t 1
10 (100 t)2; 100 min

27. 64.38 lb
29. 

31. 

33. i(t)
60 60e t /10,  0 t 20

60(e2 1)e t /10,   t 20

q(t) 1
100

1
100 e 50t; i(t) 1

2 e 50t

i(t) 3
5

3
5 e 500t; i : 3

5 como t :

35. a) 

  b) 

  c) 

    

39. a) 

como

v(t)
g

4k

k
t r0

gr0

4k

r0

k
t r0

3

m

k
v0

mg

k

s(t)
mg

k
t

m

k
v0

mg

k
e kt/m

t :v :
mg

k

v(t)
mg

k
v0

mg

k
e kt /m

  c) 33 1
3  segundos

41. a) P(t) P0 e(k1 k2)t

43. a) Como .t : , x(t) : r>k

 b) x(t) � r�k � (r�k)e�kt; (ln 2)�k
47. c) 1.988 pies

EJERCICIOS 3.2 (PÁGINA 99)

 1. a) N � 2000

 b) N(t)
2000 et

1999 et; N(10) 1834

 3. 1 000 000;  5.29 meses

 5. b) P(t)
4(P0 1) (P0 4)e 3t

(P0 1) (P0 4)e 3t

  c) Para 0 � P
0
 � 1, el tiempo en que desaparecerá es

   .t
1

3
ln

4(P0 1)

P0 4

 7. ;P(t)
5

2

13

2
tan

13

2
t tan 1 2P0 5

13
  el tiempo en que desaparecerá es

 t
2

13
tan 1 5

13
tan 1 2P0 5

13

 9. 29.3 g; como ; 0 g de A y 30 g de Bt :X : 60

11. a) h(t) 1H
4Ah

Aw

t
2

; I es 0 t 1HAw 4Ah

  b) o 30.36 min576 110 s
13. a) aproximadamente 858.65 s o 14.31 min
 b) 243 s o 4.05 min

15. a) 

  

 b) 

 c) ,s(t)
m

k
ln cosh

B

kg

m
t c1 c2

B

mg

k

c1 tanh 1

B

k

mg
v0

v(t)
B

mg

k
tanh

B

kg

m
t c1

donde

   donde c
2
 � �(m�k)ln cosh c

1

17. a)  ,m
dv

dt
mg kv2 V

   donde r es la densidad del agua

 b) 

 c) 
B

mg V

k

v(t)
B

mg V

k
tanh

1kmg k V

m
t c1

19. a) W � 0 y W � 2
 b) W(x) � 2 sech2(x � c

1
)

 c) W(x) � 2 sech2x
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RES-4 ● RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NUMERACIÓN IMPAR

EJERCICIOS 3.3 (PÁGINA 110)
 1. 

 

 z(t) x0 1 2

2 1
e 1 t 1

2 1
e 2 t

y(t)
x0 1

2 1
 (e 1t e 2 t)

x(t) x0 e 1t

 3. 5, 20, 147 días. El tiempo cuando y(t) y z(t) son iguales 
tiene sentido porque se ha ido la mayor parte de A y 
la mitad de B ha desparecido así que se debe haber 
formado la mitad de C.

 5. 

  
dx2

dt
2
25 x1

2
25 x2

dx1

dt
6 2

25 x1
1
50 x2

 7. a) 

       
dx2

dt
2

x1

100 t
3

x2

100 t

dx1

dt
3

x2

100 t
2

x1

100 t

 b) x
1
(t) � x

2
(t) � 150;  x

2
(30) � 47.4 lb

13. 

 L2
di3

dt
R1i2 (R1 R3) i3 E(t)

L1
di2

dt
(R1 R2)i2 R1i3 E(t)

15. i(0) � i
0
, s(0) � n � i

0
, r(0) � 0

REPASO DEL CAPÍTULO 3 (PÁGINA 113)

 1. dP�dt � 0.15P
 3. P(45) � 8.99 miles de millones

 5. x 10 ln
10 1100 y2

y
1100 y2

 7. a) 

 b) T(t)
BT1 T2

1 B

T1 T2

1 B
ek(1 B)t

BT1 T2

1 B
,

BT1 T2

1 B

 9. 

11. x(t)
ac1eak1t

1 c1eak1t
 , y(t) c2 (1 c1eak1t)k2 /k1

i(t)
4t 1

5 t2, 0 t 10

20,     t 10

13. x � �y � 1 � c
2
e�y

15. a) p(x) r(x)g y
1

K
q(x) dx

 b) El cociente está aumentando; el cociente es constante

 d) r(x)
Kp

g Ky q(x) dx
;  r(x)

B

Kp

2(CKp bgx)

EJERCICIOS 4.1 (PÁGINA 128)

 1. y 1
2 ex 1

2 e x

 3. y � 3x � 4x ln x
 9. (��, 2)

11. a) y
e

e2 1
 (ex e x )    b) y

senhx

senh 1

13. a) y � ex cos x � ex sen x
 b) ninguna solución
 c) y � ex cos x � e�p/2ex sen x
 d) y � c

2
ex sen x, donde c

2
 es arbitraria

15. dependiente 17. dependiente
19. dependiente 21. independiente
23. Las funciones satisfacen la ED y son linealmente 

independientes en el intervalo ya que W(e�3x, 
e4x) � 7e x 	 0; y � c

1
e�3x � c

2
e4x.

25. Las funciones satisfacen la ED y son linealmente 
independientes en el intervalo ya que W(ex cos 2x, ex sen 
2x) � 2e2x 	 0; y � c

1
ex cos 2x � c

2
ex sen 2x.

27. Las funciones satisfacen la ED y son linealmente 
independientes en el intervalo ya que W(x3, x4)
 � x6 	 0; y � c

1
x3 � c

2
x4.

29. Las funciones satisfacen la ED y son linealmente 
independientes en el intervalo ya que W(x, x�2, x�2 ln x) 
� 9x�6 	 0; y � c

1
x � c

2
x�2 � c

3
x�2 ln x.

35. b) y
p
 � x2 � 3x � 3e2x;  yp 2x2 6x 1

3 e2x

EJERCICIOS 4.2 (PÁGINA 132)

 1. y
2
 � xe2x  3. y

2
 � sen 4x

 5. y
2
 � senh x  7. y

2
 � xe2x/3

 9. y
2
 � x 4 ln�x �  11. y

2
 � 1

13. y
2
 � x cos (ln x) 15. y

2
 � x 2 � x � 2

17. y2 e2x, yp
1
2  19. y2 e2x, yp

5
2 e3x

EJERCICIOS 4.3 (PÁGINA 138)

 1. y � c
1
 � c

2
e�x/4  3. y � c

1
e3x � c

2
e�2x

 5. y � c
1
e�4x � c

2
xe�4x  7. y � c

1
e2x/3 � c

2
e�x/4

 9. y � c
1
cos 3x � c

2
sen 3x

11. y � e2x(c
1
cos x � c

2
sen x)

13. y e x /3(c1 cos 1
3 12 x c2 sen 1

3 12 x)
15. y � c

1
 � c

2
e�x � c

3
e5x

17. y � c
1
e�x � c

2
e3x � c

3
xe3x

19. u � c
1
e t � e�t (c

2
cos t � c

3
sen t)

21. y � c
1
e�x � c

2
xe�x � c

3
x2e�x

23. 

c3 x cos 12 13 x c4 x sen 1
2 13 x

y c1 cos 1
2 13 x c2 sen 1

2 13 x
y c1 c2 x e x /2 (c3 cos 1

2 13 x c4 sen 1
2 13 x)

25. 

27. u � c
1
er � c

2
rer � c

3
e�r � c

4
re�r � c

5
e�5r

29. 
31. y 1

3 e (t 1) 1
3 e5(t 1)

y 2 cos 4x 1
2 sen 4x

33. y � 0 
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RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NUMERACIÓN IMPAR ● RES-5

35. y 5
36

5
36 e 6x 1

6 xe 6x

37. y � e5x � xe5x 
39. y � 0

41. 

 y cosh 13x
5

13
 senh13x

y
1

2
1

5

13
e 13x 1

2
1

5

13
e13x;

EJERCICIOS 4.4 (PÁGINA 148)

 1. y � c
1
e�x � c

2
e�2x � 3

 3. 

 5. 

 7. y c1 cos 13x c2 sen 13x ( 4x2 4x 4
3)e3x

y c1e 2x c2xe 2x x2 4x 7
2

y c1e5x c2xe5x 6
5 x 3

5

 9. y � c
1
 � c

2
ex � 3x

11. 

13. 

15. 

17. 

19. 

   

21. 

23. y c1ex c2xex c3x2ex x 3 2
3 x3ex

y c1 c2x c3e6x 1
4 x2 6

37 cos x 1
37 sen x

12
25 sen 2x 9

25 cos 2x

y c1e x c2xe x 1
2 cos x

y c1ex cos 2x c2ex sen 2x 1
4 xex sen 2x

y c1 cos x c2 sen x 1
2 x2 cos x 1

2 x sen x

y c1 cos 2x c2 sen 2x 3
4 x cos 2x

y c1ex/2 c2xex/2 12 1
2 x2ex/2

25. y � c
1
 cos x � c

2
 sen x � c

3
x cos x � c

4
x sen x

   � x2 � 2x � 3

27. y 12 sen 2 x 1
2

29. y � �200 � 200e�x/5 � 3x2 � 30x
31. y � �10e�2x cos x � 9e�2x sen x � 7e�4x

33. 

35. y 11 11ex 9xex 2x 12x2ex 1
2 e5x

x
F0

2 2 sen t
F0

2
t cos t

37. y � 6 cos x � 6(cot 1) sen x � x2 � 1

39. 

41. y
cos 2x 5

6 sen 2x 1
3 sen x,

2
3 cos 2x 5

6 sen 2x,

0 x >2

  x >2

y
4 sen 13x

sen13 13 cos 13
2x

EJERCICIOS 4.5 (PÁGINA 156)

 1. (3D � 2)(3D � 2)y � sen x
 3. (D � 6)(D � 2)y � x � 6
 5. D(D � 5) 2y � ex

 7. (D � 1)(D � 2)(D � 5)y � xe�x

 9. D(D � 2)(D2 � 2D � 4)y � 4
15. D4 17. D(D � 2)
19. D2 � 4 21. D3(D2 � 16)
23. (D � 1)(D � 1)3 25. D(D2 � 2D � 5)
27. 1, x, x 2, x 3, x 4 29. e6x, e�3x/2

31. cos 15x, sen 15x  33. 1, e5x, xe5x

35. y � c
1
e�3x � c

2
e3x � 6    

37. y � c
1
 � c

2
e�x � 3x

39. 

41. 

43. y c1e 3x c2e4x 1
7 xe4x

y c1 c2x c3e x 2
3 x4 8

3 x3 8x2

y c1e 2x c2x e 2x 1
2 x 1

45. y � c
1
e�x � c

2
e3x � ex � 3

47. 

y ex (c1cos 2x c2sen 2x) 1
3 ex sen x

y c1e x c2ex 1
6 x3ex 1

4 x2ex 1
4 xex 5

y c1e 3x c2xe 3x 1
49 xe4x 2

343 e4x

y c1 cos 5x c2 sen 5x 1
4 sen x

49. 

51. 

53. 

55. y � c
1
cos 5x � c

2
sen 5x � 2x cos 5x

57. y e x/2 c1 cos
13

2
x c2 sen 

13

2
x

   � sen x � 2 cos x � x cos x

59. 

61. 

63. 

65. 

67. 

69. 

71. y 2e2x cos 2x 3
64 e2x sen 2x 1

8 x3 3
16 x2 3

32 x

y  cos x 11
3  sen x 8

3 cos 2x 2x cos x

y 41
125

41
125 e5x 1

10 x2 9
25 x

y 5
8 e 8x 5

8 e8x 1
4

y c1 c2x c3ex c4xex 1
2 x2ex 1

2 x2

y c1ex c2xex c3x2ex 1
6 x3ex x 13

y c1 c2x c3e 8x 11
256 x2 7

32 x3 1
16 x4

EJERCICIOS 4.6 (PÁGINA 161)
 1. 

 3. 

 5. 

 7. 

 9. 

   x0 0

y c1e2x c2e 2x 1
4 e2x ln x e 2x

x

x0

e4 t

t
dt ,

y c1ex c2e x 1
2 x senh x

y c1 cos x c2 sen x 1
2

1
6 cos 2x

y c1 cos x c2 sen x 1
2 x cos x

y c1 cos x c2 sen x x sen x cos x ln cos x

11. y � c
1
e�x � c

2
e�2x � (e�x � e�2x) ln(1 � ex)

13. y � c
1
e�2x � c

2
e�x � e�2x sen ex

15. 

17. 

   

19. 

21. y 4
9 e 4x 25

36 e2x 1
4 e 2x 1

9 e x

y 1
4 e x/2 3

4 ex/2 1
8 x2ex/2 1

4 xex/2

1
3 ex cos x ln cos x

y c1ex sen x c2ex cos x 1
3 xex sen x

y c1e t c2te t 1
2 t2e t ln t 3

4 t2e t

23. y � c
1
x�1/2 cos x � c

2
x�1/2 sen x � x�1/2

25. 

  sen x ln sec x tan x

y c1 c2 cos x c3 sen x ln cos x

EJERCICIOS 4.7  (PÁGINA 168)

 1. y � c
1
x�1 � c

2
x2

 3. y � c
1
 � c

2
 ln x

 5. y � c
1
 cos(2 ln x) � c

2
 sen(2 ln x)
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RES-6 ● RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NUMERACIÓN IMPAR

 7. 

 9. y c1 cos (1
5 ln x) c2 sen (1

5 ln x)
y c1x(2 16) c2x(2 16)

11. y � c
1
x�2 � c

2
x�2 ln x

13. 

15. y c1x3 c2 cos(12 ln x) c3 sen(12 ln x)

y x 1/2[c1 cos(1
6 13 ln x) c2 sen(1

6 13 ln x)]

17. y � c
1
 � c

2
x � c

3
x2 � c

4
x�3

19. y c1 c2x5 1
5 x5 ln x

21. y � c
1
x � c

2
x ln x � x(ln x)2

23. y � c
1
x�1 � c

2
x � ln x

25. y � 2 � 2x�2 27. y � cos(ln x) � 2 sen(ln x)

29.  31. y � c
1
x�10 � c

2
x2

33. 

35. 

.13 y c1x 10 c2x2

y x2 [c1 cos(3 ln x) c2 sen(3 ln x)] 4
13

3
10 x

y c1x 1 c2x 8 1
30 x2

y 3
4 ln x 1

4 x2

37. y � 2(�x)1/2 � 5(�x)1/2 ln(�x), x � 0

EJERCICIOS 4.8 (PÁGINA 172)
 1. x � c

1
et � c

2
tet

y � (c
1
 � c

2
)et � c

2
tet

 3. x � c
1
 cos t � c

2
 sen t � t � 1

 y � c
1
 sen t � c

2
 cos t � t � 1

 5. 

  

 7. 

  

 9. 

  

11. 

  

   

13. 

  

15. 

  

17. 

  

   

  

   ( 1
2 13c2

1
2 c3)e t / 2 cos 12 13t

z c1et ( 1
2 c2

1
2 13c3)e t/2 sen 12 13t

( 1
2 13c2

1
2 c3)e t/2 cos 12 13t

y c1et ( 1
2 c2

1
2 13c3)e t / 2 sen 12 13t

x c1et c2e t / 2 sen 12 13t c3e t / 2 cos 12 13t

y (c1 c2 2) (c2 1)t c4e t 1
2 t2

x c1 c2t c3et c4e t 1
2 t2

y 3
4 c1e4t c2 5et

x c1e4t 4
3 et

(1
2 13c2

3
2 c3)e t/2 sen 12 13t

y ( 3
2 c2

1
2 13c3)e t / 2 cos 12 13t

x c1et c2e t/2 cos 12 13t c3e t/2 sen 12 13t

y c1 c2 sen t c3 cos t 4
15 e3t

x c1 c2 cos t c3 sen t 17
15 e3t

y c1e2t c2e 2t c3 sen 2t c4 cos 2t 1
5 et

x c1e2t c2e 2t c3 sen 2t c4 cos 2t 1
5 et

y c1 sen t c2 cos t c3 sen 16t c4 cos 16t

x 1
2 c1 sen t 1

2 c2 cos t 2c3 sen 16t 2c4 cos 16t

19. x � �6c
1
e�t � 3c

2
e�2t � 2c

3
e3t

  y � c
1
e�t � c

2
e�2t � c

3
e3t

  z � 5c
1
e�t � c

2
e�2t � c

3
e3t

21. x � e�3t�3 � te�3t�3

 y � �e�3t�3 � 2te�3t�3

23. mx� � 0
 my� � �mg;
 x � c

1
t � c

2

 

1 2

y 1
2 gt2 c3t c4

EJERCICIOS 4.9 (PÁGINA 177)

 3. 

 5. 

 7. 

 9. 

11. 

13. 

15. 

17. y 11 x2

y 1 x 1
2 x2 2

3 x3 1
4 x4 7

60 x5

y 1 x 1
2 x2 1

2 x3 1
6 x4 1

10 x5

y
1

c1
11 c2

1x2 c2

y tan (1
4

1
2 x), 1

2 x 3
2

1
3 y3 c1y x c2

y
1

c2
1
ln c1x 1

1

c1
x c2

y ln cos (c1 x) c2

REPASO DEL CAPÍTULO 4 (PÁGINA 178)

 1. y � 0
 3. falso
 5. (��, 0); (0, �)
 7. y � c

1
e3x � c

2
e�5x � c

3
xe�5x � c

4
ex � c

5
xex � c

6
x2ex;

 y � c
1
x3 � c

2
x�5 � c

3
x�5 ln x � c

4
x � c

5
x ln x � c

6
x (ln x)2

 9. y c1e(1 13)x c2e(1 13)x

11. y � c
1
 � c

2
e�5x � c

3
xe�5x

13. 

15. 

  

17. 

19. ex cos x ln sec x tan xy ex (c1 cos x c2 sen x)

y c1 c2e2x c3e3x 1
5 sen x 1

5 cos x 4
3 x

46
125 x 222

625

y e3x / 2(c2 cos 12 111x c3 sen 12 111x) 4
5 x3 36

25 x2

y c1e x / 3 e 3x / 2 (c2 cos 1
2 17x c3 sen1

2 17x)

21. y � c
1
x�1/3 � c

2
x1/2

23. y � c
1
x2 � c

2
x3 � x4 � x2 ln x

25. a) 

     

  

  

;

Bx sen x, 
y c1cos x c2sen x Ax cos x

B sen x, 
y c1cos x c2sen x A cos x
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RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NUMERACIÓN IMPAR ● RES-7

 b) 

  y c1e x c2e x Axe x ,

y c1e x c2e x Ae x , ;

27. a) y � c
1
cosh x � c

2
senh x � c

3
x cosh x

     � c
4
x senh x

 b) y
p
 � Ax2 cosh x � Bx2 senh x

29. y � ex�p cos x

31. y 13
4 ex 5

4 e x x 1
2 sen x

33. y � x2 � 4

37. x c1et 3
2 c2e2t 5

2

  y � c
1
et � c

2
e2t � 3

39. x � c
1
et � c

2
e5t � tet

  y � �c
1
et � 3c

2
e5t � te t � 2et

EJERCICIOS 5.1 (PÁGINA 194)

 1. 

 3. x(t) 1
4 cos 4 16 t

12

8

 5. a) 

  x
4

1

2
; x

9

32

12

4

x
12

1

4
; x

8

1

2
; x

6

1

4
;

 b) 4 pies/s; hacia abajo

 c) t
(2n 1)

16
, n 0, 1, 2, . . .

 7. a) la masa de 20 kg

 b) la masa de 20 kg; la masa de 50 kg

 c)  t � np, n � 0, 1, 2, . . . ; en la posición de equilibrio; 
la masa de 50 kg se está moviendo hacia arriba 
mientras que la masa de 20 kg se está moviendo 
hacia arriba cuando n es par y hacia abajo cuando n 
es impar.

 9. x(t)
1

2
 cos 2t

3

4
 sen 2t

113

4
sen(2t 0.5880)

11. a) 

  

 b) 
5

6
  pies;

5

5
6 sen(10t 0.927)

x(t) 2
3 cos 10t 1

2 sen 10t

 c) 15 ciclos
 d) 0.721 s

 e) 
(2n 1)

20
0.0927, n 0, 1, 2, . . .

 f) x (3) � �0.597 pies g) x�(3) � �5.814 pies
 h) x�(3) � 59.702 pies2 i) 81

3 pies/s

 j) 0.1451
n

5
; 0.3545

n

5
, n 0, 1, 2, . . .

 k) 0.3545
n

5
, n 0, 1, 2, . . .

13. 120 lb/pies; x(t)
13

12
 sen 813 t

17. a) arriba b) apuntando hacia arriba
19. a) abajo b) apuntando hacia arriba

21. 1
4 s; 1

2 s, x (1
2) e 2; esto es, la pesa está 

aproximadamente 0.14 pies debajo de la posición de 
equilibrio.

23. a) 

 b) 

25. a) 

 b) x(t)
15

2
e 2t sen(4t 4.249)

x(t) e 2t ( cos 4t 1
2 sen 4t)

x(t) 2
3 e 2t 5

3 e 8t

x(t) 4
3 e 2t 1

3 e 8t

 c) t � 1.294 s

27. a) 5
2     b) 5

2     c) 5
2

29. 

     

31. 

33. 

     2e 2t sen 4t

x(t) 1
2 cos 4t 9

4 sen 4t 1
2 e 2t cos 4t

x(t) 1
4 e 4t te 4t 1

4 cos 4t

10

3
 (cos 3t sen 3t)

x(t) e t / 2 4

3
 cos 

147

2
t

64

3147
 sen 

147

2
t

35. a) 

  
d 2x

dt2 2
dx

dt
2x 2h(t),

m
d 2x

dt2 k(x h)
dx

dt
  o

   donde 2l � b�m y v2 � k�m

 b) 

   32
13 sen t

x(t) e 2t ( 56
13 cos 2t 72

13 sen 2t) 56
13 cos t

37. x(t) cos 2t 1
8 sen 2t 3

4 t sen 2t 5
4 t cos 2t

39. b) 
F0

2
t sen t

45. 4.568 C; 0.0509 s
47. q(t) � 10 � 10e�3t(cos 3t � sen 3t)
  i(t) � 60e�3t sen 3t; 10.432 C
49. 

 

53. 

57. 

     

 

E0C

1 2LC
 sen t

i(t) i0 cos 
t

1LC

1

1LC
q0

E0C

1 2LC
sen

t

1LC

1LCi0 sen 
t

1LC

E0C

1 2LC
 cos t

q(t) q0
E0C

1 2LC
cos

t

1LC

q(t) 1
2 e 10t (cos 10t sen 10t) 3

2 ; 3
2 C

ip
100
13  cos t 150

13  sen t

qp
100
13  sen t 150

13  cos t
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RES-8 ● RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NUMERACIÓN IMPAR

EJERCICIOS 5.2 (PÁGINA 204)

 1. a) 

 3. a) 

 5. a) y(x)
w0

360EI
(7L4x 10L2x3 3x5)

y(x)
w0

48EI
(3L2x2 5Lx3 2x4)

y(x)
w0

24EI
(6L2x2 4Lx3 x4)

 c) x � 0.51933, y
máx

 � 0.234799

 7. 

 

 
w0

2P
x2 w0EI

P2

w0EI

P2 senh 
B

P

EI
L

w0L1EI

P1P

senh 
B

P

EI
x

cosh 
B

P

EI
L

y(x)
w0EI

P2 cosh 
B

P

EI
x

 9. l
n
 � n2, n � 1, 2, 3, . . . ;  y � sen nx

11. 

  y cos
(2n 1) x

2L

n

(2n 1)2 2

4L2 , n 1, 2, 3, . . . ;

13. l
n
 � n2, n � 0, 1, 2, . . . ;  y � cos nx

15. n

n2 2

25
, n 1, 2, 3, . . . ; y e x sen

n x

5

17. l
n
 � n2, n � 1, 2, 3, . . . ;  y � sen(n ln x)

19. l
n
 � n4p 4,  n � 1, 2, 3, . . . ;  y � sen npx

21. x � L�4, x � L�2, x � 3 L�4

25. 

27. u(r)
u0 u1

b a

ab

r

u1b u0a

b a

n

n 1T

L1
, n 1, 2, 3, . . . ; y sen

n x

L

EJERCICIOS 5.3 (PÁGINA 213)

 7. 
d 2x

dt2 x 0

15. a) 5 pies b) 4 110 pies/s c) 0 t 3
8 110; 7.5 pies

17. a)  .xy r 11 (y )2

   Cuando t � 0, x � a, y � 0, dy�dx � 0.

 b) Cuando r 	 1,

  

  
ar

1 r2

y(x)
a

2

1

1 r

x

a

1 r 1

1 r

x

a

1 r

   Cuando r � 1,

  y(x)
1

2

1

2a
 (x2 a2)

1

a
ln

a

x

 c) Las trayectorias se intersecan cuando r � 1.

REPASO DEL CAPÍTULO 5 (PÁGINA 216)

 1. 8 pies
 3. 5

4 m
 5. Falso; podría existir una fuerza aplicada que impulsa al 

sistema.
 7. sobreamortiguado
 9. y � 0 puesto que l � 8 no es un eigenvalor

11. 14.4 lb 13. 

15. 0 � m 
 2 17. 8
3 13

x(t) 2
3 e 2t 1

3 e 4t

19. x(t) e 4t (26
17 cos 2 12 t 28

17 12 sen 212 t) 8
17 e t

21. a) 

 b) 

 c) t
n

50
, n 0, 1, 2, . . .

i(t) 2
3 cos 100t 2

3 cos 50t

q(t) 1
150 sen 100 t 1

75 sen 50 t

25. m
d 2x

dt2 kx 0

EJERCICIOS 6.1 (PÁGINA 230)

 1. R 1
2, [ 1

2,
1
2)

 3. R � 10, (�5, 15)

 5. 

 7. 

 9. 

11. 

15. 

17. 

 

 

 

19. 

 

5; 4

y2(x) c1 x
1

3!
x3 5

5!
x5 45

7!
x7

y1(x) c0 1
1

2!
x2 3

4!
x4 21

6!
x6

1

10 9 7 6 4 3
x10

y2(x) c1 x
1

4 3
x4 1

7 6 4 3
x7

1

9 8 6 5 3 2
x9

y1(x) c0  1
1

3 2
x3 1

6 5 3 2
x6

2c1
k 1

[2(k 1)ck 1 6ck 1]xk

k 3
(k 2) ck 2xk

1 1
2 x2 5

24 x4 61
720 x6 , ( >2, >2)

x 2
3 x3 2

15 x5 4
315 x7

RE
SP

U
ES

TA
S 

A
 L

O
S 

PR
O

BL
EM

A
S 

SE
LE

C
C

IO
N

A
D

O
S 

C
O

N
 N

U
M

ER
A

C
IÓ

N
 IM

PA
R 

 •
  C

A
PÍ

TU
LO

 6

08243_13_answers.indd   808243_13_answers.indd   8 6/4/09   12:35:36 PM6/4/09   12:35:36 PM



RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NUMERACIÓN IMPAR ● RES-9

21. 

 

 
82 52 22

10!
x10

y2(x) c1 x
22

4!
x4 52 22

7!
x7

y1(x) c0 1
1

3!
x3 42

6!
x6 72 42

9!
x9

23. 

25. 

 

27. 

 

29. y(x) 2 1
1

2!
x2 1

3!
x3 1

4!
x4 6x

y2(x) c1 x
1

6
x3 14

2 5!
x5 34 14

4 7!
x7

y1(x) c0 1
1

4
x2 7

4 4!
x4 23 7

8 6!
x6

y2(x) c1 [x 1
2 x2 1

2 x3 1
4 x4 ]

y1(x) c0[1 1
2 x2 1

6 x3 1
6 x4 ]

y1(x) c0; y2 (x) c1
n 1

1

n
xn

     � 8x � 2ex

31. y(x) � 3 � 12x2 � 4x4

33. 

 y2(x) c1 [x 1
12 x4 1

180 x6 ]
y1(x) c0 [1 1

6 x3 1
120 x5 ]

EJERCICIOS 6.2 (PÁGINA 239)

 1. x � 0, punto singular irregular

 3. x � �3, punto singular regular;
x � 3, punto singular irregular

 5. x � 0, 2i, �2i, puntos singulares regulares

 7. x � �3, 2, puntos singulares regulares

 9. x � 0, punto singular irregular;
x � �5, 5, 2, puntos singulares regulares

11. para

  para x 1: p(x)
5(x 1)

x 1
, q(x) x2 x

x 1: p(x) 5, q(x)
x (x 1)2

x 1

13. 

15. 

 

          

 C2 1 2x 2 x2 23

3 3!
x3

23

9 7 5 3!
x3

y(x) C1x3/2  1
2

5
x

22

7 5 2
x2

r1
3
2, r2 0

r1
1
3, r2 1

17. 

 

           

     

 
23

17 9 3!
x3

c2 1 2x
22

9 2
x2

23

31 23 15 3!
x3

y(x) c1x7/8 1
2

15
x

22

23 15 2
x2

r1
7
8, r2 0

19. 

 

          

 C2 1
1

2
x

1

5 2
x2 1

8 5 2
x3

1

33 3!
x3

y(x) C1x1/3 1
1

3
x

1

32 2
x2

r1
1
3 , r2 0

21. 

 

           

 C2 1
1

3
x

1

6
x2 1

6
x3

23 4

11 9 7
x3

y(x) C1x5/2 1
2 2

7
x

22 3

9 7
x2

r1
5
2, r2 0

23. 

 

 C2x1/3[1 1
2 x 1

5 x2 7
120 x3 ]

y(x) C1x2/3 [1 1
2 x 5

28 x2 1
21 x3 ]

r1
2
3, r2

1
3

25. r
1
 � 0, r

2
 � �1

  

 

1

x
[C1 senh x C2 cosh x]

C1x 1

n 0

1

(2n 1)!
x2n 1 C2x 1

n 0

1

(2n)!
x2n

y(x) C1
n 0

1

(2n 1)!
x2n C2x 1

n 0

1

(2n)!
x2n

27. r
1
 � 1, r

2
 � 0

 

 
1
12 x3 1

72 x4 ]
y(x) C1x C2 [x ln x 1 1

2 x2

29. r
1
 � r

2
 � 0

 

 
1

3 3!
x3 1

4 4!
x4

y(x) C1y(x) C2 y1(x) ln x y1(x) x
1

4
x2

 donde y1(x)
n 0

1

n!
xn ex
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RES-10 ● RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NUMERACIÓN IMPAR

33. b) 

  

 c) y C1x sen
1

x
C2x cos

1

x

y2(t) t 1

n 0

( 1)n

(2n)!
(1  t)2n

cos (1 t)
 

t

y1(t)
n 0

( 1)n

(2n 1)!
(1  t)2n

sen(1 t)
1

 

t

EJERCICIOS 6.3 (PÁGINA 250)

 1. y � c
1
J

1/3
(x) � c

2
J

�1/3
(x)

 3. y � c
1
J

5/2
(x) � c

2
J

�5/2
(x)

 5. y � c
1
J

0
(x) � c

2
Y

0
(x)

 7. y � c
1
J

2
(3x) � c

2
Y

2
(3x)

 9. y � c
1
J

2/3
(5x) � c

2
J

�2/3
(5x)

11. y � c
1
x�1/2J

1/2
(ax) � c

2
x�1/2J

�1/2
(ax)

13. y � x�1/2 [c
1
J

1
(4x1/2) � c

2
Y

1
(4x1/2)]

15. y � x [c
1
J

1
(x) � c

2
Y

1
(x)]

17. y � x1/2 [c
1
J

3/2
(x) � c

2
Y

3/2
(x)

19. y x 1[c1J1/2(1
2 x2) c2J 1/2(1

2 x2)]
23. y � x1/2 [c

1
J

1/2
(x) � c

2
J

�1/2
(x)]

     � C
1
 sen x � C

2
 cos x

25. 

 

35. y c1x1/2J1/3(2
3 ax3/2) c2x1/2J 1/3(2

3 ax3/2)
C1x 3/2sen(1

8 x2) C2 x 3/2 cos(1
8 x2)

y x 1/2 [c1J1/2(1
8 x2) c2J 1/2(1

8 x2)]

45. P
2
(x), P

3
(x), P

4
(x), y P

5
(x) están dados en el texto,

 

 

y
,

P7(x) 1
16 (429x7 693x5 315x3 35x)

P6(x) 1
16 (231x6 315x4 105x2 5)

47. l
1
 � 2, l

2
 � 12, l

3
 � 30

REPASO DEL CAPÍTULO (PÁGINA 253)

 1. Falso

 3. [ 1
2,

1
2]

 7. x2(x � 1)y� � y� � y � 0
 9. 

  

  

11. 

 

y y y

y2(x) c1 [x 1
2 x3 1

4 x4 ]
y1(x) c0 [1 3

2 x2 1
2 x3 5

8 x4 ]
y2(x) C2 [1 x 1

6 x2 1
90 x3 ]

y1(x) C1x1/2 [1 1
3 x 1

30 x2 1
630 x3 ]

r1
1
2, r2 0

13. r
1
 � 3, r

2
 � 0

 

 

15. 

       

17. 1
6

2 [x 1
2 x3 1

8 x5 1
48 x7 ]

y(x) 3[1 x2 1
3 x4 1

15 x6 ]
y2(x) C2 [1 x 1

2 x2]
y1(x) C1x3 [1 1

4 x 1
20 x2 1

120 x3 ]

19. x � 0 es un punto ordinario

21. 

      

           

 

1

32 2!
x6 1

33 3!
x9

1

4 7 10
x10 5

2
x2 1

3
x3

c1 x
1

4
x4 1

4 7
x7

y(x) c0 1
1

3
x3 1

32 2!
x6 1

33 3!
x9

EJERCICIOS 7.1 (PÁGINA 261)

 1.   3. 

 5. 
 

 7. 

 9.  11. 

13.  15. 

17. 
 

19. 

21.  23. 

25.  27. 

29. 
1

s

2

s 2

1

s 4

6

s4

6

s3

3

s2

1

s

4

s2

10

s

s2 1

(s2 1)2

1

(s 4)2

1

s

1

s2

1

s2 e s

1 e s

s2 1

2

s
e s 1

s

 31. 
8

s3

15

s2 9

1

s

1

s 4

2

s3

6

s2

3

s

48

s5

1

s2 2s 2

e7

s 1

1

s
e s 1

s2 e s

1

s2

1

s2 e s

33. Utilice senh kt
ekt e kt

2
 para mostrar que

{senh kt}
k

s2 k2.

35.   37. 
2

s2 16

39. 
4 cos 5 (sen 5)s

s2 16

1

2(s 2)

1

2s

EJERCICIOS 7.2 (PÁGINA 269)

 1.   3. t � 2t 4

 5.   7. t � 1 � e2t

 9.  11. 5
7 sen 7t

13.  15. 2 cos 3t � 2 sen 3t

17. 1
3

1
3 e 3t

cos
t

2

1
4 e t/4

1 3t 3
2 t2 1

6 t3

1
2 t2

 19. 

21. 0.3e0.1t � 0.6e�0.2t 23. 1
2 e2t e3t 1

2 e6t

3
4 e 3t 1

4 et

25.    27. �4 � 3e�t � cos t � 3 sen t

29.  31. y � �1 � et

33. y 1
10 e4t 19

10 e 6t

1
3 sen t 1

6 sen 2t

1
5

1
5 cos 15t

 35. y 4
3 e t 1

3 e 4t
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RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NUMERACIÓN IMPAR ● RES-11

37. 
39. 
41. y 1

4 e t 1
4 e 3t cos 2t 1

4 e 3tsen 2t

y 8
9 e t /2 1

9 e 2t 5
18 et 1

2 e t

y 10 cos t 2 sen t 12 sen 12 t

EJERCICIOS 7.3 (PÁGINA 278)

 1.    3. 

 5.  
 

 7. 
3

(s 1)2 9

6

(s 2)4

 9. 

.3

.7

s

s2 25

s 1

(s 1)2 25
3

s 4

(s 4)2 25

3

(s 1)2 9

1

(s 2)2

2

(s 3)2

1

(s 4)2

6

(s 2)4

1

(s 10)2

11. 1
2 t2 e 2t

 13. e3t sen t
15. e�2t cos t � 2e�2t sen t 17. e�t � te�t

19. 5 t 5e t 4 te t 3
2 t2 e t

21. y � te�4t � 2e�4t 23. y � e�t � 2te�t

25.   27. y 3
2 e3tsen 2t

29. y 1
2

1
2 et cos t 1

2 et sen t

y 1
9 t 2

27
2
27 e3t 10

9 te3t

31. y � (e � 1)te�t � (e � 1)e�t

33. x(t)
3

2
e 7t/2cos

115

2
t

7115

10
e 7t/2 sen

115

2
t

37.  39. 

41.  43. 

45. sen t (t )

s

s2 4
e s

e s

s2

 47. (t 1) e (t 1) (t 1)

1
2 (t 2)2 (t 2)

e 2s

s2 2
e 2s

s

49. c) 51. f )
53. a)

55. 

57. 

59. 

61. 

63. 
65. 

 

67. 

  

69. 
    

71. 

  
25
4 cos 4(t 5) (t 5)

5
16 sen 4(t 5) (t 5) 25

4 (t 5)

x(t) 5
4 t 5

16 sen 4 t 5
4 (t 5) (t 5)

[1 cos(t 2 )] (t 2 )

y  sen t [1 cos(t )] (t )

1
3 sen (t 2 ) (t 2 )

y 2 soc t 1
6 sen 2(t 2 ) (t 2 )

1
2 (t 1) (t 1) 1

4 e 2(t 1) (t 1)

y 1
4

1
2 t 1

4 e 2t 1
4 (t 1)

y [5 5e (t 1)] (t 1)

f (t) (t a) (t b); { f (t)}
e as

s

e bs

s

f (t) t t (t 2); { f (t)}
1

s2

e 2s

s2 2
e 2s

s

f (t) t2 (t 1); { f (t)} 2
e s

s3 2
e s

s2

e s

s

f (t) 2 4 (t 3); { f (t)}
2

s

4

s
e 3s

  

73. q(t) 2
5 (t 3) 2

5 e 5(t 3) (t 3)

75. a) 

      

      

       
1

101
sen t

3

2
t

3

2

10

101
cos t

3

2
t

3

2

10

101
e 10(t 3 /2) t

3

2

i(t)
1

101
e 10t 1

101
cos t

10

101
sen t

 b) i
máx

 � 0.1 at t � 1.7, i
mín

 � �0.1 at t � 4.7

77. 

  

79. 

  
w0

60EIL

5L

2
x4 x5 x

L

2

5

x
L

2

y(x)
w0L2

48EI
x2 w0L

24EI
x3

w0

24EI
x

L

2

4

x
L

2

y(x)
w0L2

16EI
x2 w0L

12EI
x3 w0

24EI
x4

81. a) dT

dt
 � k(T � 70 � 57.5t � (230 � 57.5t)�(t � 4))

EJERCICIOS 7.4 (PÁGINA 289)

 1.   3. 

 5. 
6s2 2

(s2 1)3

1

(s 10)2

  7. 
12s 24

[(s 2)2 36]2

s2 4

(s2 4)2

 9. 

11. 

13. 

 

17.    19. 

21.    23. 

25.    27. 
1

s2(s 1)

1

s(s 1)

6

s5

29.    31. et � 1

33.    37. f (t) � sen t

39.    41. f (t) � e�t

43. 

91

32

72

13

73

14

f (t) 3
8 e2t 1

8 e 2t 1
2 cos 2t 1

4 sen 2 t

f (t) 1
8 e t 1

8 et 3
4 tet 1

4 t2et

et 1
2 t2 t 1

3s2 1

s2(s2 1)2

s 1

s[(s 1)2 1]

s 1

(s 1)[(s 1)2 1]

y 2
3 t3 c1t2

1
8 (t ) sen 4(t ) (t )

y 1
4 sen 4 t 1

8 t sen 4t

y 2 cos 3t 5
3 sen 3t 1

6 t sen 3t

y 1
2 e t 1

2 cos t 1
2 t cos t 1

2 t sen t
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RES-12 ● RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NUMERACIÓN IMPAR

45. 

47. 

  

49. 

51. 

53. 

55. 

  

57. 

  

  
1
3 e (t n ) sen 3(t n )] (t n )

4
n 1

( 1)n [1 e (t n ) cos 3(t n )

x(t) 1(2 e t cos 3t 1
3 e t sen 3t)

2

R n 1
( 1)n (1 e R(t n)/L) (t n)

i(t)
1

R
(1 e Rt/L)

coth ( s>2)

s2 1

a

s

1

bs

1

ebs 1

1 e as

s(1 e as)

100[e 10(t 2) e 20(t 2)] (t 2)

i(t) [001 e 10(t 1) e 20(t 1)] (t 1)

y(t) sen t 1
2 t sen t

EJERCICIOS 7.5 (PÁGINA 295)

 1. 

 3. 

 5. 

 7. 

 9. 

11. 

   

   

13. y(x)

P0

EI

L

4
x2 1

6
x3 , 0 x

L

2

P0L2

4EI

1

2
x

L

12
, L

2
x L

1
3 e 2(t 3 ) sen 3(t 3 ) (t 3 )

1
3 e 2(t ) sen 3(t ) (t )

y e 2t cos 3t 2
3 e 2t sen 3t

y e 2(t 2 ) sen t (t 2 )

y 1
2

1
2 e 2t [1

2
1
2 e 2(t 1)] (t 1)

y cos t (t 2) cos t (t 3
2 )

y sen t sen t (t 2 )

y e3(t 2) (t 2)

EJERCICIOS 7.6 (PÁGINA 299)

 1.     3. 

      

 5.     7. 

        y 1
2 t 3

4 12 sen 12t

x 1
2 t 3

4 12 sen 12t

y 2 cos 3t 7
3 sen 3t

x cos 3t 5
3 sen 3t

 9. 

 

11. 

 y 1
3

1
3 e t 1

3 te t

x 1
2 t2 t 1 e t

y
2

3!
t3 1

4!
t 4

x 8
2

3!
t3 1

4!
t 4

y 8
3 e3t 5

2 e2t 1
6

x 2e3t 5
2 e2t 1

2

y 1
3 e 2t 2

3 et

x 1
3 e 2t 1

3 et

13. 

 x2
2

5
 sen t

16

15
 sen 16 t

4

5
 cos t

1

5
 cos 16 t

x1
1

5
 sen t

216

15
sen16 t

2

5
 cos t

2

5
 cos 16 t

15. b) 

   i3
80
9

80
9 e 900t

i2
100
9

100
9 e 900t

 c) i
1
 � 20 � 20e�900t

17. 

 

19. 

 i2
6

5

6

5
e 100t cosh 5012 t

612

5
e 100t senh 50 12 t

i1
6

5

6

5
e 100t cosh 5012 t

912

10
e 100t senh 5012 t

i3
30
13 e

2t 250
1469 e

15t 280
113 cos t 810

113 sen t

i2
20
13 e

2t 375
1469 e

15t 145
113 cos t 85

113 sen t

REPASO DEL CAPÍTULO 7 (PÁGINA 300)

 1. 
1

s2

2

s2 e s   3. falso

 5. verdadero 7. 
1

s 7

 9. 
2

s2 4
 11. 

4s

(s2 4)2

13. 1
6 t5  15. 1

2 t2 e5t

17. 

19. cos (t 1) (t 1) sen (t 1) (t 1)

e5t cos 2t 5
2 e5t sen 2 t

21. �5 23. e�k(s�a)F(s � a)

25. f (t) (t t0)  27. f (t t0) (t t0)

29. 

 

 

 

31. 

 

 

33. 

35. 

 

 

37. 

39. 

 

;

;

;

;

y t 9
4 e 2t 1

4 e2t

x 1
4

9
8 e 2t 1

8 e2t

y 1 t 1
2 t2

9
100 e 5(t 2) (t 2)

1
5 (t 2) (t 2) 1

4 e (t 2) (t 2)

y 6
25

1
5 t 3

2 e t 13
50 e 5t 4

25 (t 2)

y 5tet 1
2 t2 et

{et f (t)}
2

s 1

1

(s 1)2 e 2(s 1)

{ f (t)}
2

s

1

s2 e 2s

f (t) 2 (t 2) (t 2)

1

s 1
e 4(s 1)

{et f (t)}
1

(s 1)2

1

(s 1)2 e (s 1)

{ f (t)}
1

s2

1

s2 e s 1

s
e 4s

f (t) t (t 1) (t 1) (t 4)
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RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NUMERACIÓN IMPAR ● RES-13

41. i(t) � �9 � 2t � 9e�t/5

43. 

 
1

5
x

L

2

5

x
L

2

y(x)
w0

12EIL

1

5
x5 L

2
x4 L2

2
x3 L3

4
x2

45. a) 

  2(t) 0 0

2
 cos t 0 0

2
 cos 1 2 2Kt

1(t) 0 0

2
 cos t 0 0

2
 cos 1 2 2Kt

EJERCICIOS 8.1 (PÁGINA 310)

 1. ,X
3 5

4  8
X   donde X

x

y

 3. 

 5. 

 

 7. 

 

 9. 

 

 
dz

dt
2x 5y 6z 2e t t

dy

dt
3x 4y z 2e t t

dx

dt
x y 2z e t 3t

dy

dt
x 3y et

dx

dt
4x 2y et

donde X
x

y

z

X
1

2

1

1

1

1

1

1

1

X
0

3t2

t2

t

0

t

1

0

2

,

X
3

6

10

4

1

4

9

0

3

X, donde X
x

y

z

17. Si; W(X
1
, X

2
) � �2e�8t 	 0 implica que X

1
 y X

2 
 son 

linealmente independientes en (��, �).
19. No; W(X

1
, X

2
, X

3
) � 0 para toda t. Los vectores 

solución son linealmente dependientes en (��, �) 
Observe que X

1
 y X

2
.

EJERCICIOS 8.2 (PÁGINA 324)

 1. 

 3. 

 5. X c1
5

2
e8t c2

1

4
e 10t

X c1
2

1
e 3t c2

2

5
et

X c1
1

2
e5t c2

1

1
e t

 7. 

 9. 

11. 

13. 

19. 

21. 

23. 

25. 

    

27. 

    

29. X 7
2

1
e4t 13

2t 1

t 1
e4t

c3

0

1

1

t2

2
et

0

1

0

tet

1
2

0

0

et

X c1

0

1

1

et c2

0

1

1

tet

0

1

0

et

c3

2

0

1

te5t

1
2
1
2

1

e5t

X c1

4

5

2

c2

2

0

1

e5t

X c1

1

1

1

et c2

1

1

0

e2t c3

1

0

1

e2t

X c1
1

1
e2t c2

1

1
te2t

1
3

0
e2t

X c1
1

3
c2

1

3
t

1
4
1
4

X 3
1

1
et / 2 2

0

1
e t / 2

X c1

4

0

1

e t c2

12

6

5

e t / 2 c3

4

2

1

e 3t / 2

X c1

1

0

1

e t c2

1

4

3

e3t c3

1

1

3

e 2t

X c1

1

0

0

et c2

2

3

1

e2t c3

1

0

2

e t

31. Correspondiendo al eigenvalor l
1
 � 2 de multiplicidad 

5, los eigenvectores son

K1

1

0

0

0

0

,  K2

0

0

1

0

0

,  K3

0

0

0

1

0

.

33. 

35. 

37. X c1
5 cos 3t

4 cos 3t 3 sen 3t
c2

5 sen3t

4 sen 3t 3 cos 3t

X c1
cos t

cos t sen t
e4t c2

sen t

sen t cos t
e4t

X c1
cos t

2 cos t sen t
e4t c2

sen t

2 sen t cos t
e4t
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RES-14 ● RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NUMERACIÓN IMPAR

39. 

41. 

43. 

    

45. 

  6

5 cos 5t sen 5t

sen 5t

sen 5t

X
25

7

6

et

cos 5t 5 sen 5t

cos 5t

cos 5t

c3

3 cos 3t 4 sen 3t

5 sen 3t

0

e 2t

X c1

28

5

25

e2t c2

4 cos 3t 3 sen 3t

5 cos 3t

0

e 2t

X c1

0

2

1

et c2

sen t

cos t

cos t

et c3

cos t

sen t

sen t

et

X c1

1

0

0

c2

cos t

cos t

sen t

c3

sen t

sen t

cos t

EJERCICIOS 8.3 (PÁGINA 332)

 1. 

 3. 

    

 5. 

 7. 

 9. 

11. 

13. 

15. 

X c1
4

1
e3t c2

2

1
e 3t 12

0
t

4
3
4
3

X c1
2

1
et c2

1

1
e2t 3

3
et 4

2
tet

X c1
2

1
et / 2 c2

10

3
e3t / 2

13
2
13
4

tet / 2
15
2
9
4

et / 2

X c1
1

1
c2

3

2
et 11

11
t

15

10

X 13
1

1
et 2

4

6
e2t 9

6

X c1

1

0

0

et c2

1

1

0

e2t c3

1

2

2

e5t

3
2
7
2

2

e4 t

X c1
1

3
e3t c2

1

9
e7t

55
36
19
4

et

1
4
1
4

t
2
3
4

X c1
1

1
e 2t c2

1

1
e4t

1
4
3
4

t2

X c1
1

1
e t c2

3

1
et 1

3

17. 

19. 

21. 

      

23. 

25. 

       

27. 

      

29. 

      

31. 

33. 

 
4

29

83

69
sen t

i1

i2
2

1

3
e 2t 6

29

3

1
e 12t 4

29

19

42
cos t

X
2

2
te2t 1

1
e2t 2

2
te4t 2

0
e4t

1
4 e2t 1

2 te2t

et 1
4 e2t 1

2 te2t

1
2 t2e3t

X c1

1

1

0

c2

1

1

0

e2t c3

0

0

1

e3t

cos t
1
2 sen t

et ln sen t
2 cos t

sen t
et ln cos t

X c1
2 sen t

cos t
et c2

2 cos t

sen t
et 3 sen t

3
2 cos t

tet

sen t

sen t tan t

sen t

cos t
ln cos t

X c1
cos t

sen t
c2

sen t

cos t

cos t

sen t
t

X c1
cos t

sen t
et c2

sen t

cos t
et cos t

sen t
tet

sen t

cos t
ln cos t

X c1
cos t

sen t
c2

sen t

cos t

cos t

sen t
t

X c1
1

1
et c2

t
1
2 t

et
1
2

2
e t

EJERCICIOS 8.4 (PÁGINA 336)

 1. 

 3. 

 5. 

 7. X c1

t 1

t

2t

c2

t

t 1

2t

c3

t

t

2t 1

X c1
1

0
et c2

0

1
e2t

eAt

t 1

t

2t

t

t 1

2t

t

t

2t 1

eAt et

0

0

e2t ;  e At e t

0

0

e 2t
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RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NUMERACIÓN IMPAR ● RES-15

 9. 

11. 

13. 

15. 

 

 

17. 

 

23. 

 X c3
1

1
e3t c4

1

3
e5t

X c1

3
2 e3t 1

2 e5t

3
2 e3t 3

2 e5t c2

1
2 e3t 1

2 e5t

1
2 e3t 3

2 e5t  o

X c1
1 3t

t
e2t c2

9t

1 3t
e2t

eAt e2t 3te2t

te2t

9te2t

e2t 3te2t ;

X c3
3

2
e2t c4

1

2
e 2t

X c1

3
2 e2t 1

2 e 2t

e2t e 2t c2

3
4 e2t 3

4 e 2t

1
2 e2t 3

2 e 2t  o

eAt
3
2 e2t 1

2 e 2t

e2t e 2t

3
4 e2t 3

4 e 2t

1
2 e2t 3

2 e 2t ;

X
t 1

t

2t

4

t

t 1

2t

6

t

t

2t 1

X c1
cosh t

senh t
c2

senh t

cosh t

1

1

X c3
1

0
et c4

0

1
e2t 3

1
2

REPASO DEL CAPÍTULO 8 (PÁGINA 337)

 1. 

 5. 

 7. 

 9. 

11. 

13. 

 
sen t

sen t cos t
 ln csc t cot t

X c1
cos t

cos t sen t
c2

sen t

sen t cos t

1

1

X c1
1

0
e2t c2

4

1
e4t 16

4
t

11

1

X c1

2

3

1

e2t c2

0

1

1

e4t c3

7

12

16

e 3t

X c1
cos 2t

sen 2 t
et c2

sen 2t

cos 2t
et

X c1
1

1
et c2

1

1
tet 0

1
et

k 1
3

15. b) X c1

1

1

0

c2

1

0

1

c3

1

1

1

e3t

EJERCICIOS 9.1 (PÁGINA 344)

 1. para h � 0.1, y
5
 � 2.0801;  para h � 0.05, y

10
 � 2.0592

 3. para h � 0.1, y
5
 � 0.5470;  para h � 0.05, y

10
 � 0.5465

 5. para h � 0.1, y
5
 � 0.4053;  para h � 0.05, y

10
 � 0.4054

 7. para h � 0.1, y
5
 � 0.5503;  para h � 0.05, y

10
 � 0.5495

 9. para h � 0.1, y
5
 � 1.3260;  para h � 0.05, y

10
 � 1.3315

11. para h � 0.1, y
5
 � 3.8254;  para h � 0.05, y

10
 � 3.8840;

 en x � 0.5 el valor real es y(0.5) � 3.9082

13. a) y
1
 � 1.2

 b) 

   0.0244

y (c)
h2

2
4e2c (0.1)2

2
0.02e2c 0.02e0.2

 c) El valor real es y(0.1) � 1.2214. El error es 0.0214.
 d) Si h � 0.05, y

2
 � 1.21.

 e)  El error con h � 0.1 es 0.0214. El error con 
h � 0.05 es 0.0114.

15. a) y
1
 � 0.8

 b)  y (c)
h2

2
5e 2c (0.1)2

2
0.025e 2c 0.025

para 0 
 c 
 0.1.

 c) El valor real es y(0.1) � 0.8234. El error es 0.0234.
 d) Si h � 0.05, y

2
 � 0.8125.

 e)  El error con h � 0.1 is 0.0234. El error con h � 0.05 
es 0.0109.

17. a) El error con 19h2e�3(c�1).

 b)  y (c)
h2

2
19(0.1)2(1) 0.19

 c) Si h � 0.1, y
5
 � 1.8207.

 Si h � 0.05, y
10

 � 1.9424.
 d)  El error con h � 0.1 is 0.2325. El error con h � 0.05 

es 0.1109.

19. a) El error es  .
1

(c 1)2

h2

2

 b) y (c)
h2

2
(1)

(0.1)2

2
0.005

 c) Si h � 0.1, y
5
 � 0.4198. If h � 0.05, y

10
 � 0.4124.

 d)  El error con h � 0.1 is 0.0143. El error con h � 0.05 
es 0.0069.

EJERCICIOS 9.2 (PÁGINA 348)

 1. y
5
 � 3.9078; el valor real es y(0.5) � 3.9082

 3. y
5
 � 2.0533  5. y

5
 � 0.5463

 7. y
5
 � 0.4055  9. y

5
 � 0.5493

11. y
5
 � 1.3333

13. a) 35.7130

 c) v(t)
B

mg

k
 tanh 

B

kg

m
t; v(5) 35.7678
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RES-16 ● RESPUESTAS A LOS PROBLEMAS SELECCIONADOS CON NUMERACIÓN IMPAR

15. a)  para h � 0.1, y
4
 � 903.0282;

para h � 0.05, y
8
 � 1.1 � 1015

17. a) y
1
 � 0.82341667

 b) 

   3.333 10 6

y(5)(c)
h5

5!
40e 2c h5

5!
40e2(0) (0.1)5

5!

 c) El valor real es y(0.1) � 0.8234134413. El error es
   3.225 � 10�6 
 3.333 � 10�6.
 d) If h � 0.05, y

2
 � 0.82341363.

 e)  El error es h � 0.1 es 3.225 � 10�6. El error con
h � 0.05 es 1.854 � 10�7.

19. a) 

 b) 
24

(c 1)5

h5

5!
24

(0.1)5

5!
2.0000 10 6

y(5) (c)
h5

5!

24

(c 1)5

h5

5!

 c) Del cálculo con h � 0.1, y
5
 � 0.40546517.

   Del cálculo con h � 0.05, y
10

 � 0.40546511.

EJERCICIOS 9.3 (PÁGINA 353)

 1. y(x) � �x � ex; los valores reales son 
y(0.2) � 1.0214, y(0.4) � 1.0918, y(0.6) � 1.2221, 
y(0.8) � 1.4255;  las aproximaciones están dadas en el 
ejemplo 1.

 3. y
4
 � 0.7232

 5. para h � 0.2, y
5
 � 1.5569;  para h � 0.1, y

10
 � 1.5576

 7. para h � 0.2, y
5
 � 0.2385;  para h � 0.1, y

10
 � 0.2384

EJERCICIOS 9.4 (PÁGINA 357)

 1. y(x) � �2e2x � 5xe2x; y(0.2) � �1.4918,
 y

2
 � �1.6800

 3. y
1
 � �1.4928, y

2
 � �1.4919

 5. y
1
 � 1.4640, y

2
 � 1.4640

 7. x
1
 � 8.3055, y

1
 � 3.4199;

 x
2
 � 8.3055, y

2
 � 3.4199

 9. x
1
 � �3.9123, y

1
 � 4.2857;

 x
2
 � �3.9123, y

2
 � 4.2857

11. x
1
 � 0.4179, y

1
 � �2.1824;

 x
2
 � 0.4173, y

2
 � �2.1821

EJERCICIOS 9.5 (PÁGINA 361)

 1. y
1
 � �5.6774, y

2
 � �2.5807, y

3
 � 6.3226

 3. y
1
 � �0.2259, y

2
 � �0.3356, y

3
 � �0.3308,

y
4
 � �0.2167

 5. y
1
 � 3.3751, y

2
 � 3.6306, y

3
 � 3.6448, y

4
 � 3.2355,

y
5
 � 2.1411

 7. y
1
 � 3.8842, y

2
 � 2.9640, y

3
 � 2.2064, y

4
 � 1.5826,

y
5
 � 1.0681, y

6
 � 0.6430, y

7
 � 0.2913

 9. y
1
 � 0.2660, y

2
 � 0.5097, y

3
 � 0.7357, y

4
 � 0.9471,

y
5
 � 1.1465, y

6
 � 1.3353, y

7
 � 1.5149, y

8
 � 1.6855,

y
9
 � 1.8474

11. y
1
 � 0.3492, y

2
 � 0.7202, y

3
 � 1.1363, y

4
 � 1.6233,

y
5
 � 2.2118, y

6
 � 2.9386, y

7
 � 3.8490

13. c)  y
0
 � �2.2755, y

1
 � �2.0755, y

2
 � �1.8589,

y
3
 � �1.6126, y

4
 � �1.3275

REPASO DEL CAPÍTULO 9 (PÁGINA 362)

 1. Comparación de los métodos numéricos con h � 0.1:

   Euler
 x

n
 Euler mejorado RK4

1.10 2.1386 2.1549 2.1556
1.20 2.3097 2.3439 2.3454
1.30 2.5136 2.5672 2.5695
1.40 2.7504 2.8246 2.8278
1.50 3.0201 3.1157 3.1197

 Comparación de los métodos numéricos con h � 0.05:

   Euler
 x

n
 Euler mejorado RK4

1.10 2.1469 2.1554 2.1556
1.20 2.3272 2.3450 2.3454
1.30 2.5409 2.5689 2.5695
1.40 2.7883 2.8269 2.8278
1.50 3.0690 3.1187 3.1197

 3. Comparación de los métodos numéricos con h � 0.1:

   Euler
 x

n
 Euler mejorado RK4

0.60 0.6000 0.6048 0.6049
0.70 0.7095 0.7191 0.7194
0.80 0.8283 0.8427 0.8431
0.90 0.9559 0.9752 0.9757
1.00 1.0921 1.1163 1.1169

 Comparación de los métodos numéricos con h � 0.05:

   Euler
 x

n
 Euler mejorado RK4

0.60 0.6024 0.6049 0.6049
0.70 0.7144 0.7193 0.7194
0.80 0.8356 0.8430 0.8431
0.90 0.9657 0.9755 0.9757
1.00 1.1044 1.1168 1.1169

 5. h � 0.2: y(0.2) � 3.2;  h � 0.1: y(0.2) � 3.23
 7. x(0.2) � 1.62, y(0.2) � 1.84
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I-1

ÍN
D

IC
E

A
Absoluto, error, 78
Aceleración debida a la gravedad, 24-25, 

182
Adams-Bashforth, corrección de, 351
Adams-Bashforth, predicción de, 351
Adams-Bashforth-Moulton, método de, 

351
Adición
 de matrices APE-4
 de serie de potencias, 221-222
Agnew, Ralph Palmer, 32, 138
Alambre que cuelga bajo su propio peso, 

25-26, 210
Alambres de teléfonos, forma de, 210
Álgebra de matrices, APE-3
Amortiguamiento no lineal, 207
Amortiguamiento viscoso, 25
Amperes (A), 24
Amplitud amortiguada, 189
Amplitud
 amortiguada, 189
 libre de vibraciones, 184
Análisis cualitativo
  de una ecuación diferencial de 

primer orden, 35-41
Analítica en un punto, 221
Ángulo de fase, 184, 188
Aproximación de diferencia central, 359
Aproximaciones de diferencia fi nita, 358 
Aritmética, serie de potencias, 221
Arquímedes principio, 29
Atractor, 41, 314

C
Cables suspendidos, 25
Cadena cayendo, 69-70, 75
Cadena jalada por una fuerza constante, 

212
Caída de un cuerpo, 25, 29, 44, 91-92, 

101-102
Caídas de voltaje, 24, 286
Caja deslizante, 93-94
Cálculo de orden hn, 341
Campo de pendientes, 35
Campo direccional de una ecuación 

diferencial de primer orden, 35
 ceroclinas, 42
 método de las isóclinas para, 37, 42
 para una ecuación diferencial de 

primer orden autónoma, 41
Cantidades proporcionales, 20

Capacidad de carga del medio ambiente, 
94

Capacidad de transporte, 94
Capacitancia, 24
Capas acuíferas, 115
Carga de Euler, 202
Cargas críticas, 202
Catenaria, 210
Centro de una serie de potencias, 220
Ceroclinas, 42
Ciclo, 366
Cicloide, 114
Circuito en serie críticamente amortiguado,  

192
Circuito en serie, ecuaciones diferenciales 

de, 24, 87-88, 192
Circuito en serie LR, ecuación diferencial 

de, 29, 87  
Circuito en serie LRC, ecuación diferencial 

de, 24, 192
Circuito en serie no amortiguado, 192
Circuito en serie sobreamortiguado, 

192
Circuitos, ecuaciones diferenciales de, 24, 

29, 192
Circuitos eléctricos en serie, 24, 29, 87, 

192
 analogía con sistemas resorte/masa, 

 192
Circuitos RC, ecuación diferencial de, 29, 

87-88
Clasifi cación de ecuaciones diferenciales 

ordinarias
 por linealidad, 4
 por orden, 3
 por tipo, 2
Clepsidra, 103-104
Coefi cientes indeterminados:
 para ecuaciones diferenciales lineales,

 141, 152
 para sistemas lineales, 326
Cofactor, APE-8
Colector solar, 30-31, 101
Columna doblada bajo su propio peso, 

252
Columna de una matriz, APE-3
Condiciones de extremo libre, 200
Condiciones frontera, 119, 200
  periódica, 206
Concentración de un nutriente en una 

célula, 112
Condiciones iniciales, 13, 118
 para una ecuación diferencial inicial, 

 13, 118, 176

 para un sistema de ecuaciones 
 diferenciales lineales de primer 
  orden, 306

Condiciones periódicas de valores 
iniciales, 206

Conjunto fundamental de soluciones
 existencia de, 124, 308
 de una ecuación diferencial lineal, 

 124
 de un sistema lineal, 308
Constante de amortiguamiento, 186
Constante de crecimiento, 84
Constante de decaimiento, 84
Constante de Euler, 245
Constante de resorte efectiva, 195, 217
Constante de resorte variable, 185-186
Constante de resorte, 182
Convergencia absoluta de una serie de 

potencias, 220
Convolución de dos funciones, 283
Corriente en estado estable, 88, 193
Corrimiento de índices en una suma, 222
Coulombs (C), 24
Crecimiento exponencial y decaimiento, 

83-84
Crecimiento y decaimiento, 83-84
Cuasi frecuencia, 189
Cuasi periodo, 189
Cuerpo en caída libre, 24-25, 29, 91-92
Curvatura, 178, 199
Curva de defl exión, 199
Curva de Descartes, 11
Curva de Lissajous, 300
Curva de resonancia, 198
Curva de respuesta de la frecuencia, 198
Curva de persecución, 214-215
Curva elástica, 199
Curva logística, 95
Curva solución, 5
Curvas de nivel, 48, 52
Curvas solución numéricas, 78 

D
Datado con carbono, 84
Decaimiento radiactivo, 21-22, 83-85, 

106
Defi nición de la función delta de Dirac, 

292-293
Defi nición de vectores de, APE-3
 soluciones de sistemas de ecuaciones 

diferenciales lineales, 305
 ecuaciones diferenciales, 305
Defi nición, intervalo de, 5

ÍNDICE
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Defl exión de una viga, 199
Dependencia lineal
 de funciones, 122
 de vectores solución, 307-308
Derivada de una serie de potencias, 221
Derivada, notación de, 3
Derivadas de una trasformada de Laplace, 

282
Desplazamiento extremo, 183
Determinante de una matriz cuadrada, 

APE-6
 desarrollo por cofactores, APE-6 
Diferencia central, 359
Diferencia de cocientes, 359
Diferencia hacia adelante, 359
Diferencia hacia atrás, 359
Diferencial de una función de dos 

variables, 63
Diferencial exacta, 63
 criterio para, 63
Diferencias fi nitas, 359
Distribución, teoría de, 294
División sintética, 137
Doblado de una columna cónica, 240
Doblado de una columna vertical delgada, 

202
Doblamiento de una columna delgada, 252
Dominio:
 de una función, 6
 de una solución, 5-6
Drenado de un tanque, 28, 100, 104-105
Drosófi la, 95 

E
Ecuación auxiliar
 para ecuaciones lineales con 

coefi cientes constantes, 134
 para las ecuaciones de Cauchy-Euler, 

 163
 raíces de, 137
Ecuación característica de una matriz, 312, 

APE-15
Ecuación de Bessel modifi cada de orden 
n, 244

 de primera clase, 244
 de segunda clase, 244
Ecuación de diferencia fi nita, 359
Ecuación de diferencias
 sustitución para una ecuación 

diferencial ordinaria, 359
Ecuación delta de Dirac 
 defi nición de, 292, 293
 transformada de Laplace de, 293
Ecuación de índices, 235
Ecuación de movimiento, 183
Ecuación diferencial asociada homogénea, 

120
Ecuación diferencial autónoma
 primer orden, 37
 segundo orden, 177

Ecuación diferencial de Airy, 186, 226, 
229, 245

 curvas solución, 229
 solución en términos de funciones de 

Bessel, 251
 solución en términos de series de 

potencias, 224-226
Ecuación diferencial de Bernoulli, 72
Ecuación diferencial de Cauchy-Euler, 

162-163
 ecuación auxiliar para, 163
 método de solución para, 163
 reducción para coefi cientes 

constantes, 167
Ecuación diferencial de Duffi ng, 213 
Ecuación diferencial de Gompertz, 97
Ecuación diferencial de Laguerre, 291
Ecuación diferencial de Legendre
 de orden, n, 241
 solución de, 248-249
Ecuación diferencial de orden superior, 

117, 181
Ecuación diferencial de Ricatti, 74
Ecuación diferencial exacta, 63
 método de solución para, 64
Ecuación diferencial homogénea
 con coefi cientes homogéneos, 71
 lineal, 53, 120
Ecuación diferencial lineal no homogénea
 solución general de, 56, 125
   solución particular de, 53, 125
 superposición para, 127
Ecuación diferencial logística, 75, 95
Ecuación diferencial ordinaria de segundo 

orden como un sistema, 176, 353
Ecuación diferencial ordinaria no lineal, 4
Ecuación diferencial ordinaria, 2 
Ecuación diferencial parcial
  defi nición de, 2
Ecuación diferencial
 autónoma, 36, 77
 Bernoulli, 72
 Cauchy-Euler, 162-163
 coefi cientes homogéneos, 71
 defi nición de, 2
 exacta, 63
 familias de soluciones para, 7
 forma estándar de, 53, 131, 157, 

 223, 231
 forma normal de, 4
 homogénea, 53, 120, 133
 lineal, 4, 53, 118-120
 no autónoma, 37
 no homogénea, 53, 125, 140, 150, 

 157
 no lineal, 4
 notación para, 3
 orden de, 3
 ordinaria, 2
 primer orden, 117
 Ricatti, 74

 separable, 45
 sistemas de, 8
 solución de, 5
 tipo, 2
Ecuación integral de Volterra, 286
Ecuación integral, 286
Ecuación integro-diferencial, 286
Ecuación paramétrica de Bessel
  de orden n, 244
Ecuaciones algebraicas, métodos de 

solución, APE-10
ED, 2
EDO, 2
EDP, 2
Ecuaciones diferenciales como modelos 

matemáticos, 1, 19, 82, 181
Ecuaciones diferenciales de primer orden
 aplicaciones de, 83-105
 métodos de solución, 44, 53, 62, 70
Ecuaciones diferenciales lineales 

ordinarias
 aplicaciones de, 83, 182, 199
 de orden superior, 117
 defi nición de, 4
 ecuación auxiliar para, 134, 163
 formas estándares para las, 53, 131, 

 157, 160
 función complementaria para, 126
 homogéneas, 53, 120, 133
 no homogéneas, 53, 120, 140, 150, 

 157
 primer orden, 4, 53
 principios de superposición para, 

 121, 127
 problema con valores iniciales, 118
 solución general de, 56, 124, 126, 

 134-135, 163-165
 solución particular de, 53-54, 125, 

 140, 150, 157, 231
Eigenfunciones de un problema con 

valores en la frontera 181, 202, 
Eigenvalores de una matriz, 312, 

APE-14
 complejos, 320
 reales distintos, 312
 repetidos, 315
Eigenvalores de multiplicidad m, 316
Eje de simetría, 199
Elemento lineal, 35
Eliminación de Gauss-Jordan, 315, APE-10
Eliminación gaussiana, APE-10
Eliminación sistemática, 169
Enfriamiento/calentamiento, Ley de 

Newton de, 21, 85-86
Entrada, 60, 128, 182
Error de redondeo, 340
Error de truncamiento global, 342
Error de truncamiento local, 341
Error de truncamiento
 global, 342
 local, 341

08243_14_index.indd   208243_14_index.indd   2 6/4/09   12:38:20 PM6/4/09   12:38:20 PM



ÍNDICE ● I-3

ÍN
D

IC
E

 para el método de Euler mejorado, 
 343-344

 para el método de Euler, 341-342
 para el método RK4, 347-348
Error por discretización, 341
Error porcentual relativo, 78
Error relativo, 78
Error
 absoluto, 78
 discretización, 349
 fórmula, 349
porcentaje relativo, 78
redondeo, 340-341
relativo, 78
 truncamiento global, 342
 truncamiento local, 341-342, 343, 

 347 
Estabilidad de un método numérico, 352
Estado de un sistema, 20, 27, 128
Esquema de fase bidimensional, 314
Esquema unidimensional de fase, 38
Esquemas de fase(s)
 para ecuaciones de primer orden, 

 38
 para sistemas de dos ecuaciones 

diferenciales de primer orden, 
 313-314, 318, 321, 323

Evaporación, 101
Existencia y unicidad de una solución, 15, 

118, 306
Existencia, intervalo de, 5, 16
Expansiones de medio rango, 411
Exponentes de una singularidad, 235
Extremos colgados de una viga, 200
Extremos de una viga soportados por 

pasadores, 200

F
Factor de amortiguamiento, 186
Factores integrantes
 para una ecuación diferencial lineal 

de primer orden, 55
 para una ecuación diferencial no 

exacta de primer orden, 66-67
Falta de memoria, 30, 93
Familia de soluciones, 7
Familia de soluciones de un parámetro, 7
Farads (f), 24
Fluido rotando, forma de, 31
Forma alternativa del segundo teorema de 

traslación, 276
Forma diferencial de una ecuación de 

primer orden, 3
Forma estándar de una ecuación 

diferencial lineal, 53, 121, 157, 160
Forma general de una ecuación 

diferencial, 3
Forma matricial de un sistema lineal, 

304-305
Forma normal

 de un sistema de ecuaciones de 
primer orden, 304

 de un sistema lineal, 304
 de una ecuación diferencial 

 ordinaria, 4
Forma reducida de renglón escalón de una 

matriz, APE-11
Forma renglón escalón, APE-10
Fórmula de error, 341
Fórmula de Euler, 134
 deducción de, 134
Fórmula de Rodrigues, 250
Fracciones parciales, 264, 268
Frecuencia circular, 183
Frecuencia fundamental, 448
Frecuencia natural de un sistema, 183
Frecuencia
 circular, 183
 de movimiento, 183
 natural, 183
Fricción cinética, 218
Fuerza boyante, 29
Función complementaria de error, 59
Función complementaria
 para una ecuación diferencial 

 lineal, 126
 para un sistema de ecuaciones 

 diferenciales lineales, 309
Función continua en partes, 259
Función de error, 59
Función de excitación, 128
Función de forzamiento, 60, 182
Función de fuerza, 128, 182, 189
Función de Green, 162
Función de Heaviside, 274
Función de interpolación, 349
Función de Legendre, 250
Función de paso unitario, 274
 transformada de Laplace de, 274
Función de peso
 de un sistema lineal, 294
Función de razón, 35
Función de transferencia, 269
Función diente de sierra, 255, 291
Función escalera, 280
Función factorial, APE-1
Función factorial generalizada, APE-1
Función gamma, 242, 261, APE-1
Función hipergeométrica de Gauss, 250
Función homogénea de grado a, 71
Función logística, 95-96
Función serpenteante, 290
Función pendiente, 35
Función periódica, transformada de 

Laplace de, 287
Función seno integral, 60, 62
Funciones de Bessel
 de orden n, 242-243
 de orden ½, 247
 de primera clase, 242
 gráfi cas de, 243

 modifi cada de primera clase, 244
 modifi cada de segunda clase, 244
 paramétrica de orden n, 244
 relaciones recurrentes diferenciales 

para, 246-247
 resorte viejo y, 245
 solución de, 241-242
 valores numéricos de, 246
Funciones de Mathieu, 250
Funciones defi nidas por integrales, 59
Funciones elementales, 9
Funciones esféricas de Bessel, 247
Funciones especiales, 59, 60, 250 
Funciones generalizadas, 294
Funciones nombradas, 250

G
g, 182
Galileo, 25
Gota de lluvia, velocidad de evaporación, 

31, 92

H
Henrys (h), 24
Hipótesis de densidad dependiente, 94
Hueco a través de la Tierra, 30

I
Identidad multiplicativa, APE-6
Igualdad de matrices, APE-3
Impedancia, 193
Impulso unitario, 292
Independencia lineal
 de eigenvectores, APE-16
 de funciones, 122
 de soluciones, 123
 de vectores solución, 307-308
 y el Wronskiano, 123
Índice de una suma, corrimiento de, 222
Inductancia, 24
Infl exión, puntos de, 44, 96
Integración de una serie de potencias, 

221
Integral curvilínea, 7
Integral de  una ecuación diferencial, 7
Integral del seno de Fresnel, 60, 62
Integral divergente impropia, 256
Integral impropia convergente, 256
Integral no elemental, 50
Integral, transformada de Laplace de, 

285
Interacciones, número de, 107-108
Interés compuesto continuamente, 89
Interés compuesto continuo, 89
Intervalo
 de convergencia, 220   
 de defi nición, 5
 de existencia, 5
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 de existencia y unicidad, 15-16, 118, 
 306

 de validez, 5
Inverso multiplicativo, APE-7
Isoclinas, 37, 42

K
Kernel (núcleo) de una transformada 

integral, 256

L
Ley de acción de masas, 97
Ley de Darcy, 115
Ley de enfriamiento/calentamiento de 

Newton
 con temperatura ambiente constante,

 21, 85
 con temperatura ambiente variable, 

 90, 112
Ley de Fick, 114
Ley de Hooke, 30, 152
Ley de la gravitación universal de Newton, 

30
Ley de Ohm, 88
Ley de Stefan de radiación, 114
Ley de Torricelli, 23, 104
Libby, Willard, 84
Libre de vibraciones eléctricas, 192
Línea de fase, 38
Linealización
  de una ecuación diferencial, 209 

 de una solución en un punto, 76
Líneas de corriente, 70 
Lotka-Volterra, ecuaciones de
 modelo de competencia, 109
 modelo depredador-presa, 108

M
Malthus, Thomas, 20
Marcapasos de corazón, modelo de, 62, 

93
Masa matriz, 323
Masa variable, 211
Matrices
 aumentada, APE-10
 cero, APE-6
 columna, APE-3
 cuadrada, APE-3
 defi nición de, APE-3
 derivada de, APE-9
 determinante de, APE-6
 diagonal, APE-20
 diferencia de, APE-4
 ecuación característica de, 312, 

 APE-15
 eigenvalor de, 312, APE-14
 eigenvector de, 312, APE-14
 elemento de, APE-3

 exponencial, 334
 forma de renglón escalón de, 

 APE-10
 forma reducida renglón escalón, 

 APE-11
 fundamental, 329
 identidad multiplicativa, APE-6
 igualdad de, APE-3
 integral de, APE-9
 inversa de, APE-8, APE-13
 inversa multiplicativa, APE-7 
 ley asociativa de, APE-6
 ley distributiva para la, APE-6
 multiplicación de, APE-4
 múltiplos de, APE-3
 nilpotente, 337
 no singular, APE-7
 operaciones elementales entre 

 renglones en, APE-10 
 producto de, APE-5
 simétrica, 317
 singular, APE-7
 suma de, APE-4
 tamaño, APE-3
 transpuesta de, APE-7
 vector, APE-3
Matriz aumentada
 defi nición de, APE-10
 en forma de renglón escalón, 

 APE-10
 en forma reducida de renglón 

 escalón, APE-11
 operaciones elementales entre 

 renglones en, APE-10
Matriz cero, APE-6
Matriz cuadrada, APE-3
Matriz de coefi cientes, 304-305
Matriz diagonal, APE-20
Matriz en banda, 51
Matriz exponencial, 334
Matriz exponencial
 cálculo de, 335
 defi nición de, 334
 derivada de, 334
Matriz fundamental, 329
Matriz identidad, APE-6
Matriz inversa
 defi nición de, APE-7
 de operaciones elementales entre 

 renglones, APE-13
 fórmula para, APE-8
Matriz nilpotente, 337
Matriz no singular, APE-7
Matriz simétrica, 317
Matriz singular, APE-7
Matriz. Véase Matrices
Menor, APE-8
Método de coefi cientes indeterminados, 

141, 152
Método de cubierta, 268-269
Método de Euler mejorado, 342

Método de Euler, 76
 método mejorado, 342
 para ecuaciones diferenciales de 

 segundo orden, 353
 para sistemas, 353, 357
Metodo de Frobenius, 233
 tres casos para, 237-238
Método de predicción-corrección, 343
Método de Runge-Kutta de cuarto orden, 

78, 346
errores de truncamiento para, 347
 para ecuaciones diferenciales de 

 segundo orden, 353-354
para sistemas de ecuaciones de primer 

orden, 355-356
Método de un solo paso, 350
Metodo de Runge-Kutta de primer orden, 

345
Método de Runge-Kutta-Fehlberg, 

348
Método del operador anulador al método 

de coefi cientes indeterminados, 
 150

Método de las isóclinas, 37, 42
Método multipaso, 350
 ventajas de, 352
 desventajas de, 353
Método numérico adaptable, 348
Método numérico inestable, 352
Método RK4, 78, 346
Método RKF45, 348
Métodos de continuación, 350
Métodos de eliminación
 para sistemas de ecuaciones 

 algebraicas, APE-10
  para sistemas de ecuaciones 

 diferenciales ordinarias, 169
Métodos de Runge-Kutta
 cuarto orden, 78, 345-348
 errores de truncamiento para, 347
 para sistemas, 355-356
 primer orden, 345
 segundo orden, 345
Métodos de solución de sistemas de 

ecuaciones diferenciales lineales
 por eliminación sistemática, 169
 por matrices, 311
 por transformadas de Laplace, 295
Métodos iniciales, 350
Métodos numéricos 
 aplicados a ecuaciones de orden 

 superior, 353
 aplicados a sistemas, 353-354
 errores de truncamiento en, 341-342, 

 343, 347
 errores en, 78, 340-342
 estabilidad de, 352
 método de Adams-Bashforth-

 Moulton 351
 método de diferencia fi nita, 359
 método de Euler, 76, 345
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 método de predicción-corrección, 
 343, 351

 método de tanteos, 361
 método de Euler mejorado, 342
 método RK4, 346
 método RKF45, 348
  métodos adaptables, 348
 multipaso, 350
 un solo paso, 350
Métodos para estudiar ecuaciones 

diferenciales
 analítica, 26, 44, 75 
 cualitativa, 26, 35, 37, 75
 numérica, 26, 75
Mezclas, 22-23, 86-87, 106-107
Modelo de inmigración, 102
Modelo de población
 de Malthus, 20-21
 fl uctuante, 92
 inmigración, 97, 102 
 logística, 95-96, 99
 nacimiento y muerte, 92
 reabastecimiento, 97
 recolección, 97, 99
Modelo depredador-presa, 107-108
Modelo matemático de memorización 

para, 30, 93
Modelo SIR, 112 
Modelos de competencia, 109
Modelos matemáticos, 19-20
 cables de la suspensión de un puente, 

 25-26, 210
 cables suspendidos, 25, 52, 210
 circuitos en serie, 24, 29, 87, 192-193
 colector solar, 101
 concentración de un nutriente en una 

 célula, 112
 crecimiento de capital, 21
 cuerpo cayendo (con resistencia del 

 aire), 25, 30, 49, 100-101, 110
 cuerpo cayendo (sin resistencia del 

 aire), 24-25, 100
 curvas de persecución, 214-215
 decaimiento radiactivo, 21
 defl exión de vigas, 199-201
 depredador-presa, 108
 doblado de una columna delgada, 205
 doble péndulo, 298
 doble resorte, 194-195
 elevación de una cadena, 212-213
 enfriamiento/calentamiento, 21, 28, 

 85-86
 evaporación de las gotas de lluvia, 31
 evaporación, 101
 fechado con carbono, 84-85
 fl uido girando, 31
 hora de muerte, 90
 hueco a través de la Tierra, 30
 inmigración, 97, 102
 interés compuesto continuamente, 89
 marcapasos de corazón, 62, 93

 masa deslizando hacia abajo de un
 plano inclinado, 93-94

 masa variable, 211
 memorización, 30, 93
 mezclas, 22-23, 86, 106-107
 movimiento de un cohete, 211
 movimiento del péndulo, 209, 298
 movimiento oscilatorio de un barril

 fl otando, 29
 nadando en un río, 103
 paracaidismo, 29, 92, 102
 péndulos acoplados, 298, 302
 pesca constante, 92
 población de Estados Unidos, 99
 población dinámica, 20, 27, 94
 población fl uctuante, 31
 problema del quitanieves, 32
 propagación de una enfermedad, 22, 

 112
 reabastecimiento de una pesquería, 97
 reacciones químicas, 22, 97-98
 recolección de pesca, 97
 redes, 297
 reloj de agua, 103-104
 resonancia, 191, 197-198
 resorte girando, 203
 resorte viejo, 185-186, 245, 251
 resortes acoplados, 217, 295-296, 299
 series de decaimiento radiactivo, 62, 

 106
 sistemas resorte/masa, 29-30, 182, 

 186, 189, 218, 295-296, 299, 302
 suministro de un medicamento, 30
 superfi cie refl ejante, 30, 101
 temperatura en un anillo circular, 206
 temperatura en una esfera, 206
 tractriz, 30, 114
 tsunami, forma del, 101
 vaciado de un tanque, 28-29
 varilla girando que tiene una cuenta 

 deslizándose, 218
 velocidad terminal, 44
Modo de primer doblamiento, 202
Modos de doblamiento, 202
Módulo de Young, 199
Movimiento amortiguado, 186, 189
Movimiento armónico simple de un 

sistema resorte/masa, 183
Movimiento de cohete, 211
Movimiento de proyectiles, 173
Movimiento forzado de un sistema resorte/

masa, 189-190
Movimiento forzado, 189
Movimiento libre de un sistema resorte/masa
 amortiguado, 186
 no amortiguado, 182-183
Muerte de caracoles de mar, 85 
Multiplicación 
 de matrices, APE-4
 de serie de potencias, 221
Multiplicidad de eigenvalores, 315

N
Niveles de solución de un modelo 

matemático, 20
Notación de Leibniz, 3
Notación de punto para la derivada de 

Newton, 3
Notación de subíndices, 3
Notación para derivadas, 3
Notación prima, 3
Notación punto, 3

O
Ohms, (�), 24
Onda cuadrada, 288, 291
Onda senoidal rectifi cada, 291
Onda triangular, 291
Operaciones de renglón, elementales, 

APE-10
Operaciones elementales entre renglones, 

APE-10
 notación para, APE-11
Operador diferencial anulador, 150
Operador diferencial de n-ésimo orden, 

121
Operador diferencial, 121, 150
Operador lineal, 121
Operador lineal diferencial, 121
Operador polinomial, 121
Orden de un método de Runge-Kutta, 345
Orden de una ecuación diferencial, 3
Orden exponencial, 259

P
Paracaidismo, 29, 92, 102
parámetro n familia de soluciones, 7  
Película, 300
Péndulo balístico, 216
Péndulo doble, 298
Péndulo físico, 209 
Péndulo no lineal amortiguado, 214
Péndulo no lineal, 208
Péndulo 
 acoplado con un resorte, 302
 balístico, 216
 de longitud variable, 252
 doble, 298
 físico, 209
 lineal, 209
 no amortiguado, 214
 no lineal, 209
 periodo de, 215-216
 simple, 209
Péndulos acoplados, 302
Pérdida de una solución, 47
Periodo de un movimiento armónico 

simple, 183
Peso, 182
Pinturas de la cueva de Lascaux, fechado 

de las, 89
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Plano de fase, 305, 313-314
Polinomio de Taylor, 177-346
Polinomios de Laguerre, 291
Polinomios de Legendre, 249
 fórmula de Rodrigues, para 250
 gráfi cas de, 249
 propiedades de, 249
 relación de recurrencia para, 249
Posición de equilibrio, 182, 183
Primera ley de Kirchhoff, 109
Primera ley de Newton, 24
Principio de superposición, 
 para ecuaciones diferenciales lineales 

 no homogéneas, 127
 para una ecuación diferencial 

 homogénea, 121
 para una ecuación diferencial parcial

 homogénea, 306
Problema de segundo orden con valores 

iniciales, 11, 118, 353
Problema con valores iniciales de n-ésimo 

orden, 13, 118
Problema con valores iniciales de primer 

orden, 13
Problema del quitanieves, 32
Problemas con valores en la frontera
 método de tanteo para, 361
 métodos numéricos para EDO, 358
 modelos matemáticos involucrados, 199
 para una ecuación diferencial 

 ordinaria, 119, 199
Propagación de una enfermedad 

contagiosa, 22, 112
Propiedad de linealidad, 256
Promedio pesado, 345
Propiedad de tamizado, 294
Prueba de proporción, 220
Puente suspendido, 25-26, 52
Pulga de agua, 95
Pulso rectangular, 280
Pulsos, 197
Punto crítico aislado, 43
Punto crítico de una ecuación diferencial 

de primer orden
 aislado, 43
 asintóticamente estable, 40-41
 defi nición de, 37
 inestable, 41
 semiestable, 41
Punto crítico estable asociado, 40-41
Punto crítico inestable, 41
Punto crítico semiestable, 41
Punto de equilibrio, 37
Punto estacionario, 37
Punto ordinario de una ecuación 

diferencial de segundo orden, 
 223, 229

  solución respecto a, 220, 223
Punto rama, 109
Punto singular irregular, 231
Punto singular regular, 231

Punto singular
 en �, 223
 irregular, 231
 de una ecuación diferencial parcial 

 de primer orden, 57
 de una ecuación diferencial lineal de 

 segundo orden, 223
 regular, 231
Puntos de infl exión, 44
Puntos espirales, 182
Puntos interiores de la malla, 359
PVF, 119
PVI, 13

R
Radio de convergencia, 220
Raíces de índices, 235
Raíces de las funciones de Bessel, 246
Raíces racionales de una ecuación 

polinómica, 137
Rapideces críticas, 205-206 
Razón de crecimiento específi co, 94
Razón de crecimiento relativo, 94
Reabastecimiento de una pesquería, 

modelo de, 97
Reacción química de primer orden, 22, 

83
Reacción química de segundo orden, 

22, 97
Reacciones químicas, 22, 97-98
 de primer orden, 22, 83
 de segundo orden, 22, 97
Reactancia, 193
Recolección de pesca, modelo de, 97, 

99-100
Recta de mínimos cuadrados, 101
Recta de regresión, 102
Rectas tangentes, método de, 75-76
Rectifi cación de media onda de la función 

seno, 291
Rectifi cación de onda completa de la 

función seno, 291
Redes, 109-110, 297 
Redes eléctricas, 192
 forzadas, 193
Reducción de orden, 130, 174
Regla de Cramer, 158, 161
Regresión lineal, 102
Relación de recurrencia de tres términos, 

227
Relación de recurrencia diferencial, 246-

247
Relación de recurrencia, 225, 249, 251
 diferencial, 247
Resistencia del aire
 proporcional al cuadrado de la 

 velocidad, 29
 proporcional a la velocidad, 25
Reloj de agua, 103-104
Repulsor, 41, 314, 321

Resistencia
 aire, 25, 29, 44, 87-88, 91-92, 101
 eléctrica, 24, 192-193
Resonancia pura, 191
Resorte duro, 208
Resorte lineal, 207
Resorte no lineal, 207
 duro, 208
 suave, 208
Resorte rotando, 203
Resorte suave, 208, 304
Resorte viejo, 185, 245
Resortes acoplados, 217, 295-296, 299
Respuesta al impulso, 294
Respuesta de entrada cero, 269
Respuesta de estado cero, 269
Respuesta 
 de un sistema, 27
 entrada-cero, 269
 estado-cero, 269
 impulso, 294
Resultado, 60, 128, 182
Rigidez fl exional, 199

S
Segunda ley de Kirchhoff, 24, 109
Segunda ley de Newton del movimiento, 

24, 182
 como razón de cambio de la cantidad 

 de movimiento, 211-212
Segundo teorema de traslación, 275
 forma alternativa de, 276  
 forma inversa de, 276
Separación de variables, método
 para ecuaciones diferenciales 

 ordinarias de primer orden, 45
Serie de potencias convergente, 220
 forma inversa de, 285
Serie de potencias divergente, 220
Serie de potencias, repaso de, 220
Serie de Taylor, uso de, 175-176
Serie
 de potencias, 220
 soluciones de ecuaciones 

 diferenciales ordinarias, 223, 
  231, 233

Series de decaimiento radiactivo, 62, 106
Singular, solución, 7
Sistema de ecuaciones diferenciales de 

primer orden, 304
Sistema de ecuaciones diferenciales no 

lineales, 106
Sistema dinámico, 27
Sistema homogéneo asociado, 309
Sistema lineal homogéneo de segundo 

orden, 323
Sistema lineal, 106, 128, 304
Sistema no homogéneo de ecuaciones 

diferenciales lineales de primer orden, 
304, 305
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 solución general de, 309
 solución particular de, 309, 326  
Sistema resorte/masa críticamente 

amortiguado, 187
Sistema resorte/masa no amortiguado, 

181-182, 187
Sistema resorte/masa sobreamortiguado, 

186
Sistema resorte/masa
 amortiguador, amortiguamiento 

 para, 186
 ley de Hooke y, 29, 182, 

 295-296
 modelos lineales para, 182-192, 218,

 295-296
 modelos no lineales para, 207-208 

Sistemas, autónomos, 363
Sistemas de doble resorte, 195, 295-296, 

299
Sistemas de ecuaciones diferenciales 

ordinarias, 105, 169, 295, 303
 lineal, 106, 304
 no lineal, 106
 solución de, 8-9, 169, 305
Sistemas de ecuaciones lineales de primer 

orden, 8, 304-305
 conjunto fundamental de soluciones 

 para, 308
 existencia y unicidad de la solución 

 para, 306
 forma matricial de, 304-305
 forma normal de, 304
 homogéneos, 304, 311
 no homogéneos, 304, 309, 326
 principio de superposición para, 

 306
 problema con valores iniciales para, 

 306
 solución de, 305
 solución general de, 308, 309
 Wronskiano para, 307-308
Sistemas homogéneos
 de ecuaciones algebraicas, 

 APE-15
 de ecuaciones lineales de primer 

 orden, 304
Sistemas lineales de ecuaciones 

algebraicas, APE-10
Sistemas lineales de ecuaciones 

diferenciales, 106, 304
 forma matricial de, 304-305
 método de solución, 169, 295, 311, 

326, 334
Sistemas reducidos de primer orden 

354-355
Solución de  equilibrio, 37
Solución de estado estable, 88, 190, 193, 

457
Solución de forma cerrada, 9
Solución de una ecuación diferencial 

ordinaria

 constante, 11
 defi nición de, 5
 defi nida en partes, 8
 equilibrio, 37
 explícita, 6
 general, 9, 124, 126
 gráfi ca de, 5
 implícita, 6
 integral, 7
 intervalo de defi nición para, 5
 n paramétrica familia de, 7
 número de, 7  
 particular, 7, 53-54, 125, 140, 150, 

 157, 231
 respecto a un punto ordinario, 

 224
 respecto a un punto singular, 

 231
 singular, 7
 trivial, 5
Solución de un sistema de ecuaciones 

diferenciales
 defi nida, 8-9, 169, 305
 general, 308, 309
 particular, 309
Solución explícita, 6
Solución general
 de la ecuación diferencial de Bessel, 

 242-243
 de una ecuación diferencial de 

 Cauchy-Euler, 163-165
 de una ecuación diferencial, 9, 56
 de una ecuación diferencial lineal 

homogénea, 124, 134-135
 de una ecuación diferencial lineal no 

homogénea, 126
 de un sistema homogéneo de 

ecuaciones diferenciales lineales, 
 308, 312

 de una ecuación diferencial lineal 
 de primer orden, 56

 de un sistema de ecuaciones 
 diferenciales lineales no 
  homogéneas, 309

Solución implícita, 6
Solución particular, 7
 de una ecuación diferencial lineal, 

 53-54, 125, 140, 150, 157, 231
 de un sistema de ecuaciones 

diferenciales lineales, 309, 326
Solución transitoria, 190, 457
Solución trivial, 5
Solucionador numérico, 78
Soluciones con serie de potencias
 curvas solución de, 229
 existencia de, 223
 método de determinación, 223-229
Schwartz, Laurent, 294
Sudario de Turín, fechado de, 85, 89
Sumidero, 377
Sustituciones en una ecuación diferencial, 70

T
Tabla de transformadas de Laplace, 

APE-21
Tamaño de la malla, 513
Tamaño de paso, 76
Tanques con fuga, 23-24, 28-29, 100, 

103-105
Temperatura ambiente, 21
Temperatura en un anillo, 206
Temperatura en una esfera, 206
Teorema de convolución, transformada de 

Laplace, 284
Teorema de Frobenius, 233
Teorema de la primera traslación, 271
 forma inversa de, 271
Teoremas de corrimiento para 

transformadas de Laplace, 271, 
 87-88, 192

Teoremas de traslación para la 
transformada de Laplace, 271, 275, 
 276

 formas inversas de, 271, 276
Teoremas de unicidad, 15, 118, 306
Teoría de distribuciones, 294
Término de competencia, 95
Término de estado estable, 88, 193
Término de inhibición, 95
Tiempo de muerte, 90
Tractriz, 30, 113-114
Transformada de la integral, 256
  núcleo (kernel) de, 256
Transformada de Laplace
 comportamiento, cuando s S �, 

 260
 de la función delta de Dirac, 293
 de la función escalón unitario, 275
 de sistemas de ecuaciones 

 diferenciales lineales, 295
 de una derivada, 265
 de una función periódica, 287
 de una integral, 284, 285
 defi nición de, 256
 del problema con valores iniciales, 

 265-266
 existencia, condiciones sufi cientes 

 para, 259
 inversa de, 262
 linealidad de, 256
 tablas de, 285, APE-21
 teorema de convolución para, 284
 teoremas de translación para, 271, 275
Transformada lineal, 258
Transformada inversa de Laplace, 

 262-263
 linealidad de, 263
Transpuesta de una matriz, APE-7
Trayectorias
 ecuaciones paramétricas de, 305, 

 313
 ortogonales, 115 
Tsunami, 101
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V
Valores característicos, APE-14
Variables de estado, 27, 128
Variables, separables, 45-46
Variación de parámetros
 para ecuaciones diferenciales de 

 primer orden, 54
   para ecuaciones diferenciales lineales 

 de orden superior, 158, 160-161
 para sistemas de ecuaciones 

 diferenciales lineales de primer 
  orden, 326, 329-330

Vector solución, 305
Vectores característicos, APE-14
Velocidad de escape, 214
Velocidad terminal de un cuerpo cayendo, 

44, 91, 101

Verhulst, P. F., 95
Vibraciones antisimétricas, 208
Vibraciones eléctricas armónicas 

simples, 192
Vibraciones eléctricas forzadas, 193
Vibraciones, sistemas resorte/masa, 182-191
Vida media, 84
 del carbono, 14, 84   
 del plutonio, 84
 del radio-226, 84
 del uranio-238, 84
Viga en voladizo, 200
Vigas sujetas en los extremos con 

abrazaderas, 200
Vigas
 voladizo, 200
 curva de defl exión de, 199

 defl exión estática de, 199
 integrada, 200
 libre, 200
 simplemente soportadas, 200
 soportada por un fondo elástico, 302
Virga, 31

W
Wronskiano
 para un conjunto de funciones, 123
 para un conjunto de soluciones de 

 una ecuación diferencial lineal 
  homogénea, 123

 para un conjunto de vectores solución 
 de un sistema lineal homogéneo, 
  308
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Reglas

1. Constante:
d
dx

c = 0     2. Múltiplo constante:
d
dx

cf (x) = c f (x)

. Suma:
d
dx

[ f (x) ± g(x)] = f (x) ± g (x) 4. Producto:
d
dx

f (x)g(x) = f (x)g (x) + g(x) f (x)

5. Cociente:
d
dx

f (x)
g(x)

= g(x)f (x) f (x)g (x)

[g(x)]2
6. Cadena:

d
dx

f (g(x)) = f (g(x))g (x)

7. Potencia:
d
dx

xn = nxn 1    8. Potencia:
d
dx

[g(x)]n = n[g(x)]n 1 g (x)

Funciones

Trigonométricas:

9.
d
dx

senx = cos x 10.
d
dx

cos x = senx 11.
d
dx

tan x = sec2 x

12.
d
dx

cot x = csc2 x 13.
d
dx

sec x = sec x tan x 14.
d
dx

csc x = csc x cot x

Trigonométricas inversas:

15.
d
dx

sen 1 x = 1

1 x2
16.

d
dx

cos 1 x = 1

1 x2
17.

d
dx

tan 1 x = 1

1 + x2

18.
d
dx

cot 1 x = 1

1 + x2
19.

d
dx

sec 1 x = 1

x x2 1
20.

d
dx

csc 1 x = 1

x x2 1

Hiperbólicas:

21.
d
dx

senhx = cosh x 22.
d
dx

cosh x = senhx 23.
d
dx

tanh x = sech2 x

24.
d
dx

coth x = csch2 x 25.
d
dx

sech x = sech x tanh x 26.
d
dx

csch x = csch x coth x

Hiperbólicas inversas:

27.
d
dx

senh 1 x = 1

x2 + 1
28.

d
dx

cosh 1 x = 1

x2 1
29.

d
dx

tanh 1 x = 1

1 x2

30.
d
dx

coth 1 x = 1

1 x2
31.

d
dx

sech 1 x = 1

x 1 x2
32.

d
dx

csch 1 x = 1

x x2 + 1

Exponencial:

33.
d
dx

ex = ex 34.
d
dx

bx = bx (ln b)

Logarítmica:

35.
d
dx

ln x = 1
x

36.
d
dx

logb x = 1
x(ln b)

3

LISTA DE DERIVADAS

08367_00_endsheet.indd   108367_00_endsheet.indd   1 6/4/09   12:37:32 PM6/4/09   12:37:32 PM



BREVE TABLA DE INTEGRALES

1.
1

, 1
1

n
n uu du C n

n
2.

1 lndu u C
u

3. u ue du e C 4.
1

ln
u ua du a C

a

5. sen cosu du u C 6. cos senu du u C

7. 2sec tanu du u C 8. 2csc cotu du u C

9. sec tan secu u du u C 10. csc cot cscu u du u C

11. tan ln cosu du u C 12. cot ln senu du u C

13. sec ln sec tanu du u u C 14. csc ln csc cotu du u u C

15. sen sen cosu u du u u u C 16. cos cos senu u du u u u C

17. 2 1 1
2 4sen sen 2u du u u C 18. 2 1 1

2 4cos sen 2u du u u C

19. 2tan tanu du u u C 20. 2cot cotu du u u C

21. 23 1
3sen 2 sen cosu du u u C 22. 23 1

3cos 2 cos senu du u u C

23. 3 21
2tan tan ln cosu du u u C 24. 3 21

2cot cot ln senu du u u C

25. 3 1 1
2 2sec sec tan ln sec tanu du u u u u C 26. 3 1 1

2 2csc csc cot ln csc cotu du u u u u C

27.
sen( ) sen( )sen cos

2( ) 2( )
a b u a b u Cudubua
a b a b

28.
sen( ) sen( )cos cos

2( ) 2( )
a b u a b u Cudubua
a b a b

29. 2 2sen sen cos
au

au ee bu du a bu b bu C
a b

30. 2 2cos cos sen
au

au ee bu du a bu b bu C
a b

31. senh coshu du u C 32. cosh senhu du u C

33. 2sech tanhu du u C 34. 2csch cothu du u C

35. tanh ln(cosh )u du u C 36. coth ln senhu du u C

37. ln lnu du u u u C 38. 2 21 1
2 4ln lnu u du u u u C

39. 1

2 2

1 sen udu C
aa u

40. 2 2

2 2

1 lndu u a u C
a u

41.
2

2 2 2 2 1sen
2 2
u a ua u du a u C

a
42.

2
222222 ln

2 2
u aa u du a u u a u C

43. 1
2 2

1 1 tan udu C
a aa u

44. 2 2

1 1 ln
2

a udu C
a a ua u
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GUÍA DE CORRELACIÓN DE TOOLS
Herramientas de ED (DE Tools) es un conjunto de simulaciones que proporcionan una exploración interactiva y visual de los 
conceptos que se presentan en este libro. Visite academic.cengage.com/math/zill para encontrar más o para contactar con los re-
presentantes de ventas de su localidad para que les pregunte acerca de otras opciones para utilizar DE Tools con este libro.

HERRAMIENTAS DEL TEXTO

Capítulo 1
Intervalo de defi nición

Ilustra el concepto de intervalo de defi nición de una solución de una 
ecuación diferencial.

Capítulo 2
Campo direccional

Apoya la exploración visual de la relación entre campos direccionales 
y las soluciones de las ecuaciones diferenciales ordinarias de primer 
orden (EDO) de la forma dy/dx � f (x, y). 

Línea de fase
Le permite ver la línea de fase, las gráfi cas solución y la gráfi ca de la 
ecuación diferencial para algunas ecuaciones diferenciales de primer 
orden.

Método de Euler
Apoya la comparación visual y numérica del método de Euler y del 
método Runge-Kutta para aproximar soluciones de las EDO de primer 
orden de la forma dy/dx � f (x, y). 

Capítulo 3
Crecimiento y decaimiento

Exploración visual del crecimiento exponencial y decaimiento de las 
EDO de primer orden, dx/dt � rx, o su solución x(t). 

Mezclas
Le permiten variar la proporción de entrada-salida y la concentración de 
entrada, esta herramienta le permite ver cómo cambia la cantidad de sal 
cuando dos disoluciones son mezcladas en un gran tanque. 

Circuitos LR
Exploración cualitativa del comportamiento de un modelo de un 
circuito en serie que contiene un inductor y un resistor cuando varían 
los parámetros.

Presa-Depredador
Ilustra las curvas solución para el modelo presa-depredador de Lotka-
Volterra.

Capítulo 5
Masa/Resorte

Apoya la exploración gráfi ca de los efectos del cambio de paráme-
tros en el movimiento del sistema masa/resorte: mx� � bx� � kx � 
F

0
 sen(gt). 

Capítulo 7
Péndulo lineal doble

Exploración visual de un péndulo doble.
Capítulo 8
Diagrama de fase lineal

Le permite generar diagramas de fase y curvas solución para sistemas
X� � AX de dos ecuaciones diferenciales de primer orden con coefi -
cientes constantes. Podrá ver cómo el diagrama de fase depende de los 
eigenvalores de la matriz A de coefi cientes.

Capítulo 9
Métodos numéricos

Comparación visual y numérica del método de Euler, el método de Euler 
mejorado y el método de Runge-Kutta de aproximación de soluciones 
para sistemas de dos ecuaciones diferenciales.

PROYECTOS

Capítulo 1
Proyecto: Deception Pass

Apoya la exploración visual del efecto de la marea y la amplitud de 
canal en la velocidad del agua moviéndose a través del Deception Pass.

Capítulo 2
Proyecto: Logistic Harvest

Exploración del crecimiento logístico de la población con cualquier 
constante o recolección proporcional. 

Capítulo 3
Proyecto: Swimming

Determine la relación entre la velocidad de un río y la velocidad de una 
persona nadando a través del río. 

Capítulo 4
Proyecto: Bungee Jumping

Explore las fuerzas que actúan en un saltador de bungee cuando usted 
cambia el peso del saltador y la elasticidad de la cuerda del bungee.

Capítulo 5
Proyecto: Tacoma Bridge

Exploración del levantamiento y caída de la carpeta asfáltica de un 
puente.

Capítulo 6
Proyecto: Tamarisk

Exploración de la series solución para el crecimiento de un árbol tama-
risco en un cañón desértico.

Capítulo 7
Proyecto: Newton’s Law of Cooling

Use el modelo matemático de la ley de enfriamiento de Newton para de-
terminar la rapidez con la que un cuerpo se calienta o se enfría para en-
contrar el tiempo que le toma al “Mayfair Diner Murder” ocupar su lugar 
y el tiempo en el que el cadáver fue llevado de la cocina al refrigerador.

Capítulo 8
Proyecto: Earthquake

Exploración visual de los desplazamientos de los pisos de tres edifi cios 
durante un terremoto.

Capítulo 9
Proyecto: Hammer

Exploración de un modelo de péndulo usando diferentes métodos nu-
méricos, tiempo y tamaño de paso, y condiciones iniciales.
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TABLA DE TRANSFORMADAS DE LAPLACE

 f (t) 

 1. 1 

 2. t 
1

s2

1

s

{ f (t)} F(s)

 3. tn n!

sn 1 ,  n un entero positivo

 4. t�1/2 

 5. t1/2 

 6. ta 

 7. sen kt 

 8. cos kt 

 9. sen2 kt 

10. cos2 kt 

11. eat 

12. senh kt 

13. cosh kt 

14. senh2kt 

15. cosh2kt 

16. teat 
1

(s a)2

s2 2k2

s(s2 4k2)

2k2

s(s2 4k2)

s

s2 k2

k

s2 k2

1

s a

s2 2k2

s(s2 4k2)

2k2

s(s2 4k2)

s

s2 k2

k

s2 k2

( 1)

s 1 , a 1

1

2s3/2

B s

17. tn eat 
n!

(s a)n 1 ,  n un entero positivo

18. eat sen kt 

19. eat cos kt 
s a

(s a)2 k2

k

(s a)2 k2

 f (t) 

20. eat senh kt 

21. eat cosh kt 

22. t sen kt 

23. t cos kt 

24. sen kt � kt cos kt 

25. sen kt � kt cos kt 

26. t senh kt 

27. t cosh kt 

28.  

29. 
aeat bebt

a b

eat ebt

a b

 

30. 1 � cos kt 

31. kt � sen kt 

32.  

33. 
cos bt cos at

a2 b2

a sen bt b sen at

ab (a2 b2)

 

34. sen kt senh kt 

35. sen kt cosh kt 

36. cos kt sinh kt 

37. cos kt cosh kt 

38. J
0
(kt) 

1

1s2 k2

s3

s4 4k4

k(s2 2k2)

s4 4k4

k(s2 2k2)

s4 4k4

2k2s

s4 4k4

s

(s2 a2)(s2 b2)

1

(s2 a2)(s2 b2)

k3

s2(s2 k2)

k2

s(s2 k2)

s

(s a)(s b)

1

(s a)(s b)

s2 k2

(s2 k2)2

2ks

(s2 k2)2

2k3

(s2 k2)2

2ks2
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